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Abstract

Simple games that permit a weight representation such that each win-
ning coalition has a weight of at least 1 and all losing coalitions have a
weight of at most α, are called α-roughly weighted games. For a given
game the smallest such value of α is called the critical threshold of the
game. Freixas and Kurz [1] improved the lower bound on α after initial
work of Gvozdeva, Hemaspaandra and Slinko [2] and conjectured that
their bound is tight. In this study we give a proof of their conjecture for
simple games that have minimal winning coalitions of order 2.

1 Introduction

A cooperative game is defined by a finite set N of players and a value function
v, assigning a certain value v(S) ∈ R to every subset S ⊆ N . Each subset
S ⊆ N is interpreted as a coalition of players and the corresponding value v(S)
represents the gain which the players i ∈ S can achieve by cooperating. In
the simplest case the value function takes only values 0 and 1. In this case we
simply distinguish between winning (v(S) = 1) or losing coalitions (v(S) = 0).
If, in addition, v is monotone, i.e., supersets of winning coalitions are winning,
the game is referred to as a simple game.
Specific examples of simple games are so-called weighted voting games: Assume
that each player i ∈ S has an associated weight wi ≥ 0 and define v(S) = 1 if
w(S) :=

∑
i∈S wi ≤ 1 and v(S) = 0 otherwise. This obviously defines a simple

game. Not every simple game can be defined this way. Consider, for example, a
set N = {1...n} of n ≥ 4 players and define the winning coalitions to be the sets
of the form {i, i+1} and supersets thereof. This defines a simple game in which
both sets Sodd = {i ∈ N | i is odd} and Seven = {i ∈ N | i is even} are losing.
Assume for simplicity that n is even. Then, if our game were a weighted voting
game, there were corresponding non-negative weights satisfying wi + wi+1 ≥ 1
for all winning coalitions S = {i, i + 1}. This implies w(N) = n/2 and hence
either w(Sodd) or w(Seven) must exceed n/4. So there are losing coalitions of
weight n/4 > 1, a contradiction.
Freixas and Kurz [1] have conjectured that for every simple game there exist
weights wi such that all winning coalitions S have weight w(S) ≥ 1 and all

losing coalitions have weight at most 1
n

⌊
n2

4

⌋
where n is the number of players.

In this study we will investigate and prove this conjecture for some natural and
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interesting subclasses of simple games and for the special case where all minimal
winning coalitions have cardinality 2.

2 About simple games

A nice overview of the subject of weighted simple games with references to early
work is given by Gvozdeva and Slinko [3] and Taylor and Zwicker [4,5]. We rec-
ommend these works to the interested reader who wants to know more about
simple games. Here we restrict ourselves to the fundamental definitions and
necessary notions to (partially) prove the conjecture of Freixas and Kurz.

Definition 2.1. Let P = [n] = {1, 2, ..., n} be a set of players and let ∅ 6=W ⊆
2P be a collection of subsets of P that satisfies the monotonicity condition:

if X ∈ W and X ⊆ Y ⊆ P then Y ∈ W.

In such case the pair G = (P,W) is called a simple game and the set W
is called the set of winning coalitions of G. Coalitions that are not in W
are called losing. A winning coalition is said to be minimal if every proper
subset in it is a losing coalition, so removing any player from such coalition
will make it losing. Analogue, a losing coalition is said to be maximal if every
proper superset of it is a winning coalition, i.e. adding any player will make it
winning. The set of all losing coalitions is called L.

Due to the monotonicity property the set W is completely determined by the
collection Wmin of all minimal winning coalitions of G. Because W 6= ∅ its
clear that due to the monotonicity condition P ∈ W. Furthermore, a game is
also fully determined by the collection Lmax of maximal losing coalitions. To
exclude trivial games we demand ∅ /∈ W.

Definition 2.2. A simple game G = (P,W) is called a weighted majority
game if there exist nonnegative weights w1, ..., wn and a real number q, called
quota, such that

w(S) ≥ q for all S ∈ W
w(S) < q for all S ∈ L

Instead of
∑
i∈X wi we will often write w(X).

Not all simple games are weighted majority games. Moreover, most games1 are
not weighted [5]. Games exist with w(S) ≥ q for all S ∈ W and w(S) ≤ q for
all S ∈ L. These games are called roughly weighted. Some games are not even
roughly weighted. In those games the lightest winning coalition has a weight
that is less than the most heavy losing coalitions. Gvozdeva, Hemaspaandra
& Slinko [2] introduced the class of α-roughly weighted games to be able to
measure the distance of a game to a (roughly) weighted game. In this class the
quota is extended to an interval [1, α] for an α ∈ R≥1, while w(S) ≥ 1 for all
s ∈ W and w(S) ≤ α for all S ∈ L with L = 2p \W.

1Because this article is just about simple games, we will often omit the word simple when
we speak about simple games. So each time we write game we mean simple game unless we
specify otherwise.
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Given an α-roughly weighted game G = (P,W) we are looking for a weight
function w such that α is as small as possible. The idea behind this is that a
game with a smaller α is nearer to a (roughly) weighted game than games with
a larger α. This smallest α suitable for a given α-roughly weighted game G
is called the critical threshold-value α(G) of game G [1]. Finding α(G) can be
formulated as a linear program. Because a simple game is fully determined by
its collection of minimal winning coalitions Wmin, this linear program is:

α(G) := min α
subject to w(S) ≥ 1 for S ∈ Wmin

w(S) ≤ α for S ∈ Lmax
w1, .., wn ≥ 0

where Lmax is the collection of maximal losing coalitions.

