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ABSTRACT 
	

As we approach the theoretical limit of the transistor size, finding new ways to 
process digital information is crucial. A computing device that exploits the laws of 
quantum mechanics can potentially achieve significant speed-up over its classical 
counterparts in certain problems and applications. Based on the proposal of using 
the spin orientation of a single electron trapped in a semiconductor quantum dot as 
a carrier of classical information, we investigate the charge transport in single and 
double quantum dots defined by the electrostatic gating of a carrier gas in silicon for 
cryogenic temperatures. Furthermore, we demonstrate that the gated quantum dot 
can act as a single-charge transistor and as a charge sensor. We report experiments 
and findings on two devices with different architecture, for both electron and hole 
transport down to the few-charge regime.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 4	

CONTENTS 

1. Introduction                                                                                                         6                                                                                                                             
1.1 Quantum Computation   ............................................................................. 6 
1.2 Spin as a Qubit   ......................................................................................... 6 
1.3 Quantum Dots   .......................................................................................... 8 
1.4 Charge Sensing  ......................................................................................... 9 
1.5 Outline of the Thesis   ................................................................................. 9 

2. Theory                                                        10                                                                                                                               
2.1 Tunneling Through a Potential Barrier  ..................................................... 10 
2.2 Heisenberg Uncertainty Principle  ............................................................ 12 
2.3 Coulomb Blockade  .................................................................................. 13 
2.4 Tunnel Junctions  ..................................................................................... 14 
2.5 Requirements for Coulomb Blockade ...................................................... 14 
2.6 Single Quantum Dot Circuit Model ........................................................... 15 
2.7 Charge Transport in Quantum Dots  ........................................................ 18 
2.8 Stability Diagrams in the Low-Bias Regime  ............................................ 21 
2.9 Stability Diagrams in the High-Bias Regime  ............................................ 23 
2.10 Charge Transport in Double Quantum Dots  .......................................... 24 

3. Fabrication & Experimental Methods                  33                                                                                                                           
3.1 Device Architecture .................................................................................. 33 
3.2 Device Fabrication  ................................................................................... 35 
3.3 Measurement Setups   ............................................................................. 39 

4. Results & Discussion                               41                                                                                                                             
4.1 Electron Transport on Device I ................................................................. 41 
4.2 Electron Transport on Device II  ............................................................... 48 
4.3 Hole Transport on Device II ...................................................................... 50 

	
	
5. Conclusion & Outlook                      55 
 
6. Acknowledgments              56	
	



	 5	

Appendix A                57 
	
Appendix B                 59 
 
Bibliography                 61 
 
 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	 6	

1. INTRODUCTION 
1.1 Quantum Computation  
 

In 1983, legendary CalTech physicist and Nobel Prize laureate Richard 
Feynman gave a series of lectures on computing listed in the CalTech record as 
“Potentialities and Limitations of Computing Machines”. This was one of the earliest 
predictions that a quantum mechanical system could potentially outperform a 
classical system in certain computational tasks [1]. 
 

During the next two decades, important theoretical breakthroughs in quantum 
computation such as the development of efficient quantum algorithms and quantum 
error-correcting codes [2], lead to a concrete idea of the quantum computer. It turned 
out that systems and algorithms that exploit quantum mechanical effects could 
theoretically achieve exponential speed-up over their classical counterparts in certain 
problems, such as factoring integers [3] and estimating Gauss sums [4], or quadratic 
speed-up in problems such as searching unordered lists [5]. 
 

Except the theoretical innovations in the field of quantum computation, 
another factor that contributed positively in the rapid development of the field of 
quantum computing is the transistor size limitation introduced by quantum physics. 
The famous Moore’s law states that the number of transistors on an integrated circuit 
doubles approximately every two years [6]. Such a progression will soon be 
impossible as transistors are reaching the size of individual atoms and source-to-
drain leakage currents due to quantum mechanical tunneling are dominating the gate 
currents. This fundamental limit on the size of transistors will also set an upper limit 
on the processing power a classical computer can have, thus making the quantum 
based computing systems, that do not experience such limitations, very attractive. 
 
1.2 Spin as a Qubit 
 

One approach of building a quantum computer is adapting valuable quantum 
properties in classical computing systems [7]. For example, by using the two degrees 
of freedom the spin of an electron has as a carrier of classical bits. This unit of 
quantum information is called quantum bit or qubit, the quantum analogue of the 
classical bit. 

 
The simplest picture of the quantum mechanical spin is a magnetic moment, 

unique for each particle, that points up (state 0) or down (state 1) relative to a 
reference (usually an applied magnetic field) [8]. However, unlike a classical two-level 
system that can either be on state 0 or state 1, a quantum mechanical spin can be 
on an arbitrary superposition of these states. Using the Dirac notation, the two 
quantum states can be expressed as |0⟩ and |1⟩ and for their superpositioned state 
holds: 

 
	|ψ⟩	=	α|0⟩	+	β|1⟩	 										 	 	 	 (1.1)	
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where α and β are the probability coefficients of states 0 and 1, respectively. The 
probability of measuring a specific state is given by the square of the absolute value 
of its probability coefficient. And since the particle can only be in one of the two 
states, it holds: 

 
|α|2	+	|β|2	=	1							 					 	 																					(1.2)	

 
This probabilistic behavior of a quantum system is due to the collapse of the 

otherwise deterministic Schrödinger wave function of the particle upon 
measurement: the particle is forced in one of the two states each time a measurement 
is taking place, thus making the measurement outcome non-deterministic (observer 
effect) [9]. 

 
The practical importance of the superposition property becomes apparent 

when comparing a qubit to a classical bit. A one-bit classical computer, in order to 
determine a function f of two possible input states 0 and 1, needs to evaluate the 
function twice, once for each individual state. Instead, a one-qubit quantum computer 
can use the linear superposition (1.1) as an input and thus evaluate the function only 
once. This property also scales for higher order-qubit quantum computers, 
consequently making the computing power of a quantum computer to scale 
exponentially with the number of qubits, while the computing power of their classical 
counterparts scales only linearly with the number of classical bits. Of course, the final 
outcome of a quantum computation can not be a superposition of states, since 
superposition exists only before it is measured. Nevertheless, by designing the logic 
operations accordingly, the superposition principle can still be taken advantage of to 
speed-up calculations [7].     

Although the origin of macroscopic phenomena such as magnetization is 
quantum mechanical, these collective variables behave entirely classically. The 
quantum state of a magnetization vector for example, dephases so rapidly that 
superposition between vectors can not be observed. Only in systems with a small 
number of particles, and thus number of spins (for instance magnetic metallic 
molecules), quantum effects are observable in the behavior of their collective 
magnetization. Although superposition of spins has been observed in particle 
ensembles very early, only in recent years systems have been realized where 
individual electrons can be trapped and their quantum properties can be used as 
carriers of classical information [10]. Such a system was initially proposed by Loss 
and DiVincenzo in 1997 [11]. Their proposal suggested using the orientation of the 
spin of a single electron trapped in a semiconductor quantum dot as a quantum bit. 
The charge degrees of freedom of electrons in QDs have also been considered as a 
quantum bit, but such a system would arguably be too sensitive to electrical field 
noise to be practical [12]. In theory, any two-level physical system can be used as a 
qubit, but the system proposed by Loss and DiVincenzo has received considerable 
attention mostly due to its commonality with classical electronics [24].   

 
It is worth noting that such a system merely uses quantum properties to 

improve the performance of classical computations. A true quantum computer would 
theoretically exploit the unique features of quantum mechanics to perform 
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computations that are intractable for systems based on classical logic, such as the 
simulation of complex quantum systems [1].  
 
1.3 Quantum Dots 
 

The technological drive to make electronic devices smaller and the 
continuously improved fabrication processes have some interesting scientific 
consequences. For instance, it is now routinely possible to define electron “boxes” in 
semiconductor devices that can confine any number of conduction electrons [10]. 
These three-dimensional structures have a side length smaller than the Fermi length 
of a typical electron. Therefore, an electron trapped inside such a structure will be 
confined in all three directions and will exhibit energy quantization in all three spatial 
dimensions, making the eigenenergies inside the structure discrete. This makes for 
an effectively zero-dimensional system called a quantum dot [13]. Recently, it has 
been demonstrated that electron holes (or simply “holes”) can also be confined inside 
a quantum dot. 

 
Quantum dots consist of 103 to 109 atoms with an equivalent number of 

electrons. In semiconductors, all electrons are tightly bound to the nuclei except for 
a small fraction of conduction electrons. This small fraction can be varied from a 
single free electron to a several thousands free electrons by attaching a gate to the 
quantum dot and applying a voltage. Due to the three dimensional confinement of 
the electrons and the resulting quantized energy spectrum, quantum dots are often 
regarded as artificial atoms [14]. 
 

Quantum dots can also be operated as transistors via a field-effect gate. These 
devices are named single-electron transistors (SETs) and are reminiscent of the 
classical MOSFET, but instead of the usual inversion channel, a quantum dot acting 
as a conducting island, referred to as a Coulomb island, is embedded between the 
source and drain electrodes [15]. A more detailed account of single-electron 
transistors will follow on the next chapter. 

 
There is a number of methods for defining quantum dots in semiconductors. 

In the past, colloidal synthesis [16], plasma synthesis [17], self-assembled fabrication 
[18], semiconductor lateral [19] and vertical dot [15] assembly, and even viral 
assembly [20] have been demonstrated. 
 

For this study, quantum dots are electrostatically defined in semiconducting 
material. Silicon isotope materials have long electron spin coherence times because 
of their weak spin-orbit coupling and the predominance of nuclei with zero intrinsic 
angular momentum [2], making them ideal hosts for quantum dots. 
Individual quantum dots are created from two-dimensional electron and hole gases 
electrostatically induced at a Si/SiO2 interface, referred to as 2DEG and 2DHG, 
respectively. The electrons and the holes are confined in the interface so they can 
only move laterally in a two dimensional plane, effectively creating the two-
dimensional gas. Then, by employing electric gates, a small area of decreased 
potential is imposed in the 2DEG and a small area of increased potential is imposed 
in the 2DHG. Once the potential is applied, it is energetically favorable for the carriers 
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to remain confined in the area defined by the change of potential, thus creating 
depleted regions inside the gas. As 2DEG and 2DHG reservoirs, n, and p doped 
source and drain regions are used, respectively. The electrostatic potential of the 
quantum dot relative to the reservoirs is tuned by a gate electrode (often called a 
plunger) which controls the charge occupancy of the dot, permitting its operation as 
a single-charge transistor [21]. Electron-beam lithography (EBL) allows the fabrication 
of these gate structures with dimensions down to a few tens of nanometers, thus 
yielding very precise control over the size and the charge occupancy of the dot [10]. 
 
