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Preface 

This internship assignment was carried out at TU Delft and was a compulsory 

module as a part of my Master studies in Mechanical Engineering at the 

University of Twente. This internship was carried out for a period of 14 weeks, 

from 16th of November 2015 to 19th of February 2016, and during this period I 

was exposed to different research projects being carried out at the Delft Haptics 

lab, apart from in-depth knowledge of the project I was working on.  

The main objectives of this internship assignment were to get acquainted with 

Parallel Kinematics, which included deep understanding of Screw theory and its 

application to parallel manipulator analysis, and to get acquainted with various 

methods to assess the effects of play at the joints of parallel mechanisms on the 

end effector accuracy.  

To achieve the same, the influence of play on the static performance (end 

effector accuracy) of a novel 3-DOF (1T-2R) parallel manipulator, which is 

intended to act as a haptic master device for steerable needles, was tried to 

analyze. The device being a limited-DOF parallel manipulator has some 

constrained directions and the play at the ball bearings affects the performance 

and quantifying this was the main aim of this internship. 
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1. Introduction 

Parallel manipulators have had an indelible impact on industry applications in 

the past few years due to its inherent advantages in terms of accuracy as 

compared to serial manipulators, although some [1] have pointed out that this 

question of superiority is debatable. However, the consideration of accuracy is 

always crucial in terms of demand that different applications have and there are 

various factors that can hamper this. One of the main factors affecting the end 

effector accuracy are the clearances in joints. The effect of clearance on the 

positioning error and accuracy of parallel manipulators has been looked into by 

many authors over decades and brief overview of different approaches is 

summarized here. The problem of modelling joint clearance in mechanisms and 

assessing its effect on the pose (position and orientation) error has been 

approached by different methods, however, most of them were limited to planar 

or single loop mechanisms and their extension to analysis of effects in parallel 

manipulators was not addressed (in some cases) or was not demonstrated. 

The current study aims at analyzing the effects of clearance on a novel 3-DOF 

parallel manipulator intended to act as a haptic master device. The 

aforementioned device has universal and revolute joints and the play in the 

constrained directions are mainly due to clearance in the revolute joints. This 

report discusses screw theory in brief and then goes on to provide a brief 

literature survey of various relevant methods of modelling the play at joints and 

then describes the implementation of the selected method of modelling on the 

system under study. During the implementation of the selected method, certain 

problems were encountered which are discussed later in this report and given 

the timeframe of this assignment, a detailed analysis of the same was not 

possible and possible explanations are summarized at the end. 
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2. A Brief Summary of Screw Theory  

Screw theory is one of the strongest tools for analysis of robotic manipulators 

and it uses a combination of algebra and calculus of pair of vectors such as forces, 

moments, angular and linear velocities to do so. This section provides a brief 

introduction to Screw theory and a comprehensive overview of important 

concepts used in parallel kinematics is given. [2] is used as a reference for all the 

figures and references for detailed information. 

 

2.1. Description of screw motion 

 

Screw motion is described as rigid body motion consisting of a rotation 

about an axis through an angle, followed by translation along the same 

axis. Figure 2.1 shows the description of a general screw motion. 

 

 
Figure 2.1: General screw [2] 

 

Since this motion resembles the motion of a screw, it is called screw 

motion. Further, the pitch of a screw motion is defined to be the ratio 

of translation to rotation, h = d/θ, where d is the translation and θ is 

the rotation about the axis in radians. 

 

Thus the net translational motion after θ radians of rotation about the 

axis is hθ. The axis is then represented as a directed line through a 

point; choosing q ϵ R3 as the point on the axis and ω ϵ R3 as the unit 

vector specifying the direction. The axis is then a set of points defined 

by  

 

l = (q + λω: λ ϵ R)         (2.1) 
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The above definitions are valid when the screw motion consists of a 

nonzero rotation followed by translation. In case of zero rotation, we 

consider the axis as a line through the origin in the direction v and the 

magnitude of this vector is 1. The pitch of this screw is ∞ and the 

amount of translation along the direction v is given by its magnitude. 

 

2.2. Twists and Wrenches 

 

Now that we know the description of screw, we can go ahead to 

describe velocities and forces using this description of screw. Twists 

are generalization of velocities of rigid bodies and any rigid body 

motion can be expressed using a twist. Geometrically, these are 

elements of the Lie algebra se(3) associated to the Lie group SE(3).  For 

a more mathematical understanding of the theory of twists, the reader 

is referred to section 3.2 to section 3.3 of chapter 1 of [2]. To 

understand the geometric interpretation of twist, consider the 

following figure. 

 

 
Figure 2.2: geometric interpretation of a twist [Lecture sheets-

Modern Robotics-Stefano Stramigioli, University of Twente] 

 

The figure above shows the geometric interpretation of a twist. A twist 

can be written as shown below 
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In the above expression, ω represents the axis around which rotation 

takes place and the magnitude of ω gives the magnitude of rotation 

and “r” is the arm connecting the origin of the reference frame and the 

axis “ω”. The scalar λ is the pitch that relates the rotation about the 

axis to the translation along the axis. For a twist, the pitch is defined as 

the ratio of translation along the axis to the rotation about the axis. 

Hence, in the representation of twist, it can be seen that when ω≠0, 

the v component along ω is λω and r ω is the one orthogonal to ω. 

The  operator implies cross product .Hence, in a twist, the upper part 

(ω) represents the rotation and “v” represents the translation.  

