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PREFACE
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The internship is a part of my study Mechanical Engineering, with specialisation Engineering
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At first I want to thank Chris Willemsen, my supervisor at MARIN, for giving me the opportunity
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that you put in a lot of effort to make my internship an interesting subject for both me as
MARIN. For helping me with GridPro and answering my questions about the KVLCC2, I want
to thank Filipe Pereira. Despite the fact that you were always very busy with your own projects,
you always wanted to make time for me to help me out. I also want to thank Bart Schuiling,
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Gerco Hagesteijn for being so kind to show me and the other students the test facilities at
MARIN. At last I want to thank the students at MARIN, where I always had fun discussion with
and learned a lot from about their different cultures.
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SUMMARY
One approach to describe the solution of the shear-stress at a wall is the application of wall
functions which determine the shear-stress at the wall from semi-empirical equations. The y+

is the dimensionless quantity for the distance from the wall up to the centre of the first grid cell.
In simulations without wall functions, this quantity is typically around 1, while wall functions
allow us to take a y+ higher than 1. The boundary layer can be divide in two region: the inner
layer and the outer layer. The former also consist of three regions, which are from the wall up
to the outer layer: the viscous sublayer (y+ < 5), the buffer layer (5 < y+ < 30− 50) and the
log-law region (y+ > 30− 50).

Grid are made with Gridpro (structured grids) and Hexpress (unstructured grids), where
several configurations are chosen. For the Gridpro grids, 14 different y+ values are chosen,
with in every region of the inner layer some values. For most of the grids, also a grid refinement
study is performed. For the Hexpress grids, 12 different y+ values are chosen. Due to the
lack of time, no grid refinement study is performed. CFD simulations are done with MARIN’s
in-house CFD solver ReFRESCO is used, which is an incompressible RANS solver.

From the simulation the friction resistance coefficient CF and the pressure resistance coeffi-
cient CP are evaluated. From the results followed that an y+ between 50 and 100 is the most
ideal case for both resistance coefficients. In the case only the friction resistance coefficient is
considered, higher values in the log-law region can also be used to give satisfactory results.
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NOMENCLATURE

Table 1: List of symbols

Symbol Unit Definition
ρ [kg/m3] Density
t [s] Time
p [Pa] Pressure
µ [Pa s] Viscosity
νt [m2s−1] Eddy viscosity
x [m] x-coordinate
y [m] y-coordinate
z [m] z-coordinate
u [m/s] Velocity in x-direction
v [m/s] Velocity in y-direction
w [m/s] Velocity in z-direction
U∞ [m/s] Free-stream velocity
y+ [-] Dimensionless wall unit
y+
m [-] Mean dimensionless wall unit
u+ [-] Dimensionless mean velocity
f [kg m/s2] External body force
Re [-] Reynolds number
CP [-] Pressure resistance coefficient
CF [-] Friction resistance coefficient
F [N] Force
Lpp [m] Length between perpendiculars
τw [Pa] Wall shear stress
I [-] Turbulence intensity
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LIST OF ABBREVIATIONS

Table 2: List of symbols

CFD Computiational Fluid Dynamics
DNS Direct Numerical Simulation

KVLCC2 KRISO Very Large Crude Carrier
LES Large Eddy Simulation

MARIN Maritime Research Institute Netherlands
NS No Slip condition

RANS Reynolds-Averaged Navier-Stokes
ReFRESCO REliable & Fast Rans Equations (solver for) Ships (and) Constructions Offshore

SST Shear Stress Transport
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1 INTRODUCTION

Ships have always been an important way to transport people and goods over the water.
Where ships in the beginning were powered by the wind, nowadays most of them are driven
by a propeller. People try to lower the fuel costs of these ships as much as possible. An
important factor in the efficiency of ships is therefore the friction force a ship experiences
while sailing. One tries to design a ship in such a way that these forces are as low as possible.
The friction forces can be determined with experiments done in experimental facilities such
as wind tunnels and towing tanks. But making and testing full scale models in those facil-
ities is hard and expensive. Another way to determine these forces is to numerically simulate
the viscous flows. Due to the computational effort needed, this was hard to achieve years
ago. But nowadays, with the increasing development of computers, the subsequent increase
in memory capacity and calculation speed allows for the numerical study of fluid dynamics
problems, such as determining the friction forces. The method of studying fluid flow related
problems with computer based simulations is called Computational Fluid Dynamics (CFD).

Most of the flows we experience in nature are turbulent flows and many of these exhibit high
Reynolds numbers, such as in this study. An essential feature of turbulent flows is that the fluid
velocity field varies significantly and irregularly in both position and time. There are several
methods which can be used to numerically solve turbulent flows. Three common approaches
are direct numerical simulation (DNS), large-eddy simulation (LES) and the Reynolds-Averaged
Navier-Stokes equations (RANS), where RANS will be discussed in this study.

On the wall of a ship the no slip condition cause large pressure gradients in the solution.
To directly describe these large gradients a narrow grid close to the wall is required, which
results in a large grid size and therefore high computation time. Another approach to describe
the solution of the shear-stress at a wall is the application of wall functions which determine
the shear-stress at the wall from semi-empirical equations applicable up to the outer edge of
the so-called "wall layer/log layer". Applying this method will reduce the number of cells and
therefore lower the computation time. The drawback is that it is less accurate than the direct
application of the no slip condition.

The purpose of this study is to determine the effect of the dimensionless wall unit y+ with the
use of wall functions on the resistance and flow for a KVLCC2 tanker. The different values
for y+ are taken such that they are in different regions of the boundary layer, for example
the buffer layer and the log-law region. The test case selected is the KVLCC2 tanker, one of
the ship hulls of the Workshops on Numerical Ship Hydrodynamics [3, 4]. The results will be
compared with the results from the direct application of the no-slip condition, i.e. simulations
without the use of wall functions. The calculations will be done with ReFRESCO, which is a
CFD-solver for the RANS equations developed by MARIN.

Chapter 2 give some more information about the solver and the theory behind wall functions.
Chapter 3 give information about the calculation process and grids used and chapter 4 contains
the results of the simulations. The conclusions and recommendations are stated in chapter
5.
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2 THEORY

2.1 Navier-Stokes equations

The Navier-Stokes equations are the fundamental equations in physics and are based on
the conservation of mass, the conservation of momentum (Newton’s second law) and the
conservation of energy (the first law of thermodynamics). The law of conservation of mass
states that for any system closed to all transfers of matter and energy, the mass of the system
must remain constant over time. This results in the continuity equation in differential form:

∂ρ

∂t
+ ~∇ · (ρ~u) = 0 (1)

Where ρ is the density and ~u the velocity of the fluid. The momentum equation follows from
Newton’s second law (~F = d

dt(m~u) and describes the conservation of momentum. In partial
differential form it is written as:

∂

∂t
(ρ~u) + ~∇ · (ρ~u~u) = ρ~f − ~∇p+ ~∇ · τ (2)

Where ~f are the external body forces, p is the pressure of the fluid and τ is the viscous stress
tensor, which is given (in Cartesian coordinates) as:

τ =

τxx τyx τzx
τxy τyy τzy
τxz τyz τzz

 (3)

The exact derivation of these equations and the equation for the conservation of energy can
be found in Peric [5].