In this LP α(G) denotes the minimum weight of the maximum weighted losing
coalition of a game G(P,W) while the weight of the minimum weighted winning
coalition is 1. This formulation is a slight modification of the formulation by
Freixas and Kurz [1]. They demand α ≥ 1 as a consequence of the definition of
α-roughly weighted games by Gvozdeva et al. However, if we omit the constraint
α ≥ 1 in the LP we will find the weight of the maximum weighted losing coalition
for any type of weighted game, while the minimum weighted winning coalition
has a weight 1. Notice that the LP will yield α ≥ 0 because w(S) ≥ 0 for all
S ⊆ P . In the case of a weighted majority game we will find 0 ≤ α < 1, in the
case of a roughly weighted game we will find α = 1 and for α-roughly weighted
games we will find α > 1. The reason why we allow α ≥ 0 instead of α ≥ 1
is that in the rest of this study we will consider α(G) not only for games with
α(G) ≥ 1 but for all games, so we need α(G) ≥ 0.
Obviously the size of the class of α-roughly weighted games varies with α. A
larger value of α will capture more games, and a smaller α will capture less. So
a very natural question to ask is whether a smallest α exists, such that all games
are in the class of α-roughly weighted games. It is clear that such an α doesn’t
exist in general, but for games Gn with the same size n this α depends on n.
So we are looking for a function α : N→ R such that maxGn α(Gn) ≤ α(n) for
all n and α(n) is minimal with this property.

3 Known bounds on the critical threshold

Gvozdeva, Hemaspaandra and Slinko [2] gave a lower bound for maxGn α(Gn)
for n ≥ 4 by considering games with

⌊
n
2

⌋
disjoint minimal winning coalitions of

two players and proved maxGn
α(Gn) ≥ 1

2

⌊
n
2

⌋
. Freixas and Kurz [1] improved

this bound a little for specific odd games by using duality in linear program-

ming and proved maxGn
α(Gn) ≥ 1

n

⌊
n2

4

⌋
. They showed this bound by consid-

ering odd games G where all players are in n − 1 minimal winning coalitions
{i, i + 1}. They found a feasible solution for the dual of the LP and deduced

α(G) ≥ 1
n

⌊
n2

4

⌋
for this type of games. For games G with an even number of

players they followed Gvozdeva, Hemaspaandra and Slinko [2] to show α(G) = n
4
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which equals 1
n

⌊
n2

4

⌋
when n is even (see Proposition 4.3 on page 4). So by con-

sidering these games it’s clear that maxGn α(Gn) ≥ 1
n

⌊
n2

4

⌋
. Freixas and Kurz

[1] also conjectured that this bound is tight, so maxGn
α(Gn) = α(n) = 1

n

⌊
n2

4

⌋
for games with four or more players.

Games with n ≤ 4 are (roughly) weighted [3], so maxGn
α(Gn) ≤ 1 for n ∈

{1, 2, 3, 4}. For n ≤ 4 it’s easy to check, by considering all possibilities for W
and choosing an appropriate weight distribution w that α(G1) = 0 = α(1),
α(G2) = 1/2 = α(2), α(G3) = 2/3 = α(3) and α(G4) = 1 = α(4).

So the conjecture can be relaxed to α(Gn) ≤ α(n) = 1
n

⌊
n2

4

⌋
for all G ∈ Gn with

n ≥ 1.

We will get back to this after the following preliminaries.

4 Preliminaries

Because α-roughly weightedness was only defined for games with n ≥ 4 players
with α ≥ 1 by Gvozdeva and Slinko [3] we like to state the next definition,
which is a slight modification of the original definition.

Definition 4.1. A simple game G(P,W ) is called α(n)-roughly weighted if
there are weights w1, . . . , wn ∈ R≥0 fulfilling

w(S) ≥ 1 for all S ∈ W
w(S) ≤ α(n) for all S ∈ L with L = 2P \W

with n = |P |.

Now we state some properties related to fractions and to α(n).
Proposition 4.1. for a1, b1, a2, b2 ∈ N

if a1
b1
≤ a2

b2
then a1

b1
≤ a1+a2

b1+b2
≤ a2

b2

Proof. First notice that a1
b1
≤ a2

b2
is equivalent to a1b2 ≤ a2b1 for a1, b1, a2, b2 ∈

N. Now a1
b1

= a1(b1+b2)
b1(b1+b2)

= a1b1+a1b2
b1(b1+b2)

≤ a1b1+a2b1
b1(b1+b2)

= a1+a2
b1+b2

. The second inequality

follows by a similar argument.

Proposition 4.2. for a1, b1, a2, b2 ∈ N

if a1
b1
≤ a2

b2
then a1

a1+b1
≤ a2

a2+b2

Proof. a1
b1
≤ a2

b2
⇔ b1

a1
≥ b2

a2
⇔ b1

a1
+ 1 ≥ b2

a2
+ 1 ⇔ b1+a1

a1
≥ b2+a2

a2
⇔ a1

a1+b1
≤

a2
a2+b2

.