 

If we have ω and v, we can find the arm “r” and pitch λ suing 

expressions 

 

 
 

The reader is referred to [2] for detailed derivation of the above 

expressions.  

 

Wrenches are dual to twists. These are linear operators that relate 

twists to power. According to Poinsot’s theorem, any system of forces 

can be expressed as a pure linear force along a line plus a pure moment 

around it. Hence, a wrench is defined as shown below 

 

 
The geometrical representation of a wrench is shown in figure 2.3. As 

shown in the figure, the linear force is defined and the pitch λ relates 



5 
 

the linear force F to the moment about the axis. The pitch in a wrench 

is defined as the ratio of angular rotation about the axis to the linear 

force. The reader is referred to section 5 of chapter 1 in [2] for more 

detailed mathematical explanation of wrenches. 

 

 

 

 
Figure 2.3: geometric interpretation of a wrench [Lecture sheets-

Modern Robotics-Stefano Stramigioli, University of Twente] 

 

 

 

2.3. Reciprocity and Applications 

 

The dot product of wrenches and twist gives the instantaneous power 

associated with the moving rigid body under the influence of applied 

force. A wrench F is then said to be reciprocal to a twist V if the 

instantaneous power is zero, i.e., F . V = 0. Let V be the twist about 

screw S1 and let F be the wrench along the screw S2. The reciprocal 

product between a twist and a wrench, expressed in screw 

coordinates, is then defined as follows. 

 

For a twist  
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And a wrench 

 
Where, M1 and M2 are the magnitudes of the screws.  

 

We can assume that the axes are closest at points q1 and q2 and hence 

q2 can be written as q2= q1+ dn, where n is the unit normal vector 

connecting the two axes. Figure 2.4 shows the above description. 

 

 
Figure 2.4: Notation for reciprocal screws [2] 

 

The reciprocal product is then given by  

 

 
 

In the above expression, the basic idea lies behind multiplying the 

linear components of both, the twist and wrench, and the rotational 

components of both, which gives the respective instantaneous work 

done. Thus, the screws are reciprocal only if the reciprocal product is 

zero. The reciprocal product is generally represented by the symbol ⊗. 

 

Reciprocal screws are widely used in analyzing the kinematic properties 

of mechanisms. As an example, we can consider the context of grasping 

an infinitely rigid object. The wrenches applied to the object can be 

viewed as a set of constraining screws. Now, if there are any 
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instantaneous motions (twists), then these correspond to motions that 

are not constrained by the applied wrench and hence the reciprocal 

product of these twists with the applied wrenches are then 0, implying 

that the applied wrenches have no contribution to 

generating/restricting these twists.  A noteworthy example to mention 

here would be [3] in which the authors have shown that the Jacobian 

of a limited DOF parallel manipulator can be derived making use of the 

theory of reciprocal screws. 

 

 

2.4. Coordinate transformation 

 

Now that we know about how velocities and forces can be represented 

using screw coordinates, it’s handy to know how the coordinate 

transformation can be performed for them. This is a very useful tool 

for kinematic analysis of mechanisms. The reader is referred to section 

4.4 of chapter 2 of [2] for more detailed information. 

Twists and wrenches transform depending on their coordinate frame 

of reference. The expressions below gives the coordinate 

transformation for twists 

 

 
 

Where, 

 

 
 

Here, Ri
j represents the rotation matrix for transformation from 

reference frame “i” to reference frame “j” and Rj
i represents the 

rotation matrix for transformation from reference frame “j” to 

reference frame “i”. The  represents the following: Pi
j is the vector 
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connecting the origin of reference frame “i” to that of reference frame 

“j”.  

For, Pi
j = [p1 p2 p3]T  

 

 is given by, 

 

0 -p3 p2 

p3 0 -p1 

-p2 p1 0 
   

 

Similarly, the coordinate transformation of wrenches is given by the 

following expression 

 

 
 

Where  
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3. Literature Survey  

In this section, a summary of the literature survey performed to find the different 

modelling techniques to model the effect of play in joints on end effector 

performance is summarized. Some authors concentrated on the dynamic effects 

of clearance (Flores, Ambrósio [4]), such as impacts in pairs and vibrations, 

whereas some concentrated on kinematic modelling Parenti-Castelli and 

Venanzi [5], Venanzi and Parenti-Castelli [6], which is more helpful for 

preliminary analysis of mechanism performance. Most approaches of analyzing 

the effects of clearances can be broadly classified into stochastic and 

deterministic methods. Stochastic methods (Dhande and Chakraborty [7], Wei-

Liang and Qi-Xian [8], Chaker, Mlika [9]) describe the clearance due to 

displacement through probability distribution function and Deterministic 

methods (Venanzi and Parenti-Castelli [6], Innocenti [10], Parenti-Castelli and 

Venanzi [5]) try to exactly determine the displacement of the mechanism links. 

Wu and Rao [11] used the method of intervals to model clearance and 

manufacturing errors.  

