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Abstract 
One of the main issues limiting the range resolution of linear frequency-modulated continuous-wave 

(FMCW) radars is nonlinearity of frequency sweep, which results in degradation of contrast and 

range resolution, especially at long ranges. Two novel, slightly different, methods to correct for 

nonlinearities in the frequency sweep by digital post-processing of the deramped signal were 

introduced independently by Burgos-Garcia et al. (Burgos-Garcia, Castillo et al. 2003) and Meta et al. 

(Meta, Hoogeboom et al. 2006). In these publications, however, no formal proof of the techniques 

was given, and no limitations were described. In this thesis, we prove that the algorithm of Meta is 

exact for temporally infinite chirps, and remains valid for finite chirps with large time-bandwidth 

products provided the maximum frequency component of the phase error function is sufficiently 

low. It is also shown that the algorithm of Meta reduces to that of Burgos-Garcia in this limit. A 

digital implementation of both methods described. We also propose a novel method to measure the 

systematic phase errors which are required as input to the compensation algorithm. 
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1 Introduction 
Frequency-modulated continuous-wave (FMCW) radars provide high range measurement precision 

and high range resolution at moderate hardware expense (Griffiths 1990; Stove 1992). Moreover, 

the spreading of the transmitted power over a large bandwidth provides makes FMCW radar difficult 

to detect by intercept receivers, providing it with stealth in military applications. In the last two 

decades, Thales Netherlands has developed a family of silent radars for air surveillance, coastal 

surveillance, navigation, and ground surveillance based on FMCW technology. 

In FMCW radar, the range to the target is measured by systematically varying the frequency of a 

transmitted radio frequency (RF) signal. Typically, the transmitted frequency is made to vary linearly 

with time; for example, a sawtooth or triangular frequency sweep is implemented. The linear 

variation of frequency with time is often referred to as a chirp, frequency sweep, or frequency ramp, 

and is associated with a quadratically increasing phase (see Section 2.1.1). Figure 1 shows a time-

frequency plot of a linear sawtooth FMCW transmit signal and its corresponding amplitude. 

 

Figure 1 (a) Time-frequency plot of a FMCW transmit signal with carrier frequency 𝒇𝒄, sweep period 𝑻, and bandwidth1 
𝑩. Typical parameters are 𝒇𝒄 = 10 GHz, 𝑻 = 500 μs, and 𝑩 = 50 MHz. (b) Time-amplitude plot of a transmitted FMCW 
signal (not with the parameters listed above).  

                                                             
1 The term ‘bandwidth’ is often used in this context to refer to the total excursion of the instantaneous 
frequency during one the sweep period. The FMCW signal is not bandlimited in the mathematical sense of the 
word; however, for large time-bandwidth products it is approximately bandlimited. 
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The frequency sweep effectively places a “time stamp” on the transmitted signal at every instant, 

and the frequency difference between the transmitted signal and the signal returned from the target 

(i.e. the reflected or received signal) can be used to provide a measurement of the target range, as 

illustrated in Figure 2. This process is called dechirping or deramping, and the frequency of the 

dechirped signal is called the beat or intermediate frequency (IF) signal. 

 

Figure 2 Principle of FMCW range measurement. (a) Time-frequency plots of the transmitted chirp (solid line) and the 
echoes from two ‘point’ targets (dashed lines), delayed by their respective two-way propagation delays to the target 
and back. (b) Time-frequency plots of the frequency difference, or ‘beat frequency’, between the transmitted and 
received chirps. The beat frequency is observed during portion of the sweep period in which the transmitted and 
received signals overlap. 

As seen from Figure 2, the transit time to the target and back and the target beat frequency are 

directly proportional, and their proportionality constant is equal to the chirp rate (i.e., the ratio 

between the bandwidth and the sweep period) of the transmitted chirp. Hence, the target transit 

time – and thus, the target range – can be inferred by a measurement of the beat frequency. 

The beat frequency is generated in the receiver of the FMCW radar by a mixer2 or ‘multiplier’ as 

illustrated in Figure 3. The local oscillator (LO) port of the mixer is fed by a portion of the transmit 

                                                             
2 A mixer is a three-port device that uses a nonlinear or time-varying element to achieve frequency conversion 
(Pozar 2005). In its down-conversion configuration, it has two inputs, the radio frequency (RF) signal and the 
local oscillator (LO) signal. The output, or intermediate frequency (IF) signal, of an idealized mixer is given by 
the product of RF and LO signals. 
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signal3, while the radio frequency (RF) port is fed by the target echo signal from the receive antenna. 

As explained in more detail in Section 2.1.3, the output of the mixer, called the intermediate 

frequency (IF) signal, has a phase which (after low-pass filtering) is equal to the difference of the 

phases of the LO and RF input signals. Hence, its frequency is the ‘beat’ frequency described above. 

The beat signal is passed to a spectrum analyzer, which is a bank of filters used to resolve the target 

returns into range bins. Typically, the spectrum analyzer is implemented as an analog-to-digital 

converter (ADC) followed by a processor based on the fast Fourier transform (FFT). 

 

Figure 3 Simplified block diagram of a homodyne FMCW radar transceiver. A chirp generator generates a linear 
sawtooth FMCW signal (left, upper inset) which is radiated out to the target scene by a transmit antenna. A portion of 
the transmitted signal is coupled to the local oscillator (LO) port of a mixer. The target echo received by a separate 
receive antenna is fed to the radio frequency (RF) port of the mixer. The mixer output at intermediate frequency (IF) is 
fed to a spectrum analyzer. The output of the spectrum analyzer for a single target is a ‘sinc’ function centered at the 
target beat frequency (left, lower inset).  

The performance of linear FMCW radar depends critically on the linearity of the transmitted signal. 

Deviation of the instantaneous frequency of a FMCW chirp from linearity – or, equivalently, 

deviation of its phase from a quadratic – causes ‘smearing’ of the target beat signal in frequency, 

resulting in the appearance of spurious sidelobes or “ghost” targets and degradation of the signal-to-

noise ratio (SNR). The effect is usually worse at larger range, where phases of the transmitted and 

received signals are more de-correlated. This effect is illustrated in Figure 4. 

 

                                                             
3
 This is the homodyne receiver architecture, in which the local oscillator signal is provided by the transmitter 

itself. Alternatively, the local oscillator can be generated separately and triggered at an appropriate instant; 
this is commonly referred to as stretch processing (Caputi 1971). Stretch processing has the disadvantage of 
the additional complexity of another oscillator. Receiver noise effects will also be greater because of the 
independence of the phase noise of the separate oscillators (Piper 1993). 
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Figure 4 FMCW range measurement with non-linear chirps. Due to the nonlinearity of the transmitted chirp, the target 
beat signals are ‘spread’ or ‘smeared’ in frequency. The degradation worsens with increasing range. 

A number of different approaches have thus been adopted over the years with the aim of improving 

the frequency sweep linearity of FMCW radar systems. These can be categorized in ‘hardware’ 

techniques, which attempt to generate highly linear chirps, and ‘software’ techniques, which use 

signal processing to compensate the effects of the non-linearity a posteriori. Although our focus in 

this report is on the latter, it is instructive to discuss shortly the former. 

1.1 ‘Hardware’ sweep linearization 
Firstly, attempts have been made to produce chirp generators that are inherently linear. One way is 

to apply a linear sawtooth current signal to a Yttrium Iron Garnet (YIG)-tuned oscillator, which is a 

current-controlled oscillator (CCO) with an inherently linear tuning characteristic. This scheme is 

representative of the world’s first mass-produced FMCW navigation radar: the Pilot FMCW radar, 

developed by Philips Research Laboratories in 1988 and marketed by its subsidiaries PEAB in Sweden 

and Hollandse Signaalapparaten in the Netherlands (Pace 2009). The typically attainable sweep 

linearity of 0.1% still limits the obtainable range resolution in FMCW applications, however, and the 

switching speed is low, of the order of hundreds of microseconds. Finally, with this technique the 

phase varies slightly from sweep to sweep; this limits the performance of signal processing methods 

which are based on the coherent operation of the FMCW radar, such as Doppler processing (Barrick 

1973) and coherent integration (Beasley 2009).  

In FMCW transmitters employing voltage-controlled oscillators (VCOs), the most common 

‘hardware’ method used for frequency sweep linearization is closed loop feedback. The closed loop 
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feedback technique has been implemented in a variety of ways, but they are all based on creating an 

artificial target which generates a “beat” frequency when mixed with a reference signal. In a 

perfectly linearized FMCW radar a fixed range target would produce a constant “beat” frequency. 

Therefore, in a practical FMCW radar, if the “beat” frequency drifts from the desired constant 

frequency value, an error signal can be generated to fine-tune the VCO to maintain a constant 

“beat” frequency. This feedback technique can be implemented at the final RF frequency of the 

radar or at a lower, down-converted frequency. Waveforms having sweep linearity4 better than 

0.05% have been demonstrated (Fuchs, Ward et al. 1996) but, unless the system is very well 

designed, the technique can be prone to instabilities and is typically limited in bandwidth to about 

600 MHz. Also, because the VCO is modulated directly, the phase noise of the resultant transmit 

signal can be compromised (Beasley 2009). Finally, the use of sweep linearization precludes 

coherent operation of the radar, because the feedback loop “does its own thing” during each sweep 

period, so that the phase in each sweep is independent from that in the other sweeps. 

The use of a direct digital synthesizer (DDS) offers quite a cost-effective solution, however the 

transmitted bandwidth is still limited compared to the one obtained by directly sweeping a VCO. 

Moreover, nonlinearity can still be caused by group delay in subsequent filters (Perez-Martinez, 

Burgos-Garcia et al. 2001). 

Method References Advantages Disadvantages 

Free-running YIG 
oscillator 

PILOT FMCW radar 
(Beasley, Leonard et 
al. 2010) 

Low phase noise, 
sweep linearity of 
0.1% attainable 

Slow modulation speed, 
power-hungry, drifts with 
temperature, phase varies 
slightly from sweep to 
sweep 

VCO with closed-loop 
feedback 

(Fuchs, Ward et al. 
1996) 

Sweep linearity better 
than 0.05% 

Prone to instabilities, 
typically limited in 
bandwidth to about 600 
MHz, precludes coherent 
operation  

Direct digital synthesis 
(DDS) 

(Goldberg 2006) Linear chirp generated 
to digital precision 

Limited bandwidth, 
requires upconversion, 
group delay introduced by 
filtering further down the 
transmission chain 

Table 1 Techniques for generating linear FMCW chirps. 

Table 1 summarizes techniques for generating linear chirps with their advantages and disadvantages. 

In short, each of the ‘hardware’ techniques has its limitations.  

1.2 ‘Software’ linearization techniques 
As an interesting alternative to these hardware techniques, a software-based linearization method 

using a transmission measurement through a reference delay line has been reported in both FMCW 

radar (Fuchs, Ward et al. 1996; Vossiek, Kerssenbrock et al. 1997) and, more recently, in optical 

frequency-domain reflectometers (OFDR) (Ahn, Lee et al. 2005; Saperstein, Alic et al. 2007). These 

methods involve resampling the beat signal at so-called “constant phase intervals” so that it signal 

                                                             
4
 Sweep linearity is defined as the maximum deviation in frequency from a linear chirp as a percentage of the 

swept bandwidth. 
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has linear behavior. The resampling can be achieved both by hardware or software (Nalezinski, 

Vossiek et al. 1997). A drawback of this technique, however, it that it assumes that the phase error 

can be linearized on the target delay interval, which limits its validity to short range intervals (Meta, 

Hoogeboom et al. 2007). 

Relatively recently, Burgos-Garcia et al. (Burgos-Garcia, Castillo et al. 2003) and Meta et al. (Meta, 

Hoogeboom et al. 2007) have reported on novel processing methods which employ a “residual video 

phase” (RVP) or “deskew” filter. These methods, which operate directly on the deramped data, 

correct the nonlinearity effects for the whole range profile at once, and are based only on the 

assumption that the transmitted chirp has a large time-bandwidth product. 

1.3 This thesis 
The algorithms proposed by Burgos-Garcia et al. (Burgos-Garcia, Castillo et al. 2003) and Meta et al. 

(Meta, Hoogeboom et al. 2007) are actually slightly different. Further, they are presented based on 

heuristic reasoning; no formal proof is given, and no limitations of the algorithm are mentioned.  

This thesis makes three main contributions to knowledge: 

(1) We give a proof of both Meta’s algorithm, which is valid for wideband IF signals, and Burgos-

Garcia’s algorithm, which is valid for narrowband IF signals. It is shown that the algorithm of 

Meta reduces to that of Burgos-Garcia in the special case that the error frequency 

components are sufficiently low. Further, our analytical results indicate that the original 

algorithm as presented by Meta (Meta, Hoogeboom et al. 2006; Meta, Hoogeboom et al. 

2007) contains a sign error. Finally, we discuss issues which arise when applying the 

algorithm to time-limited chirps, which have not been discussed previously. 

 

(2) We implement both phase error compensation algorithms in MATLAB and demonstrate 

their effectiveness. (In (Burgos-Garcia, Castillo et al. 2003) and (Meta, Hoogeboom et al. 

2007), no detail was given on the digital implementation of the algorithm). The results of our 

simulation are inconclusive, however, as to whether there is a sign error in Meta’s derivation 

or not. Further improvements to the simulation algorithm, which involve taking into account 

the “edge effects” due to the time-limited nature of the chirps, are proposed. 

 

(3) We propose a novel method for determining the phase errors using measurements from 

targets at several different reference delays, based on the synthesis problem of a function 

from its ambiguity function as discussed by Wilcox (Wilcox 1991). The novel method could 

have advantages over known methods, which use just a single reference delay. 

The organization of this thesis is as follows. In Chapter 2, we discuss the theory of operation of 

FMCW radar in mathematical detail, and review how phase errors affect their operation. In Chapter 

3, we derive both Meta’s and Burgos-Garcia’s variations of the phase error compensation algorithm 

analytically, and address the issues mentioned above in point (1). In Chapter 3, we perform a 

simulation of the algorithms and demonstrate their effectiveness. In Chapter 5, we discuss the 

estimation of phase errors, which are required as input for the algorithm. Finally, in Chapter 6, we 

wrap up with our conclusions and discussion. 
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2 Theory of operation of FMCW radar 
This chapter presents a tutorial review of the basic principles of FMCW (frequency modulated 

continuous wave) radars. The material to follow is on homodyne FMCW radar, i.e., CW radar in 

which a microwave oscillator is frequency-modulated and serves as both transmitter and local 

oscillator (Skolnik 2008). The effect of frequency sweep nonlinearity is also discussed. 

An outline of this chapter is as follows. In Section 2.1, we present an analytical model of the 

generation of the target range profile by a FMCW transmitting ideal linear sawtooth chirps. In 

Section 2.2, we discuss how its performance is affected by sinusoidal frequency sweep 

nonlinearities. 

2.1 Analytical model of a FMCW radar 
In this section, we explain the principle FMCW range measurement in more mathematical detail. In 

Section 2.1.1, we formulate an expression for the transmitted signal. In Section 2.1.2, we construct a 

model for the received signal. In Section 2.1.3, we explain the generation of the ‘dechirped’, 

‘deramped’, or ‘beat’ signal. Of particular importance for the algorithm to be described is the use of 

‘coherent detection’ to obtain complex samples of this signal. Finally, in Section 2.1.4, we discuss the 

spectrum of the beat signal or ‘video signal’, which is used to visualize the target scene. 

2.1.1 Transmitted signal  

We select a 100% duty factor signal whose frequency sweeps upward, linearly, over one sweep 

repetition interval 𝑇. Using a complex number representation (Jakowatz, Wahl et al. 1996), the 

transmitted signal 𝑠 𝑇𝑋  with unity amplitude can be expressed as the real part of 

 𝑠 𝑇𝑋 𝑡 =  𝑠𝑇𝑋 𝑡 − 𝑛𝑇 

∞

𝑛=−∞

, (2.1) 

where 𝑠𝑇𝑋 𝑡  is the linear chirp pulse 

 𝑠𝑇𝑋 𝑡 = rect  
𝑡

𝑇
 exp  𝑗2𝜋  𝑓𝑐𝑡 +

1

2
𝛼𝑡2  ≡ rect  

𝑡

𝑇
 exp 𝑗𝜙𝑇𝑋 𝑡  . (2.2) 

Here 𝑡 represents the time variable, 𝑗 =  −1 the imaginary unit, 𝑓𝑐  the chirp’s center frequency, 

and 𝛼 its frequency sweep rate, and rect ∙  is the rectangular function given by 

 rect 𝑥 =

 
 
 

 
 1,  𝑥 <

1

2
,

1

2
,  𝑥 =

1

2
,

0,  𝑥 >
1

2
.

  (2.3) 

We assume here that the transmit signal is periodic, and hence phase-coherent from one sweep to 

the next5.  

                                                             
5 By sweep-to-sweep coherence, we mean that there is a fixed relationship between the phase in one sweep 
and the next, i.e., 𝜙𝑇𝑋  𝑡 + 𝑇 − 𝜙𝑇𝑋  𝑡 = constant. FMCW radars having this property are called coherent, 
and have several advantages. For example, coherent systems allow Doppler processing (Barrick 1973) to 
determine information on the velocity of detected targets. Furthermore, coherent integration over 𝑁 
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Since the instantaneous frequency, 𝑓𝑇𝑋 𝑡 , is the derivative of the phase (Carson 1922), we have 

 𝑓𝑇𝑋 𝑡 =
1

2𝜋

𝑑𝜙𝑇𝑋

𝑑𝑡
= 𝑓𝑐 + 𝛼𝑡. (2.4) 

Thus it can be seen that the frequency excursion over one sweep repetition interval is 𝛼𝑇 = 𝐵, the 

chirp bandwidth. The instantaneous frequency of the transmit signal is plotted in Figure 5(a) as the 

solid line. 

 

Figure 5 Time-frequency plots of (a) the transmitted (solid line) and received (dashed line) signals, and (b) the 
intermediate frequency (IF) signal. The IF alternates between two distinct tones: 𝒇𝒃𝟏 = 𝜶𝝉 for intervals of duration 
𝑻 − 𝝉 and 𝒇𝒃𝟐 = −𝜶 𝑻− 𝝉  for intervals of duration 𝝉, where 𝜶 = 𝑩/𝑻 is the frequency sweep rate. Typical chirp 
parameters for an FMCW navigation radar are 𝒇𝒄 = 10 GHz, 𝑩 = 50 MHz, and 𝑻 = 500 μs. 

2.1.2 Received signal 

After transmission of the radar signal through the transmit antenna, the radar waveform propagates 

to the target scene, and part of the energy is scattered back to the radar’s receive antenna. In the 

following analytical development, we assume that the target scene consists of a single stationary 

‘point’ target such that the echo signal 𝑠 𝑅𝑋  𝑡  is simply a delayed replica of the transmit signal: 

 𝑠 𝑅𝑋  𝑡 = 𝑠 𝑇𝑋 𝑡 − 𝜏 , (2.5) 

where 𝜏 is the two-way propagation delay given by 

                                                                                                                                                                                              
frequency sweeps improves the signal-to-noise ratio (SNR) by a factor of 𝑁. This should be contrasted with the 

SNR increase of  𝑁 typically obtained using incoherent integration of 𝑁 frequency sweeps (Beasley 2009).  

𝜏 

time 
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 𝜏 =
2𝑅

𝑐
, (2.6) 

where 𝑅 is the range of the stationary ‘point’ target, and 𝑐 is the propagation velocity. 

If we assume that the radar receiver is a linear system6, then the range profile obtained from a 

general target scene can be obtained by superposition of the range profiles of the individual targets. 

Thus, the modeling a ‘point’ target is merely a convenient way to separate algorithm and hardware 

effects from target and interference phenomenology.  

To obtain an expression for the received signal corresponding to a single sweep of the transmitted 

signal, we insert (2.2) into (2.5) to find 

 𝑠𝑅𝑋  𝑡 = rect  
𝑡 − 𝜏

𝑇
 exp  𝑗2𝜋  𝑓𝑐 𝑡 − 𝜏 +

1

2
𝛼 𝑡 − 𝜏 2  ≡ rect  

𝑡 − 𝜏

𝑇
 exp 𝑗𝜙𝑅𝑋  𝑡  . (2.7) 

The instantaneous frequency of the periodic repetition of 𝑠𝑅𝑋 , 𝑠 𝑅𝑋 , is plotted in Figure 5(a) as the 

dashed line. 

2.1.3 Dechirped signal 

As explained in the Introduction, upon reception the received signal is correlated with the 

transmitted signal through a mixing process. In this section, we explain in more detail the mixing 

process and subsequent digitization (Section 2.1.3.1) and the retrieval of phase information by a 

method called in-phase (𝐼) / quadrature (𝑄) demodulation (Section 2.1.3.2).  

