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Introduction 

This research project is focused on the aerodynamic modeling of unmanned aerial vehicles (UAV) and 

its application to determine the aircraft aerodynamic characteristics. The aerodynamic modeling 

procedure of the UAV is based on the vortex lattice method (VLM). The goal is the computation of 

the aerodynamic stability and control derivatives for composing the flight vehicle equations of 

motion. The vortex lattice method code that will be used is the Tornado VLM Toolkit, a MATLAB 

based freeware program developed at KTH- Sweden. The aerodynamic (stability) derivatives shall be 

validated by comparing the calculated derivatives with the corresponding aerodynamic derivatives 

identified from experimental flight data. The unmanned aerial vehicles that is used for this research 

is called Vector-P. A picture of the aircraft is shown below.  

 

 

Figure 1  -  UAV-Vector P 
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1. Aerodynamic Theory 

In this part of the report, the meaning of the aerodynamic derivatives is explained. After that the 

theory behind the Vortex Lattice Method is explained and how it can modulate an airfoil. In order to 

understand the theory of the Vortex Lattice Method it is necessary to know Biot-Savart law.  

1.1 Aerodynamic derivatives  
The final result of the first part of this report is the aerodynamic derivatives of the Vector-P. In order 

to understand the mean of these derivatives, the movements of the aircraft needs to be explained. In 

Figure 2 a schematic picture of the movements of an airplane is shown and in Table 1 their symbols 

and meaning are given.  

 

Figure 2 - Movement of an aircraft 

 

Symbole Meaning 

l Rolling moment 

m Pitching moment 

n Yawing moment 

p Roll rate 

q Pitch rate 

r Yaw rate 

u Axial velocity 

v Lateral  velocity 

w Normal velocity 

φ Roll angle 

θ Pitch angle 

ψ Yaw angel 

X Axial force 

Y Lateral force 

Z Normal force 
Table 1 - Aircraft symbols and meanings 



The aerodynamic derivatives that are searched for, follow from the lift coefficient (CL), drag 

coefficient (CD),   side force coefficient (CY) and the moment coefficients along the x-,y-, and z-axis (Cl, 

Cm, Cn ).This coefficients are defined as: 

   
    

 
 
   

     
    

 
 
   

     
 

  
     

 

   
     

 

   
     

 

   
 

 where q is the dynamic pressure, c is chord and S span of the wing. 

 The aerodynamic derivatives that are searched for follow from the functions of the six coeffincent: 
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 where            , are the derivatives with respect changes of the evaluator, ruder, flap and 

aileron.  

1.2 Vortex Lattice Method 
The Vortex Lattice Method is a method that is used to make a numerical model of lifting surface like 

wings. It models the wing as an infinitely thin sheet of discrete vortices to compute lift and induced 

drag.  

The vortex lattice method is based on the theory of an ideal flow, also known as a potential flow. An 

ideal flow is a simplification of the real flow experienced in nature.  The following assumptions are 

made regarding the problem in the Vortex Lattice Method: 

 The flow field is incompressible, inviscid and irrotational 

 The lifting surfaces are thin 

 The angle of attack is small.  

With the assumptions above it can been shown that there is a function φ such that 

 ̅     

Φ is called the velocity potential. The velocity potential holds the Laplace equation  

      

The Laplace equation is a second order linear equation and therefore it is allowed to use the principle 

superposition. 



Consider a part of a finite wing as shown in Figure 3. A panel is defined by the dashed lines on the 

wing, where l is the length of the panel in the free stream direction. A horseshoe vortex abcd of 

strength    is place on the panel. The segment bc of the horseshoe is a distance l/4 from the front of 

the panel. A control point is placed on the centerline ¾ l from the front of the panel. The velocity 

induced at an arbitrary point P by the horseshoe, can be determined by applying Biot-Savart law on 

each of the three vortex filaments of the horseshoe. The Biot-Savart law will be explained late in this 

paragraph.  

 

Figure 3 - A horseshoe vortex on a part of a wing 

 
Consider now the entire wing to be covered by a finite number of panels. On every panel a 

horseshoe vortices is placed. For example the panel behind the leading, there is the horseshoe vortex 

abcd. On the panel behind it, there is the horseshoe vortex aefd. On the next panel there is 

horseshoe vortex aghd ect. This is shown in Figure 4. The entire wing is now covered by a lattice of 

horseshoe vortices, each of a different unknown strength   .  

 

Figure 4 - Vortex lattice system on a finite wing 

The central problem of the Vortex Lattice Method is to determine the strength    of the vortices such 

that the normal component of de free stream velocity is zero. The flow is than tangent to the lifting 

surface. For each panel this condition is applied on the control point. The normal velocity component 

exists of a free stream component and an induced flow component. This induced component is a 

function of all the strengths of all the horseshoe vortices on the wing. For each panel an equation can 

be set up which is a linear combination of the effects of all the panels. When applying the flow 



tangency on all the control points, a system of simultaneous algebraic equations results which can be 

solved for the unknown     . The algebraic set of equations is shown below. 

 

[

   
   

    
 

    
  

      
        

] [

  
  
 
  

]  [

  
  
 
  

]                                     

       ( )                               

 The matrix [A] is the aerodynamic influence matrix where the induced velocity of each vortex on 

each panel is collected and Γ is the strength of each vortex. When the above set of equations is 

solved the aerodynamic forces can be determined as follows: 

    (           )   

1.2.1 Bio-Savart law 

Consider a vortex filament with strength Γ as shown in Figure 5.  A part the filament, dl, induces a 

flow field in the surrounding space, for example at the arbitrary point P. If the distance from dl to the 

P in the surrounding space is r, then the segment dl induces a velocity at P equal to  

   
        

   | | 
  

This is called Biot-Savart law. 

 

 Figure 5 - Vortex filament  

  



2.  CFD Calculations of the 

Aerodynamic Derivatives Vector-P 
 
In this chapter the Matlab program Tornado, which will be used to make a numerical model of 

Vector-P, will be explained. The dimension of the unmanned aircraft, Vector P will be determined 

and that will be used as an input in Tornado. All the steps that were made in order to make the 

numerical model will be explained. At last the results, output of Tornado, will be shown and 

discussed.  

2.1 Tornado 
Tornado is a 3D-vortex lattice program with flexible wake and can be used for a variety of tasks. 

Tornado is based on the standard vortex lattice theory as described earlier in this report. The wake 

coming of the trailing edge of the lifting surface is flexible and changes from shape according to 

different flight conditions. The classical horse-shoe, which is explained earlier, is in this program 

replaced by a “vortex-sling”. The difference between a horse-shoe and a vortex-sling is that the legs 

of the vortex-sling are flexible and consist of seven vortices of equal strength in stead off three. This 

is shown in Figure 6. 

 

 

 

Figure 6 - Vortex-sling VS. Horse shoe 

The outputs of the program are 3D forces acting on each panel, aerodynamic coefficients in both 

body and wind axis and stability derivatives with respect to the angle of attack, angle of sideslip, 

angular rates and rudder deflections. The aerodynamic derivatives are calculated by using a centrals 

difference calculation using the selected state of the aircraft and disturbing it by 0.5 degrees. So for 

an arbitrary aerodynamic coefficient, it is calculated as follows 

    
   
  

 
       
     

 

In order to model the Vector-P in Tornado a lot settings are needed to be filled in. Therefore the 

types of settings of Tornado are explained below. 

Coordinate system: a Cartesian coordinate system is used within the programme Tornado. The X-axis 

is along the aircraft body and increasing in the direction of the tail. The Y-axis is aligned positive out 



through the starboard wing in span wise direction. The Z-axis is right-hand perpendicular to the X- 

and the Y-axis, where the positive axis is upwards. 