2.2 Turbulent flows

Flows at high Reynolds number are turbulent flows, with only portions of the flow being
laminar. A laminar flow is a regular flow, often constant in time, while turbulent flow is mostly
irregular, 3D and unsteady. In turbulent flow, unsteady vortices appear on many scales and
interact with each other. Figure 1 shows a simple illustration of laminar and turbulent flows.

Figure 1: Difference between laminar and turbulent flow
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An essential feature of turbulent flows is that the fluid velocity field varies significantly and
irregularly in both position and time. There are several methods which can be used to
numerical solve turbulent flows. Three common approaches are direct numerical simulation
(DNS), large-eddy simulation (LES) and the Reynolds-Averaged Navier-Stokes equations
(RANS). Direct numerical simulation resolves the entire range of turbulent length scales, which
marginalizes the effect of models, but is therefore extremely expensive. The computational
cost is proportional to Re3 [6]. With large eddy simulation the smallest scales are eliminated
by low-pass filtering, which allows the largest and most important scales of the turbulence
to be resolved, while reducing the computational cost incurred by the smallest scales [6].
The Reynolds-Averaged Navier-Stokes equations are time-averaged equations of motion for
fluid flows. For most engineering problems, this method provides a good accuracy with low
computation times. In this study, only the RANS equations will be used.

2.2.1 Reynolds-Averaged Navier-Stokes equations

Figure 2: Turbulent velocity fluctuation in pipe flow as a function of time [1]

The idea behind the Reynolds-Averaged Navier-Stokes equations is Reynolds decomposition,
whereby an instantaneous quantity is decomposed into its time-averaged and fluctuating
quantities (shown graphically in figure 2), an idea first proposed by Osborne Reynolds [7].
It states that in a statistically steady flow, every variable φ can be written as the sum of a
time-averaged part φ(~x) and a fluctuation of that value φ′(~x, t):

φ(~x, t) = φ(~x) + φ′(~x, t) (4)

Where the time-averaged value φ(~x) is defined as:

φ(~x) = lim
T→∞

1
T

T∫
0

φ(~x, t)dt and φ′(~x, t) = lim
T→∞

1
T

T∫
0

φ′(~x, t)dt = 0 (5)

From equation (4) and equation (5) follows:

φ = φ, φ′ = 0, φ+ σ = φ+ σ, φ · σ = φ · σ (6)

Where σ is another variable in the flow with σ(~x) its time averaged value. For incompressible
Newtonian fluid, the Navier-Stokes equations of motion, expressed in tensor notation, are:

∂ui
∂xi

= 0 (7a)
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ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= ρfi −
∂p

∂xi
+ µ

∂2ui
∂xj∂xj

(7b)

Where fi is a vector representing external forces. For the continuity equation, applying the
Reynolds decomposition and taking the average will lead to:

∂(ui + u′i)
∂xi

= ∂ui
∂xi

+ ∂u′i
∂xi

= 0 (8)

Which we can rewrite with the rules in equation (6) to the time averaged continuity equation:

∂ui
∂xi

= 0 (9)

For the momentum equation, applying the Reynolds decomposition and taking the average
will lead to:

ρ
∂(ui + u′i)

∂t
+ ρ(uj + u′j)

∂(ui + u′i)
∂xj

= ρfi −
∂(p+ p′)
∂xi

+ µ
∂2(ui + u′i)
∂xj∂xj

(10)

Which we can rewrite with the rules in equation (6) to the time averaged momentum equation:

ρ
Dui
Dt + ρu′j

∂u′i
∂xj

= ρfi −
∂p

∂xi
+ µ

∂2ui
∂xj∂xj

(11)

With the help of equation (9) we can rewrite this equation to:

ρ
Dui
Dt = ρfi −

∂p

∂xi
+ ∂

∂xj

(
µ
∂ui
∂xj
− ρu′iu′j

)
(12)

Where Rij = −ρu′iu′j is commonly known as the Reynolds stresses. It is a symmetrical
tensor, which introduces 6 new unknowns for a tridimensional flow. This leads to a total of 10
unknowns and 4 equations. Therefore, the system needs additional equations in order to be
closed. This is known as the turbulence closure problem of the RANS equations [8].

2.2.2 Eddy viscosity

Joseph Boussinesq introduced the eddy-viscosity model for the Reynolds stress [9] . He
proposed relating the turbulence stresses to the mean flow to close the system of equations
and assumed that the Reynolds stresses are proportional to the mean velocity gradients:

−ρu′iu′j = µt

(
∂ui
∂xj

+ ∂uj
∂xj

)
− 2

3ρδijK (13)

Which can be written in shorthand as

−ρu′iu′j = 2µtSij −
2
3ρδijK. (14)

The K term is the so-called turbulent kinetic energy given by K = 1
2u
′
iu
′
i and δij is the

Kronecker symbol. The turbulence can be then characterized by two parameters, or two
scales, the turbulence velocity scale v and the turbulence length scale l, i.e. µt ∼ ρvl. Some
turbulence models work directly with the kinematic viscosity νt = µt

ρ .
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2.2.3 Turbulence transport models

A turbulence model is a set of equations, additional to the RANS equations, purporting to
express relations between terms appearing in those equations. The starting point of all
transport models is equation (12) and the problem of ’closure’ reduces to the modeling of
the Reynolds stresses Rij = −ρu′iu′j , in terms of mean-flow quantities.

The traditional linear-eddy-viscosity RANS models may be divided into the following four main
categories [10]: algebraic (zero-equation) models, half equation models, one-equation models
and two-equation models. In this study, only the two-equation SST k − ω model is used.

Two equation-models are models in which model transport equations are solved for two turbu-
lence quantities. These models are therefore complete, i.e. can be used to predict properties
of a given turbulent flow with no prior knowledge of the turbulent structure.

• k − ε Model
The 2-equation k− ε model [11] is one of the most used and referred turbulence model
available in the literature. The first transported variable determines the energy in the
turbulence and is called turbulent kinetic energy k. The second transported variable
is the turbulent dissipation ε which determines the rate of dissipation of the turbulent
kinetic energy.

• k − ω Model
The k−ω model by Wilcox [12] is based on 2 transport equations, one for the turbulence
kinetic energy k and the other for ω, which represents a characteristic frequency of the
turbulence. Its simple formulation for the sub-viscous layer and the decoupling between
the k and ω render numerically robust model.

• k − ω SST Menter Model (1994)
It is well known [13] that models based on the ε-equation lead to an over prediction of
the turbulent length scale in flows with adverse pressure gradients, resulting in high-wall
shear stress and high transfer rates. The ω equation in contrast, has significant advan-
tages near the surface and accurately predicts the turbulent length scale in adverse
pressure gradient flows, leading to improved wall shear stress. It was pointed out by
Menter [14] that the main deficiency of the standard k−ω model is the strong sensitivity
of the solution to free stream values for ω outside the boundary layer. In order to avoid
this problem, a combination of the k − ω near the wall and the k − ε model away from
the wall has been proposed, leading to the SST (Shear-Stress-Transport) model [15].
This model combines the benefits from both the k − ω model and the k − ε model.