2.1.3.1 Mixing process 

Now after bandpass filtering to reject wideband noise and radio frequency (RF) amplification, the 

received signal is ‘dechirped’ or ‘deramped’ by ‘mixing’ or ‘beating’ it together with a replica of the 

transmitted signal in a mixer as illustrated in Figure 6. The resulting signal will contain a product 

term 𝐺 cos 𝜙𝑇𝑋 cos 𝜙𝑅𝑋 , where 𝐺 is a constant accounting for the voltage conversion loss of the 

mixer, and other higher-order products. In general, only the lowest-order product will have 

significant amplitude. The product may be expanded as a sum, namely 

𝐺

2
 cos 𝜙𝑇𝑋 − 𝜙𝑅𝑋  + cos 𝜙𝑇𝑋 + 𝜙𝑅𝑋   . 

The phase-sum term represents an oscillation at twice the carrier frequency, which is generally 

filtered out either actively, or more usually in radar systems because it is beyond the cut-off 

frequency of the mixer and subsequent receiver components (Brooker 2005)7. We thus obtain the 

                                                             
6 In practice, the FMCW receiver is not an ideally linear system; for example, nonlinear behavior of the mixer 
and high-gain pre-amplifier which follows the receive antenna causes harmonic distortion and intermodulation 
distortion (IMD). These are separate hardware issues however, however; here, we are concerned with errors 
arising from nonlinearity of the frequency sweep. 
7 FMCW radars sometimes employ a so-called image reject mixer (IRM) instead of a conventional one to 

generate the IF signal. The FMCW radar using a conventional mixer suffers a 3 dB loss in signal-to-noise ratio 

(SNR) due to the addition of noise at the RF image frequency to the RF noise when both are down-converted 

to near-zero IF. This effect cannot easily be removed by RF filtering because of the closeness of the RF and 

image frequencies, but can be removed if an IRM is used (Willis and Griffiths 2007).  
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function 
𝐺

2
cos 𝜙𝑇𝑋 − 𝜙𝑅𝑋  , which is called the ‘dechirped’, ‘deramped’, ‘beat’, or ‘intermediate 

frequency’ (IF) signal. The IF signal with unity amplitude (we do not consider amplitude variations in 

this derivation) is thus 

 cos 𝜙𝐼𝐹 ≡ cos 𝜙𝑇𝑋 − 𝜙𝑅𝑋  . (2.8) 

As shown in Figure 6, the IF signal is sampled in by an analog-to-digital (A/D) converter after low-

pass filtering to prevent wideband noise from folding into range of interest of target beat 

frequencies. 

 

Figure 6 Simplified block diagram of a homodyne FMCW transceiver. The received (RX) signal is fed to the radio 
frequency (RF) port of a mixer, while a portion of the transmit (TX) signal is coupled to the local oscillator (LO) port. The 
mixer output is low-pass filtered to obtain the desired intermediate frequency (IF) signal, which is digitized by an analog-
to-digital (A/D) converter at a rate 𝒇𝒔 of at least twice the maximum beat frequency 𝒇𝒃,𝒎𝒂𝒙. 

A complex representation of the IF signal resulting from a single pulse of the transmitted signal is 

obtained by Inserting (2.2) and (2.7) into (2.8), a single pulse of the IF signal can be expressed as the 

real part of 

𝑠𝐼𝐹 𝑡 ≡ 𝑠𝑇𝑋 𝑡 𝑠𝑅𝑋
∗  𝑡  

= rect  
𝑡

𝑇
 rect  

𝑡 − 𝜏

𝑇
 exp  𝑗2𝜋  𝑓𝑐𝑡 +

1

2
𝛼𝑡2 − 𝑓𝑐 𝑡 − 𝜏 −

1

2
𝛼 𝑡 − 𝜏 2   

or, simplifying, 

 𝑠𝐼𝐹 𝑡 = 𝑟 𝑡 exp  𝑗2𝜋  𝑓𝑐𝜏 + 𝛼𝜏𝑡 −
1

2
𝛼𝜏2  , (2.9) 

where the beat signal envelope 𝑟 𝑡  is given by 

 𝑟 𝑡 =  
1, −𝑇/2 + 𝜏 < 𝑡 < 𝑇/2,
0, otherwise.

  (2.10) 

During the remaining part of the sweep period, on the interval  −𝑇 2 , −𝑇 2 + 𝜏 , the received 

signal corresponds to the transmitted signal during the previous sweep. Therefore, the mixer output 

will be offset by the sweep width, 𝐵, as illustrated in Figure 5(b). 𝐵 is much greater than the signal 

frequency and the mixer output for −𝑇 2 < 𝑡 < −𝑇 2 + 𝜏 will therefore be filtered and rejected. 

Hence, for −𝑇 2 < 𝑡 < −𝑇 2 + 𝜏, the IF signal will be a transient pulse. If a digital data system is 

used to observe the mixer output, the sampling can be delayed at the start of each sweep so the 

retrace effects of the local oscillator returning to 𝑓𝑐 − 𝐵 2  are simply omitted (Strauch 1976). 

  A/D 

mixer 
low-pass 

filter 
RF 

LO 

TX out 

RX in 

from transmitter 
directional 

coupler 

IF 

𝑓𝑠 ≥ 2𝑓𝑏 ,𝑚𝑎𝑥  
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Let us consider the  three terms that comprise the phase of the IF signal (2.9): 

 𝑓𝑐𝜏 is the total number of cycles of 𝑓𝑐  that occur during the round trip propagation time for 

the  target8.  

 𝛼𝜏𝑡 is a term increasing linearly with the time 𝑡, and represents the target beat frequency 

𝑓𝑏 = 𝛼𝜏. 

 −𝛼𝜏2/2 is a range-dependent phase term. In the synthetic aperture radar (SAR) literature, it 

is called the residual video phase (Carrara, Goodman et al. 1995). As we will see, this term 

plays a key role in the phase compensation algorithm. 

The third term, the residual video phase, will prove to play a crucial role in the phase error 

compensation algorithm. 

2.1.3.2 Retrieval of in-phase and quadrature components 

The mixing process described above produces a real voltage signal  

 ℛℯ 𝑠𝐼𝐹 = cos 𝜙𝐼𝐹 , (2.11) 

where 𝑠𝐼𝐹  is given by (2.9). After analog-to-digital conversion as described in Section 2.1.4, this 

appears digitally as an array of real numbers. Ideally, however, we would like to obtain the complex 

representation 𝑠𝐼𝐹  itself, which we refer to as the baseband signal. Knowledge of the baseband 

signal has a number of advantages: 

 It allows positive and negative frequencies to be recovered separately. As pointed out by 

Gurgel and Schlick (Gurgel and Schlick 2009), in the case of a linear chirp with increasing 

frequency (a positive chirp), the beat frequency defined by (2.9) will always be positive. 

Therefore, a 3 dB gain in signal-to-noise ratio (SNR) can be obtained by avoiding the aliasing 

noise from the “unused” negative side of the spectrum. 

 By converting the IF signal into baseband form, a simple multiplication of each sample with 

the appropriate complex number achieves any desired phase adjustment of that sample. 

The latter point is an essential part of the phase compensation algorithm to be described in the 

following chapter. Thus, it is desirable to obtain the beat signal in complex form, but how is this 

done? 

Mathematically, there are actually two ways of obtaining a complex representation of a signal from 

a real one (Boashash 1992): 

1) The “real plus imaginary quadrature” representation, in which the cosine in (2.11) is 

replaced by a complex exponential. The real and imaginary parts of this complex exponential 

are called the in-phase (𝐼) and quadrature (Q) components, respectively: 

 𝐼 = ℛℯ 𝑠𝐼𝐹 = cos 𝜙𝐼𝐹 , 𝑄 = ℐ𝓂 𝑠𝐼𝐹 = sin𝜙𝐼𝐹 . (2.12) 

                                                             
8 Incidentally, for coherent FMCW radar applications such as Doppler processing and coherent integration, this 
term should ideally be constant for all processed sweeps. However, because this term typically is very large 
compared to the other terms, this places very stringent requirements on the frequency stability of the chirp 
generator (Strauch 1976). 
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2) The analytic signal representation, in which the negative frequency components of (2.11) 

are discarded and the positive ones multiplied by a factor two. (This is equivalent to adding 

to (2.11) an imaginary part equal to its Hilbert transform).  

As shown by Nuttall (Nuttall and Bedrosian 1966), the two approaches are only equivalent if the 

“real plus imaginary quadrature” representation is spectrally one-sided. In our case, it is “real plus 

imaginary quadrature” representation that corresponds exactly with the desired baseband signal. 

The conversion of real signals to a baseband representation, 𝐼 + 𝑗𝑄, is performed by a so-called I/Q 

demodulator, also known as a quadrature detector, synchronous detector, or coherent detector 

(Skolnik 2008). Coherent detection can be performed both before and after digitization. 

Figure 7 illustrates the classical analog implementation of an I/Q demodulator. The received signal 

cos 𝜙𝑅𝑋  is split and fed to a pair of mixers or analog multipliers. The transmit signal cos𝜙𝑇𝑋 , 

obtained from the transmit chain by a directional coupler, is input to a quadrature splitter, also 

known as a quadrature hybrid or 90° hybrid (Pozar 2005). Ideally, this results in two outputs: one 

proportional to cos 𝜙𝑇𝑋  in phase with the input, and the other proportional to sin 𝜙𝑇𝑋   at phase 

quadrature to the input. These outputs are fed to LO ports of two mixers and mixed (multiplied) with 

the received signal, cos 𝜙𝑅𝑋 . As in Section 2.1.3.1, the mixer products can be expanded into phase-

sum and phase-difference terms via the trigonometric relations 

cos 𝜙𝑅𝑋  cos 𝜙𝑇𝑋 =
1

2
 cos 𝜙𝑇𝑋 + 𝜙𝑅𝑋  + cos 𝜙𝑇𝑋 − 𝜙𝑅𝑋    

and 

cos 𝜙𝑅𝑋  sin 𝜙𝑇𝑋 =
1

2
 sin 𝜙𝑇𝑋 + 𝜙𝑅𝑋  + sin 𝜙𝑇𝑋 − 𝜙𝑅𝑋   . 

The sum-frequency components are at approximately twice the RF frequency and easily filtered. 

What remains are the terms cos 𝜙𝑇𝑋 − 𝜙𝑅𝑋  = cos 𝜙𝐼𝐹  and sin 𝜙𝑇𝑋 − 𝜙𝑅𝑋  = sin 𝜙𝐼𝐹 . These 

are exactly the in-phase (𝐼) and quadrature (𝑄) components of the IF signal, respectively, and can be 

combined to obtain the full baseband signal 𝑠𝐼𝐹 = exp 𝑗𝜙𝐼𝐹  as desired. 
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Figure 7 Simplified block diagram of an analog I/Q demodulator for a homodyne FMCW system. The received signal is 
applied to a 3-dB power splitter, the two outputs of which are applied to the RF ports of (double-balanced) mixers. The 
local oscillator (LO) ports are driven by two samples of the transmit signal, the two components being in phase 
quadrature. The resulting outputs from the mixers are low-pass filtered and digitized by analog-to-digital (A/D) 
converters to obtain the in-phase (𝑰) and quadrature (𝑸) components representative of the received vector. 

Although the classical analog I/Q demodulator provides a clear example of how baseband 

conversion can be implemented, in most modern systems I/Q demodulation is performed after 

digitization. This has the advantage of avoiding so-called “I/Q mismatch” problems which hamper 

the analog implementation (Pun, Franca et al. 2003). The flipside of this, however, is that digital I/Q 

demodulators require a rate that is twice that of each of the A/D converters in Figure 7; in effect, 

complex sampling requires real sampling at twice the rate. Given the high sample rates obtainable 

with modern A/D converters, however, this is usually not a problem. 

There are actually several techniques, referred to as “direct sampling digital coherent detection 

techniques” (Pun, Franca et al. 2003), for performing baseband conversion after digitization, which 

were developed in the early 1980s (Rice and Wu 1982; Waters and Jarrett 1982; Rader 1984). A 

detailed discussion of these techniques is beyond the scope of this thesis; we will simply use the 

result that the signal 𝑠𝐼𝐹  given by (2.9) can be obtained in baseband form. 

2.1.4 Video signal 

After quadrature sampling of the IF signal 𝑠𝐼𝐹 , a processor based on the fast Fourier transform (FFT) 

resolves the beat frequency spectrum into frequency and range bins. Following Stove (Stove 1992), 

we refer to the beat signal after frequency analysis as the video signal. 

As explained in Section 2.1.3, the portion of the IF signal that is within the receiver bandwidth is a 

pulse train with pulse length 𝑇 − 𝜏 and pulse repetition interval 𝑇. Since the IF signal is periodic with 

period 𝑇, its target range information can be obtained from the Fourier transform 𝑆𝐼𝐹  of a single 

pulse: 
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 𝑆𝐼𝐹 𝑓 =  𝑠𝐼𝐹 𝑡 exp −𝑗2𝜋𝑓𝑡 𝑑𝑡
∞

−∞

, (2.13) 

where 𝑠𝐼𝐹 𝑡  is given by (2.9). Here and throughout this thesis, functions represented by uppercase 

letters are Fourier transforms of the functions represented by the corresponding lowercase letters. 

Substituting (2.9) into (2.13), evaluating the Fourier integral, and taking its absolute value, we find  

  𝑆𝐼𝐹 𝑓  =  𝑇 − 𝜏 sinc  𝑇 − 𝜏  𝑓 − 𝛼𝜏  , (2.14) 

where sinc ∙  is the normalized “sinc” function defined as 

sinc 𝑥 ≡
sin 𝜋𝑥 

𝜋𝑥
. 

An illustrative plot of the amplitude spectrum is shown in Figure 8. The target at range 𝑅 = 𝑐𝜏 2  

shows up as a peak at the target beat frequency 𝑓𝑏 = 𝛼𝜏. Although the spectrum is plotted as a 

function of frequency, the abscissa can be scaled by a factor  𝑐𝑇 2𝐵   to yield a plot of target 

reflectivity versus range; this plot is called the range profile. 

 

Figure 8 Amplitude spectrum  𝑺𝑰𝑭 𝒇   of one pulse of the in-band portion of the IF signal. The spectrum as is a “sinc” 
shaped peak at the target beat frequency 𝒇𝒃 = 𝜶𝝉, where 𝜶 is the sweep rate and 𝝉 the two-way propagation delay. The 
width 𝚫𝒇𝒃 of the peak (strictly, width at -3.9 dB) is the reciprocal of the duration of the pulse, 𝟏  𝑻 − 𝝉  . 

As stated in the Introduction, in practice the spectral analysis is performed by an analog-to-digital 

converter (ADC) followed by a processor based on the fast Fourier transform (FFT). Approximating 

the spectrum in this way involves a number of practical considerations: 

 Nyquist criterion. Typically, the FMCW radar is only designed to detect targets up to a 

certain maximum range or instrumented range  𝑅𝑚𝑎𝑥 . In order to prevent aliasing of the 

spectra of targets within 𝑅𝑚𝑎𝑥 , the ADC sample rate 𝑓𝑠  should be chosen at least twice the 

maximum beat frequency 𝑓𝑏 ,𝑚𝑎𝑥 : 

Δ𝑓𝑏 =
1

𝑇 − 𝜏
 

frequency 𝑓 

amplitude 

spectrum 

 𝑆𝐼𝐹 𝑓   

𝑓𝑏 = 𝛼𝜏 
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 𝑓𝑠 ≥ 2𝑓𝑏 ,𝑚𝑎𝑥 . (2.15) 

In order to prevent out-of-band noise from folding back into the target spectrum, the beat 

signal is typically passed through an anti-aliasing filter, which is a low-pass filter with a cutoff 

frequency between the maximum beat frequency 𝑓𝑏 ,𝑚𝑎𝑥  and the Nyquist frequency 𝑓𝑠/2.   

 ADC interval. As explained in Section 2.1.3, during the initial 𝜏𝑚𝑎𝑥  seconds of each sweep, a 

portion of the beat signal for targets within the instrumented range is outside the bandwidth 

of the ADC. This interval is usually omitted by delaying the sampling by 𝜏𝑚𝑎𝑥  seconds from 

the beginning of each sweep, or alternatively by setting the samples collected during the 

initial 𝜏𝑚𝑎𝑥  to zero (Adamski, Kulpa et al. 2000). As a result, the spectral width of a ‘point’ 

target is Δ𝑓𝑏 = 1  𝑇 − 𝜏𝑚𝑎𝑥    for all targets within the instrumented range.  

 

 Sidelobe apodization. The beat signal spectrum 𝑆𝐼𝐹 𝑓  given by (2.14) has the characteristic 

‘sinc’ shape as predicted by Fourier theory. The range side lobes in this case are only 13.3 dB 

lower than the main lobe, which is not satisfactory as it can result in the occlusion of small 

nearby targets as well as introducing clutter from the adjacent lobes into the main lobes. To 

counter these undesirable effects, a window function (Harris 1978) is usually applied to the 

sampled IF signal prior to FFT frequency estimation. In our simulation in Chapter 3, we 

employ a Hamming window with a highest sidelobe level of -43 dB. 

These practical aspects are of importance in explaining our simulation in Chapter 39.  

To summarize, we have analyzed the generation and spectral analysis of the beat signal in 

mathematical detail for ideal, linear frequency sweeps. In the following section, we investigate how 

this process is affected if the sweeps are nonlinear – in particular, if they are perturbed by sinusoidal 

frequency sweep nonlinearity. 

2.2 The effect of sinusoidal nonlinearity in the frequency sweep 
This section presents an analysis describing the effects on the range resolution of homodyne linear 

FMCW radar of sinusoidal nonlinearities in the frequency sweep. Our discourse follows the analyses 

of Richter (Richter, Jensen et al. 1973), Griffiths (Griffiths 1991; Griffiths and Bradford 1992), and 

Piper (Piper 1995).  

2.2.1 Analytical development 

We treat the chirp signal as a nominally-linear FM sweep of rate 𝛼 and unit amplitude, with the 

frequency error expressed in terms of a departure from frequency sweep linearity with amplitude 𝛿𝑓  

and frequency 𝑓𝑠𝑙 : 

 𝑓𝑇𝑋 𝑡 = 𝑓𝑐 + 𝛼𝑡 + 𝛿𝑓 cos 2𝜋𝑓𝑠𝑙 𝑡 , −
𝑇

2
< 𝑡 <

𝑇

2
. (2.16) 

This non-linear time-frequency characteristic is illustrated together with its linear counterpart in 

Figure 9. 

                                                             
9
 As explained in 2.1.3.2, another important digital signal processing step is the digital I/Q demodulation. In our 

simulation in Chapter 3Se, we assume this has already been done, and used complex samples directly. 
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Figure 9 Time-frequency characteristics of a linear chirp (blue line) and a non-linear chirp (red curve). The linear chirp on 
the interval  −𝑻/𝟐,𝑻/𝟐  has a center frequency 𝒇𝒄, duration 𝑻, chirp rate 𝜶, and frequency deviation (or ‘bandwidth’) 
𝑩 = 𝜶𝑻. The non-linear chirp is  

The phase of the transmitted signal 𝜙𝑇𝑋  is obtained by integrating the instantaneous angular 

frequency 𝜔𝑇𝑋 = 2𝜋𝑓𝑇𝑋  in accordance with (2.4). Arbitrarily setting 𝜙𝑇𝑋 = 0 at 𝑡 = 0 (there is no 

loss of generality here), we thus have the relation 

 𝜙𝑇𝑋 𝑡 = 2𝜋 𝑓𝑇𝑋 𝑡
′ 

𝑡

0

𝑑𝑡′ . (2.17) 

Inserting the expression (2.16) for 𝑓𝑇𝑋  into (2.17), we find 

 𝜙𝑇𝑋 𝑡 = 2𝜋  𝑓𝑐𝑡 +
1

2
𝛼𝑡2 + 𝐴𝑠𝑙 sin 2𝜋𝑓𝑠𝑙 𝑡 , (2.18) 

where 𝐴𝑠𝑙 = 𝛿𝑓/𝑓𝑠𝑙  is the “modulation index” of the transmitted chirp, i.e., its maximum phase 

error. 

The phase of the beat signal is given by (cf. (2.8)) 

 𝜙𝐼𝐹 𝑡 = 𝜙𝑇𝑋 𝑡 − 𝜙𝑇𝑋 𝑡 − 𝜏 , (2.19) 

where 𝜏 is the target transit time as defined by (2.6). Inserting (2.18) into (2.19) yields 

 𝜙𝐼𝐹 𝑡 = 2𝜋  𝑓𝑐𝜏 + 𝛼𝜏𝑡 −
1

2
𝛼𝜏2 + 𝐴𝑠𝑙  sin 2𝜋𝑓𝑠𝑙 𝑡 − sin 2𝜋𝑓𝑠𝑙 𝑡 − 𝜏    (2.20) 

or, using trigonometric identities to factorize the IF phase error term, 

 𝜙𝐼𝐹 𝑡 = 2𝜋  𝑓𝑐𝜏 + 𝛼𝜏𝑡 −
1

2
𝛼𝜏2 + 2𝐴𝑠𝑙 sin 𝜋𝑓𝑠𝑙𝜏 cos  2𝜋𝑓𝑠𝑙  𝑡 −

𝜏

2
  . (2.21) 

The baseband dechirped signal with envelope 𝑟 𝑡  is therefore given by (cf. (2.9)): 

𝑡 

𝑓𝑇𝑋  

1/𝑓𝑠𝑙  

𝛿𝑓  

𝑓𝑐  

−𝑇/2 𝑇/2 

𝛼𝑇 
linear chirp 

non-linear chirp 
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𝑠𝐼𝐹 𝑡 = 𝑟 𝑡 exp 𝑗𝜙𝐼𝐹 𝑡   

= 𝑟 𝑡 exp  𝑗  𝜙′ + 2𝜋𝛼𝜏𝑡 + 𝛽 cos  2𝜋𝑓𝑠𝑙  𝑡 −
𝜏

2
     

(2.22) 

where 𝜙′ = 2𝜋 𝑓𝑐𝜏 − 𝛼𝜏2 2   is a constant phase term and  

 𝛽 ≡ 2𝐴𝑠𝑙 sin 𝜋𝑓𝑠𝑙𝜏  (2.23) 

is the “modulation index”, or maximum phase error, of the IF signal.  

