IMPLEMENTATION OF ACOUSTIC
BOUNDARY ELEMENT METHOD FOR
THE PURPOSE OF BEAMFORMING

A numerical and experimental study

UNIVERSITY OF TWENTE.

SRS

Master Internship Report

Internship performed at the National Research Council of Canada from March-June 2012

Implementation of acoustic Boundary Element Method for the purpose of
beamforming: A numerical and experimental study

Author: T.]. van der Meer

s0148792
UT supervisor: Prof. dr. HW.M. Hoeijmakers
NRC supervisor: Dr. Jerry Syms

Amsterdam, July 2013

ii

Preface

An important part of the curriculum of the Mechanical Engineering studies at the University of
Twente consists of an internship outside the walls of the university. This serves as an
opportunity for the student to put his scientific knowledge into practice in an industrial
environment. As such the student gets a sneak preview of working life. Many students choose to
carry out this 15 to 20 ECTS assignment abroad to add another experience to the list, namely
that of living in another culture.

With these goals in mind I spent the period between February and June 2012 at the National
Research Council of Canada (NRC), located in Ottawa. Specifically I was employed by the
Aerodynamics Laboratory (AL) of the NRC’s Institute for Aerospace Research (IAR). This report
describes my assignment, consisting of the preparation of an acoustic boundary element method
(BEM), ultimately to be used for optimization of the beamforming analysis method. The
developed model was validated in a few basic tests using a simple experimental setup.

The project has been made possible using the help of many others, and some words of thanks
are in order. First of all | want to thank my university supervisor, professor Hoeijmakers of the
Engineering Fluid Dynamics group for arranging my placement with the NRC. The assignment
itself came from dr. Jerry Syms who also was my supervisor during the internship itself. I am
grateful for the start-up material he provided and the many valuable discussions during the
project. Most of all however [want to thank Jerry for the warm welcome I received and the
enjoyable time [have experienced during my placement at the NRC.

Thomas van der Meer

7 July 2013, Amsterdam

iii

Contents

T IO OAUCTION ettt ettt es et ese et esse e es s s bR R bR RS s R et b bbb 1
1.1 Modified WInd TUNNEL....ceeceecseeseeeseet e s s ss st s b 1
2 Problem deSCriPtioN... s s sssssss s s sssssssssssssssssssssssnsas 3
2.1 Beamforming PriNCiPIES ...t esss s sssssse s s s s sssass st s sssas 3
2.2 Signal obstruction by Model 0DJECE ... sssssseessssss s sanes 5
2.3 OptimiZation METNOM ...ttt ss s bbb st 6
3 NUMETICAL STUAY c.rtuieriireeeeereereeuseiecuseesee st sesse s s sasessebsse s s s R e bbb et 7
1200 S =) 501 (5 =T) o725 PPN 7
3.2 Numerical imPlemMentation. ... sssesssesesssessesse s ssssse s ssss s s s seasesnsans 11
4 EXPEriMENTal STUAY ..occerierieeesseerecsreiseseesesseessessesssesesssesssessessssssessss s sss s st sse s s ssse s ssss s s ssessesasessssanes 16
4.1 SetuP aNd EQUIPIMENT ... s s st 16
4.2 EXPEriMENt AESIZI .cceceeeueeseereerreesseesseesseessessessseessssssesssesssessssssssssssesssessssesssesssesssessssssssesssesssssssssseess 20
5 ReSUILS & COMPATISOMN ... s s s 22
5.1 BEM VeI iCAtiON sttt sssesss s s sssesss s s ssss s ssss s s ssssssssnsans 22
5.2 ValidatiON CASES...ocuierrerieeriiissesetsessesssesesssssss s sessss s sssssssssssss s ssssssssssssss st sassssssssssasans 24
53 COMPATISOIN cuurtrirurrrsrssrssessessessessessessessessss st s s s s b E aEEEERea e R e R bbbt 27
6 Conclusions & reCOMMENAATIONS ...ceeeiereeeesrerseseesesssessesssessessssssesssesss s ssssse s s s s s ssssessesans 28
L0000 Vol 1D) U) o 1P PP 28
6.2 RECOMMENAATIONS. cceureieuereeuseeeeereessess e esseesse e esse e es s s s s b s bbb 28
20 0) 1007 23 =1 0] 8PP 29
Appendix 1. Matlab fileS.. et es bbb e 30

iv

1 Introduction

In the past 50 years air travel has experienced an incredible growth. According to the
International Air Transport Association (IATA) the air transport industry has continuously
grown with double-digit rates from 1945 until the first oil crisis in 1973 [1]. Since then the
growth has slowed down, but is still considerable and consistent. IATA predicts a total of 3.6
billion air passengers in 2016 [2]. The increased mobility of ever more air transport is not
without negative side effects. Especially in the developed world, the problem of noise pollution
is becoming ever more serious. In recent years the airline industry has begun a general move to
reduce this noise pollution. In fact the International Civil Aviation Organisation (ICAO) has set
regulations to reduce noise generated by commercial aircraft by 32 decibels relative to the
current standard [3]. To this end the NRC is researching noise production of airplane parts in its
experimental facilities.

1.1 Modified wind tunnel

One of the research fields of the Aerodynamics Laboratory (AL) of the Institute for Aerospace
Research (IAR) at the National Research Council of Canada (NRC) is the field of aero-acoustics.
Specifically, the topic of noise reduction in airplanes is studied experimentally in a modified two-
by-three meters wind tunnel in Ottawa. The walls of this wind tunnel are covered with acoustic
foam (resembling cardboard egg cartons) which is itself covered in a fine mesh to create a
smooth surface [3]. Figure 1.1 shows this wind tunnel at the Ottawa branch of the NRC.

= b
Figure 1.1: Modified wind tunnel for acoustic testing, with a landing gear installed as test object

The air velocities generated in this wind tunnel can reach almost 500 km/h meaning that any
commercially interesting situation (most notably planes landing or taking off) can be replicated.
Airplane parts of interest are then placed in this wind tunnel. The noise generated by an airplane
during take-off or landing is mostly caused by the non-aerodynamic parts like flaps, slats and
landing gear.

An array of 64 microphones is mounted inside one of the wind tunnel walls. These microphones
record the sound generated by the air flowing over the object. From the test data of these
microphones sound maps are produced that show the location and strength of sound sources in
the wind tunnel. Ultimately, the sound source information can be used by airplane
manufacturers to optimize their parts for noise reduction.

In order to produce the three-dimensional sound source maps from the data of the microphone
array a technique called beamforming is used at the NRC. When locating the position of sound
sources this technique assumes three-dimensional point sources in free space. In other words,
the presence of the model and the sound reflection that comes with it are not accounted for in
the beamforming analysis. Especially when the model is located between the source and the
microphone this may yield to very poor results, i.e. sound sources in locations far behind the
model which are clearly unphysical. Optimization of the beamforming process using numerical
simulations is the subject of this research. More specifically this research is a proof-of-concept
study towards the use of the Boundary Element Method (BEM) for acoustic simulation.

The beamforming technique and the problems it contains are explained in chapter 2. A possible
solution to this problem is proposed in the form of numerical simulations that can correct for the
presence of the object. Chapter 3 introduces the numerical BEM. The implementation of this
method for the present purpose and some verification cases are also discussed. The validation
experiments for this model are discussed in chapter 4. Chapter 5 contains the results of the
model and the experiments as well as the comparison thereof. Chapter 6 ends with the
conclusions and recommendations for future research.

2 Problem description

In chapter 1 the localisation of sound sources in 3D space by using a phased array of
microphones (mounted in a 2D plane) was introduced. The method that produces these sound
maps from the microphone data is called beamforming. This chapter explains how this
technique works in section 2.1. The fundamental problem which is the presence of the model
object is outlined in section 2.2. A solution to this problem in the form of corrections from
numerical simulations is proposed in section 2.3.

2.1 Beamforming principles

To introduce the concept of beamforming consider a uniformly spaced array of M microphones
along a line as sketched in Figure 2.1. Sound waves can reach the array from the entire half-
space in front of the array. For simplicity all sound waves are assumed to be plane waves for
now, which implies the microphone array is sufficiently far away from the source. That is, the
sound sources can be assumed to lie infinitely far away. The output from the array consists of a
summation of the individual pressure signals p;;,:

M
BO) =) Wb (® 1)
m=1

where w,,, is a weighting coefficient applied to the microphone m signal (not further pursued
here). As illustrated in Figure 2.1, waves perpendicular to the array are correlated in time and
will result in an amplified output signal, whereas waves from other directions will arrive at each
microphone at different times causing a lesser output amplitude. Therefore, if a wave actually is
present perpendicular to the array this will be instantly noticeable from the amplified output
signal. The array is said to be directionally sensitive in the direction normal to the array.

= = =_ Wavefront
- < T

Microphone

array

2 | ._ 5 _ Mixer

o ™

— ———— Array output

Figure 2.1: Sketch of the output signal from the summation of microphone signals from plane waves coming
from different directions (modified from Greensted [4])

The main concept of beamforming is to achieve directional sensitivity of the array to any
direction denoted by unit vector k = (sin 8, cos 8)7, not just perpendicular to the array. This is
done by delaying in time the individual microphone signals before they are summed:

M
b, t) = Z WD (£ — St (1)) 2.2)
m=1

where 6t,, (k) is the time delay associated with microphone m and direction k relative to a
reference point, usually the middle microphone. From geometrical considerations:
Ty ThypSin@ s,

Bt (1) = 1 = T2 2 2.3)

where 1, is the distance of the microphone to the reference point and c is the speed of sound.
Equation (2.3) is illustrated in Figure 2.2. This time delay operation aligns the signal from
direction k so that now the waves coming from this direction will be amplified.

Wavefront

Reference point

|
|
|
|
Figure 2.2: Sketch of delay in arrival of a wavefront at microphone m compared to the reference microphone

When this time delay operation is performed over, say, the half-space givenby-m < 6 <m
equation (2.2) yields a polar plot of which an example is shown in Figure 2.3. Clearly around
6 = 40° an amplified signal is found, implying a sound source in that direction.

0° 30dB
Sidelobe _3q° Main lobe

OO oo i v = 90°

Figure 2.3: Example polar plot showing a possible sound source at & = 40° (from Christensen and Hald [5])

Up to this point the procedure can only resolve plane waves coming from a certain direction,
hence corresponding to point sources at infinite distance. To focus on point sources at a finite
distance (such as on objects in a wind tunnel), the microphone delays §t,, should be chosen so
that they align in time the signals of a spherical wave radiating from the focus point, instead of a
plane wave coming from infinity. This is achieved by writing the time delays as:

(2.4)

ri—|r—r
Stutry = 71Tl

where r is the position of the focus point. This extension to point sources in 3D space is

illustrated in Figure 2.4.

Figure 2.4: Beamforming extended to point sources in 3D space (from Christensen and Hald [5])

This section is a summary of parts of Christensen and Hald [5] and Greensted [4].

2.2 Signal obstruction by model object
In principle the beamforming method is a precise technique to localize sound sources in 3D free

space. Now imagine the 3D space is not free but contains one or more objects. This is the case in
the NRC wind tunnel, where the test section is naturally occupied by airplane parts. The
assumption of free 3D monopoles as made in beamforming now does not hold anymore.
Especially for sound sources on the backside of the object (as seen from the array point of view)
this leads to unphysical source localization. The presence of the object obstructs the wave path
to the microphones which delays the signal. This leads the beamforming algorithm to ‘think’ that
the source is located further away than it actually is. Hence sources are predicted in the free
space behind the object, while they logically come from the object itself. The problem is sketched

conceptually in Figure 2.5.

Figure 2.5: Cross-sectional view of a wind tunnel with a landing gear as test object. The real sound source
(green dot) is obstructed by the object, causing the microphone array to receive a signal that the
beamforming algorithm reconstructs to be caused by a non-existing source (red dot)

For accurate sound source predictions it is evident this inaccuracy must be solved. A possible
solution is to use numerical simulations to calculate the extra delay produced by the object. This
information can then be used to modify the artificial time-delay that the beamforming method
uses in each direction. The idea is presented in the next section.

2.3 Optimization method

To solve the stated problem numerical simulations may be used. On each point of the surface of
the object a sound source can be simulated, and the delay on the positions of the 64
microphones can be stored and used to correct the beamforming method. However, one can
imagine that on a complex object like a landing gear this requires thousands -if not millions- of
simulations to get the delay information for each relevant possible point source on the object
geometry.

Luckily the physics underlying sound wave propagation allow for a very elegant simplification.
Sound waves are essentially small disturbances in the pressure field. This means the non-linear
governing equations simplify to linear equations following the use of perturbation theory.
Rayleigh [6] reasoned that then the reciprocity principle by Stokes [7] and Helmholtz [8] is valid.
The reciprocity principle means that for such linear situations the positions of the source and
the receiver (in this case the microphone) can be swapped to produce the exact same result.
Therefore, using this principle, simulating sound sources at the location of each of the
microphones produces the delay information for all points on the mesh of the object! Hence 64
simulations suffice to generate all information needed to correct the beamforming method for
any object geometry.

The numerical method used is the boundary element method (BEM). The powerful advantage of
this method is that it solves for the pressure and velocity fields in the entire 3D space by solving
just the equations in the boundary elements. For a mesh of n X n elements this cuts
computational time by a factor n. As with the reciprocity principle this is made possible by the
linearity of the perturbation problem.

3 Numerical study

The numerical method used is the boundary element method (BEM). The theory underlying this
method is given in section 3.1, after which the numerical implementation is discussed in section
3.2. Both the theory and numerical implementations are adapted from Boundary Element
Acoustics by Wu [9]. The results of several simulation cases are presented in chapter 5.

3.1 BEM theory

The starting point of the development of the BEM equations is a review of the fundamentals of
linear acoustics which results in the Helmholtz equation (section 3.1.1). This equation is used to
derive the boundary integral equations with the use of Green’s second identity in section 3.1.2.
Section 3.1.3 discusses the possible boundary conditions and their physical meaning.

3.1.1 Linear acoustics

When considering an inviscid, quiescent and homogenous medium the pressure P and velocity VV
are decomposed into the mean and fluctuating values:

P=p,+p V=1 (3.1)

Since the fluid is initially at rest, v, = 0, the fluctuating component v is the only component (the
particle velocity). Using equation (3.1) the continuity and momentum transport equation
become:

op’ 5
- V-v = 3.2
R + pocC v =0 (3.2)
o'
- vy 3.3
Po; p (3:3)

Equation (3.3) is recognized as the Euler equation. Substitution of the Euler equation in the time
derivative of equation (3.2) yields

1 1 0%p’
)_ P _o (3.4)

V. (—V ' ==
Po Do p C2 atz
which for a homogeneous medium, i.e. p, = constant reduces to

1 0%’
2p' — ———==0 (3.5)
c% ot
Many sound waves of practical interest are time-harmonic, i.e. continuous waves at constant
frequency w. In the presence of such waves the perturbation variables p’ and v’ fluctuate

sinusoidally as

p’ = pel®t V' = pel®t (3.6)

Here p and v are the complex amplitude of the pressure and velocity fluctuation, respectively.
Substitution of the pressure in equation (3.5) yields

Vip+k?p=0 (3.7)

where k = w/c is the wave number. Equation (3.7) is known as the Helmholtz equation. It is in
fact the sole governing equation for time-harmonic linear acoustics, as substitution of (3.6) in
the Euler equation (3.3) results in an expression for the velocity amplitude:

1

lwpg

b= (3.8)

Hence solving the Helmholtz equation is sufficient to find both the pressure and velocity fields.