1.4 Charge Sensing 
 
 Charge sensing is an essential experimental tool since it allows the 
confirmation of electron or hole confinement inside a quantum dot down to the single 
charge level and the readout of the charge spin state, a useful property for quantum 
computation [22]. Identifying the charge occupancy is also possible by measuring the 
electrical transport through the dot via attached probes, but at low charge numbers 
measuring currents becomes challenging [23]. Charge sensing is a non-invasive 
process that is based on the fact that structures such as single-charge transistors 
and quantum point contacts possess high transconductance, making them sensitive 
to their local electrostatic environment and therefore excellent charge sensors [22]. It 
has been demonstrated that single-charge transistors exhibit the highest sensitivity 
amongst the two.  For this study, a single-charge transistor acting as a charge sensor 
is co-fabricated across a quantum dot. Any small charge displacement in the SET 
due to its capacitive coupling to the quantum dot can then lead to a significant 
change in the SET current which then can be measured via attached probes [24]. 
 
1.5 Outline of the Thesis 
 
 This thesis describes a series of experiments aimed to characterize the single-
charge transport in electrostatically defined quantum dots. Chapter 2 gives a brief 
introduction to the theoretical aspects of this thesis. We start with a few basic 
concepts of quantum mechanics, proceed with the discussion of the Coulomb 
blockade effect, and then we introduce a model that describes the transport in single 
quantum dots. At the end of the second chapter this discussion is repeated for double 
quantum dots.  In chapter 3, we elaborate on the design of the devices, briefly discuss 
their fabrication process, and finally we give an introduction to the set-up used to 
carry out the experiments. In chapter 4 we report on the experiments performed on 
the single-charge devices. Finally, in chapter 5, we conclude this report by 
summarizing our experimental results and suggesting a future outlook.  
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2. THEORY 
2.1 Tunneling Through a Potential Barrier 
 

In the first chapter, the concept of a quantum dot was introduced. An aspect 
that was not discussed, is the mechanism that connects this nanoscopic object with 
electrical leads in order to form electronic devices such as single-electron transistors. 
A schematic picture of a lateral quantum dot is shown in figure 2.1. As it can be seen, 
the quantum dot is separated from the source and the drain leads (this is usually done 
by an insulating material). Although the leads do not contact the quantum dot, electric 
current can still pass through the gap if the separation is sufficient small. This 
“connection” is achieved through the process of quantum tunneling [13]. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1: Schematic of a lateral quantum dot. The dot is coupled to the source and drain 
contacts via tunnel barriers. The red arrows represent tunneling events and thus current flow. 
Figure adapted from [10]. 
 

To investigate this phenomenon, the gap between the leads and the dot will 
be modeled as a potential energy barrier with height V0. According to classical 
physics, a particle of energy E, less than the height V0 of the barrier, can not penetrate 
it. This makes the region inside the barrier classically forbidden (see figure 2.2). But 
due to the wave-particle duality, if the particle in question is one of the elementary 
particles, it should exhibit the properties of not only a particle, but also of a matter 
wave. The wave function associated with this particle must be continuous at the 
barrier and show an exponential decay inside it. The wave function must also be 
continuous on the other side of the barrier. Therefore, there is a finite probability that 
the particle will tunnel through the classically forbidden region. Since the energy 
conservation principle holds, after tunneling the particle will have the same amount 
of energy as before the tunneling event [9]. 
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Figure 2.2: Particle wave function inside a classically forbidden potential barrier. On the right 
side of the barrier the probability of finding the particle reduces, while its energy remains 
constant on either side of the barrier.  
 

The likelihood that the particle will tunnel through the barrier is given by the 
tunneling probability. Solving the Schrödinger wave-equation allows this probability 
to be calculated as [13]: 
 

/ = 	 01(1234)
3456785 95: 	;	01(1234)	

             (2.1) 
 

where  

<= = 	
=>	(1234)	

ℏ5                                     (2.2) 

 
and α, the width of the potential barrier V0 (see figure 2.2). 
 

Plotting the tunneling probability results in figure 2.3. The line on the left end 
of the plot shows the behavior of the particle for E << V0, while the line on its right 
end, the behavior of the particle for E >> V0. In both cases, the particle is behaving 
classically. In between the two extremes, the quantum mechanical result is 
shown. Evidently, for E < V0 there is some non-zero exponential probability the 
particle will be tunneled across the barrier. Also, for E = V0, we have T ≈ 1. For larger 
energies the tunneling probability is high, but there is also a finite probability that the 
particle will not be tunneled through the barrier but get reflected by it.  
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Figure 2.3: Tunneling Probability versus Energy for a potential energy barrier 
 
2.2 Heisenberg Uncertainty Principle 

Another important concept of quantum mechanics that will be proved useful 
as the discussion of quantum dots progresses, is that of the Heisenberg uncertainty 
principle. Introduced in 1927 by Werner Heisenberg, it states that the more precisely 
determined a particle’s position is, the less precisely determined its momentum and 
vice versa [9]. 
 

If a wave consists only of a short pulse, such that it can be located inside an 
infinitesimal region Δx, then this wave-packet can be described by using the 
superposition of several plane waves. By adding more waves, this wave-packet 
becomes increasingly localized. A wave-packet can be separated into its individual 
plane waves by using a Fourier transformation. Each wave is characterized by a wave 
number k. The wave-packet confined in region Δx must therefore contain a range of 
different wave numbers Δk. One of the most important theorems of Fourier analysis 
states that those two ranges must follow the relationship: ΔxΔk ≥ 1/2. Since it is the 
result of calculus, this relationship holds for every wave encountered in nature and it 
is not restricted to quantum mechanical systems. 

 
In quantum physics, the de Broglie wavelength formula associates a 

wavelength with the momentum of a massive particle through the plank constant ℎ: 
F = G

H = 	
=Iℏ
H . Also, for every wavelength holds: F = 2J/<. Combining the two relations 

and solving for two values of the momentum results in: KL = ℏK<. Finally, if we 
combine this result with the Fourier analysis equation obtained earlier: 

KLKM	 ≥ ℏ
=	                                (2.3) 

Which is the famous Heisenberg uncertainty principle. Once it was theorized that all 
particles also behave like waves, the uncertainty principle was merely a mathematical 
consequence. As it has been discussed, a form of the uncertainty principle is inherent 
in the properties of all waves. It arises in quantum mechanics simply due to the matter 
wave nature of all quantum objects and it is not related to the observer effect and the 
wave-function collapse discussed in the introduction.  
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2.3 Coulomb Blockade 

As described in the first paragraph, the current flows from lead to lead through 
the quantum dot via a process called tunneling. In this type of situation, the quantum 
dot is acting as a conducting island, referred to as a quantum or Coulomb island. In 
ordered to model the quantum dot and its exterior leads, the classical concept of 
capacitance is used, resulting on a mixed classical-quantum model [13]. 
 

First, a simple model of two conductors separated by an insulating material 
will be considered. The space between the conductors will exhibit a capacitance C 
proportional to: 

N	 = 	 O3        (2.4) 
 
Where Q is the net charge of the conductors, and V is the d.c. voltage between the 
two conductors. The electrostatic energy stored between them is given by: 
 

P = 	 QRS = 	 NS	RS = 	 T= NS
= = 	 O

5

=U = 	
(8V)5

=U = 	 V
5

=U
3
W

3
W    (2.5) 

 
Where n is the number of electrons between the conductors (we assume that a single 
electron is trapped) and e, the electron charge.  
 
This energy is known as the Coulomb charging energy or simply charging energy and 
it is the energy required to add charge to one of the conductors.  
 
For both conductors, the charging energy becomes: 
 

	PU = 	
V5

U 			 	 	 	 			 						(2.6) 
 

This energy surpasses further electron transfer between the leads, unless it is 
overcomed by either thermal excitations or by an external bias voltage. This 
suppression of electron transport is termed Coulomb blockade of tunneling, or simply 
Coulomb blockade, named after Charles-Augustin de Coulomb's electrical force [25]. 

 
For a simple capacitor formed by two parallel conducting plates of area A and 

plate separation d, the capacitance of the configuration is given by: 
 

N = 	 XYZ              (2.7) 
 

Where ε is the electric constant. 
 
Therefore, for plates with nanoscale dimensions, the small values of capacitance will 
lead to a considerable change in the Coulomb charging energy. While in macro-sized 
circuits, because the area of the capacitor plates is very large, no Coulomb Blockade 
effects can be observed [13]. 

 



	 14	

2.4 Tunnel Junctions 
 
 In order to include the tunneling events in a lumped element model, the 
transport taking place across the tunneling barrier is modeled as a leaky capacitor. 
This is, a capacitor with a small d.c. current (leaky current) flowing from one plate to 
the other when a d.c. voltage is applied across it. The leaky capacitor is modelled as 
an ideal capacitor with a resistor in parallel (left side of figure 2.4). Every time a voltage 
is applied to the resistor-capacitors terminals, a current starts to flow across the 
resistor. This leaky current essentially models the current due to tunneling. Thus, the 
resistor across the ideal capacitor is often regarded as a tunnel resistor. The parallel 
combination of the capacitor and the resistor is termed tunnel junction (right side of 
figure 2.4) and it will be used in the proceeding quantum dot circuit models to model 
tunneling events. 

 
 
 
 
 

 
 
 
 
 
 
Figure 2.4: left side: leaky capacitor model consisting of an ideal capacitor and resistor in 
parallel. Right side: tunnel junction model. 
 
2.5 Requirements for Coulomb Blockade 
 
 Returning to a previous statement, to establish the Coulomb blockade, the 
charging energy must be greater that the thermal energy. This can be expressed as 
follows: 

 PU = 	
V5

=U ≫
T
= <\/	 ⟹	 V

5

U ≫ <\/                  (2.8) 

Where <\ is the Boltzmann constant and T, the temperature.  

Recalling relation (2.7), it can be seen that the requirement expressed in (2.8) can be 
met by making the dot sufficiently small. This temperature constrain is also the reason 
all single-electron devices in this study are strictly operated at cryogenic 
temperatures. 

 Moreover, the tunneling resistance considered in the previous paragraph must 
be sufficiently large to not allow the delocalization of the charge in the capacitor 
plates, but at the same time, sufficient small to allow the tunneling current to flow 
through the capacitor [13]. This can be expressed by using the Heisenberg 
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uncertainty relation discussed earlier: KLKM	 ≥ ℏ
=	 from which it can be derived that: 

 
K ℏ< KM = K ℏ^

_ KM = 	K ℏ` Ka = KPKa ≥ ℏ
=           (2.9) 

 
In addition to that, the time between the tunneling events is considered equal to the 
approximate lifetime of the electron energy state on one side of the barrier. This time 
is also identical to the time constant of a parallel RC circuit: 
 

b = cN                              (2.10) 
 

By combining (2.9) and (2.10), the uncertainty in energy is derived: 
 

KP ≥ ℏ
=dU                                     (2.11) 

 
And to observe the Coulomb Blockade effect, the energy in (2.5) must be larger that 
this energy uncertainty, thus making: 
 

c ≫ ℏ
V5 	≈ 4.1	gh                             (2.12) 

 
This requirement can be met by weakly coupling the dot to the source and drain 
leads. 
 