The expression (2.22) is recognizable from narrowband phase modulation theory. It can be 

expanded as 

 
𝑠𝐼𝐹 𝑡 = 𝑟 𝑡 exp 𝑗 𝜙′ + 2𝜋𝛼𝜏𝑡   1 + 𝑗𝛽 cos  2𝜋𝑓𝑠𝑙  𝑡 −

𝜏

2
  

−
1

2!
𝛽2 cos2  2𝜋𝑓𝑠𝑙  𝑡 −

𝜏

2
  + ⋯   

(2.24) 

Now, if we assume that the peak phase error is small, i.e., 

 𝛽 ≪ 1, (2.25) 

then only the first two terms of the expansion in (2.24) are significant. Thus the baseband dechirped 

signal is approximately 

 𝑠𝐼𝐹 𝑡 ≈ 𝑟 𝑡 exp 𝑗 𝜙′ + 2𝜋𝛼𝜏𝑡   1 +
𝛽

2
exp  𝑗2𝜋𝑓𝑠𝑙  𝑡 −

𝜏

2
  +

𝛽

2
exp  −𝑗2𝜋𝑓𝑠𝑙  𝑡 −

𝜏

2
    (2.26) 

which is the distortionless point-target response, plus a pair of sidelobes, or paired echoes, at ±𝑓𝑠𝑙 . 

The amplitude of each of these sidebands is 𝛽/2. 

2.2.1.1 Limit of long-wavelength phase errors 

For long-wavelength phase errors such that the sidelobe ripple period is much larger than the target 

transit time, i.e., 

 
1

𝑓𝑠𝑙
≫ 𝜏, (2.27) 

(2.23) is well approximated by 

 𝛽 ≈ 𝐴𝑠𝑙𝜔𝑠𝑙 𝜏, (2.28) 

where 𝜔𝑠𝑙 ≡ 2𝜋𝑓𝑠𝑙  is the angular ripple frequency. Thus, for long-wavelength phase errors, the 

modulation parameter 𝛽 in the beat signal increases linearly with the target transit time 𝜏, and 

hence with target range. Physically, we can say that for delays which are small compared to the 

wavelength of the phase error, the transmitted and received phase errors ‘cancel out’10.  

2.2.1.2 General phase errors 

In the preceding discussion, we considered a sinusoidal phase error. Here, we argue that the above 

analysis can be extended to general phase errors. 

                                                             
10 This is in contrast to conventional pulse compression radars, in which the ‘paired echo’ effect is independent 
of target range (Klauder 1960). As a result, requirements on frequency sweep linearity can be considerably less 
stringent for FMCW radar than for LFM pulse compression radar, as noted by Griffiths (Griffiths 1991). 
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A general phase error can be written in the form 

 𝑓𝑇𝑋 𝑡 = 𝑓𝑐 + 𝛼𝑡 + 𝑓𝜖 ,𝑇𝑋 𝑡 , −
𝑇

2
< 𝑡 <

𝑇

2
. (2.29) 

The error frequency 𝑓𝜖 ,𝑇𝑋 𝑡  can be expanded as a Fourier series:  

 𝑓𝜖 ,𝑇𝑋 𝑡 =
𝑎0

2
+   𝑎𝑛 cos  

2𝜋𝑛𝑡

𝑇
 + 𝑏𝑛 sin  

2𝜋𝑛𝑡

𝑇
  

∞

𝑛=1

. (2.30) 

where 

 𝑎𝑛 =
1

𝜋
 𝑓𝜖  

2𝜋𝑡

𝑇
 cos 𝑛𝑥 𝑑𝑥

𝜋

−𝜋

, 𝑏𝑛 =
1

𝜋
 𝑓𝜖  

2𝜋𝑡

𝑇
 sin 𝑛𝑥 𝑑𝑥

𝜋

−𝜋

. (2.31) 

Now, the constant term 𝑎0/2 in (2.30) has only the effect of changing the center frequency 𝑓𝑐𝜏 of 

the chirp, and since the center frequency is present in the beat signal phase only in the constant 

phase term 𝑓𝑐𝜏, this term has no effect on the amplitude spectrum of the beat signal. 

Thus, neglecting the constant frequency term 𝑎0/2 and integrating (2.30), we find that the phase 

error 𝜙𝜖 ,𝑇𝑋 𝑡  is given by 

 

𝜙𝜖 ,𝑇𝑋 𝑡 = 2𝜋 𝑓𝜖 𝑡
′ 

𝑡

0

𝑑𝑡′  

=   
𝑎𝑛𝑇

𝑛
sin  

2𝜋𝑛

𝑇
𝑡 −

𝑏𝑛𝑇

𝑛
cos  

2𝜋𝑛

𝑇
𝑡  

∞

𝑛=1

. 

(2.32) 

(Here we have omitted a constant phase term which also has no effect on the range profile).  

The phase error in the IF signal, 𝜙𝜖 ,𝐼𝐹, is the difference between the transmitted phase error 𝜙𝜖 ,𝑇𝑋  

and its version delayed by 𝜏: 

 𝜙𝜖 ,𝐼𝐹 𝑡 = 𝜙𝜖 ,𝑇𝑋 𝑡 − 𝜙𝜖 ,𝑇𝑋 𝑡 − 𝜏 . (2.33) 

Inserting (2.32) into (2.33), subtracting term by term, and applying trigonometric identities as 

before, we find 

 𝜙𝜖 ,𝐼𝐹 𝑡 =  2 sin 
𝜋𝑛

𝑇
𝜏  

𝑎𝑛𝑇

𝑛
cos  

2𝜋𝑛

𝑇
 𝑡 −

𝜏

2
  +

𝑏𝑛𝑇

𝑛
sin 

2𝜋𝑛

𝑇
 𝑡 −

𝜏

2
   

∞

𝑛=1

. (2.34) 

Now, a little thought shows that if we substitute (2.34) for the single-tone phase error 

𝛽 cos 2𝜋𝑓𝑠𝑙 𝑡 − 𝜏/2   in (2.22) and expand the factor exp 𝑗𝜙𝜖 ,𝐼𝐹  as a Taylor series, then the 

higher-order terms can be neglected as long as 𝜙𝜖 ,𝐼𝐹 is small compared to unity. A sufficient 

condition for this is that the amplitudes of the frequency errors are much smaller than the sweep 

repetition frequency, i.e., 

 𝑎𝑛 ≪
1

𝑇
    and    𝑏𝑛 ≪

1

𝑇
. (2.35) 
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In this case, the target beat spectrum consists of a superposition of ‘paired echoes’ spaced at 

multiples of the sweep repetition frequency, 1/𝑇, from the desired target beat signal. 

In short, within small-angle approximations for the phase error, the ‘paired echoes’ associated with 

the harmonics of the phase error merely superpose. Hence, an algorithm that compensates the 

‘paired echoes’ for a chirp perturbed by sinusoidal phase errors and is linear should also work for 

general phase errors, provided that these errors are sufficiently small. The derivation of such phase 

error compensation algorithm is the subject of the next chapter. 
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3 An algorithm for compensating the effect of phase errors on the 

FMCW beat signal spectrum 
In this chapter, we present a novel algorithm for compensating the effect of phase errors on the 

FMCW beat signal spectrum by digital post-processing of the beat signal. Given amount of effort that 

is currently put into making chirps linear, the existence of this algorithm is a very significant in the 

field of FMCW ranging, and could render such elaborate chirp linearization methods obsolete. 

This chapter is organized in three sections. In Section 3.1, we discuss similar algorithms that were 

devised by others, and highlight the differences with our approach. In Section 3.2, we establish some 

mathematical preliminaries – namely the quadratic phase filter and the Fresnel transform – which 

will allow us to describe the algorithm more succinctly. In Section 3.3, we present a flow chart 

describing the algorithm. In Section 3.4, we present an analytical derivation of the algorithm for 

temporally infinite chirps, and show that the algorithm is exact in this case. In Section 3.5, we apply 

the algorithm to finite chirps, and show that it remains approximately valid for chirps with large 

time-bandwidth product and for which the phase error function contains only low frequencies.  

3.1 Prior work 
A signal processing method was devised, apparently independently, by Burgos-Garcia et al. (Burgos-

Garcia, Castillo et al. 2003) and Meta et al. (Meta, Hoogeboom et al. 2006; Meta, Hoogeboom et al. 

2007) to compensate for non-linearities in the frequency sweep (or equivalently, phase errors in the 

phase) of FMCW signals. (Actually, the system described in (Burgos-Garcia, Castillo et al. 2003) is a 

heterodyne time-domain pulse compression radar instead of a homodyne FMCW radar, but the 

results can be applied to the latter case). The algorithm, which operates directly on deramped data, 

corrects non-linearity effects for the whole range at once, and is computationally efficient. 

Burgos-Garcia et al. and Meta et al. present the algorithm in a slightly different form, which is also 

different from the one described here. In particular (as we will explain in more detail in Section 3.4),  

1. In the last step of the algorithm described by Burgos-Garcia et al. (Burgos-Garcia, Castillo et 

al. 2003), the phase error function in the receive signal, which they call 𝜙𝐸𝑋 𝑡 , is used 

directly to cancel the residual phase error after removal of the transmitted errors and range 

deskew. This is based on their stated assumption that the beat signal from the 𝑖th target is a 

narrowband signal centered at the frequency 𝑓𝑖 = 𝛼𝜏𝑖 . Our derivation shows that this 

assumption is not necessary, and that a skew-filtered version of the phase error function can 

be used in the case that the beat signal is not narrowband11.  

 

2. The algorithm described by Meta (Meta, Hoogeboom et al. 2006) does use a filtered version 

of the phase error function in the last step. However, this version is a Fresnel transform of 

the phase error function, whereas we believe it should be an inverse Fresnel transform12. 

                                                             
11

 The author initiated a private e-mail correspondence with Mr. Burgos-Garcia, but unfortunately he was not 
at liberty to discuss the details of the algorithm under the terms of his project contract with the Spanish 
defense company Indra EWS. 
12 The author also e-mailed Mr. Meta about this, but unfortunately he was too busy to study the derivation. 
Interestingly, an international an international patent application was submitted for this technique (Meta 
2007), but at the time of writing is deemed to be withdrawn. 
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Moreover, (Burgos-Garcia, Castillo et al. 2003) and (Meta, Hoogeboom et al. 2006) use heuristic 

arguments to justify the steps, and no formal proof of the algorithm was given. Our analytical 

derivation in Section 3.4 is thus a novel contribution to the literature on this subject. 

3.2 Mathematical preliminaries 
The key component of the phase error compensation (PEC) algorithm to be described is the 

quadratic phase filter (QPF). As a prelude to our presentation of the algorithm, here we first discuss 

the properties of this filter, as well as an integral transform called the Fresnel transform associated 

with it (Gori 1994; Papoulis 1994). 

3.2.1 The quadratic phase filter 

A QPF is an all-pass system with quadratic phase. We denote by 𝑞𝛼 𝑡  its impulse response and by 

𝑄𝛼 𝑓  its transfer function: 

 𝑞𝛼 𝑡 =  −𝑗𝛼 exp 𝑗𝜋𝛼𝑡2 ↔ 𝑄𝛼 𝑓 = exp  −𝑗𝜋
𝑓2

𝛼
 . (3.1) 

where the double arrow (↔) denotes a Fourier transform pair, and the time and frequency domains 

are identified by the arguments 𝑡 and 𝑓, respectively. Note that since neither 𝑞𝛼 𝑡  nor 𝑄𝛼 𝑓  is 

square-integrable, this Fourier transform pair should be interpreted in the generalized sense as the 

limit as 𝜎 → 0+ of the Fourier transform of the complex Gaussian beam exp −𝜋 𝜎 − 𝑗𝛼 𝑡2 , where 

𝜎 and 𝛼 are real parameters (Papoulis 1977). 

The QPF is a dispersive filter which introduces a group delay proportional to the frequency. Group 

delay is a measure of the time delay of the amplitude envelope of a sinusoidal component; it is in 

general different from the phase delay, which is the time delay of the phase. The group delay of a 

constant-modulus filter 𝐻 𝑓 = exp 𝑗Φ 𝑓   is given by 

 𝑡𝑔 𝑓 = −
1

2𝜋

𝑑Φ

𝑑𝑓
. (3.2) 

Thus, the group delay 𝑡𝑔 ,𝛼(𝑓) of the QPF given by (3.1) is 

 𝑡𝑔 ,𝛼 𝑓 =
𝑓

𝛼
. (3.3) 

Hence, the group delay of a QPF is linearly proportional to the frequency. (Incidentally, the group 

delay of a QPF is the inverse function of the instantaneous frequency of its impulse response: 

𝑓𝑖 ,𝛼 𝑡 = 𝛼𝑡. This result does not hold in general, but holds here because 𝑞𝛼 𝑡  is a so-called 

‘asymptotic’ signal (Boashash 1992)). 

3.2.2 The Fresnel transform 

The Fresnel transform with chirp parameter 𝛼 of a function 𝑠 𝑡 , denoted 𝑠𝛼 𝑡  here, is by definition 

the output of a QPF with input 𝑠 𝑡 : 

 𝑠𝛼 𝑡 =  −𝑗𝛼 𝑠 𝑡′  exp 𝑗𝜋𝛼 𝑡 − 𝑡′  2 𝑑𝑡′
∞

−∞

= 𝑠 𝑡 ∗ 𝑞𝛼 𝑡 , (3.4) 

where the asterisk (∗) denotes the convolution product. The inversion formula reads 
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 𝑠 𝑡 =  𝑗𝛼 𝑠𝛼 𝑡 exp −𝑗𝜋𝛼 𝑡 − 𝑡′  2 𝑑𝑡′
∞

−∞

= 𝑠𝛼 𝑡 ∗ 𝑞−𝛼 𝑡 , (3.5) 

so that the inverse transform simply equals the Fresnel transform with parameter −𝛼.  

Let us denote by 𝑆 𝑓  the Fourier transform of a function 𝑠 𝑡 . From the definition (3.4) and the 

convolution theorem, it follows that the Fourier transform 𝑆𝛼 𝑓  of 𝑠𝛼 𝑡  equals 

 𝑆𝛼 𝑓 = 𝑆 𝑓 exp  −𝑗𝜋
𝑓2

𝛼
 . (3.6) 

It is also useful to investigate an asymptotic limit of the Fresnel transform. Based on the limit 

(Papoulis 1977) 

 lim
𝛼→∞

 −𝑗𝛼 exp 𝑗𝜋𝛼𝑡2 = 𝛿 𝑡 , (3.7) 

where 𝛿 ∙  denotes the Dirac delta function, it follows that in the limit 𝛼 → ∞ the Fresnel transform 

of a function approaches the function itself, i.e., 

 lim
𝛼→∞

𝑠𝛼 𝑡 = 𝑠 𝑡 . (3.8) 

The Fresnel transform manifests itself several areas of signal and image processing, including pulse 

compression, fiber-cable communications and dispersion, and Fresnel diffraction and optical filtering 

(Papoulis 1994). Here, it will allow us to give a concise description of the PEC algorithm.  

3.3 Description of the phase error compensation algorithm 
Suppose the transmitted signal is perturbed by a phase error 2𝜋𝜖(𝑡). We assume that 𝜖 𝑡  is known 

(its estimation is discussed in Chapter 4), and define the phase error function 

 𝑠𝜖 𝑡 ≡ exp 𝑗2𝜋𝜖 𝑡  . (3.9) 

The correction algorithm, shown schematically in Figure 10, consists of the following three steps: 

1. The complex-valued deramped data 𝑠𝐼𝐹 𝑡  is first multiplied by the complex conjugate of the 

phase error function, 𝑠𝜖
∗ 𝑡 , in order to eliminate phase errors resulting from transmitted 

non-linearities.  

2. The resulting signal, 𝑠𝐼𝐹2(𝑡), is then passed through a deskew filter13 with frequency 

response 

 𝑄−𝛼 𝑓 = exp  𝑗𝜋
𝑓2

𝛼
 , (3.10) 

where 𝛼 is the (nominal) chirp rate of the transmitted chirp. Thus, the deskew filter is a QPF 

with a parameter a negative group delay −𝑓/𝛼, which has the effect of aligning the received 

                                                             
13 Incidentally, the deskew filter is commonly used in synthetic aperture radar (SAR) signal processing, where 
its purpose is to remove the range-dependent phase term −𝜋𝛼𝜏2  from the beat signal (cf. Section 2.1.3) of 
relevance in SAR applications. Since this phase term is called the residual video phase (RVP), the filter is also 
called an ‘RVP filter’ (Carrara, Goodman et al. 1995) in this context. 



26 
 

 
 

non-linearities in time14. (In the parlance of Section 3.2.2, 𝑠𝐼𝐹3 is the inverse Fresnel 

transform of 𝑠𝐼𝐹2). 

3. Finally, the deskewed signal 𝑠𝐼𝐹3(𝑡) is multiplied by the Fresnel transform 𝑠𝜖 ,𝛼 𝑡  of the 

phase error function 𝑠𝜖 𝑡 . convolution product 𝑠𝜖 ,𝛼 𝑡  of the phase error function 𝑠𝜖 𝑡  

with a skew filter with an impulse response 𝑞𝛼(𝑡), the frequency response 𝑄𝛼 𝑓  of which 

corresponds to the one in (3.10) with the sign of 𝛼 reversed.  

The last step removes the received non-linearities to obtain the compensated signal 𝑠𝐼𝐹4(𝑡). 

 

Figure 10 Schematic diagram of the phase error compensation algorithm. In the first step, the intermediate frequency 
(IF) signal 𝒔𝑰𝑭 𝒕  is multiplied by the complex conjugate of the phase error function, 𝒔𝝐

∗ 𝒕 , to the remove the 
transmitted phase errors. The resulting signal 𝒔𝑰𝑭𝟐 𝒕  is inverse Fresnel transformed by passing it through a deskew filter 
with impulse response 𝒒−𝜶 𝒕 . This results in a signal 𝒔𝑰𝑭𝟑 𝒕  in which the remaining phase errors, which emanate from 
the received signal, are aligned in time. Finally, 𝒔𝑰𝑭𝟑 𝒕  is multiplied by a the Fresnel transform of the phase error 
function, 𝒔𝝐 𝒕 ∗ 𝒒𝜶 𝒕 , to obtain the corrected IF signal 𝒔𝑰𝑭𝟒. 

As an example to visualize the operation of the PEC algorithm in the time-frequency domain, Figure 

11 shows (upper figure) a transmitted linear FMCW signal which is perturbed by triangle-shaped 

frequency sweep non-linearity and two received echoes of this signal. The non-linearities in the 

transmit chirp signal result in nonlinearities in the beat signal (lower figure), which are the difference 

between the transmitted and received non-linearities. As explained in Chapter 1, the non-linearities 

in the beat signal deteriorate the range resolution because they spread the target energy through 

different frequencies. This effect generally increases at greater range, when the transmitted and 

received signals are less correlated. 

                                                             
14 We will refer to the phase errors remaining after the range deskew step as ‘residual’ phase errors. 

𝑞−𝛼(𝑡) 
𝑠𝐼𝐹3 𝑠𝐼𝐹2 

deskew 

filter 
𝑠𝐼𝐹  𝑠𝐼𝐹4 

𝑠𝜖
∗ 𝑡  𝑠𝜖 𝑡 ∗ 𝑞𝛼 𝑡  
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Figure 11 Deramping of FMCW signals. The upper figure shows the instantaneous frequency of the transmitted chirp 
(solid line) and two received echoes (dashed lines). The lower figure depicts the corresponding two beat signals. The 
resulting frequencies of the beat signals are not constant, and their shape varies with target distance. The spreading of 
the beat signal in frequency is greater for the target response at larger distance than at the closer. (After (Meta, 
Hoogeboom et al. 2006)). 