• k − ω SST Menter Model (2003)
This model slightly differs from the model proposed in the SST Menter Model (1994).
Robustness optimisation have brought the model to the same level of convergence as
the standard k − ε model with wall function and an improved near-wall formulation has
reduced the near wall grid resolution requirements [16].
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2.3 Wall functions

As mentioned before, the near-wall flow fields requires special treatment. In RANS there are
two main approaches for the determination of the shear-stress at a wall: direct application
of the no-slip condition and wall functions which determine the shear-stress at the wall from
semi-empirical equations. The y+ is the dimensionless quantity for the distance from the wall
up to the centre of the first grid cell. The y+ of the first method is typically around 1, while wall
functions allow us to take a y+ higher than 1. This results in a lower amount of grid cells and
therefore lower computation times.

The idea behind the ’wall-function’ approach [17] is to apply boundary conditions (based on
log-law relations) some distance away from the wall, so that the turbulence-model equations
are not solved close to the wall (i.e., between the wall and the location at which boundary
conditions are applied) [6]. There are some drawbacks for using wall function:

• The use of wall functions assumes the flow to be fully-turbulent.

• The "log-law" is invalid in strongly three-dimensional flows, in particular in regions of
separated flow

Since the flow in this study is mostly fully-turbulent and not strongly three-dimensional, it
allows us to make use of wall functions.

2.3.1 The law of the wall

It is evident that, close to the wall, the viscosity ν and the wall shear stress τw are important
parameters. From these quantities (and ρ) we define viscous scales that are the appropriate
velocity scales and length scales in the near-wall-region. These are the friction velocity:

uτ ≡
√
τw
ρ

(15)

And the viscous length scale

δν ≡ µ
√
ρ

τw
= µ

uτ
(16)

The distance from the wall measured in viscous length - or wall units - is denoted by:

y+ ≡ y

δν
= uτy

ν
(17)

Prandtl [18] postulated that, at high Reynolds number, close to the wall (yδ � 1) there is an
inner layer in which the mean velocity profile is determined by the viscous scales, independent
of δ and the reference velocity U0:

du+

dy+ = 1
y+ ΦI(y+) (18)
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With

ΦI(y+) = lim
y
δ
→0

Φ
(
y

δν
,
y

δ

)
(19)

Where Φ is a universal non-dimensional function. The integral of equation (18) is the law of
the wall:

u+ = fw(y+) (20)

Where

fw(y+) =
y+∫
0

1
y′

ΦI(y′)dy′ (21)

The important point is the fact that (according to Prandtl’s hypothesis) u+ depends solely on
y+ for y

δ � 1. For Reynolds numbers not too close to transition, there is abundant experi-
mental verification that the function fw is universal.

2.3.2 The inner layer

CHAPTER 7: WALL FLOWS

Turbulent Flows
Stephen B. Pope

Cambridge University Press, 2000

c©Stephen B. Pope 2000
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Figure 7.4: Profiles of the fractional contributions of the viscous

and Reynolds stresses to the total stress. DNS data of Kim et
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4

Figure 3: Profiles of the fractional contributions of the viscous and Reynolds stresses to the total stress.
DNS data of [2]: dashed lines, Re = 5600; solid lines, Re = 13750.

Figure 3 shows us the fractional contributions of the viscous and Reynolds stresses to the total
stress. We can divide the inner layer (yδ < 0.1) into three subregions: The viscous sublayer,
where the Reynolds stresses are negligible; the log-layer, where the viscous stresses are
negligible; and the buffer layer, where none of them are negligible. The viscous sublayer is
valid from the wall up to approximately y+ = 5. The law-of-the-wall for this layer is expressed
in dimensionless form in the following way:

u+ = y+ (22)
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Figure 4: Dotted line: u+ = y+, striped line: u+ = 1
κ ln y+ +B, solid line: experimental data

The log-layer is valid from y+ = 30 − 50 to the outer edge of the law-of-the-wall region,
which depends on the Reynolds number. The law-of-the-wall for this layer is expressed in
dimensionless form in the following way:

u+ = 1
κ

ln y+ +B (23)

Where B is a constant and κ is the von Kármán constant. This is the logarithmic law of
the wall [19]. In the literature, there is some variation in the values ascribed to the log-law
constants, but generally they are within 5% of κ = 0.41 and B = 5.2. Finally, the buffer-layer
is located on the region 5 < y+ < 30 − 50. Neither of the law holds in this region. Figure 4
gives an illustration of the derived expressions.

2.3.3 Automatic wall function

Wall functions are not always desirable, as they neglect the influence of the viscous sublayer.
Especially for flows at low device Reynolds numbers, the omission of the sublayer can have a
significant effect on the solution. Menter and Esch [20] proposed the automatic wall function.
The idea behind the automatic near-wall treatment is that the model shifts gradually between a
viscous sublayer formulation and wall functions, based on the grid density. A blending function
depending on y+ can therefore be defined. The ω-equation is well suited for this task, as it
provides analytical solutions, both for the viscous sublayer and the log-layer.

2.4 Flow Solver ReFRESCO

ReFRESCO is an acronym for REliable & Fast Rans Equations (solver for) Ships (and) Construc-
tions Offshore and is currently being developed, verified and validated at MARIN (in the
Netherlands) [21, 22, 23, 24, 25, 26, 27] in collaboration with several other institutes and
universities. ReFRESCO is a viscous-flow CFD code that solves multiphase (unsteady)
incompressible flows using the Navier-Stokes equations, complemented with turbulence models,
cavitation models and volume-fraction transport equations for different phases [28]. The
equations are discretized using a finite-volume approach with cell-centered collocated variables,
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in strong-conservation form, and a pressure-correction equation based on the SIMPLE algorithm
is used to ensure mass conservation [29].

The equations are supplemented by a turbulence model, which is in this case the two-equations
SST k − ω model from 2003 (SST-2003) [16]. The wall function used is the Automatic Wall
function proposed by Menter [30].

Hence the governing equations are coupled, ReFRESCO solves them in a segregated way.
Also, the momentum equations are linearized using a simple Picard-type of linearization
[5]. By iteration the coupling and the non-linear character of the equation is restored. A
schematical overview can be found in Appendix II.

2.5 Numerical uncertainty

In order to determine the quality of the computational results, verification and validation studies
are required. Verification is a purely mathematical exercise that intends to show that we are
"solving the equations right", whereas validation is a science/engineering activity that intends
to show that we are "solving the right equations" [31]. This means that verification deals with
numerical errors/uncertainties whereas validation is concerned with modelling errors/uncer-
tainties. Verification consists of two parts [31]:

1. Code verficication, intending to demonstrate by error evaluation the correctness of the
code that contains the algorithm to solve a given mathematical model

2. Solution verification, attempting to estimate the error/uncertainty of a given numerical
solution, for which, in general, the exact solution is unknown.

It is assumed that the code solves the equations of the model correctly and therefore only
solution verification will be part of this study. Furthermore it is assumed that the round-off
error is small compared to the iterative error and the discretization error and that the iterative
error is more than two to three order of magnitude smaller than the discretization error, so that
it will not disturb the estimation of the numerical error. The method proposed by Eça [32] will
be used. For this method it is required to have the solution for at least four grids (ng ≥ 4).

2.5.1 Error estimation

The estimation of the discretization error will be done with the truncated power series expansion:

εφ ' δRE = φi − φ0 = αhpi (24)

Where φi stands for any integral or other functional of a local flow quantity, φ0 is the estimate
of the exact solution, hi is the typical cell size, p is the order of grid convergence and α is a
constant which has to be determined. When the estimation of equation (24) is impossible or
not reliable, i.e. the observed order of grid convergence is either too small or too large, three
other error estimators are added:

εφ ' δ1 = φi − φ0 = αhi (25a)
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εφ ' δ2 = φi − φ0 = αh2
i (25b)

εφ ' δ12 = φi − φ0 = α1hi + α2h
p
i (25c)

It is possible to do the error estimation in the least-square sense. In the case four or more
grids are used, one may wish to give more value to the finer than the coarser grid solutions,
which can be done with a weighted approach of the least-square sense. Both the weighted
and non-weighted least-square functions with their standard deviations are given in Appendix .