3.1.2 BEM formulation

The basis is formed by the Helmholtz equation (3.7). The first step in the BEM formulation is to
find the fundamental solution of the adjoint operator. Since the Laplacian in equation (3.7) is
self-adjoint, the equation for the fundamental solution becomes

V2 + k% = —5(Q — P) (3.9)

where 6(Q — P) is the Dirac delta function at any point Q in the domain with a singular point at
P, and v is the fundamental solution at point Q. When adopting a spherical coordinate system
(r, 6, @) centred at P equation (3.9) becomes

d> 2dy
Tzt k*y =0 everywhere except P (3.10)
The general solution to this equation is

—ikr ikr

+B

Y=A (3.11)
r

where A and B are unknown coefficients. Physically, the first term in the solution represents an

outgoing wave and the second term represents an incoming wave. Therefore B = 0 since P is a

point source instead of a sink. To find A consider a small spherical volume), with radius &

enclosing the point P, and integrate equation (3.9) over this volume to find
lim (V2 + k2)dV = —1 (3.12)
i d ‘QE

In the limit of e = 0 dV goes to zero much faster than 1 goes to infinity, this is why the second
term is dropped. Applying the divergence theorem to the remainder converts it to a surface
integral where 0(), is the boundary surface with n as its outward unit normal:

. oy
hm.[—dS=-1 (3.13)
&-0 aﬂs an

Carrying out this integration using the notion that n = r for € = 0 one finds A = n/4 and the
fundamental solution in a 3D free space is

= e (3.14)

T 4mr

Let P be the singular point associated with the fundamental solution located in the acoustic
domain V. A tiny spherical volume V; enclosing P (radius ¢) is excluded from this domain since it
is singular. The domain is sketched in Figure 3.1.

Figure 3.1: Acoustic domain V with exclusion of V, enclosing P

The next step is to apply Green’s second identity to the two functions p and 1 to obtain

J;/_Vs(lljvzp PV = LS (1/) an P Zl/)) as (3.15)

where n is the normal vector pointing away from the domain and S, is the boundary of V.
Equation (3.7) gives V?p = —k?p, and since P is not in the domain equation (3.9) yields

V24 = —k?p. Hence the left-hand side of the above equation vanishes since the integrand is
zero. Splitting the integral on the right-hand according to the boundaries S and S, and taking the
limit of € — 0 then gives

—limj 1,[)—d5+11m spg—;l;dSzf (lp—Z—pgf)ds (3.16)

£-0 s
The first term vanishes since 1 is in the order O(1/r) and dS is in the order O(r?) in the limit of
€ — 0. Thatis, dS goes to zero much faster than ¥ goes to infinity. Similarly the second term
becomes

. o 0 : 0
lim | p-dS=p(P) L lim ——dS = p(P) L lim (—ﬁ) as (3.17)

-0 s
&

where the last step is obtained by realising that, in the chosen limit, n is in the negative r
direction. The integrand can be calculated using the equation (3.14) and the quotient rule:

. o\ . ike™ ™" 4mr + e T4\ 1 218
o (_ 6_r) ~ 5% (41r2) 4mr? (3.18)

Since the surface of a sphere is 4mr? this means equation (3.17) becomes

p(P) fs tim (%) as = pp) (319)

Using these results together with equation (3.8) to rewrite the pressure derivative, equation
(3.16) becomes

d
p(P) = — f (ipowvnv,l) + p%) ds for P in the domain. (3.20)
s

where v, is the normal velocity on the boundary. This equation states that the sound pressure p
at any point P inside the domain can be found by integrating the equation on the boundary of the
domain. However, for a well-posed problem p or v,, is known from the boundary condition, not
both. Only half the necessary data is known. To obtain the other half the point P is located on the
boundary itself and the above procedure is repeated. After some algebra which is out of scope of
this report (but can be found in chapter 2 in Wu [9]) one obtains an extension of equation (3.20):

C°(P) = 1 for P in the domain

0 1
(ipoa)vnl,b +p %) as Cco%p) = 5 for P on smooth boundary

d
co°(p) = - %db‘ for P on an edge

S

COPYD(P) = — f

s (3.21)

In this equation y; = 1/4nr is the fundamental solution to the Laplace equation. The above
equation is called the Helmholtz integral equation. The BEM now consists of solving this
equation for each point on the boundary to obtain the ‘missing’ boundary information. Then,
with both p and v,, known on the entire boundary mesh, the sound pressure p can be calculated
for any point in the domain. Finally the velocity fluctuation v can then be found through
equation (3.8).

Some notes regarding this derivation must be made. First, the derivation holds strictly for
interior problems, meaning the domain is entirely enclosed by a boundary, unlike an exterior
domain which is semi-infinite. The domain may however contain objects inside of it in the form
of an inner boundary surface. This is the way in which the object under research is modelled in
the next section. The second remark is to emphasize that this derivation holds strictly for an
inviscid, quiescent and homogeneous medium. The first and last condition are quite acceptable,
however the second essentially prohibits these equations for use in a running wind tunnel, since
the medium (air) will be anything but quiescent. However for the present purpose of a proof of
concept of the BEM this approach suffices.

3.1.3 Boundary conditions

To be able to solve the Helmholtz integral equation on the boundary, conditions on that
boundary must be prescribed. For a well-posed problem three possible boundary conditions
(BC) may exist, where the dependent variable is the pressure p. A Dirichlet condition implies a
prescribed value for p:

P = Pe (3.22)

Physically this BC implies the presence of a sound source with pressure amplitude p, at the
location where this BC is applied. The second type is a Neumann condition which prescribes the
normal derivative of p:

op

—_— = v 3.23

In ilwpoy, ()
Note that this is equation (3.8) expressed in the normal direction. Physically this BC implies a
vibrating surface with amplitude v,, (for example a car window). Note also that when v,, = 0 the
BC implies a sound-reflecting surface. The third type is a Robin condition which combines the
above two conditions into:

10

z=p/vy, (3.24)

This is physically an impedance condition and means that the surface is not fully reflective but
not fully absorbent of the sound either. In the special case of z = p,c all sound is absorbed on
the surface. In that case the boundary is called an anechoic termination (for example a wall lined
with acoustic foam such as in the NRC wind tunnel).

3.2 Numerical implementation

A finite element code describing the BEM as formulated in equation (3.21) has been developed
by Wu [9] and is described briefly in section 3.2.1. The pre- and post-processing routines
developed in Matlab for this project are discussed in section 3.2.2. The model structure is
illustrated in the flow chart in Figure 3.2.

Parameters.m
(inputfile)

Gridgeneration - Preprocessing

(MATLAB) ‘ (MATLAB)

¥

¥

Postprocessing
(MATLAB)

¥

Visualization
(TECPLOT)

Figure 3.2: Flow chart of the numerical model structure

3.2.1 BEM code

This section discusses the relevant numerical aspects of the FORTRAN 77 code developed by Wu
[9]. The cased discussed is three-dimensional.

To solve the Helmholtz integral equation (3.21) on the boundary numerically, the boundary of
the domain is first discretized using linear four-node quadrilateral elements. The resulting linear
shape functions are denoted by N; where i=1,...,4 are the indices of the element nodes. Using
isoparametric elements, p and v,, are represented by the same shape functions used to represent
the geometry:

4
p= Z piN;(§1,¢2) (3.25)
i=1
4
Uy = Z VniNi (§1,$2) (3.26)

i=1

11

Here p; and v,,; are the nodal values of the sound pressure and normal velocity, respectively, and
(&1, &,) is the local coordinate system in the element. Each combination of a boundary node i and
element j produces two coefficient vectors from equation (3.21):

h—f M N, ar 3.27
i—Sjani (3.27)

gi = —ipow | YN;dl (3.28)
Sj

When assembling h; and g; into the global matrices H* and G the system of equations reads
Cp+ H'p =Gv, (3.29)

where C is a diagonal matrix containing the C? coefficients for each node. Combining € and H*
into a single matrix yields

Hp = Gv, (330)

Since only half the boundary conditions are known, i.e. p or v, is known on each node, the
unknowns in vectors p and v,, are collected into a single unknown vector x, the known values
are collected in the right-hand side vector b, and the matrices H and G are collected in 4, so the
final system of equations is

Ax=b (3.31)

The FORTRAN code solves this system of equations using a standard least-squares solver
contained in the LINPACK FORTRAN package. The integrals in equations (3.27) and (3.28) are
approximated using standard Gaussian quadrature. Once the system is solved all boundary
values of pressure and velocity are known. Then the value of p and/or v, at any point inside the
domain can be found using standard Gaussian quadrature on the integrals in equation (3.21).

3.2.2 Pre- and post-processing routines

The BEM code as described in the previous sections needs modification to suit the present
purpose. The model will be explained according to the subroutines in Figure 3.2. All Matlab files
are found in Appendix 1.

Parameters (Matlab)

The first pre-processing file parameters.m contains the necessary parameters needed to
generate the input data files for the FORTRAN code. The static pressure p, and temperature T,
sound frequency f and the physical type of each of the cube walls (anechoic, reflecting, or lined
with sound sources) can be specified in this file. Furthermore, the dimensions and number of
nodes on each wall is specified here. From p, and T the density p, and speed of sound c are
calculated via the ideal gas law:

__ poM

= 3.32
Po RT ()

12

AcPo
Po

c= (3.33)

where M =~ 28.9645 - 1073 kg/mol is the molar mass of dry air, R = 8.3144621]/(K - mol) is the
universal gas constant and 1. = 1.4 is the specific heat ratio for air. The signal frequency for all
simulations was taken to be f = 1000 Hz. The model however has the option of solving for a
range of signal frequencies.

Pre-processor (Matlab)

When running the sim_preprocessor.m file, the parameter file is called. The dimension and mesh
size information is used when calling the grid generator (explained below). The grid generator
returns the nodal information (coordinates and element connectivity) to the pre-processor.
Then, the pre-processor assigns boundary conditions to each element according to the wall type
specified in the parameters file. The boundary conditions are implemented by specifying the
three constants C,, Cz and C. in

Cap + Cpvyn = C¢ (3.34)
The data files generated by the pre-processor serve as input for the FORTRAN BEM code.
Grid generator (Matlab)

The grid generator file sim_gridgen.m produces a mesh of quadrilateral elements of the geometry
sketched in Figure 3.3. The validation geometry to be tested on consists of a cubic box with a
cylindrical object somewhere in its interior. The sides of the box have dimension L, = 6 ft =
1.8 m. Using the empirical engineering rule that one wavelength A must be represented by a
minimum of 6 elements [10] this means the coarsest possible mesh consists of

L 6L
Npox = % = ”C‘”‘f = 31.5 - 32 (3.35)

elements per side. Furthermore since the BEM produces fully populated matrices, the
computational time is proportional to N* (again according to Gunda [10]). Therefore, based on
these considerations, throughout this study 48 elements per side are used. The mesh of the
cylinder is taken to be much finer given that it is this object of which the amplitude and phase
information is eventually of interest. The mesh consists of N.,. = 6 elements in radial direction,
N.. = 48 elements around the circumference and N, = 36 elements in axial direction.

13

Lca

0O Lea

Lbox

Figure 3.3: Sketch of the test and modelling geometry

The cubic box and the cylinder it contains are plotted for visual inspection. If one of the walls
contains an array pattern (to replicate the microphone pattern on the wall in the wind tunnel)
this mesh is also plotted since the algorithm is prone to producing erroneous meshes when the
mesh is too coarse. Examples are given in Figure 3.4. The blue dots in the bottom left picture
represent the locations of 32 microphones on one of the box walls. This is explained in detail in
chapter 4 on the experimental study. The output of the grid generator routine consists of the
node numbers and their coordinates in 3D space as well as their connectivity into quadrilateral
elements.

K
Q

A

J
VAN
li\‘\
MY
NNVRAY
ANE Y
INQ
&y
L)

Xy
YA
N

i

N
N
R
N

7

=
R
(/
N
s \
SEN
I\
‘i‘
Ny
7
YA
/-y

L
=

X7
e
=5
52
»{

O

AN

Aavi

NTA

AP

X

3

X

(X
AV
\K
VK]
VN
SN
N

AARAAAALARZAAAARALAAARA

O

JAVLY

i

A\

VAV
XAXK
VA,

VAVAVAY

AVAVAVAVAY

IXAZK

AN

XA
VY

Figure 3.4: Examples of a cube mesh with 20x20 element sides (top left), a 6x12x16 element mesh of the
cylinder (top right), a visual inspection of the wall with microphone array nodes (bottom left) and the
complete mesh (bottom right)

14

Post-processor (Matlab)

The output data files of the BEM code consist of nodal values of the complex pressure and its
amplitude. The post-processor routine sim_postprocessor.m converts the complex pressure into
the phase angle 8 according to:

_ Im(p)
6 = atanF(m (3.36)

The pressure amplitude and phase angle are stored in input files that can be used in the
visualization program Tecplot.

Visualization (Tecplot)

Tecplot is a commercial visualization package, especially powerful in producing flexible colour
plots. Most results of the numerical simulations are analyzed using the Tecplot output.

15

4 Experimental study

The objective of the experimental study is to validate the BEM for acoustic simulations.
Specifically, the goal is to replicate amplitude and phase data predicted by the BEM.

The setup and equipment used are presented in section 4.1. Then in section 4.2 the actual design
of the experiments is discussed. As with the numerical study, the results are postponed until
chapter 5.

4.1 Setup and equipment

4.1.1 Acoustic test section

As mentioned in chapter 3, the test geometry consists of a closed box with sides of 1.8 m. This
box is constructed using simple retail plywood plates that are characterized by good sound
reflection (an absorption coefficient of « = 0.09 at f = 1000 Hz). To be able to enter the box to
adjust the inside walls or the test object, a door is mounted in one of the sides. This door consists
of a 1.2 by 1.2 m steel plate in which the 32 microphone array can be mounted. This plate has
been used in the past for wind tunnel experiments prior to the arrival of the 64 microphone
array currently in use by the NRC. Figure 4.1 is a SolidWorks overview of the box with the
microphone array doorplate on the left and the test cylinder in the middle cut-out.

Figure 4.1: SolidWorks overview of the box geometry, including the microphone array plate and the mounted
test object (cylinder)

The reciprocity principle stated in chapter 1 means that the 32 array positions in the door will
be lined with sound sources and the signal will be measured on the test object. The sound
sources are simple cell phone speakers. To also obtain information on the box walls, the back-
wall (the wall directly opposite to the door) is lined with 21 microphones. The remaining three
visible walls contain five microphones each. Some pictures of the acoustic box are given below.

16

Figure 4.2: Picture of the acoustic box

Figure 4.3: Close-up of the microphone array plate. The plate acts as a door and can open to the inside. The
door is closed tightly by the clamps seen on the right of the picture. The groove in which the door fits is lined
with sealant to create a sealed sound environment. The array holes are lined with simple cell phone speakers.

17

et _aiaill
Figure 4.4: Topside of the box, lined with five microphones

4.1.2 Cylinder test object

The object representing the wind tunnel object is a cylinder with diameter L.; = 16.6 cm and
length L., = 45 cm. It consists of a piece of PVC pipe of which both ends are sealed with a round
metal plate. To mount the microphones, twenty-six holes are drilled in the cylinder in the form
of a double helix. Furthermore, a line of five holes is drilled in one of the metal end plates. The

purpose of this hole layout will be explained in section 4.2. Some pictures of the cylinder are
given below.