2.6 Single Quantum Dot Circuit Model 
 

Now that the theory behind tunneling and tunneling junctions has been 
addressed, the equivalent circuit for a quantum dot coupled to source and drain 
terminals and excited by a voltage source can be attained. By definition, these 
terminals are large and thus contain much more electrons (or holes) than the quantum 
dot. For this reason, the source and drain terminals are regarded as charge reservoirs. 
The potential profiles for electron and hole quantum dots are shown in figure 2.5. The 
voltage source applies a potential difference that essentially “empties” those charge 
reservoirs. A third terminal that provides capacitive coupling is used as a gate 
terminal, effectively creating a single-charge transistor device. As in a traditional 
MOSFET, this contact is intended to control the flow of charges across the source-
drain channel and does not inject charges directly. The equivalent circuit is shown in 
figure 2.6, where the constant interaction (CI) model has been used to model the 
Coulomb interactions in the system [19]. A quantum dot occupied by holes behaves 
similarly to one occupied by electrons. Therefore, for simplicity, the following 
discussion will be restricted to electrons.  
 
 
 
 
 



	 16	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5: Top: Potential profile of an electrostatically defined electron quantum dot. 
Bottom: Potential profile of an electrostatically defined hole quantum dot. The confinement 
of the charge carriers results in discrete energy levels inside the dots. 
 
 
 
 
	
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6: Circuit model of a single-electron transistor. TJS has a resistance value of RS and 
a capacitance value of CS. Accordingly, TJD has a resistance value of RD and a capacitance 
value of CD.  The two voltage sources determine the position of the discrete energy levels 
inside the dot. 
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The CI model makes two assumptions about the system. First, it is assumed 
that the the discrete quantum energy levels of the dot can be described 
independently of the number of electrons inside it. Second, all coulombic interactions 
amongst the electrons confined inside the dot and between these electrons and the 
electrons in different locations inside the system (e.g.: in the source and drain leads) 
are parametrized by a single capacitance C, which is the sum of the capacitances 
between the dot and the source (N6), the drain (Ni), and the gates ( Nj ): 
 

N = 	N6 +	Ni +	 Nj                                (2.13) 
 

Under these assumptions, the total energy of a quantum dot containing N electrons 
can be calculated. The total energy will consist of an electrostatic term and a quantum 
mechanical term. The electrostatic term is equal to the energy stored inside an ideal 
capacitor: 
 

PVkV_lmn6l:l7_ = 	
T
=	
O5

U                          (2.14) 
 
Where the charge Q is the charge inside the quantum dot and it is comprised of three 
terms, the charge induced by the source-drain bias, N6Soi, the charge induced by the 
gate voltage, NjSj, as well as the charge due to the self-capacitance of the quantum 
dot, − q 	 r − rW , where e is the elementary charge, N is the number of electrons in 
ground state, and N0, the number of electrons at zero gate voltage. The charge terms 
N6Soi and NjSj can change continuously since this energy term is classical in nature.  
 
Thus, (2.14) becomes: 
 

PVkV_lmn6l:l7_ =
[2 V 	 t2t4 ;	Uu3vw;	Ux3x]5

=U         (2.15) 
 

The drain capacitor is assumed to be connected at zero potential (see figure 2.6), 
hence the factor N6 doesn’t appear in the energy term. Now, the discrete energy 
spectrum of  the quantum dot is taken into account and an additional term that 
represents the summation over the occupied quantized orbital energies on the dot 
that are separated by KP8 = 	P8 −	P82T will emerge: 
 

Pz{:8l{> = P8t
8|T                          (2.16) 

 
Finally, the total energy of the quantum dot will be given by the sum of these two 
terms: 
 

} r = 	 [2 V 	 t2t4 ;	Uu3vw;	Ux3x]5

=U + P8t
8|T             (2.17) 
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2.7 Charge Transport in Quantum Dots  
 

The simple model we just presented, allows us to derive an expression for the 
electrochemical potential that it would have otherwise been very cumbersome to 
calculate. The electrochemical potential is defined [7] as the energy required to add 
the Nth electron to the dot (or alternatively, the transition between the N and N-1 
electron state): 

 
~ � = 	} r − 	} r − 1                  (2.18) 

 
And by substituting (2.17), it is obtained that: 
 

~ � = r − rW −
T
= PU −

1Ä
V N6Soi +	NjSj + Pt            (2.19) 

 
Where PU = 	

V5

U  is the charging energy defined earlier.  
 
 Another energy concept of high relevance is the addition energy. The addition 
energy is the energy required to change the number of electrons inside the dot 
discretely. It is defined as: 
 
P:ZZ7l7n8 � = ~ � + 1 − 	~ � = 	PU + Pt;T − Pt = PU + KP   (2.20) 

 
It is equal to the separation distance between two adjacent energy levels with specific 
electrochemical potentials (see figure 2.7 A) and it consists of two terms, the charging 
energy EC (a purely electrostatic term) and the energy spacing between two discrete 
quantum energy levels (or orbital energy), ∆E. For a classical dot without a quantized 
orbital energy spectrum (a Coulomb island), ∆E is evidently zero. Furthermore, ∆E 
can also be zero when two electrons are added to the same spin-degenerate level 
(same orbital). The addition energy also equals to the peak spacing in a conductance 
versus gate voltage plot (see figure 2.8).	It is important to note that this plot depicts 
the conductance of a classical dot (a charge island with high density of states) since 
it exhibits regularly spaced Coulomb peaks. In the case of a quantum dot, irregularly 
spaced Coulomb peaks are expected due to the additional orbital energy term, which 
unlike the charging energy term, it is not constant. The dependence of the addition 
energy on the orbital energy in a quantum dot justifies the term “artificial atom” that 
was ascribed to them during the introduction. The conducting islands in single-
electron devices exhibit a behavior similar to a classical dot. 
 
 Charge tunneling events through the dot depend on the alignment of the 
electrochemical potentials on the dot with respect to the electrochemical potentials 
of the source and the drain. By applying a bias voltage VSD (defined as VS - VD but in 
the model presented earlier, VD is connected to the ground and thus equals to zero, 
effectively providing what is called an asymmetric bias) between the source and drain 
reservoirs, an energy window between the electrochemical potentials of the source 
and the drain opens up. This window is termed bias window and its size is related to 
the electrochemical potentials of the leads by: ~6 − µi = 	eVoi	 [26]. The bias window 
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translates into a height difference between the electrochemical potential levels of the 
the source and the drain (see figure 2.7 B). If there is an empty electrochemical 
potential level in the dot within the bias window, charges can tunnel from the 
occupied states of the one reservoir onto the dot and then from the dot off to the 
empty states in the other reservoir. We will first consider the low bias regime where 
the bias window is by definition sufficiently large for only first-order tunneling events 
to take place [7]. This is, an electron tunnels first from one reservoir onto the dot and 
then from the dot to the other reservoir (as in figure 2.7 C). Therefore, at no point more 
than one electrons can occupy the dot at the same time. If there is no empty 
electrochemical potential level within the bias window, no tunneling event can take 
place and thus, the number of electrons on the dot will remain fixed and no current 
will flow through it. This is known as the Coulomb blockade effect discussed earlier 
(see figures 2.7 A and 2.7 B).  
 

As it can be seen from (2.19), the Coulomb blockade can be lifted by applying 
a gate voltage. A positive VG will depress the charging energy gap due to the Coulomb 
blockade effect, thus allowing an empty electrochemical potential level in the dot to 
move within the bias window (see figure 2.7 C).  
 
 By sweeping the gate voltage and measuring the current flowing through the 
dot while keeping the bias voltage close to zero, a conductance versus gate voltage 
plot can be made (figure 2.8). At the positions of the conductance peaks, an 
electrochemical potential level inside the dot is aligned inside the bias window and a 
single-electron event takes place. This causes a current to flow, which then translates 
to a change in the conductance of the dot. In the valleys between the conductance 
peaks, the number of electrons on the dot is fixed due to the Coulomb blockade [10]. 
As mentioned earlier, the distance between the peaks corresponds to the addition 
energy.  
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Figure 2.7: Schematic diagrams of the potential landscape of a quantum dot. In A, no 
electrochemical potential on the dot falls within the bias window. Therefore, the number of 
electrons is fixed at N-1 due to the Coulomb blockade effect. In B and C, the electrochemical 
potential on the leads depends on the bias voltage by ~6 − µi = 	eVoi. In B, the the 
electrochemical potential of the source is lifted due to the applied bias voltage and the bias 
window is widened. Nevertheless, the electrochemical potential for adding the Nth electron 
to the dot still lies above the bias window and hence the Coulomb blockade remains. In C, 
the Coulomb blockade is depressed by applying a gate voltage equal to the charging energy 
(which should be equal to the addition energy for the low bias regime case). Now, the whole 
“ladder” of electrochemical potential levels on the dot is shifted down [7]. On each case, the 
electrochemical potential level for adding the next electron is separated from the previous 
potential level by the addition energy. The probability of each tunneling event depends on 
the mass and energy of the particle, and also the width and height of the potential barrier as 
it was defined in (2.1). 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 2.8: Coulomb peaks in Conductance versus Gate Voltage on a charge island with high 
density of states for zero bias voltage. Each peak corresponds to a situation similar to figure 
2.7C (but for no applied bias), while each valley to the Coulomb Blockade situation depicted 
in figure 2.7A. The addition energy on this island is equal to only the charging energy, hence 
the regularly spaced Coulomb peaks.   
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2.8 Stability Diagrams in the Low-Bias Regime  
 

By measuring the current through the dot while sweeping the bias voltage for 
different values of the gate voltage, a source-drain bias voltage versus gate voltage 
plot can be made (figure 2.9). The plot can also contain information about the 
differential conductance (the derivative of the current with respect to the source-drain 
bias), which is usually represented by a color gradient. This plot is often called a level 
spectroscopy diagram or a stability diagram and always exhibits a characteristic 
rhombic structure. Inside the diamond-shaped regions, the number of electrons on 
the dot is fixed due to the Coulomb blockade effect and no current can flow through 
them [7]. These regions are often called Coulomb diamonds. Each diamond 
corresponds to a fixed number of N electrons inside the dot. The points at the end of 
each diamond where the upper right and lower right edge of the diamond join along 
the gate voltage axis are called degeneracy points. At these points the energy of 
adding the Nth and the Nth+1st electron to the dot is the same (thus, the 
characterization “degenerate”). Outside the diamonds, the Coulomb blockade is lifted 
and single-electron tunneling events and thus current flow, take place. The edges of 
each diamond therefore signify the onset or the termination of a current flow. As we 
move to the right of the plot, there is a higher gate voltage and therefore the 
electrochemical potential “ladder” on the dot shifts down. Every time the edge of a 
diamond is reached, there is an alignment between one of the the electrochemical 
potential levels inside the dot and the electrochemical potential level of either the 
source (upper left and lower right diamond edges) or the drain (upper right and lower 
left diamond edges).  