At first, the order of grid convergence will be determined with the error estimator of equation
(24) for both the weighted and non-weighted approach. If both fits exhibit 0.5 ≤ p ≤ 2, the
value of δRE selected corresponds to the fit with the smallest standard deviation. If only one of
the fit exhibit 0.5 ≤ p ≤ 2, that particular fit is selected. If both fits do not exhibit 0.5 ≤ p ≤ 2,
the value of p selected corresponds to the fit with the smallest standard deviation. Now the
following procedure is followed:

• p > 2
In this case, δ1 and δ2 are solved in the least-square sense with and without weights
and εφ is obtained from the fit that exhibits the smallest standard deviation.

• p < 0.5
In this case, δ1, δ2 and also δ12 are solved in the least-square sense with and without
weights and εφ is obtained from the fit that exhibits the smallest standard deviation.

2.5.2 Uncertainty estimation

The aim of solution verification is to estimate the numerical uncertainty, Uφ, of a solution, φi
for which we do not know the exact solution, φexact. The goal is to define an interval that
contains the exact solution with a 95% confidence [33]:

φi − Uφ ≤ φexact ≤ φi + Uφ (26)

The quality of the fit can be determined with a data range parameter ∆φ:

∆φ = (φi)max(φi)min

ng − 1 (27)

Where ng is the amount of data points. The error estimation is considered reliable if the
solution is monotonically convergent with 0.5 ≤ p ≤ 2.1 and if the standard deviation σ < ∆φ.
In this case, following the Grid Convergence Index (GCI) procedure [31, 34], this lead to a
safety factor of Fs = 1.25. In any other cases, Fs = 3. The uncertainty estimation can now
be determined:

• For σ < ∆φ

Uφ(φi) = Fsεφ(φi) + σ + |φi − φfit| (28)



Internship report 27

• For σ ≥ ∆φ

Uφ(φi) = 3 σ

∆φ
(εφ(φi) + σ + |φi − φfit|) (29)
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3 CALCULATION DETAILS

The CFD simulations are done for different grids and different values of y+. This chapter first
describes the calculation parameters used for the incoming flow and describes the geometry
of the ship used for the simulation. After that, the grid generation procedure is shortly described
for both grids made with GridPro and Hexpress. It also shows some illustration of some of the
grids to give a feeling of how the grids are constructed.

3.1 Ship Geometry, Flow Conditions and Computational Domain

X Y

Z

Figure 5: KVLCC2 tanker

The test case selected is the KVLCC2 tanker (figure 5), one of the ship hulls of the Workshops
on Numerical Ship Hydrodynamics [3, 4]. The full scale Reynolds number is considered.
Based on the undisturbed flow velocity U∞ = 7.5 m/s and length between perpendiculars
Lpp = 320.0 m, this leads to a Reynolds number of Re = 2.03× 109, which is the Reynolds
number used in previous studies on the KVLCC2 [35].

Figure 6: Grid of the computational domain
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The computational domain has a rectangular shape and is initially generated with GridPro
and later Hexpress. The boundaries of the domain are x = −640 (inlet plane) and x = 640
(outlet plane), the planes y = 0 (symmetry plane of the ship) and y = 320 (pressure plane),
z = 20.8 (still water plane) and z = −320 (slip wall plane) and the surface of the ship. More
flow conditions can be found in table 3. A graphical illustration of the computational domain
can be found in figure 6.

All the calculations presented in this study are performed with ReFRESCO. In this study, a
solution is declared converged when the L-infinity norm L∞ of all the residuals are less than
10−5. More calculation details can be found in table 3.

Description Symbol Magnitude Unit
Reynolds number Re 2.03× 109 -
Reference velocity Vref 7.5495 m/s
Reference length Lref or Lpp 320 m
Density ρ 1025.99 kg/m3

Dynamic viscosity µ 1.221× 10−3 Pa s
Turbulence intensity (inlet) I = u′

U∞
0.1 -

Ratio µt
µ (inlet) 10.0 -

Table 3: Flow conditions

3.2 GridPro grids

With GridPro it is possible to generate structured grids. Due to the fact that the grid can be
coarsened or refined in a structural way, this type of grids can be very useful for grid refinement
studies. To generate grids with different resolution and different y+ values, an initial grid is
made at first. From this grid, a first cell distance and a cell growth ratio can be defined, so
that a new grid can be generated. This grid can then be coarsened to get grids with less cells,
which can be useful for the grid refinement studies.

3.2.1 Wall distance

To determine the wall distance related to a specific y+, the friction coefficient has to be known.
The skin friction coefficient is defined as:

Cf ≡
τw

1
2ρU

2
∞

(30)

Where τw is the local wall shear stress, ρ is the fluid density and U2
∞ is the free-stream

velocity. We can estimate this friction coefficient as a function of the Reynolds number with
the Schultz-Grunow relation [36]:

Cf = 0.370 (logRex)−2.584 (31)

We can rewrite equation 30 to get the local wall shear stress:

τw = Cf
1
2ρU

2
∞ (32)
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Combining equations (15) and (17) and rewriting yields:

y = y+µ

ρ
√

τw
ρ

(33)

The first cell distance used by Gridpro and Hexpress is now equal to two times the y.

3.2.2 Grid generation

To determine the influence of y+, a wide range of y+ values are selected. These values are
selected so that in each region (viscous sublayer, buffer layer and log-law region) there are
sufficient data points available to give a good impression of what happens in each region. This
leads to 5 points in the viscous sublayer (0.5, 1.5, 2.5, 3.5 and 5), 4 points in the bufferlayer
(7.5, 12.5, 22.5 and 37.5) and 5 points in the log-law region (50, 112.5, 250, 500, 1500). For
every y+ value there are 7 different grids generated to perform a grid refinement study, except
for y+ = 0.5, 1.5 and 3.5, where only the finest grid is generated.

Y

Z

Figure 7: Grid G5 (with coarsening ratio 0.5000) for y+ = 250

Figure 7 shows the grid G5 (corresponding to coarsening ratio 0.5000) for y+ = 250. It can
be seen that the grid is finer at the grid and the stern. Figure 8 shows a closer look at the bow
and the stern.

Y

Z

(a) Grid at the bow of the ship

Y

Z

(b) Grid at the stern of the ship
Figure 8: Parts of the grid G5 (with coarsening ratio 0.5000) for y+ = 250

More details about the grids (e.g. the amount of cells for every grid) can be found in Appendix
IV.
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3.3 Hexpress grids

Hexpress generates unstructured grids, which are easier to generate for complex, realistic
geometries. Another advantage is the ability to dynamically adapt the grid to local features of
interest, for example the bow of the KVLCC2. A disadvantage of unstructured grids is that the
solution will converge slower in comparison with structured grids.