A screw theory method was presented by Tsai and Lai [12] to analyze the 

transmission performance of linkages that have joint clearance by treating the 

joint clearances as virtual links in this study, but this method was valid only for 

planar mechanisms and the effectiveness was demonstrated only for single loop 

linkages. An extension of this method to multi loop linkages was presented in 

Tsai and Lai [13], but again was valid only for planar mechanisms. The main 

drawback of this method, i.e., it’s limitation to planar mechanism analysis, was 

overcome in methods proposed by Parenti-Castelli and Venanzi [5]. They showed 

a method to evaluate the clearance influence in spatial parallel mechanisms with 

focus on kinematic modelling and by using the principle of virtual work. Venanzi 

and Parenti-Castelli [6] used a deterministic technique to assess the effect of 

clearance for both planar and spatial, open-, and closed-chain mechanisms (not 

for over constrained mechanisms). The method uses a kinematic approach to do 

so. In this method, the clearances are modeled as virtual generalized 

displacement and local models are defined for different joint pairs and 

maximization of pose error function is carried out to determine the largest 

possible error. Chaker, Mlika [9] analyzed a spherical parallel manipulator with 

clearance and manufacturing errors by modelling the clearance and 

manufacturing errors as small displacements and by using screw theory and 

stochastic results were presented. They proved that the method of 
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superposition doesn’t work when both manufacturing error and clearance are 

considered. Frisoli, Solazzi [14] used a method based on screw theory to estimate 

the pose accuracy in spatial parallel manipulators with revolute joint clearance. 

This method performs a 2 step maximization ( the first step gives a suboptimal 

estimation of the pose error function and the second step is an iterative 

numerical procedure) pose error function and the pose error is a quadratic 

function of the end-effector displacement, and can converge to exact maximum 

pose error in a limited number of iterations. The effectiveness of this method 

has been demonstrated with application examples where worst case angular and 

linear position accuracy in translating fully parallel manipulators is determined. 

Since this investigation is very close (in terms of study on clearance in revolute 

joints) to the study performed by Frisoli, Solazzi [14], the method used by them 

will be used for analyzing the clearance effect on end effector performance and 

look into ways to redesign the haptic master device to reduce the play below 

human thresholds.  
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4. Method to model the effect of play in joints on the end 

effector accuracy 

The following method was described in Frisoli, Solazzi [14]. This is a method 

based on screw theory for the analysis of position accuracy in spatial parallel 

manipulators with revolute joints clearances and since our system of interest 

also has revolute joints (only), this is a very good reference study.  

In this method, the displacement due to clearances are modelled as additional 

degrees of freedom in each kinematic pair, whose effect is equivalent to 

removing the kinematic constraints made ineffective by clearances. As an 

example, consider the case of a rotational joint, we can introduce two rotations 

perpendicular to the revolute joint axis, and three independent translations, as 

shown in figure 4.1, for joint 11, represented by twist $11. 

 

Figure 4.1: Figure showing one of the legs of a parallel manipulator with 

associated clearances indicated for the joint $11 [Frisoli, Solazzi [14]] 

The hypothesis of small displacements holds strong because in most 

mechanisms, the joint’s clearance is upper bounded and is of at least one order 

lower than the mechanism’s dimensions. Based on this this hypothesis, the 

following assumptions are made: 

 The contribution of different joints, due to joint clearances, at the end 

effector, are independent of each other. 

 The end-effector pose error is a linear function of joint clearance 

contributions. 
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 Velocity analysis can be used to study the effect of clearances and screw 

theory can be used to represent the induced infinitesimal displacements. 

The pose of the mechanism affects the influence of each clearance on the 

overall displacement of the end effector. 

 

4.1. Obtaining the associated twists 

 

Consider a parallel manipulator, whose generic leg is represented in 

figure 4.1. Assume all the active DOFs locked by the actuators 

(represented as darkened) so that the mechanism is statically 

determined and has a mobility of zero according to Grubler’s criterion. 

Assume an isostatic distribution of reaction forces, which are a system of 

six linearly independent constraint wrenches [Wim], with subscript 

i=1,….,ni indicating the leg number and m=1,….,nm the wrench number. 

They represent the active and passive constraints of the kinematic chains 

of the mechanism, according to [3]. Figure 4.2 shows a 3URU (universal-

revolute-universal, indicating the types of joints in each leg) parallel 

manipulator, with Wi1, i=1,2,3 are the actuation wrenches of zero pitch 

and Wi2, i=1,2,3 are the passive constraint wrenches of infinite pitch for 

leg i. 

 

 
Figure 4.2: Kinematics of 3URU parallel manipulator. Manipulator 

actuated at joints C1, C2 and C3. [14] 
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Now, each clearance displacement can be modelled by a twist $ijc, with 

i=1,….,ni indicating the leg number, j=1,….,nj indicating the joint number 

and c=1,….,nc indicating the clearance number. For each kinematic pair of 

g DOFs, upto 6-g clearance displacements can be associated. For 

example, in the detailed view in figure 4.1, the joint $11 has 3 translational 

and 2 rotational additional degrees of freedom defined (Universal joint 

can be modelled as a combination of two revolute joints and $11 is one of 

the revolute kinematic pairs constituting the universal joint). 

 

The resultant generic twist at the end effector, Tijc, induced by the 

clearance $ijc(clearance displacement of clearance c at joint j of leg i ) – 

the underline is used to specify that the particular leg/joint/clearance, 

for example, $ijc points at all the joints and clearances of the particular 

specified leg i and $ijc specifies the particular clearance of the specified 

joint of specified leg. The resultant generic twist of the end effector, Tijc, 

is given by 

 

      (4.1) 

 

Where, δθij indicates small displacements along the Lagrangian 

coordinates of the joints j, except the actuated ones which are 

considered locked and gijc is the additional clearance displacement. 

