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Abstract

The biological process of stereopsis — the brain is able to perceive depth from the information
of two eyes — inspired researchers to bring this ability to computers and robotics. As this proofs
to be a complex task it let to the introduction of a whole new field: Computer Vision. Two or
more cameras at different positions take pictures of the same scene. A computer compares these
images to determine the shift of local features. The shift (disparity) of an object in the images
is used to calculate the distance.

Most algorithms use a similarity measure to compute the disparity of local features between
images. The quality of the similarity measure determines the potential of the algorithm. This
research concentrates on the earlier work of Damjanović, Van der Heijden, and Spreeuwers, who
took a different approach. They introduced a new likelihood function for window-based stereo
matching, based on a sound probabilistic model to cope with unknown textures, uncertain gain
factors, uncertain offsets, and correlated noise.

The derivation of the likelihood function is the first part. The likelihood function is obtained
by marginalization of the texture and the gains. In the paper this research is based on, a solution
is obtained by a few approximations. However, we show that one approximation is not allowed
due to an error in the solution for the first integration step. Through several attempts is tried to
bring a (partial) solution within reach. Also, it is shown that a generalization for n-view vision
does not complicate the final integration step further.

The main goal of the proposed likelihood function is to outperform the normalized cross
correlation (NCC) and the sum of squared differences (SSD). A simplification of the likelihood
function (in which the gains are left out) results in a metric with the Mahalanobis distance at
its basis compared to the Euclidean distance for the SSD. Information within the windows (e.g.
distortions, occlusions, and importance of pixels) is exploited to train the Mahalanobis distance
with an optimal covariance matrix. Experiments show that the simplified likelihood function
decreases the number of errors for difficult regions in the scene.

In recent research, the focus lies primarily on post-processing such as belief propagation.

However, one of the main findings of this research is that a good similarity measure such as

the Mahalanobis distance decreases the number of errors in stereo correspondence for difficult

regions. The correct matches near occlusions and discontinuities of the disparity map provide

important information that can be directly used within a probabilistic framework (HMM/BP).

Although an analytic solution for the complete likelihood function remains unsolved, progress

has been made. Alternative methods are suggested that could lead to a proper analytic solution

for the proposed probabilistic model.
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Samenvatting

Het biologische proces van stereopsis — de hersenen gebruiken informatie van beide ogen om
diepte te zien — heeft onderzoekers gëınspireerd om deze kunde naar computers en robotica te
brengen. Dit bleek een lastige uitdaging te zijn, waarmee een nieuwe onderzoeksrichting was
geboren: Computer Vision. Twee of meer verschillend gepositioneerde camera’s nemen foto’s
van een scène. Een computer vergelijkt deze foto’s om te bepalen wat de verschuiving van lokale
kenmerken is. Met de verschuiving van een voorwerp kan de afstand worden berekend.

De meeste algoritmen gebruiken een similarity measure om de verschuiving van kernmerken
in beide afbeeldingen te bepalen. De kwaliteit van de similarity measure bepaalt het poten-
tieel van het algoritme. Dit onderzoek bouwt voort op het werk van Damjanović, van der
Heijden en Spreeuwers over een nieuwe aanpak. Zij hebben een nieuwe aanemelijkheidsfunctie
gëıntroduceerd voor window-based stereo matching, gebaseerd op een degelijk statistisch model
dat rekening houdt met onbekende textuur, onbekende versterkingsfactoren, onbekende afwijkin-
gen en gecorreleerde ruis.

De afleiding van de aanemelijkheidsfunctie is het eerte onderdeel. De functie is verkregen door
marginalisatie van the textuur en de versterkingen. De oplossing is in het artikel verkregen door
enkele benaderingen toe te passen. Hier is echter in de afleiding gebleken dat één vereenvoudiging
niet kan worden toegepast door een fout in de eerste integratie. Verschillende pogingen zijn
gedaan om een (deel)oplossing binnen bereik te krijgen. Het is tevens aangetoond dat een
generalisatie voor meer dan twee camera’s de laatste integratie niet ingewikkelder maakt.

Het hoofddoel voor de voorgestelde aanemelijkheidsfunctie is het verbeteren van de prestaties
ten opzichte van de NCC en de SSD. Een vereenvoudiging van de aanemelijkheidsfunctie (zonder
versterkingsfactoren) geeft een metriek met de Mahalanobis-afstand in de basis; dit in vergelijking
met de Euclidische afstand voor de SSD. Informatie in de windows (zoals vervormingen, occlusies
en relevantie van de verschillende pixels) is gebruikt om de Mahalanobis-afstand te trainen voor
een optimale covariantie matrix. Uit experimenten blijkt dat het aantal fouten in moeilijke
gebieden afneemt met de vereenvoudigde aanemelijkheidsfunctie.