Span: the span that is required to be filled in is the semi span of each partition. It is the distance from 

the innermost to the outermost part of each partition. The sum of the semi spans of all the partitions 

is the semi span of the entire wing.  

Taper: with taper the programme means the tapper ratio. The taper ratio is defined as: 

  
          
          

 

Sweep: with sweep the programme means the swept angle of each partition. The swept angle is the 

angle between the quarter chord line and the Y-axis.  

Chamber: The chamber lines that Tornado uses are from the NACAXXXX series. For each partitions of 

the wing both the inner and the outer chamber must be specified.  

Dihedral: The dihedral angle is the angle between the XY-plane and the quarter chord line.  

Twist: the partition twist is defined as the angle between the tip chord of the partition and the root 

chord of the wing.  

Symmetry: when there is symmetry there is a mirror of the partition in the XY-pane. Tornado work 

with a Boolean operator, 1 is yes and 0 is no.  

Root chord: The root chord has to be specified for each wing. For the partitions the root chord will be 

defined by the first partition root chord and the taper ratio.  

Flaps: the programme will see flaps and aileron as flaps but that have to be modelled separately 

because they have different functions. See flaps symmetry 

Flap symmetry: if there is symmetry of a partition of the wing which has a flap (flap or aileron) the 

programme needs to flaps deflect symmetrically. For example, whether or not the starboard and the 

port flap go up or down at the same time. This is true for flaps and evaluators, but not for ailerons. 

To fill the settings, Tornado again uses a Boolean operate.  

Flap chord fraction of the local wing chord: If there is a flap the chord of the flap needs to be defined. 

This is done by the fraction of the flap chord with respect to the local wing chord.    

Panels: For each partition a number of panels can be chosen in the chord wise as in span wise 

direction. The chosen of the number of panels will be explained later in this report.  

 

 

 

 



2.2 Vector P Specifications 
There is not much known about the Vector P. The specifications of the aircraft that are known are 

listed in the table below. These specifications are from the factory where Vector-P was fabricated. 

 

Unmanned Aerial Vector-P Specifications  

Wingspan 2.6 m  

Fuselage Length 1.525 m   

Max Speed 185 Km/h  

Engine 3 W 2-stroke reverse rotation gasoline engine. Options range from 2.48 to 
4W, quoted on request. 

 

Max Range 775 Km, depending on fuel on board  

Cruise Speed 129 Km/h  

Max Altitude 3 Km  

Max Endurance 6 hours depending on fuel and payload on board  

Max Takeoff 
Weight 

34 Kg  

Empty Weight 23 Kg  

Max Fuel 12.3 liters  

Fuel Per Hour 2.3 liters  

Landing Speed 74 Km/h  

Max Payload 
Weight 

11.3 Kg, with fuel for one hour  

Payload Vol. 
(Internal) 

(225 x 225 x 685) mm  

Payload Power (typ) 18.5 +2.5/-1 VDC @ 2.5 A, 6 Ah, distributed  

Max Comm. Range 62 Km Line of Sight  

Takeoff & Landing Manual RC Control (spread spectrum), runway < 150m depending on 
surface and Takeoff Weight 

 

Table 2- Vector P Specifications 

 

As can been seen in the table above, there is not much information about the dimensions and the 

aerodynamics of the airplane. In order to make a numerical model, all the dimensions and the 

profiles of the wing and the tail need to be known. All the useful dimensions are measurement. The 

profile of the wing and the tail are an approximation of a NACA profile. This is done by measuring the 

chord of the wing and the maximum thickness. To check whether the approximation was accurate, a 

mold was made of the approximated profile. If the mold fitted nicely around the airfoil, the 

approximation is assumed to be good enough. For the wing, the airfoil is approximated to have a 

NACA 4412 profile. For the horizontal and vertical tail, the airfoil is approximated to be a NACA 0010 

profile. The dimensions of the wing and the tail are shown in the pictures below.  



 

Figure 7- Top view of Vector-P. Dimensions in mm 

 

 

Figure 8 - vertical tail and horizontal tail, dimensions in mm 

The exact shape of the Vector-P cannot be modelled. The flaps of the tails are not entirely straight, 

some corners are cut off. It is not possible to model the flaps like that in Tornado, therefore the flaps 

will be modelled as if they are fully rectangular. The wing is not exactly an exact rectangle either. The 

corners are not sharp edges but there are round and that is also not possible to model in Tornado.  

 

 

Figure 9 - Fuselage of the Vector-P 



As mentioned before, Tornado approximated the lifting surfaces by pretending that they are very 

thin. The fuselage is not thin but it needs to be modelled because it has influences on the flow 

around the wings. To model these influence, it is chosen to model the fuselage as to two thin plats, 

one horizontally and one vertically. The dimensions of the fuselage are shown in Figure 9. The front 

part of the fuselage is round, it has  an oval shape. This is impossible to model in Tornado, therefore 

the nose of the fuselage is approximated for a triangular shape.  

For a good numerical model it is also important to know where the centre of gravity is located. The 

centre of gravity plays an important role with respect to the stability of the aircraft. The location of 

the centre of gravity depends on where the electronic equipment is placed in the fuselage. This is not 

every time exactly the same therefore the centre of gravity is approximated to be in the centre of the 

fuselage 0.1 meter behind the leading edge of the wing.  

The tail of the Vector-P is connected to the wing with two bars. The two bars have a small diameter 

and therefore it is assumed that it has minimal effect on the flow. With this assumption it is chosen 

not to model the bars in Tornado.  

 

2.3 Modelling Vector-P 
To model the Vector-P in Tornado, each part, like the wing, tail and fuselage needs to be model 

separately and all have different setting. In this part of the Chapter the settings for each part of the 

Vector-P will be discussed separately 

 

2.3.1 Modelling the wing 

The first part of Vector-P that is modelled in Tornado is the wing. The wing is in the model divided up 

into different partitions in span wise direction. Each partition will have different kind of settings, this 

will be specified later in this the report. First the wing span is divided into 4 different partitions. The 

first partition is the part of the wing which starts at the root chord until the beginning of the flap. The 

second partition is the whole span of the flaps. The third partition is the whole span of the aileron 

and the last partition is the tip of the wing, which is from the end of the aileron until the end of the 

wing. This would be the corrected to model a single wing but in this case a tail of the airplane needs 

to be modelled as well. This brings a numerical problem. When the wing and the tail are divided into 

panels, the panels of the wing and tail should be in the same line in span wise direction. In other 

words, all the spanwise divisions of the tail must be aligned with those of the wing. See Figure 10. If 

this is violated it is possible that a vortex line of the wing will shed a control point on the tail. This 

would make the aerodynamic influence matrix singular which would result into wrong results.  



 

Figure 10 – span wise alignment 

In order to fulfill the requirement that the span wise divisions of the tail are aligned with the span 

wise divisions of the wing, an extra partition in the wing is needed. The span of the tail is smaller than 

the span of the wing form the root chord until the beginning of the flap. Therefore the wing needs an 

extra partition from the end of the span of the tail until the beginning of the flap.  

To complete the model of the wing in Tornado all that settings that are explained earlier in this 

report are filled in.   In Figure 11 the partitions of the wing are shown and in Table 3 all settings that 

have been explained are given.  