Figure 12 shows a block diagram of the PEC algorithm. The figure is modeled after Figure 3 of (Meta, 

Hoogeboom et al. 2007), but there is a difference: in Figure 3 of (Meta, Hoogeboom et al. 2007), the 

triangular nonlinearities of 𝑠𝐼𝐹2 point downwards. A possible explanation for this is that the 

definition of the complex representation 𝑠𝐼𝐹  of the IF signal was replaced by its complex conjugate; 

however, this does not appear to be the convention used in the equations in (Meta, Hoogeboom et 

al. 2007). 
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Figure 12 Block diagram of the phase error compensation algorithm. The diagrams on the right represent the 
instantaneous frequency of the beat signal, 𝒇𝒃 𝒕 , at successive steps of the algorithm. (After (Meta, Hoogeboom et al. 
2006)). From top to bottom: the collected non-linear deramped data, 𝒔𝑰𝑭, is multiplied by 𝒔𝝐

∗ to remove the non-
linearities from the transmitted signal. The nonlinearities in the resulting beat signals 𝒔𝑰𝑭𝟐 now have the same triangular 
shape for targets at difference ranges, but are still misaligned or ‘skewed’ in time.𝒔𝑰𝑭𝟐 is then passed through a deskew 
filter with a negative group delay 𝒕𝒈 𝒇 = −𝒇/𝜶, where 𝜶 is the nominal chirp rate of the transmitted signal. This has 

the effect of aligning the received nonlinearities in time. The “residual” triangular nonlinearities in 𝒔𝑰𝑭𝟑 are also 
‘deformed’ because the higher frequencies are shifted back in time more than the lower ones. Finally, 𝒔𝑰𝑭𝟑 is multiplied 
by 𝒔𝝐,𝜶 in order to remove the “residual” nonlinearities and obtain the compensated IF signals 𝒔𝑰𝑭𝟒.  

In short, by performing a multiplication, a convolution, and another multiplication on the deramped 

data, the effect of phase errors in the transmit signal can be removed, assuming the form of these 

errors is known. In the following section, we explain and prove these steps analytically. 

3.4 Derivation of the algorithm for temporally infinite chirps 
In this section, we present an analytical derivation of the phase error compensation algorithm for 

temporally infinite chirps. We show that the compensation algorithm is exact in this case. 

3.4.1 Recapitulation of the FMCW principle for linear chirps 

For the purpose of comparison and for future reference, we first reiterate the principle of FMCW 

range measurement for the case in which the transmitted signal is a temporally infinite linear chirp, 
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unperturbed by any phase error. The transmit signal in this case can be represented as the real part 

of 

 𝑠𝑇𝑋 ,𝑙𝑖𝑛  𝑡 = exp  𝑗2𝜋  𝑓𝑐𝑡 +
1

2
𝛼𝑡2  , (3.11) 

where 𝑓𝑐  is the carrier frequency, 𝑡 is the time variable, and 𝛼 is the frequency sweep rate. Note that 

in contrast to Eq. (2.2), there is no envelope factor rect 𝑡/𝑇  in (3.11) since we are assuming that 

the transmitted chirp is temporally infinite. 

The received signal is a delayed version of the transmitted one (amplitude variations are not 

considered in this derivation): 

 𝑠𝑅𝑋 ,𝑙𝑖𝑛  𝑡 = exp  𝑗2𝜋  𝑓𝑐 𝑡 − 𝜏 +
1

2
𝛼 𝑡 − 𝜏 2  , (3.12) 

where is the round-trip time delay. In homodyne FMCW radar, the transmitted and received 

signals are then mixed to generate the beat signal: 

 

𝑠𝐼𝐹,𝑙𝑖𝑛  𝑡 = 𝑠𝑇𝑥 ,𝑙𝑖𝑛  𝑡 𝑠𝑅𝑥 ,𝑙𝑖𝑛
∗  𝑡  

= exp  𝑗2𝜋  𝑓𝑐𝜏 + 𝛼𝜏𝑡 −
1

2
𝛼𝜏2  . 

(3.13) 

The beat signal is a sinusoidal signal with a frequency 𝛼𝜏 proportional to the round-trip time delay 𝜏, 

and hence to the target range. The frequency information can be extracted using a Fourier 

transform.  

More precisely, except for a constant phase term, the Fourier transform 𝑆𝐼𝐹 ,𝑙𝑖𝑛  𝑓  of 𝑠𝐼𝐹 ,𝑙𝑖𝑛  𝑡  is a 

Dirac delta function centered at the beat frequency 𝛼𝜏: 

 𝑆𝐼𝐹,𝑙𝑖𝑛  𝑓 = exp  𝑗2𝜋  𝑓𝑐𝜏 −
1

2
𝛼𝜏2  𝛿 𝑓 − 𝛼𝜏 . (3.14) 

Of course in practice, the beat signal is observed over a finite interval, and the ideal response (3.14) 

is convolved with the Fourier transform of the window function used (cf. Section 2.1.4). 

3.4.2 Introduction of phase errors  

When frequency nonlinearities are present in the transmitted signal, the signal modulation is no 

longer an ideal chirp; the phase of the signal can be described as an ideal chirp plus a non-linear 

error function 𝜖 𝑡 : 

 

𝑠𝑇𝑋 𝑡 = exp  𝑗2𝜋 𝑓𝑐𝑡 +
1

2
𝛼𝑡2 + 𝜖 𝑡    

= 𝑠𝑇𝑋 ,𝑙𝑖𝑛  𝑡 𝑠𝜖 𝑡 . 

(3.15) 

The last term, accounting for systematic non-linearity of the frequency modulation, limits the 

performance of conventional FMCW sensors. This phase term increases spectral bandwidth, 

resulting in range resolution degradation and losses in terms of signal-to-noise ratio. 

The beat signal is now represented by 
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𝑠𝐼𝐹 𝑡 = exp  𝑗2𝜋 𝑓𝑐𝜏 + 𝛼𝜏𝑡 −

1

2
𝛼𝜏2 + 𝜖 𝑡 − 𝜖 𝑡 − 𝜏    

= 𝑠𝐼𝐹,𝑙𝑖𝑛  𝑡 𝑠𝜖 𝑡 𝑠𝜖
∗ 𝑡 − 𝜏 . 

(3.16) 

Equation (3.16) differs from (3.11) for the present of the last term  𝜖 𝑡 − 𝜖 𝑡 − 𝜏  .  

3.4.3 First step: removal of phase errors emanating from the transmitted signal 

Assuming the non-linearity function 𝑠𝜖 𝑡  is known (its estimation is discussed in Chapter 4), the 

range-independent effect of the non-linear term in the beat frequency can be removed by the 

following multiplication: 

 

𝑠𝐼𝐹2 𝑡 = 𝑠𝐼𝐹 𝑡 𝑠𝜖
∗ 𝑡  

= exp  𝑗2𝜋 𝑓𝑐𝜏 + 𝛼𝜏𝑡 −
1

2
𝛼𝜏2 − 𝜖 𝑡 − 𝜏   . 

(3.17) 

The multiplication – which can because we have assumed that we have complex samples (both 𝐼 and 

𝑄 components) of the beat signal – removes the nonlinearities in the beat signal induced by the 

nonlinear part of the transmitted signal. The residual nonlinearity term is present now only as a 

result of the received signal. In order to remove this nonlinearity term with a single reference 

function, any dependence on the time delay must be eliminated. 

3.4.4 Second step: range deskew  

To this end, the signal 𝑠𝐼𝐹2 is passed through a quadratic phase filter 𝑞−𝛼 𝑡  with chirp parameter 

– 𝛼, where 𝛼 is the nominal chirp rate of the transmitted sweep; that is, 𝑠𝐼𝐹2 is inverse Fresnel 

transformed (or in the parlance of SAR signal processing, deskew-filtered) to obtain a signal 𝑠𝐼𝐹3: 

 𝑠𝐼𝐹3 𝑡 = 𝑠𝐼𝐹2 𝑡 ∗ 𝑞−𝛼 𝑡  (3.18) 

It will be shown that this convolution has the effect of aligning in time the phase errors emanating 

from the received signal. This result can be derive d both in the frequency domain and in the time 

domain. As an internal check on our results, we have done both, and present the derivations below. 

3.4.4.1 Frequency-domain approach 

In this approach, we determine the spectrum 𝑆𝐼𝐹3 𝑓  of the signal 𝑠𝐼𝐹3 𝑡  given by (3.18). Taking the 

Fourier transform of (3.18), we obtain, by the convolution theorem and the definition of the deskew 

filter transfer function (3.10), 

 

𝑆𝐼𝐹3 𝑓 = 𝑆𝐼𝐹2 𝑓 𝑄−𝛼 𝑓  

= 𝑆𝐼𝐹2 𝑓 exp  𝑗𝜋
𝑓2

𝛼
 . 

(3.19) 

To evaluate 𝑆𝐼𝐹2 𝑓 , we depart from the following expression for 𝑠𝐼𝐹2 𝑡  (which is easily seen by 

comparison of (3.16) and (3.17)): 

 𝑠𝐼𝐹2 𝑡 = 𝑠𝐼𝐹 ,𝑙𝑖𝑛  𝑡 𝑠𝜖
∗ 𝑡 − 𝜏 . (3.20) 

Applying the convolution theorem to (3.20) yields 

 𝑆𝐼𝐹2 𝑓 = 𝑆𝐼𝐹 ,𝑙𝑖𝑛  𝑓 ∗ ℱ 𝑠𝜖
∗ 𝑡 − 𝜏   𝑓 , (3.21) 
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where ℱ ∙  𝑓  denotes the Fourier transform with frequency variable 𝑓. The first term, 𝑆𝐼𝐹,𝑙𝑖𝑛  𝑓 , is 

a Dirac delta function centered at the target beat frequency 𝛼𝜏, as was shown in Eq. (3.14). The 

second term can be expressed as 

 ℱ 𝑠𝜖
∗ 𝑡 − 𝜏   𝑓 = exp −𝑗2𝜋𝑓𝜏 𝑆𝜖

∗ −𝑓 , (3.22) 
where 𝑆𝜖 𝑓  is the Fourier transform of the error signal 𝑠𝜖 𝑡 . Inserting (3.14) and (3.22) into (3.21) 

yields 

 𝑆𝐼𝐹2 𝑓 =  exp  𝑗2𝜋  𝑓𝑐𝜏 −
1

2
𝛼𝜏2  𝛿 𝑓 − 𝛼𝜏  ∗  exp −𝑗2𝜋𝑓𝜏 𝑆𝜖

∗ −𝑓  . (3.23) 

Since convolution with 𝛿 𝑓 − 𝛼𝜏  shifts the spectrum 𝛼𝜏 to the right, but leaves it otherwise 

unchanged, we have 

 𝑆𝐼𝐹2 𝑓 = exp  𝑗2𝜋  𝑓𝑐𝜏 −
1

2
𝛼𝜏2  exp −𝑗2𝜋 𝑓 − 𝛼𝜏 𝜏 𝑆𝜖

∗ − 𝑓 − 𝛼𝜏   (3.24) 

or, simplifying, 

 𝑆𝐼𝐹2 𝑓 = exp 𝑗2𝜋𝑓𝑐𝜏 exp  𝑗
𝜋

𝛼
 −2𝑓𝛼𝜏 + 𝛼2𝜏2  𝑆𝜖

∗ − 𝑓 − 𝛼𝜏  , (3.25) 

where we have arranged the argument of the second complex exponential as an “incomplete 

square”. 

Inserting (3.25) into (3.19), and thus multiplying 𝑆𝐼𝐹2 𝑓  with the deskew filter transfer function 

exp 𝑗𝜋𝑓2 𝛼  , now “completes the square” in this complex exponential. We obtain 

 𝑆𝐼𝐹3 𝑓 = exp 𝑗2𝜋𝑓𝑐𝜏 exp  𝑗
𝜋

𝛼
 𝑓 − 𝛼𝜏 2 𝑆𝜖

∗ − 𝑓 − 𝛼𝜏  . (3.26) 

Since the right hand side of (3.26) depends on the frequency 𝑓 through 𝑓 − 𝛼𝜏 only, we can now use 

the sifting property of the Dirac delta function “in reverse” to express 𝑆𝐼𝐹3 𝑓  as a convolution 

product: 

 𝑆𝐼𝐹3 𝑓 =  exp 𝑗2𝜋𝑓𝑐𝜏 𝛿 𝑓 − 𝛼𝜏  ∗  exp  𝑗
𝜋

𝛼
𝑓2 𝑆𝜖

∗ −𝑓  . (3.27) 

This expression is similar to the one for 𝑆𝐼𝐹2, Eq. (3.23), with one important difference: the second 

factor of the convolution product no longer depends on the target transit time 𝜏.  

By the convolution theorem, the inverse Fourier transform of 𝑆𝐼𝐹3 𝑓 , 𝑠𝐼𝐹3 𝑡 , is given by 

 𝑠𝐼𝐹3 𝑡 = ℱ−1 exp 𝑗2𝜋𝑓𝑐𝜏 𝛿 𝑓 − 𝛼𝜏   𝑡 ∙ ℱ−1  exp  𝑗
𝜋

𝛼
𝑓2 𝑆𝜖

∗ −𝑓   𝑡 , (3.28) 

where ℱ−1 ∙  𝑡  denotes the inverse Fourier transform with time variable 𝑡 and the bullet (∙) 

denotes ordinary multiplication. The first term is a pure sinusoid with frequency 𝛼𝜏: 

 ℱ−1 exp 𝑗2𝜋𝑓𝑐𝜏 𝛿 𝑓 − 𝛼𝜏   𝑡 = exp 𝑗2𝜋 𝑓𝑐𝜏 + 𝛼𝜏𝑡  . (3.29) 

The second term in (3.28) represents the residual phase error after range deskew. Since 𝑆𝜖
∗ −𝑓  is 

the Fourier transform of 𝑠𝜖
∗ 𝑡 , this term can, using (3.6), immediately be seen to be the inverse 

Fresnel transform of the complex conjugate of the error function 𝑠𝜖 , i.e., 



32 
 

 
 

 

ℱ−1  exp 𝑗
𝜋

𝛼
𝑓2 𝑆𝜖

∗ −𝑓   𝑡 = 𝑠𝜖
∗ 𝑡 ∗ 𝑞−𝛼 𝑡  

=  𝑠𝜖 𝑡 ∗ 𝑞𝛼 𝑡  
∗ 

= 𝑠𝜖 ,𝛼
∗  𝑡 , 

(3.30) 

where the second lines follows from the identity 𝑞−𝛼 𝑡 = 𝑞𝛼
∗  𝑡 . Hence, the residual phase error 

function 𝑠𝜖 ,𝛼
∗  is the complex conjugate of the Fresnel transform of the error function 𝑠𝜖 .  

Inserting (3.29) and (3.30) into (3.28), we find 

 𝑠𝐼𝐹3 𝑡 = exp 𝑗2𝜋 𝑓𝑐𝜏 + 𝛼𝜏𝑡  𝑠𝜖 ,𝛼
∗  𝑡 . (3.31) 

Thus, after range deskew, the beat signal is an ideal sinusoid with frequency 𝛼𝜏 perturbed by a 

phase error term 𝑠𝜖 ,𝛼
∗  𝑡  which is independent of the target transit time 𝜏. 

3.4.4.2 Time-domain approach 

The same result (3.31) can also be derived by a time-domain approach. Taking (3.18) as our starting 

point and inserting the definition (3.1) of 𝑞−𝛼  in the convolution integral, we find 

 

𝑠𝐼𝐹3 𝑡 = 𝑠𝐼𝐹2 𝑡 ∗ 𝑞−𝛼  𝑡  

=  exp  𝑗2𝜋  𝑓𝑐𝜏 −
1

2
𝛼𝜏2 + 𝛼𝜏𝑢 − 𝜖 𝑢 − 𝜏   

∞

−∞
 𝑗𝛼 exp −𝑗𝜋𝛼 𝑡 − 𝑢 2 𝑑𝑢. 

(3.32) 

By “completing the square” in the arguments of the complex exponentials, (3.32) can be written as 

 𝑠𝐼𝐹3 𝑡 = exp 𝑗2𝜋 𝑓𝑐𝜏 + 𝛼𝜏𝑡   𝑗𝛼 exp −𝑗𝜋𝛼 𝑢 − 𝜏 − 𝑡 2 𝑠𝜖
∗ 𝑢 − 𝜏 𝑑𝑢

∞

−∞

, (3.33) 

or, performing the substitution 𝑣 = 𝑢 − 𝜏 and some manipulations, 

 

𝑠𝐼𝐹3 𝑡 = exp 𝑗2𝜋 𝑓𝑐𝜏 + 𝛼𝜏𝑡   𝑗𝛼 exp −𝑗𝜋𝛼 𝑡 − 𝑣 2 𝑠𝜖
∗ 𝑣 𝑑𝑣

∞

−∞

 

= exp 𝑗2𝜋 𝑓𝑐𝜏 + 𝛼𝜏𝑡    −𝑗𝛼 exp 𝑗𝜋𝛼 𝑡 − 𝑣 2 𝑠𝜖 𝑣 𝑑𝑣
∞

−∞

 

∗

 

≡ exp 𝑗2𝜋 𝑓𝑐𝜏 + 𝛼𝜏𝑡  𝑠𝜖 ,𝛼
∗  𝑡 , 

(3.34) 

where 𝑠𝜖 ,𝛼 𝑡  is the Fresnel transform of the error signal 𝑠𝜖 𝑡 , in accordance with the definition 

(3.4). This reproduces our result (3.31) obtained by the frequency-domain approach. 

3.4.5 Third step: removal of residual phase errors 

The last step of the phase error compensation is now clear: multiply by 𝑠𝐼𝐹3 by 𝑠𝜖 ,𝛼  to remove the 

residual phase errors: 

 
𝑠𝐼𝐹4 𝑡 = 𝑠𝐼𝐹3 𝑡 𝑠𝜖 ,𝛼 𝑡  

= exp 𝑗2𝜋 𝑓𝑐𝜏 + 𝛼𝜏𝑡  . 
(3.35) 

No error terms remain in the final, processed output, in which the residual video phase term −𝜋𝛼𝜏2 

has also been removed. Therefore, spectral analysis of 𝑠𝐼𝐹4 𝑡  will yield the ideal target response. 

To summarize, we have shown that if a temporally infinite chirp is perturbed by a general phase 

error term 𝑠𝜖 𝑡 = exp 𝑗2𝜋𝜖 𝑡  , then its corresponding IF signal 𝑠𝐼𝐹 𝑡  can be converted into an 

ideal response 𝑠𝐼𝐹4 𝑡  by three steps: removal of the transmitted phase errors by multiplication with 
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𝑠𝜖
∗ 𝑡 , range deskew by convolution with a quadratic phase filter 𝑞−𝛼 𝑡 , and finally, removal of the 

residual phase errors by multiplication with 𝑠𝜖 ,𝛼 𝑡 = 𝑠𝜖 𝑡 ∗ 𝑞𝛼 𝑡 . 

3.4.6 Comparison with Meta’s algorithm 

At this point, we note that our Equation (3.30) differs from the result obtained by Meta in his 

Equation (10) of (Meta, Hoogeboom et al. 2006) by the presence of a minus sign in the complex 

exponential. In other words, Meta uses an inverse Fresnel transform of the error function to obtain 

the correction factor for the residual phase errors, whereas our formulation uses the Fresnel 

transform15. As mentioned earlier, in a private correspondence with Mr. Meta he wrote that he 

unfortunately did not have time to look into this discrepancy, but acknowledge that one of his 

papers did contain a sign error. (This may, however, refer to the sign of the residual video phase in 

equation (3) of (Meta, Hoogeboom et al. 2006), which also contains a sign error). 

The author believes that the method described by Meta contains an error or typo, and that the 

algorithm described in this thesis is correct. The fact that the two approaches – in the time and 

frequency domain – to the derivation of the algorithm lead to the same result corroborates this 

statement.  

3.4.7 Narrowband IF signals: comparison with Burgos-Garcia’s algorithm 

In the algorithm described by Burgos-Garcia et al. (Burgos-Garcia, Castillo et al. 2003), the phase 

error 𝑠𝜖 𝑡  itself is used for the removal of the residual phase errors in the last step, instead of its 

Fresnel transform. This is based on their stated assumption that the IF signal is a narrowband signal, 

which is equivalent to saying that the error signal spectrum 𝑆𝜖 𝑓  contains only low frequencies. 

Here, we verify that our algorithm reduces to Burgos-Garcia’s algorithm in this case. Specifically, we 

will show that if 𝑆𝜖 𝑓  contains only low frequencies, then 

 𝑠𝜖 ,𝛼 𝑡 ≈ 𝑠𝜖 𝑡 . (3.36) 

That is, the Fresnel transform of the error function is approximately equal to the error function itself, 

in which case our correction function for obtaining 𝑠𝐼𝐹4 from 𝑠𝐼𝐹3 reduces to the one given by 

Burgos-Garcia et al. (Burgos-Garcia, Castillo et al. 2003). We will also derive a quantitative criterion 

for the validity of (3.36). 

To prove this statement, we adopt a frequency-domain approach. The Fourier transform 𝑆𝜖 ,𝛼 𝑓  of 

𝑠𝜖 ,𝛼 𝑡  is given by (cf. (3.1)) 

 

𝑆𝜖 ,𝛼 𝑓 = 𝑆𝜖 𝑓 𝑄𝛼 𝑓  

= 𝑆𝜖 𝑓 exp  −𝑗𝜋
𝑓2

𝛼
 . 