De focus ligt in recent onderzoek vooral op nabewerking, zoals belief propagation. De hoofd-

vindingen van dit onderzoek tonen aan dat een goede similarity measure zoals de Mahalanobis-

afstand het aantal fouten doet afnemen voor lastige gebieden. De nieuwe correcte verschuivingen

in the disparity map komen vooral voor bij occlusies en discontinüıteiten. Deze informatie

kan direct worden gebruikt in statistische raamwerken (HMM/BP). Helaas blijft de complete

oplossing voor de aanemelijkheidsfunctie nog onopgelost, maar er is voortgang geboekt. Alter-

natieve methoden zijn aangedragen die kunnen leiden tot een goede analytische oplossing voor

het voorgestelde statistische model.
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Introduction

It has been known for a long time that animals are able to perceive depth from a scene
when it is viewed with two eyes. Leonardo da Vinci realized that objects at different
distances from the eyes project images in the left and the right eye that differ in their
horizontal positions. The difference in horizontal position in both views is referred to
as binocular disparity. Leonardo da Vinci used his analysis of stereo vision to conclude
that it is impossible for a painter to portay a realistic description of depth on a two-
dimensional canvas. Stereopsis was first explained scientifically by Charles Wheatstone
with his significant paper in 1838: “. . . the mind perceives an object of three dimensions
by means of the two dissimilar pictures projected by it on the two retinæ”.

In the 1970’s, with the rise of computers and digital imaging devices, experts in
the field of Artificial Intelligence thought that making a computer see would be at the
level of difficulty of a summer stundent’s project [8]. However, forty years later an
entire field called Computer Vision has emerged as a discipline itself. It appeared that
visual perception is far more complex in animals and humans then was first thought.
Researchers have made significant progress in the field of stereo vision; however, there
is still much room for improvement.

1.1 Motivation

Computer stereo vision is an active field in which a lot of significant advances have
been made in recent years. However, computer alhorithms are still not on par with the
biological process of Stereopsis. The goal of this thesis is to focus on a small though
important part of stereo vision to improve the overall performance of depth perception
by computers. Computer stereo vision is the process of extracting depth information
from digital images.

An essential step in stereo vision is to define a similarity measure for local regions
between images. A likelihood function is defined and used to compute the probability of a
point in the reference image to a different position in the other image(s). The most likely
difference in position, or disparity, is inversely proportional to the distance to the object
in the scene. The main objective of this project is to improve the similarity measure

19



20 Introduction 1

for a stereo match through a better probabilistic model. A good similarity measure is
very important for the 3D reconstruction as it provides the fundamental information for
disparity optimization algorithms, and consequently the resulting disparity map.

This research project is based on the paper of Damjanović et al.: “A new Likelihood

Function for Stereo Matching - How to Achieve Invariance to Unknown Texture, Gains

and Offsets?”[4]. The new likelihood function is part of the PhD-research of Sanja
Damjanović. In this paper, it was shown that a likelihood function based on a sound
probabilistic model outperforms both the SSD and the NCC, and can be used within
a probabilistic framework. Recent mainstream research is focused on methods such as
Belief Propagation. We hope to provide a contribution to computer stereo vision by
providing a better similarity measure.

Hypothesis: The similarity measure benefits from a better probabilistic model based on
ground-truth training to improve block matching correctness, and consequently depth
perception.

1.2 What is stereo vision

Computer stereo vision is similar to human binocular vision. Two cameras are placed
at slightly different positions, and both cameras make digital images of the same scene.
Objects in the scene vary slightly in position in the projections of the left and the right
image. The distance of the object with respect to the cameras determines the shift in
position (disparity). Nearby objects have large disparities, and objects far away have a
very small disparities. The disparities can be used to reconstruct a depth map with 3D
information about the scene. This model is visualized in Figure 1.1.

Figure 1.1: Computer vision setup with two cameras1
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The algorithm to extract depth information from the digital images can be summa-
rized in four important steps. First, the digital images have to be repaired to remove
all distortions. For example, optical systems of cameras often introduce barrel distor-
tion. The images must be processed in such a way that the observed image is purely
projectional. Second, the problem has to be reduced to one dimension. Image rectifica-
tion is the transformation process of two images on a common plane. The images are
transformed into a standard coordinate system. The transformation procces in shown
in Figure 1.2. A very good explanation of image rectification is given in [8, pp 242].

(a) Before (b) After

Figure 1.2: Image rectification2

In the third step a disparity map is computed from the local information between
two images. This process is called the stereo correspondence problem. This research
focuses on this part of the stereo vision algorithm. In this project, similarity measures
are used to determine what the most likely disparity of local features is. In the final and
fourth step, the disparity map is converted to a depth map.