Proposition 4.3. For even a ∈ N⌊
a2

4

⌋
=
a2

4
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Proof. Suppose a = 2k with k ∈ {1, 2, 3, . . .}. Then
⌊
a2

4

⌋
=
⌊
4k2

4

⌋
=
⌊
k2
⌋

=

k2 = 4k2

4 = a2

4 .

Proposition 4.4. For odd a ∈ N⌊
a2

4

⌋
=
a2 − 1

4

Proof. Suppose a = 2k + 1 with k ∈ {0, 1, 2, . . .}. Then
⌊
a2

4

⌋
=
⌊
(2k+1)2

4

⌋
=⌊

k2 + k + 1
4

⌋
= k2 + k = 4k2+4k+1−1

4 = (2k+1)2−1
4 = a2−1

4 .

Proposition 4.5. For a ∈ N

a− 1

a
≤ 1

a

⌊
a2

4

⌋
≤ a

4

Proof. First notice that a 6= 0, so 1
a exists. For odd a ≥ 3 the first inequality in

the proposition follows because a+1
4 ≥ 1 so, a−1a ≤

a−1
a ·

a+1
4 = 1

a ·
a2−1

4 = 1
a

⌊
a2

4

⌋
and for a = 1 by the simple substitution 1

a

⌊
a2

4

⌋
= 1

1

⌊
12

4

⌋
= 0 = a−1

a . The

second inequality in the proposition follows by 1
a

⌊
a2

4

⌋
= 1

a ·
a2−1

4 < 1
a ·

a2

4 = a
4

for odd a ≥ 1.

For even a we see that 1
a

⌊
a2

4

⌋
= 1

a ·
a2

4 = a
4 . This proves the second inequality

of the proposition for even a. The first inequality in the proposition holds for
even a because 0 ≤ (a − 2)2 = a2 − 4a + 4 = a2 − 4(a − 1). So 4(a − 1) ≤ a2

which yields a−1
a ≤

a
4 = 1

a

⌊
a2

4

⌋
.

Lemma 4.1. Any simple game G(N,W) with just one minimal winning coali-

tion X is α(n)-roughly weighted with α(n) = 1
n

⌊
n2

4

⌋
.

Proof. If G contains dummies, we set their weights to 0. We set w(i) = 1
|X| for

all i ∈ X, so w(X) = 1. Now the maximum weighted losing coalition Lmax can
contain at most |X|−1 players from X and some or all dummies. Since |X| ≤ n
it follows that α(G) ≤ w(Lmax) = |X|−1

|X| ≤
n−1
n ≤ 1

n

⌊
n2

4

⌋
.

Lemma 4.2. Let G1(N1,W1) and G2(N2,W2) be two disjoint simple games
with N1 ∩ N2 = ∅, n1 = |N1|, n2 = |N2|. If G1 is α(n1)-roughly weighted and
G2 is α(n2)-roughly weighted, then the joined game G(N,W) with N = N1∪N2

andW =W1∪W2 is α(n)-roughly weighted with n = n1+n2and α(n) = 1
n

⌊
n2

4

⌋
.

Proof. For all X ∈ Wmin it is obvious that X ∈ W1 or X ∈ W2, so it clear that
w(X) = 1. Because N1 ∩N2 = ∅ also the maximum weighted losing coalitions
L1 ⊂ N1 and L2 ⊂ N2 are disjoint. So its clear that in the joint game G
the maximum weighted losing coalition LG = L1 ∪ L2. So α(G) = w(LG) =
w(L1) + w(L2).

If n is even, then α(n) = 1
n1+n2

⌊
(n1+n2)

2

4

⌋
= (n1+n2)

4 = n1

4 + n2

4 ≥
1
n1

⌊
n2
1

4

⌋
+
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1
n2

⌊
n2
2

4

⌋
= α(n1) + α(n2) ≥ w(L1) + w(L2) = w(LG) = α(G).

If n is odd, then, w.o.l.g. we may assume that n1 is even and n2 is odd, so

α(n) = 1
n

⌊
n2

4

⌋
= n2−1

4n = n1+n2

4 − 1
4(n1+n2)

> n1+n2

4 − 1
4n2

= n1

4 +
n2
2−1
4n2

=

1
n1

⌊
n2
1

4

⌋
+ 1

n2

⌊
n2
2

4

⌋
= α(n1) + α(n2) ≥ w(L1) + w(L2) = w(LG) = α(G).

Lemma 4.3. Let G(N,W) be an α(n)-roughly weighted game for α(n) = 1
n

⌊
n2

4

⌋
.

Now let S ⊂ N with w(S) ≥ 1. Then the game G∗(N,W∗) with W∗ =W∪{S}
is α(n)-roughly weighted.

Proof. Note that S 6= ∅ because w(S) ≥ 1. If S ∈ W the lemma is clear because
G∗ = G so α(G∗) = α(G) ≤ α(n). Now let L∗ ∈ W∗ be a maximum weighted
losing coalition in G∗ so X * L∗ for all X ∈ W∗. Because W∗ ⊇ W this means
that X * L∗ for all X ∈ W, so L∗ is a maximum weighted losing coalition for
G. So α(G∗) = w(L∗) ≤ α(G) ≤ α(n).