 

Now, with each twist ijc, we can define a set of reciprocal wrenches Wijc, 

that are of two types, namely, wrench of type α, Wα,ijc, and wrench of 

type β, Wβ,ijc. The wrenches of type α are reciprocal to the additional 

clearance DOF ijc and to all the twists ij , j=1,….,nj, j≠ja, of the considered 

leg i. The following equations hold for these wrenches (⊗ represents 

reciprocal product) 

 

      (4.2) 
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Similarly, the wrenches of type β are defined reciprocal to all the twists ij 
, j=1,….,nj, j≠ja, but not to the considered clearance DOF $ijc. The following 

equations define this type of wrench 

      (4.3) 

 

To consider the effect of multiple clearances, linear superimposition is 

employed. The virtual work done by the α and β wrenches can be 

computed using the following expressions 

 

       (4.4) 

 

Also, the work done by the constraint wrenches, Wim, laong the 

displacement Tijc must be zero and so the following equation holds 

 

Wim ⊗ Tijc = 0 , for legs i≠i, ∀m       (4.5) 

 

In an isostatic system, the wrenches of type α, type β and Wim, i≠i define 

a system of 6 wrenches that can be arranged in a matrix W: 

 

W= (Wβ,ijc Wα,ijc …. Wim), i≠i       (4.6) 

 

Equations 4.4 and 4.5 can be put in matricial form as: 

 

       (4.7) 

Here, the reciprocity product is represented in matrix form through the 

matrix I*, which is composed of 3x3 identity and zero matrices. 

 

         (4.8) 
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I* and WT are always invertible and hence the contribution can be 

obtained by using the relation 

 

     (4.9) 

 

Where the “T” term on the right hand side of the above equation 

indicates the screw associated with the motion associated by the unitary 

clearance $ijc. 

 

The overall displacement at the end effector must be the linear 

composition of contributions by individual clearances-multiplied by the 

associated clearance values gijc.  

 

               (4.10) 

 

Here, T and g are given by 

 

               (4.11) 

 

 

4.2. Determination of clearance 

 

To determine the maximum pose error, the following expression can 

be formulated. 

 

               (4.12) 
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Where, M is a metrics matrix and is positive definite and symmetric and 

f(g) is a cost function that has to be maximized to obtain the worst 

possible error. 

 

Since this analysis is limited to rotational joints, the clearances in the 

joints are modelled as small displacements and based on this two types 

of constraints are defined. These two types of constraints define the 

maximization clearance problem to find a suboptimal estimate of the 

maximum clearance. Taking this suboptimal solution as the starting 

point, the optimal value of maximum clearance is obtained through 

gradient descent maximization procedure. The reader can refer section 

3 of [14] for detailed derivation and explanation in this regard. 

 

4.3. Final effect quantified 

 

Once the maximum clearance value matrix is obtained, the matrix of 

individual twist contributions, T, and the matrix of maximum clearance 

values, g, are substituted in equation 4.10 to obtain the final twist at of 

the end effector.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 
 

5. Application of play modelling to the 3-DOF Haptic Master 

device 

 

5.1. Description of the haptic master device and the problem due to play  

 

The parallel manipulator under consideration here is intended to act as 

a haptic master device for steerable needles. It’s a 3 DOF (1T-2R) 

system with translation allowed along Z-axis and rotations allowed 

about the X and Y axes. The figure below shows the haptic master 

device 

 

 
Figure 5.1: 3DOF parallel haptic master device 

 

The links are made of hollow aluminum tubes and each leg is connected 

to the base by bolts and bearings such that they allow free rotation at 

each of those connections and the rest of the kinematic pairs are either 

revolute or universal or spherical joints.  

 

It was observed that there were small motions along DOFs intended to 

be constrained at the end effector and this was mainly due to the play 

at the joints. It was also observed that the play was mainly in the joints 

connecting the legs to the base, i.e., the revolute joints with bearings. 

The analysis was therefore restricted to analyzing the contribution of 

this play to the end effector accuracy. In this study, the influence of 
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play in the joint connecting the right leg (as in figure 5.1) to the base is 

studied. 

The procedure as outlined in section 4 of this report was employed. 

 

5.2. Defining twists 

 

First, the twists representing the joints and virtual joints were defined. 

The origin of frame of reference was assumed to be at the center of 

the base. The fig below shows the right leg with its joint 

representations. 

 

 
Figure 5.2: Right leg of the haptic master device 

 

Z21…..Z24 represent the versors aligned along the joints of the leg. The 

unit twists representing these joints are denoted as $21….$24. The figure 

below shows joint $21 along with the associated virtual degrees of 

freedom, which is also our joint of interest. 
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Figure 5.3: Joint 1 and its associated virtual DOFs 

 

The figure above shows the associated virtual degrees of freedom, 

which are 2 rotational and 3 translational DOFs. Z21 is the versor along 

the revolute joint considered and Z21z is the versor perpendicular to Z21 

and oriented along Z-axis. The unit twist associated with joint 1 is given 

by 

 

 
$21 = (

𝑍21

(𝐴2 − 𝑂) × 𝑍21
) 

 (5.1) 

 

The unit twists representing the virtual DOFs are given by 

 $211 = (
𝜔21

(𝐴2 − 𝑂)  ×  𝜔21
)  (5.2) 

 