1.3 Problem definition

Stereo correspondence is a difficult problem that suffers from several effects that generally
lower performance of the similarity measure. Classical methods for block matching, such
as the Sum of Squared Differences (SSD), have difficulty to adept to varying camera
gains and offsets. Also, distortion of surfaces as observed from the different viewpoints
causes dilation and/or contraction of the local regions around the point of interest. This
distortion has different properties for the outer pixels of the windows as opposed to the
center of the window. A more severe effect occurs when (parts of) objects are visible in
only a subset of the projections. This effect is known as, dependent on the situation,
occlusion or overreach and indicates discontinuity in the disparity map.

We suspect an improvement in matching performance is possible if a proper likelihood
function is chosen that partially takes these effects into account. Based on the earlier
work of Damjanović, Van der Heijden, and Spreeuwers, we define a set of research

1Image by Rolf Henkel, University of Bremen
2Image by Allan Ortiz
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questions. The research questions are answered in this thesis and are meant to define a
path to contribute to the goal of a better matching performance.

Research questions:

Q1 How can the algorithm as introduced by Damjanović et al. be improved, taking
into account the complication of the analytical derivation?

The solution in the paper uses approximations to obtain an analytical solution for

the likelihood function. Also, the results in the paper are obtained by experiments

that use the Euclidean distance as metric. However, for the probabilistic model,

a properly trained covariance matrix is assumed. Use of the covariance matrix

generalizes the Euclidean distance to a Mahalanobis distance.

(Q1a) Are approximations sensible to obtain a solution for the likelihood function?

A complete analytical solution for the statistical model implies a very compli-

cated integral for the gains. Several terms are assumed to be constant during

the derivation of the likelihood function. The influence of these assumptions

is small for low-order terms; however, approximation of very high-order terms

can result in significant errors. Also, it is always possible to integrate a Lau-

rent expansion of a complicated function. Unfortunately, the result is always

limited by the order of the expansion.

(Q1b) How is the new likelihood function generalized for more than two camera
views?

Two digital images contain the minimum amount of information to recon-

struct the 3D information. Extra camera views supply additional information

that can be exploited to obtain a better estimate.

Q2 Does a simplified version of the likelihood function improve performance?
We are curious whether a proper covariance matrix improves the matching perfor-

mance. For the simplified likelihood function, the unknown gains are omitted to

inspect the effect the Mahalanobis distance

If the simplified likelihood function appears to be useful:

(Q2a) How significant is the reduction of errors in the stereo correspondence?

The Mahalanobis distance is not free in terms of computational power. Every

improvement in performance is good; however, the computational complexity

is often an important factor in design decisions.

(Q2b) Is it possible to improve the matching performance of the simplified likelihood
function?

The covariance matrix is generated during a training stage of the algorithm.

The chosen data determines the sensitivity of the covariance matrix for vari-

ous effects.
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1.4 Outline

The other chapters of this thesis are written to answer the research questions that were
formulated in the problem definition. The contents of the thesis are divided in two
important parts that each describe a phase in the research project.

Chapter two is written to describe the derivation of the likelihood function. The
introductory section describes the statistical model that is used to obtain a new likelihood
function. The derivation should be read as an extension to the paper that forms the
basis of this research. The encountered problems and errors are described, as well as
the complications for an analytical solution. An attempt has been made to approximate
certain parts of the equation in Section 2.3. The chapter concludes with a suggestion for
an alternative method and a short proof to show that a likelihood function for n-views
is not necessarily more difficult to solve.

The third chapter describes the second part of the research project. In order to
show that elements of the new likelihood function contribute to a better matching per-
formance, it describes a simplification of the likelihood function. In the theoretical
section, it appears that the simplification produces a monotonically decreasing function
of the Mahalanobis distance. The experiment is meant to answer the research question
concerning the performance of the Mahalanobis distance versus the Euclidean distance.
Different methods to generate the covariance matrix come to pass to research the effect
on the matching performance. The chapter concludes with results and conclusions.

The final and fourth chapter concludes the thesis with a discussion of the important
findings of the research project. One section is devoted to the research questions that
have been formulated in this section. Finally, a short summation of suggestions is given
for future research.





2

New likelihood function for stereo

correspondence

This chapter describes the derivation of a new likelihood function that was introduced in
the paper: “A new Likelihood Function for Stereo Matching - How to Achieve Invariance

to Unknown Texture, Gains and Offsets?”[4]. The new likelihood function is part of the
PhD-research of Sanja Damjanović. The structure for the Section that describes the
derivation of the likelihood function follows the paper, and takes different directions for
the complications that have arisen in the search for an analytical solution.

First, an introduction of, and the motivation for the new likelihood function is given
in Section 2.1. The derivation of the likelihood function that is based on the new
statistical model is given in Section 2.2. Several mathematical theorems have to be
proved to create the necessary tools for the derivation. The proofs for these theorems
are given in Appendix A. Section 2.3 presents an attempt to solve the problem with
power series approximations. In Section 2.4, a suggestion is given that could lead to an
alternative analytical solution for the problem. The implications of a generalization for
more than two camera views is given in Section 2.5. Finally, Section 2.6 conludes the
chapter with a discussion of the findings and the consequences for the newly proposed
likelihood function. Also, it discusses several suggestions for future research.