The shape of the Coulomb diamonds can be interpreted as follows: if we 
assume that the bias is applied symmetrically to the source and the drain reservoirs, 
we can derive two new relations for their electrochemical potential: µÑ = µW + eVÖÜ/2 
and µÜ = µW − eVÖÜ/2, for the source and drain potentials, respectively. Where µW is 
the potential of both the reservoirs for zero bias voltage (we assume that the reservoir 
potentials are aligned for VÖÜ = 0). From this we can derive a set of requirements for 
the electron configuration inside the dot to be stable. For a positive source-drain 
voltage, VÖÜ > 0, the following relations should hold: µà < µW − eVÖÜ/2 and µà;T >
µW + eVÖÜ/2. Accordingly, for a negative source-drain voltage, VÖÜ < 0, it should hold 
that: µà < µW + eVÖÜ/2 and µà;T > µW − eVÖÜ/2. These inequalities when combined 
with (2.19) can then be translated into a set of equations that describe the Coulomb 
diamond edges, where the coulomb blockade is either lifted, or imposed. A detailed 
derivation of the so called borderline-equations can be found in [27]. By plotting these 
equations, we obtain the rhombic structure depicted in figure 2.9. 

By definition, in the low-bias regime considered here, no excited states exist. 
Thus, unlike the high bias regime that will be discussed later, the area outside the 
diamonds is normally featureless. The height of each diamond corresponds to the 
addition energy, which for the low bias regime has only an electrostatic term. 
Therefore, the height of each diamond equals to the constant charging energy EC. 
From the slope of each diamond the capacitance value of the capacitively coupled 
source, drain, and gate leads can be quantitatively determined. 
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Since the conducting islands in single-electron devices usually exhibit dense 
energy states, we can consider their energy spectrum as being continuous. 
Therefore, their addition energy has a finite electrostatic term and zero orbital energy, 
thus making their stability plots usually identical to those of quantum dots biased in 
the low-bias regime. 

 The Coulomb diamond structure has been observed in a variety of experiments 
on quantum dots. Spectroscopy diagrams are an invaluable tool for understanding 
the nature of single charge transport phenomena. They provide insight into the energy 
spectrum of the dot and allow the occupation number and the capacitive coupling of 
the dot to be determined by just looking at the diagram’s features.  

 

 
Figure 2.9: Coulomb diamonds in differential conductance for VSD versus VG in the low-bias 
regime. At the diamond edges, the electrochemical potential on the dot is aligned with either 
the source or the drain potential, corresponding to either the termination (left-hand side of 
the diamond) or onset (right-hand side of the diamond) of the tunneling current. Inside the 
diamond no transport is allowed due to the Coulomb blockade effect. By definition, only 
single-electron tunneling events take place in this low-biased regime.  
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2.9 Stability Diagrams in the High-Bias Regime  
 

At the high bias regime, multiple dot energy levels can participate in the charge 
tunneling [10]. Every time an excited state level enters the (now widened) bias window 
together with an electrochemical potential level in the dot, an additional transport 
channel opens up allowing electrons to tunnel via one of the two levels (figure 2.10 
A). Also, multiple tunneling events can take place at the same time if multiple 
electrochemical potentials are aligned inside the bias window (figure 2.10 B). The new 
transport channels due to the excited states appear in the stability diagram discussed 
earlier as lines emanating and running parallel to the diamond edges (see figure 2.11). 
Lines that end to to the Nth Coulomb diamond correspond to excited states of the Nth 

electron and so on. In case of a double tunneling event of the e.g. Nth and Nth+1st 

electron, a new Coulomb diamond will appear between the old Nth and Nth+1st 

diamonds so its lower edges will be tangential with the upper right edge of the Nth 

diamond and the upper left edge of the Nth+1st diamond (see figure 2.11). For single -
electron transport between non-excited dot potential levels, the edges of the 
diamond have the same behavior as in the low-bias regime (see figure 2.9). 
Furthermore, from the slope of each diamond the capacitance of the source, drain, 
and gate leads can be determined, just like in the low-bias case. The height of each 
diamond corresponds again to the addition energy and consequently, for a quantum 
dot with well-quantized energy levels, the non-constant orbital energy term ΔE will 
cause the Coulomb diamonds to have variations in height. It is important to mention 
that an excited state that enters the bias window can be due to multiple effects. 
Except the orbital excitations discussed here, it can be due to spin excitations, 
excitations due to Zeeman splitting or excitations due to lattice vibrations.  
 

Figure 2.10: Schematic diagrams of the potential landscape of a quantum dot in the high-
bias regime. In A, the excited state of the Nth electron aligns inside the bias window together 
with the electrochemical potential for adding the Nth electron to the dot. Electrons can now 
tunnel via one of the two available transport paths. The separation between these two levels 
equals to the orbital energy ∆E. In B, the bias window is sufficiently large for two 
electrochemical potential levels to be aligned within it, thus allowing a double-tunneling event 
to take place. In principle, any number of electrons can tunnel through the dot at the same 
time if the bias window is large enough and a corresponding number of potential levels is 
aligned inside it. The probability of each tunneling event is again given by (2.1). 
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Figure 2.11: Coulomb diamonds in differential conductance for VSD versus VG in the  
high-bias regime. The transport between non-excited, single, dot potential levels appears as 
diamond edges in a fashion identical to that of the low-bias regime. The slope of each 
diamond edge depends again on the capacitance of the source, drain, and gate lead 
coupling. The gray lines indicate transport through excited states. Double-transport events 
appear as a new set of Coulomb diamonds running above the single-transport Coulomb 
diamonds. 
 
2.10 Charge Transport in Double Quantum Dots  
 

In a similar to a single quantum dot fashion, systems consisting of two coupled 
quantum dots can be fabricated. Where single quantum dots are regarded as artificial 
atoms, coupled double quantum dots can be considered as artificial molecules [28]. 
In that situation, electrons are not fully localized inside a single quantum dot, but 
occupy orbitals that span both quantum dots. Depending on the strength of the 
tunnel coupling between the dots, the two dots can form ionic-like or covalent-like 
bonds for weak or strong tunnel coupling, respectively. In this paragraph we focus 
on charge transport through lateral double quantum dots coupled in series. The 
potential profile for electron double quantum dots is shown in figure 2.12. The profile 
of hole double quantum dots is the horizontally mirrored profile of electron double 
quantum dots. It is important to notice the similarities between these potential profiles 
and the profiles of single quantum dots as shown in figure 2.5. It is important to notice 
the similarities between these potential profiles and the profiles of single quantum 
dots as shown in figure 2.5 

 By again employing the mixed classical-quantum model described in the 
previous sections together with the constant interaction (CI) model to model the 
Coulomb interactions, an equivalent circuit similar to that derived for single quantum 
dot circuits can be made for the case of double quantum dot circuits (figure 2.13). 
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The main difference between the two models is the presence of a second gate voltage 
source dedicated to the second quantum dot, and of a third tunnel junction that 
couples each dot to the other. 

 

 
 
Figure 2.12: Potential profile of an electrostatically defined double electron quantum dot. The 
confinement of the electrons results in discrete energy levels inside the dots. If the second 
barrier is lowered sufficiently, one large quantum dot will be defined instead of two individual 
dots. 
 

 
 

	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.13: Circuit model of two coupled single electron-transistors. TJS has a resistance 
value of RS and a capacitance value of CS. Accordingly, TJD and TJM have a resistance value 
of RD and RM and a capacitance value of CD and CM, respectively.  The voltage sources 
determine the position of the discrete energy levels inside the dots independently. 
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By following the assumptions of the CI model as described in paragraph 2.6, 
the Coulombic interactions of the electrons inside the system can be parameterized 
by two capacitance terms: C1 and C2. C1 is the sum of all the capacitances attached 
to the first dot: 

NT = 	N6 +	Nä +	 NjT                        (2.21) 
 

while C2 is the sum of all capacitances attached to the second dot: 
 

N= = 	Ni +	Nä +	 Nj=                                (2.22) 
 

If we now assume that the cross coupling between the two dots is weak, the CM term 
becomes negligible. As a further assumption we take VSD = 0, that is, only the linear 
transport regime is considered. Then, by following the same derivation as in for the 
single quantum dot circuit presented earlier, the total electrostatic energy of the 
double quantum dot circuit can be described by the sum of the electrostatic energies 
of two independent (uncoupled) quantum dots: 
 

PVkV_lmn6l:l7_ =
[2 V 	 tã2tã,4 ;	Uxã3xã]5

=Uã
+	 [2 V 	 t52t5,4 ;	Ux53x5]5

=U5
    (2.23) 

 
Where N1 is the number of electrons in the ground state of the first quantum dot, N2 
the number of electrons in the ground state of the second dot, N1,0 the number of 
electrons in the first dot for VG1 = 0, and N2,0 the number of electrons in the second 
dot for VG2 = 0. Similar to what have been discussed before, if we now take into 
account the discrete energy spectrum of the quantum dots, an additional energy term 
for each individual dot that represents the summation over the occupied quantized 
orbital energy levels on it will emerge: 
 

Pz{:8l{> = P8t
8|T                             (2.16) 

 
The total energy of the two uncoupled quantum dots will then be given by: 

 

} r = 	 2 V 	 tã2tã,4 ;	Uxã3xã
5

=Uã
+	 2 V 	 t52t5,4 ;	Ux53x5

5

=U5
+ PT,8 +t

8|T P=,8t
8|T   

(2.24) 
 

Furthermore, if we now take into account the cross-coupling effects, we can define 
the electrochemical potential as the energy required to add the Nth electron to the 
first dot while keeping the number of electrons on the second dot constant,  
or vice-versa: 

 
~T rT, r= = 	} rT, r= − } rT − 1,r= = rT − rT,W −

T
= PUT −

T
V NjTSjTPUT + Nj=Sj=PUä + r=PUä + PT,t                                   

(2.25) 
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and also, 
~= rT, r= = } rT, r= − } rT, r= − 1 = r= − r=,W −

T
= PU= −

T
V Nj=Sj=PU= + NjTSjTPUä + rTPUä + P=,t     

(2.26) 
 
Where PU = 	

V5

U  is the charging energy for each dot. A detailed derivation of these 
relations can be found in [28]. 
 