 

Figure 11 - Model of the wing 

  



Wing No. Partitions 5 

 Partitions 1 Partitions 2 Partitions 3 Partitions 4 Partition 5 

Symmetric 1 1 1 1 1 

Apex 
coordinates 

(x,y,z) 

0 0.115 1     

Base Chord 
(m) 

0.4451     

Half span (m) 0.225 0.04616 0.33369 0.481 0.09 

Sweep (rad) 0 0 0 0 0 

Dihedral (rad) 0 0 0 0 0 

Taper 1 1 1 1 1 

Airfoil 4412 4412 4412 4412 4412 

Twist (rad) 0 0 0 0 0 

Flapped 0 0 1 1 0 

Chord flap 0 0 0.1603 0.1603 0 

Flaps deflect 
symmetric 

0 0 1 0 0 

Table 3 - Wing settings 

From Table 3 it can be seen that the base chord is only given for the first partitions of the wing. It is 

not necessary to know the rest of the chords, because Tornado will calculated that with setting of the 

taper ratio, half span and the length of the root chord. 

2.3.2 Modelling the horizontal tail 

To model the tail of the Vector-P, the number of partitions has to be decided first. In the section 

above, there has been explained that the span wise divisions of the tail must be aligned with the 

span wise divisions of the wing. For the tail, there is a similar requirement, namely the span wise 

division of the horizontal fuselage needs to be aligned with the span wise divisions of the tail. 

Therefore the tail is divided into two partitions. The first partition is exactly the half of the width of 

the fuselage (because of symmetry) and the second partition is the rest of the tail. In Figure 12 the 

partitions of the tail are shown and in Table 4 all settings that have explained are given.  

 

Figure 12 - Model wing + horizontal tail, top view 



Horizontal tail No. Partitions 2 

 Partitions 1 Partitions 2 

Symmetric 1 1 

Apex coordinates (x,y,z) 1.4386 0 0  

Base Chord (m) 0.25434  

Half span (m) 0.115 0.225 

Sweep (rad) 0 0 

Dihedral (rad) 0 0 

Taper 1 1 

Airfoil 0010 0010 

Twist (rad) 0 0 

Flapped 0 0 

Chord flap 0.2949 0.2949 

Flaps deflect symmetric 1 1 
Table 4 - Settings of the horizontal tail 

 

2.3.3 Modeling the vertical tail 

For the vertical tail there is only one partitions needed. The schematic view of vertical tail can be 

seen below. 

 

Figure 13- Model of the vertical tail, side view 

In Figure 13 a schematic view of the vertical tail is given. It can be seen that the chord of the flap 

decreases in span wise direction. This is because the fraction of the flap is defined as: 

                    
                

                
  

In Tornado the fraction stays the same and because the tail has a tapper ratio less than one, the 

chord of the flap decreases in the model. In the real plane the chord of the flap stays the same in 

span wise direction. Unfortunately Tornado cannot model this and therefore it is a limitation of the 

program. 

  



 

Settings Vertical Tail No. Partitions 1 

 Partition 1 

Symmetric 1 

Apex coordinates (x,y,z) 1.439 0.34 0 

Base Chord (m) 0.249 

Half span (m) 0.341 

Sweep (rad) 0.1594  

Dihedral (rad) 1.57   

Taper 0.7 

Airfoil 0010 

Twist (rad) 0  

Flapped 1 

Chord flap 0.281 

Flaps deflect symmetric 0 
Table 5 – Settings of the vertival tail 

The calculation of the swept angle is shown in Appendix A.  

2.3.4 Modeling the fuselage 

The horizontal part and the vertical part of the fuselage both exist of 1 partition. It is important for 

the fuselage that the panels of the fuselage are well connected to the panels of the two wings and 

with each other.  To fulfill this, the fuselage is modeled as three “lifting surface” behind each other 

for the horizontal part as well as for the vertical part.  The first lifting surface is in front of the two 

wings, the second between the two wings and the third lifting surface behind the two wings. The 

model and the settings are shown in below.  

 

 

Figure 14 - Model of Vector-P, top view 



 

Figure 15 - Model of Vector-P, side view 

 

                                               Fuselage horizontal                    Fuselage vertical 

 Wing 1 Wing 2 Wing 3 Wing 1 Wing 2  Wing 3 

Symmetric 1 1 1 0 0 0 

Apex 
coordinates 

(x y z) 

-0.85 0 0 0 0 0 0.4451 0 0 -0.85 0           
-0.165 

0 0 -0.165 0.4451 0 
-0.165 

Base 
Chord(m) 

0.85 0.4451 0.0449 0.85 0.4451 0.0449 

Half span (m) 0.115 0.115 0.115 0.280 0.280  

Sweep(rad) 0 0 0 0.359 0 0 

Dihedral 
(rad) 

0 0 0 1.57 1.57 1.57 

Taper 1 1 1 0.835 1 1 

Airfoil 0 0 0 0 0 0 

Twist (rad) 0 0 0 0 0 0 

flapped 0 0 0 0 0 0 

Chord flap 0 0 0 0 0 0 

Flaps deflect 
symmetric 

0 0 0 0 0 0 

Table 6 - settings of the fuselage 

In Table 6 the numbers of the wings are counted from the noise of the aircraft in the direction of the 

tail. The calculation of the dihedral angle is shown in Appendix A.  

2.4 Number of panels 
The total aircraft is now modeled in tornado. The only thing that needs to be set in order to run 

Tornado, is the number of panels. This is an important setting because a too low number of panels 

will give an inaccurate result and too many panels results in a long calculation time. To decide how 

many panels should be used, there has been looked at two different aerodynamic derivatives. One 

derivative that is most sensitive to the deviation of the number of panels in the XY plane and the 

second derivative that is most sensitive to the deviation of the number of panels in the XZ-plane. The 

XY-plane and the XZ-plane are the only planes where the number panels can change.  The most 

sensitive derivative in the XY plane is Clα and in the XZ plane it is Cyβ . The correct number of panels 

that should be used for the model is where Clα and Cyβ have converged to a result.  



It is not possible just to a guess of the number of number panels in chord wise and span wise of each 

part of the model. There are a view restrictions to make the result as accurate as possible. The first 

restriction is that the number of panels span wise of the horizontal part of the fuselage and of the 

first partition of wing needs to be the same as the number of panels span wise of the partitions of 

the tail. This is to avoid that that a vortex line of the wing/fuselage will cross a control point on the 

tail. The second restrictions it that the fuselage needs the same number of panels chord wise as the 

wing. This is because the panels will than connect nicely with each other and the result will become 

more accurate.. The last restriction is that the horizontal and the vertical tail have the same number 

of panels chord wise so that the mesh is connect fluently.  

The first simulation that is done has 300 panels. The simulations that followed had every time more 

panels. This is done by increasing the number of panels chord or span wise of the tail, wing or the 

fuselage.  During the process of increasing the panels, there is also taken into account that near the 

root chord and at the tip of the wing a higher density of panels is possibly needed. This is because at 

the tip a vortex will be generated and near the root chord the flow will be influenced by fuselage. 

These two locations need probably a higher density of panels to describe the flow than rest of the 

model. 

In the Figure 16  shows that Clα and Cyβ converges to a results while the number of panels increases. 

Both derivatives have converged with 498 panels.  

 

 

Figure 16 - Cyβ (left) and Clα (right) against the number of panels 

  



2.5 Results 
The vector-P is has been modeled in tornado and has been simulated at cruise speed. The results are 

shown in Table 7 and the total mesh of the airplane is shown in Figure 17. 