5 Games and graphs

In the previous sections we considered games from a set-theoretical point of
view. Another, very much related viewpoint is graph-theoretical. A simple
game can be seen as a hypergraph, where the players are the vertices and the
coalitions are the hyperedges. So a weighted simple game is now a hypergraph
with weighted vertices. The weights of the hyperedges are the weights of the
coalitions. Because simple weighted games are fully determined by their min-
imal winning coalitions, a simple game can be represented by the hypergraph
with the minimal winning coalitions as hyperedges. A coalition is winning if it
contains any hyperedge as a (not necessarily proper) subset.
A special type of games are the games with a collection of minimal winning
coalitions that all have cardinality 2. We call these games matching games. In
this type of game all minimal winning coalitions are pairs of players. These
coalitions may intersect. The hypergraph representation of this type of game is
a simple graph, where the vertices are the players and the edges are the min-
imal winning coalitions. With G(V,E) we denote the corresponding graph to
the game G(N,W). Although the notation of both is very similar, no confusion
will occur and we will use both notations.
For matching games G(N,W) any maximal weighted losing coalition is an inde-
pendent set in the corresponding graph G(V,E). However, a maximum weighted
losing coalition doesn’t need to be a maximum independent set. Suppose, for
instance, that we have a game on n ≥ 3 players represented by a star K1,n−1.
Suppose that player 1 is the center of the star. Then, by giving the center of the
star a weight of w1 = 1 and all other players a weight of wi = 0 (i ∈ {2, . . . , n}),
the center of the star is a maximal weighted losing coalition L1 = {1} with
w(L1) = 1. The center is a maximal independent set, but not a maximum
independent set. In fact, we have two maximal losing coalitions L1 with weight
w(L1) = 1, and L2 = {2, . . . , n} with weight w(L2) = 0. In order to keep the
weight of the maximum weighted losing coalition as small as possible, we can de-
cide to distribute the weights more equally. By setting wi = 1

n for i ∈ {2, . . . , n}
and w1 = 1− 1

n we can create a situation where both maximal losing coalitions

6



L1 and L2 have a weight of w(L1) = w(L2) = n−1
n and the winning coalitions

still have a weight 1. Notice that this weight distribution respects the bound

α(G) ≤ 1
n

⌊
n2

4

⌋
for any star with (even with n ≥ 2) by Proposition 4.5.

6 Matchings and games

Another way of looking at maximum weighted losing coalitions in matching
games is by considering matchings. Any losing coalition can contain at most
one player per minimal winning coalition. So any maximum weighted losing
coalition can not have two adjacent vertices. This means we can pick one ver-
tex per edge at most in a losing coalition. So any maximum weighted losing
coalition, can contain at most half of the players of a maximum matching plus
all players that are no part of this maximum matching.

Lemma 6.1. Every matching game G(N,W) with a perfect matching is α(n)-

roughly weighted with α(n) = 1
n

⌊
n2

4

⌋
.

Proof. Suppose the game has n = 2m players (m ∈ N). In the maximum
matching there are m edges, corresponding with m minimal winning coalitions.
All players are matched because the matching is perfect. In any losing coalition
there are at most m players. If we would have more than m players, there
must be at least two players of the same minimal winning coalition in the losing
coalition, which is a contradiction. Now we can give all edges e ∈ M a weight
w(e) = 1 by giving all players i a weight wi = 1

2 . Now the weight of the
maximum weighted losing coalition Lmax is α(G) = w(Lmax) = m · 12 = n

4 =
α(n).

Definition 6.1. A graph G is called factor-critical if deleting any vertex from
G will result in a graph with a perfect matching.

Lemma 6.2. Every matching game G(N,W) that can be represented by a

factor-critical graph G(V,E) is α(n)-roughly weighted with α(n) = 1
n

⌊
n2

4

⌋
by

the weight distribution wu = 1
2 for all u ∈ V .

Proof. Observe that a factor-critical graph has an odd order, because deleting
any vertex will leave a graph with a perfect matching M , which must have an
even order M. Because there is at least one winning coalition of 2 players, and
the number of players is odd, it’s clear that n = |N | ≥ 3. Notice that any
minimal winning coalition Wmin has a weight w(Wmin) = 1.
First notice that it is impossible that all players are in a maximal losing coalition
Lmax. So there is at least one player u ∈ V such that u /∈ Lmax. Because G
is factor critical, G′ = G − u contains a perfect matching. Now by Lemma we
know that this graph G′ can have at most half of its vertices to be chosen in

any maximal losing coalition. So in G there can be at most |G
′|

2 = n−1
2 =

⌊
n
2

⌋
vertices which are in the maximum losing coalition. Now we give all players

i ∈ N the proposed weight wi = 1
2 , so α(G) = w(Lmax) = 1

2

⌊
n
2

⌋
≤ 1

n

⌊
n2

4

⌋
.
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Lemma 6.3. Any game represented by a biregular graph G(A,B;E) is α(n)-

roughly weighted with α(n) = 1
n

⌊
n2

4

⌋
where n = |A|+ |B|.

Proof. W.l.o.g. we assume |A| ≤ |B|. Let 0 < λ = |A|
n ≤

1
2 be the fraction

of the number of players that are in A, so |A| = λn and |B| = (1 − λ)n. Any
maximal losing coalition L will contain a number lA = |L∩A| players in A and
a number lB = |L ∩ B| players in B. Those lA vertices in A are incident to

deg(A) · lA edges that are incident to deg(A)
deg(B) · lA vertices in B. Its clear that

in the biregular graph deg(A) · |A| = deg(B) · |B|, so lA vertices in A cover
deg(A)
deg(B) · lA = |B|

|A| · lA = 1−λ
λ · lA vertices in B.