Figure 4.5: Cylinder with double helix microphone array (left), cylinder top plate with five microphones
(middle), cylinder insides with microphone montage (right)

The cylinder must be mounted inside the box without the mounting equipment itself creating
too much disturbance for the acoustic waves. Furthermore the mounting must be able to
position the cylinder accurately in the order of millimetres. Therefore, the cylinder is hung from
the ceiling of the box by a finely threaded rod. The rod is attached to the ceiling by a round metal
plate with internal threading (see Figure 4.4). Turning this plate controls the height of the

18

cylinder inside the box. The other side of the rod is attached to a mounting device inside the
cylinder (see Figure 4.6).

Figure 4.6: Mounting device inside the cylinder (left), cylinder mounted inside the box (right). Behind the
cylinder the microphones in the back-wall can be seen. The cables coming out of the cylinder top contain the
wiring for the microphones.

4.1.3 Acoustic array console

The NRC'’s acoustic array console is used to control the generated sound signal and to process
the microphone signals. It consists of a waveform generator, hardware gathering the
microphone signals and control software that generates output data files with the frequency
information per microphone. The control software also provides a user interface used to
monitor the generated and measured signals. Some pictures are given below.

The control software requires the coordinates of the speakers and microphones. The input files
for this operation are created by the Matlab file exp_preprocessor.m. Since the data files from the
console consist of the data in the frequency domain, the Matlab routine exp_postprocessor.m
carries out a fast Fourier transform (FFT) to convert the data to amplitude and phase data.
These routines are found in Appendix 1.

Pictures of the entire setup, the waveform generator and the control environment are given
below.

19

ACCOUSTIC ARRAY
CONSOLE

Figure 4.7: Overview of the test setup with the waveform generator on the left, the acoustic array console in
the middle and the acoustic box on the right

€4 Channel Acoustic Array Monitor

10

an-
100
no

a® Froquency Data
mo

|
ot ¥ 1,

1106

Figure 4.8: Waveform generator (left) and control environment (right). The control environment shows the
individual amplitude-time plots of selected sources (white is the signal from the waveform generator) and the
gain-frequency plot

4.2 Experiment design

4.2.1 Procedure for one sound source

For each experiment one single sound source on the array mounted on the box door is provided
with a 1000 Hz signal. For several microphones on the cylinder and on the back-wall the signal
strength is inspected from the control software environment. When the signal strength is
confirmed, data collection from all microphones is performed for 60 seconds. The sample
frequency is set at 40000 Hz, i.e. the each wavelength for the 1000 Hz signal is reconstructed
with 40 data points.

20

In order to get a sufficiently fine mesh of information on the test object (the cylinder), the
microphones on the cylinder are mounted in the form of a double helix of 2 times 13
microphones around the circumference and one line of 5 microphones along the diameter of the
bottom endplate (as mentioned in section 4.1.2). For each experiment, the cylinder is rotated
360/16 = 22.5° after each measurement for 7 consecutive times (see Figure 4.9). This procedure
yields a final data mesh of (2 * 13 + 4) * 8 + 1 = 241 nodes on the cylinder.

4.2.2 Wall layout
The experiments are performed for three acoustic situations:

Case 1: All walls of the box are of simple plywood (fully reflecting).

Case 2: The four walls adjacent to the door are lined with acoustic foam (anechoic
termination).

Case 3: All walls except the one with the door are lined with acoustic foam.

The purpose of these three different cases is to test the model performance for different acoustic
situations. The acoustic foam attachment to the walls is illustrated in Figure 4.9. The result of
this procedure is a total of 3 cases * 32 speakers = 96 experiments.

Figure 4.9: Cylinder with rotation marks on the topside (left), picture of one of the sidewalls lined with
acoustic foam (right). The cylinder mounted to the ceiling is shown on the right.

21

5 Results & comparison

This chapter presents the results of the BEM simulations and experiments described in the
previous sections. Some simple verification cases modelled using the BEM are presented in
section 5.1. Then, section 5.2 presents the results for the three validation cases using the BEM
(section 5.2.1) and from the experiments (section 5.2.2). These results are compared in section
5.3.

5.1 BEM verification

5.1.1 Point source in free space

Figure 5.1 shows the phase on the boundary for a point source with f = 1000 Hz located in the
middle of the wall on plane x = L;,,. The phase data reflects the periodic character of sound
waves, i.e. the phase ¢ varies between —27 and 0. Almost 6 wavelengths are represented on the
plane in which the source lies, which reflects the frequency: Ly /A = Lpox/(c/f) =

1.8/0.343 = 5.25.

Frame 001 \ 11 May 2012 \ 1000Hz, Model Excluded, Source in free space

Figure 5.1: Phase results for a point source (black dot) in free space. Circa 2.6 wavelengths are represented on
a half-side of one wall

The phase result for a point source at the same location, with a solid opposite wall, is depicted in
Figure 5.2. In comparison with the point source in free space the reflection off of the solid wall is
noted.

22

Frame 001 | 11 May 2012 \ 1000Hz, Model Excluded, Source between 2 walls

PHASE

-0.3
-0.8
-1.3
-1.8
1-2.3
-2.8
-3.3
-3.8
-4.3
-4.8
5.3
5.8
-6.3

Figure 5.2: Phase results for a point source with a solid wall on the opposite side (plane x = 0).

The following figures show phase results of several simulations including the cylinder object.

The point source locations are (x = Lyy, Y = 0.5Lpx, 2 = 0.5Lp,,) in Figure 5.3, (x = Lpoy, ¥ =
0.75Lpox, Z = 0.5Lp,,) in Figure 5.4 and (x = Ly, ¥ = 0.5Lpox, Z = 0.75Ly,,) in Figure 5.5. The
left figures are simulations in free space whereas the right figures simulate a solid wall at x = 0.

Frame 001 | 11 May 2012 | 1000Hz, Model Included, Source in free space Frame 001 | 11 May 2012 | 1000Hz, Model Included, Source between 2 walls

Figure 5.3: Phase results for a point source at (x = Lp,,, Y = 0.5Ly,,, Z = 0.5L,,,) in free space (left) and with
a solid wall at x = 0 (right)

23

Frame 001 | 11 May 2012 | 1000Hz, Model Included, Horizontal symmetry axis in free space

Frame 001 | 11 May 2012 | 1000Hz, Model Included, Horizontal symmetry axis, 2 solid walls

Figure 5.4: Phase results for a point source at (x = Lp,,, Y = 0.75Ly,,, Z = 0.5L;,,) in free space (left) and with
a solid wall at x = 0 (right)

Frame 001 | 11 May 2012 | 1000Hz, Model Included, Vertical symmetry axis in free space Frame 001 | 11 May 2012 | 1000Hz, Model Included, Vertical symmetry axis, 2 solid walls

Figure 5.5: Phase results for a point source at (x = Ly,,, Y = 0.5Lp,,, Z = 0.75L},,) in free space (left) and with
a solid wall at x = 0 (right)

5.2 Validation cases

The results for the three validation cases as described in section 4.2.2 are given in this section.
The information on the walls cannot be presented since this would require hundreds of
microphones on the walls. This is not an issue however, since the walls have been treated in the
previous section in the verification simulations. The results on the surface of the cylinder are
presented here, as this is the object of interest.

The results presented here are for a point source (speaker) at array location 1. The speaker
position is depicted in Figure 5.6. While experiments and simulations have been carried out for
all 32 speaker positions, they all yield similar results. Therefore, the results for just one speaker
are presented here.

24

Figure 5.6: Speaker wall with location of speaker node 1 (red circle)

5.2.1 BEMresults
The simulation results for the three cases are presented in the figures below. The amplitude is
given in the left figures while the phase data is in the right figures.

Speaker1 | 07 Jun 2012 | Case 1, Simulated | Case 1, Experimental

Speaker1 | 07 Jun 2012 | Case 1, Simulated | Case 1, Experimental

Figure 5.7: BEM results for amplitude (left) and phase (right) results for case 1: all solid walls

Speaker1 | 07 Jun 2012 | Case 2, Simulated | Case 2, Experimental Speaker1 | 07 Jun 2012 | Case 2, Simulated | Case 2, Experimental

PHASE

-03
-0.8
-13
-1.8
23
-28
-33
-3.8
-43
-4.8
-53
5.8
-6.3

Figure 5.8: BEM results for amplitude (left) and phase (right) results for case 2: Four anechoic walls, one solid
wall

25

Speaker 1 | 07 Jun 2012 | Case 3, Simulated | Case 3, Experimental

Speaker 1 | 07 Jun 2012 | Case 3, Simulated | Case 3, Experimental

Figure 5.9: BEM results for amplitude (left) and phase (right) results for case 3: Five anechoic walls

5.2.2 Experimental results
The experimental results for the three cases are presented in the figures below. The amplitude is
given in the left figures while the phase data is in the right figures.

Speaker1 | 07 Jun 2012 | Case 1, Simulated | Case 1, Experimental

Speaker 1 | 07 Jun 2012 | Case 1, Simulated | Case 1, Experimental

Figure 5.10: Experimental results for amplitude (left) and phase (right) results for case 1: all solid walls

Speaker1 | 07 Jun 2012 | Case 2, Simulated | Case 2, Experimental

Speaker1 | 07 Jun 2012 | Case 2, Simulated | Case 2, Experimental

Figure 5.11: Experimental results for amplitude (left) and phase (right) results for case 2: Four anechoic
walls, one solid wall

26

Speaker 1 | 07 Jun 2012 | Case 3, Simulated | Case 3, Experimental Speaker 1 | 07 Jun 2012 | Case 3, Simulated | Case 3, Experimental

Figure 5.12: Experimental results for amplitude (left) and phase (right) results for case 3: Five anechoic walls

5.3 Comparison

In the comparison of the numerical and experimental results there is only one situation that
yields satisfactory results. This is the amplitude data for case 1: All solid walls. Figure 5.13
shows the amplitude data on the cylinder for case 1 using the BEM and the experimental results
(this is merely a copy of the left figures in Figure 5.7 and Figure 5.10).

Speaker1 | 07 Jun 2012 | Case 1, Simulated | Case 1, Experimental Speaker1 | 07 Jun 2012 | Case 1, Simulated | Case 1, Experimental

Figure 5.13: Amplitude results for case 1 using the BEM (left) and experimental data (right)

The amplitude results for case 2 and case 3, as well as all phase data do not compare well at all.
It is hypothesized that one or more of the following might be the cause of the poor amplitude
comparison for case 2 and case 3:

1. The acoustic foam used to cover four (case 2) or five (case 3) walls may not provide a
fully anechoic termination.

2. When four or five walls are covered in foam most of the signal is absorbed. The signal
may have become too weak for the microphones to pick it up properly.

One possible cause for the overall poor phase comparison may lie in the error introduced by the
finite sample frequency of 40000 Hz. This sample frequency translates into an allowed phase
angle uncertainty of 2rr/(40000/1000) = 0.15 rad around the points of zero amplitude [11].

27

6 Conclusions & recommendations

6.1 Conclusions

The results in chapter 5 give rise to the following conclusions.

1.

The verification results and amplitude results for case 1 show that the Boundary
Element Method can be a suitable modelling method for acoustic problems. The
computational demands are lower than fully 3D FEM and the results are promisingly
accurate.

Given the good results for amplitude for case 1, the poor comparison results for the other
cases are concluded to be caused by experimental factors such as absorption coefficient
of the acoustic foam or measurement inaccuracies stemming from the rotation of the
cylinder in between measurements.

Given these conclusions, the proof-of-concept study is positively concluded and the NRC will
continue to pursue the topic of employing the BEM to optimize the beamforming method.

6.2 Recommendations

The recommendations following the results and conclusions are the following.

1.

28

A suitable BEM code needs to be developed that can include an external velocity field,
since the intended use is wind tunnel experiments.

Accurate validation experiments are needed to ensure the BEM is suitable to obtain valid
phase data. Therefore, it is recommended to line the test object with some orders of
magnitude more microphones. This makes it possible to perform entire experiments
without having to turn the cylinder in between measurements, therefore minimizing the
introduction of human error.

The wiring coming out of the cylinder (see Figure 4.6) and the wavelength are of the
same order of magnitude and therefore the wiring will influence the acoustic field. The
wiring of the microphones must therefore be drastically reduced in size to obtain more
accurate experiments.

Bibliography

International Air Transport Association, “Growth and Development,” 2013. [Online].
Available: http://www.iata.org/about/Pages/history_3.aspx. [Accessed 26 June 2013].

International Air Transport Association, “Airlines to Welcome 3.6 Billion Passengers in
2016,” 6 December 2012. [Online]. Available:
http://www.iata.org/pressroom/pr/pages/2012-12-06-01.aspx. [Accessed 26 June 2013].

J. Syms, “Reducing noise pollution near airports,” 1 December 2011. [Online]. Available:
http://archive.nrc-cnrc.gc.ca/eng/news/nrc/2011/12/01 /iar-wind-tunnel.html. [Accessed
26 June 2013].

A. Greensted, “Microphone Array Beamforming - The Lab Book Pages,” 29 November 2010.
[Online]. Available: http://www.labbookpages.co.uk/audio/beamforming.html. [Accessed
28 June 2013].

J. Christensen and J. Hald, “Beamforming Technical Review,” Briiel & Kjeer Sound &
Vibration Measurement A/S, Neerum, 2004.

L. Rayleigh, “On the Application of the Principle of Reciprocity to Acoustics,” Proc. R. Soc.
Lond., vol. 25, no. 171-178, pp. 118-122, 1876.

G. G. Stokes, “On the perfect Blackness of the Central Spot in Newton's Rings, and on the
Verification of Fresnel's Formula for the intensities of Reflected and Reflacted Rays,” The
Cambridge and Dublin mathematical journal, vol. 4, pp. 1-14, 1849.

H. v. Helmholtz, Handbuch der physiologischen Optik, Leipzig: Leopold Voss, 1856, p. 169.

T. Wu, Boundary Element Acoustics - Fundamentals and Computer Codes, Southampton:
WIT Press, 2005.

[10] R. Gunda, “Boundary Element Acoustics and the Fast Multipole Method (FMM),” Sound and

Vibrations, pp. 12-16, 2008.

[11] J. Syms, Private correspondence, 2012.