 

Figure 17 - Mesh of the Vector-P 

 

Aerodynamic derivatives 

Per/quantity CL CD CY Roll Pitch Yaw 

α 5.1545 0.15308 2.884e-44 -9.189e-6 -2.122 -1.352e-4 

β 8.254e-4 -1.005e-4 -0.737 4.120e-2 1.844e-4 -0.1381 

P -1.015e-3 7.523e-6 0.268 -0.588 6.705e-4 -2.987e-2 

Q 9.417 0.183 1.701e-4 -2.108e-6 -16.286 1.391e-4 

R 1.187e-4 -2.299e-5 -0.581 9.638e-2 2.494e-4 -0.3651 
Table 7 - Aerodynamic derivatives 

 

Rudder derivatives 

 CLδ CDδ CYδ Clδ Cmδ Cnδ 

Flap 0.650 0.020 4.356-6 -6.059e- -0.418 -2.746e-6 

Aileron 1.228e-4 9.279e-6 -0.014 0.239 -8.194e-05 6.552e-3 

Elevator 0.419 0.002 1.854e-6 -10.047-8 -1.399 -2.221e-7 

Rudder 1.889e-6 6.557e-6 -0.256 0.024 1.015e-6 -0.173 
Table 8 - Rudder derivatives 

 



From Prandtl’s classical lifting-line theory there is known that Clα is equal to 2π. This lifting line theory 

is like Tornado based on thin plates. Therefore it is suspected that Clα is close to that value. From 

Table 7 it follows that the Clα of the Vector-P is 5.15 which is a little lower than 2π. The difference can 

be explained by the fact that Prandtl’s theory, does not take the effects of the fuselage into account. 

In Tornado on the other hand the effect of fuselage is taken into account and that might cause that 

the Clα is a bit lower. For this reason it is assumed that the model in Tornado is a good approximation 

of the real UAV.  

  



3. CFD Calculations of the 

Aerodynamic Derivatives Telemaster 

The second unmanned aerial vehicle that will be modeled in Tornado is called the Telemaster. In this 

chapter first the dimension of the Telemaster will be shown and some assumptions will be explained. 

After that the Telemaster will be programmed in Tornado and then the number of panels will be 

determined. At last the results, the aerodynamic derivatives will be shown. A picuture of the 

Telemaster is shown below.  

 

Figure 18 - Telemaster 

3.1 Dimensions of the Telemaster. 
The Telemaster has been modeled in Solidworks by another intern, Izabele Saorin, here at ITA. From 

the 3D Solidworks model, 2D drawings were made and the dimensions of the aircraft are shown. The 

drawings are shown in Figure 19 and Figure 20.    

 

 

Figure 19 - Dimension of the fuselage 



 

Figure 20 - Dimensions of the wing (left), vertical tail(r) and horizontal tail (center below) 

 

In the two figures above the dimensions of the Telemaster are given.  However the dimensions are 

not a hundred percent accurate.  In the left picture of Figure 19 is the side view of the fuselage 

shown. It can be seen that the horizontal tail and the top of the vertical tail are not parallel with each 

other, but in reality this is the case. Furthermore it follows that the upper part of the back part of the 

fuselage has a tapper ratio. In reality the lower part of the fuselage has a taper ration as well. This is 

the reason why the top part of the vertical tail is not parallel to the horizontal tail. With the aid of 

Figure 21 the dimensions are rectified for the mistakes.  

 

Figure 21 - Adjusted shape of the back part of the fuselage 

 

Figure 21 shows the adjusted shape of the back part of the fuselage. The dimensions of the fuselage 

are calculated on the basis of the length and width of the fuselage and the fact that it is symmetric. 

The dimensions are shown in Table 9. 

 

 



Dimensions of the back part of the fuselage (mm) 

AD AC AG GE FG BF  

94 60 49 192 96 207  
Table 9 - Dimensions of the back part of the fuselage 

As mentioned in the chapter of modeling the Vector-P, the centre of gravity is an important 

parameter. The center of gravity is not known but research about the Telemaster has pointed out 

that the centre of gravity is at (0.1228 0 -0.067) with respect to the leading edge of the wing. 

3.2 Modelling Telemaster 
To model the Telemaster in Tornado, each part, like the wing, tail and fuselage needs to be model 

separately and all have different settings just like the Vector-P. In this part of the Chapter the settings 

for each part of the Telemaster will be discussed separately. 

3.2.1 Modelling the wing 

Like the Vector-P, the wing of the Telemaster is modelled first. As can be seen in the Figure 20, the 

wing has two different chords. The first chord is without the flap and the second chord is with the 

flap. It is not possible to model a wing with two partitions which have two different chords in 

Tornado. Therefore there is first chosen to model the wing as two different lifting surfaces instead of 

two partitions. However, when Tornado was set to make a solution for the aerodynamic derivatives, 

the result of for example Clα was too high, namely 18.5. The reason for that is because Tornado does 

the calculation with the span and chord of the first wing that has been modelled. So the programme 

was calculating with a span on 0.6 instead of 2.2. To prevent this from happening, the wing has been 

modelled as one lifting surface with one chord and two partitions. The chord that is chosen is the 

chord with the flap, because this covers the greatest span of the wing. In Figure 22 is a schematic 

picture of the wing given and in Table 10 the settings that were put into Tornado are shown.  

 

Figure 22 - Schematic drawing of the wing 

 

 

 



 

Settings of the wing 

 Partitions 1 Partitions 2 

Symmetric 1 1 

Apex coordinates (x,y,z) 0 0 0  

Base Chord (m) 0.42929 0.42929 

Half span (m) 0.3 0.8 

Sweep (rad) 0 0 

Dihedral (rad) 0 0 

Taper 1 1 

Airfoil 2412 2410 

Twist (rad) 0 0 

Flapped 0 1 

Chord flap 0 0.0932 

Flaps deflect symmetric 0 0 
Table 10 - Settings of the wing 

The profile of the wing was first to be estimated to be a Clark-Y profile. In Tornado the profile can 

only be set by a NACA 4 digits profile. A good approximation of the Clark-Y profile is the NACA 2412.  

 

3.2.2 Modeling the horizontal tail 

As can been seen in Figure 20 the flap of the horizontal tail has a corner that is cut off. This shape can 

be modeled in Tornado by calculating the taper ratio and the swept angle but it is impossible to get it 

in the right orientation. In order to get it in the right orientation the taper ratio needs to be larger 

than 1 which is not possible in Tornado. Therefore the flap of the tail is modeled as fully rectangular 

but with the same area as the real flap. The tail and the flap will have a different chord which is not 

possible to model as mentioned here above. For that reason it is chosen to model the tail as two 

separate lifting surfaces. The flap of the tail will be modeled such that 97% of the lifting surfaces is 

flapped. It is not possible to chosen a higher percentage because Tornado will give an error than. In 

Figure 23 is the schematic view of the wing and the tail given. In Table 11 are the settings of the tail 

shown. 



 

Figure 23 - Wing and horizontal tail 

 

Settings of the horizontal tail 

 Tail flap 

Symmetric 1 1 

Apex coordinates (x,y,z) 0.9872 0 -0.0959 1.165 0.04173 -0.0959 

Base Chord (m) 0.177 0.09 

Half span (m) 0.422 0.38027 

Sweep (rad) 0 0 

Dihedral (rad) 0 0 

Taper 1 1 

Airfoil 0 0 

Twist (rad) 0 0 

Flapped 0 1 

Chord flap 0 0.97 

Flaps deflect symmetric 0 1 
Table 11 - Settings of the horizontal tail 

 

3.2.3 Modeling the vertical tail 

As mentioned before, the back part of the fuselage has a taper ratio in horizontal and in vertical 

direction. Therefore, is the vertical tail under an angle of attack.  For the model it is assumed that the 

last part of the fuselage is straight so that root chord of the tail is not under an angle of attack. This 

assumption is made because Tornado is unable to model the tail in the correct way.  

The vertical tail has two different root chord sizes; therefore the vertical tail is also modeled as two 

different lifting surfaces. For the same reason as the horizontal tail, 97% of the flap will be modeled 

as a flap.  