Assume L contains a fraction ρ of the players in A, so lA = ρ|A| (0 ≤ ρ ≤ 1 such
that ρ|A| ∈ N∪{0}). Then there are 1−λ

λ ·lA vertices inB that are connected with
these vertices in A. Because no losing coalition can contain two players from
a minimal winning coalition, these vertices can not be present in the maximal
losing coalition. So its clear that lB ≤ |B| − 1−λ

λ lA = (1 − λ)n − 1−λ
λ ρλn =

(1− λ)n− (1− λ)ρn = (1− ρ)(1− λ)n.
If we chose for each player a ∈ A a weight wa = 1−λ and for each player b ∈ B
a weight wb = λ then the weights of all edges, which are the minimal winning
coalitions, are 1. Any maximal losing coalition L will have a weight w(L) ≤
walA+wblB ≤ (1−λ)ρλn+λ(1−λ)(1−ρ)n = λ(1−λ)n(ρ+1−ρ) = λ(1−λ)n.
By simple calculus we know that P (λ) = λ(1− λ)n has a maximum value of n

4

for λ = 1
2 . But since λ = |A|

n the value λ = 1
2 can only occur when n is even.

The maximum weighted losing coalition Lmax will have a weight w(Lmax) = n
4

when λ = 1
2 , so when |A| = |B|. When λ < 1

2 , so when |A| < |B| the weight
of the maximum weighted losing coalition w(Lmax) < n

4 . This proves α(G) =

w(Lmax) < n
4 = 1

n

⌊
n2

4

⌋
when n is even. If n is odd, the maximum weight

is reached for |A| =
⌊
n
2

⌋
, so λ =

⌊
n
2

⌋
/n. This yields w(Lmax) =

⌊
n
2

⌋
1
n (1 −⌊

n
2

⌋
1
n )n = n−1

2 (1− n−1
2 ·

1
n ) = n−1

2 ·
n+1
2n = 1

n ·
n2−1

4 = 1
n

⌊
n2

4

⌋
. So for every game

G represented by a biregular graph choosing the proposed λ-weight distribution,
will guarantee that α(G) ≤ α(n).

Lemma 6.4. Any game represented by a bipartite graph G(A,B;E) which con-

tains a Hamilton path, is α(n)-roughly weighted with α(n) = 1
n

⌊
n2

4

⌋
where

n = |A|+ |B|.

Proof. W.l.o.g. we may assume |A| ≤ |B|. If |A| = |B|, its clear that G has a
perfect matching, so the lemma follows from Lemma 6.1. Suppose |A| < |B|.
Then the Hamiltonpath starts in B, and the vertices in the path are alternately
in A and B, with the last vertex in B, so |B| = |A| + 1. Now we know that n
is odd and |A| = n−1

2 and |B| = n+1
2 .

Its clear that if we take λ|A| vertices from A in any maximal losing coalition,
this coalition can contain at most |B| − (λ|A|+ 1) = (1− λ)|A| vertices in B.

Now we give weights wa = |B|
n for a ∈ A and wb = |A|

n for b ∈ B.
The weight of any minimal winning coalition {a, b} with a ∈ A and b ∈ B is

wa + wb = |B|
n + |A|

n = 1.
The weight of a maximal losing coalition Lmax is bounded by α(G) = w(Lmax) ≤
λ|A| ·wa + (1− λ)|A| ·wb < λ|A| ·wa + (1− λ)|A| ·wa = |A| ·wa = n−1

2 ·
n+1
2n =

8



1
n ·

n2−1
4 = 1

n

⌊
n2

4

⌋
= α(n) where the second last equality holds because of

Propostion 4.4 since n is odd.

Lemma 6.5. Any game represented by a bipartite graph G(A,B;E) with a

matching of A into B is α(n)-roughly weighted with α(n) = 1
n

⌊
n2

4

⌋
where

n = |A|+ |B|.

Proof. Since a matching of A into B exists its clear that |A| ≤ |B| and, by
Halls condition, |S| ≤ |N(S)| for S ⊆ A. Let σS be the ratio of the number

of vertices in S and the number of neighbors of S in B, so σS = |S|
|N(S)| . Now

we decompose G in the following way: Let A1 ⊆ A be a largest subset of A
among the subsets S ⊆ A with the largest σS . If A1 6= A then remove A1 from
A to get A′ and remove N(A1) from B to get B′ and iterate this procedure on
the remaining subgraph G′(A′, B′;E′) to find A2, A3, . . . , Ak. In this way we
partition A into {A1, . . . , Ak} such that Ai ∩ Aj = ∅ for i 6= j and

⋃
iAi = A

with i, j ∈ {1, . . . , k}. Next let B1 = N(A1) and Bi = N(Ai) \
⋃i−1
j=1Bj for

i ∈ {2, . . . , k}. So {B1, . . . , Bk} is a partition of B.