The addition energy discussed in paragraph 2.7 is now interpreted as the 
energy required to change the number of electrons inside one of the dots discretely, 
while keeping the number of electrons on the other dot constant. It holds: 
 

PT,:ZZ7l7n8 rT, r= = ~T �T + 1,�= −	~T �T, �= = 	PUT +													 
PT,t;T − PT,t = PUT + KPT  

      (2.27) 
similarly,  

 
P=,:ZZ7l7n8 rT, r= = ~= �T, �= + 1 −	~= �T, �= = 	PU= +													 

P=,t;T − P=,t = PU= + KP=   
(2.28) 

 
Now that the energies of the double dot system are defined, it is possible to 

plot stability diagrams akin to those discussed in sections 2.8 and 2.9. Plotting 
equations (2.27) and (2.28) for zero orbital energy will result in a description of the 
classical transport regime, reminiscent to the low-bias regime of the single quantum 
dots. The bias voltage is still considered to be zero (linear regime), hence, the 
electrochemical potential of the source and drain is also zero. This sets as a condition 
that the number of charges on the dots in equilibrium must be the largest integer 
value of N1 and N2 for which the electrochemical potentials of both dots are less that 
zero. Otherwise, charges would escape the dots to the leads [28]. This constrain 
creates the characteristic honeycomb structure depicted in figure 2.14 B. For CM=0, 
the quantum dots are independent (uncoupled), thus the gate lead coupled to one of 
the dots can change the number of charges inside it without affecting the number of 
charges on the other dot. This situation is depicted in figure 2.14 A. In figure 2.15, the 
electrochemical potentials around a specific set of triple-points in the linear regime 
are shown. The coupling degree is the same as in figure 2.14 B. The level diagrams 
indicate the configuration of the electrochemical potentials inside each dot. Since the 
linear regime is considered here, the electrochemical potentials of the source and the 
drain remain constant at zero and aligned with each other at all times. It is important 
to notice that the transport through a double quantum dot system requires the 
alignment of four electrochemical potential levels instead of three that it was the case 
in a single dot. This makes the charge transport possible only at specific points, the 
triple points, where the electrochemical potential levels of the two dots are aligned 
with those of the source and the drain. In all other electrochemical potential 
configurations, the system is in Coulomb blockade.  
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Figure 2.14: Stability diagrams for double quantum dot systems. Inside each domain the 
charge is constant, while on the edges of the border lines between the domains, charges can 
flow. The lines indicate the gate voltage values at which the number of charges changes. The 
number of charges on each domain is denoted by (N1,N2). These diagrams can be viewed as 
an extension in two dimensions of the coulomb peak diagram presented in figure 2.8.  In A, 
the capacitive coupling between the two dots is negligible, making the two dots effectively 
independent. In B, the inter-dot coupling capacitance is finite, resulting in a dependence 
between the charges on the two dots and hence, this characteristic hexagonal (or 
“honeycomb”) lattice is obtained. The apex of each square domain in the uncoupled dot case 
has now been transformed into a triple-point. Each triple-point corresponds to the edge 
merging of three individual honeycombs. Charge transport through the dots is possible only 
at these triple-points. Two types of triple-points can be distinguished, the hollow dot that 
corresponds to a hole transport and the solid dot that corresponds to an electron transport. 
The distance between the triple-points is defined by the capacitance value of the coupling 
between the dots (CM). The region between the lower four domains shown in B is depicted in 
more detail in figure 2.15. Figure adapted from [28].  
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Figure 2.15: The unit cell of the honeycomb lattice of the stability diagram shown in figure 
2.14 B. Four different charge domains are depicted, separated by solid lines. Each solid line 
indicates an alignment of an electrochemical potential level inside the dot with the 
electrochemical potential of either the source or the drain (both of which are set to zero volt). 
Solid lines marked with μ1 and μ2 correspond to the electrochemical potential of the first and 
second dot, respectively. The solid line between the triple-points designates two degenerate 
energy states. Each level diagram represents a configuration of the electrochemical 
potentials on the dot. Only in level diagrams B and E all the electrochemical potentials are 
aligned and thus a transport of a hole and an electron takes place, respectively. Figure 
adapted from [28]. 
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Finally, the non-linear transport regime in the double quantum dot system will 
be considered. Now, the source-drain voltage is non-zero and hence the bias window 
is widened. Similar to the high-bias regime discussed in section 2.9, excited-state 
levels can also participate in the charge transport. Equations (2.27) and (2.28) now 
have a finite orbital energy term, which results in a description of the quantum 
transport regime. In single quantum dots, after applying a bias, the description of the 
system moved from coulomb peaks to coulomb diamonds. In the case of double 
quantum dots, the triple-points evolve to bias triangles (figure 2.16). Inside a bias 
triangle charge transport is allowed. The characteristic triangular shape is due to the 
fact that the electrochemical potential lines μ1(1,0) and μ1(1,1) are now equal to the 
potential energy difference between the source and the drain and thus, they are 
“pushed out” along the degenerate energy line that connects the two triple-points. 
The darker regions inside the triangle correspond to a transport through an excited 
state and they are analogue to the diagonal lines emanating from the coulomb 
diamonds in figure 2.11. Each base of a darker triangle, inside the main bias triangle, 
that runs parallel to two charge domains relates to a transport through the 
corresponding excited states. The rest of the unit cell features remain unchanged. 
The direction the triangles are pointing corresponds to the direction the current is 
flowing between the two dots. For a negative bias voltage, electrons move through 
the dot in the opposite direction and thus, the triangles in figure 2.16 will be mirrored 
along the degenerate energy line, signifying the flow of a current on the reverse 
direction.  

 
Until now, only tunneling events between aligned energy levels were 

considered. This is the case where the initial and final energy states of the tunneling 
events have the same energy. This event is termed elastic tunneling.  However, in the 
case of transport in the non-linear regime, tunneling also occurs when there is an 
energy mismatch between the initial and final states and thus, the energy levels are 
misaligned. This process is called inelastic tunneling. Due to the energy conservation 
principle, the energy mismatch between the two levels in the case of inelastic 
tunneling is compensated by energy exchange with the environment. Often, this 
translates to an absorption or emission of a photon or a phonon. A schematic 
representation of the differences between elastic and inelastic tunneling is given in 
figure 2.17. The inelastic tunneling is a second-order process, therefore its tunneling 
rate is much lower than the elastic tunneling rate [10]. 
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Figure 2.16: The unit cell of a honeycomb lattice for a finite bias. Energy level diagrams that 
correspond to the darker triangles represent a transport through an excited state. Excited 
states are illustrated with grey lines in the energy level diagrams. Unlike Coulomb diamonds, 
within this bias triangles charge transport through the dot is energetically allowed. Figure 
adapted from [10].  
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Figure 2.17: Example of the differences between elastic and inelastic tunneling. For small 
applied source-drain bias, the charge can tunnel through the dot from the occupied state of 
one reservoir to the empty state of the other, without any loss of energy. This is an elastic 
tunneling event. For a larger bias, the final tunneling state has lower energy than the original 
state, resulting in energy loss to the environment (emission of either a photon or a phonon). 
This is because the applied bias energy is larger than the vibrational energy PV>766n8 = ℏ`. 
This opens a new, inelastic tunneling channel through the dot [29]. 
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3. FABRICATION & EXPERIMENTAL METHODS 
3.1 Device Architecture 
  

The transport experiments were performed on two single-charge transistor 
devices with similar architecture. The designs of device I and device II are depicted 
in figure 3.1. The main difference between the two devices is the proximity of their 
plunger gates to the source-drain channel. For device II, the bottom end of each 
plunger is patterned closer to the bottom end of the barriers. This is expected to allow 
better control over the formed quantum dots. A second difference between the two 
devices is the configuration of their lead gates. The lead gates of device I are 
connected to each other, while for device II are separate. The behavior of each gate 
as described bellow is the same for both architectures. 
 

The devices adopt a unipolar structure where two separate regions for either 
electron or hole transport are fabricated. To electrostatically define quantum dots in 
the electron side, a positive potential is applied to the electron lead gates, L1 and L2, 
which induces a two-dimensional electron gas (2DEG) at the Si/SiO2 interface (see 
figure 3.3) and then by locally depleting the gas by applying a potential to the barrier 
gates, B1, B2, and B3, two quantum dots are formed between the barriers. The barrier 
gates by locally depleting the gas define the dot spatially and they also control the 
tunnel coupling between the dot and the reservoirs by forming tunnel barriers. The 
lead gates are orthogonal to the barrier gates, allowing us to estimate the capacitive 
coupling to the dots using the parallel-plate capacitor model. By using either of the 
plunger gates, P1 and P2, the electrochemical potential levels of each dot can be 
varied individually, effectively controlling the electron occupancy of the dot and 
therefore permitting its operation as a single-electron transistor [21].  Similarly, dots 
can be formed on the hole side by applying a negative potential to the hole lead gates, 
which now creates a two-dimensional hole gas (2DHG), and the barrier gates, B4, B5, 
and B6. By now using the plunger gates, P3 and P4, the electrochemical potential 
levels of the dots in the hole side can be varied, controlling the hole occupancy of the 
dot this time. By applying a potential to two adjacent barrier gates, a single quantum 
dot can be formed on either side of the hole or electron side of the device. Whereas 
by applying a potential to all three barrier gates, a lateral double quantum dot coupled 
in series can be defined. The potential applied to the middle barrier will define the 
coupling degree of the two dots. For the potential profile of the system, refer to figure 
2.12. To provide carriers to the device, n and p doped source and drain regions are 
used as 2DEG and 2DHG reservoirs, respectively. The source-drain leads are 
patterned to overlap partially with all the barrier gates for device I (see figure 3.1 A), 
while for device II the lead gates are patterned next to the side barriers and the two 
plunger gates are each partially overlapping with either the first or the third barrier 
gate (see figure 3.1 B).  

 
An overview of the physics of a quantum dot was given in paragraph 1.3. 