(3.37) 

Expanding 𝑄𝛼 𝑓  as a Taylor series, we obtain 

                                                             
15

 Note that whether the Fresnel transform or its inverse is applied at a certain stage depends on how we 
define the phase of the IF signal. If we choose 𝜙𝐼𝐹 ≡ 𝜙𝑇𝑋 − 𝜙𝑅𝑋  as we have here, then for positive transmitted 
chirps we obtain positive beat signals. However, we could have just as well chosen to define 𝜙𝑅𝑋 − 𝜙𝑇𝑋  as the 
phase of the IF signal, in which case Fresnel transforms would be replaced by inverse Fresnel transforms and 
vice versa. In either case, however, two different Fresnel transforms would be used in the algorithm, whereas 
Meta uses Fresnel transforms of the same sign for both steps.  
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 𝑆𝜖 ,𝛼 𝑓 = 𝑆𝜖 𝑓  1 − 𝑗𝜋
𝑓2

𝛼
+

𝜋2

2

𝑓4

𝛼2
− ⋯ . (3.38) 

The Fresnel transform of the error function, 𝑠𝜖 ,𝛼 𝑡  is obtained by taking the inverse Fourier 

transform of (3.38). The resulting series is called the moment expansion of the convolution product 

𝑠𝜖 ,𝛼 = 𝑠𝜖 ∗ 𝑞𝛼  (Papoulis 1977).  

Now, the first term in (3.38) inverse Fourier transforms to 𝑠𝜖 𝑡 , which leads to the desired result 

(3.36). Further, it can be seen that in order for the higher-order terms to have negligible 

contributions, 𝑆 𝑓  must be bandlimited and its maximum frequency component 𝑓𝑚𝑎𝑥  must be 

much smaller than  𝛼, i.e., 

 𝑓𝑚𝑎𝑥 ≪  𝛼. (3.39) 

If (3.39), then the higher-order terms in the square bracket expression of (3.38) will be much smaller 

than unity will also increase with increasing order, so that only the zero-order term needs to be 

maintained. Thus, if approximation (3.39) is satisfied, then our algorithm reduces to the one 

described by Burgos-Garcia et al. (Burgos-Garcia, Castillo et al. 2003). 

3.5 Application of the algorithm to finite chirps 
In the previous section, we derived the PEC algorithm for general phase errors 𝜖 𝑡  and temporally 

infinite chirps, and showed that it was exact in this case. The purpose of this section is to apply the 

algorithm to finite chirps.  

Actually, there are two varieties of the algorithm. One, discussed first in Section 3.5.1, is based on 

the algorithm for narrowband IF signals discussed in Section 3.4.7. It is shown that this ‘narrowband 

algorithm’ carries over directly to finite chirps provided the time-bandwidth product of the chirps is 

large (i.e., 𝐵𝑇 ≫ 1). The second variety of the algorithm holds for wideband IF signals, and is the 

analog of the algorithm described and proved in Sections 3.4.1-3.4.6, and is described in Section 

3.5.2. For the purpose of simplicity, we consider only sinusoidal phase errors (or, equivalently, 

sinusoidal frequency sweep non-linearity). 

 infinite chirps finite chirps 

wideband IF  Sections 3.4.1-3.4.6 Section 3.5.1 

narrowband IF Section 3.4.7 Section 3.5.2 
Table 2 Sections in which different varieties of the compensation algorithm are discussed. Of course, the compensation 
algorithms for finite chirps are the ones which are of practical interest. 

It is shown that the algorithm is still valid if the transmitted chirp has a large time-bandwidth 

product 𝐵𝑇.  

3.5.1 Compensation algorithm for narrowband IF signals 

Firstly, we attempt to carry over the derivation for temporally infinite chirps from Section 3.4 to a 

temporally finite one of the form 

 𝑠𝑇𝑋 𝑡 = rect  
𝑡

𝑇
 exp  𝑗2𝜋 𝑓𝑐𝑡 +

1

2
𝛼𝑡2 + 𝜖 𝑡   , (3.40) 
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where 𝑇 is the sweep width, 𝑓𝑐  the center frequency, 𝛼 the sweep rate, and 𝜖 𝑡  is a phase error 

term in cycles (the phase error in radian is 2𝜋𝜖 𝑡 ), The finite chirp (3.40) is thus the same as the 

infinite chirp (3.15) except for the pulse envelope rect 𝑡/𝑇 . 

In analogy with Section 2.1.2, the received signal is simply delayed by the target transit time 𝜏: 

 𝑠𝑅𝑋  𝑡 = rect  
𝑡 − 𝜏

𝑇
 exp  𝑗2𝜋 𝑓𝑐 𝑡 − 𝜏 +

1

2
𝛼 𝑡 − 𝜏 2 + 𝜖 𝑡 − 𝜏    (3.41) 

Carrying over the steps in Section 2.1.3, the dechirped or intermediate frequency (IF) signal is now 

 

𝑠𝐼𝐹 𝑡 = 𝑠𝑇𝑋 𝑡 𝑠𝑅𝑋
∗  𝑡  

= 𝑟 𝑡 exp  𝑗2𝜋 𝑓𝑐𝜏 + 𝛼𝜏𝑡 −
1

2
𝛼𝜏2 + 𝜖 𝑡 − 𝜖 𝑡 − 𝜏   , 

(3.42) 

where 𝑟 𝑡  is the IF signal envelope given by (2.10). 

We wish to apply the phase error compensation algorithm to the finite chirp. The first step, removal 

of the transmitted phase errors, can be applied just as in the temporally infinite case: 

 

𝑠𝐼𝐹2 𝑡 = 𝑠𝐼𝐹 𝑡 𝑠𝜖
∗ 𝑡  

= 𝑟 𝑡 exp  𝑗2𝜋 𝑓𝑐𝜏 + 𝛼𝜏𝑡 −
1

2
𝛼𝜏2 − 𝜖 𝑡 − 𝜏   . (3.43) 

Next, we apply the deskew filter to (3.43). Following the same steps as in the time-domain 

derivation (Section 3.4.4.2), we find 

 

𝑠𝐼𝐹3 𝑡 = exp 𝑗2𝜋 𝑓𝑐𝜏 + 𝛼𝜏𝑡   𝑗𝛼 𝑟 𝑢 exp −𝑗𝜋𝛼 𝑢 − 𝜏 − 𝑡 2 𝑠𝜖
∗ 𝑢 − 𝜏 𝑑𝑢

∞

−∞

 

= exp 𝑗2𝜋 𝑓𝑐𝜏 + 𝛼𝜏𝑡   𝑗𝛼 𝑟 𝑣 + 𝜏 exp −𝑗𝜋𝛼 𝑡 − 𝑣 2 𝑠𝜖
∗ 𝑣 

∞

−∞

𝑑𝑣, 
(3.44) 

the second line of which differs from (3.34) for the presence of a factor 𝑟 𝑣 + 𝜏  in the convolution 

integral. As a result, the integral is not independent of 𝜏 as in the case of temporally infinite chirps. 

We can still derive an approximate compensation algorithm, however, if we assume that the IF 

signal is narrowband as in Section 3.4.7. The integral in (3.44) can be seen to be the inverse Fresnel 

transform of the function 𝑟 𝑡 + 𝜏 𝑠𝜖
∗ 𝑡 : 

  𝑗𝛼 𝑟 𝑣 + 𝜏 exp −𝑗𝜋𝛼 𝑡 − 𝑣 2 𝑠𝜖
∗ 𝑣 

∞

−∞

𝑑𝑣 =  𝑟 𝑡 + 𝜏 𝑠𝜖
∗ 𝑡  ∗ 𝑞−𝛼 𝑡 . (3.45) 

In Section 3.4.7, the its was shown that Fresnel transform of a function is approximately equal to the 

function itself if the function contains only low frequencies, such that its maximum frequency 

component is much less than  𝛼. It is easily seen that the same holds for the inverse Fresnel 

transform. 

Let us consider the spectrum of the function 𝑟 𝑡 + 𝜏 𝑠𝜖
∗ 𝑡 . Since it is the convolution of the spectra 

of 𝑟 𝑡 + 𝜏  and 𝑠𝜖
∗ 𝑡 , its maximum frequency component will be the sum of the maximum 

frequency components of 𝑟 𝑡 + 𝜏  and 𝑠𝜖
∗ 𝑡 . Thus sum will be much less than 1/ 𝛼 if the 
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respective maximum frequency components of 𝑟 𝑡 + 𝜏  and 𝑠𝜖
∗ 𝑡  are individually much less than 

1/ 𝛼.  

Now, 𝑟 𝑡 + 𝜏  is a rectangular analysis window of duration 𝑇 − 𝜏, as illustrated in Figure 13(a). Its 

amplitude spectrum is a therefore a “sinc” function with peak-to-null distance 1  𝑇 − 𝜏  , as shown 

in Figure 13(b). Since 90% of the energy of the “sinc” function is contained in the first lobe, we can 

say that the maximum frequency contained in the spectrum 𝑅 𝑓  of 𝑟 𝑡  is of the order of 

1  𝑇 − 𝜏  ≈ 1/𝑇. (In practical applications, 𝜏 ≪ 𝑇). Therefore we obtain the requirement 

 
1

𝑇
≪  𝛼 (3.46) 

or, rearranging and squaring both sides, 

 𝛼𝑇2 ≫ 1. (3.47) 

The left hand side of (3.47) is simply equal to the time-bandwidth product 𝐵𝑇 of the temporally 

finite chirp. Hence, in addition to the requirement 𝑓𝑚𝑎𝑥 ≪  𝛼 on the phase error function 𝑠𝜖 , we 

also have the requirement that the time-bandwidth product of the chirp must be large: 𝐵𝑇 ≫ 1. 

 

Figure 13 (a) Plot of the IF pulse envelope 𝒓 𝒕 ; (b) Plot of the amplitude spectrum  𝑹 𝒇   of 𝒓 𝒕 . The maximum 
frequency component of 𝑹 𝒇  is seen to be of the order of 𝟏/𝑻. 

If the conditions (3.39) and (3.47) are fulfilled, then the stationary phase point of (3.44) is well 

approximated by 𝑣 ≈ 𝑡, so that, applying (3.7) to (3.44), 

𝑟 𝑡  

 𝑅 𝑓   

𝑓 1

𝑇 − 𝜏
 −

1

𝑇 − 𝜏
 

−
𝑇

2
 

𝑇

2
− 𝜏  

𝑡 

(b) 

(a) 
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 𝑠𝐼𝐹3 𝑡 ≈ 𝑟 𝑡 + 𝜏 exp 𝑗2𝜋 𝑓𝑐𝜏 + 𝛼𝜏𝑡  𝑠𝜖
∗ 𝑡 . (3.48) 

In this narrowband approximation, the compensated signal is obtained by multiplying 𝑠𝐼𝐹3 𝑡  by 

𝑠𝜖 𝑡  to remove the residual phase errors: 

 
𝑠𝐼𝐹4 𝑡 = 𝑠𝐼𝐹3 𝑡 𝑠𝜖 𝑡  

≈ 𝑟 𝑡 + 𝜏 exp 𝑗2𝜋 𝑓𝑐𝜏 + 𝛼𝜏𝑡  . (3.49) 

In short, the approximate compensation method for narrowband IF signals described in Section 3.4.7 

remains valid for finite chirps with large time-bandwidth products. 

3.5.2 Application to sinusoidal phase errors 

In the previous section, we essentially applied the stationary phase approximation to the deskew 

filtering convolution integral (3.45), and assumed that the stationary point was not affected by 

𝑟 𝑡 − 𝜏 𝑠𝜖
∗ 𝑡 . However, if 𝑠𝜖  contains sufficiently high frequencies, the stationary point will change. 

3.5.2.1 Characterization of the phase error function 

To illustrate this effect, we assume the phase error 𝜖 𝑡  is sinusoidal, and has the form (cf. Section 

2.2) 

 2𝜋𝜖 𝑡 = 𝐴𝑠𝑙 sin 2𝜋𝑓𝑠𝑙 𝑡 , (3.50) 

where 𝐴𝑠𝑙  is the phase error amplitude (in radian) and 𝑓𝑠𝑙  is the sidelobe ripple frequency. The 

corresponding error signal 𝑠𝜖 𝑡  is given by 

 𝑠𝜖 𝑡 ≡ exp 𝑗2𝜋𝜖 𝑡  = exp 𝑗𝐴𝑠𝑙 sin 2𝜋𝑓𝑠𝑙 𝑡  . (3.51) 

Since 𝑠𝜖 𝑡  is periodic with period 𝑇𝑠𝑙 ≡ 1/𝑓𝑠𝑙 , it can be expressed as a Fourier series. It turns out 

that (Carson 1922) 

 𝑠𝜖  𝑡 =  𝐽𝑛 𝐴𝑠𝑙 exp 𝑗2𝜋𝑛𝑓𝑠𝑙 𝑡 

∞

𝑛=−∞

, (3.52) 

where 𝐽𝑛 ∙  denotes the 𝑛th order Bessel function of the first kind, defined as 

 𝐽𝑛 𝑥 ≡
1

2𝜋
 𝑒−𝑗  𝑛𝑡−sin 𝑡 

𝜋

−𝜋

𝑑𝑡. (3.53) 

The first four Bessel functions are illustrated graphically in Figure 14. 
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Figure 14 Bessel functions. (After (Klauder 1960)). 

As seen from Figure 14, for 𝐴𝑠𝑙  small, we have the following approximations: 

 
𝐽0 𝐴𝑠𝑙 ≈ 1, 
𝐽1 𝐴𝑠𝑙 ≈ 𝐴𝑠𝑙 2 , 
𝐽𝑛 𝐴𝑠𝑙 ≈ 0, 𝑛 > 1. 

(3.54)(a) 
(3.54)(b) 
(3.54)(c) 

The approximations apply when (Klauder 1960) 

 𝐴𝑠𝑙 < 0.4 radians. (3.55) 
Further, using the identity 

 𝐽−𝑛 𝑥 =  −1 𝑛𝐽𝑛 𝑥 , (3.56) 

we find that the error function 𝑠𝜖 𝑡  can be approximated by 

 𝑠𝜖 𝑡 ≈ 1 +
𝐴𝑠𝑙

2
 exp 𝑗2𝜋𝑓𝑠𝑙 𝑡 − exp −𝑗2𝜋𝑓𝑠𝑙 𝑡  . (3.57) 

(Note that, similarly to Section 2.2, (3.57) can also be obtained by expanding the exponential in 

(3.51) as a MacLaurin series, retaining only the first two terms, and using Euler’s theorem to express 

the sine in terms of complex exponentials). In our subsequent calculations, we will assume a small-

amplitude phase error (i.e., 𝐴𝑠𝑙 ≪ 1) and invoke the approximation (3.57).  

3.5.2.2 Removal of the transmitted non-linearities 

In the first step of the phase error compensation method, the transmitted linearities 𝑠𝜖 𝑡  are 

removed: 

𝐽0 𝑥  

𝐽1 𝑥  

𝑥 2  

𝐽2 𝑥  

𝐽3 𝑥  

𝑥 
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𝑠𝐼𝐹2 𝑡 = 𝑠𝐼𝐹 𝑡 𝑠𝜖

∗ 𝑡  
= 𝑟 𝑡 𝑠𝐼𝐹 ,𝑙𝑖𝑛  𝑡 𝑠𝜖

∗ 𝑡 − 𝜏 . 
(3.58) 

Inserting the small-angle approximation (3.57) into (3.58), we obtain 

 
𝑠𝐼𝐹2 𝑡 = 𝑟 𝑡 𝑒

𝑗2𝜋 𝑓𝑐𝜏+𝛼𝜏𝑡 −
1

2
𝛼𝜏2  1 +

𝐴𝑠𝑙

2
 𝑒−𝑗2𝜋𝑓𝑠𝑙  𝑡−𝜏 − 𝑒𝑗2𝜋𝑓𝑠𝑙  𝑡−𝜏    

≡ 𝑠𝐼𝐹2,𝑚  𝑡 + 𝑠𝐼𝐹2,𝑙 𝑡 + 𝑠𝐼𝐹2,𝑢(𝑡), 
(3.59) 

where 𝑠𝐼𝐹2,𝑚  is the ‘main’ signal at the desired beat frequency 𝛼𝜏:  

 𝑠𝐼𝐹2,𝑚  𝑡 = 𝑟 𝑡 𝑒𝑗2𝜋 𝑓𝑐𝜏+𝛼𝜏𝑡 −
1

2
𝛼𝜏2 , (3.60) 

𝑠𝐼𝐹2,𝑙  is ‘lower sidelobe’ with amplitude 𝐴𝑠𝑙/2 at frequency 𝛼𝜏 − 𝑓𝑠𝑙 : 

 𝑠𝐼𝐹2,𝑙 𝑡 =
𝐴𝑠𝑙

2
𝑟 𝑡 𝑒

𝑗2𝜋  𝑓𝑐+𝑓𝑠𝑙  𝜏+ 𝛼𝜏−𝑓𝑠𝑙  𝑡−
1

2
𝛼𝜏2 

, (3.61) 

and 𝑠𝐼𝐹2,𝑢  is an ‘upper sidelobe’ with amplitude 𝐴𝑠𝑙/2 at frequency 𝛼𝜏 + 𝑓𝑠𝑙 : 

 𝑠𝐼𝐹2,𝑢 𝑡 = −
𝐴𝑠𝑙

2
𝑟 𝑡 𝑒

𝑗2𝜋  𝑓𝑐−𝑓𝑠𝑙  𝜏+ 𝛼𝜏+𝑓𝑠𝑙  𝑡−
1

2
𝛼𝜏2 

. (3.62) 

Thus, 𝑠𝐼𝐹2 is found to consist of a ‘main’ signal at the desired beat frequency 𝛼𝜏 with amplitude unity 

and two ‘paired echoes’ at 𝛼𝜏 ± 𝑓𝑠𝑙  with amplitude 𝐴𝑠𝑙/2.  

Note that 𝑠𝐼𝐹2 has sidelobes with amplitudes 𝐴𝑠𝑙/2, whereas the original IF signal 𝑠𝐼𝐹  has sidelobe 

levels 𝛽/2, where for long-wavelength phase errors (𝜔𝑠𝑙 𝜏 ≪ 1), 𝛽 = 𝐴𝑠𝑙𝜔𝑠𝑙𝜏. Thus, for long-

wavelength phase errors, the sidelobes in 𝑠𝐼𝐹2 are actually higher than those in 𝑠𝐼𝐹  by a factor 𝜔𝑠𝑙𝜏. 

(Of course, 𝑠𝐼𝐹2 is just an intermediate result; it is the sidelobe level in 𝑠𝐼𝐹4 that ‘counts’). 

3.5.2.3 Deskew filtering 

In the second step of the compensation algorithm, we pass 𝑠𝐼𝐹2 through a deskew filter to obtain a 

third beat signal, 𝑠𝐼𝐹3: 

 𝑠𝐼𝐹3 𝑡 = 𝑠𝐼𝐹2 𝑡 ∗ 𝑞−𝛼 𝑡 , (3.63) 

where (cf. (3.1)) 

 𝑞−𝛼  𝑡 =  𝑗𝛼 exp −𝑗𝜋𝛼𝑡2  (3.64) 

The output 𝑠𝐼𝐹3 𝑡  consists of three terms, 𝑠𝐼𝐹3,𝑚  𝑡 , 𝑠𝐼𝐹3,𝑙 𝑡 , and 𝑠𝐼𝐹3,𝑢 𝑡  corresponding to the 

three terms 𝑠𝐼𝐹2,𝑚  𝑡 , 𝑠𝐼𝐹2,𝑙 𝑡 , and 𝑠𝐼𝐹2,𝑢 𝑡  of the input. We proceed to calculate these respective 

terms, invoking the stationary phase approximation. 

The output corresponding to the ‘main’ IF signal is 

 

𝑠𝐼𝐹3,𝑚  𝑡 =  𝑗𝛼𝑒𝑗2𝜋 𝑓𝑐𝜏−
1

2
𝛼𝜏2  𝑟 𝑡 − 𝑡′  𝑒𝑗2𝜋𝛼𝜏  𝑡−𝑡 ′  𝑒−𝑗𝜋𝛼 𝑡 ′

2

𝑑𝑡′
∞

−∞

 

=  𝑗𝛼𝑒𝑗2𝜋 𝑓𝑐𝜏+𝛼𝜏𝑡   𝑟 𝑡 − 𝑡′  𝑒−𝑗𝜋𝛼  𝑡 ′ +𝜏 
2

𝑑𝑡′
∞

−∞

 

≈ 𝑟 𝑡 + 𝜏 𝑒𝑗2𝜋 𝑓𝑐𝜏+𝛼𝜏𝑡  , 

(3.65) 
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where the approximation in the last step,  

  𝑗𝛼𝑒−𝑗𝜋𝛼 𝑡2
≈ 𝛿 𝑡 , (3.66) 

is valid for chirps with large time-bandwidth product, 

 𝛼𝑇2 ≫ 1, (3.67) 

and is justified by the same reasoning as in Section 3.5.1. (Note, however, that in this case we do not 

have the additional condition 𝑓𝑚𝑎𝑥 ≪  𝛼, since there is no error function 𝑠𝜖  in the integrand of the 

second line of (3.65)). Thus, comparing (3.65) with (3.61), we see that the deskew filter shifts the 

envelope 𝑟 𝑡  of 𝑠𝐼𝐹2 𝑡  backwards in time by 𝜏 seconds and imparts a phase shift of 𝜋𝛼𝜏2 radians 

to its carrier. 