2.1 Introduction

Digital images are projections of a 3D world. Computer stereo vision uses several im-
ages obtained by cameras of known relative positions and orientations to extract 3D-
information of a scene. A difficult part in this process is to find a good solution for
the correspondence problem. Given a token in the left image, the problem is to find
the matching token in the right image[5]. The solution to this problem gives the dis-
placement (or disparity) between the tokens in both images. The disparity is inversely
proportional to depth; hence, the token’s depth is computed as function of the disparity.
The goal of this project is to investigate and improve similarity measures for pixel-based

25



26 New likelihood function 2

stereo.

We consider stereo matching for a known camera geometry that operates on two or
more camera views to produce a dense disparity map d(x, y). For dense stereo matching,
disparity for each pixel in the reference image is estimated [18]. It is assumed that all
images are taken on a linear path with the optical axis perpendicular to the camera
displacement. The optical axes of all cameras are parallel. The row-directions, i.e. the
x-axes of all image planes are also parallel, and the positions of all cameras are on a line
that is also parallel to the row-directions. Alternatively, a perfect camera alignment is
obtained with image rectification that transforms the images into a standard coordinate
system.

The correspondence between a pixel (x, y) in the reference image Im1 and a pixel
(x2, y2) in the matching image Im2 is given by

x2 = x + d(x, y), y2 = y, (2.1)

For window-based stereo matching, a similarity measure is used to the compare the con-
tents of the windows around the candidate points. In the classical approach, disparities
are estimated on an individual basis, point by point. This local method is known as
the Winner Takes All (WTA): at each pixel the disparity is chosen with the lowest
cost. However, modern algorithms often use semi-global or global optimization meth-
ods based on mutual information and approximation of a global smoothness contraint
[9]. For example, popular methods that perform one-dimensional optimizations are the
Viterbi algorithm and the forward-backward algorithm. Other dynamic programming al-
gorithms such as belief propagation (BP) and graph cuts (GC) perform two-dimensional
energy optimizations. All methods, be it local or (semi-)global, rely on a good similarity
measure. The goal of this chapter is to improve the matching performance of the sim-
ilarity measure by using a sound probabilistic model [4]. We expect that the mathing
performance can be improved even further if we incorporate more than two camera views
in the likelihood function. An n-view extension of the likelihood function has more infor-
mation available than a two-view likelihood function. However, the complexity increases
significantly, beceause more combinations of images have to be compared to each other.
This implies that every window combination has the be multiplied with the precision
matrix, which is a computational costly process.

The Normalized Cross Correlation (NCC) [7] is one of the first and still commonly
used window-based matching techniques. Gains and offsets in the images are neutralized;
however, NCC tends to blur depth discontunuities more than other similarity measures
because outliers lead to high errors within the NCC calculation[13, 10]. The NCC is
computed by:

pNCC(I1, I2 | i, j, x, w) =

C

w
∑

k=−w

w
∑

l=−w

(Im1(i+k, j+l) − µ1(i, j)) (Im2(i+x+k, j+l) − µ2(i+x, j))

σ1(i, j)σ2(i, j)
,

(2.2)
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with a constant C = 1
N−1 with N = (2w+1)2. The mean µn and variance σn to compute

the NCC are defined by:

µn(i, j) =
1

N

w
∑

k=−w

w
∑

l=−w

Imn(i+k, j+l) (2.3)

σn(i, j) =

√

√

√

√

1

N

w
∑

k=−w

w
∑

l=−w

(Imn(i+k, j+l) − µn(i, j))2. (2.4)

Here, i is the row index, j is the column index, l and k are both local window counters,
and x is the horizontal disparity for which the NCC is applied.

In the 1996, both Cox et al. [3] and Belhumeur [1] introduced methods based on
models within a Bayesian framework. The optimization criterion is expressed in terms
of probability density functions. In the probabilistic approach to the stereo correspon-
dence problem, The similarity measure is described as a likelihood function. It is the
conditional probability density of the data given the disparities. The models introduced
by Cox et al. [3] and Belhumeur [1] lead both to a monotonically decreasing function
of the Sum of Squared Differences (SSD). Only the difference in likelihood is important.
Therefore, the scaling constant of Belmuheur’s model can be omitted. The likelihood
function for the models of Belhumeur and Cox et al. can be expressed as:

p(z1, z2 | x) ∝ exp

(

1

4σ2
n

‖z1 − z2‖2

)

, (2.5)

where zk are the measurement vectors of the windows in the digital images Imk. The
measurement vectors zk are a one-dimensional representations of the windows around
the (candidate) points. The columns of the two-dimensional window contain w pixels
each and are stacked in an n-dimensional measurement vector z. Therefore, n = w2.
The disparity for which the probability function generates a likelihood is given by x.