Where, ω211 = Z21 x Z21z / || Z21 x Z21z|| 

 

 $212 = (
0

𝜔212
)  (5.3) 

 

Where, ω212 = Z21 x Z21z / || Z21 x Z21z|| 

 

 
$213 = (

𝑍21𝑧

(𝐴2 − 𝑂) × 𝑍21𝑧
) 

 (5.4) 

 

 $214 = (
0

𝑍21𝑧
)  (5.5) 
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 $215 = (
0

𝑍21
)  (5.6) 

 

5.3. Determination of wrench system 

 

Now the alpha and beta wrenches as described in section 4 were 

identified. The wrenches were identified by mere observation and they 

are given below 

 

Wα,211 = (does not exist)  

 

 

 
𝑊𝛽,211 = (

𝑍23

(𝐵2 − 𝑂)  ×  𝑍23
) 

 (5.7) 

 

 

 
𝑊𝛽,212 = (

𝑍23

(𝐵2 − 𝑂)  ×  𝑍23
) 

 (5.8) 

 

 

Wβ,211 = (does not exist) 

 

Wα,213 = (does not exist) 

 

 
𝑊𝛽,213 = (

𝑍23

(𝐵2 − 𝑂)  ×  𝑍23
) 

 (5.9) 

 

 

 
𝑊𝛽,214 = (

𝑍23

(𝐵2 − 𝑂)  ×  𝑍23
) 

 (5.10) 

 

 

Wβ,214 = (does not exist) 

 

Wα,215 = (does not exist) 

 

 
𝑊𝛽,215 = (

𝑍23

(𝐵2 − 𝑂)  ×  𝑍23
) 

 (5.11) 
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The constraint wrenches were defined for the other legs that 

constitute the W matrix as in equation 4.10. 

 

5.4. Solving the system of equations 

 

Once the wrenches and twists are defined, the system of equations as 

shown in section 4 are solved. Equation 4.9 is solved to obtain the 

individual twists and then the maximum clearance matrix is obtained 

using the procedure outlined in [14] and the final twist of the end 

effector is calculated using equation 4.10. This was formulated in 

MATLAB and the code is given in Appendix A1. 
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6. Results and discussion 

 
Appendix A2 shows the result after running the code. The following 

problems were encountered in the implementation of the procedure 

outlined in [14]: 

 The “WT I*” matrix in equation 4.9 was a rank deficient matrix since 

one of our constraint wrenches from other legs was zero and also 

in some cases, the alpha and/or beta wrench was zero. Hence, the 

inverse of the matrix didn’t exist. This led us to taking the 

pseudoinverse of the matrix for further analysis. 

 The obtained twist matrix “T” was found to be a rank deficient 

matrix implying that the twist contributions from the individual 

virtual DOFs were dependent/related (since they were same 

vectors were different scaling). 

 The implementation of the method to obtain maximum clearance 

was unsuccessful as the results obtained were very unrealistic. 

 

Although the physical interpretation of the obtained twists for the end 

effector look acceptable(the directions of translation are expected) , 

the inability to obtain the exact numerical values for the exact 

influence of the joint on the end effector pose error remains a major 

setback of this research. Also, the reason for dependent twist matrix is 

unknown and hence the results obtained (twists of the end effector) 

can be doubted for their correctness. 

This research had to be terminated at this point due to timeframe of 

the assignment. However, to obtain acceptable results, the 

optimization process can be looked into more carefully as the obtained 

clearance values are unrealistic. Also, the reason for the twist matrix 

being rank deficient can be looked into for possible relevant 

interpretations. It is highly probable that solving the above mentioned 

issues can lead to actual pose error at the end effector. 
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Appendix 

A1.  The MATLAB code for the analysis carried out to obtain the twist at the end 

effector due to play at joint 1 of the right leg of the haptic master device. 

 

clear all 
close all 
clc 

  
%% to get the constraint wrenches 

  
Rbc_x= [ 1 0 0 
    0 cosd(0) -sind(0) 
    0 sind(0) cosd(0)]; 

  
Rbc_y= [ cosd(0) 0 -sind(0) 
    0 1 0 
    -sind(0) 0 cosd(0)]; 

  
Rbc_z= [ cosd(90) -sind(90) 0  
    sind(90) cosd(90) 0 
   0 0 1]; 
Rbc= Rbc_x *Rbc_y *Rbc_z; 

  
Pbc =[0 0 -0.500]'; % platform RF origin fixed at 500mm along Z axis from 

the base RF origin 

  
Pbc_cap= [ 0 0.500 0 
    -0.500 0 0  
    0 0 0 ]; 

  
%% to transform wrench from platform RF to base RF 

  
%% for leg2(teun) or leg1(me) 
Wc1_all_PRF = Needle_3DOF_Wcleg2(0,0.5,0,0.1350); 
Wc1_1_PRF_teun= Wc1_all_PRF(:,1); 
Wc1_1_PRF(1:3,:)=Wc1_1_PRF_teun(4:6,:);Wc1_1_PRF(4:6,:)=Wc1_1_PRF_teun(1:3,

:); %since teun has defined torque first and then force 

  

  
Wc1_2_PRF_teun= Wc1_all_PRF(:,2); 
Wc1_2_PRF(1:3,:)=Wc1_2_PRF_teun(4:6,:);Wc1_2_PRF(4:6,:)=Wc1_2_PRF_teun(1:3,

:); 