We have to be sure that at any time in the partitioning N(Ai) 6= ∅ to be sure
Bi exists. For A1 this is obvious. For i > 1 suppose that N(Ai) = Bi = ∅ and

Bi−1 6= ∅. Then σAi−1∪Ai
= |Ai−1∪Ai|
|Bi−1∪Bi| = |Ai−1|+|Ai|

|Bi−1| > |Ai−1|
|Bi−1| = σSi−1

which is

a contradiction to the construction of the partitioning of G because Si−1 ∪ Si
should have been chosen in the partition instead of Si−1.

Also notice that σAi
> σAi+1

. Suppose for the contrary, that σAi
≤ σAi+1

,

so |Ai|
|Bi| ≤

|Ai+1|
|Bi+1| . But then, by Proposition 4.1, σAi = |Ai|

|Bi| ≤
|Ai|+|Ai+1|
|Bi|+|Bi+1| =

|Ai∪Ai+1|
|Bi∪Bi+1| = σAi∪Ai+1

. This again is a contradiction to the construction of the

partitioning of G because now Ai ∪Ai+1 should have been chosen in the parti-
tion instead of Ai.
So now we have a partition of the graph G into subgraphs Gi(Ai, Bi;Ei) and

σi = |Ai|
|Bi| where σi > σj for i < j.

Let ni = |Ai| + |Bi| and let λi be the fraction of the vertices of Gi that are
in Ai. So |Ai| = λini and |Bi| = (1 − λi)ni. Now suppose there is a fraction
ρi of the vertices of |Ai| in a maximal losing coalition. Let A′i be the set of
these vertices, so |A′i| = ρiλini. By definition of the partition of A its clear

that
|A′i|
|N(A′i)|

≤ |Ai|
|N(Ai)| = |Ai|

|Bi| . Indeed,
|A′i|
|N(A′i)|

> |Ai|
|N(Ai)| would contradict the

choice of Ai (since the maximality of σi). So |N(A′i)| ≥
|A′i|
|Ai| |Bi| = ρi|Bi|. This

means that ρiλini vertices in Ai cover at least ρi of the vertices in |Bi|. So, a
maximal losing coalition that contains ρiλini vertices in Ai can contain at most
(1− ρi)|Bi| of the vertices of Bi.

Now chose wa = 1 − λi for a ∈ Ai and wb = λi for b ∈ Bi. Then the weight
of a maximum weighted losing coalition Lmax will be bounded by w(Lmax) ≤
waρiλini + wb(1 − ρi)(1 − λi)ni = λi(1 − λi)ni. This yields, as shown already

9



in the biregular case in Lemma 6.3, that α(Gi) ≤ 1
ni

⌊
n2
i

4

⌋
.

The rest of the proof follows from Lemma 4.2 and Lemma 4.3. Because all
Gi are α(ni)-roughly weighted, the union

⋃
iGi is α(n)-roughly weighted by

Lemma 4.2. Now we have to add edges e(a, b) ∈ E(G) with a ∈ Ai and b ∈ Bj
(i 6= j) to add the coalitions that are not in any Gi. Observe that for i < j
no edges e(a, b) exist with a ∈ Ai and b ∈ Bj due to the definition of the
partition of G. In the graph G(A,B;E) edges e(a, b) can exist with a ∈ Aj and
b ∈ Bi for i < j. By definition of the construction of the partition of G we

know that for i < j it holds that |Ai|
|Bi| >

|Aj |
|Bj | . So by Proposition 4.2 we know

λi = |Ai|
|Ai|+|Bi| >

|Aj |
|Aj |+|Bj | = λj and thus w(e) = wa+wb = (1−λj)+λi > 1. So

the winning coalition represented by e suffices the minimum weight demanded
by the definition of α(n)-roughly weighted games and can be added to the game⋃
iGi by Lemma 4.3 without violating the bound. This can be done for all

minimal winning coalitions e(u, v) with u ∈ Aj and v ∈ Bi for i < j.

7 Proving the conjecture

Now we come to the prove of the conjecture of Freixas and Kurz for games with
two-player minimal winning coalitions. Assume the game G(N,W) is such a
matching game. Note that all players that are not part of a minimal winning
coalition are dummies. So we assume all players are in at least one minimal
winning coalition. We construct a graph G, where the vertices are the players,
and edges are the minimal winning pairs. As seen before the weighted losing
coalition can contain at most half of the players of a maximum matching plus all
players that are no part of this maximum matching. To investigate the structure
of the matching we use the following decomposition of graphs.

Definition 7.1. The Gallai-Edmonds decomposition of a graph G(V,E)
is the partition D ∪A ∪ C of V (G) given by

• D = {v ∈ V (G) | some maximum matching in G fails to match v}

• A = {u ∈ V (G)−D | u is adjacent to a vertex in D}

• C = V (G)−D −A

When a graph is decomposed according to the Gallai-Edmonds decomposition
we know some special properties of the sets in the decomposition:

Theorem 7.1. (Gallai-Edmonds Structure Theorem). Let A, C, D be
the sets in the Gallai-Edmonds Decomposition of a graph G. Let D1, . . . , Dk be
the components of G[D]. If M is a maximum matching in G, then the following
properties hold:

a. M covers C and matches A into distinct components of G[D].

b. Each Di is factor critical and has a near-perfect matching in M .

c. If ∅ 6= S ⊆ A, then N(S) intersects at least |S|+ 1 of D1, . . . , Dk.