29

Appendix 1. Matlab files

Al.1 parameters.m

%% Input: Problem parameters

int = 1; % 0 = exterior problem, 1 = interior problem

isc = 0; % 0 = no scattering, 1 = scattering

isym = 0; % 0 = no symmetry, 1 = symmetry

p = 100900; % Pressure in Pa

T = 23.5; % Temperature in degrees C

freql = 996.0938; % First frequency in Hz

freqz = 0; % Second frequency in Hz

df = 0; % Frequency stepsize (if freg2=df=0 only fregl is used)

tol = 0.001; % Tolerance for comparison purposes because of floating point error

inch = 0.0254;

%%% Calculation of rho and ¢ (assumption of ideal gas)
M=28.9645*10"-3; Molar mass of dry air in kg/mol
R=8.3144621; Universal gas constant in J/ (K*mol)

o

o°

lambda=1.4; % Specific heat ratio for air
rho=p*M/ (R* (T+273.15)); % Density in m/s from ideal gas law
c=sqgrt (lambda*p/rho) ; % Speed of sound in m/s

%% Input: Simulation number

simulation = 3;

% 1 = All solid walls, with cylinder (Case 1)

% 2 = Four anechoic sidewalls, with cylinder (Case 2)
% 3 = Five anechoic sidewalls, with cylinder (Case 3)
% 4 = All solid walls, without cylinder

% 7 = Four anechoic sidewalls, without cylinder

% 8 = Five anechoic sidewalls, without cylinder

% 5 = Testcase: Wu page 64

% 6 = Testcase: Adjustable (in preprocessor.m)

%% Input: Geometry and mesh parameters (in inches)

xlow = 20.7;
xlim = 92.7;

oe

x-coordinate of lower box boundary
x-coordinate of upper box boundary

oe

ylow = 0; % y-coordinate of lower box boundary

ylim = 72; % y-coordinate of upper box boundary

zlow = 0; % z-coordinate of lower box boundary

zlim = 72; % z-coordinate of upper box boundary

N = 20; % Number of elements per side

ccx = 36; % x-coordinate of the center of the cylinder
ccy = 36; % y-coordinate of the center of the cylinder
ccz = 36; % z-coordinate of the center of the cylinder
ccl = 18; % Length of the cylinder

ccr = 3.3; % Radius of the cylinder

Nrad = 6; % Number of elements in radial direction
Ncir = 16; % Number of elements in circumferential direction
Naxi = 12; % Number of elements in axial direction

sample freq = 40000; % Sample frequency in Hz
fft steps = 2048;

%% Optional input: Only used in testcases (simulation = 5 or 6)
title = 'Vertical symmetry axis in free space';

inputfilename = 'input node99.dat';

outputfilename = 'output node99.dat';

%% Determination of simulation variables

% micplate: 0 = no micplate, 1 = micplate
% cylinder: 0 = no cylinder, 1 = cylinder, 2 = no cylinder, but included as field points
% walls: 1 = solid walls, 2 = anechoic walls, 3 = Four anechoic walls, 4 = Five anechoic walls

if simulation==
micplate=1;
cylinder=1;

30

walls=1;

elseif simulation==2
micplate=1;
cylinder=1;
walls=3;

elseif simulation==
micplate=1;
cylinder=1;
walls=4;

elseif simulation==
micplate=1;
cylinder=2;
walls=1;

elseif simulation==
micplate=0;
cylinder=0;

elseif simulation==
micplate=0;
cylinder=1;
walls=2;

elseif simulation==
micplate=1;
cylinder=2;
walls=3;

elseif simulation==
micplate=1;
cylinder=2;
walls=4;

else
disp ('ERROR: Simulation number not recognized');
return

end

Al.2 sim_preprocessor.m

St++++++++++++H A
% SIM_ PREPROCESSOR

Author: T.J. van der Meer

% Modified: 14-5-2012

% Description: Writes the inputfile(s) for the FORTRAN BEM-model based on

% the problem parameters, boundary conditions and grid
% generation.

%

% Inputs: - parameters.m

% - sim gridgen.m

% Outputs: - input node*.dat

L L L e R
F—————= Initialization -—--—=-—-—---"--"—"—"——"——"——"——"—~—— - ——

clear

clc

bcs=zeros (1,9);

abs _coeff=0.09; % abs_coeff = 0.09 for plywood at 1000 Hz
impedance=(l+sqrt(l—abs_coeff))/(l—sqrt(l—abs_coeff));

o

s—————— Load problem parameters —-—-—-—-—--—--———-—————————————————————————————
run ('parameters');

o

F—————— Grid generation -—---------------——-————————

[nodes,elems, field,displnodes]=sim gridgen(cylinder,micplate,xlow,xlim,ylow,ylim,zlow,z1lim,N,c

cx,ccy,ccz,ccl,ccr,Nrad,Ncir,Naxi,tol, inch) ;

nnodes=size (nodes, 1) ; % Number of nodes

nelems=size (elems, 1) ; % Number of elements

nfield=size(field, 1) ; % Number of field points

G-————- Set boundary conditions and write output ----------------—--——--————-

31

if simulation== % Testcase: Wu page 64
% Boundary condition generation
bcs(1l,:)=[1 nelems 0 1 0 -impedance*rho*c 0 0 0]; % Plywood walls
j=2;
for i=l:nelems
if abs(nodes(elems (i, 1),1))<tol && abs(nodes(elems(i,1l),2))>tol &&
abs (nodes (elems (i, 1),3))>tol

bcs(j,:)=[1 1 00 01 0 -1 017 % Plane x=0 moving with 1 m/s
j=j+1;
elseif abs(nodes(elems(i,1),1)-(xlim-xlow)*inch)<tol && abs(nodes(elems (i, 1),2)-(ylim-
ylow) *inch) >tol && abs (nodes(elems(i,1),3)-(zlim-zlow) *inch)>tol
becs(j,:)=[1i 1 0 1 0 -rho*c 0 O 0]; % Anechoic termination on plane x=xlim
j=j+1;
end
end
nbcs=size (bcs,1); % Number of BC's

% Write output
fid = fopen (inputfilename, 'w'); % Open file
fprintf (fid, '%$s\nGENERAL
INFORMATION\n%i, %$i,%i\n%f, $f\n%f,0,0\n",title,int,isc,isym, rho,c, freql); % General info
fprintf (fid, '"NODES\n%i\n',nnodes) ; % Nodal numbers and coordinates
for i=l:nnodes
fprintf (fid, '%i,%f,%f,%f\n',1i,nodes(i,1),nodes (i,2),nodes(i,3));
end
fprintf (fid, 'ELEMENTS\n%i\n',nelems) ; % Element numbers and nodes
for i=l:nelems
fprintf (fid, '%i,%1i,%i,%1,%i\n',i,elems(i,1),elems(i,2),elems (i, 3),elems(i,4));
end
fprintf (fid, 'BOUNDARY CONDITIONS\n%i\n',nbcs); % Boundary conditions
for i=1l:nbcs

fprintf (fid, '%i, %1,%f,%£,%f,%£,%£,%f,%f\n",bcs (i,1),bcs(i,2),bes (1,3),bes(i,4),becs(1,5),bes (i,
6),bcs(i,7),bcs (i,8),bcs (i)

end

fprintf (fid, 'FIELD POINTS\n%i\n%f,%f,%f\n%f,%f,%f\n',2,0.25,0.5,0.5,0.5,0.5,0.5); %
Field points

fprintf (fid, 'SOLVE\nEND") ; % Closing statements

fclose (fid) ; % Close file

o

elseif simulation== % Testcase: adjustable

% Boundary condition generation

j=1;

bcs(j,:)=[1 nelems 0 1 0 -rho*c 0 0 01; % All anechoic walls

j=j+1;

if walls==

for i=1:nnodes
if abs(nodes(i,1)-(xlim-xlow)*inch)<tol && abs(nodes (i, 2)-(ylim-ylow) *inch)>tol &&

abs (nodes (i,3)-(zlim-zlow) *inch) >tol

bcelem=find (ismember (elems(:,1),1) '==1);

bcs(j, :)=[bcelem bcelem 0 1 0 -impedance*rho*c 0 0 0]; % Speakerplate =
Plywood wall

J=j+1;

end
end
elseif walls==
for i=1:nnodes

if abs(nodes(i,1)-(xlim-xlow)*inch)<tol && abs(nodes (i, 2)-(ylim-ylow) *inch)>tol &&
abs (nodes (i,3)-(zlim-zlow) *inch) >tol
bcelem=find (ismember (elems(:,1),1i) '==1);
bcs(j, :)=[bcelem bcelem 0 1 0 -impedance*rho*c 0 0 0]; % Speakerplate =

Plywood wall
J=j+1;
elseif abs(nodes(i,1l))<tol && abs(nodes(i,2))>tol && abs(nodes(i,3))>tol
bcelem=find (ismember (elems(:,1),1) '==1);

bcs(j, :)=[bcelem bcelem 0 1 0 -impedance*rho*c 0 0 0]; % Mounting plate =
Plywood wall
j=j+1;
end
end
end
for i=l:nnodes
if abs(nodes(i,1)-(xlim-xlow)*inch)<tol && abs(nodes(i,2)-0.5*(ylim-ylow) *inch)<tol &&
abs (nodes (i,3)-0.75* (zlim-zlow) *inch) <tol
bcelem=find (ismember (elems (:,1),1i) '==1);

32

bcs(j, :)=[bcelem bcelem 1 1 0 0 0 10 0];
bcelem=find (ismember (elems (:,2),1) '==1);
bcs (§+1, :)=[bcelem bcelem 2 1

o°

Source on [xlim, ylim*0.5, zlim*0.75]

000 10 0];
bcelem=find (ismember (elems(:,3),1) '==1);
bcs (j+2, :)=[bcelem bcelem 3 1 0 0 0 10 0];
bcelem=find (ismember (elems (:,4),1) '==1);
bcs (j+3, :)=[bcelem bcelem 4 1 0 0 0 10 01];
end
end
nbcs=size (bcs,1); % Number of BC's

[

5 Write output
fid = fopen (inputfilename, 'w'); % Open file
fprintf (fid, '%s\nGENERAL
INFORMATION\n%i, %$i,%i\n%f, $f\n%f,0,0\n",title,int,isc,isym, rho,c, freql); % General info
fprintf (£id, '"NODES\n%i\n',nnodes) ; % Nodal numbers and coordinates
for i=l:nnodes
fprintf (fid, '%i,%f,%f,%f\n',i,nodes (i,1),nodes (i,2),nodes (i,3));
end
fprintf (fid, 'ELEMENTS\n%i\n',nelems) ; % Element numbers and nodes
for i=l:nelems
fprintf (fid, '%i,%1i,%i,%1,%i\n',i,elems(i,1),elems(i,2),elems (i, 3),elems(i,4));
end
fprintf (£fid, 'BOUNDARY CONDITIONS\n%i\n',nbcs); % Boundary conditions
for i=l:nbcs

fprintf (fid, '%i,%1,%f,%f,%f,%f,%f,%f,%f\n",bcs(i,1),bcs(i,2),bcs (1,3),bcs(i,4),bcs(1,5),bes (i,
6),bcs (i, 7),bcs(i,8),bcs(i,9));

end

fprintf (fid, 'FIELD POINTS\n%i\n',nfield); % Field points

for i=l:nfield

fprintf (fid, '%f,%f,%f\n',field(i,1),field(i,2),field (i, 3));

end

fprintf (fid, 'SOLVE\nEND'") ; % Closing statements

fclose (fid) ; % Close file
else % All other simulations

for mic=1:32

Boundary condition generation
1

’

f walls==
bcs(j,:)=[1 nelems 0 1 0 -impedance*rho*c 0 0 0]; % Plywood walls
j=j+1;
elseif walls==
bcs(j,:)=[1 nelems 0 1 0 -rho*c 0 0 01; % Anechoic walls
Jj=j+1;
elseif walls==
bcs(j,:)=[1 nelems 0 1 0 -rho*c 0 0 01; % Four anechoic walls
Jj=j+1;
for i=1:nnodes
if abs(nodes(i,1l))<tol && abs(nodes(i,2))>tol && abs(nodes (i, 3))>tol

2
5
J
i

bcelem=find (ismember (elems (:,1),1i) '==1);
bcs(j, :)=[bcelem bcelem 0 1 0 -impedance*rho*c 0 0 0]; % Mounting plate
= Plywood wall
Jj=j+1;
elseif abs(nodes(i,1)-(xlim-xlow)*inch)<tol && abs(nodes (i, 2)-(ylim-
ylow) *inch)>tol && abs (nodes (i, 3)-(zlim-zlow) *inch)>tol
bcelem=find (ismember (elems(:,1),1) '==1);
bcs(j, :)=[bcelem bcelem 0 1 0 -impedance*rho*c 0 0 0]; % Speakerplate =
Plywood wall
j=j+1;
end
end
elseif walls==
bcs(j,:)=[1 nelems 0 1 0 -rho*c 0 0 01; % Five anechoic walls
j=j+1;

for i=l:nnodes
if abs(nodes(i,1l)-(xlim-xlow) *inch)<tol && abs(nodes(i,2)-(ylim-
ylow) *inch) >tol && abs(nodes(i,3)-(zlim-zlow)*inch)>tol
bcelem=find (ismember (elems(:,1),1) '==1);
bcs(j, :)=[bcelem bcelem 0 1 0 -impedance*rho*c 0 0 0]; % Speakerplate =
Plywood wall
3=3+1;
end
end
end

33

bcelem=find (ismember (elems(:,1),displnodes (mic)) '==1); % Source at current

speakernode
bcs(j, :)=[bcelem bcelem 1 1 0 0 0 10 0];
bcelem=find (ismember (elems (:,2),displnodes (mic)) '==1);
bcs (j+1, :)=[bcelem bcelem 2 1 0 0 0 10 0];
bcelem=find (ismember (elems (:,3),displnodes (mic)) '==1);
bcs (j+2, :)=[bcelem bcelem 3 1 0 0 0 10 0];
bcelem=find (ismember (elems (:,4),displnodes (mic)) '==1);
bcs (j+3, :)=[bcelem bcelem 4 1 0 0 0 10 01;
nbcs=size (bcs,1); % Number of BC's

$%% Write 32 inputfiles
title = sprintf ('Speaker %d',mic);

inputfilename = sprintf('input node%2.2d.dat',mic); % Determination of inputfile
fid = fopen (inputfilename, 'w'); % Open file

fprintf (fid, '%$s\nGENERAL

INFORMATION\n%i, $i,%i\n%f, $f\n%f,0,0\n"',title,int,isc,isym, rho,c, freql); % General info

fprintf (fid, '"NODES\n%i\n',nnodes) ; % Nodal numbers and coordinates
for i=1l:nnodes
fprintf (fid, '%i,%f,%f,%f\n"',1i,nodes (i,1),nodes (i,2),nodes(i,3));
end
fprintf (fid, 'ELEMENTS\n%i\n',nelems) ; % Element numbers and nodes
for i=l:nelems
fprintf (fid, '%i,%1i,%i,%1,%i\n',i,elems(i,1),elems(i,2),elems (i, 3),elems(i,4));
end
fprintf (fid, 'BOUNDARY CONDITIONS\n%i\n',nbcs); % Boundary conditions
for i=1l:nbcs

fprintf (fid, '%i, %1i,%f,%£,%f,%£,%£,%f,%f\n",bcs(i,1),bcs(1i,2),becs (1,3),bes(i,4),becs(1,5),bes (i,
6),bcs(i,7),bcs(i,8),bcs(i,9));

end
end

Al.3

function

end
fprintf (fid, 'FIELD POINTS\n%i\n',nfield); % Field points
for i=l:nfield
fprintf (fid, '%f,%f,%f\n", field(i, 1), field(i,2), field(i,3));

end
fprintf (fid, 'SOLVE\nEND") ; % Closing statements
fclose (fid) ; % Close file
sim_gridgen.m
[nodes,elems, field,displnodes] =

sim gridgen(cylinder,micplate,xlow,xlim,ylow,ylim,zlow,z1im,N, ccx,ccy,ccz,ccl,ccr,Nrad,Ncir,Na
xi,tol, inch)

e e o B L L o

% S IM GRIDGEN

% Author: T.J. van der Meer
% Modified: 14-5-2012

% Description: Creates the quadrilateral 3D boundary grid for BEM-model.