3.3.1 Different model

The geometry used for the grids made in Gridpro could not be used in Hexpress due to
compatibility errors in the input files. This means that the models differs a little from eachother.
Figure 9a shows the differences at the bow and figure 9b shows the difference at the stern,
where the red lines is the model used with Hexpress and the black lines is the model used
with Gridpro. The differences are small and can not easily be seen, but they can cause small
differences in the solution.

(a) Difference at the bow (b) Difference at the stern
Figure 9: Difference between the Gridpro model (black lines) and Hexpress model (red lines)

3.3.2 Grid generation

For Hexpress two different kind of grids are generated: one grid with 0.944 million grid cells
before applying the viscous layer (after this called 944k) and one grid with 3.511 million grid
cells before applying the viscous layer (after this called 3511k). For the former, only grids with
a y+ in the log-law region are generated and for the latter grids with an y+ in the whole range
of the inner layer is generated (i.e. viscous sublayer, buffer layer and log-law region).

Figure 10 shows the grid for type 3511k with an y+ = 250. A better look at the bow and the
stern can be seen in figure 11, where clearly the unstructured character of the grid comes
forward.
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Y

Z

Figure 10: Hexpress grid for y+ = 250

Y

Z

(a) The Hexpress grid zoomed in at the bow

Y

Z

(b) The Hexpress grid zoomed in at the stern
Figure 11: Hexpress grid for y+ = 250

More details about the grids (e.g. the amount of cells for every grid) can be found in Appendix
IV.
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4 RESULTS

The chapter contains the results of the simulation done in this study. First the selected flow
quantities which are used to compare the different results are described. After that the results
of the simulations done with the GridPro grids are presented. This is done by first presenting
the results for the grid study, to determine the grid quality. It will be followed by the results for
the friction resistance coefficient and the pressure resistance coefficient. For the Hexpress
grids, no grid study is done. This means only the simulation results of the friction resistance
coefficient and the pressure resistance coefficient and compared to the results gained with
the Gridpro grids.

4.1 Selected Flow Quantities

In order to assess the impact of wall function boundary conditions on the calculation of viscous
flows with the RANS equations, the friction Cf and pressure Cp resistance coefficients are
selected. These are defined as:

CF = Ff,x
1
2ρU

2
∞Sw

(34a)

CP = Fp,x
1
2ρU

2
∞Sw

(34b)

Where Ff,x is the friction force in x-direction, Fp,x is the pressure force in x-direction and Sw
is the ship wetted surface (which is extracted from Tecplot). Because the y+ is not the same
at every point on the surface, a quantity has to be calculated which describes the mean value
of y+. This value y+

m is defined as:

y+
m =

∫
Sw

y+dS

Sw
(35)

4.2 GridPro results

Figure 12 shows the velocity in x-direction around the ships surface. It can be seen that just
before the bow and the stern of the ship, the velocity gradient is relatively bigger than at the
bow or stern itself.

(a) Velocity in x-direction around the hull of the
ship

(b) Velocity in x-direction around the bow of
the ship

Figure 12: Simulation results of the velocity in x-direction for y+
m = 116.8 and grid size G1
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Figure 13 shows the friction resistant coefficient on the ships surface. It can be seen that the
highest friction force will be experienced at the bottom of the hull just after the bow and at the
bottom of the hull just before the stern of the ship. This are the regions where the velocity
around the ships surface accelerate (just after the bow of the ship) or decelerate (just before
the stern of the ship), as can be seen in figure 12.

(a) Friction force at the hull of the ship (b) Friction force at the bow of the ship
Figure 13: Simulation results of the friction coefficient for y+

m = 116.8 and grid size G1

Figure 14 shows the pressure resistance coefficient on the ships surface. It can be seen that
the highest forces will experienced at the bow of the ship (figure 14b), where the flow will
collide perpendicular to the surface. The pressure resistance coefficient is the lowest at the
hull of the ship after the bow and will get a little bit higher at the stern of the ship.

(a) Pressure force at the bow of the ship (b) Pressure force at the bow of the ship
Figure 14: Simulation results of the pressure coefficient

4.2.1 Grid study

As the grid is refined (grid cells become smaller and the number of cells in the flow domain
increase) the spatial discretization should asymptotically approaches zero, excluding round-
off error. A method for examining the convergence of CFD simulations is presented in section
2.5. The uncertainties of the solution for CF and CP at the finest grid are examined to
determine the quality of the grids and the possibility to get a converged solution for a specific
value for y+.

Figure 15 presents the friction resistance coefficient CF as a function of the typical cell size
ratio hi

h1
. In the bufferlayer, y+

m = 5.4 is the only value which shows monotonic convergence.
For the log-law region (y+

m > 30− 50), every value show monotonic convergence, except for
y+
m = 1805.8. The order of convergence p can only be determined for y+

m = 51.9 and y+
m =

259.6, which are 0.74 and 1.57, respectively. There is a high uncertainty for the solutions in
the viscous sublayer (y+

m < 5) and the buffer layer (5 < y+
m < 50). This means that the

solution in this region is really dependent on the grid resolution.
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Figure 15: CF as a function of hih1

Figure 16 shows a closer look on the solution in the log-law region (y+
m > 30 − 50), where

clearly can be seen that the uncertainty is a lot smaller compared to the uncertainty outside
the log-law region.
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Figure 16: CF as a function of hih1
for the log-law region only

Figure 17 presents the pressure resistance coefficient CP as a function of the typical cell
size ratio hi

h1
. All solutions show monotonic convergence, except for y+

m = 2.6. The order of
convergence p can only be determined for y+

m = 519.1, which is p = 2.0. The uncertainties
are ranging from 4.6% to 13.7% in the bufferlayer (5 < y+

m < 30− 50) and the log-law region
(y+
m > 30 − 50), where the uncertainty is a lot higher in the viscous sublayer (y+

m < 5), i.e.



Internship report 36

81.4%. The solution for CP is very grid dependent for every value of y+
m.
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Figure 17: CP as a function of hih1

4.2.2 Friction resistance coefficient

Figure 18 presents the friction resistance coefficient CF as a function of y+
m for different grid

resolutions. As in figure 15 it can easily be seen that there is a region y+
m > 100 where

the uncertainty is relatively lower in comparison with the region y+
m < 100 and therefore the

solution is not particular dependent of the grid resolution.

100 101 102 103

0.5

1

1.5

2

2.5

·10−3

y+
m

C
F

1.000 - G1 0.9000 - G2

0.7500 - G3 0.6250 - G4

0.5000 - G5 0.4375 - G6

0.3750 - G7

Figure 18: CF as a function of y+
m for different grid resolutions

Figure 19 presents the friction resistance coefficient CF as a function of y+
m for the finest grid
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G1. The result obtained with the direct application of the no slip condition (NS) is used as a
reference for ∆CF . It can be seen that the highest uncertainties are seen in the bufferlayer
(5 < y+ < 30−50) and that the uncertainties in the log-law region are neglectable compared
to these in the bufferlayer.
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Figure 19: CF as a function of y+
m for the finest grid G1

Figure 20 presents the friction resistance coefficient CF as a function of y+
m for the finest

grid G1, but now without the uncertainty bars. The solutions found in the bufferlayer (5 <

y+ < 30 − 50) show a high deviation with the no slip condition (up to about 9%), where for
the solutions in the viscous sublayer (y+ < 5) and the log law region (y+ > 30 − 50) the
maximum difference is about 0.3%.
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Figure 20: CF as a function of y+
m for the finest grid G1 without uncertainty bars
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4.2.3 Pressure resistance coefficient