Furthermore, as it was pointed out in paragraph 1.4, any of the single charge devices 
can also be used as a charge sensor for verifying the charge occupancy inside one 
of the dots across the charge sensor. In that case, the lead gates of the single electron 
device acting as charge sensor, are used as measuring probes.   
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Figure 3.1: Source-drain channel design of both devices. In this area the quantum dots are 
formed. In 3.1 A, the channel of the device I is shown, while in 3.1 B, the channel of device 
II. A SEM image of the latter is given in figure 3.4. Each intentional quantum dot is formed 
between two of the barrier gates and underneath a plunger gate. For this area, electron beam 
lithography (EBL) was used for nanoscale fabrication since it is able to create structures with 
a size of approximately 20 nm [33]. Scale bar here is 100 nm, hence the area depicted is 
smaller than the wavelength of light and can not be imaged with an optical microscope. 	
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3.2 Device Fabrication 	
 
For the fabrication of the single-charge devices, a technology similar to that 

used for the fabrication of integrated circuits, namely CMOS (Complementary metal–
oxide–semiconductor) technology, is employed. The fabrication combines optical 
photolithography for wafer-scale microfabrication with electron-beam lithography 
(EBL) for device-scale nanofabrication. The fabrication steps are based on the recipe 
described by Angus et al. [30]. A near-intrinsic, high resistivity (ρ>10 kΩ⋅cm at 300 K), 
<100> oriented, silicon substrate was used for the devices. For the charge carrier 
reservoirs, the source and drain regions were implanted with boron (p++) and 
phosphorous (n++) dopant atoms, for the hole and electron reservoirs, respectively. 
For the activation of dopants, rapid thermal annealing (RTA) was used. To contact 
these regions, ohmic contacts were made by sputtering Ti/Pt alloy contact pads. 
Ohmic contacts ideally exhibit a linear current-voltage curve, thus behaving like an 
ideal resistor. To isolate the silicon substrate from the aluminum gate electrodes, a 
10 nm thick silicon dioxide (SiO2) layer is thermally grown at 900°C.  SiO2 is an 
excellent insulator, with tunneling across it becoming important only at thicknesses 
below 2 nm. The importance of this isolation is outlined in paragraph 2.6: the gate 
terminal is used merely to control the flow of charges through the source-drain 
channel and does not inject charges directly. Thus, the silicon dioxide layer can be 
thought as the isolating dielectric between two capacitor plates, with the gate forming 
one capacitor plate and the channel forming the other. To passivate defects at the 
Si/SiO2 interface such as dangling bonds, Al2O3 films were deposited on top of SiO2 
by thermal atomic layer deposition (ALD) at a substrate temperature of 250°C. There 
are indications that the hydrogen in the Al2O3 films can passivate the dangling bonds 
[31], which are produced when free radicals (specimens with unpaired valence 
electrons) exist in an immobilized environment, such as, a lattice site. Alternatively, 
to remove charge traps and dangling bonds, the oxide can also be annealed in pure 
hydrogen at 400°C and a pressure of 10 mbar [32]. After the passivation step, contact 
pads for the gates are defined using optical photolithography, followed by 
development, evaporation of Ti/Pt, and subsequent lift-off [32]. To define the 
aluminum barrier gate electrodes, EBL was employed. The gates were then oxidized 
by heating the sample for 10 minutes at a hotplate with a temperature of 160°C, 
effectively utilizing the aluminum oxide layer created at their surface as a dielectric. 
Finally, a second EBL step was performed to fabricate lead gates above all the barrier 
gates on device I. For device II, a second EBL step was performed to pattern plunger 
gates above the two side barriers and a third EBL step to pattern the second barrier 
and the lead gates (see the cross-sections in figure 3.5).  

 
An image of the design of device II is shown in figure 3.2 for two different 

degrees of magnification. For device I this design is identical with the only difference 
being the order of the barrier and the plunger gate electrodes (side barrier and plunger 
gate electrodes on both sides are interchanged, refer to figure 3.1). On figures 3.3 
and 3.4, images of the actual device are shown for two different degrees of 
magnification. 
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Figure 3.2: Design of device II for two degrees of magnification. In A, the device at its whole 
is shown. Scale bar is 200 μm and this area is visible to the naked eye. A microscopic image 
of the area depicted in this design is given in figure 3.3. In B, the design area in the center of 
the device is shown. The four markers between the vertical and the horizontal electrodes are 
used for alignment during photolithography for microfabrication. In A, the contact pads and 
part of the gate electrodes are visible. In B the gate electrodes together with the doped 
regions can be seen. Device I has an identical design but with interchanged side barrier and 
plunger gate electrodes. 
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Figure 3.3: Microscopic image of device II. This device is part of a larger chip that consists 
of 25 similar devices. Each device on the chip has a unique two-letter identifier (top right 
corner).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4: Scanning electron microscope (SEM) image of device II. The architecture of this 
device is shown in figure 3.1B. Images of more identical devices can be found in appendix 
A.  
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Figure 3.5: Schematic cross-section of the electron region of devices I and II (figure 3.5 A 
and 3.5 B, respectively). The dashed lines in the inset figures indicate the corresponding 
areas of figure 3.1 where each cross-section it taken from. The lead gates, L1 and L2, 
embedded in Al, locally deplete the electron gas, creating small carrier islands isolated from 
the two-dimensional electron gas (2DEG) reservoirs. These islands are the quantum dots. 
The barrier gates B1, B2, and B3 control the tunnel coupling between each of the dots and the 
carrier reservoirs. Finally, the plunger gates, P1 and P2, control the electron occupancy in 
each of the dots independently. Also shown, the thin layer of Al2O3 on top of the SiO2 and Al 
layers. The hole operation region of each device is identical, but with p++ doped source and 
drain regions.  
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3.3 Measurement Setups  
  

As discussed in paragraph 2.5, all single-charge devices are being operated 
at cryogenic temperatures. To achieve that, the chip that contains the single-charge 
devices (each chip usually consists of 25 devices in five rows of five devices each) is 
glued on a sample holder. The sample holder is a PCB (figure 3.6) with connection 
leads compatible to that of the measurement equipment used. The chip is glued onto 
the PCB using a synthetic polymer thermoplastic, namely Polymethyl methacrylate 
(PMMA), and then the PCB is heated to 80°C to evaporate solvents. A wire bonder is 
then used to connect the chip to the PCB contacts via aluminum wires.  
 

Two low temperature setups were used for the characterization of the devices: 
a liquid helium dewar, that is accessed by a dipstick where the PCB with the chip is 
mounted, and a dilution refrigerator (Oxford Instruments Triton 200). The helium 
dewar has a base temperature of 4.2 K, while the dilution refrigerator can achieve a 
base temperature of less than 10 mK. Because the helium dewar allows fast loading 
and unloading of the chips, it is used for testing the operation of the devices, while 
the dilution refrigerator is used for sensitive electronic transport measurements since 
it is shielded and has multiple filters that can reduce the external electrical noise.  
 
 Before exposing the devices to cryogenic temperatures, a bias voltage is 
applied to the source and the drain leads to test whether a current flows through the 
source-drain channel. After submerging the device into liquid helium, a leakage test 
is performed. This is done by connecting a source measure unit (SMU) to one gate of 
the device at a time. The gate is then ramped to a positive and then to a negative 
voltage, while all other connections on the device are kept grounded. The SMU 
applies a voltage to the connected gate and at the same time measures the current 
to the ground. To protect the devices from overpower, the compliance is set to 0.8 
nA, thus, ensuring that the current will not exceed this value while the gate voltage is 
ramped. A gate on the device is considered to be leaking if the current to the ground 
exceeds a specific value [33]. This measurement is repeated for all the gates of the 
device. If no leakages are detected, the turn-on characteristics of the device are then 
measured. To do so, a bias voltage of 10 mV is applied between the source and the 
drain contacts and a single voltage is applied to all the lead and barrier gates. This 
voltage is then ramped to positive values for the electron side and negative values for 
the hole side until the device is “turned-on”, this is, electrons or holes are flowing 
from the source to the drain. To determine the exact voltage that needs to be applied 
to the gates to start conducting charges, the source-drain resistance is being 
measured. If the device turns on successfully, electronic transport measurements can 
be performed. 

 
In both setups, a low-noise IVVI-DAC rack together with a matrix module is 

used to conduct measurements (figure 3.7). To isolate the measurement electronics 
against electrical noise from the grid and to eliminate ground loops, they are powered 
via battery cells. Both measurement setups are custom-built at Delft University. The 
connection leads of the PCB where the chip is attached are wired to the matrix 
module. By connecting different probes from the IVVI-DAC rack to the matrix module, 
we can control the single-charge device and perform various transport 
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measurements. The DACs (digital-to-analog-converters) on the IVVI-DAC rack are 
used to apply gate voltages to the device. To again exclude electrical noise, the DACs 
are optically coupled to the computer that is used to drive them. The computer sends 
commands to the DACs via an optical fiber. If the voltage provided by the DACs is 
not sufficient, a voltage source module can be attached to the IVVI-DAC rack in order 
to supply a source-drain bias voltage. The rack includes an IV (current-voltage) 
measurement unit that converts the measured source-drain current to a voltage, that 
is then being measured with an external digital multimeter [33]. The data from the 
voltage measurements are fed to a computer and plotted using custom-built 
software.  
 

 

 

 

 

 

Figure 3.6: Sample holder PCB. The arrow indicates the sample (chip that contains the 
single-charge devices). On the right-hand side of the PCB, the female connector that 
attaches the PCB to the dipstick or the sample loading mechanism of the dilution refrigerator 
is visible. Plugged to it, a grounding PCB to avoid static discharge.   

 
 Figure 3.7: Measurement electronics. Top: two matrix modules. Each wire connected to the 
PCB corresponds to a connector on the matrix module. Bottom: the IVVI-DAC rack. From 
the left: the third module on the IVVI-DAC rack is the IV measurement unit and the fifth module 
contains the digital-to-analogue converters discussed in the text. 
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4. RESULTS & DISCUSSION 
4.1 Electron Transport on Device I 
  
 First, the turn-on characteristic of the electron operation region of device I is 
investigated. The same voltage VG is applied to all barrier, plunger, and lead gates on 
the electron operation region, while the gates of the hole region are kept grounded. 
At the same time, a constant bias voltage VSD = 1 mV is applied to the source-drain 
channel. The gate voltage VG is then ramped to positive values while the resulting 
channel current, ISD, is being measured. Once a threshold voltage VTH has been 
reached, the conduction band has been pulled below the Fermi energy level and 
energy states on the dot are available for occupation (recall the first potential profile 
in figure 2.5). This signifies the onset of a flow of electrons from the source to the 
drain reservoirs and subsequently the flow of a tunneling current. As soon as this flow 
starts the device is considered to be “turned-on”. This turn-on behavior is depicted 
in figure 4.1. The threshold voltage VTH has been measured to be approximately 2.6 
V while the source-drain current reaches a value of roughly 7.3 nA.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1: Turn-on characteristic curve measured at T ≈ 4.2 K and for a bias voltage VSD = 
1 mV. A gate voltage VG is applied simultaneously to all gates on the electron operation 
region, while the hole operation region is kept at zero voltage.  
 

Next, the ability of the barrier gates to tune the conduction of electrons in the 
source-drain channel below the barriers is assessed. By ramping the barrier gate 
voltage of each individual barrier to a lower value while simultaneously keeping the 
voltage of all the other gates to a value above the threshold voltage determined 
previously, the “pinch-off” curve of each barrier has been obtained (figure 4.2). The 
“pinch-off” curve determines the ability of the barrier gate voltage to tune each 
individual potential barrier from highly transparent to opaque, which corresponds to 
a high and a negligible current flow, respectively. This is equivalent to saying that the 
barrier gate pinches-off the tunnel coupling between the quantum dot and the carrier 
reservoirs, effectively controlling the tunnel rate across the barrier (recall 
thediscussion in chapter 2.1). From the “pinch-off” curves in figure 4.2, we can 
conclude that each barrier can individually control the conduction channel for 
different barrier gate voltages. Additionally, we observe some minor resonances in 
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the measured current that can be attributed to random conductance fluctuations due 
to trap states or thermal noise. Fluctuations due to thermal noise usually change with 
every sweep.      
 