- posproc_conn_*.dat element connectivity for postprocessor)

% Inputs: - geometrical and simulation parameters
% Outputs: - [nodes] (nodal coordinates)
% - [elems] (element connectivity)
% - [field] (nodal coordinates of fieldpoints)
% - displnodes (microphone node numbers)
(
(

- posproc_micnodenrs.dat$% microphone node numbers for postprocessor)

T e L o

nodesbox=zeros
nodescil=zeros
elemsbox=zeros
elemscil=zeros
field=zeros (1,3

dist=zeros(1,2);
dx=(xlim-xlow) /N;

34

dy=(ylim-ylow) /N;
dz=(zlim-zlow) /N;

[x, y]l=meshgrid(xlow: (xlim-xlow) /N:x1lim,ylow: (ylim-ylow) /N:ylim) ;
z=zlow: (zlim-zlow) /N:zlim;
dr=ccr/Nrad;

da=ccl/Naxi;

dc=2*pi/Ncir;
r=0:ccr/Nrad:ccr;
a=0:ccl/Naxi:ccl;
c=0:2*pi/Ncir:2*pi;
displnodes=1;

% Construction of box-part of the nodal matrix

nnr=1;
for w=1:N+1
if w==1||w==N+1 % Creation of nodal roster on z=0 and z=zlim
for u=1:N+1
for v=1:N+1
nodesbox (nnr, :)=[x(v,u) y(v,u) z(w)]l;
nnr=nnr+l;
end
end
else
for u=1:N+1 % Creation of nodal circumferential roster on 0<z<zlim
if u==1||u==N+1
for v=1:N+1
nodesbox (nnr, :)=[x(v,u) y(v,u) z(w)]l;
nnr=nnr+1;
end
else
nodesbox (nnr, :)=[x(1,u) y(l,u) z(w)];
nnr=nnr+1;
nodesbox (nnr, :)=[x (N+1,u) y(N+1l,u) z(w)];
nnr=nnr+l;
end
end
end
end
nnodesbox=size (nodesbox, 1) ; % Number of box nodes

o

% Construction of box-part of the element matrix
felxlow = fopen('postproc conn xlow.dat','w'); % Connectivity files for the purpose of
Tecplot postprocessing

felxlim = fopen('postproc conn xlim.dat','w');
felylow = fopen('postproc conn ylow.dat', 'w');
felylim = fopen('postproc conn ylim.dat','w');
felzlow = fopen('postproc conn zlow.dat','w');
felzlim = fopen('postproc conn zlim.dat', 'w');
for nnr=1:nnodesbox % Loop over all nodes, each node except 2 are used to

% create an element with its surrounding nodes.

% This is done by determining on what plane the node
% lies and finding the surrounding nodes in counter-
% clockwise direction. The resulting connectivity is

% stored in elemsbox (nnr,:) and the above files.
if nodesbox (nnr,1l)==xlow && nodesbox (nnr,?2)~=ylow && nodesbox(nnr, 3)~=zlow % Plane
x=x1low
nodel=nnr;
j=0;
for i=1:nnodesbox % Loops over all nodes to find the counter-clockwise nodes

around node nnr
if abs (nodesbox (i, 1)-nodesbox (nnr,1))<tol && abs (nodesbox (i, 2)-
nodesbox (nnr, 2))<tol && abs (nodesbox (i, 3)-(nodesbox (nnr,3)-dz))<tol
node2=i;
j=j+1;
elseif abs (nodesbox (i, 1) -nodesbox (nnr,1))<tol && abs (nodesbox(i,2)-
(nodesbox (nnr, 2) -dy)) <tol && abs (nodesbox (i, 3)- (nodesbox (nnr,3)-dz))<tol
node3=i;
j=j+1;
elseif abs(nodesbox (i, 1) -nodesbox (nnr,1))<tol && abs (nodesbox(i,2)-
(nodesbox (nnr, 2) -dy)) <tol && abs (nodesbox (i, 3)-nodesbox (nnr,3))<tol

noded=i;
J=3+1;
end
if J== % Terminates the search when the three counter-clockwise nodes are

found

35

break

end
end
elemsbox (nnr, :)=[nodel node2 node3 noded]; % Stores connectivity for element nnr
fprintf (felxlow, '$1 %1 %1 %i\n',nodel,node2,node3,noded) ; % Stores connectivity
in .dat file
elseif nodesbox (nnr,l)==xlim && nodesbox (nnr,2)~=ylim && nodesbox (nnr,3)~=zlim %

Plane x=xlim
nodel=nnr;
j=0;
for i=1:nnodesbox
if abs (nodesbox (i, 1)-nodesbox (nnr,1))<tol && abs (nodesbox (i, 2)-
(nodesbox (nnr, 2) +dy)) <tol && abs (nodesbox (i, 3)-nodesbox (nnr,3))<tol
node2=i;
j=j+1;
elseif abs(nodesbox (i, 1) -nodesbox (nnr,1))<tol && abs (nodesbox(i,2)-
(nodesbox (nnr, 2) +dy)) <tol && abs (nodesbox (i, 3)- (nodesbox (nnr,3)+dz))<tol
node3=i;
j=j+1;
elseif abs(nodesbox (i, 1) -nodesbox (nnr,1))<tol && abs (nodesbox(i,2)-
nodesbox (nnr,2))<tol && abs (nodesbox (i, 3)-(nodesbox (nnr,3)+dz))<tol

node4d=i;
j=j+1;
end
if j==
break
end
end
elemsbox (nnr, :)=[nodel node2 node3 noded];
fprintf (felxlim, '$i %1 %i %i\n',nodel,node2,node3,noded) ;
elseif nodesbox (nnr,2)==ylow && nodesbox (nnr,1l)~=xlim && nodesbox (nnr,3)~=zlim %
Plane y=0
nodel=nnr;
j=0;
for i=1:nnodesbox
if abs (nodesbox (i, 1) - (nodesbox (nnr,1)+dx))<tol && abs (nodesbox(i,2)-
nodesbox (nnr,2))<tol && abs (nodesbox (i, 3)-nodesbox (nnr,3))<tol
node2=i;
j=j+1;
elseif abs (nodesbox (i, 1) - (nodesbox (nnr,1)+dx))<tol && abs (nodesbox(i,2)-
nodesbox (nnr,2))<tol && abs (nodesbox (i, 3)-(nodesbox (nnr,3)+dz))<tol
node3=i;
j=j+1;
elseif abs (nodesbox (i, 1) -nodesbox (nnr,1))<tol && abs (nodesbox (i, 2)-
nodesbox (nnr,2))<tol && abs(nodesbox (i, 3)-(nodesbox (nnr, 3)+dz))<tol
node4=i;
3=3+1;
end
if j==3
break
end
end

elemsbox (nnr, :)=[nodel node2 node3 node4d];
fprintf (felylow, '$i %i %i %i\n',nodel,node2,node3,noded) ;
elseif nodesbox(nnr,2)==ylim && nodesbox (nnr,1l)~=xlow && nodesbox (nnr,3)~=zlow %
Plane y=ylim
nodel=nnr;
j=0;
for i=1:nnodesbox
if abs(nodesbox(i,1l)-nodesbox (nnr,1l))<tol && abs (nodesbox(i,2)-
nodesbox (nnr,2))<tol && abs(nodesbox (i, 3)- (nodesbox (nnr,3)-dz))<tol
node2=i;
j=j+1;
elseif abs(nodesbox (i, 1) - (nodesbox (nnr,1l)-dx))<tol && abs (nodesbox(i,2)-
nodesbox (nnr,2))<tol && abs(nodesbox (i, 3)- (nodesbox (nnr,3)-dz))<tol
node3=i;
j=j+1;
elseif abs (nodesbox (i, 1) - (nodesbox(nnr,1)-dx))<tol && abs(nodesbox(i,2)-
nodesbox (nnr,2))<tol && abs(nodesbox(i,3)-nodesbox (nnr, 3))<tol
node4=i;
j=j+1;
end
if j==3
break
end
end
elemsbox (nnr, :)=[nodel node2 node3 noded];

36

fprintf (felylim, '$i %i %i %i\n',nodel,node2,node3,noded) ;
elseif nodesbox (nnr,3)==zlow && nodesbox (nnr,1l)~=xlim && nodesbox (nnr,2)~=ylow
Plane z=0
nodel=nnr;
j=0;
for i=1:nnodesbox
if abs (nodesbox (i, 1) - (nodesbox (nnr,1)+dx))<tol && abs (nodesbox(i,2)-
nodesbox (nnr,2))<tol && abs (nodesbox (i, 3)-nodesbox (nnr,3))<tol
node2=i;
j=j+1;
elseif abs (nodesbox (i, 1) - (nodesbox(nnr,1)+dx))<tol && abs(nodesbox(i,2)-
(nodesbox (nnr, 2) -dy)) <tol && abs (nodesbox (i, 3)-nodesbox (nnr, 3))<tol
node3=i;
j=j+1;
elseif abs (nodesbox (i, 1) -nodesbox (nnr,1l))<tol && abs (nodesbox(i,2)-
(nodesbox (nnr, 2) -dy)) <tol && abs (nodesbox(i,3)-nodesbox (nnr,3))<tol

noded=i;
J=3+1;
end
if j==
break
end
end
elemsbox (nnr, :)=[nodel node2 node3 noded];
fprintf (felzlow, '$i %1 %i %i\n',nodel,node2,node3,noded) ;

1
elseif nodesbox (nnr, 3)=
Plane z=zlim

nodel=nnr;

j=0;

for i=1:nnodesbox

if abs (nodesbox (i, 1l)-nodesbox (nnr,1))<tol && abs (nodesbox (i, 2)-

(nodesbox (nnr, 2) +dy)) <tol && abs (nodesbox (i, 3)-nodesbox (nnr,3))<tol

=z1lim && nodesbox (nnr,1l)~=xlow && nodesbox (nnr,2)~=ylim

oe

node2=i;
J=3+1;
elseif abs (nodesbox (i, 1) - (nodesbox (nnr,1)-dx))<tol && abs (nodesbox(i,2)-
(nodesbox (nnr, 2) +dy)) <tol && abs (nodesbox (i, 3)-nodesbox (nnr,3))<tol
node3=i;
3=3+1;
elseif abs (nodesbox (i, 1) - (nodesbox (nnr,1)-dx))<tol && abs(nodesbox(i,2)-
nodesbox (nnr,2))<tol && abs(nodesbox(i,3)-nodesbox (nnr, 3))<tol
noded=1;
3=3+1;
end
if j==
break
end
end
elemsbox (nnr, :)=[nodel node2 node3 node4d];
fprintf (felzlim, '$i %1 %i %i\n',nodel,node2,node3,noded) ;
end
end
fclose('all'); % Close the connectivity files
elemsbox (find (ismember (elemsbox, [0 0 O 0], 'rows') '==1),:)=[]; % Removal of zero lines
nelemsbox=size (elemsbox, 1) ; % Number of box elements

% Plot of the box grid

scrsz = get (0, 'ScreenSize'");
figure ('Position', [1 scrsz(4)/2 scrsz(3)/2 0.8*scrsz(3)/21)
view (3)

set (gca, 'XTickLabel', [])
set (gca, 'YTickLabel', [])
set (gca, 'ZTickLabel', [1)
grid on
hold on
for i=1l:nelemsbox
elemsboxplot=[elemsbox (i, :) elemsbox(i,1)];

plot3 (nodesbox (elemsboxplot, 1), nodesbox (elemsboxplot, 2),nodesbox (elemsboxplot,3), 'k');

end
F—————— Cylinder-part ——-—--————————————————— -~ ———
if cylinder==1||cylinder== % Skip if cylinder = 0
% Construction of cylinder-part of the nodal matrix
nnr=1;

for t=1:Ncir % Circumferential loop
xloc=ccx+ccr*cos (c(t));

37

zloc=ccz+ccr*sin(c(t));

for j=1:Naxi+l % Axial loop per circumferential position
nodescil (nnr, :)=[xloc ccy-0.5%ccl+a(j) zloc c(t) 0];
nnr=nnr+1;

end

for k=2:Nrad % Radial loop (sides) per circumferential loop
nodescil (nnr, :)=[ccx+r (k) *cos (c(t)) ccy-0.5*ccl ccz+r (k) *sin(c(t)) c(t) r(k)]l;
% Left side
nnr=nnr+1;
nodescil (nnr, :)=[ccx+r (k) *cos (c(t)) ccy+0.5*ccl ccz+r (k) *sin(c(t)) c(t) r(k)]l;
% Right side
nnr=nnr+1;

end
end
nodescil (nnr, :)=[ccx ccy-0.5*ccl ccz 0 0]; % Node on left centrepoint
nrleftnode=nnr; % For element creation purposes
nnr=nnr+1;
nodescil (nnr, :)=[ccx ccy+0.5*ccl ccz 0 0]; % Node on right centrepoint
nrrightnode=nnr; % For element creation purposes
nnodescil=size (nodescil,1); % Number of cylinder nodes

)

% Construction of cylinder-part of the element matrix

felcyl = fopen('postproc conn cyl.dat','w'"); % Connectivity file for the purpose of
tecplot postprocessing

for nnr=1:nnodescil
if abs((nodescil (nnr,1)-ccx) "2+ (nodescil (nnr, 3)-ccz) "2-ccr”2)<tol &&

abs (nodescil (nnr,2) - (ccy+0.5*ccl))>tol Circumference of cylinder
nodel=nnr+nnodesbox;
j=0;
for i=l:nnodescil
if abs(nodescil (i, 1) - (ccx+ccr*cos (nodescil (nnr,4)+dc)))<tol &&

abs (nodescil (i,2) -nodescil (nnr,2))<tol && abs (nodescil (i, 3)-
(ccz+ccr*sin(nodescil (nnr,4)+dc))) <tol
node2=i+nnodesbox;
j=j+1;
elseif abs(nodescil (i, 1) - (ccx+ccr*cos (nodescil (nnr,4)+dc)))<tol &&
abs (nodescil (i,2) - (nodescil (nnr, 2)+da))<tol && abs (nodescil (i, 3)-
(ccz+ccr*sin (nodescil (nnr,4)+dc))) <tol
node3=i+nnodesbox;
j=j+1;
elseif abs(nodescil (i, 1)-nodescil (nnr,1))<tol && abs(nodescil(i,2)-
(nodescil (nnr, 2)+da))<tol && abs (nodescil (i, 3)-nodescil (nnr,3))<tol
node4=i+nnodesbox;
j=j+1;
end
if j==3
break
end
end
elemscil (nnr, :)=[nodel node2 node3 noded];
fprintf (felcyl, '%$1i %i %i %i\n',nodel,node2,node3,noded) ;
elseif abs((nodescil (nnr,1)-ccx) "2+ (nodescil (nnr,3)-ccz)2-ccr™2)>tol &&

O —

nodescil (nnr, 5)~=0 % Sides of the cylinder (except nodes on r=0)
nodel=nnr+nnodesbox;
j=0;
if abs(nodescil (nnr,2)-(ccy-0.5%ccl))<tol % Left side of cylinder

for i=1l:nnodescil
if abs(nodescil (i, 2)-nodescil (nnr,2))<tol
if abs(nodescil(i,1)-
(ccx+nodescil (nnr, 5) *cos (nodescil (nnr,4) +dc)))<tol && abs(nodescil (i, 3)-
(ccx+nodescil (nnr,5) *sin (nodescil (nnr, 4)+dc))) <tol
node2=i+nnodesbox;
j=j+1;
elseif abs(nodescil (i, 1) -
(ccx+ (nodescil (nnr, 5) +dr) *cos (nodescil (nnr, 4) +dc)))<tol && abs (nodescil (i, 3)-
(ccx+ (nodescil (nnr, 5) +dr) *sin (nodescil (nnr,4) +dc))) <tol
node3=i+nnodesbox;

3=3+1;
elseif abs(nodescil (i, 1) -
(ccx+ (nodescil (nnr, 5) +dr) *cos (nodescil (nnr,4))))<tol && abs(nodescil (i, 3)-
(ccx+ (nodescil (nnr, 5) +dr) *sin (nodescil (nnr,4))))<tol
node4=i+nnodesbox;
3=3+1;
end
if j==
break
end