10



A

C

DD1

D2
D3

D4

Figure 1: Gallai-Edmonds Decomposition of graph representing an arbitrary
matching game. Thick lines indicate a maximum matching.

Proof. See [6]

So now let the graph G(V,E) represent the matching game G(N,W) with
n = |N | ≥ 4. The minimal winning coalitions may intersect, but w.o.l.g. we may
assume that all players are in at least one minimal winning coalition. We will

show that we can chose a weight function w : P → R≥0 such that α(G) ≤ 1
nb

n2

4 c.
In order to get an upper bound on the weight of a maximum weighted losing
coalition with respect to a weight function, we fix a maximum matching M and
decompose G according to the Gallai-Edmonds structure. All components in
Ci ⊆ C contain a perfect matching, so by Lemma 6.1 they are α(n)-roughly
weighted for n = |Ci| by giving all players a weight of 1/2. By Lemma 4.2 it’s
clear that C is α(n)-roughly weighted for n = |C|.
In order to prove that A ∪D is α(n)-roughly weighted, we will decompose this
game into three parts. The first is a bipartite game, consisting of the players
in A, the singletons in D and the players of D that are matched into A by
M . The second part is the game consisting of the odd components Di without
the matched players and the third part are the odd components that are not
connected to A via the matching M.
Notice that due to the Gallai-Edmonds structure theorem we know that in the
bipartite graph the number of players in A is less than or equal to the number
of matched players in D plus the number of singletons. This will give a weight
distribution such that the players in A have a weight greater than or equal to
1/2 and the players in D a weight less than or equal to 1/2. A weight less than
1/2 is good for the singletons, but for the matched players in the odd compo-
nents we can not allow this. Because these components are factor critical, we
would like a weight of 1/2 for all players in those components. We will show
that this is possible.
What remains is to add coalitions / edges that are not in any of the components.
This are coalitions in A, coalitions that connect players in C with a player in A
and coalitions that connect a player in A with an unmatched player in D. But
these coalitions can be formed, because the weight of those players is at least
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1/2. So, after this outline of the proof of the conjecture of Freixas and Kurz,
we state the conjecture formally and proof it.

Theorem 7.2. For any simple game G(N,W) with n = |N | ≥ 4 and |X| = 2

for all X ∈ Wmin, we have α(G) ≤ 1
n

⌊
n2

4

⌋
.

Proof. Let M be a maximum matching in the graph G. Any maximal losing
coalition in G can contain at most half of the vertices in M plus the unmatched
vertices. Now decompose the graph representation of the game according to the
Gallai-Edmonds decomposition (see Figure 1 for an example of such a game).
We set wc = 1/2 for all c ∈ C, so the games represented by these components
respect the bound due to Lemma 4. Also set wd = 1/2 for all d ∈ Di with
|Di| ≥ 3.

Now chose in each odd component Di with |Di| ≥ 3 the vertex di ∈ M ∩ Di.
D′ is the union of all these vertices plus the singletons in D. Note that due
to properties 1 and 3 of the Gallai-Edmonds structure theorem there can be
components Di for which such a vertex di does not exist.

We construct the bigraph G′(A,D′;E′), representing the game G′. We only add
the edges / coalitions between vertices in A and D′ to get a bipartite graph.
Notice that in this bipartite graph |A| ≤ |D′| and that A is matched by M . We
apply Lemma 6.5 to show that G′ is α(n)-roughly weighted with n = |V (G′)|
and to achieve a weight distribution wa = |D′|

|A|+|D′| ≥
1
2 for a ∈ A and wd =

|A|
|A|+|D′| ≤

1
2 for d ∈ D′. Now the minimal winning coalitions represented by an

edge e(a1, a2) with a1, a2 ∈ A will have a weight w(e) ≥ 1, so by Lemma 4.3 we
can add the desired coalitions in A to the game. Also coalitions represented by
e(a, c) with a ∈ A, c ∈ C can be added to the game without violating the bound
because w(a, c) = wa + wc ≥ 1.

However, the weight distribution in the bipartite graph G′ changed the weights
of the vertices di ∈ D′ into a weight less than 1

2 while we would like to have all
the players in the odd components Di with |Di| ≥ 3 to have a weight of at least
1
2 to fulfill the demand on the minimal weight of winning coalitions (in Di). We
claim that we can give those players that have a weight less than 1

2 a weight 1
2

without making the maximum weighted losing coalition Lmax in the total game
too heavy. We will prove this claim inductively by increasing the weights of all
those players di ∈ D′ one by one.
Consider an arbitrary Di for which Di∩M 6= ∅. Let D∗i = Di\{di} and consider
the game G = G′∪D∗i . Notice that di ∈ G′ and di /∈ D∗i . The maximum number
of vertices in D∗i that can be chosen at the same time in any maximal losing
coalition is mi

2 with mi = |V (Di)|−1 = |V (D∗i )|. Now let wdi = 1
2 and consider

two cases.
In the first case, when di /∈ Lmax, we have w(LmaxG′ ) ≤ α(G′) ≤ 1

n

⌊
n2

4

⌋
with

n = |V (G′)| and w(LmaxD∗i
) = 1

2 ·
mi

2 . So both games G′ and D∗i respect the

bound. Since G′ ∩D∗i = ∅ we know by Lemma 4.2 that the game represented
by G′ ∪D∗i is α(n)-roughly weighted with n = |V (G′ ∪D∗i )|.
In the second case, when di ∈ Lmax, we see that w(LmaxG′ ) ≤ 1

n

⌊
n2

4

⌋
+ 1

2 with

n = |V (G′)| because we increased the weight of di from wdi ≤ 1
2 to wdi = 1

2 .
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4 5 6 7 8 9

1 2 3

Figure 2: Bipartite graph G(A,B;E) representing a two player
minimal wining coalition game with A = {1, 2, 3} and B =
{4, 5, 6, 7, 8, 9} and a collection of minimal winning coalitions W =
{{1, 4}, {1, 5}, {2, 5}, {2, 6}, {3, 6}, {3, 7}, {3, 8}, {3, 9}}.