In a similar fashion, we obtain for the deskew-filtered lower sidelobe 

𝑠𝐼𝐹3,𝑙 𝑡 =
𝐴𝑠𝑙

2
𝑒
𝑗2𝜋  𝑓𝑐+𝑓𝑠𝑙  𝜏−

1

2
𝛼𝜏2 

 𝑗𝛼 𝑟 𝑡 − 𝑡′ 𝑒𝑗2𝜋 𝛼𝜏−𝑓𝑠𝑙   𝑡−𝑡 ′  𝑒−𝑗𝜋𝛼 𝑡 ′
2

∞

−∞

𝑑𝑡′  

=
𝐴𝑠𝑙

2
𝑒𝑗2𝜋 𝑓𝑐𝜏+ 𝛼𝜏−𝑓𝑠𝑙  𝑡  𝑗𝛼 𝑟 𝑡 − 𝑡′ 𝑒−𝑗𝜋𝛼  𝑡 ′

2
+2 𝜏−

𝑓𝑠𝑙
𝛼

 𝑡 ′ +𝜏2−2
𝑓𝑠𝑙
𝛼

𝜏 𝑑𝑡′
∞

−∞

; 

‘Completing the square’ in the complex exponential in the integrand, we find 

 𝑠𝐼𝐹3,𝑙 𝑡 =
𝐴𝑠𝑙

2
𝑒
𝑗2𝜋 𝑓𝑐𝜏+ 𝛼𝜏−𝑓𝑠𝑙  𝑡+

1

2
∙
𝑓𝑠𝑙

2

𝛼
 
 𝑗𝛼 𝑟 𝑡 − 𝑡′  𝑒−𝑗𝜋𝛼  𝑡 ′ +𝜏−

𝑓𝑠𝑙
𝛼

 
2

𝑑𝑡′
∞

−∞

. (3.68) 

Applying the stationary phase approximation to (3.68) 

 𝑠𝐼𝐹3,𝑙 𝑡 ≈
𝐴𝑠𝑙

2
𝑟  𝑡 + 𝜏 −

𝑓𝑠𝑙
𝛼

 𝑒
𝑗2𝜋 𝑓𝑐𝜏+ 𝛼𝜏−𝑓𝑠𝑙  𝑡+

1

2
∙
𝑓𝑠𝑙

2

𝛼
 

. (3.69) 

Thus, comparing (3.69) with (3.61), we see that the deskew filter shifts envelope 𝑟 𝑡  of the lower 

sidelobe of 𝑠𝐼𝐹2,𝑙 𝑡  backwards in time by 𝜏 − 𝑓𝑠𝑙/𝛼 seconds (𝑓𝑠𝑙/𝛼 seconds less than the ‘main’ 

signal) and acquires a phase shift of 𝜋 𝛼𝜏 − 𝑓𝑠𝑙  
2 𝛼  radians to its carrier. 

In an analogous fashion, we find for the upper sidelobe 

 𝑠𝐼𝐹3,𝑢 𝑡 ≈ −
𝐴𝑠𝑙

2
𝑟  𝑡 + 𝜏 +

𝑓𝑠𝑙
𝛼

 𝑒
𝑗2𝜋 𝑓𝑐𝜏+ 𝛼𝜏+𝑓𝑠𝑙  𝑡+

1

2
∙
𝑓𝑠𝑙

2

𝛼
 

. (3.70) 

Thus, comparing (3.70) with (3.62), we see that the deskew filter shifts envelope 𝑟 𝑡  of the lower 

sidelobe of 𝑠𝐼𝐹2,𝑙 𝑡  backwards in time by 𝜏 + 𝑓𝑠𝑙/𝛼 seconds (𝑓𝑠𝑙/𝛼 seconds more than the ‘main’ 

signal) and acquires a phase shift of 𝜋 𝛼𝜏 + 𝑓𝑠𝑙  
2/𝛼 radians to its carrier. 

Finally, adding the contributions (3.65), (3.69), and (3.70), we find 

Finally, adding the contributions (3.65), (3.69), and (3.70), we find 
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𝑠𝐼𝐹3 𝑡 = 𝑠𝐼𝐹3,𝑚  𝑡 + 𝑠𝐼𝐹3,𝑙 𝑡 + 𝑠𝐼𝐹3,𝑢 𝑡  

= 𝑟 𝑡 + 𝜏 𝑒𝑗2𝜋 𝑓𝑐𝜏+𝛼𝜏𝑡  +
𝐴𝑠𝑙

2
𝑟  𝑡 + 𝜏 −

𝑓𝑠𝑙
𝛼

 𝑒
𝑗2𝜋 𝑓𝑐𝜏+ 𝛼𝜏−𝑓𝑠𝑙  𝑡+

1

2

𝑓𝑠𝑙
2

𝛼
 

−
𝐴𝑠𝑙

2
𝑟  𝑡 + 𝜏 +

𝑓𝑠𝑙
𝛼

 𝑒
𝑗2𝜋 𝑓𝑐𝜏+ 𝛼𝜏+𝑓𝑠𝑙  𝑡+

1

2

𝑓𝑠𝑙
2

𝛼
 

. 

(3.71) 

Thus, the deskew-filtered signal 𝑠𝐼𝐹3 𝑡  comprises three terms, each offset slightly in both frequency 

an time. 

It is interesting to reflect on how the terms in (3.71) an be derived in a simpler fashion. Recall that 

the transfer function of the deskew filter is given by 

 𝑄−𝛼 𝑓 = exp  𝑗
𝜋

𝛼
𝑓2 ≡ exp 𝑗Φ−α 𝑓  . (3.72) 

The envelopes, 𝑟 𝑡 , of 𝑠𝐼𝐹2,𝑚  𝑡 , 𝑠𝐼𝐹2,𝑙 𝑡 , and 𝑠𝐼𝐹2,𝑢 𝑡  are delayed by the filter group delay, 

 𝑡𝑔 ,−𝛼 = −
1

2𝜋

𝑑Φ−𝛼

𝑑𝑓
= −

𝑓

𝛼
, (3.73) 

evaluated at their respective frequencies 𝛼𝜏, 𝛼𝜏 − 𝑓𝑠𝑙 , and 𝛼𝜏 + 𝑓𝑠𝑙 . As for the complex exponential 

phase factors of 𝑠𝐼𝐹2,𝑚  𝑡 , 𝑠𝐼𝐹2,𝑙 𝑡 , and 𝑠𝐼𝐹2,𝑢 𝑡 , these are multiplied by the deskew filter 

frequency response 𝑄−𝛼 𝑓  evaluated at these frequencies. 

3.5.2.4 Restriction to an interval not affected by the finite nature of the chirp 

On the interval  −𝑇 2 + 𝑓𝑠𝑙 𝛼 , 𝑇 2 − 𝜏 − 𝑓𝑠𝑙 𝛼  , the envelopes of the three terms in (3.71) are all 

equal to unity, and we have 

 

𝑠𝐼𝐹3 𝑡 = 𝑒𝑗2𝜋 𝑓𝑐𝜏+𝛼𝜏𝑡   1 +
𝐴𝑠𝑙

2
𝑒𝑗𝜋

𝑓𝑠𝑙
2

𝛼  𝑒−𝑗2𝜋𝑓𝑠𝑙 𝑡 − 𝑒𝑗2𝜋𝑓𝑠𝑙 𝑡   

= 𝑒𝑗2𝜋 𝑓𝑐𝜏+𝛼𝜏𝑡   1 − 𝑗𝐴𝑠𝑙𝑒
𝑗𝜋

𝑓𝑠𝑙
2

𝛼 sin 2𝜋𝑓𝑠𝑙 𝑡  , −
𝑇

2
+

𝑓𝑠𝑙
𝛼

< 𝑡 <
𝑇

2
− 𝜏 −

𝑓𝑠𝑙
𝛼

. 

(3.74) 

Thus on this limited interval the signal is (to within the stationary phase approximation) the same as 

if the chirp were temporally infinite. 

3.5.2.5 Removal of the residual phase errors 

In order to perform the next step of the phase error compensation algorithm, we compute 

 𝑠𝜖 ,𝛼(𝑡) = 𝑠𝜖(𝑡) ∗ 𝑞𝛼(𝑡), (3.75) 

where 𝛼 𝑡  is the ‘skew’ filter with transfer function and frequency response  

 𝑞𝛼 𝑡 =  −𝑗𝛼 exp 𝑗𝜋𝛼𝑡2 ↔ exp  −𝑗
𝜋

𝛼
𝑓2 = 𝑄𝛼 𝑓 . (3.76) 

Note that in the sign of 𝛼 is reversed with respect to the transfer function 𝑞−𝛼 𝑡  of the ‘deskew’ 

filter. 

With the error function given by (3.57), it can be shown that 
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𝑠𝜖 ,𝛼 𝑡 = 1 +

𝐴𝑠𝑙

2
𝑒−𝑗𝜋

𝑓𝑠𝑙
2

𝛼  𝑒𝑗2𝜋𝑓𝑠𝑙 𝑡 − 𝑒−𝑗2𝜋𝑓𝑠𝑙 𝑡  

= 1 + 𝑗𝐴𝑠𝑙𝑒
−𝑗𝜋

𝑓𝑠𝑙
2

𝛼 sin 2𝜋𝑓𝑠𝑙 𝑡 . 

(3.77) 

Multiplying (3.74) and (3.77) and neglecting terms in 𝐴𝑠𝑙
2 , we find 

 

𝑠𝐼𝐹4 𝑡 = 𝑒𝑗2𝜋 𝑓𝑐𝜏+𝛼𝜏𝑡   1 + 𝑗𝐴𝑠𝑙𝑒
−𝑗𝜋

𝑓𝑠𝑙
2

𝛼 sin 2𝜋𝑓𝑠𝑙 𝑡 − 𝑗𝐴𝑠𝑙𝑒
𝑗𝜋

𝑓𝑠𝑙
2

𝛼 sin 2𝜋𝑓𝑠𝑙 𝑡  ,

−
𝑇

2
+

𝑓𝑠𝑙
𝛼

< 𝑡 <
𝑇

2
− 𝜏 −

𝑓𝑠𝑙
𝛼

. 

(3.78) 

Now, provided that 

 𝑓𝑠𝑙 ≪  𝛼 (3.79) 

the exponential terms in the square brackets in (3.78) will be close to unity, whence the second and 

third terms in square brackets in (3.78) and we obtain 

 𝑠𝐼𝐹4 𝑡 ≈ 𝑒𝑗2𝜋 𝑓𝑐𝜏+𝛼𝜏𝑡  , −
𝑇

2
+

𝑓𝑠𝑙
𝛼

< 𝑡 <
𝑇

2
− 𝜏 −

𝑓𝑠𝑙
𝛼

. (3.80) 

It is important to note that the interval in (3.80) on which the compensated output is obtained is 

shorter, by 2𝑓𝑠𝑙/𝛼, than the interval on which it would be observed if there were no sinusoidal phase 

error. Physically, this is because deskew filter applies different group delays to each original ‘paired 

echo’, so that the ‘paired echoes’ at the output of the filter have less temporal overlap. This effect 

could be of importance in our simulations, as we discuss in Section 4.5.  
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4 Simulation 
In this chapter, we simulate a signal processor implementing the phase error compensation 

algorithm in order to verify the results derived in Chapter 3. The key part of the algorithm is the 

deskew filter. Following Eichel et al. (Eichel 2005), we implement the filter in the frequency domain 

using the frequency sampling method.  

This chapter is organized as follows. In Section 4.1, we give an overview of the digital 

implementation of the phase error compensation algorithm. In Section 4.2, we describe the 

implementation of the digital deskew filter, and test it against a known exact solution. Finally, in 

Section .., we present the full algorithm. 

4.1 Digital implementation of the phase error compensation method 
The digital implementation of the phase error is illustrated in Figure 15. The input to the algorithm is 

are samples of the coherently detected intermediate frequency (IF) signal, which appears as a finite 

array of complex numbers, 𝑠𝐼𝐹 𝑛 . This array is multiplied, element-by-element, with the sampled 

values of the complex conjugate of the error function, 𝑠𝜖
∗ 𝑛 , to remove phase errors emanating 

from the transmitted signal. The thus obtained array 𝑠𝐼𝐹2 𝑛  is passed through a digital deskew filter, 

described in Section 4.2, to obtain an output array 𝑠𝐼𝐹3 𝑛  in which the residual phase errors from 

the received signal are time-aligned. Finally, 𝑠𝐼𝐹3 𝑛  is multiplied element-by-element with the 

residual phase error function 𝑠𝜖 ,𝛼  𝑛  to remove the residual phase errors. 

 

Figure 15 Digital implementation of the phase error compensation method. 

The crucial part in the algorithm is the digital deskew filter to time align the phase errors in the 

received echoes. Because it is a dispersive filter, the output is translated and ‘spread’ in time. This 

calls for a different approach to the digital filter design than that used for frequency-selective finite 

impulse response (FIR) filters commonly discussed in the literature (Oppenheim, Schafer et al. 1999), 

which can be made to have linear phase.  

4.2 Implementation of the deskew filter by the frequency sampling 

method 
We implement the digital deskew filter using the frequency sampling method. This includes the 

steps of performing the FFT on the deramped data, multiplying the result of the FFT on a sample-by-

sample basis with a pre-computed and pre-stored deskew vector, and performing the inverse FFT. 

An artifact that commonly occurs in frequency sampling is time-domain aliasing, which is analogous 

to the frequency-domain aliasing phenomenon in spectral estimation. In order to prevent time-

domain aliasing from corrupting the filter output, the frequency sample spacing must be chosen 

𝑠𝐼𝐹3 𝑛  𝑠𝐼𝐹2 𝑛  digital 

deskew filter 
𝑠𝐼𝐹 𝑛  𝑠𝐼𝐹4 

𝑠𝜖
∗ 𝑛  𝑠𝜖 ,𝛼  𝑛  
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sufficiently small. This, in turn, requires that the FFT on the deramped data be performed after 

padding it with a sufficient number of zeroes. 

The organization of this section is as follows. In Subsection 4.2.1, we discuss the phenomenon of 

time-domain aliasing in a general setting. In Subsection 4.2.2, we quantify the number of FFT points 

required to prevent time-domain aliasing in a digital deskew filter implementation. Subsequently, 

we describe the FFT implementation of the steps described in Section 4.1: approximation of the 

spectrum of the input signal (Subsection 4.2.3), multiplication of the thus obtained approximation by 

the exact deskew filter frequency response (Subsection 4.2.4), and using the thus obtained 

frequency samples to approximate the filter output on a desired interval (Subsection 4.2.5). Finally, 

in Subsection , we put the results of Subsections  4.2.3-4.2.5 together to  

4.2.1 The frequency sampling method and time-domain aliasing 

Consider the ideal case that a continuous-time input16 𝑥 𝑡  is passed through a deskew filter with 

frequency response 𝑄−𝛼 𝑓 . The continuous-time output 𝑦 𝑡  in this case is given by the inverse 

Fourier transform of 𝑋 𝑓 𝑄−𝛼 𝑓 , i.e., 

 𝑦 𝑡 =  𝑋 𝑓 𝑄−𝛼 𝑓 𝑒
𝑗2𝜋𝑓𝑡 𝑑𝑓

∞

−∞

. (4.1) 

Now suppose we approximate this integral by a Riemann sum to obtain an approximate output 𝑦  𝑡 : 

 𝑦  𝑡 ≡ Δ𝑓  𝑋 𝑘Δ𝑓 𝑄−𝛼 𝑘Δ𝑓 exp 𝑗2𝜋𝑘Δ𝑓𝑡 

∞

𝑘=−∞

, (4.2) 

where Δ𝑓 is the frequency sample spacing. For Δ𝑓 sufficiently small, we would expect 𝑦 𝑡 ≈ 𝑦  𝑡 ; 

we derive the form of the error presently. 

The Riemann sum (4.2) can be expressed in the form of an inverse Fourier transform as follows:  

 𝑦  𝑡 =   Δ𝑓  𝛿 𝑓 − 𝑘Δ𝑓 

∞

𝑘=−∞

 𝑋 𝑓 𝑄−𝛼 𝑓 𝑒
𝑗2𝜋𝑓𝑡 𝑑𝑓

∞

−∞

. (4.3) 

The expression between square brackets in (4.3) represents a train of Dirac delta functions in the 

frequency domain spaced Δ𝑓 Hertz apart, each with a gain of Δ𝑓 Hertz. The multiplication of the 

convolution kernel 𝑋 𝑓 𝑄−𝛼 𝑓  by this impulse train effects the conversion of the inverse Fourier 

integral (4.1) into the Reimann sum (4.2).  

It can be shown (Bracewell 1986) that the inverse Fourier transform of the expression in square 

brackets in (4.3) is a train of Dirac delta functions in the time domain with spacing 1/Δ𝑓 seconds and 

a gain of unity: 

                                                             
16 For the sake of generality and brevity, we use 𝑥 and 𝑦 here to denote the deskew filter input and output, 
respectively. (In the implementation of the phase error compensation algorithm, the deskew filter is actually 
used twice: once per sweep (‘on-line’) to compute 𝑠𝐼𝐹3  from 𝑠𝐼𝐹2, and once beforehand (‘off-line’) to compute 
𝑠𝜖 ,−𝛼  from 𝑠𝜖 . The general output 𝑦 and input 𝑥 thus represents either one of these pair of signals). 
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 Δ𝑓  𝛿 𝑓 − 𝑘Δ𝑓 

∞

𝑘=−∞

↔  𝛿  𝑡 −
𝑛

Δ𝑓
 

∞

𝑛=−∞

. (4.4) 

Thus, applying the convolution theorem to (4.3) and substituting (4.1) and (4.4), the Riemann sum 

𝑦  𝑡  can be expressed as 

 𝑦  𝑡 = 𝑦 𝑡 ∗  𝛿  𝑡 −
𝑛

Δ𝑓
 

∞

𝑛=−∞

=  𝑦 𝑡 −
𝑛

Δ𝑓
 

∞

𝑛=−∞

, (4.5) 

where we have used the “sifting property” of the Dirac delta function in the second step (Bracewell 

1986). Hence, the output will consist of a periodic repetition of the desired output 𝑦 𝑡  with period 

1/Δ𝑓. It follows that in order to prevent the aliases from overlapping each other, the duration of 

𝑦 𝑡  must be smaller than 1/Δ𝑓. 

4.2.2 Number of FFT points required to prevent time-domain aliasing 

Now suppose that the input 𝑥 𝑡  is sampled at a rate 𝑓𝑠 , and 𝑁 complex samples are collected over a 

period 𝑇𝑥 = 𝑁/𝑓𝑠. Suppose that these samples are used to approximate the spectrum 𝑋 𝑓  of 𝑥 𝑡  

on the Nyquist interval  −𝑓𝑠/2, 𝑓𝑠/2  . 

Consider the effect of applying the deskew filter with frequency response 𝑄−𝛼 𝑓  to the input 𝑥 𝑡 . 

As mentioned earlier, the filter has a group delay of 𝑡𝑔 ,𝛼 𝑓 = −𝑓/𝛼. Therefore, the frequency 

component at 𝑓𝑠/2 will experience a delay of −𝑓𝑠/2𝛼, whereas the one at −𝑓𝑠/2 will experience one 

of 𝑓𝑠/2𝛼. This difference will cause the input pulse to widen by the amount 𝑓𝑠/𝛼. So the width of the 

output will be  

 𝑇𝑦 = 𝑇𝑥 +
𝑓𝑠
𝛼

. (4.6) 

Now, if we extend the FFT operation from 𝑁 to 𝑁𝐹𝐹𝑇  points, then the frequency spacing Δ𝑓 will be 

 Δ𝑓 =
𝑁

𝑁𝐹𝐹𝑇𝑇𝑥
. (4.7) 

In order to prevent the time-domain aliases from overlapping each other, we must have 

𝑇𝑦 <
1

Δ𝑓
 

or, inserting (4.6) and (4.7) and rearranging, 

 𝑁𝐹𝐹𝑇 > 𝑁 1 +
𝑓𝑠

𝛼𝑇𝑥
 . (4.8) 

Using the fact that 𝑇𝑥 = 𝑁/𝑓𝑠, (4.8) can alternatively be expressed as 

 𝑁𝐹𝐹𝑇 > 𝑁 +
𝑓𝑠

2

𝛼
. (4.9) 

Therefore, in order to prevent time-domain aliasing, the number of FFT points 𝑁𝐹𝐹𝑇  must be chosen 

larger than the sum of the number of samples 𝑁 and the quantity 𝑓𝑠
2/𝛼, where 𝑓𝑠  is the sampling 

frequency and 𝛼 the chirp rate of the quadratic phase filter. (This criterion can be relaxed somewhat 
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if the input signal is oversampled, i.e., does not contain frequency components all the way up to its 

Nyquist frequency). 