38

end
end
elseif abs(nodescil (nnr,2)-(ccy+0.5%ccl))<tol % Right side of cylinder
for i=1:nnodescil
if abs(nodescil (i, 2)-nodescil (nnr,2))<tol

if abs(nodescil (i, 1)- (ccx+nodescil (nnr,5) *cos (nodescil (nnr, 4) -
dc)))<tol && abs(nodescil (i,3)-(ccx+nodescil (nnr,5)*sin (nodescil (nnr,4)-dc)))<tol
node2=i+nnodesbox;
J=3+1;

elseif abs(nodescil(i,1)-
(cex+ (nodescil (nnr, 5) +dr) *cos (nodescil (nnr,4)-dc)))<tol && abs(nodescil (i,3)-
(ccx+ (nodescil (nnr, 5) +dr) *sin (nodescil (nnr,4) -dc)))<tol
node3=i+nnodesbox;

j=j+1;
elseif abs(nodescil(i,1)-
(ccx+ (nodescil (nnr, 5) +dr) *cos (nodescil (nnr,4))))<tol && abs(nodescil (i,3)-
(ccx+ (nodescil (nnr, 5) +dr) *sin (nodescil (nnr,4))))<tol
noded4=i+nnodesbox;
j=j+1;
end
if j==
break
end

end
end
end
elemscil (nnr, :)=
fprintf (felcyl,'

[nodel node2 node3 noded];
%1 %i %1 %i\n',nodel,node2,node3,noded) ;
end
end
nelemscil=size (elemscil,1); % Intermediate number of elements in order to get
correct numbering for the last circles on left and right sides (see below)
for nnr=1:nnodescil
if abs(nodescil (nnr,5)-dr)<tol % Nodes on r=dr
nodel=nnr+nnodesbox;
if abs(nodescil (nnr,2)-(ccy-0.5%ccl))<tol % Left side of the cylinder
for i=l:nnodescil
if abs(nodescil (i, 1) - (ccx+nodescil (nnr,5)*cos (nodescil (nnr,4) -
dc)))<tol && abs(nodescil (i,2)-nodescil (nnr,2))<tol && abs (nodescil (i, 3)-
(ccx+nodescil (nnr,5) *sin (nodescil (nnr,4)-dc))) <tol
node2=i+nnodesbox;
node3=nrleftnode+nnodesbox;
node4=node3;
break
end
end
else % Right side of the cylinder
for i=1l:nnodescil
if abs(nodescil(i,1)-
(ccx+nodescil (nnr, 5) *cos (nodescil (nnr,4)+dc)))<tol && abs(nodescil (i, 2)-nodescil (nnr,2))<tol
&& abs (nodescil (i, 3) - (ccx+nodescil (nnr,5) *sin (nodescil (nnr, 4)+dc)))<tol
node2=i+nnodesbox;
node3=nrrightnode+nnodesbox;
node4=node3;
break
end
end
end
elemscil (nelemscil+1l, :)=[nodel node2 node3 noded];
fprintf (felcyl, '%$1i %i %i %i\n',nodel,node2,node3,noded) ;
nelemscil=nelemscil+1l;

end
end
fclose('all'); % Close the connectivity file
elemscil (find (ismember (elemscil, [0 0 O 0], 'rows') '==1),:)=[]; % Removal of zero
lines
nelemscil=size (elemscil,1); % Number of cylinder elements

o

% Plot of the cylinder grid

figure ('Position', [1 scrsz(4)/2 scrsz(3)/2 0.8*scrsz(3)/2])
view (3)

set (gca, 'XTickLabel', [])

set (gca, 'YTickLabel', [])

set (gca, 'ZTickLabel', [1)

grid on

hold on

for i=l:nelemscil

39

elemscilplot=[elemscil (i, :) -nnodesbox elemscil (i,1)-nnodesbox];

plot3 (nodescil (elemscilplot,1l),nodescil (elemscilplot, 2),nodescil (elemscilplot,3), 'k");
end

% Assembly of global nodal and element matrices

if cylinder== % Including cylinder
nodes=[nodesbox;nodescil (:,1:3)1]1;
elems=[elemsbox;elemscil];

else % Excluding cylinder (implemented later as field points)
nodes=nodesbox;
elems=elemsbox;

end

else % Excluding cylinder
nodes=nodesbox;
elems=elemsbox;

end
nnodes=size (nodes, 1) ; % Number of nodes
nelems=size (elems,1); % Number of elements
F—————- Fix ————————— -

o°

Fix because of the error in the creation of the cylinder-part of the mesh
(it breaks down with certain input).

o°

o

Description: The input is given in inches (see parameters.m) with a
shifted x-axis. Here the output is transformed back to the intended
origin and then converted to meters (1 inch = 0.0254 m)

o°

o°

nodes (:,1)=nodes (:,1)-xlow;
nodes (:,2)=nodes (:,2)-ylow;
nodes (:,3)=nodes (:,3)-zlow;
nodes=inch*nodes;

o

s—————= Creation of field points matrix if cylinder = 2 (including fix) ---

if cylinder==2
field=nodescil (:,1:3);
field(:,1)=field(:,1)-xlow;
field(:,2)=field(:,2)-ylow;
field(:,3)=field(:,3)-zlow;
field=inch*field;

end

o

s—————— Microphone/Speaker plate -----------———————————————————————————————

if micplate== % Skips if micplate = 0

% Relocation of nodes on plane x=xlim to incorporated microphone nodes

fid=fopen('mic pattern low frequency.txt',6'r'); % Open microphone pattern file
nodesmic=fscanf (fid, "$g', [3,1inf]) '; % Store miccoordinates [y, z,x]
fclose (fid) ; % Close microphone pattern file
nodesmic(:,3)=[1; % Delete 3rd column (x=0)
nodesmic (:,1l)=nodesmic(:,1)+0.5* (ylim-ylow) *inch; % Transform y-miccoordinates to
global y-axis
nodesmic (:,1)=nodesmic(:,1)-5*inch/16; % Move plate to exact location in
experimental setup
nodesmic (:,2)=nodesmic(:,2)*-1+0.5* (zlim-zlow) *inch; % Transform z-miccoordinates to
global z-axis
nodesmic (:,2)=nodesmic(:,2)-3*inch/16; % Move plate to exact location in
experimental setup
nnodesmic=size (nodesmic,1); % Number of micnodes
for nnr=1:nnodesmic
j=1;
for i=l:nnodes % Calculates the distance from a micnode to each node on the

plane x=xlim and
% stores it in local array dist (nnodes)
if abs(nodes(i,1)-(xlim-xlow) *inch)<tol

dist(j,:)=[1 norm([nodes(i,2)-nodesmic (nnr,1l) nodes(i,3)-
nodesmic (nnr,2)1)1;
3=3+1;
end
end
displnodes (nnr)=dist (find (ismember (dist(:,2),min(dist(:,2))) '==1),1); % Finds

closest node

40

nodes (displnodes (nnr),2)=nodesmic (nnr, 1) ; % Relocates closest node to microphone
y-position

nodes (displnodes (nnr), 3) =nodesmic (nnr, 2) ; % Relocates closest node to microphone
z-position
end
if max(size (unique (displnodes)))~=nnr % Checks for multiple displacements of the

same node
disp ('"ERROR: One or more nodes displaced multiple times');
return
end
fid=fopen ('postproc micnodenrs.dat','w'); % Write micnodenrs for postprocessing
purposes
for i=l:nnodesmic
fprintf (fid, '$i\n',displnodes (i));
end
fclose (fid) ;
% Plot of the microphone-plate grid (x=xlim)
figure ('Position', [1 scrsz(4)/2 scrsz(3)/2 0.8*scrsz(3)/2])
set (gca, 'XTickLabel', [1])
set (gca, 'YTickLabel', [1])
hold on
for i=l:nelems
if abs(nodes(elems (i, 1),1)-(xlim-xlow) *inch)<tol

elemsplot=[elems (i, :) elems(i,1)];
plot (nodes (elemsplot, 2),nodes (elemsplot,3), 'k');
end
end
plot (nodesmic(:,1),nodesmic(:,2),'0o");
end
G-————- Plot of the complete grid ---------------""-—--—-——-—-—"—"—-"—"—"——"——————————

figure ('Position', [1 scrsz(4)/2 scrsz(3)/2 0.8*scrsz(3)/2])
view (3)

set (gca, 'XTickLabel', [])

set (gca, 'YTickLabel', [1])

set (gca, 'ZTickLabel', [1)

grid on
hold on
for i=l:nelems
elemsplot=[elems (i, :) elems(i,1)];
plot3 (nodes (elemsplot,l),nodes (elemsplot, 2),nodes (elemsplot,3),'k");
end

end
Al.4 sim_postprocessor.m

T i el L et s B B
% SIM POSTPROCESSOR

% Author: T.J. van der Meer
% Modified: 14-5-2012

% Description: Reads in the pressure solution of the BEM-model and creates

% as output the inputfile for Tecplot and a datafile with all

% nodal results.

% Inputs: - parameters.m

% - output node*.dat (solution from BEM-model)

% - posproc_conn_*.dat (element connectivity from gridgenerator)

% - posproc_micnodenrs.dat$% (microphone element numbers from gridgenerator)
% Outputs: - sim tecplot speaker*.dat

% - sim solution speaker*.dat

B A e s B B i o
f—————= Initialization -—--—-—---"-"-"—""—""—""—"-""—"—"—"—~—~—~—~—~—

clear
clc

41

)

s—————— Load problem parameters --—---—---—---—-—-—-————————————————————————————
run ('parameters');

c—————— Test cases (single source) —--—-——-——————————————--———————————————————
if simulation==5||simulation==

[

% Read in the pressure solution

fid=fopen (outputfilename, 'r'"); % Open pressure solution
fgetl (fid); % Discard row with variable names
p=fscanf (fid, '%g"', [4,1inf])"'; % Store solution [nnr re(p) im(p) ampl]
if cylinder== % Reads in field point solution if cylinder = 2
fgetl (fid); % Discard title row
fgetl (fid); % Discard row with variable names
pfield=fscanf (fid, "%g', [6,1inf]) '; % Store field point pressure [x y z re(p) im(p)
ampl]
end
fclose (fid) ; % Close pressure solution
np=size(p,1); % Number of nodal solutions

)

% Read in nodal coordinates

fid=fopen (inputfilename, 'r"); % Open nodal coordinates

title=fgetl (fid); % Read simulation title

fgetl (fid); % Discard 5 rows (general information)

fgetl (fid);

fgetl (fid);

fgetl (fid);

fgetl (fid);

nnodes=fscanf (fid, '$1i',[1 11); % Read number of nodes

if nnodes~=np % Checks for simulation problems
disp('Error: Number of nodes in input and output do not match');
return

end

nodes=fscanf (fid, '%g, %9, %9, $g', [4,nnodes]) '; % Store nodes [nnr x y z]

fgetl (fid); % Discard blank row
fgetl (fid); % Discard title row

nelems=fscanf (fid, '$1i',[1 11); % Read number of elements

elems=fscanf (fid, '%g, %9, %9, %9, %g"', [5,nelems]) '; % Store elements [enr nodel node2 node3
noded]

fclose (fid) ; % Close nodal coordinates

o

% Combine nodal coordinates and pressure solution

phase=atan2 (p(:,3),p(:,2)); % Compute phase from -pi to pi
if cylinder== % Add fielpoint values to the phase array if cylinder = 2

fieldphase=atan2 (pfield(:,5),pfield(:,4));
xcoords=[nodes (:,2);pfield(:,1)];
ycoords=[nodes (:,3);pfield(:,2)];
zcoords=[nodes (:,4) ;pfield(:,3)1;
phase=[phase; fieldphase];
ampl=[p(:,4);pfield(:,6)1;

else
xcoords=nodes (:,2);
ycoords=nodes (:,3);
zcoords=nodes (:,4) ;
ampl=p(:,4);

end
nodalp=[xcoords ycoords zcoords phase ampl]; % Nodal solutions [x y z phase amplitude]
nnodes=size (nodalp,1); % Number of nodal solutions

o

% Fix phase values
for i=l:nnodes % Fix phase to range from -2*pi to 0O
if phase(i)>0
phase (1) =phase (1) -2*pi;
end
end
nodalp (:,4)=phase;

% Write general info
if cylinder==
model="'Included';
else
model="Excluded';
end
input tecplot=sprintf('sim tecplot %s.dat',6title);
ftec=fopen (input tecplot, 'w'); % Open inputfile
solution_ file=sprintf('sim solution %s.dat', title);

42

fsol=fopen(solution file,'w'"); % Open solutionfile
fprintf (ftec, 'TITLE="%.0fHz, Model %s, $%$s"\nVARIABLES="X" "Yy" "z" "PHASE"
"AMPLI"\n', freql,model, title);
% Write zone X low
fid=fopen ('postproc conn xlow.dat','r'); % Open connectivity file (with GLOBAL node
numbering!)
conn=fscanf (fid, '%
fclose (fid) ; % Clo
fprintf (ftec, 'ZONE T
j=1;
for nnr=1:nnodes
if nodalp(nnr,1l)<tol % Store every node on the plane in the inputfile
fprintf (ftec, 'Sf Sf £ Sf
%f\n',nodalp (nnr,1),nodalp (nnr,?2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5)) ;
fprintf (fsol, '%f %f %f %f
%f\n',nodalp (nnr,1),nodalp(nnr,2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5));
for i=1:N*N % Adjust connectivity info to local values (i.e. starts from 1 in

, [4,inf]) "; % Store connectivity
se connectivity file
=%s N=%1i E=%i F=FEPOINT ET:QUADRILATERAL\H','X_low',(N+l)*(N+l),N*N);

g'
1

every zone)
for k=1:4
if conn (i, k)==nnr
conn (i, k)=7;
end
end
end
j=j+1;
end
end
for i=1:N*N % Store local connectivity info in the inputfile
fprintf (ftec, '%1 %i %i %i\n',conn(i,1l),conn(i,2),conn(i,3),conn(i,4));
end

% Write zone X lim
fid=fopen('postproc conn xlim.dat', 'r');
conn=fscanf (fid, 'sg', [4,1inf]) ';

fclose (fid) ;
fprintf (ftec, 'ZONE T=%s N=%i E=%i F=FEPOINT ET=QUADRILATERAL\H','Xilim',(N+1)*(N+1),N*N);
j=1;
for nnr=1:nnodes
if abs(nodalp (nnr,1)-(xlim-xlow)*inch)<tol

fprintf (ftec, '%f %f %f %f
%f\n',nodalp (nnr,1),nodalp(nnr,2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5));
fprintf (fsol, 'Sf Sf Sf %f
%f\n',nodalp (nnr,1),nodalp (nnr,2),nodalp (nnr, 3),nodalp (nnr,4) ,nodalp (nnr,5)) ;
for i=1:N*N
for k=1:4
if conn (i, k)==nnr
conn (i, k)=7;
end
end
end
j=j+1;
end
end
for i=1:N*N
fprintf (ftec, '%$1 %i %i %i\n',conn(i,1l),conn(i,2),conn(i,3),conn(i,4));
end
% Write zone Y low
fid=fopen ('postproc conn ylow.dat','r');
conn=fscanf (fid, 'sg', [4,1inf]) ';
fclose (fid) ;
fprintf (ftec, 'ZONE T=%s N=%i E=%i F=FEPOINT ET:QUADRILATERAL\H','Yilow',(N+1)*(N+1),N*N);
j=1;
for nnr=1:nnodes
if nodalp(nnr,2)<tol
fprintf (ftec, '5S£ S£ £ Sf
%f\n',nodalp (nnr,1),nodalp (nnr,2),nodalp (nnr, 3),nodalp (nnr, 4) ,nodalp (nnr,5)) ;
fprintf (fsol, '%f Sf %f Sf
%f\n',nodalp(nnr,1),nodalp(nnr,2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5));
for i=1:N*N
for k=1:4
if conn (i, k)==nnr
conn (i, k)=3;
end
end
end