 

Figure 24 - Schematic view of the vertical tail 

 
 

Settings of the vertical tail 

 Tail flap 

Symmetric 0 1 

Apex coordinates (x,y,z) 0.995 0 -0.064 1.165 0  -0.159 

Base Chord (m) 0.17 0.223 

Half span (m) 0.335 0.430 

Sweep (rad) 0.2544 -0.06 

Dihedral (rad) 1.57 1.57 

Taper 0.3166 0.5402 

Airfoil 0 0 

Twist (rad) 0 0 

Flapped 0 1 

Chord flap 0 0.97 

Flaps deflect symmetric 0 0 
Table 12 - Settings of the vertical tail 

3.2.4 Modeling the fuselage 

The last part of the Telemaster that needs to be modeled is the fuselage. It will be modeled as two 

lifting surfaces, one vertically and one horizontally, the same way as is done for the Vector-P. The 

fuselage of the Telemaster has a taper ratio as well as in the vertical as in the horizontal direction. 

The shape of the fuselage can exactly be modeled in Tornado by calculating the taper ratio and the 

swept angle of the fuselage. If this is done the side edge of the lifting surfaces will not be parallel to 

the free stream flow. This will give a numerical error because when Tornado puts panels on the lifting 

surface, the side edges of the panels will not be parallel to each other. So when a horse shoe is place 

on these panels, the vortex filaments will not be parallel to each which means that the sum of all 

vortexes is unequal to zero and thus that the induced velocity is unequal to zero.  This will cause an 

inaccurate result because the vortex filaments are in reality not there so the induced velocity should 

be equal to zero. Therefore the oblique edge of the lifting surface needs to be a leading edge so that 

the vortex filaments of the horse shoe are parallel to each other.  

The oblique side of the fuselage cannot be modeled as leading edged. Therefore is the fuselage 

modeled as a number of different rectangles, which will decline in height and width in chord wise 



direction. The rectangles are chosen such that the total area of the fuselage stays the same. Because 

the fuselage doesn’t decline too much, it is assumed that 3 rectangles are a good approximation of 

the real oblique fuselage.  

There is a downside of modeling the fuselage as declining lifting surfaces. Each lifting surface will 

create an extra trailing edge to the plane. This causes a tip vortex in the numerical model mean while 

the tip vortexes are not present in the real situation. These lifting surfaces have a low aspect ratio 

compared to the wing, which means that the strength of the vortex is relatively weak. Therefore it is 

assumed that the modeled tip vortexes will have a negligible influence on the final results.  

The schematic view of the fuselage is shown in Figure 25 and Figure 26 and the settings are shown in 

Table 13 and Table 14. 

 

Figure 25- Top view of the Telemaster 

 

Figure 26 - Side view of the Telemaster 

 

 

 



Settings of vertical fuselage 

 Wing 1 Wing 2 Wing 3 Wing 4 Wing 5 

Symmetric 0 0 0 0 0 

Apex 
coordinates 

(x,y,z) 

-0.352  
0        

-0.207 

-0.072  
0 

-0.065 

0.389  
0  

-0.193 

0.692  
0  

-0.165 

0.122 
 0  

-0.067 

Base Chord 
(m) 

0.741 0.461 0.303 0.303 0.170 

Half span (m) 0.143 0.065 0.179 0.122 0.089 

Sweep (rad) 0 0 0 0 0 

Dihedral (rad) 1.57 1.57 1.57 1.57 1.57 

Taper 1 1 1 1 1 

Airfoil 0 0 0 0 0 

Twist (rad) 0 0 0 0 0 

Flapped 0 0 0 0 0 

Chord flap 0 0 0 0 0 

Flaps deflect 
symmetric 

0 0 0 0 0 

Table 13 - Vertical fuselage 

Settings of the horizontal fuselage 

 Wing 1 Wing 2 Wing 3 Wing 4 

Symmetric 1 1 1 1 

Apex coordinates 
(x,y,z) 

-0.352 0 -0.125 0.389 0 -0.125 0.692 0 -0.125 0.995 0 -0.125 

Base Chord (m) 0.741 0.303 0.303 0.1704 

Half span (m) 0.07 0.057 0.045 0.020 

Sweep (rad) 0 0 0 0 

Dihedral (rad) 0 0 0 0 

Taper 1 1 1 1 

Airfoil 0 0 0 0 

Twist (rad) 0 0 0 0 

Flapped 0 0 0 0 

Chord flap 0 0 0 0 

Flaps deflect 
symmetric 

0 0 0 0 

Table 14 - Horizontal fuselage 

In Table 13 and Table 14 the wings are numbered in order of the leading edge closest to the nose of 

the airplane.  

3.3 Number of Panels 
The number of panels is the only thing that needs to be determined in order to run Tornado. As 

mentioned before, the number of panels is an important setting. To determine the right amount of 

panels, the same procedure has been done as with the Vector-P. There has been looked at which 

amount of panels Clα and Cyβ have converged to a result.  

Figure 27 shows that Clα and Cyβ converges to results while the number of panels increases. Both 

derivatives have converged with 616 panels.  



 

Figure 27 - Cyβ (left) and Clα (right) against the number of panels 

3.4 Results 
The Telemaster has been modeled in Tornado and has been simulated at cruise speed. The results 

are shown in Table 15 and the total mesh of the airplane is shown in Figure 28. 

 

Figure 28 - Mesh of the Telemaster 

Aerodynamic derivatives 

Per/quantity CL CD CY Roll Pitch Yaw 

α 4.583 0.0758 -1.305e-3 -6.538e-6 -1.955 -5.667e-4 

β 3.52e-3 -0.040 -3.9026 -1.694e-2 6.972e-3 -1.7364 

P -9.839e-4 -8.658e-3 1.1424 -0.419 1.877-3 0.51328 

Q 7.699 0.087 -1.608e-3 3.949e-5 -10.165 -6.702e-4 

R 7.546e-4 4.49e-3 -0.815 2.15e-2 1.208e-3 -0.361 
Table 15 - Aerodynamic derivatives of the Telemaster 

 

 



 

Rudder derivatives 

 CLδ CDδ CYδ Clδ Cmδ Cnδ 

Aileron 3.148e-4 2.074e-3 -0.4052 0.238 -4.333e-4 -0.181 

Elevator 0.477 1.885e-3 7.965e-6 7.124e-7 -1.147 4.53e-6 

Rudder 1.760e-4 -2.161e-4 -0.134 0.006 -3.333e-4 -0.068 
Table 16 - Rudder derivatives of the Telemaster 

The results of the Vector-P are assumed to be a good approximation because the Clα of the Vector-P 

is a bit lower than the Clα from Prandtl’s classical lifting-line theory. The difference in the Clα is 

because the Vector-P is modeled with a fuselage. The fuselage of the Telemaster is relative larger 

than the fuselage of the Vector-P. This would suggest that the Clα of the Telemaster is lower than Clα  

of the Vector-P. From Table 15 it follows that the Clα of the Telemaster is 4.583 which is lower than 

the Clα of the Vector-P, 5.155. Therefore it is assumed that the aerodynamic derivatives of the 

Telemaster are a good approximation.  

.  

 

  



4. Comparing Test Data with CFD 

Results  
 
In this Chapter the flight experiments of the Vector-P and Telemaster will be explained and the 

output of the experiments will be shown. Furthermore the equations of motion of a rigid aircraft will 

be derived and applied on the data that is gotten from experiments. At last the aerodynamic 

derivatives of the numeric model will be compared with the aerodynamic derivatives that are 

calculated from the equations of motion. 