The number of players in Di that can be chosen in Lmax is mi

2 . So because di is
chosen in Lmax and di ∈ Di = D∗i ∪ {di} we can chose from D∗i at most mi

2 − 1
players in Lmax.

Now w(Lmax) ≤ w(LmaxG′ )+w(LmaxD∗i
) ≤ 1

n

⌊
n2

4

⌋
+ 1

2+ 1
2

(
mi

2 − 1
)

= 1
n

⌊
n2

4

⌋
+ 1

2
mi

2

for n = |V (G′)|. Since mi is even, this yields w(Lmax) ≤ 1
n

⌊
n2

4

⌋
+ mi

4 ≤
1

n+mi

⌊
(n+mi)

2

4

⌋
. So G respects the bound.

Now we add all the minimal winning coalitions {di, d∗i } with d∗i ∈ D∗i in order
to construct the odd component Di. This can be done because w(di) = w(d∗i ) =
1/2 so we can apply Lemma 4.3.
We repeat the inductive step until all matched Di are in G′. We also add the
components Di for which Di ∩M = ∅ to the game. This can be done due to
Lemma 6.2 and Lemma 4.2.

Now we apply Lemma 4.3 again to add the remaining minimal winning coalitions
{a, d} with a ∈ A and d ∈ D \ D′, which can be done because wa ≥ 1/2 and
wd = 1/2 so wa+wd ≥ 1. Finally, again by Lemma 4.3, we can add the minimal
winning coalitions in A because wa ≥ 1/2 for all players a ∈ A.

8 Discussion and conclusion

The decomposition of a matching game that we used in the proof of the con-
jecture, guarantees that the maximum weighted losing coalition has a weight

below α(n) = 1
n

⌊
n2

4

⌋
. However, the weight of this maximum weighted los-

ing coalition is not the minimum possible weight. Let G(N,W) be a simple
game with N = [9] and the collection of minimal winning coalitions W =
{{1, 4}, {1, 5}, {2, 5}, {2, 6}, {3, 6}, {3, 7}, {3, 8}, {3, 9}}. This game can be rep-
resented by a bipartite graphG(A,B;E) withA = {1, 2, 3} andB = {4, 5, 6, 7, 8, 9},
see Figure 2.

Notice that A can be matched into B, so we can apply Lemma 6.5. The construc-
tion of a partition according to Lemma 6.5 will yield A1 = {1, 2}, B1 = {4, 5, 6}
with w1 = w2 = 3/5 and w4 = w5 = w6 = 2/5 and A2 = {3} and B2 = {7, 8, 9}
with w3 = 3/4 and w7 = w8 = w9 = 1/4. Now A and B are maximum weighted
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losing coalitions with weight w(A) = w(B) = 39/20. This weight respects the
bound α(8) = 2. However, if we choose weights w1 = w2 = w4 = w5 = w6 =
1/2, w3 = 7/8 and w7 = w8 = w9 = 1/8 still A and B are maximum weighted
losing coalitions, but w(A) = w(B) = 15/8 which is slightly better than the to-
tal weight for a maximum weighted losing coalition of 39/20 that we got as the
result of the partitioning according to Lemma 6.5. So a decomposition of the
game like in the proof of the conjecture of Freixas and Kurz gives a maximum
weighted losing coalition that respects the bound but doesn’t yield a weight dis-
tribution that makes the maximum weighted losing coalition as light as possible.

In this study we presented a way of proofing the conjecture of Freixas and Kurz
for games G(N,W) that have minimal winning coalition which all have order 2.
A proof for the case where all minimal winning coalitions have an order of at
least 4 is easy. Giving all players in a game a weight of 1

4 will make w(S) ≥ 1
for all S ∈ W. Now any maximum weighted losing coalition L ∈ L can contain
at most n− 1 players from the grand coalition N , so for all S ∈ L it’s clear that

w(S) ≤ 1
4 (n − 1). For even n this yields 1

4 (n − 1) = n−1
4 < n

4 = 1
n

⌊
n2

4

⌋
. For

odd n we see that n−1
4 < n(n−1)

4n < n2−1
4n = 1

n

⌊
n2

4

⌋
.

A natural follow-up would be to investigate games with minimal winning coali-
tions which all have order 3 and to investigate games with minimal winning
coalitions of various orders. Moreover, we suppose that the critical threshold on
games with n players is ’bad’ for games with small minimal winning coalitions
and the bound is only reached in games with minimal coalitions of order 2. So
another interesting question is how the critical threshold depends on the size of
the smallest minimal winning coalition in relation to the largest losing coalition.
This would tell us more about the cost of stability in coalition games than just
the value of α(n).
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