43

j=j+1;
end
end
for i=1:N*N
fprintf (ftec, '%1 %i %i %i\n',conn(i,1l),conn(i,2),conn(i,3),conn(i,4));
end
% Write zone Y lim
fid=fopen('postproc conn ylim.dat', 'r');
conn=fscanf (fid, 'sg', [4,1inf]) ';
fclose (fid) ;
fprintf (ftec, 'ZONE T=%s N=%i E=%1 F=FEPOINT ET=QUADRILATERAL\H','Yilim',(N+1)*(N+1),N*N);
j=1;
for nnr=1:nnodes
if abs(nodalp (nnr,2)-(ylim-ylow) *inch)<tol
fprintf (ftec, '%f %f %f %f

%f\n',nodalp (nnr,1),nodalp(nnr,2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5));

fprintf (fsol, 'Sf Sf Sf Sf

%f\n',nodalp (nnr,1),nodalp (nnr,?2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5)) ;

for i=1:N*N
for k=1:4
if conn (i, k)==nnr
conn (i, k)=7;
end
end
end
j=j+1;
end
end
for i=1:N*N
fprintf (ftec, '%$1 %i %i %i\n',conn(i,1l),conn(i,2),conn(i,3),conn(i,4));
end
% Write zone Z low
fid=fopen ('postproc conn zlow.dat','r');
conn=fscanf (fid, 'sg', [4,1inf]) ';
fclose (fid) ;
fprintf (ftec, 'ZONE T=%s N=%i E=%i F=FEPOINT ET=QUADRILATERAL\H','Zilow',(N+1)*(N+1),N*N);
j=1;
for nnr=1:nnodes
if nodalp (nnr, 3)<tol
fprintf (ftec, '%f %f %f %f

%f\n',nodalp (nnr,1),nodalp (nnr,2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5));

fprintf (fsol, 'Sf Sf Sf %f

%f\n',nodalp(nnr,1),nodalp(nnr,2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5));

for i=1:N*N
for k=1:4
if conn (i, k)==nnr
conn (i, k)=3;
end
end
end
j=j+1;
end
end
for i=1:N*N
fprintf (ftec, '%$1 %i %i %i\n',conn(i,1l),conn(i,2),conn(i,3),conn(i,4));
end
% Write zone Z lim
fid=fopen ('postproc conn zlim.dat','r');
conn=fscanf (fid, '%g', [4,inf]) ';
fclose (fid) ;
fprintf (ftec, 'ZONE T=%s N=%i E=%i1 F=FEPOINT ET:QUADRILATERAL\H','Zilim',(N+l)*(N+l),N*N);
j=1;
for nnr=1:nnodes
if abs(nodalp (nnr,3)-(zlim-zlow) *inch)<tol
fprintf (ftec, '%f Sf %f Sf

%f\n',nodalp (nnr,1),nodalp (nnr,2),nodalp (nnr, 3),nodalp (nnr,4) ,nodalp (nnr,5)) ;

fprintf (fsol, 'Sf Sf £ %f

%f\n',nodalp(nnr,1),nodalp(nnr,2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5));

44

for i=1:N*N
for k=1:4
if conn (i, k)==nnr
conn (i, k)=3;
end
end

end
j=j+1;
end
end
for i=1:N*N
fprintf (ftec, '%1 %i %i %i\n',conn(i,1l),conn(i,2),conn(i,3),conn(i,4));
end

% Write zone cylinder
if cylinder==1||cylinder== % Skips if cylinder = 0
fid=fopen ('postproc conn cyl.dat','r');
conn=fscanf (fid, 'sg', [4,inf]) ';
fclose (fid) ;
fprintf (ftec, 'ZONE T=%s N=%i E=%i1 F=FEPOINT
ET=QUADRILATERAL\n', 'Cylinder',2*Nrad*Ncir+ (Naxi-1)*Ncir+2,2*Nrad*Ncir+Naxi*Ncir) ;
j=1;
for nnr=1:nnodes
if nodalp(nnr,1l)>tol && abs(nodalp (nnr,1l)-(xlim-xlow)*inch)>tol &&
nodalp (nnr,2)>tol && abs(nodalp(nnr,2)-(ylim-ylow) *inch)>tol && nodalp (nnr,3)>tol &&
abs (nodalp (nnr, 3) - (zlim-zlow) *inch) >tol
fprintf (ftec, '%f %f£ %f %f
%f\n',nodalp (nnr,1),nodalp (nnr,?2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5)) ;
fprintf (fsol, 'Sf Sf %f %f
%f\n',nodalp (nnr,1),nodalp(nnr,2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5));
for i=1:2*Nrad*Ncir+Naxi*Ncir
for k=1:4
if conn (i, k)==nnr
conn (i, k)=3;
end
end
end
j=j+1;
end
end
for i=1:2*Nrad*Ncir+Naxi*Ncir
fprintf (ftec, '%$1 %i %i %i\n',conn(i,1l),conn(i,2),conn(i,3),conn(i,4));
end
end
fclose (ftec); % Close inputfile
fclose (fsol); % Close solutionfile

F—————— All other simulations (32 source array) —-————--—————-——————————————

o

% Read in microphone nodenumbers

fid=fopen ('postproc micnodenrs.dat','r'); % Open micnodenrs
micnodenrs=fscanf (fid, '%i', [1,inf])"';

fclose (fid) ; % Close micnodenrs

for mic=1:32

)

% Read in the pressure solution
pfile=sprintf ('output node%2.2d.dat',mic);

fid=fopen (pfile, 'r"); % Open pressure solution
fgetl (£fid); % Discard row with variable names
p=fscanf (fid, '%g', [4,inf])"'; % Store solution [nnr re(p) im(p) ampl]
if cylinder== % Reads in field point solution if cylinder = 2
fgetl (£id); % Discard title row
fgetl (£fid); % Discard row with variable names
pfield=fscanf (fid, "$g', [6,1inf]) '; % Store field point pressure [x y z re(p)
im(p) ampl]
end
fclose (fid) ; % Close pressure solution
np=size(p,1); % Number of nodal solutions

)

% Read in nodal coordinates
nfile=sprintf ('input node%2.2d.dat',mic);

fid=fopen(nfile, 'r'); % Open nodal coordinates
title=fgetl (fid); % Read simulation title

fgetl (fid); % Discard 5 rows (general information)
fgetl (£fid);

fgetl (fid);

fgetl (fid);

fgetl (fid);

nnodes=fscanf (fid, '$1',[1 11); % Number of nodes
if nnodes~=np % Checks for simulation problems

disp('Error: Number of nodes in input and output do not match');

return
end

o

nodes=fscanf (fid, '%g, %g, %g, 5g', [4,nnodes]) '; % Store nodes [nnr x y z]

fgetl (fid); % Discard blank row
fgetl (fid); % Discard title row

nelems=fscanf (fid, "%i', [1 11); % Number of elements
elems=fscanf (fid, '%g, %9, %9, %9, 59", [5,nelems]) '; % Store elements [enr nodel node2

node3 noded]

fclose (fid) ; % Close nodal coordinates

% Combine nodal coordinates and pressure solution
phase=atan2 (p(:,3),p(:,2)); % Compute phase from -pi to pi

[

if cylinder== 3 Add fielpoint values to the phase array if cylinder = 2

fieldphase=atan2 (pfield(:,5),pfield(:,4));
xcoords=[nodes (:,2);pfield(:,1)];
ycoords=[nodes (:,3) ;pfield(:,2)];
zcoords=[nodes (:,4) ;pfield(:,3)1;
phase=[phase; fieldphase];
ampl=[p(:,4);pfield(:,6)];

else
xcoords=nodes (:,2);
ycoords=nodes (:,3);
zcoords=nodes (:,4);
ampl=p (:,4) ;

end

nodalp=[xcoords ycoords zcoords phase ampl]; % Nodal solutions
amplitude]

nnodes=size (nodalp,1); % Number of nodal solutions

o

% Fix phase values
for i=1:nnodes % Fix phase to range from -2*pi to 0
if phase(i)>0
phase (i) =phase (i) -2*pi;
end
end
nodalp (:,4)=phase;

% Write general info

input tecplot=sprintf('sim tecplot speaker%2.2d.dat',mic);
ftec=fopen (input tecplot, 'w'); % Open inputfile

solution file=sprintf('sim solution speaker%2.2d.dat',mic);
fsol=fopen (solution file,'w"); % Open solutionfile
fprintf (ftec, '"TITLE="Case %i, Simulated"\nVARIABLES="X" "y" "z"

"AMPLI"\n',simulation) ;

o

% Write zone X low

fid=fopen ('postproc conn xlow.dat','r');
conn=fscanf (fid, 'sg', [4,1inf]) ';

fclose (fid) ;

fprintf (ftec, 'ZONE T=%s N=%i E=%i F=FEPOINT

ET=QUADRILATERAL\n', 'X low', (N+1)* (N+1),N*N);

j=1;
for nnr=1:nnodes
if nodalp(nnr,1l)<tol
fprintf (ftec, '%f %f £ %f

[x y z phase

"PHASE"

%f\n',nodalp (nnr,1),nodalp (nnr,?2),nodalp (nnr, 3),nodalp (nnr,4) ,nodalp (nnr,5)) ;

fprintf (fsol, '$f %f %f %f

%f\n',nodalp (nnr,1),nodalp(nnr,2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5));

46

for i=1:N*N
for k=1:4
if conn (i, k)==nnr
conn (i, k)=7;
end
end
end
j=j+1;
end
end
for i=1:N*N

fprintf (ftec, '%1i %i %i %i\n',conn(i,1l),conn(i,2),conn(i,3),conn(i,4));

end

% Write zone X lim

fid=fopen ('postproc _conn xlim.dat','r');
conn=fscanf (fid, '%g"', [4,inf])"';

fclose (fid) ;

fprintf (ftec, 'ZONE T=%s N=%i E=%i F=FEPOINT
ET=QUADRILATERAL\n', 'X lim', (N+1)* (N+1),N*N);
j=1;
for nnr=1:nnodes
if abs(nodalp (nnr,1)-(xlim-xlow) *inch)<tol
fprintf (ftec, '%f %f £ %f
%f\n',nodalp (nnr,1),nodalp (nnr,2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5));
fprintf (fsol, '%f %f %f %f
%f\n',nodalp (nnr,1),nodalp(nnr,2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5));
for i=1:N*N
for k=1:4
if conn (i, k)==nnr
conn (i, k)=3;
end
end
end
j=3+1;
end
end
for i=1:N*N
fprintf (ftec, '%1 %i %i %i\n',conn(i,1l),conn(i,2),conn(i,3),conn(i,4));
end
% Write zone Y low
fid=fopen('postproc conn ylow.dat',6 'r');
conn=fscanf (fid, 'sg', [4,1inf]) ';
fclose (fid) ;
fprintf (ftec, 'ZONE T=%s N=%i E=%1 F=FEPOINT
ET=QUADRILATERAL\n', 'Y low', (N+1) * (N+1) ,N*N) ;
j=1;
for nnr=1:nnodes
if nodalp(nnr,2)<tol
fprintf (ftec, '%f %f %f %f
%f\n',nodalp (nnr,1),nodalp(nnr,2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5));
fprintf (fsol, 'Sf %f %f %f
%f\n',nodalp (nnr,1),nodalp (nnr,2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5));
for i=1:N*N
for k=1:4
if conn (i, k)==nnr
conn (i, k)=3;
end
end
end
j=j+1;
end
end
for i=1:N*N
fprintf (ftec, '%1 %i %i %i\n',conn(i,1l),conn(i,2),conn(i,3),conn(i,4));
end
% Write zone Y lim
fid=fopen ('postproc conn ylim.dat','r');
conn=fscanf (fid, 'sg', [4,1inf]) ';
fclose (fid) ;
fprintf (ftec, 'ZONE T=%s N=%i E=%i F=FEPOINT
ET=QUADRILATERAL\n', 'Y lim', (N+1)* (N+1),N*N);
j=1;
for nnr=1:nnodes
if abs(nodalp (nnr,2)-(ylim-ylow) *inch)<tol
fprintf (ftec, '%f %f Sf %f
%f\n',nodalp (nnr,1),nodalp (nnr,?2),nodalp (nnr, 3),nodalp (nnr, 4) ,nodalp (nnr,5)) ;
fprintf (fsol, '%f %f %f %
%f\n',nodalp(nnr,1),nodalp(nnr,2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5));
for i=1:N*N
for k=1:4
if conn (i, k)==nnr
conn (i, k)=7;
end
end
end
j=j+1;
end
end
for i=1:N*N
fprintf (ftec, '%1i %i %i %i\n',conn(i,1l),conn(i,2),conn(i,3),conn(i,4));
end

47

% Write zone Z_ low
fid=fopen ('postproc _conn zlow.dat','r');
conn=fscanf (fid, 'sg', [4,inf]) ';
fclose (fid) ;
fprintf (ftec, 'ZONE T=%s N=%i E=%1 F=FEPOINT
ET:QUADRILATERAL\H','Z_low',(N+l)*(N+l),N*N);
j=1;
for nnr=1:nnodes
if nodalp (nnr, 3)<tol
fprintf (ftec, '5f %f Sf %f
%f\n',nodalp (nnr,1),nodalp (nnr,?2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5));
fprintf (fsol, '%f %f %f %f
%f\n',nodalp (nnr,1),nodalp(nnr,2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5));
for i=1:N*N
for k=1:4
if conn (i, k)==nnr
conn (i, k)=3;
end
end
end
j=3+1;
end
end
for i=1:N*N
fprintf (ftec, '%$1 %i %i %i\n',conn(i,1l),conn(i,2),conn(i,3),conn(i,4));
end

% Write zone Z lim
fid=fopen('postproc conn zlim.dat',6 'r');
conn=fscanf (fid, 'sg', [4,inf]) "';
fclose (fid) ;
fprintf (ftec, 'ZONE T=%s N=%i E=%i1 F=FEPOINT
ET=QUADRILATERAL\H','Zilim',(N+1)*(N+l),N*N);
j=1;
for nnr=1:nnodes
if abs(nodalp (nnr,3)-(zlim-zlow) *inch)<tol
fprintf (ftec, '%f %f %f %f
%f\n',nodalp (nnr,1),nodalp(nnr,2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5));
fprintf (fsol, 'Sf %f %f %f
%f\n',nodalp (nnr,1),nodalp (nnr,2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5));
for i=1:N*N
for k=1:4
if conn (i, k)==nnr
conn (i, k)=7;
end
end
end
j=j+1;
end
end
for i=1:N*N
fprintf (ftec, '%1 %i %i %i\n',conn(i,1l),conn(i,2),conn(i,3),conn(i,4));
end

% Write zone cylinder

if cylinder==1||cylinder== % Skips if cylinder = 0
fid=fopen ('postproc conn cyl.dat','r');
conn=fscanf (fid, 'sg"', [4,1inf]) ';

fclose (fid) ;
fprintf (ftec, 'ZONE T=%s N=%i E=%i1 F=FEPOINT
ET=QUADRILATERAL\n', 'Cylinder',2*Nrad*Ncir+ (Naxi-1)*Ncir+2,2*Nrad*Ncir+Naxi*Ncir) ;
j=1;
for nnr=1:nnodes
if nodalp(nnr,l)>tol && abs(nodalp (nnr,l)-(xlim-xlow)*inch)>tol &&
nodalp (nnr,2)>tol && abs(nodalp(nnr,2)-(ylim-ylow) *inch)>tol && nodalp (nnr,3)>tol &&
abs (nodalp (nnr, 3) - (zlim-zlow) *inch) >tol
fprintf (ftec, '%f %f £ %f
%f\n',nodalp (nnr,1),nodalp (nnr,2),nodalp (nnr, 3),nodalp (nnr, 4) ,nodalp (nnr,5)) ;
fprintf (fsol, '$f %f %f %f
%f\n',nodalp(nnr,1),nodalp(nnr,2),nodalp (nnr, 3),nodalp (nnr,4),nodalp (nnr,5));
for i=1:2*Nrad*Ncir+Naxi*Ncir
for k=1:4
if conn (i, k)==nnr
conn (i, k)=3;
end
end
end

48

j=j+1;
end
end
for i=1:2*Nrad*Ncir+Naxi*Ncir
fprintf (ftec, '%1 %i %i %i\n',conn(i,1l),conn(i,2),conn(i,3),conn(i,4));

end
end
fclose (ftec); % Close inputfile
fclose (fsol); % Close solutionfile

end
end

Al.5 exp_preprocessor.m

o

A A e L L L i i e o e o o o e
% GEN_POSTPROCESSOR

% Author: T.J. van der Meer
% Modified: 23-5-2012

% Description: Creates textfile with coordinates of the microphones on the

% cylinder, waveform-signal (0,0,0), microphones on the walls

% and speakers in the door (up to 63 signals). Also creates

% the Tecplot grid for the experimental output.