  
Wc1_1(1:3,:)= Rbc'* Wc1_1_PRF(1:3,:); 
Wc1_1(4:6,:)= (-Rbc'*Pbc_cap)*Wc1_1_PRF(1:3,:)+ Rbc'*Wc1_1_PRF(4:6,:); 
% Wc1_1= [0 0 0 0 0 0 ]'; 
Wc1_2(1:3,:)= Rbc'* Wc1_2_PRF(1:3,:); 
Wc1_2(4:6,:)= (-Rbc'*Pbc_cap)*Wc1_2_PRF(1:3,:)+ Rbc'*Wc1_2_PRF(4:6,:); 
%% leg1 (teun) 

  
Wc2_all_PRF=Needle_3DOF_Wcleg1(0); 

  
Wc2_1_PRF_teun= Wc2_all_PRF(:,1); 
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Wc2_1_PRF(1:3,:)=Wc2_1_PRF_teun(4:6,:);Wc2_1_PRF(4:6,:)=Wc2_1_PRF_teun(1:3,

:); %since teun has defined torque first and then force 

  
Wc2_1(1:3,:)= Rbc'* Wc2_1_PRF(1:3,:); 
Wc2_1(4:6,:)= (-Rbc'*Pbc_cap)*Wc2_1_PRF(1:3,:)+ Rbc'*Wc2_1_PRF(4:6,:); 

  

  
Wc2_2_PRF_teun= Wc2_all_PRF(:,2); 
Wc2_2_PRF(1:3,:)=Wc2_2_PRF_teun(4:6,:);Wc2_2_PRF(4:6,:)=Wc2_2_PRF_teun(1:3,

:); 

  
Wc2_2(1:3,:)= Rbc'* Wc2_2_PRF(1:3,:); 
Wc2_2(4:6,:)= (-Rbc'*Pbc_cap)*Wc2_2_PRF(1:3,:)+ Rbc'*Wc2_2_PRF(4:6,:); 

  

  

  

  
%% for leg3(teun) or leg4(me) 

  
Wc4_all_PRF= Needle_3DOF_Wcleg3(0); 

  
Wc4_1_PRF_teun= Wc4_all_PRF(:,1); 
Wc4_1_PRF(1:3,:)=Wc4_1_PRF_teun(4:6,:);Wc4_1_PRF(4:6,:)=Wc4_1_PRF_teun(1:3,

:); %since teun has defined torque first and then force 
Wc4_1_PRF=[0 0 0 0 0 0 ]'; % to not consider the constraint along y axis in 

leg 4 
Wc4_2_PRF_teun= Wc4_all_PRF(:,2); 
Wc4_2_PRF(1:3,:)=Wc4_2_PRF_teun(4:6,:);Wc4_2_PRF(4:6,:)=Wc4_2_PRF_teun(1:3,

:); 

  

  
Wc4_1(1:3,:)= Rbc'* Wc4_1_PRF(1:3,:); 
Wc4_1(4:6,:)= (-Rbc'*Pbc_cap)*Wc4_1_PRF(1:3,:)+ Rbc'*Wc4_1_PRF(4:6,:); 

  
Wc4_2(1:3,:)= Rbc'* Wc4_2_PRF(1:3,:); 
Wc4_2(4:6,:)= (-Rbc'*Pbc_cap)*Wc4_2_PRF(1:3,:)+ Rbc'*Wc4_2_PRF(4:6,:); 

  
%% to calculate the alpha and beta wrenches 

  
A2 =[ 0.070 0 0]'; 
B2 = [ 0.135 0 0.500]'; 
Oc= [0 0 0 ]'; 
Ob = [ 0 0 0.500]'; 

  
Z21= [0 1 0 ]'; 
Z21z = [ 0 0 1]'; 
Z23= [0 1 0 ]'; 
Z24=[1 0 0 ]'; 

  
%% $211 wrenches 

  
W_alpha_211= [0 0 0 0 0 0 ]'; 

  
omega_211= cross(Z21,Z21z)/sqrt(sum((cross(Z21,Z21z).*(cross(Z21,Z21z))))); 
W_beta_211(1:3,:) = Z23; 

  
W_beta_211(4:6,:) = cross((B2-Oc),Z23); 
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%% $212 wrenches 

  

  
omega_212= cross(Z21,Z21z)/sqrt(sum((cross(Z21,Z21z).*(cross(Z21,Z21z))))); 

  
W_alpha_212(1:3,:) = Z23; 
W_alpha_212(4:6,:)= cross((B2-Oc),Z23); 

  
W_beta_212 = [0 0 0 0 0 0 ]'; 

  

  
%% $213 wrenches 

  
W_alpha_213= [ 0 0 0 0 0 0 ]'; 

  
W_beta_213(1:3,:) = Z23; 
W_beta_213(4:6,:)= cross((B2-Oc),Z23); 

  

  
%% $214 wrenches 

  
W_alpha_214(1:3,:)= Z23; 
W_alpha_214(4:6,:)= cross(B2-Oc,Z23); 

  

  
W_beta_214= [0 0 0 0 0 0 ]'; 

  

  
%% $215 wrenches 

  
omega_215= cross(Z23,Z24)/sqrt(sum((cross(Z23,Z24).*(cross(Z23,Z24))))); 

  
W_alpha_215(1:3,:)= 0; 
W_alpha_215(4:6,:)= 0; 