A new likelihood function was introduced by Sanja Damjanovíc et al. in 2009 [4].
A sound probabilistic model is used to produce a likelihood function that copes with
unknown textures, uncertain gain factors, uncertain offsets, and correlated noise. The
goal of this research is to validate, analyze and generalize this likelihood function to
present a better solution for the stereo correspondence problem than the classical meth-
ods such as the NCC and the SSD. The likelihood function allows similarity measures
between two digital images; however, we would like to generalize this likelihood for more
than two camera views, to three-view or n-view 3D-reconstruction. Unfortunately, the
complexity of the assumed model complicates the analytical derivation of the probability
denisity function. It was assumed that an analytical solution that satisfies the model
was successfully derived, but, as will appear in this chapter, problems arise. This chap-
ter presents partial solutions for the likelihood function, discusses approximations, and
suggests alternative methods that could complete the analytical derivation in the future.

It appears that the simplified model in which we omit the camera gains and offsets re-
duces the likelihood function to a monotonically decreasing function of the Mahalanobis
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distance. This function is the subject of the next Chapter, where it is derived as an
extension of the likelihood function with the Euclidean distance as basis.

2.2 Derivation of the likelihood function

The proposed likelihood function by Sanja Damjanović [4] is based on an extended model
that uses the same Bayesian approach as used by Cox et al. [3]. Stereo matching is usu-
ally an ill-posed problem due to occlusions, specularities and lack of texture [5]. Solving
the stereo correspondence problem, therefore, requires that we impose certain assump-
tions on the matching process. The epipolar constraint transforms the stereo matching
to a one-dimensional problem. This implies that matching points lie on corresponding
epipolar lines. The second contraint, the constant brightness assumption (CBA), implies
that surfaces in the scene are ideally diffuse without specular properties. The objects
brightness is independant of the viewing angle (Lambertian illumination). Also, we as-
sume that a point in one image matches at most one point in another image, and is
called the uniqueness constraint.

The basic model assumes a system with two cameras that (indirectly) produces
rectified digital images. The likelihood function uses two measurement vectors z1 and
z2 that represent the image data that surrounds the two points in the images. The pixel
intensities within the windows depend on the texture and the radiometric properties of
the observed surface patch, on the illumination of the surface, and on the properties of
the imaging device [4]. This model is defined by:

zk = αks + nl + βke, k ∈ N. (2.6)

In this model, s is the result of mapping the texture on the surface of the two image
planes. The camera gain factors are represented by αk, and the offsets are βk. Also, e are
unity vectors and nk are noise vectors that are assumed to be Gaussian and uncorrelated
[4].

The expression for the likelihood function is obtained by several marginalization
steps. The joint distribution is obtained by marginalizing the unknown texture and
the camera gains out of the distrubution. First, the probability densitity functions of
zk is marginalized with respect to the unknown texture s. This implies a multivariate
integral, because the dimensionality of s is defined by the window size n. The second
step requires marginalization of the expression with respect to the camera gains αk. The
covariance matrix of the Gaussian is rewritten to include the white noise terms nl and
the offsets βk.

The derivation of the expression requires a few theorems to obtain a solution. The
marginalization of the unknown texture s implies a multivariate integral. It appears
that the expression can be rewritten to a multivariate Gaussian function for which an
analytical solution is known to exist (Appendix A.3). An essential part to complete the
proof is the Gaussian integral. The method used in Section 2.2.1 is a useful method
to simplify all sorts of Gaussian integrals with polar coordinates. It appears that this
method to obtain a solution for the Gaussian integral also allows simplification of the
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likelihood expression in a later stage (Section 2.4). The solution is well known, but
supplied nonetheless to clarify the suggested method for an alternative solution.

First, the solution to the Gaussian integral is proved. This result is used in the next
section to obtain a solution for the multivariate Gaussian integral. The theorem for the
multivariate Gaussian function is used in Section 2.2.2 to solve the marginalization of
the unknown texture s. Finally, it is concluded in the last part that marginalization of
the camera gains is very problematic and requires a different method. Unfortunately,
this section does not conclude with an analytical solution.

2.2.1 Gaussian Integral

To satisfy the research goal of an improved likelihood function, the proposed likelihood
function will require marginalization of the conditional probabilities. This implies the
integration of the chosen normal distributions for certain assumed a-priori variables.
Therefore, an analytical solution for the improper integral over the Gaussian function is
required1. Also, it will be shown in Section 2.4 that same method and transformation can
be used (as the first step) to solve the integral of Equation 2.46 that remains unsolved
in Section 2.2.3.