4.1 Comparison CFD results with flight testing  
In this part of the chapter the aerodynamic coefficients of the Vector-P and the Telemaster, which 

are calculated with Tornado, will be compared with flight test results. The flight testing of the Vector-

P has been done here at ITA but it was not possible to get good flight test data for the Telemaster. 

Therefore de coefficients of the Telemaster will compared to the results of flight testing in Australia 

[2]. First the general procedure to calculate the coefficients from flight testing is explained. Then the 

results will be shown and the comparison will be made. To calculate the aerodynamic derivatives a 

Matlab script is used. This is script is only written for the longitudinal parameters. Therefore, only the 

longitudinal aerodynamic derivatives are calculated and compared. 

4.1.1 Method of flight testing  

To determine the aerodynamic coefficients from flight tests a method called M4V is used in both 

cases. In this report there will be referred to the Vector-P. This method is called that way because it 

has “four M procedures” and one “V procedure”. The four M’s stand for Maneuver, Measurement, 

Methodology and Model. The V stands for validation. In Figure 29 a schematic overview of the 

method is shown. 

 

 

 

 

 

 

 

 

 

In the schematic overview of the model, the first M the Maneuver, refers input of the pilot. There are 

several flight tests done in order to get data from which the aerodynamic derivatives can be 

determined from. During the flight, several different maneuvers where done to determine the 

Figure 29 - Scheme of determination of the aerodynamic derivatives. 
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longitudinal aerodynamic derivatives. In order to do the maneuvers, the aircraft needed some input. 

The input is given by the pilot of the Vector-P. Inputs that the pilot can give are the thrust, aileron, 

flaps and rudder changes. The inputs can be called the control surface deflections and can be written 

in a vector:  

  [                ]
  

The flight maneuvers that were done to determine the longitudinal aerodynamic derivatives are 

given in Figure 30. 

 

Figure 30 - flight maneuvers 

The above two maneuvers are maneuvers that are most commonly used control inputs in system 

identification. The reason why two different maneuvers are used is that different input signals can 

excite different frequencies of the airplane and different input signals shapes have a different 

covered frequency bandwidth [3]. The multistep, or the so called 3-2-1-1 input signal consist of a 

series of alternating step inputs of different durations. This maneuver is mainly used for applications 

in which a broadband coverage of various frequencies is required and is therefore well suited to 

excite the aircraft dynamic modes, also with the presence of any modeling uncertainties. The doublet 

maneuver covers a smaller bandwidth but can be used around the natural frequency.  

The second M refers to Measurement in the schematic schema of the model. On the Vector-P there 

were several sensors placed which measured. A GPS system is placed on the Vector-P which returns 

the location and the height. An inertial navigation system (INS) has also been placed inside the 

Vector-P. The INS system is specially designed to give feedback to the actuator positions allowing 

determination of the exact positions of the control surfaces. The last sensor that is placed on the 

Vector-P is the pitot tube. The outputs of the sensors are the height of the Vector-P, the velocity, the 

angle of attack, angular rate and angular position. These five variables are the outputs of the flight 

experiments and are put into the vector: 

  [         ]  

The outputs of the sensors that are placed on the Vector-P ,are measured at an arbitrary time step. 

This output is called the acquisition output. The acquisition output is first modified in Matlab so that 

the acquisition output is known every 10 mile-seconds of the time that the maneuver toke place. The 

modified acquisition output is than plotted in Matlab against the time. This graph will be later 

compared to the simulated output of the equation of motion.  



The next step of the procedure is done with a Matlab script that is written by another student for his 

master thesis at ITA in 2008 [3]. 

The third M of the model refers to the equations of motion. For the equations of motion there are 

two different inputs. The first input in is the vector . This vector contains all the longitudinal 

parameters like the initial conditions and the longitudinal aerodynamic derivatives. The parameters 

are guessed and aren’t correct. The real set of parameters will be found by an iterative process. The 

second input is the control surface deflections. With these inputs the equations of motion can be 

solved and the output is the vector z for each time step of the maneuver. This vector z is called the 

simulated output. The next step is the last M (Methodology), Matlab plots a graph of the simulated 

output against the time and compares that graph with the graph of the acquisition output. This will 

give an error which is the input of the cost function. The Gauss Newton Algorithm is then used to 

minimize to the cost function. The minimization of the cost function will provide the solution of the 

parameters θ. The whole procedure is than started again and is done until the graphs are almost 

identical. An example of a graph that has converged and has not been converged yet, are shown in 

Figure 31. 

 

Figure 31 - Graph that has been converged (l) and a graph that has not been converged (r) 

4.2.2.2 Results 

In order to get the aerodynamic derivatives, 4 maneuvers have been done to retrieve good data. Two 

of the four maneuvers are doublets maneuvers and the other two are 3-2-1-1 maneuvers. With each 

of these maneuvers the procedure/identification that has been explained before has been done. 

From the four identifications it follows that the result is four different vectors of θ. From the four 

vector of θ, the average of each aerodynamic derivation has been calculated. The results of the 

identification and the average θ are shown in Table 17. 

  CL0 CLα CLq CLδe  CD0 Cmo Cmα Cmq    ̇ Cmδe 

Doublet 
1 

0.522 2.770 2.732 0.984 0.020 -0.081 -0.694 -13.83 -1.967 -1.134 

Doublet 
2 

1,010 4.064 3.207 4.100 0.027 -0.114 -0.307 -17.11 -1.904 -1.018 

3-2-2-1 1 0.507 3.945 3.109 0.321 0.068 -0.081 -0.443 -16.29 -6.456 -0.789 

3-2-2-1 2 0.381 3.113 3.693 1.152 0.072 -0.066 -0.648 -16.42 -1.391 -1.044 

Average 0.605 3.473 3.185 1.639 0.047 -0.086 -0.523 -15.91 -1.946 -0.997 

Table 17 - Flight test aerodynamic derivatives 



The average θ has to be validated to be sure that the longitudinal aerodynamic derivatives are 

correct. For a validation another flight test maneuver is needed and the average θ is going to be the 

initial set of parameters for the validation. The procedure of the identification is done with the new 

initial set of parameters, the average θ. The procedure is stopped exactly after it run ones just before 

Maltab calculates a new set of parameters. So no iteration has been taken place jet.  The two graphs 

of the acquisition output and the simulated output will be compared. This is shown in Figure 32 

 

Figure 32 - Validation graph 

In Figure 32 the acquisition output with the average θ is compared with the real output. As can be 

seen from the figure, the two graphs are more or less identical, therefore there can be assumed that 

average theta is a good result for the longitudinal aerodynamic derivatives of the Vector-P. 

4.2 Equations of Motion 
To get the aerodynamic derivatives from the data from the flight experiments of the Vector-P the 

equations of motion needs to be known as mentioned earlier in this report. For the derivation of the 

equations of motion the following assumption are made: 

 The earth is flat 

 The earth is non-rotating  

 The aircraft has a constant mass 

 The aircraft has a rigid body 

 The aircraft is symmetric  

 There are no rotating mass like turbines  

 There is a constant wind  

It is assumed that the aircraft body is rigid therefore the aircraft has six degrees of freedom, which 

means that it has six directions it is free to follow: it can move forward, sideways, and downwards; 

and it can rotate around its axes: yaw, pitch, and roll. In order to describe the state of a system that 

has six degrees of freedom, six variables (unknowns) are necessary to be calculated. To solve these 

six unknowns, six simultaneous equations are necessary. For an aircraft, these equations are known 

as the aircraft equations of motion. 