  
W_beta_215(1:3,:)= Z23; 
W_beta_215(4:6,:)= cross(B2-Oc,Z23); 

  
%% individual virtual joint T matrices 

  
%% $211 --> The complete Wrench matrix(W) and get the T matrix 

  

  
Dollar_211(1:3,:) = omega_211; 
Dollar_211(4:6,:) = cross(A2-Oc,omega_211); 

  
Rec_pro_211= 

W_beta_211(1)*Dollar_211(4)+W_beta_211(2)*Dollar_211(5)+W_beta_211(3)*Dolla

r_211(6)+W_beta_211(4)*Dollar_211(1)+W_beta_211(5)*Dollar_211(2)+W_beta_211

(6)*Dollar_211(3); 

  

  
W_211(:,1)= W_beta_211; 
W_211(:,2)= W_alpha_211; 
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W_211(:,3)= Wc1_1; 
W_211(:,4)= Wc1_2; 
W_211(:,5)= Wc4_1; 
W_211(:,6)= Wc4_2; 

  
I_star= [zeros(3) eye(3) 
    eye(3) zeros(3)]; 

  
Product_matrix_211 = [ Rec_pro_211 0 0 0 0 0 ]' 
T_ijc_211 = pinv(W_211'*I_star)*Product_matrix_211 

  
%% $212 --> The complete Wrench matrix(W) and get the T matrix 

  
Dollar_212(1:3,:) = [0 0 0 ]'; 
Dollar_212(4:6,:) = omega_212; 

  
Rec_pro_212= 0; 

  

  
W_212(:,1)= W_beta_212; 
W_212(:,2)= W_alpha_212; 
W_212(:,3)= Wc1_1; 
W_212(:,4)= Wc1_2; 
W_212(:,5)= Wc4_1; 
W_212(:,6)= Wc4_2; 

  

     
I_star= [zeros(3) eye(3) 
    eye(3) zeros(3)]; 

  
Product_matrix_212 = [ Rec_pro_212 0 0 0 0 0 ]'; 

     

  
T_ijc_212 = pinv(W_212'*I_star)*Product_matrix_212 

  

  
%% $213 --> The complete Wrench matrix(W) and get the T matrix 

  
Dollar_213(1:3,:) = Z21z; 
Dollar_213(4:6,:) = cross(A2-Oc,Z21z); 

  

  
Rec_pro_213= W_beta_213(1)*Dollar_213(4)+    W_beta_213(2)*Dollar_213(5)+    

W_beta_213(3)*Dollar_213(6)+    W_beta_213(4)*Dollar_213(1)+    

W_beta_213(5)*Dollar_213(2)+    W_beta_213(6)*Dollar_213(3); 

  
W_213(:,1)= W_beta_213; 
W_213(:,2)= W_alpha_213; 
W_213(:,3)= Wc1_1; 
W_213(:,4)= Wc1_2; 
W_213(:,5)= Wc4_1; 
W_213(:,6)= Wc4_2; 

  

  
I_star= [zeros(3) eye(3) 
    eye(3) zeros(3)]; 
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Product_matrix_213 = [ Rec_pro_213 0 0 0 0 0]' ; 

  
T_ijc_213 = pinv(W_213'*I_star)*Product_matrix_213 

  

  
%% $214 --> The complete Wrench matrix(W) and get the T matrix 

  
Dollar_214(1:3,:) = [0 0 0 ]'; 
Dollar_214(4:6,:) = Z21z; 

  

  
Rec_pro_214= W_beta_214(1)*Dollar_214(4)+    W_beta_214(2)*Dollar_214(5)+    

W_beta_214(3)*Dollar_214(6)+    W_beta_214(4)*Dollar_214(1)+    

W_beta_214(5)*Dollar_214(2)+    W_beta_214(6)*Dollar_214(3); 

  
W_214(:,1)= W_beta_214; 
W_214(:,2)= W_alpha_214; 
W_214(:,3)= Wc1_1; 
W_214(:,4)= Wc1_2; 
W_214(:,5)= Wc4_1; 
W_214(:,6)= Wc4_2; 

  

  
I_star= [zeros(3) eye(3) 
    eye(3) zeros(3)]; 

  
Product_matrix_214 = [ Rec_pro_214 0 0 0 0 0]'; 

  
T_ijc_214 = pinv(W_214'*I_star)*Product_matrix_214 

  
%% $215 --> The complete Wrench matrix(W) and get the T matrix 

  
Dollar_215(1:3,:) = [0 0 0 ]'; 
Dollar_215(4:6,:) = Z21; 

  
Rec_pro_215= W_beta_215(1)*Dollar_215(4)+    W_beta_215(2)*Dollar_215(5)+    

W_beta_215(3)*Dollar_215(6)+    W_beta_215(4)*Dollar_215(1)+    

W_beta_215(5)*Dollar_215(2)+    W_beta_215(6)*Dollar_215(3); 

  
W_215(:,1)= W_beta_215; 
W_215(:,2)= W_alpha_215; 
W_215(:,3)= Wc1_1; 
W_215(:,4)= Wc1_2; 
W_215(:,5)= Wc4_1; 
W_215(:,6)= Wc4_2; 

  
I_star= [zeros(3) eye(3) 
    eye(3) zeros(3)]; 

  
Product_matrix_215 = [ Rec_pro_215 0 0 0 0 0]'; 