The Gaussian integral taken from minus infinity to infinity can be rewritten to a
product of two integrals. These two integrals can then be merged to a double integral
with bivariate exponent:

∫ ∞

−∞
exp

(

−x2
)

dx =

√

(
∫ ∞

−∞
exp (−x2) dx

)(
∫ ∞

−∞
exp (−x2) dx

)

(2.7)

=

√

(∫ ∞

−∞
exp (−y2) dy

)(∫ ∞

−∞
exp (−x2) dx

)

(2.8)

=

√

∫ ∞

−∞

∫ ∞

−∞
exp (−(y2 + x2)) dydx (2.9)

According to Fubini’s theorem, a double integral can be seen as an area integral (Ap-
pendix A.6):

∫ ∞

−∞
exp

(

−x2
)

=

√

∫ ∞

−∞
exp (−(x2 + y2)) d(x, y) (2.10)

The area integral in equation 2.10 can consequently be transformed from Cartesian co-
ordinates to Polar coordinates to produce a much easier integral. With parametrization
x and y are replaced with:

x = r cos θ

y = r sin θ

d(x, y) = r d(r, θ) (2.11)

1The parametrization with polar coordinates that is used to prove the Gaussian integral simplifies
later steps of the derivation as well
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The change of variables in the integral requires a multiplication with the determinant of
the jacobian matrix2, the ‘Jacobian’, that is defined as follows:

J(r, φ) =







∂x

∂r

∂x

∂θ
∂y

∂r

∂y

∂θ






=







∂(r cos θ)

∂r

∂(r cos θ)

∂θ
∂(r sin θ)

∂r

∂(r sin θ)

∂θ






=

[

cos θ −r sin θ

sin θ r cos θ

]

(2.12)

|J(r, φ)| =

∣

∣

∣

∣

[

cos θ −r sin θ

sin θ r cos θ

]∣

∣

∣

∣

= r cos2 θ − (−r sin2 θ) = r(cos2 θ + sin2 θ) = r(2.13)

Substitution of the expression in the exponent results in:

x2 + y2 = r2 sin2 θ + r2 cos2 θ, (2.14)

in which the sinusoids conviently disappear by applying the pythagorean identity which
states that sin2 x + cos2 x = 1, thus:

r2 sin2 θ + r2 cos2 θ = r2
(

sin2 θ + cos2 θ
)

= r2. (2.15)

The proof is completed by computation of the transformed integrals:

∫ ∞

−∞
exp

(

−x2
)

dx =

√

∫ 2π

0

∫ ∞

0
exp (−r2) r drdθ

=

√

2π

[

−1

2
exp (−r2)

]∞

0

=

√

2π

(

0 −
(

−1

2
exp (0)

))

=
√

π (2.16)

The solution and proof for the integral of the multivariate gaussian function is given
in Appendix A.2 as a generalization of the scalar version. The multivariate version is
required to solve the marginalization for the window vectors of the similarity function.

2.2.2 Marginalization of the unknown texture

This section is an extension of the section “Texture marginalization” as presented in
the paper[4] of Sanja Damjanović. It features a complete derivation of the likelihood
function and highlights an error in the approximation that complicates the next stages
of the derivation.

The likelihood function for the proposed model is be obtained by marginalizing sev-
eral variables out of the probability density function. The model assumes the measure-
ment vectors zi to be normal distributed random vectors with mean s, covariance matrix
C and gain factor αi. The expression for the probability density is a Gaussian function:

2The change of variables in the derivation of [4] lacks the Jacobian
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G(zi −αis). Also, it is assumed that the measurements in the camera views, z1, . . . , zk,
are uncorrelated. Therefore, we can define the conditional probability as:

p(z1, z2 | x, s, α1, α2) = G(z1 − α1s)G(z2 − α2s) (2.17)

The goal is to find an expression for the likelihood function for z1 and z2: p(z1, z2 | x),
where z2 depends on x. The initial probability density in Equation 2.17 depends on the
camera gain factors, α1 and α1, and the unknown texture, s; however, these parameters
are unknown and have to be marginalized out of the joint probability density. This
section solves the marginalization of the expression with respect to the multivariate
vector s. The marginalization is obtained by the integral of the probability density of
the multivariate variable for the unknown texture s:

p(z1, z2 | x, α1, α2) =

∫ ∞

−∞
p(z1, z2 | x, s, α1, α2)p(s | x)ds (2.18)

The prior probability density function for the texture s is assumed to be based an a
complete lack of prior knowledge. It is written as a normalization constant K that
depends on the width of p(s). We assume:

p(s | x) = K (2.19)

The normalization constant K depends on the width of p(s). Any width for p(s) is
sufficient as long as it covers the range of interest of z1 and z2. Therefore, K is unde-
termined, but this is of no importance since K does not depend on the measurement
vectors zi, and we are only interested in differences of the likelihood.