All the equations of motion of dynamic systems can be derived by using Newton’s second law. The 

deferential equations can be divided into groups: the first is kinematic and the second is the flight 

dynamics. To derive the aircraft equations of motion for the flight dynamics, two sets of equations 

are needed to derive: 

 The sum of the forces on the aircraft, internal and external, are equal to its mass times its 

acceleration 

 The sum of the moments on the aircraft, internal and external are equal to its moment of 

inertia times its angular acceleration.  

The derivation of the equation of motion will be started by examining the forces that act on the 

aircraft.  

4.2.1 Forces  

Newton’s second law states that: 

  
 

  
(   )      

Where   the sum of all forces is that work on the aircraft (this will be explained later),     is the 

velocity of the center of gravity of the aircraft. The above equation is valid for the Earth-fixed 

reference frame FE, where the origin 0 is at an arbitrary location on the ground. The ZE axis points 

toward the ground. The XE axis is directed north and the YE axis is pointed east. To determine the 

equation of motion the reference needs to be covert to an Fb reference frame. The Fb reference 

frame has its origin in the center of gravity (CG) of the aircraft. The Xb axis lies in the symmetry plane 

of the aircraft and points forward. The Zb axis also lies in the symmetry plane, but points downwards, 

(It is perpendicular to the Xb axis.) and the YE axis is pointed east. The conversion of the reference 

plane can be done with the following equation: 
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Substitution of this equation in the equations above gives: 
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In the equation, the following vectors are used: 
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]  

Here u,v and w denote the velocity components in X, Y and Z direction. Similarly, p, q, and r denote 

the rotation components around the X, Y and Z direction. 

The vector     contains all the forces that work on the aircraft. There are two important forces: 

gravity and aerodynamic forces. The gravitational force           is given by 
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where g is the gravitational acceleration. The superscript E indicates that the force is given in     

reference frame. The transformation to the     reference frame is done with the rotation matrix TbE  
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The aerodynamic forces        are a bit more difficult. For now they are defined as: 
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By combining the forces with the equation of motion for forces gives  
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4.2.2 Moments  

Newton’s second law of rotational motion is 

   
 

  
  |  

where    is the angular moment of the aircraft with respect to the center of gravity. The above 

equation is valid for the reference frame    but just like with the forces, it needs to be transformed 

to the reference frame    . This is done by  
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By using the definition          , the equation above can be rewritten as 
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Where    is the inertia tensor with respect to the center of gravity.  
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] 

There is assumed that XZ-plane of the aircraft is symmetric which means that          .  The 

moment equation can be written in matrix form which gives  
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There are two kinds of moments that work on the aircraft. There are moments that caused by gravity 

and moments caused by aerodynamic forces. The moments that are caused by gravity are zero. The 

aerodynamic moments can be defined as 
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This turns the moment equations into  
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4.2.3 Kinematic relations 

The only equations of motion that have not been found yet are the equations for the rotational 

speed. These equations will follow from the kinematic relations. The rotation of the aircraft is 

described by the variables  ̇  ̇      ̇. These are the variables for the FE reference system. The 

rotational velocity is described by p,q and r in the Fb reference system. The relation between those is  

[
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The above equation is the rotational kinematic relation. If the equation is inverted, the equations of 

motion will be  
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4.2.4 Longitudinal directional aircraft model  

As mentioned in the previous section, only the longitudinal direction of the aircrafts is taken into 

account. The longitudinal equations of motion are gotten to assume that all states and their 

derivatives in lateral direction are zero. With this assumption the following longitudinal equations of 

motion are found: 
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4.3 Comparison Tornado with flight test data 
In this part of the chapter, the aerodynamic derivatives of the Vector-P and the Telemaster that were 

determined with Tornado are compared with results of flight testing.  

4.3.1 Vector-P 

In the table below the corresponding longitudinal aerodynamic derivatives are shown that are 

determined by Tornado and by flight testing.  

 CL0 CLα CLq CLδe CD0 Cmo Cmα Cmq Cmδe 

Tornado 0.311 5.154 9.417 0.419 0.005 -0.146 -2.122 -16.286 -0.139 

Flight 
testing 

0.605 3.473 3.185 1.639 0.047 -0.086 -0.523 -15.919 -0.997 

Table 18 -  Longitudinal Aerodynamic derivatives 

In Table 18 the longitudinal aerodynamic derivatives determined by the two methods of the Vector-P 

are given. The first thing that can be noticed is that only one derivative of the two methods are more 

or less the same, namely Cmq. The second noticeable fact is that all the signs of the aerodynamic 

derivatives are the same which is positive. The rest of the aerodynamic derivatives differ a lot 

between the two methods. The difference can be explained by many causes. The difference in CLα 

and CD0 can be explained by the fact that the fuselage is in Tornado modeled as two flat plats. In 

realty the fuselage is pretty massive and will have more influence on the flow. Therefore the CD0 in 

Tornado is lower than in the flight testing and in is CLα in Tornado higher than in the flight testing. 

The difference in CL0 can be explained by the fact that Tornado neglected the thickness of the wing. 

Therefore the CL0 from Tornado is lower than in reality. The difference in the moment aerodynamic 

derivatives and in the CLδe can be explained by the fact that the centre of gravity that is used as input 

in Tornado is estimated. During the flight testing there are many thing placed inside the Vector-P like 

for the sensors. Also the amount of fuel changes during the flight. These facts make it hard to 

determine the center of gravity and it is very likely that the center of gravity during the flight testing 

is different than what was used as an input in Tornado. The center of gravity has an important role in 

de moment coefficients and on the effect of the elevator. This may explain the differences in the 

coefficients.  

Other reasons why there is a difference between the derivatives, is that Tornado assumed small 

angles of attack. During the flight testing, the angles of attack of the maneuvers cannot be seen as 

small. Furthermore is that the simulated data maybe not 100% accurate. The sensors are sensitive to 

disturbance such as wind and may influence the results as well.  

4.3.2 Telemaster 

The aerodynamic derivatives of the Telemaster that were determined with Tornado, will be 

compared with the calculated aerodynamic derivatives of Edi Sofyan [2]. Edi Sofyan determined the 

aerodynamic derivative by flight testing, with the same model of the Telemaster, in Australia for his 

master thesis. The aim of his master thesis was to estimate stability and control derivatives of a 

remote control aircraft model from flight test data using parameter identifications techniques. For 



his master he used different sensors on the aircraft than that was used for the Vector-P but the same 

model was used to determine the coefficients. The corresponding aerodynamic derivatives of both 

methods are shown in Table 19 and Table 20. 

Derivatives Cmα Cmq           

Tornado -1.955 -10.166 0.477 -1.147 

Flight testing -1.283 -7.742 1.334 0.805 
Table 19 - Longitudinal aerodynamic derivatives 

Derivatives Tornado Flight testing 

Cyβ -3.903 3.140 

Cyp 1.143 -25.78 

Cyr -0.815 2.794 

Clβ -0.016 -0.115 

Clp -0.419 0.120 

Clr 0.021 -0.012 

Cnβ 0.007 -2.895 

Cnp 0.514 0.024 

Cnr -0.361 -0.103 

Cyδaileron -0.405 0.037 

Cyδrudder -0.134 -0.305 

Clδaileron 0.237 -0.120 

Clδrudder 0.006 2.788 

Cnδaileron -0.181 0.166 

Cnδrudder -0.068 0.099 
Table 20 - Lateral aerodynamic derivatives 

In the above two tables the aerodynamic derivatives of Telemaster are given of the two different 

methods. Unfortunately most of the values do not correspond. There are only a few derivatives that 

are more or less the same with both methods. These derivatives are Clr , Cmα,  Cmq,  Cnδaileron,  and 

Cnδrudder From these five derivatives the signs are not always the same. The only explanation for that 

could be that the definition of positive and negative of the moments is different in Tornado 

compared to what was used for the flight testing.  Edi mentioned in his thesis that he had problems 

with the signs, which also can explain the difference.  