  
T_ijc_215 = pinv(W_215'*I_star)*Product_matrix_215 

  
%% total T_cap_ijc matrix 

  
T_ijc_21= T_ijc_211+T_ijc_212+T_ijc_213+T_ijc_214+T_ijc_215  
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%% T matrix - with all T_cap_ijcs arranged in a matrix 

  
T(:,1)= T_ijc_211; 
T(:,2)= T_ijc_212; 
T(:,3)= T_ijc_213; 
T(:,4)= T_ijc_214; 
T(:,5)= T_ijc_215 

  
%% "A" matrix  

  
A= T'*eye(6)*T; 

  
%% find gmax 

  
ri=0.000013; 
[V,D]=eig(A) 

  
maxeigenvalue= max(max(D)) 
[num idx] = max(D(:)); 
[maxeigenidx maxeigenidy] = ind2sub(size(D),idx) 

  
Vmax=V(:,maxeigenidy) 
gmax= ri.* Vmax 

  
%% to find gopt 

  
thetai= atan2(gmax(2),gmax(1)); 
thetaiplus1= atan2(gmax(4),gmax(3)); 
phii= atan2(sqrt(gmax(4)^2+gmax(3)^2),sqrt(gmax(2)^2+gmax(1)^2)); 

  
gopt(1)= ri*(cos(thetai)*cos(phii)); 
gopt(2)= ri*(sin(thetai)*cos(phii)); 
gopt(3)= ri*(cos(thetaiplus1)*sin(phii)); 
gopt(4)= ri*(sin(thetaiplus1)*sin(phii)); 
gopt(5)= sign(gmax(5)); 
gopt=gopt' 

  
%% calculating optimal g 

  

  
g=[0 0 0 0 0 ]'; 
for i= 1:size(diag(D)) 

     
    g=g+ 0.000013*V(:,i); 

     

     
end 

  
g 

  
%% calculating the final associated twist 

  
finaltwist_ijc_211= g(3).*T_ijc_211; 
finaltwist_ijc_212= g(1).*T_ijc_212; 
finaltwist_ijc_213= g(4).*T_ijc_213; 
finaltwist_ijc_214= g(2).*T_ijc_214; 
finaltwist_ijc_215= g(5).*T_ijc_215; 



30 
 

  
finaltwist_ijc= 

finaltwist_ijc_211+finaltwist_ijc_212+finaltwist_ijc_213+finaltwist_ijc_214

+finaltwist_ijc_215 

  
T 

 

A2. The result obtained after running the code: 

Product_matrix_211 = 

 

   -0.5000 

         0 

         0 

         0 

         0 

         0 

 

 

T_ijc_211 = 

 

    0.2000 

   -0.0000 

   -0.0000 

   -0.0000 

   -0.4000 

         0 

 

 

T_ijc_212 = 
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     0 

     0 

     0 

     0 

     0 

     0 

 

 

T_ijc_213 = 

 

   -0.0260 

    0.0000 

    0.0000 

    0.0000 

    0.0520 

         0 

 

 

T_ijc_214 = 

 

     0 

     0 

     0 

     0 

     0 

     0 
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T_ijc_215 = 

 

   -0.4000 

    0.0000 

    0.0000 

    0.0000 

    0.8000 

         0 

 

 

T_ijc_21 = 

 

   -0.2260 

    0.0000 

    0.0000 

    0.0000 

    0.4520 

         0 

 

 

T = 

 

    0.2000         0   -0.0260         0   -0.4000 

   -0.0000         0    0.0000         0    0.0000 
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   -0.0000         0    0.0000         0    0.0000 

   -0.0000         0    0.0000         0    0.0000 

   -0.4000         0    0.0520         0    0.8000 

         0         0         0         0         0 

 

 

V = 

 

   -0.8308   -0.1123         0    0.3128   -0.4465 

         0         0   -1.0000         0         0 

    0.1065   -0.9926         0    0.0093    0.0580 

    0.3466    0.0459         0    0.9369         0 

   -0.4223    0.0084         0    0.1558    0.8929 

 

 

D = 

 

   -0.0000         0         0         0         0 

         0   -0.0000         0         0         0 

         0         0         0         0         0 

         0         0         0    0.0000         0 

         0         0         0         0    1.0034 

 

 

maxeigenvalue = 
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    1.0034 

 

 

maxeigenidx = 

 

     5 

 

 

maxeigenidy = 

 

     5 

 

 

Vmax = 

 

   -0.4465 

         0 

    0.0580 

         0 

    0.8929 

 

 

gmax = 

 

   1.0e-04 * 
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   -0.0580 

         0 

    0.0075 

         0 

    0.1161 

 

 

gopt = 

 

   -0.0000 

    0.0000 

    0.0000 

         0 

    1.0000 

 

 

g = 

 

   1.0e-04 * 

 

   -0.1400 

   -0.1300 

   -0.1064 

    0.1728 

    0.0825 
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finaltwist_ijc = 

 

   1.0e-04 * 

 

   -0.0588 

    0.0000 

    0.0000 

    0.0000 

    0.1176 

         0 

 

 

T = 

 

    0.2000         0   -0.0260         0   -0.4000 

   -0.0000         0    0.0000         0    0.0000 

   -0.0000         0    0.0000         0    0.0000 

   -0.0000         0    0.0000         0    0.0000 

   -0.4000         0    0.0520         0    0.8000 

         0         0         0         0         0 

 

>> 