% Inputs: - parameters.m

% Outputs: - exp mic locations *.txt (transducer locations for testing purposes)
% - exp_cylinder mic nodes.dat (microphone nodes for postprocessor)

% - exp_sides mic nodes.dat (microphone nodes for postprocessor)

o°

T o o o

F-—————- Load problem parameters --—---—---—-—-—-———-————————————————————————————
clear

clc

run ('parameters');

side=(xlim-xlow) *inch; % Convert relevant dimensions to meters

ccx=(ccx=-20.7) *inch;
ccy=ccy*inch;
ccz=ccz*inch;
ccl=ccl*inch;
ccr=ccr*inch;
alpha=2*pi/12;

S—————- Initialization -—--—=-—-—---"--"—"—"——"——"——"——"—~—— - ——

coords=zeros (64,3); % Based on 64 channels in Cartesian coordinates

nodes=zeros (31*8,3); % Based on 31 cylinder microphones times 8 rotations, all in Cartesian
coordinates

nodes, 1) ;

24*8+4*8,4) ; % See report for calculation of number of elements
elems,1);

'exp cylinder mic nodes.dat','w');

nnodes=size
elems=zeros
nelems=size
fconn=fopen

F—————— Write the coordinates ------------———-—————————————————————————————
k=1;
for angle=0:pi/8:7*pi/8

j=1;

o

% Write first spiral

for i=0:12

xloc=ccx+tccr*cos (angle+i*alpha) ;
yloc=ccy-0.5*ccl+4.5*%inch+i*inch;
zloc=ccz+ccr*sin (angle+i*alpha) ;

coords (j, :)=[xloc yloc zloc];

fprintf (fconn, '$f $f %f\n',coords (j,1),coords(j,2),coords(j,3));
nodes (k, :)=coords (j, :);

j=j+1;

k=k+1;

end

49

50

o

% Write second spiral
for i=0:12
xloc=ccx+ccr*cos (pitangle+i*alpha) ;
yloc=ccy-0.5*ccl+4.5*inch+i*inch;
zloc=ccz+ccr*sin (pit+tangle+i*alpha);
coords (j, :)=[xloc yloc zloc];
fprintf (fconn, '$f %f %f\n',coords(j,1),coords(j,2),coords (j,3));
nodes (k, :)=coords (j, :);
j=j+1;
k=k+1;
end
% Write bottom plate
coords (j, :)=[ccx+2*ccr/3*cos (0.5*pit+angle) ccy+0.5*ccl ccz+2*ccr/3*sin(0.5*pi+angle)];
fprintf (fconn, '$f %f %f\n',coords(j,1l),coords(j,2),coords (j,3));
nodes (k, :)=coords (j, :);
j=j+1;
k=k+1;
coords (j, :)=[ccx+ccr/3*cos (0.5*pi+tangle) ccy+0.5%*ccl cczt+ccr/3*sin(0.5*pi+angle)];
fprintf (fconn, '$f %f %f\n',coords(j,1l),coords(j,2),coords (j,3));
nodes (k, :)=coords (j, :);
j=j+1;
k=k+1;
coords (j, :)=[ccx ccy+0.5*%ccl ccz];
fprintf (fconn, '$f $f %f\n',coords (j,1),coords(j,2),coords(j,3));
nodes (k, :)=coords (j, :);
j=3+1;
k=k+1;
coords (j, :)=[ccx+tccr/3*cos (-0.5*pi+angle) ccy+0.5%*ccl ccz+ccr/3*sin(-0.5*pi+tangle)];
fprintf (fconn, '$f $f %f\n',coords (j,1),coords(j,2),coords(j,3));
nodes (k, :)=coords (j, :);
j=3+1;
k=k+1;
coords (j, :)=[ccx+2*ccr/3*cos (-0.5*pi+angle) ccy+0.5*ccl ccz+2*ccr/3*sin(-0.5*pi+angle)];
fprintf (fconn, '$f $f %f\n',coords (j,1),coords(j,2),coords(j,3));
nodes (k, :)=coords (j, :);
J=3+1;
k=k+1;
% Leave 32nd node zero (it's the waveform signal)
3=3+1;

Only relevant when wall is not covered with foam
coords (j,:)=[0.5*side 0.75*side 0];
coords (j+1, :)=[0.25*side 0.5*side 0];

1)

1)

1)

coords (j+2, 0.5*side 0.5*side 0];
coords (j+3, 0.75*side 0.5*side 0];
coords (j+4, 0.5*side 0.25*side 0];

[
[
[
[

end

Jj=j+5;

% Write y=0

if walls==1 % Only relevant when wall is not covered with foam

coords (j,)

0]
=[0.5*side 0 0.25*side];
coords (j+1, :)
)
)
)

12*0.0254 0 0.5*side];
0.5*side 0 0.5*side];
0.75*side 0 0.5*side];
0.5*side 0 0.75*side];

coords (j+2,
coords (j+3,
coords (j+4,

end

j=j+5;

% Write x=0

if walls==1 || walls==3 % Only relevant when wall is not covered with foam

coords (j,:)=[0 0.75*side 0.375*sidel];
coords (j+1,:)=[0 0.75*side 0.5*sidel];
coords (§j+2, :)=[.75*side 0.625*side];
coords (3J+3, :)=[.625*side 0.25*side];
coords (j+4, :)=[.625*side 0.375*side];
coords (j+5, :)=[.625*side 0.5*side];
coords (j+6, :)=[.625*side 0.625*side];
coords (3J+7, :)=[.625*side 0.75*side];
coords (j+8, :)=[.5*side 0.25%*side];
coords (j+9, :)=[.5*side 0.375*side];
coords (§+10,:)=[0 0.5*side 0.5*side];
coords (j+11, :)

O OO OO O oo

coords (j+12,:)=[0 0.5*side 0.75*side];
coords (j+13,:)=[0 0.375*side 0.25*side];
coords (j+14,:)=[0 0.375*side 0.375*side];
coords (j+15,:)=[0 0.375*side 0.5*side];
coords (j+16,:)=[0 0.375*side 0.625*side];
coords (j+17,:)=[0 0.375*side 0.75*sidel];
coords (j+18,:)=[0 0.25*side 0.375*sidel];
coords (j+19,:)=[0 0.25*side 0.5*side];
coords (j+20,:)=[0 0.25*side 0.625*sidel;

end

J=j+21;

[

5 Plot microphone coordinates per rotation and write them into outputfile
filename=sprintf ('exp mic locations %05.1fdegrees.txt',angle*180/pi);
fid=fopen (filename, 'w');
figure
view(3);
grid on
hold on
axis ([0 side 0 side 0 side]);
for i=1:64
plot3(coords (i, 1l),coords (i, 2),coords (i, 3),"'ko");
fprintf (fid, '%f,%f,%f\n',coords (i,1),coords (i,2),coords (i,3));
end
fclose (fid) ;

end

o
S

————— Write coordinates of the microphones on the side ---——-----------——-

fmics=fopen('exp sides mic nodes.dat',6 'w');
for i=33:63

fprintf (fmics, '$f %f %f\n',coords(i,1),coords(i,2),coords(i,3));

end
fclose (fmics) ;

o o

o°

————— Create element connectivity -----------—--------"-"-"—-"—-"-—"—"——"———~———\—————
NOTE: This is a very brute-force way of creating the connectivity, based
on the knowledge of the node numbering, hence this is only applicable in
this exact case.

k=1;
for i=0:7
for j=1:12
elems (k,1)=j+1*31;
elems (k,2)=7+1*31+31;
if elems (k,2)>nnodes
elems (k,2)=elems (k,2)-8*31+13;
end
elems (k,3)=7+1*31+32;
if elems (k, 3)>nnodes
elems (k,3)=elems (k,3)-8*31+13;
end
elems (k,4)=7+1*31+1;
k=k+1;
end
for j=14:25
elems (k,1)=j+1*31;
elems (k,2)=7+1*31+31;
if elems (k, 2)>nnodes
elems (k,2)=elems (k,2)-8*31-13;
end
elems (k,3)=7+1*31+32;
if elems (k, 3)>nnodes
elems (k,3)=elems (k,3)-8*31-13;
end
elems (k,4)=7+1*31+1;
k=k+1;
end
end
for i=0:7

elems (k,1)=27+1*31;
elems (k,2)=27+i*31+31;
if elems (k, 2)>nnodes
elenms (k,2)=elems (k,2)-8*31+4;
end
elems (k,3)=28+i*31+31;
if elems (k, 3) >nnodes
elems (k,3)=elems (k, 3)-8*31+2;
end

elems (k,4)=28+i*31;
k=k+1;
elems (k,1)=28+1*31;
elems (k,2)=28+1*31+31;
if elems (k,2)>nnodes
elems (k,2)=elems (k,2)-8*31+2;
end
elems (k,3)=29;
elems (k,4)=29;
k=k+1;
elems (k,1)=30+i*31;
elems (k,2)=30+1*31+31;
if elems (k,2)>nnodes
elems (k,2)=elems (k,2)-8*31-2;
end
elems (k,3)=29;
elems (k,4)=29;
k=k+1;
elems (k,1)=31+i*31;
elems (k,2)=31+1*31+31;
if elems (k,2)>nnodes
elems (k,2)=elems (k,2)-8*31-4;
end
elems (k,3)=30+i*31+31;
if elems (k, 3) >nnodes
elems (k,3)=elems (k,3)-8*31-2;
end
elems (k,4)=30+i*31;
k=k+1;
end

o

F—————= Plot of the cylinder grid and write element connectivity ----------

figure
view (3);
grid on
hold on
for i=l:nelems
elemsplot=[elems (i, :) elems(i,1)];
plot3 (nodes (elemsplot,l),nodes (elemsplot,?2),nodes (elemsplot,3),'k");
fprintf (fconn, '$i %i %i %$i\n',elems(i,1l),elems(i,2),elems(i,3),elems (i, 4));
end
for i=1:248
plot3(nodes(i,1),nodes(i,2),nodes (i,3), "'ko");
end
fclose('all');

Al.6 exp_postprocessor.m

A e e S S T
% EXP_POSTPROCESSOR

% Author: T.J. van der Meer
% Modified: 31-5-2012

% Description: Reads in the time-history of the signal at each microphone

% on the cylinder, carries out a Fast Fourier Transform (FFT)

% and creates as output the inputfile for Tecplot analysis.

% Inputs: - parameters.m

% - exp_cylinder mic nodes.dat (microphone nodes for postprocessor)
% - CASE*.dat (time-histories from experiment)

% Outputs: - exp_tecplot speaker*.dat

e e L

o

F—————— Load simulation parameters —-——--———————————————————————————————————
clear

clc
run ('parameters');

52

S—————= Initialization -——-—-—-—----—"-—""—"-"—"—"—"—"—"—"—~—~—~ "~~~

phase=zeros (31*%8,1);

ampl=zeros (31*%8,1);

freq spectrum=0:sample freq/fft steps:sample freg-sample freq/fft steps;
fourier samples=floor (sample freq/fft steps);

array entry=round(freql/ (sample freq/fft steps));

c—————— Store nodal coordinates and elements -------------—————————————————

fid=fopen('exp cylinder mic nodes.dat', 'r');

nodes=fscanf (fid, '%g', [3,31*8])"'; % Nodal coordinates from preprocessor
nnodes=size (nodes, 1) ;
elems=fscanf (fid, 'sg', [4,1inf]) '; % Element connectivity from preprocessor

nelems=size (elems, 1) ;
fclose (fid) ;

)

S—————= Manipulation of experimental data, write Tecplot file -——-------——-

for source=1:32
if exist(sprintf ('CASE%1 SP%2.2i 000.0 degrees.chans.dat',6simulation,source),'file')==
% Check for existence of experimental source data
j=1;
for angle=0:180/8:157.5 % Eight rotational datafiles

o

% Read in time history

datafile=sprintf ('CASE%i SP%2.21i %05.1f degrees.chans.dat', simulation,source,angle);

fid=fopen (datafile, 'r'");

timehist=fread(fid, [sample freq,inf], 'float');

fclose (fid) ;

% Extract source-phase from waveform signal as reference

fourier data=zeros (fft_steps,1);

for sample=l:fourier samples

fourier data=fourier data+fft (timehist ((fourier samples-

1) *fft_steps+l:fourier samples*fft steps,32),fft steps);

end

fourier data=fourier data./fourier samples;

ref phase=atan (imag (fourier data)./real (fourier data));

% Test
figure (1)
plot (freq spectrum,ref phase);
ref phase(array entry)
return

o° oo

oe

oe

)

% Extract phase and amplitude from cylinder-microphones
for mic=1:31
fourier data=zeros(fft_steps,1);
for sample=l:fourier samples
fourier data=fourier data+fft (timehist ((fourier samples-

1) *fft steps+l:fourier samples*fft steps,mic), fft steps);
end
fourier data=fourier data./fourier samples;

phase (j)=atan (imag (fourier data(array entry))/real (fourier data(array entry)));
ampl (j) =abs (fourier data(array entry));
Jj=j+1;
end
end

oe

% Fix phase values
for i=l:nnodes % Fix phase to range from -2*pi to 0
if phase (i) >0
phase (i)=phase (i) -2*pi;
elseif phase(i)<-2*pi
phase (i) =phase (i) +2*pi;
end
end

o o o° de oo o

oe

o

% Write Tecplot file
input tecplot=sprintf ('exp tecplot speaker%2.2d.dat',source);
ftec=fopen (input tecplot, 'w'); % Open inputfile
fprintf (ftec, 'TITLE="Case %i, Experimental”\nVARIABLES="X" "Y" "Z" "PHASE"
"AMPLI"\n',simulation) ;

fprintf (ftec, 'ZONE T=%s N=%i E=%i F=FEPOINT
ET=QUADRILATERAL\n', 'Cylinder',nnodes,nelems) ;
for i=l:nnodes
fprintf (ftec, '%f %f %f 3£
%f\n',nodes (i, 1),nodes(i,2),nodes (i,3),phase(i),ampl (i));
end
for i=l:nelems
fprintf (ftec, '%1 %i %1 %i\n',elems(i,1l),elems(i,2),elems(i,3),elems(i,4));
end
fclose('all');
end
end

54