  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2: Pinch-off characteristic curves measured at T ≈ 4.2 K and for VSD = 1 mV. A gate 
voltage of 3.5 V is applied simultaneously to all gates on the electron operation region except 
the pinch-off barrier. The hole region is kept at zero voltage. 
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Subsequently, we measure the source-drain current as a function of the 
applied barrier voltages of B1 and B2, while keeping the bias voltage VSD constant at 
1 mV, and the voltage of the unused barrier B3 and the lead voltage, VL, constant at 
3.5 volts. The gates at the hole operation region are kept grounded. The range the 
barrier voltages of B2 and B3 were ramped at, was chosen to be near the pinch-off 
range of each barrier as determined from the previous measurement. Recall from 
section 2.7 that each charge transition through a quantum dot appears as a peak in 
the conductance versus gate voltage plot. This Coulomb peak will appear as a parallel 
diagonal when two barrier gates are swept versus each other. The source drain 
current is usually represented in a two-dimensional plot as a variation in the color of 
each transition diagonal. The nature of these lines can be understood as follows: the 
gates defining the tunnel barriers are also coupled to the quantum dot capacitively 
[34]. Every time the voltage of the barrier gate is changed, the tunnel coupling is 
changed resulting to a change in the current flow (represented with the color variation) 
and at the same time, due to the capacitive coupling, the electrochemical potential 
on the dot is altered (recall equation 2.18). As discussed in chapter 2, this change 
shifts the “ladder” of electrochemical potential levels on the dot up or down, allowing 
new potential levels to be aligned within the bias window, which results on new 
parallel diagonals. The slope of this diagonal is a measure of the capacitive coupling 
ratio of the dot to the two barrier gates.  

 
This series of parallel charge transition diagonals is observable in the 

measurement shown in figure 4.3. The large number of periodic oscillations is an 
indication that the dot is not due to defects, but intentional. The capacitive coupling 
ratio is found from the barrier versus barrier scan to be CB2/CB1 ≈ 0.95, indicating the 
existence of a quantum dot strongly coupled between the two barriers. The assumed 
location of the dot can be approximated from the capacitive coupling ratio and it is 
depicted in figure 4.4. The measured source-drain current as a function of the voltage 
applied to B2 (figure 4.5) exhibits the characteristic Coulomb oscillations in the many-
electron regime. Recall from the discussion in section 2.7 that each peak in the 
current corresponds to a change in the charge occupancy of the dot, while each 
valley between the peaks corresponds to a Coulomb blockade situation. The 
irregularities on the spacing between the Coulomb peaks is due to the dependence 
of the addition energy to a non-constant orbital energy term (recall equation 2.20). 
The peak heights vary with the barrier gate voltage, as expected for tunneling via 
single quantum states (see [27] for a discussion of this phenomenon). The ability to 
control the electron occupancy of the dot when sweeping the voltage of B2 
demonstrates that the device can be operated as a single-electron transistor. 

 
Furthermore, the barrier versus barrier scan reveals two more sets of transition 

lines, nearly parallel to the x and y-axis, respectively. This is attributed to the 
formation of intentional or unintentional (formed by disorder in the oxide or the silicon-
oxide interface) quantum dots between gates in close proximity to the scanned area. 
These dots are also capacitively coupled to either of the barriers B1 and B2. Therefore, 
when these dots are occupied by charges, their electrostatic field influences the 
potential profile of the quantum dot formed between B1 and B2. This effect of charge 
redistribution in the gate space can be utilized for charge sensing. By coupling 
capacitively two adjacent quantum dots on the same operation region or two 
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quantum dots formed on two different operation regions across each other, we have 
demonstrated that this device can be operated as a non-invasive charge sensor. 
Recall from the discussion in chapter 1 that charge sensors allow the confirmation of 
charge confinement inside quantum dots and the readout of their spin state.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3: Source-drain current as a function of VB1 and VB2 measured at T = 50 mK for VSD 
= 1 mV, VB3 = 3500 mV, and VL = 3500 mV. The current is plotted in a logarithmic scale. Series 
of parallel charge transition diagonals and charge transition lines parallel to the two axes are 
visible.   
 
 
 
 
 
 
 
 
 
Figure 4.4: Assumed location of the quantum dot between the barriers (orange circle) 
extracted from the capacitive coupling ratio CB2/CB1 ≈ 0.95. 
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Figure 4.5: Coulomb peaks in the source-drain current measured at T = 50 mK for VB1 = 1752 
mV, VSD = 1 mV, VB3 = 3500 mV, and VL = 3500 mV. As expected, the Coulomb peaks show 
different amplitudes and are irregularly spaced. Inset: the dashed line indicates the area of 
the barrier versus barrier scan where the Coulomb peaks were measured. Notice the linear 
current scale. 
 
 A second barrier versus barrier scan was performed, this time for the two side 
barriers, B1 and B3. The voltage of B2 was set to 1.5 V, while the the bias voltage VSD 
was kept constant at -2 mV and the lead voltage VL at 3.5 volts. The gates at the hole 
operation region were grounded. This resulted in the formation of a set of double 
quantum dots. As it was elaborated in section 2.10, since the the non-linear transport 
regime is considered here, the transport through the dot resulted in the formation of 
bias triangles (see figure 4.6). By mapping the bias triangles in more detail, features 
inside them as described in figure 2.16 could be observed.  

Figure 4.6: Bias triangles observed in the non-linear transport regime of the double quantum 
dot. Data recorded at T = 50 mK for zero magnetic field.  
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Last, a source-drain bias spectroscopy was performed. The differential 
conductance of the source-drain channel for different values of source drain voltage, 
VSD, and hole operation region gate voltage, VHG, is being measured (figure 4.7). 
Because of the proximity of the hole operation region to the electron operation region, 
the gates of the hole region can be utilized as a plunger gate for the electron region 
if their voltage is varied simultaneously. From the B1 versus B2 scan the voltage of the 
first barrier, VB1, was chosen to be 1.7 V and that of the second barrier, VB2, was 
chosen as 1.5 V. These values correspond to the last charge transition diagonals. 
Furthermore, the voltage of the barrier B3 was set to 2 V and the lead voltage, VL, to 
4 V. VHG was varied between -1 and -0.1 V. 

 
The presence of well-defined Coulomb diamonds in the scan indicates the 

periodical change in conductance due to the Coulomb blockade effect as it was 
discussed in chapter 2. As the voltage of the hole operation region gates, VHG, was 
reaching more negative values, the charging energy of the dot (height of diamonds) 
was increased. This is an indication that the quantum dot was shrinking in size (due 
to changes in its capacitance) and therefore approaching the single-electron limit. 
The charging energy varies approximately from 0.5 to 10 mV. For VHG < -0.5 V the 
diamonds do not close completely anymore. This can be due to impeded conduction 
because of charge occupation of trap states or dots defined elsewhere in the gate 
space. However, the diamonds have well-defined periodicity, indicating that that a 
main quantum dot is dominating the charge transport. Furthermore, clear lines of 
increased conductance appear emanating and running parallel to the diamond edges 
outside the Coulomb blockade region. Recall from the discussion in section 2.9 that 
these lines correspond to the presence of extra available transport channels due to 
excited energy states (such as orbital excited states). The precise nature of these 
excited states is however unknown.    

 
It is hard to conclude whether the last electron on the dot was reached or not 

in this measurement. The presence of a conduction peak on the bias spectroscopy 
at VHG  ≈ -1 V for VSD = -10 mV indicates that at least one more electron occupied the 
quantum dot for VHG  < -1 V. Therefore, a second scan was performed in the same 
gate space area were VHG was varied between -1.3 and -0.3 V (figure 4.8). This 
measurement indeed verifies the hypothesis that more electrons occupied the 
quantum dot. Although the high charging energy of the last diamond is a strong 
indication that the few-electron regime has been reached, it is still not possible to 
ascribe the opening of the last diamond at VHG  ≈ -1.2 V to the last occupied electron 
state in the dot, since the conductance of the channel might have dropped below the 
thermal noise level. There are strong indications however that this device architecture 
can potentially reach the few-electron regime.  
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Figure 4.7: Bias spectroscopy performed at T = 50 mK for VB1 = 1700 mV, VB2 =1500 mV, VB3 
= 2000 mV, and VL = 4000 mV. Well-resolved Coulomb diamonds and excited states 
manifested as high-conductance lines are observable.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.8: Bias spectroscopy performed at T = 50 mK for VB1 = 1710 mV, VB2 =1710 mV, VB3 
= 2000 mV, and VL = 4000 mV. Coulomb diamonds down to the few-electron regime can be 
resolved. 
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To conclude, we have demonstrated that is possible to control the electron 
transport at 4.2 K and 50 mK via the barrier and lead gates of device I, the architecture 
of which was presented in chapter 3. We have reported the formation of single and 
double intentional quantum dots, and the single-electron tunneling in the few-electron 
regime. Additionally, the capability of the device to operate as a charge sensor has 
been demonstrated. To gain better control over the formation of the quantum dots 
and reach the single-charge regime in the dot occupancy, a new device design was 
realized, that of device II as presented in chapter 3. Its electronic characterization 
results follow in the next section.  
 
4.2 Electron Transport on Device II 
 
 Equivalently to the first measurement, the turn-on characteristic of the electron 
operation region of device II is studied. This turn-on behavior is depicted in figure 4.9. 
The threshold voltage VTH has been measured to equal approximately 2770 mV while 
the source-drain current reaches a value of roughly 0.97 nA.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.9: Turn-on characteristic curve measured at T ≈ 4.2 K for a source-drain bias voltage 
VSD = 1 mV. A gate voltage VG is applied simultaneously to all gates on the electron operation 
region, while the hole operation region gates are grounded.  
 

Next, the ability of the barrier gates to tune the conduction from highly 
transparent to opaque is assessed. This is done by measuring the “pinch-off” curve 
of each barrier. As it can be seen in figure 4.10, both B1 and B2 can individually pinch 
off the conduction channel of the device for different barrier gate voltages, although 
B2 exhibits a somewhat lesser degree of influence over the conduction. B3 didn’t 
exhibit a pinch-off characteristic, this could be an indication of some type of gate 
damage, such as a metal discontinuity, or even of the total absence of the gate (see 
images in appendix A). 
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Figure 4.10: Pinch-off characteristic curves measured at T ≈ 4.2 K for a bias voltage of VSD = 
1 mV. A gate voltage of 3 V is applied simultaneously to all gates on the electron operation 
region except the pinch-off barrier. The hole region is grounded.  