The probability densities for z1 and z2 are (with s fixed) two uncorrelated normal
distributed random vectors with mean s and covariance matrix C. The probability
density function for the random vector is defined as:

G(x) = G(zi,0,C) =

√

1

(2π)k |C|
exp

(

−1

2
zT

i C−1zi

)

=

√

|P|
(2π)k

exp

(

−1

2
zT

i Pzi

)

,

(2.20)
where C is the covariance matrix and P its precision matrix counterpart. The notation
with the precision matrix simplifies the expression in later stages of the derivation. Also,
this notation is used in Chapter 3 to describe the contribution of the individual weights
for the residuals of the measurement vectors.

The theorem for the integral of a multivariate Gaussian function can be applied to
the expression after substitution of z1 and z2 by h and y as follows:

h =
z1

α1
− s (2.21a)

y =
z1

α1
− z2

α2
(2.21b)

h− y =
z2

α2
− s (2.21c)
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However, the unknown texture s is the variable of integration. Therefore, the substitu-
tion introduces a Jacobian to the integral as described in Appendix A.7.

p(z1, z2 | x, α1, α2) = K

∫ ∞

−∞
p(z1, z2 | x, s, α1, α2) ds (2.22)

= K

∫ −∞

∞
p(z1, z2 | x,

z1

α1
− h, α1, α2)|J|dh (2.23)

The probability density function is obtained by substitution of the Gaussian function
with the variables h and y. This yields the expression:

p(z1, z2 | x, s, α1, α2) = G(α1h)G(α2(h− y)) (2.24)

= a exp

(

−1

2
α2

1h
TPh

)

exp

(

−1

2
α2

2(h− y)TP(h − y)

)

,(2.25)

where the constant of the density function, a, is:

a =
K

(2π)n det(C)
=

K det(P)

(2π)n . (2.26)

The theorem of Section A.3 can be used to solve Equation 2.25; however, it is nec-
essary to merge the expression within the exponents to obtain a single expression in the
form of a Gaussian function. This rewrite yields the following expression:

p(z1, z2 | x, s, α1, α2) = a exp

(

−1

2
(α2

1 + α2
2)h

TPh + α2
2y

TPh − 1

2
α2

2y
TPy

)

(2.27)

The joint density function, p(z1, z2 | x, α1, α2), is obtained by marginalization of the
unknown texture out of Equation 2.27. The substitution of variables, however, changes
the variable of integration from s to h. For the remainder of the derivation in this
section, we use a short-hand notation to keep the expressions short and clear. The joint
density function to obtain is referred to as F . The integral we have to solve to obtain
the marginalized expression p(z1, z2 | x, α1, α2) = F is given by:

F =

∫ ∞

−∞
p(z1, z2 | x, s, α1, α2)p(s | x) ds (2.28)

= aK

∫ −∞

∞
exp

(

−1

2
(α2

1 + α2
2)h

TPh + α2
2y

TPh − 1

2
α2

2y
TPy

)

det(J) dh.(2.29)

The change of variables switched the bound of integration. The expression is rewritten
to make it compatible with the theorem of Section A.3; however, this introduces an
alternating coefficient with respect to the window size to the expression:

F = (−1)naK

∫ ∞

−∞
exp

(

−1

2
(α2

1 + α2
2)h

TPh + α2
2y

TPh − 1

2
α2

2y
TPy

)

det(J) dh.

(2.30)
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The Jacobian matrix in this expression is obtained by:

J =













∂s1

∂h1
· · · ∂s1

∂hn
...

. . .
...

∂sn

∂h1
· · · ∂sn

∂hn













=



















∂
(

z1
α1

− h1

)

∂h1
· · ·

∂
(

z1
α1

− h1

)

∂hn
...

. . .
...

∂
(

zn

αn
− hn

)

∂h1
· · ·

∂
(

zn

αn
− hn

)

∂hn



















= −In. (2.31)

Because J is a negative identity matrix, it follows that the determinant of the Jacobian
matrix also results in an alternating constant that depends on the window size:

det(J) = det(−In) =
n
∏

i=1

(−1) = (−1)n. (2.32)

Although the Jacobian was not included in the derivation of the reference paper, it turns
out in Equation 2.35 that it does not influence the final solution of the integral. It is,
however, required for a proper and complete proof.