Figure 21 presents the pressure resistance coefficient CP as a function of y+
m for different grid

resolutions. As in figure 17 it can be seen that the solution is really grid dependent for every
value of y+

m.
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Figure 21: CP as a function of y+
m for different grid resolutions

Figure 22 presents the pressure resistance coefficient CP as a function of y+
m for the finest

grid G1. The result obtained with the direct application of the no slip condition (NS) is used
as a reference for ∆CP . As seen before, the numerical uncertainty is high for every value of
y+
m. Almost all changes in CP are smaller than the estimated numerical uncertainties.
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Figure 22: CP as a function of y+
m for the finest grid G1
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Figure 22 presents the pressure resistance coefficient CP as a function of y+
m for the finest

grid G1, but now without the uncertainty bars. It can be seen that the solution of CP also is
dependent of the value of y+

m. Especially in the bufferlayer (5 < y+ < 30 − 50), where a
difference with the no slip condition of 11% occurs. The viscous sublayer (y+

m < 5) and the
log-law region (y+

m > 30 − 50) shows a maximum deviation of 4%. Where for CF the values
in the log-law region are roughly constant, it can be seen that for CP the values increase
with growing y+

m. It could be possible that at certain regions on the hull, the local y+ is too
high to give good results of the local pressure at that region, influencing the overall pressure
resistance coefficient. Further research has to be done to determine why this values are
increasing with growing y+

m.
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Figure 23: CP as a function of y+
m for the finest grid G1 without uncertainty bars

4.3 Hexpress results

Simulations are also done with grids made with Hexpress to compare the results with those
of the simulations done with grids made with Gridpro. Due to the lack of time, no grid study
is done to determine the quality of the grids. Besides that, only two kind of grids examined,
where for the coarse grid only simulations are done for y+ values in the log-law region. First,
a comparison between the fine and coarse grid is made. After that, the results of the fine
Hexpress grid is compared to the results of the finest Gridpro grid.

4.3.1 Resistance coefficients

Figure 24 presents the friction resistance coefficient CF as a function of y+
m for different grid

resolutions. It can be seen that the solutions with Hexpress grids in the log-law region (y+
m >

30 − 50) are more grid dependent as for solutions with Gridpro grids. It can also be seen
that the solution in the log-law region is decreasing with growing y+

m for the 3511k grid and
increasing for the 944k grid. It also had to be noted that with increasing y+

m, the amount of grid
cells are decreasing more than with the Gridpro grids, which possibly can explain the increase
in deviation between the values at high y+

m.
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Figure 24: CF as a function of y+
m for different grid resolutions

Figure 25 presents the friction resistance coefficient CF as a function of y+
m for the finest

Hexpress grid and the finest Gridpro grid. The solution with the Hexpress grids show the
same behaviour as for the solution with the Gridpro grid: it will increase substantially in the
bufferlayer (5 < y+

m < 30 − 50) in comparison with the viscous sublayer (y+
m < 5) and the

log-law region (y+
m > 30 − 50). From the behaviour of figure 24, it is expected that a finer

Hexpress grid will result in a solution for CF closer to that of grids made with Gridpro.
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Figure 25: CF as a function of y+
m for the finest Hexpress grid and the finest Gridpro grid

Figure 26 presents the pressure resistance coefficient CP as a function of y+
m for different grid

resolutions. The solution for y+
m = 52.98 shows a small unexpected increase. It is unknown

yet why this sudden increase occurs at this value. Also a substantial deviation between both
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grids is observed. From the results of the simulations with the Gridpro grids, it is known that
the solution for CP is highly grid dependent. It is therefore assumed that this is also the
case for the Hexpress grids. Further research by using more grids is essential to confirm this
assumption.
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Figure 26: CP as a function of y+
m for different grid resolutions

Figure 27 presents the pressure resistance coefficient CP as a function of y+
m for the finest

Hexpress grid and the finest Gridpro grid. The same behaviour for the solution is observed
for both the Hexpress grid and the Gridpro grid: it will increase substantially in the bufferlayer
(5 < y+

m < 30− 50) in comparison with the viscous sublayer (y+
m < 5) and the log-law region

(y+
m > 30− 50) and in the solution increases with growing y+

m in the log-law region.

100 101 102 103

2.2

2.4

2.6

2.8

3

·10−4

y+
m

C
P

Hexpress - 3511k (fine grid)

Gridpro - G1 (finest grid)

Figure 27: CP as a function of y+
m for the finest Hexpress grid and the finest Gridpro grid
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5 CONCLUSIONS

One approach to describe the solution of the shear-stress at a wall is the application of wall
functions which determine the shear-stress at the wall from semi-empirical equations. The y+

is the dimensionless quantity for the distance from the wall up to the centre of the first grid cell.
In simulations without wall functions, this quantity is typically around 1, while wall functions
allow us to take a y+ higher than 1. The boundary layer can be divide in two region: the inner
layer and the outer layer. The former also consist of three regions, which are from the wall up
to the outer layer: the viscous sublayer (y+ < 5), the buffer layer (5 < y+ < 30− 50) and the
log-law region (y+ > 30− 50).

From the CFD simulations done with the Gridpro grids it follows that the solutions for the
pressure resistance coefficient CP and the friction resistance coefficient CF with an y+ in the
log-law region give the best results. These solution are the closest to the solutions without
applying wall functions. Simulations with an y+ in the viscous sublayer also give satisfactory
results based on the deviation with the solution without applying wall functions, but only on
the finest grid, which can be seen by the high uncertainty value for this specific y+. The
best results are gained with an y+ between 50 and 100, based on the pressure resistance
coefficient CP . This is because the deviation to the solution without applying wall functions is
increasing after y+ = 100.

5.1 Recommendations

It has to be noted that this conclusion is based on simulations done for only one geometry
and a particular configuration of the flow. It is recommended to repeat this study for other
geometries and configurations as well, to see if this conclusion still applies.

Due to the lack of time, only a limited amount of simulations with Hexpress grids are done. It
is therefore unknown how well the solutions on those grids are converged. The recommen-
dation is to generate at least two more grids with several values for y+ in every region of the
inner layer, e.g. viscous sublayer, buffer layer and log-law region.

It is also not yet known why the values of CP increase with growing y+ for simulation with
both Gridpro grids and Hexpress grids. It could be due to some regions with a higher local
y+, causing some higher pressures, influencing the integrated pressure. This can easily be
seen by plotting the pressure distribution over the hull. Due to lack of time, this was not
possible to include in this study.
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APPENDIX I

Turbulence models

k − ε Model

For this model the turbulent viscosity (or eddy viscosity) is defined as:

νt = Cµk
2

ε
(36)

Where k2 represents the turbulence velocity scale and ε is the turbulent dissipation rate and
is associated with the turbulent length scale l by means of:

ε = Cµk
3
2

l
(37)

The equations and coefficients that define this model are:

• Turbulent kinetic energy k equation:

∂k

∂t
+ uj

∂k

∂xj
= τij

∂ui
∂xj
− ε+ ∂

∂xj

[(
ν + νt

σk

)
∂k

∂xj

]
(38)

• Dissipation rate ε equation:

∂ε

∂t
+ uj

∂ε

∂xj
= Cε1

ε

k
τij
∂ui
∂xj
− Cε2

ε2

k
+ ∂

∂xj

[(
ν + νt

σε

)
∂ε

∂xj

]
(39)