4.2.3 Approximating the input signal spectrum 

As indicated in Section 4.1, the first step in the frequency sampling implementation of the deskew 

filter is to approximate the spectrum 𝑋 𝑓  of the input signal 𝑥 𝑡 .  

 

Regarding the input as time-limited to the sweep interval  −𝑇/2, 𝑇/2 , we want to find the 

spectrum of a time-limited function 𝑥 𝑡 : 

 𝑋 𝑓 =  𝑥 𝑡 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡
𝑇/2

−𝑇/2

. (4.10) 

Defining the grid points 

 𝑡𝑛 = −
𝑇

2
+ 𝑛𝑇𝑠 , 𝑛 = 0,1, … , 𝑁 − 1 (4.11) 

where  

 𝑇𝑠 ≡
𝑇

𝑁
 (4.12) 

is the sampling period, we approximate the integral in (4.10) as a left-hand Riemann sum17, to obtain 

an approximation 𝑋  𝑓  of the exact spectrum 𝑋 𝑓 : 

 

𝑋  𝑓 ≡ 𝑇𝑠  𝑥 𝑡𝑛  𝑒
−𝑗2𝜋𝑓 𝑡𝑛

𝑁−1

𝑛=0

 

= 𝑇𝑠 −1 𝑓𝑇  𝑥 𝑡𝑛 𝑒
−𝑗2𝜋𝑓𝑛

𝑇

𝑁

𝑁−1

𝑛=0

, 

(4.13) 

where we have substituted (4.11) to obtain the second line.  

The function 𝑋  𝑓  given by (4.13) is at this point still a continuous function of frequency, 𝑓. A digital 

signal processor, however, can only output an array of sampled values of this function, due to its 

discrete nature. We choose to evaluate 𝑋  𝑓  on the following array of points: 

 𝑓𝑘 = 𝑓𝑠  −
1

2
+

𝑘

𝑁𝐹𝐹𝑇
 , 𝑘 = 0,1, … , 𝑁𝐹𝐹𝑇 − 1, (4.14) 

where 

                                                             
17 The Riemann sum 𝑋  𝑓  given by (4.13) is only a first-order accurate approximation of the exact signal 

spectrum 𝑋 𝑓 . Several methods for obtaining higher-order accuracy have been proposed in the literature 

(see, for example, (Press, Teukolsky et al. 2007)). Although higher-order accuracy would be desirable in a real-

time implementation of the PEC algorithm, in this thesis we are interested in providing a “proof of principle”, 

and therefore we have chosen to use the simpler, first-order accurate formula (4.13). 
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 𝑓𝑠 ≡
𝑁

𝑇
=

1

𝑇𝑠
 (4.15) 

is the sampling frequency. The array (4.14) thus represents a partition of the Nyquist interval 

 −𝑓𝑠/2, 𝑓𝑠/2  into 𝑁𝐹𝐹𝑇  sub-intervals, so that the frequency sample spacing is 𝑓𝑠/𝑁𝐹𝐹𝑇  as required. 

Evaluating the approximation 𝑋 (𝑓) given by (4.13) on the grid points 𝑓𝑘  given by (4.14), we find 

 𝑋  𝑓𝑘 =
𝑇

𝑁
 −1 𝑓𝑘𝑇   −1 𝑛𝑥 𝑡𝑛 exp  −

𝑗2𝜋𝑘𝑛

𝑁𝐹𝐹𝑇
 

𝑁−1

𝑛=0

. (4.16) 

For 𝑘 = 0,1, … , 𝑁𝐹𝐹𝑇 − 1, the sum in (4.16) this has the standard form of an 𝑁𝐹𝐹𝑇 -point FFT as 

implemented by MATLAB®, for example.  

Mathematical symbol MATLAB symbol 

𝑋  𝑓𝑘 , 𝑘 = 0,1, … , 𝑁𝐹𝐹𝑇 − 1  X 

𝑥 𝑡𝑛 , 𝑛 = 0,1, … , 𝑁 − 1  x 

𝑓𝑘 , 𝑘 = 0,1, … , 𝑁𝐹𝐹𝑇 − 1  f 

 0,1, … , 𝑁 − 1   n 

 0,1, … , 𝑁𝐹𝐹𝑇 − 1   k 

𝑁, 𝑁𝐹𝐹𝑇   N, NFFT 

Table 3 Mathematical expressions and their corresponding MATLAB symbols. 

Identifying the mathematical expressions in (4.16) with MATLAB symbols as in Table 3, the spectrum 

𝑋 𝑓  can be approximated at the points 𝑓𝑘  given by (4.14) by the following line of MATLAB code: 

 
X=T/N*(-1).^(f*T).*fft(x.*(-1).^n,NFFT); (4.17) 

A short explanation of the code is as follows. In MATLAB, the symbols “.*” and “.^” denote the array 

(i.e., element-by-element) multiplication and array power operations, respectively. Further, the 

operation fft(s,NFFT) on an array s produces the NFFT-point discrete Fourier transform (DFT) 

of that array. In our case in which the FFT length is larger than the array length (NFFT>N), this 

means that the so the input array s is padded with NFFT-N trailing zeroes prior to performing the 

DFT. 

4.2.4 Multiplication by the exact deskew filter frequency response 

Thus, the digital spectrum 𝑋  𝑓  of the input signal is approximated at discrete points 𝑓𝑘  on the 

Nyquist interval  −𝑓𝑠/2, 𝑓𝑠/2 . This is multiplied by the deskew filter transfer function evaluated at 

these points to obtain the output 𝑌  𝑓𝑘 : 

 

𝑌  𝑓𝑘 = 𝑋  𝑓𝑘 𝑄−𝛼 𝑓𝑘  

= 𝑋 𝑘 exp  𝑗
𝜋

𝛼
𝑓𝑘

2 . 
(4.18) 

This gives an approximation of the output on the Nyquist interval  −𝑓𝑠/2, 𝑓𝑠/2 . 

In MATLAB code, this is implemented as follows: 

 
Y=X.*exp(1j*pi*f.^2/alpha); (4.19) 

Here fs = N/T is the sampling rate, and alpha (‘mathematical’ symbol: 𝛼) is the chirp rate of the 

deskew filter. 
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4.2.5 Inverse Fourier transform of the spectrum of the output 

Next, we wish to take the inverse Fourier transform of 𝑌  𝑓  to obtain an approximate output 𝑦 (𝑡): 

 𝑦  𝑡 =  𝑌  𝑓 exp 𝑗2𝜋𝑓𝑡 𝑑𝑓
𝑓𝑠/2

−𝑓𝑠/2

. (4.20) 

Approximating this integral by a Riemann sum, we obtain an approximation 𝑦  𝑡  of 𝑦  𝑡 : 

 𝑦  𝑡 =
𝑓𝑠

𝑁𝐹𝐹𝑇
 𝑌 𝑓𝑘 exp 𝑗2𝜋𝑓𝑘 𝑡 

𝑁𝐹𝐹𝑇 −1

𝑘=0

. (4.21) 

Inserting the expression for the 𝑓𝑘 , equation (4.14), into (4.21) yields 

 𝑦  𝑡 =
𝑓𝑠 −1 𝑓𝑠𝑡

𝑁𝐹𝐹𝑇
 𝑌 𝑓𝑘 exp  

𝑗2𝜋𝑘𝑓𝑠𝑡

𝑁𝐹𝐹𝑇
 

𝑁𝐹𝐹𝑇−1

𝑘=0

 (4.22) 

Evaluating 𝑦  𝑡  at the time points 𝑡𝑛  given by (4.11), and again assuming that 𝑁 contains more than 

one prime factor of 2, we find 

 𝑦  𝑡𝑛 = 𝑓𝑠 −1 −𝑓𝑠𝑡𝑛  
1

𝑁𝐹𝐹𝑇
  −1 

𝑘𝑁

𝑁𝐹𝐹𝑇 𝑌 𝑓𝑘 exp  𝑗2𝜋
𝑘𝑛

𝑁𝐹𝐹𝑇
 

𝑁𝐹𝐹𝑇 −1

𝑘=0

 . (4.23) 

The term between square brackets has the MATLAB form of a 𝑁𝐹𝐹𝑇 -point inverse DFT. Thus, the 

filter output for 𝑛 = 0, … , 𝑁 − 1 is obtained by the following MATLAB code: 

 

y=fs*(-1).^(fs*t).*ifft((-1).^(k*N/NFFT).*Y,NFFT); 

y=y(1:N); 
(4.24) 

The first line in (4.24) computes an 𝑁𝐹𝐹𝑇 -point inverse DFT. The first 𝑁 points of this represent the 

desired output. 

4.2.6 Implementation  of the deskew filter as a MATLAB function 

The results of the previous subsections can be combined to a concise MATLAB code. After combining 

the steps described above, the output of the digital deskew filter with chirp rate 𝛼 on input sampled 

at a rate 𝑓𝑠  is found to depend on the dimensionless parameter 

 
Α =

𝛼

𝑓𝑠
2 . (4.25) 

A listing of our MATLAB function, deskew, is given below in nine lines of code. 

function y=deskew(x,A) 1 
N=length(x);                          2 
NFFT=2^nextpow2(N+1/abs(A));         3 
n=0:N-1;                                 4 
k=0:NFFT-1;                              5 
X=exp(1j*pi*N*(-1/2+k/NFFT)).*fft(x.*(-1).^n,NFFT);          6 
Y=X.*exp(1j*pi*(-1/2+k/NFFT).^2/A);                          7 
y=exp(1j*pi*(N/2-k)).*ifft(Y.*exp(-1j*pi*k*N/NFFT),NFFT);    8 
y=y(1:N); 9 
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A short explanation of the code is as follows. In line 3, we choose the number of FFT points as the 

next power of 2 larger than 𝑁 + 𝑓𝑠
2 𝛼 = 𝑁 + 1/𝐴, as specified in Subsection 4.2.2. Lines 4 and 5 

define the discrete-time indices n and k corresponding to the time samples 𝑡𝑛  and frequency 

samples 𝑓𝑘 , respectively. Line 6 is an implementation of (4.16) in which a factor 𝑇𝑠  has been omitted, 

since this factor later cancels against a factor 𝑓𝑠  which would be required in line 8. Line 7 is an 

implementation of (4.19), in which the factor 𝑓𝑠  in the definition of the 𝑓𝑘  is combined with the 

factor 1/𝛼 to 1/Α. Lines 8 and 9 are an implementation of (4.24), where a pre-factor 𝑓𝑠  has been 

omitted as explained earlier. 

4.2.7 Test of the deskew filter for a known, exact output 

We have tested the deskew filter for the case in which the IF signal is the linear IF signal, not 

perturbed by phase errors: 

 𝑠𝐼𝐹 𝑡 = 𝑟 𝑡 exp  𝑗2𝜋  𝑓𝑐𝜏 −
1

2
𝛼𝜏2 + 𝛼𝜏𝑡   (4.26) 

The deskew filter output in this case is 

 𝑠𝐼𝐹 𝑡 = exp 𝑗2𝜋 𝑓𝑐𝜏 + 𝛼𝜏𝑡   
𝑗

2
 𝑍∗   2𝛼  𝑡 +

𝑇

2
  − 𝑍∗   2𝛼  𝑡 −

𝑇

2
+ 𝜏   . (4.27) 

A comparison of these two functions is shown below; in Figure 16, we plot the real part, and in 

Figure 17 the imaginary part. 

 

Figure 16 Real part of the input (blue line) and deskew filter output (red, green lines) for a time-bandwidth product of 
100. 
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Figure 17 Imaginary part of the input (blue line) and deskew filter output (red, green lines) for a time-bandwidth product 
of 100. 

As seen from Figures 16 and17, the input signal, which is a sinusoidal pulse with frequency 𝛼𝜏 

residing on the interval  −𝑇 2 + 𝜏, 𝑇 2  , is approximately shifted backward in time by 𝜏 by the 

deskew filter, so that the output is a sinusoidal pulse residing on the interval  −𝑇 2 , 𝑇 2 − 𝜏 . (This 

qualitative description actually becomes more accurate as the time-bandwidth product 𝐵𝑇 is 

increased; here we have chosen a relatively low value of 𝐵𝑇, however, for ease of visualization). 

Further, it is evident that the simulated output agrees well with the exact output.  

Thus, we have designed and validated the digital deskew filter. We proceed to apply it in a full 

simulation of the phase error compensation algorithm. We first describe in Section 4.3 how the 

simulation is implemented, and then present simulation results for cases of interest in Section 4.4. 

4.3 Simulation of the phase error compensation algorithm 
We have applied the ideas outlined above in a full MATLAB simulation of the phase error 

compensation algorithm. The MATLAB code for the simulation is given and explained in the 

Appendix. In this section, we enumerate the parameters used the simulation and present a flow 

diagram of the calculations. 

The parameters used for the simulation are tabulated in Table 418. In our application, 𝑁 = 12,500 

samples are collected at a rate of 𝑓𝑠  = 25 MHz during each sweep repetition interval 𝑇 = 500 μs. This 

sample rate 𝑓𝑠  is more than twice the maximum beat frequency, 𝑓𝑏 ,𝑚𝑎𝑥  = 10 MHz, as required by the 

Nyquist sampling criterion (see Section 2.1.4). The first 2,500 samples, which correspond to the 

                                                             
18 We have chosen parameters similar to those of the first commercial FMCW radar, the PILOT (Philips 

Indetectable Low Output Transceiver), which was first marketed in 1988 by the then Philips’ subsidiaries 

Signaal in the Netherlands and Bofors in Sweden (Pace 2009). Our FFT size, however, is much larger than in the 

original PILOT radar, where a 1,024-point FFT was used. 
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initial 𝜏𝑚𝑎𝑥  of each sweep period and are affected by ‘fly-backs’ from the previous sweep, are set to 

zero, so that the number of processed samples is 𝑁𝑝  = 10,000. The processed samples are padded 

with zeroes up to a FFT length of 215 = 32,768 to obtain fine frequency resolution19.  

Parameter Symbol / Formula Value Unit 

RF center frequency 𝑓𝑐  10 GHz 

 RF wavelength 𝜆𝑐  30 mm 

Frequency excursion, peak-to-peak 𝐵 50 MHz 

 Ideal time resolution 1/𝐵 20  ns 

 Ideal range resolution 𝑐/2𝐵 3 m 

Sweep repetition interval (SRI) 𝑇 500 μs 

 Sweep repetition frequency (SRF) 1/𝑇 2 kHz 

 Sweep rate 𝛼 100 GHz/s 

 Beat frequency / range ratio 2𝐵/𝑐𝑇 6.67 kHz/m 

 Range / beat frequency ratio 𝑐𝑇/2𝐵 0.15 m/kHz 

Maximum (‘instrumented’) range 𝑅𝑚𝑎𝑥  15 km 

 Maximum transit time 𝜏𝑚𝑎𝑥  100 μs 

 Maximum beat frequency 𝑓𝑏 ,𝑚𝑎𝑥  10 MHz 

 Minimum beat frequency interval 𝑇 − 𝜏𝑚𝑎𝑥  400 μs 

 Minimum beat frequency spectral width 1  𝑇 − 𝜏𝑚𝑎𝑥    2.5 kHz 

 Minimum range resolution 𝑐𝑇  2𝐵 𝑇 − 𝜏𝑚𝑎𝑥     3.75 m 

ADC sample rate 𝑓𝑠  25 MHz 

 ADC sampling period 𝑇𝑠  40 ns 

 ADC sampling interval 𝑇𝐴𝐷  400 μs 

 Number of samples collected per sweep 𝑁 12,500 samples 

 Number of processed samples per sweep 𝑁𝑝  10,000 samples 

FFT length 𝑁𝐹𝐹𝑇  32,768 samples 

 FFT frequency sample spacing 𝑓𝑠 𝑁𝐹𝐹𝑇  0.763 kHz 

 FFT range sample spacing  𝑐𝑇 2𝐵   𝑓𝑠 𝑁𝐹𝐹𝑇   1.14 m 

Window Hamming   

 Window frequency resolution (6 dB)  1.81 sample 

 Window frequency resolution (6 dB)  4.53 kHz 

 Window range resolution (6 dB)  6.79 m 
Table 4 FMCW radar parameters. (After (Piper 1993)). 

In Figure 18, we show a flow diagram of the calculations performed in the simulation. The input to 

the simulation is the “uncompensated” beat signal 𝑠𝐼𝐹(𝑡) as given by equation (3.42), which is 

affected by specified phase errors 𝜖 𝑡 . The simulation calculates four output spectra; from left to 

right at the bottom of Figure 18, these are:  

1) A “wideband” compensated beat signal spectrum 𝑆𝐼𝐹4,𝑤 , which follows the algorithm by 

Meta et al. (Meta, Hoogeboom et al. 2007) described in Sections 3.4.3-3.4.5; 

2) A “narrowband” compensated beat signal spectrum 𝑆𝐼𝐹4,𝑤  which follows the algorithm of 

Burgos-Garcia et al. (Burgos-Garcia, Castillo et al. 2003) described in Section 3.4.7; 

3) An “uncompensated” beat signal spectrum 𝑆𝐼𝐹  calculated by the observed beat signal 𝑠𝐼𝐹  

which is affected by phase errors; and 

                                                             
19

 We have chosen to evaluate the final range FFT using the same number of points as required for the deskew 
filtering by equation (4.9). 
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4) An “ideal” beat signal spectrum 𝑆𝐼𝐹,𝑙𝑖𝑛  calculated from the ideal beat signal 𝑠𝐼𝐹 ,𝑙𝑖𝑛  given by 

(3.13). 

The beat signals are windowed prior to performing the range FFT. Since the deskew filter effectively 

translates the beat signal in time, different window functions are used for the compensated signals 

(𝑠𝐼𝐹4,𝑤  and 𝑠𝐼𝐹4,𝑛 ) and the uncompensated signals (𝑠𝐼𝐹  and 𝑠𝐼𝐹,𝑑 ). The uncompensated signals use a 

Hamming window 𝑤𝐼𝐹  with support on the interval  −𝑇 2 + 𝜏, 𝑇 2  . The compensated signals, 

however, use a Hamming window 𝑤𝐼𝐹4 shifted 𝜏 seconds to the left, which thus has support on the 

interval  −𝑇 2 , 𝑇 2 − 𝜏 . 

 

Figure 18 Flow diagram of the simulation. The crossed circles represent multiplications, the “deskew” blocks represent 
deskew filtering, and the “𝓕” blocks represent (approximate) Fourier transformation. The remaining blocks represent 
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names of arrays at various stages of the calculation. The colors of the bottom boxes correspond to the colors of the plots 
generated by the simulation (see Section 4.4).  

An important aspect of the flow diagram shown above is that we have applied the deskew (not 

skew) filter to the function 𝑠𝜖  in order to obtain remove the residual phase errors in the last step of 

the “wideband” compensation algorithm. This corresponds to the algorithm as originally formulated 

by Meta (Meta, Hoogeboom et al. 2007), and was found to give better results in our simulations for 

sinusoidal phase errors in Section 4.4.1. However, it is at odds with our analytical derivations in 

Chapter 3. We return to this point in Section 4.5. (Note that if the phase error function contains only 

low frequencies such that (3.39) is satisfied, then either variety of the algorithm will work, since in 

this case 𝑠𝜖 ,𝛼 ≈ 𝑠𝜖 ,−𝛼 ≈ 𝑠𝜖  by virtue of (3.8)). 

In the MATLAB code implementing the simulation, the phase error 𝜖 𝑡  is specified on a separate 

line as an in-line function. By changing this in-line function, we can apply the phase error 

compensation algorithms to any phase error we like. The results for a number of phase errors are 

described presently. 

4.4 Results for cases of interest 
The MATLAB code described in Section 4.3 was used to simulate the performance of both the 

“wideband” and the “narrowband” compensation algorithm for a number of cases of interest. 

4.4.1 Sinusoidal phase errors 

We have performed simulations using a sinusoidal phase error of the form (cf. (2.18)) 

 2𝜋𝜖 𝑡 = 𝐴𝑠𝑙 sin 2𝜋𝑓𝑠𝑙 𝑡 , (4.28) 

where 𝐴𝑠𝑙  represents the peak phase error (in radian), and 𝑓𝑠𝑙  the sidelobe ripple frequency. The 

performance of the compensation algorithms depends on these parameters, as we show presently. 

4.4.1.1 Low-frequency phase error (𝒇𝒔𝒍 ≪  𝜶) 

First, we investigate the case in which the 𝐴𝑠𝑙 ≪ 1 and 𝑓𝑠𝑙 ≪  𝛼. From the first condition, it can be 

inferred from narrowband modulation theory that the maximum frequency component in 𝑆𝜖 𝑓  is 

approximately 𝑓𝑚𝑎𝑥 ≈ 𝑓𝑠𝑙 . Thus, the second condition, 𝑓𝑠𝑙 ≪  𝛼, amounts to condition (3.39), and 

we the “narrowband” compensation algorithm to be effective as well as the “wideband” one. We 

also note that for the parameters of our simulation, the time-bandwidth product is 𝐵𝑇 = 25,000 ≫

1, so that (3.47) for all cases simulated here.  