 
Last, the source-drain current as a function of the applied barrier voltages of 

B1 and B2 was measured. VSD was kept constant at 1 mV, and the voltage of both lead 
gates, VL1 and VL2, at 3 V. The gates at the hole operation region were set to -1 V in 
order to act as a plunger gate (see discussion in the previous section). The result of 
this scan is shown in figure 4.11. The existence of a single well-defined transition line 
and the inability to form well-defined diamonds in the spectroscopy scan (see 
measurement in figure B.1 in appendix B) indicate that the dot is probably 
unintentional, formed because of local fluctuations on the potential due to the charge 
occupation of trap states in the oxide or the silicon-oxide interface. Furthermore, a 
constant voltage of 3 V was applied to the two plunger gates and the same area was 
mapped again. The resulting image of this scan exhibits the same features as in figure 
4.11 (see measurement in figure B.2 in appendix B), indicating that the plunger gates 
have no influence over the charge occupation of the quantum dot.  
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Figure 4.11: Source-drain current as a function of VB1 and VB2 measured at T ≈ 4.2 K for VSD 
= 1 mV, VL1 = VL2 = 3500 mV, and VHG = -1000 mV. The current is plotted in a logarithmic scale. 
The existence of a single well-defined parallel charge transition diagonal indicates the 
existence of an unintentional quantum dot. 
 
4.3 Hole Transport on Device II 
 
 Similarly, the turn-on characteristic of the hole operation region of device II is 
studied. The gate voltage, VG, applied to all gates is now ramped to negative values, 
while the bias voltage, VSD, remains at 1 mV. The gates in the electron region are 
grounded. When a threshold voltage VTH has been reached, the valence band has 
been pulled above the Fermi energy level and hole energy states on the dot are 
available for occupation (recall the second potential profile in figure 2.5). Analogously 
to the electron transport, this signifies the onset of a flow of holes from the source to 
the drain reservoirs and subsequently the flow of a tunneling current. The turn-on 
behavior of the device is depicted in figure 4.12. The threshold voltage VTH has been 
measured to be -730 mV while the source-drain current reaches a value of 0.9 nA. 
 

Next, the ability of the barrier gates to tune the conduction of holes in the 
source-drain channel below the barriers is assessed. During the leakage test it was 
found the B1 was leaking to B3, suggesting that the two barriers were physically 
connected to each other, a circumstance attributed to issues during the fabrication 
process. Thus, during all tests, the voltage of these two barriers was ramped 
simultaneously. By ramping the applied barrier gate voltage of first B1 and B3, and 
then B2 to a more negative value while concurrently keeping the voltage of all the  
other gates to a value above the threshold voltage determined previously, the “pinch-
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off” curve of each barrier has been obtained. All the gates of the electron operation 
region were now set to a voltage of 1000 mV. A positive voltage applied to these 
gates would effectively utilize them as a plunger gate, as it was demonstrated during 
the prior transport experiments. As it can be seen in figure 4.13, B1 and B3 can pinch 
off the conduction of the channel when we apply a voltage to them simultaneously. 
B2 also exhibits an influence over the conduction of the channel, but to a lesser extent 
(figure 4.14). This can be attributed to a displacement of the gate during fabrication.    
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
Figure 4.12: Turn-on characteristic curve measured at T ≈ 4.2 K for VSD = 1 mV. A negative 
voltage VG is applied simultaneously to all gates on the hole operation region, while the gates 
of the electron operation region are kept grounded.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.13: Pinch-off characteristic curve of both B1 and B3 measured at T ≈ 4.2 K for a bias 
voltage of VSD = 1 mV. Resonances in the measured current due to conductance fluctuations 
can be observed. 
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Figure 4.14: Pinch-off characteristic curve of B2 measured at T ≈ 4.2 K for a bias voltage of 
VSD = 1 mV.  
 

 Finally, the source-drain current as a function of the applied barrier 
voltages of B1 and B3, and B2 was measured for two different voltage values of the 
gates of the electron operation region operating as a plunger gate, VEG = 1200 mV and 
VEG = 2000 mV, respectively. The source-drain current was also measured as function 
of the same applied barrier voltages of B1 and B3, and VEG, while VB2 was kept at zero 
voltage. The results are summarized in figures 4.15 and 4.16. Transition lines 
attributed to a transfer via an intentional quantum dot can be distinguished on all 
scans. The somewhat large number of periodic oscillations is an indication that the 
dot is not due to trap states. From the slope of these lines can be deduced that the 
dot demonstrates a strong capacitive coupling to B1 and B3, and to the electron 
operation region gates and a weak coupling to B2, something expected from the 
pinch-off characteristic curve of this barrier. However, it is not possible to determine 
the exact position of the dot in the gate space, since it can not be concluded whether 
it is B1 or B3 that pinches off the channel at a particular voltage. Another scan, this 
time between B1 and B3, and the plunger gates of the hole operation region was 
performed (measurement van be found in figure B.3 in appendix B). The parallel to x-
axis lines indicate coupling solely to the barrier gates. Hence, it has been 
demonstrated again that the plunger gates have no influence over the charge 
occupation of the quantum dot in this particular device.  

 
Figure 4.17 depicts the measured source-drain current as a function of the 

voltage applied to B2 and B3. The current exhibits the characteristic Coulomb 
oscillations in the many-hole regime. The ability to control the hole occupancy of the 
dot when sweeping the voltage of the barriers is an indication that the device can be 
operated as a single-charge transistor. 
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Figure 4.15: Source-drain current as a function of VB1 and VB3, and the voltage applied to the 
gates at the electron operation region (left) or VB2 (right). Both measured at T ≈ 4.2 K for VSD 
= 1 mV and VL1 = VL2 = -2000 mV. For the scan on the left VB2 = 0, while for the scan on the 
right VEG = 1200 mV. The current is plotted in a logarithmic scale. The abrupt termination of 
the first transition line on the scan on the left can be an indication of an unintentional quantum 
dot, the influence of which was eliminated after applying a larger VEG.   
 
 

 

Figure 4.16: Source-drain current as a function of VB1 and VB3, and the voltage applied to the 
gates at the electron operation region (left) or VB2 (right). Both measured again at T ≈ 4.2 K 
for VSD = 1 mV and VL1 = VL2 = -2000 mV. For the scan on the left VB2 = 0, while for the scan 
on the right VEG = 2000 mV. The current is plotted in a logarithmic scale. 
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Figure 4.17: Coulomb peaks in the source-drain current measured at T ≈ 4.2 K for VB2 = 160 
mV, VSD = 1 mV, VL1 = VL2 = -2000 mV, and VEG = 2000 mV. Similar to the electron transport 
case discussed earlier, the Coulomb peaks show different heights and are irregularly spaced. 
Inset: the dashed line indicates the area of the barrier versus barrier scan where the Coulomb 
peaks were measured. Notice the linear current scale. 

 
To conclude, the viability of the design of device II was showcased by the 

formation of an intentional quantum dot on the hole operation region at T ≈ 4.2 K. The 
weak coupling to the second barrier, the incapability to influence the potential profile 
using the plunger gates, and the inability to form a double quantum dot due to the 
leakage between the first and third barrier, didn't allow us to further proceed with 
transport experiments. 
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5. CONCLUSION & OUTLOOK 
  

In this project, we have successfully obtained quantum dots by electrostatic 
gating of a carrier gas in silicon. These dots were operated as single-charge 
transistors via multiple gates. In total, two different device architectures were tested. 
We have reported single-charge tunneling in a cryogenic environment for both 
electrons and holes.  
 
 For device I, we have demonstrated that is possible to tune the electron 
transport at 4.2 K and 50 mK via its gates. Single and double intentional quantum 
dots were formed and its electron occupation was tuned down to the few-electron 
regime. Additionally, the ability of the device to operate as a charge sensor has been 
demonstrated. The hole operation region of this device was expected to show similar 
results, but we were unable to continue with hole-transport experiments since the 
device failed during testing. 
 

A new device design was realized, that of device II, to obtain better control 
over the formation of the quantum dots and reach the single-charge regime in the dot 
occupancy. The capabilities of this design were demonstrated by the formation of an 
intentional quantum dot in the hole operation region. Alas, this particular device 
sample didn’t function as expected, something that disallow us to further proceed 
with transport experiments. Multiple devices from the same sample chip were tested. 
Leakages between barriers were detected on various devices and a number of them 
didn't demonstrate a turn-on behavior. Nevertheless, in the past, experiments 
performed on similar device architectures achieved the formation of double quantum 
dots and demonstrated the ability to tune their electron occupation [35]. We therefore 
conclude that the design of device II has the potential to control single electrons and 
holes in silicon, but additional work is required during the device fabrication process 
to ensure their reliable operation during transport experiments.  
 

There are numerous interesting phenomena that can be investigated in 
quantum dots after a reliable device has been fabricated. An example is using the 
Pauli spin blockade effect to detect and control the spin states of single spin carriers. 
This can be done, for example, by forming a double quantum dot and then tuning its 
potential such that successive electron transport requires a stage where two 
electrons must occupy the same dot. The electron transport then becomes spin-
dependent [10]. Controlling the spins state of single carriers is a basic requirement 
for quantum information processing.   
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  APPENDIX A 
 
Multiple Scanning electron microscope (SEM) images of device II are attached 

bellow. These images demonstrate issues during the fabrication process, such as 
gate damage, gate metal discontinuity, or even total absence of a gate electrode. For 
the design of this structure refer to figure 3.1 B.	
	

	
Figure A.1: Absence of part of (left) or the entire (right) barrier 1 electrode on the electron 
operation region. 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure A.2: Absence of part of barrier 3 electrode on the hole operation region. 	
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Figure A.3: Gate metal discontinuity and gate damage on multiple electrodes.	
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  APPENDIX B 
 

Additional measurements from the electron and hole operation region of device II.  
	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.1: Bias spectroscopy performed on the unintentional dot at the electron operation 
region of device II for T ≈ 4.2 K and VB2 = 600 mV, VL1 = VL2 = 3000 mV, and VHG = -1000 mV. 
A single, non-well resolved Coulomb diamond can be distinguished.  
	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.2: Source-drain current of the electron operation region of device II as a function of 
VB1 and VB2 measured at T ≈ 4.2 K for VSD = 1 mV, VL1 = VL2 = 3500 mV, VHG = -1000 mV and 
VP1 = VP2 = 3000 mV. 
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Figure B.3: Source-drain current of the hole operation region of device II as a function of VB1 
and VB3, and the voltage applied to the plunger gates of the electron operation region. 
Measured at T ≈ 4.2 K for VSD = 1 mV and VL1 = VL2 = -2000 mV, VEG = 2000 mV and VB2 = 0. 
The parallel to x-axis transition lines indicate coupling only to the barrier gates. 
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