• Closure coefficients and auxiliary relations:

Cε1 = 1.44, Cε2 = 1.92, Cµ = 0.09, σk = 1.0, σε = 1.3 (40)

The term τij
∂ui
∂xj

is also called rate of production of turbulent kinetic energy, usually denoted by
Pk, which according the assumption of the eddy-viscosity model (equation (13)), is calculated
using:

Pk = τij
∂ui
∂xj

= 2νtSij
∂ui
∂xj

= νt

(
∂ui
∂xj

+ ∂uj
∂xi

)
∂ui
∂xj

(41)

For this model, at a wall k = 0 and ε = 0.

k − ω Model

For this model the turbulent viscosity (or eddy viscosity) is defined as:

νt = k

ω
(42)

The equations and coefficients that define this model are:
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• Turbulent kinetic energy k equation:

∂k

∂t
+ uj

∂k

∂xj
= τij

∂ui
∂xj
− β∗kω + ∂

∂xj

[(
ν + νt

σ∗

)
∂k

∂xj

]
(43)

• Specific dissipation rate ω equation:

∂ω

∂t
+ uj

∂ω

∂xj
= α

ω

k
τij
∂ui
∂xj
− βω2 + ∂

∂xj

[(
ν + νt

σ∗

)
∂ω

∂xj

]
(44)

• Closure coefficients and auxiliary relations:

α = 5
9 , β = 3

40 , β∗ = 9
100 , σ = 1

2 , σ∗ = 1
2 (45)

By means of an asymptotic analysis close to the wall, there can be a limit and boundary
condition for ω determined. Considering ∆y to be the distance between the first point and the
wall, the boundary conditions for the model at the wall are:

k = 0, ω = 10 6ν
β(∆y)2 (46)

For external conditions, i.e. outside the boundary layer, the following relations are given:

ω∞ = λ
Uref
Lref

, ν∞ = 10−3ν, k∞ = νt∞ω∞ (47)

Where Uref and Lref are reference quantities and λ is a parameter that can vary from 1
to 10. This model is said to present advantages when compared with the most used k − ε
models. Its simple formulation for the sub-viscous layer and the decoupling between the k
and ω render numerically robust model.

k − ω SST Menter Model (1994)

The turbulent viscosity is here considered to be:

µt =
ρk
ω

max
(
1, ΩF2

a1ω

) , a1 = 0.31 (48)

Where Ω represents the flow vorticity. The auxiliary function F2 is defined by means of the
wall distance d,

F2 = tanh


[
max

(
2
√
k

0.09dω ,
500µ
ρd2ω

)]2
 (49)

The transport equation include also an auxiliary function F1, which performs a transition
between the k − ω original model and the k − ε model for the shear zones and the external
zones. The equations and coefficients that define the model are then:
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• Turbulent kinetic energy k equation:

∂ρk

∂t
+ ∂

∂xj

(
ρujk − (µ+ σkµt)

∂k

∂xj

)
= τijSij − β∗ρωk (50)

• Specific dissipation rate ω equation:

∂ρω

∂t
+ ∂

∂xj

(
ρujω − (µ+ σωµt)

∂ω

∂xj

)
=

γρΩ2 − βρω2 + 2(1 − F1)ρσw2
ω

∂k

∂xj

∂ω

∂xj
(51)

• Closure coefficients and auxiliary relations:

F1 = tanh


[
min

[
max

(
2
√
k

0.09dω ,
500µ
ρd2ω

)
,

4ρσw2κ

CDkωd2

]]4
 (52a)

CDkω = max
(

2ρσw2
ω

∂k

∂xj

∂ω

∂xj
, 1× 10−20

)
(52b)

a1 = 0.31, β∗ = 0.09, κ = 0.41 (52c)

The coefficients β, γ, σk and σw are defined by a transition between the coefficients of the
original model (denoted by 1) and a k − ε transformed model (denoted by 2).

φ = F1φ1 + (1− F1)φ2, φ = {β, γ, σk, σw} (53)

With the coefficients given by:

σk1 = 0.85, σω1 = 0.50, β1 = 0.075, γ1 = β1
β∗
− σω1K

2
√
β∗

= 0.553,

σk2 = 1.00, σω2 = 0.856, β2 = 0.0828, γ2 = β2
β∗
− σω2K

2
√
β∗

= 0.440
(54)

The limiting conditions for the k−ω SST Menter model are the same as the ones for the k−ω
model.

k − ω SST Menter Model (2003)

The only difference between this model and the model from 1994 is the turbulent eddy viscosity
and the use of the factor 10 in the production limiter, instead of 20. The turbulent eddy viscosity
is now defined as:

νt = a1k

max (a1ω, S, F2) (55)

And the new expression for CDkω:

CDkω = max
(

2ρσw2
ω

∂k

∂xj

∂ω

∂xj
, 1× 10−10

)
(56)
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APPENDIX II
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Figure 28: Flow chart of the workings of ReFRESCO
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APPENDIX III

Numerical uncertainty

The equation presented below are valid for least-squares solution with and without weights.

• Non-weighted approach

wi = 1 and nwi = 1 (57)

• Weighted approach

wi =
1
hi

ng∑
i=1

1
hi

and nwi = ngwi (58)

Single term expansion with unknown order of grid convergence

φ0, α and p are determined from the minimum of the function:

SRE(φ0, α, p) =

√√√√ ng∑
i=1

wi (φi − (φ0 + αhpi ))
2 (59)

With standard deviation:

σRE =

√√√√√√
ng∑
i=1

(φi − (φ0 + αhpi ))
2

ng − 3 (60)

Single term expansion with first-order term

φ0 and α are determined from the minimum of the function:

Sw1 (φ0, α) =

√√√√ ng∑
i=1

wi (φi − (φ0 + αhi))2 (61)

With standard deviation:

σ1 =

√√√√√√
ng∑
i=1

(φi − (φ0 + αhi))2

ng − 2 (62)
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Single term expansion with second-order term

φ0 and α are determined from the minimum of the function:

Sw2 (φ0, α) =

√√√√ ng∑
i=1

wi
(
φi −

(
φ0 + αh2

i

))2 (63)

With standard deviation:

σ2 =

√√√√√√
ng∑
i=1

(
φi −

(
φ0 + αh2

i

))2
ng − 2 (64)

Two-term expansion with first and second-order terms

φ0, α1 and α2 are determined from the minimum of the function:

Sw12(φ0, α1, α2) =

√√√√ ng∑
i=1

wi
(
φi −

(
φ0 + α1hi + α2h2

i

))2 (65)

With standard deviation:

σ12 =

√√√√√√
ng∑
i=1

(
φi −

(
φ0 + α1hi + α2h2

i

))2
ng − 3 (66)
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APPENDIX IV

GRIDSIZE

GridPro grids

Table 4: The grid sets and their corresponding number of cells

y+ 0.5 1.5 2.5 3.5 5
y+

m 0.52 1.54 2.59 - 7.90 3.72 5.40 - 15.48

G1 23482368 22577152 22159360 21880832 21602304
G2 - - 16350635 - 15953161
G3 - - 9328896 - 9093888
G4 - - 5403200 - 5267200
G5 - - 2769920 - 2700288
G6 - - 1552785 - 1506089
G7 - - 945043 - 919897