Edi Sofyan mentioned in his conclusion of his master thesis that the sideward’s derivatives (Cyβ Cyp 

Cyr ) and Clδrudder are not good estimates of the real values. This is because, according to him, he used 

the wrong method to determine those four aerodynamic coefficients correctly. Therefore these 

values cannot be compared with the values from Tornado.  

For the other aerodynamic derivatives that don’t correspond with both methods, it is hard to explain 

why they differ. One possible reason is that there were too many assumptions to model the 

Telemaster in Tornado to give an accurate result. Furthermore there is not much understanding 

about the theory that was used to get the aerodynamic derivatives from the flight testing. This is also 

beyond the scope of this report. Therefore it is reasonable to say that is difficult to draw any 

conclusion from this comparison.  



4.4 The effects in the difference in the aerodynamic coefficients of 

Tornado and flight tests of the Vector-P.  
 
In the previous section the aerodynamic coefficients of the Vector-P of the two methods are 

compared with each other. What is not known jet is the effects of the difference in the coefficients 

that has been calculated by Tornado and that have been determined by flight testing. The effect of 

the difference in the aerodynamic coefficients has been simulated in Matlab.  

In Matlab, the Vector-P has been programmed. This has already been done by Fabian Kluyendorf [3].  

A flight maneuver is than simulated, the elevator input is shown in Figure 33 

 

Figure 33 - Elevator input of the simulated maneuver 

In Figure 33 the blue line is the input that has be programmed in Matlab. The red line is the actual 

movement of the actuator of the elevator. This input has been run twice in Matlab, once with the 

aerodynamic coefficients that where determine from Tornado and once with the coefficients that 

were calculated with flight test. The output of the simulation is a graph of the movement of the 

Vector-P with respect to the height and the velocity of the Vector-P. The results are shown below. 

 

Figure 34 - Height during the maneuver (Tornado) 



 

Figure 35 - Height of the Vector-P during the maneuver (Flight) 

 

Figure 36 - Velocity of the Vector-P  during the maneuver (Tornado left flight testing right) 

The difference in the aerodynamic coefficients has a great effect on the maneuver of the Vector-P. 

Looking had the height during the maneuver, the two graphs have an opposite shape of each other. 

This is not expected, because the aerodynamic derivatives of both methods have the same sign. 

Furthermore the height difference during the maneuver is with the flight aerodynamic coefficients 

much larger than with the Tornado coefficients. This is more or less expected because the CLδe of the 

flight testing is 4 times larger than from Tornado and the Cmδe is about 7 times higher.  

From the velocity graphs of the maneuver it can be said that speed of the vector-p is much smoother 

with the flight tests coefficients and the magnitude of the speed is much lower. Another noticeable 

thing is that with the Tornado coefficients the Vector-P has a really small side velocity and the 

velocity downwards suggests that the aircraft is losing a lot of height. This is not shown in the graph 

of the height.  

The main problem of the graphs is that the shape of the maneuver is not the same. New simulations 

have been to done to discover what this problem causes. The aerodynamic coefficients of the flight 

testing have been adjusted by 10% towards the value of Tornado. So depending on the value of 

Tornado, the aerodynamic coefficients of the Vector-P of the flight tests, have been adjusted plus or 

minus 10% their value. Next the maneuver is simulated in Matlab with the adjusted aerodynamic 

coefficients.  The coefficients have been adjusted until they are the same as Tornado or when the 

results of the maneuver changes drastically.   

During the adjusted of the aerodynamic coefficients, al the coefficients have reached the value of 

Tornado expect Cmα meanwhile the graph of the height of the maneuver has the same shape/sign as 



the graph with the coefficients of the flight tests. The value of Cmα is than further increased and the 

simulation is done again. When Cmα reached the value of 1.7, the graph of the height reached its  

turning point. This is shown in the figure below.  

 

Figure 37 - The height of Vector-P during the maneuver, (Cmα = 1.7) 

From these simulations it can be concluded that the Cmα that is determined with tornado is too high. 

It is about four times bigger than the Cmα that was calculated from the flight tests. Apparently this 

coefficient is too sensitive to allow this difference. There could be many reasons why Tornado 

calculated a too big Cmα. One reason can be that the center of gravity is not placed correctly in the 

model or that the center of pressure is calculated wrong by Tornado. 

  



5. Conclusion 
 
In this report, two unmanned aerial vehicles, the Vector-P and the Telemaster, have been modeled in 

Tornado to determine the aerodynamic derivatives. Tornado is a program in Matlab that uses the 

Vortex lattice method to determine the derivatives. The assumptions that Tornado uses are 

 The flow field is incompressible, inviscid and irrotational 

 The lifting surfaces are thin 

 The angle of attack is small.  

Unfortunately, Tornado is not possible t0 model the exact shapes of the unmanned aerial vehicles. It 

has some limitations which will have influences on the results. The limitations of Tornado are  

 Only one root chord per wing 

 It is not possible to chosen your reference wing  

 The tapper ratio cannot be larger than one 

 The entire wing cannot be seen as a flap 

The aerodynamic derivatives of the Vector-P have also been determined by flight testing. During the 

flight several maneuvers have been done to retrieve good data. The maneuvers that were done are 

the doublet and the 3-2-1-1 maneuver. By doing four identifications and one validation the 

longitudinal aerodynamic derivatives of the Vector-P are determined. Next the results of the flight 

testing are compared with the result of Tornado. Unfortunately only one derivative is more or less 

the same with both methods. The difference between the other aerodynamic coefficients can be 

explained by the following reasons: 

 Simulated data is not 100% accurate 

 The place centre of gravity in Tornado is different than during the flight testing 

 Thickness of the fuselage 

 The assumptions that Tornado made 

The difference in the aerodynamic coefficients will have a great influence on the fly performance of 

the Vector-P. In Matlab a manoeuvre was simulated with both coefficients. The two manoeuvres 

were very different from each other and the velocity in both cases was not a match either. The main 

reason why it was not a match is because the Cmα that was calculated by tornado is too high. 

The aerodynamic derivatives of the Telemaster that were determined by Tornado have been 

compared to aerodynamic derivatives that were determined by flight tests by Edi Sofyan. 

Unfortunately only a few of the derivatives were a more or less the same. Most of the derivatives 

were not the same. Because the flight testing and the determination of the aerodynamic coefficients 

have been done by an Australian student, Edi Sofyan, it is impossible to draw a fair conclusion from 

the comparison.  

 

  



Appendix A 
Figure 38 is a schematic picture of a swept wing. In this case it can represent the vertical tail or the 

first part of the vertical fuselage of the model of the Vector-P. Let’s consider it to be the vertical tail. 

This figure is used to determine the swept angle.  

 

Figure 38- A swept wing 

As mentioned before the swept angle is the angle between the quarter chord line and the Y-axis, in 

this case that is angle Beta. Points B and F are considered as the quarter chord point of the root 

chord and the tip chord.  Let’s define the origin of the local coordinates to be at point A. The length 

AD is 253 mm which means that point 4 is located at x coordinate of 63.25mm. The length of EG is 

180 mm which means that the x coordinate of F is 118. Now knowing this the length of BC can be 

determined: 

                    

            

The span of the vertical tail is off course also known, namely: 340.51 mm.  The angle alpha follows 

from: 

     
  

  
        

      

      
 

          

This means that Beta equals: 

                       

The same procedure can be done for swept part of the fuselage. 
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