With 𝛼 = 100 GHz/s as specified in Table 4,  𝛼 ≈ 316 kHz. We have chosen 𝑓𝑠𝑙  well below that, at 

𝑓𝑠𝑙 = 4 kHz, and have chosen 𝐴𝑠𝑙  = 0.1. The simulated range profiles with these parameters are 

shown in Error! Reference source not found..   
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Figure 19 Simulated range profiles for a sinusoidal phase error with 𝑨𝒔𝒍 = 0.1 radians and 𝒇𝒔𝒍 = 4 kHz. The beat frequency 
has been converted to range in accordance with the relation 𝑹 =  𝒄𝑻 𝟐𝑩  𝒇𝒃. The power spectrum is expressed in 
decibel relative to the peak signal power obtainable without phase errors or windowing. 

As seen from Figure 19, the “uncompensated” or “raw” IF signal (blue line) perturbed by the 

sinusoidal phase errors exhibits two ‘paired echoes’ spaced  𝑐𝑇 2𝐵  𝑓𝑠𝑙  = 6 meters from the desired 

target beat signal at 𝑅 = 15 km. The left paired echo is not resolved, whereas the right one does 

produce a distinct peak which could be misinterpreted as a second target. (The lack of symmetry of 

the target response is due to the range-dependent phase terms, which could different degrees of 

spectral interference with the main lobe for both sidelobes). The “narrowband” (red line) and 

“wideband” (magenta line) compensated signals, however, agree very well with the ideal target 

response (green dashed line) and each other. 

4.4.1.2 High-frequency phase error (𝒇𝒔𝒍 ≅  𝜶) 

We have repeated the above simulation for the same phase error amplitude, 𝐴𝑠𝑙 = 0.1 radian, but a 

higher sidelobe ripple frequency: 𝑓𝑠𝑙 = 0.2 𝛼 ≈ 63 kHz. The resulting simulated range profile is 

shown below in Figure 20. 
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Figure 20 Simulated range profile with 𝑨𝒔𝒍 = 𝟎. 𝟏 and 𝒇𝒔𝒍 = 𝟎.𝟐 𝜶 ≈ 𝟔𝟑 𝐤𝐇𝐳.  

As seen from Figure 20, for 𝑓𝑠𝑙 = 0.2 𝛼, the “narrowband” method of Burgos-Garcia et al. (Burgos-

Garcia, Castillo et al. 2003) (red line) is still somewhat effective in reducing sidelobe levels, but is far 

less effective than the “wideband” method of Meta (Meta, Hoogeboom et al. 2007). This can be 

explained by the fact that condition (3.39) is “starting to get” violated. 

4.4.2 Power-law phase errors 

In Section 2.2.1.2, we maintained that a linear phase error compensation algorithm which worked 

for sinusoidal phase errors should work for general phase errors as well. In this section, we perform 

simulations for power-law phase errors which confirm this statement. 

4.4.2.1 Cubic phase error 

We have simulated the phase error 

 2𝜋𝜖 𝑡 = 𝑘3𝑡
3  (4.29) 

with 𝑘3 = 10  𝜏𝑇2  = 4 × 1011  Hz/s2. The resulting simulated range profile is shown in Figure 21. 
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Figure 21 Simulated range profile for a cubic phase error. 

The cubic phase error in the transmitted signal leads to a quadratic phase error in the beat signal – in 

other words, the beat signal is chirped. As discussed by Soumekh (Soumekh 1999), this leads to a 

symmetric ‘spreading’ of the range profile energy. It is seen from Figure 21, both the “wideband” 

and the “narrowband” compensation method are very effective in removing the phase errors. 

4.4.2.2 Quartic phase errors 

We have simulated the phase error 

 2𝜋𝜖 𝑡 = 𝑘4𝑡
4  (4.30) 

with 𝑘4 = 10  𝜏𝑇3  = 8 × 1014  Hz/s3. The resulting simulated range profile is shown in Figure 21. 

14.94 14.96 14.98 15 15.02 15.04 15.06
-80

-70

-60

-50

-40

-30

-20

-10

0

Range (km)

P
o
w

e
r 

s
p
e
c
tr

u
m

 (
d
B

)

 

 

uncompensated

compensated (narrowband)

compensated (wideband)

ideal



57 
 

 
 

 

 
Figure 22 Simulated range profile with quartic phase errors. 

A quartic phase error in the transmitted signal gives rise to a cubic phase error in the beat signal. 

Thus, the beat signal is nonlinearly chirped, which gives rise to the asymmetric point target response 

shown above (Soumekh 1999). Both the “wideband” and “narrowband” compensations are again 

effective in this case. 

4.5 Concluding remarks 
To summarize, we have simulated both the “wideband” and “narrowband” phase error 

compensation algorithms, and found that “narrowband” algorithm provides effective compensation 

of low-frequency phase errors, while the “wideband” algorithm also works well for high-frequency 

phase errors. 

In our implementation of the “wideband” algorithm, the suppression of ‘paired echoes’ was found to 

be better if we applied a deskew filter to the phase error function 𝑠𝜖 , instead of a skew filter as 

derived in Section 3.4, which is apparently at odds with our analytical development in Chapter 3.  

This does not necessarily imply that our derivation is incorrect, however. As shown in Section 3.5.2, 

if we apply a deskew filter to a time-limited phase-modulated signal (in our case, 𝑠𝐼𝐹2), then due to 

the different group delays of the ‘paired echoes’, the interval on which the deskew filter output 

matches that for a temporally infinite phase-modulated signal is shorter than the duration of the 

original signal. In other words, “edges” of the original interval are “contaminated” by artifacts due to 

the time-limited nature of 𝑠𝐼𝐹2. However, in our simulations, we have not taken into account this 
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effect, and have performed the spectral analysis over the entire sweep period in all cases20. Further 

work must be carried out to ascertain what the effect of the “contaminated edges” is. 

  

                                                             
20

 In any case, the portion affected by this “contamination” is small; for example, for the parameters in the 

example in Section 4.4.1.2 where 𝑓𝑠𝑙 = 0.2 𝛼, the relative group delay of the “upper and lower sidelobes” 
relative to the main target signal is only 𝑓𝑠𝑙 /𝛼 ≈ 0.63 μs, or 0.13% of the sweep period. However, the 
amplitudes of the remaining sidelobes after applying the phase error compensation algorithm with a skew 
filter in the last step is of the same order of magnitude. 
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5 Estimation of the phase errors 
In the development of the phase error compensation algorithm, it was assumed that the phase error 

term 𝜖 𝑡  was known. In this section, we overcome this assumption and describe how to estimate 

𝜖 𝑡  directly from the deramped data. 

An outline of this chapter is as follows. In Section 5.1, we review a known method of determining the 

error function using a reference delay. In Section 5.2, propose a novel method for determining the 

phase error function from deramped signals, and discuss its salient properties. 

5.1 Review of a known method using a reference delay 
One way to measure the phase error in linear frequency-modulated (LFM) radar systems, first 

described by Withers (Withers 1966) and also applied by Meta (Meta 2007), uses a reference 

response with delay 𝜏𝑟𝑒𝑓 , which is usually implemented using a delay line. The IF signal 

corresponding to this reference response is 

 𝑠𝐼𝐹 𝑡 = exp  𝑗2𝜋 𝑓𝑐𝜏𝑟𝑒𝑓 + 𝛼𝜏𝑟𝑒𝑓 𝑡 −
1

2
𝛼𝜏𝑟𝑒𝑓

2 + 𝜖 𝑡 − 𝜖 𝑡 − 𝜏𝑟𝑒𝑓    . (4.31) 

For small delays, we can approximate the phase error in the IF signal as 

 𝜖 𝑡 − 𝜖 𝑡 − 𝜏𝑟𝑒𝑓  ≈ 𝜏𝑟𝑒𝑓 𝜖
′  𝑡 , (4.32) 

where 𝜖′  𝑡  denotes the derivative of 𝜖 𝑡  with respect to time. This relation is also the basis of the 

resampling methods to compensate frequency sweep non-linearity (Vossiek, Kerssenbrock et al. 

1998); in this case, however, we require (4.32) to hold only for the reference delay 𝜏𝑟𝑒𝑓 , and not for 

every 𝜏 in the range window of interest.  

We thus obtain an estimate, 𝜖 ′ 𝑡 , for 𝜖′  𝑡  as follows: 

 𝜖 ′ 𝑡 =
𝜖 𝑡 − 𝜖 𝑡 − 𝜏𝑟𝑒𝑓  

𝜏𝑟𝑒𝑓
. (4.33) 

Integrating (4.33), we find a phase error estimate 

 𝜖  𝑡 =  𝜖 ′ 𝑢 
𝑡

𝑑𝑢 + constant. (4.34) 

The constant phase is of no consequence for the power spectrum of the beat signal. 

A problem with the ‘reference delay’ method is that we have two conflicting requirements. On one 

hand, we would like to choose 𝜏𝑟𝑒𝑓  small, so that (4.32) yields a good approximation of the 

derivative 𝜖′  𝑡 . On the other hand, however, if 𝜏𝑟𝑒𝑓  is small, the differential phase error 𝜖 𝑡 −

𝜖 𝑡 − 𝜏𝑟𝑒𝑓   is small, and could easily be swamped by stochastic phase errors. It would seem 

advantageous to deduce 𝜖 𝑡  by observing the beat signals for larger target delays, when the effects 

of the phase errors are more conspicuous. Moreover, it seems intuitive that there is something to be 

learned from how the phase errors develop with increasing 𝜏. 

5.2 Proposal of a novel method using ambiguity functions 
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In this section, we propose a novel method for estimating the phase error in the transmit signal 𝜖 𝑡  

from the deramped data observed for different ranges.  

If we consider the beat signal spectrum 𝑆𝐼𝐹 𝑓  to be a function of 𝜏 as well, we can write it in the 

form 

 𝑆𝐼𝐹 𝜏, 𝑓 =  𝑠𝑇𝑋 𝑡 𝑠𝑇𝑋
∗  𝑡 − 𝜏 

∞

−∞

exp −𝑗2𝜋𝑓𝑡 𝑑𝑡. (4.35) 

Now, suppose that 𝑠𝑇𝑋 𝑡  can be expressed as follows: 

 𝑠𝑇𝑋 𝑡 = 𝑢 𝑡 exp 𝑗2𝜋𝑓𝑐𝑡 , (4.36) 

where 𝑢 𝑡  is called the waveform of the transmitted signal and 𝑓𝑐  its carrier frequency. Then (4.35) 

has the form 

 𝑆𝐼𝐹 𝜏, 𝑓 = exp 𝑗2𝜋𝑓𝑐𝜏  𝑢 𝑡 𝑢∗ 𝑡 − 𝜏 exp −𝑗2𝜋𝑓𝑡 𝑑𝑡
∞

−∞

. (4.37) 

Defining 𝜒 𝜏, 𝑓 = 𝑆𝐼𝐹 𝜏, 𝑓 exp −𝑗2𝜋𝑓𝑐𝜏 , this can be written as 

 𝜒 𝜏, 𝑓 =  𝑢 𝑡 𝑢∗ 𝑡 − 𝜏 exp −𝑗2𝜋𝑓𝑡 𝑑𝑡
∞

−∞

. (4.38) 

The function 𝜒 𝜏, 𝑓  is called the ambiguity function of 𝑢 𝑡 . Thus, the problem of determining the 

transmitted signal 𝑠𝑇𝑋 𝑡  from the spectrum of the IF signal, 𝑆𝐼𝐹 𝜏, 𝑓 , is equivalent to that of 

determining a function 𝑢 𝑡  from its ambiguity function 𝜒 𝜏, 𝑓 .  

The latter problem was discussed by Wilcox (Wilcox 1991). An important aspect here, though, is that 

not all functions of two variables (𝜏 and 𝑓) are ambiguity functions: the ambiguity functions are a 

subspace of the space of all functions of two variables. (In fact, Wilcox shows that a basis for the 

subspace of ambiguity functions 𝜒 𝜏, 𝑓  can be obtained from the cross-ambiguity functions of a 

family of orthogonal basis functions for the space of waveforms, 𝑢 𝑡 ). Wilcox also describes a 

method to project a given function of two variables onto the space of ambiguity functions. 

Now, consider a series of measurements 𝑆𝐼𝐹 𝜏, 𝑓  from which we want to determine the waveform 

𝑢 𝑡  – and hence, the phase error function 𝑠𝜖 𝑡 . Suppose the measurements are perturbed by 

other errors, which as stochastic errors or errors incurred in the receive signal chain, which are not 

attributable to an error in the transmitted frequency sweep. These “other” phase errors generally do 

not give rise to ambiguity functions, and will be “filtered out” when the measured data 𝑆𝐼𝐹 𝜏, 𝑓  is 

projected onto the space of ambiguity functions in order to determine 𝑢 𝑡 . Hence, we expect the 

method of Wilcox to more robust in the presence of other sources of error. 

Needless to say, more simulation work must be done to validate the ideas laid out above, which 

unfortunately was no longer available within the period set for this thesis work. The author hopes to 

continue this line of research after graduation. 
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6 Conclusions and discussion 
The nonlinearity of the frequency sweep is a limiting factor for the performance of linear FMCW 

radars in many applications. In this thesis, we have studied methods devised by Burgos-Garcia et al. 

(Burgos-Garcia, Castillo et al. 2003) and Meta et al. (Meta, Hoogeboom et al. 2007) to compensate 

for such nonlinearities by digital post-processing of the deramped signal.  

To summarize, in this thesis we make the following accomplishments and contributions to 

knowledge: 

 We derive the phase error compensation algorithm for “wideband” signals, and find a 

discrepancy with the algorithm as originally presented by Meta (Meta, Hoogeboom et al. 

2007) in that in our method, the phase error function 𝑠𝜖 𝑡  is “skewed” (Fresnel 

transformed), to obtain the correction function to remove the residual phase errors in the 

last step, whereas in Meta’s algorithm 𝑠𝜖 𝑡  is “deskewed” (inverse Fresnel transformed) for 

that purpose. We derive our version of the algorithm in two different ways, one set in the 

frequency domain and one in the time domain, and check it for a small-angle sinusoidal 

phase error. 

 

 We show that the algorithm of Meta, which is applicable for wideband IF signals, reduces to 

the algorithm of Burgos-Garcia in the case of narrowband IF signals. 

 

 We simulate both algorithms, and shown that they are effective within their underlying 

assumptions. 

 

 We propose a novel method for determining phase errors which, by projecting the IF signal 

spectrum observed at different ranges onto the space of ambiguity functions for the 

waveform of the transmitted signal, should provide more robust measurement of the 

transmitted sweep nonlinearities in the presence of other sources of error. 

The findings of this thesis could have major technological implications. The existence of these 

algorithms means that transmitted frequency sweeps need not necessarily be linear, which in turn 

means that all the hardware techniques devised for generating linear sweeps could become 

obsolete.  

Removing the requirement that sweeps must be linear also has major implications for electronic 

warfare. If an intercept receiver knows what type of radar signals to expect (for example, linear 

chirps), it can devise processing methods to increase its processing gain, reducing the processing 

gain advantage of the FMCW radar and thereby jeopardizing the radar’s tactical advantage. If the 

transmitted sweep no longer has to be linear, however, the ability of intercept receivers to achieve 

such processing gain is reduced, and the low probability of intercept (LPI) property of FMCW radars 

maintained. 
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7 Appendix: MATLAB simulation code  
We have implemented the phase error compensation in MATLAB. Below, we present a listing of our 

code. 

fc=10e9;                % center frequency (10 GHz) 1 
B=50e6;                 % chirp bandwidth (50 MHz) 2 
T=500e-6;               % chirp period (500 us) 3 
alpha=B/T;              % chirp rate (100 GHz/s) 4 
  5 
R=15e3;                 % target range 15 km 6 
c=3e8;                  % speed of light 7 
tau=2*R/c;              % target transit time 100 us 8 
fb=alpha*tau;           % beat frequency 10 MHz 9 
  10 
fs=25e6;                % sampling frequency 25 MHz 11 
Ts=1/fs;                % sampling period (40 ns) 12 
N=T/Ts;                 % number of samples per sweep (12,500) 13 
Np=(T-tau)/Ts;          % number of processed samples per sweep (10,000) 14 
  15 
A=alpha/fs^2;           % dimensionless chirp parameter 16 
  17 
% Phase error function 18 
Asl=0.5;                    % phase error amplitude (radian) 19 
fsl=.1*sqrt(alpha);         % phase error frequency 20 
e=@(t) Asl*cos(2*pi*fsl*t); % phase error 21 
se=@(t) exp(1j*e(t));       % error function 22 
  23 
% Generation of the beat signal 24 
phiTX=@(t) 2*pi*(fc*t+1/2*alpha*t.^2)+e(t);         % transmit signal phase 25 
phib=@(t) phiTX(t)-phiTX(t-tau);                    % beat signal phase 26 
r=@(t) rectpuls((t-tau/2)/(T-tau));                 % observation window 27 
sb=@(t) r(t).*exp(1j*phib(t));                      % complex beat signal 28 
  29 
% Time and frequency grids 30 
n=0:N-1;                            % time index 31 
t=(-N/2+n)*Ts;                      % time grid 32 
NFFT=2^nextpow2(N+1/A);             % choose the number of FFT points same 33 
as for deskew filter processing 34 
k=0:NFFT-1;                         % frequency index 35 
f=(-NFFT/2+k)/NFFT*fs;              % frequency grid 36 
  37 
% Phase error compensation algorithm 38 
sIF=sb(t);                          % sampled beat signal 39 
sIF2=sIF.*conj(se(t));              % remove transmitted phase errors sIF2 40 
sIF3=deskew(sIF2,A);                % deskew filter to obtain sIF3 41 
sIF4n=sIF3.*se(t);                  % sIF4 (narrowband IF) 42 
sea=deskew(se(t),A);                % residual phase error function 43 
sIF4w=sIF3.*sea;                    % sIF4 (wideband IF) 44 
  45 
% Calculate spectra 46 
sIFd=@(t) r(t).*exp(1j*2*pi*(fc*tau-1/2*alpha*tau^2+alpha*tau*t));  % ideal 47 
beat signal 48 
wIF=[zeros(1,N-Np) hamming(Np,'periodic')'];                        % 49 
window for sIF 50 
SIFd=T/N*exp(1j*pi*N*(-1/2+k/NFFT)).*fft(wIF.*sIFd(t).*(-1).^n,NFFT);   % 51 
SIF (ideal) 52 
SIF=T/N*exp(1j*pi*N*(-1/2+k/NFFT)).*fft(wIF.*sIF.*(-1).^n,NFFT);        % 53 
SIF (observed) 54 
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wIF4=[hamming(Np,'periodic')' zeros(1,N-Np)];                       % 55 
window for sIF4 56 
SIF4n=T/N*(-1).^(N*(-1/2+k/NFFT)).*fft(wIF4.*sIF4n.*(-1).^n,NFFT);  % SIF4 57 
(narrowband IF) 58 
SIF4w=T/N*(-1).^(N*(-1/2+k/NFFT)).*fft(wIF4.*sIF4w.*(-1).^n,NFFT);  % SIF4 59 
(wideband IF) 60 
  61 
% Convert to normalized decibel scale 62 
SIFd_dB=20*log10(abs(SIFd)/(T-tau)); 63 
SIF_dB=20*log10(abs(SIF)/(T-tau)); 64 
SIF4n_dB=20*log10(abs(SIF4n)/(T-tau)); 65 
SIF4w_dB=20*log10(abs(SIF4w)/(T-tau)); 66 
  67 
% Plot results 68 
figure(1); hold on; grid on 69 
fMHz=f/1e6;                                 % frequency in MHz  70 
plot(fMHz,SIFd_dB,'g')                    % ideal signal 71 
plot(fMHz,SIF_dB)                           % original IF signal 72 
plot(fMHz,SIF4n_dB,'k')                     % compensated signal 73 
(narrowband approximation) 74 
plot(fMHz,SIF4w_dB,'m:')                   % compensated signal (wideband 75 
approximation) 76 
scale=1.5*fsl*T;                            % frequency offset for axis 77 
limits 78 
xlim([fb-scale/T fb+scale/T]/1e6)           % frequency axis limits 79 
xlabel('frequency (MHz)'); ylabel('amplitude spectrum (dB)') 80 
legend('s_I_F (ideal)','s_I_F','s_I_F_4 (narrowband IF method)','s_I_F_4 81 
(wideband IF method)') 82 
ylim([-80 0])83 

A short explanation of the code follows. In lines 1-14, we define the parameters of the simulation in 

accordance with Table 4 in Section 4.3. In line 16, we define the dimensionless chirp parameter 

Α = 𝛼 𝑓𝑠
2  in accordance with equation (4.25). In lines 19-22, we define the phase error function. In 

lines 25-28, we generate the beat signal using the chirp parameters and phase error function defined 

above. In lines 39-59, we implement the flow diagram depicted in Figure 18. Finally, in lines 63-83, 

we plot the results.  

 