Table 5: The grid sets and their corresponding number of cells

y+ 7.5 12.5 22.5 37.5 50
y+

m 8.08 - 23.11 13.24 - 38.15 23.49 - 67.99 38.96 51.90 - 153.01

G1 21254144 20836352 20418560 20000768 19722240
G2 15669251 15385341 15044649 - 14533611
G3 8976384 8780544 8623872 - 8310528
G4 5185600 5076800 4968000 - 4804800
G5 2648064 2595840 2543616 - 2456576
G6 1482741 1459393 1424371 - 1377675
G7 903133 886369 869605 - 836077

Table 6: The grid sets and their corresponding number of cells

y+ 112.5 250 500 1500
y+

m 116.84 - 340.52 259.61 - 755.79 519.07 - 1604.69 1805.84 - 6855.05

G1 19095552 19165184 17911808 16379904
G2 14079355 14136137 13227625 12091985
G3 8036352 8075520 7566336 6900480
G4 4641600 4668800 4369600 3988800
G5 2386944 2386944 2230272 2038784
G6 1330979 1330979 1237587 1132521
G7 810931 810931 752257 685201



Report No. A4.2

Hexpress grids

Table 7: The grid sets and their corresponding number of cells

y+ y+
m 944k 3511k

1.5 1.58 - 28593385
2.5 2.66 - 26802085
3.5 3.81 - 26204985
5 5.47 - 16044825

12.5 13.53 - 22011525
22.5 24.01 - 19624845
37.5 39.82 - 40.43 5216580 18431505
50 52.98 - 53.79 5064059 17238165

112.5 118.98 - 120.80 4301454 14842925
250 263.55 - 267.90 3687247 11861715
500 526.25 - 535.17 3078031 10067613
1500 1504.10 - 1598.02 2314291 7085640
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APPENDIX V

PROCEDURE

This appendix contains information about the procedure used to assess this study. It provides
information about how to redo this study with the same test case or with some adjustments
for other test cases.

In the root folder there will be several different folders which can be divided in preprocessing
(0), Gridpro and Hexpress files (1), grids (2), calculations (3), postprocessing (4), results (5)
and report (6).

Preprocessing

The first folder, 0_Preprocessing, contains several bash scripts for preprocessing. The main
script to use is create_calc.sh, which creates folders and files for a specific y+ and grid-size.
It can be called from the commandline:

sh crea te_ca lc . sh <yplus > <gr id > <cores > <max−i t e r a t i o n > <Gridpro | Hexpress>

This script creates the following folders:

• 2_Grids_<Gridpro|Hexpress>/<yplus>/<grid>

• 2_Grids_<Gridpro|Hexpress>/<yplus>/<grid>/refresco

• 3_Calculations_<Gridpro|Hexpress>/<yplus>/<grid>

• 5_Results_<Gridpro|Hexpress>/<yplus>/<grid>

It also creates the following files:

• 3_Calculations_<Gridpro|Hexpress>/<yplus>/<grid>/controls.xml

• 3_Calculations_<Gridpro|Hexpress>/<yplus>/<grid>/job_refresco.job

The control-file which will be copied is controls_batch_<Gridpro|Hexpress>.xml, which is in
the preprocessing folder. This control-file already contains all the correct parameters for the
KVLCC2 test case and the scripts adjusts the maximum iterations and the path to the grid.
The job-file which will be copied is job_batch.job, which is also in the preprocessing folder.
The amount of cores will be adapted with the script.

The following command can be used to call create_calc.sh for every y+ and grid-size used in
this study:

sh c r e a t e _ c a l c _ a l l . sh <max−i t e r a t i o n > <Gridpro | Hexpress>
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Gridpro and Hexpress files

Gridpro files

The folder 1_Gridpro contains several bash scripts to generate the grids with Gridpro. The
folder cleanGrid contains files with a grid from the KVLCC2 topology. The script yplus_grid.sh
calls a function of Gridpro to cluster the grid cells at the KVLCC2 hull surface (wall). It can be
called from the commandline:

sh yp lus_g r id . sh <wa l lds t > <growth >

Where <walldst> is equal to 2 times the y+ and <growth> is the stretching factor, which has
been taken 1.10 in this study. Gridpro also has a function to coarsen the grid. All of this can
be done with yplus.sh, which can be called from the commandline:

sh yplus . sh <wa l lds t > <growth >

This script creates the initial grid (1.000 - G1) and grid which are coarser with coarsening ratio
0.9000 (G2), 0.7500 (G3), 0.6250 (G4), 0.5000 (G5), 0.4375 (G6), 0.3750 (G7), 0.3125 (G8)
and 0.2500 (G9).

Hexpress files

The folder 1_Hexpress contains some files to recreate the finest grids made with Hexpress. In
the folder 112.5/3511k the .igg-file can be opened and edited to generate grids with different
y+ values. The grids can be exported as cgns-files to 2_Grids_Hexpress/<yplus>.

Grids

The folder 2_Grids_<Gridpro|Hexpress> contains the grids for the simulation. When the
control file will not be adjusted, the topology and geo-files from cgns2refresco has to be called
grid_<grid> and need to be in the folder 2_Grids_<Gridpro|Hexpress>/<yplus>/<grid>/refresco.

Calculations

The folder 3_Calculations_<Gridpro|Hexpress> contains the files to start the calculation and
the files which will be created by ReFRESCO. To start a calculation, the job-file can be
submitted to the cluster.

Postprocessing

The folder 3_Calculations_<Gridpro|Hexpress> contains several Python scripts to substract
the results from the simulation files. The script getsim.py will return useful information about
the simulation, for example the CF and CP . It can be called from the commandline:

python getsim . py −p <path > −y <yplus > −g <gr id > −t <type >

Where <path> is the path to the calculation folder and <type> is either the g for Gridpro or h for
Hexpress. The main script for postprocessing is postprocess.py, which will call the getsim.py
function several times for all the values of y+ and all the gridsizes. It can be called from the
commandline:

python postprocess . py −t <type > −p <p lo t >



Report No. A5.3

Where <plot> is either y (show the plots) or n (hide the plots). This script will also create
a datafile in 5_Results_<Gridpro|Hexpress>/data called simdata.dat, which contains values
returned by getsim.py, like CF , CP and the amount of cells. To do an uncertainty analysis on
the grid results, the script postprocess_uncertainty.py can be called from the commandline:

python pos tp rocess_uncer ta in ty . py −t <type > −p <p lo t > −s <save>

Where <save> is either y (save the data to 6_Report/data) or n (do not save the data).
This script calls the uncf.py script, which contains the uncertainty analysis proposed by Eça
[32]. This script will also create a new datafile in 5_Results_<Gridpro|Hexpress>/data called
simdata_p.dat with even more information than simdata.dat, like the uncertainty values and
the deviation to the solution without wall functions. It also creates a lot of tex-files, which can
be used to plot the data in a LaTeX report. The solution which will be taken to calculate the
deviation from can be set with the script setns.py, which can be called from the commandline:

python setns . py −y <yplus > −g <gr id > −t <type >

The values will be saved to nsv.dat and will be read by the postprocess_uncertainty.py script.
At last, the compareresults.py script can be used to compare different grids with eachother, for
example to compare Gridpro grids with Hexpress grids. It can be called from the commandline
as:

python compareresul ts . py −t1 <type1 > −g1 <gr id1 > −t2 <type2 > −g2 <gr id2 >
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