The integral for the marginalization is solved by applying the theorem of Equation A.18
(proved in Appendix A.3) to the probability density function. The theorem has several
input variables that have to be extracted from Equation 2.30. The required variables
(a, b, d, c, and f) for the theorem are given by:

a =
K det(P)

(2π)n (−1)n (2.33a)

b =
1

2
(α2

1 + α2
2) (2.33b)

d = (yTP)T = PTy = Py (2.33c)

c = α2
2 (2.33d)

f = −1

2
α2

2y
TPy (2.33e)

The solution for the integral of Equation 2.30 is solved by substitution of Equation 2.33a-
e in Equation A.38. This results in the following expression:

F =
(−1)n(−1)n

(2π)n 1
|P|

√

√

√

√

1

|P|

(

2π
(

α2
1 + α2

2

)

)n

· exp

(

−1

2
α2

2y
TPy

)

· exp

(

α4
2

2
(

α2
1 + α2

2

)yTPP−1Py

)

(2.34)
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As it appears, both the Jacobian and the switching of integral bounds introduce alter-
nating constants with respect to the window size. However, both effects stem from the
substitution of Equation 2.21 and should cancel each other out. The two terms com-
bined introduce a square power to the negative coefficient. Therefore, the expressions is
always positive for every window size (n):

(−1)n(−1)n = ((−1)2)n = 1 (2.35)

The solution of Equation 2.34 can be simplified further by combination of the exponents
to a single expression:

−1

2
α2

2y
TPy +

α4
2

2
(

α2
1 + α2

2

)yTPP−1Py

= yTPy

(

−α2
2(α

2
2 − α2

1) + α4
2

2
(

α2
1 + α2

2

)

)

= −yTPy

(

α2
1α

2
2

2
(

α2
1 + α2

2

)

)

(2.36)

The expression in terms of z1 and z2 is obtained by substituting y back with its original
value of Equation 2.21b. This yields the expression:

(. . .) = −
(

z1

α1
− z2

α2

)T

P

(

z1

α1
− z2

α2

)

(

α2
1α

2
2

2
(

α2
1 + α2

2

)

)

(2.37)

The final expression is obtained by rewriting the expression to one fraction:

(. . .) = − 1

α2
1α

2
2

(α2z1 − α1z2)
T

P (α2z1 − α1z2)

(

α2
1α

2
2

2
(

α2
1 + α2

2

)

)

(2.38)

= −(α2z1 − α1z2)
T

P (α2z1 − α1z2)

2
(

α2
1 + α2

2

) (2.39)

Because the multiplication of the measurement vectors zi and the precision matrix P does
not depend on the camera gains, it is possible to precompute these values. The weighting
of the measurement vectors with the precision matrix P —the matrix multiplication—
is referred to by the variable ρij:

ρij = zT
i Pzj , (2.40)

where i and j are indices that refer to the camera index. The precision matrix P

is symmetric, therefore: ρij = ρji. The final notation for the expression within the
exponent is finally given by:

(. . .) = −α2
2ρ11 + α2

1ρ22 − 2α1α2ρ12

2
(

α2
1 + α2

2

) (2.41)

If we substitude this expression for within the exponent back, we obtain the expression
for the probability density function:

p(z1, z2 | x, α1, α2) = K

√

|P|
(2π)n

√

√

√

√

(

1
(

α2
1 + α2

2

)

)n

exp

(

−α2
2ρ11 + α2

1ρ22 − 2α1α2ρ12

2
(

α2
1 + α2

2

)

)

.

(2.42)
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Unfortunately, the result of the marginalization differs from the solution of the reference
paper. The first part of the probability function (highlighted in blue) does not depend
on the camera gain αi or the measurement vectors zi. When comparing the likelihoods,
it is merely a scaling that does not influence the ratio, and is therefore omitted in the
paper. However, the second part of the equation does depend on the camera gains. The
derivation in this section reveals that the probability function in the paper lacks the
power term n, as illustrated in red in Equation 2.42. The difference in the solutions
originates from the multivariate integral that is required to marginalize for the unknown
texture s. The integral over the n-dimensional vector s implies n integrals for every
element of s. The solution in the paper, as it appears, is obtained by applying a one-
dimensional integral only. The size of windows, n, is usually large. Therefore, the
behavior of the probability function is significantly different for a pole of order one
compared to a pole of order n.

2.2.3 Marginalization of the camera gains

This conditional likelihood still depends on the camera gains. These conditional variables
must be marginalized out of the expression to obtain the final likelihood function. In
the previous section, the probability density function p(z1, z2 | x, α1, α2) was obtained
in Equation 2.42.

The unknown gains are neutralized by marginalization of the camera gains α1 and
α2. It is defined by:

p(z1, z2 | x) =

∫ ∞

−∞

∫ ∞

−∞
p(z1, z2 | x, α1, α2)p(α1)p(α2) dα2α1 (2.43)

The prior pdfs for p(α1) and p(α2) are chosen to reflect the prior knowledge about the
unknown gains. In accordance with the paper: “The gain factors should not deviate
too much from 1. For that reason, we chose for p(αk) a normal distribution, centred
around 1, and with a standard deviations σα” [4]. Therefore, the pdfs p(α1) and p(α2)
are defined as:

p(α1)p(α2) =
1

σ1

√
2π

exp

(

−(α1 − µ1)
2

2σ2
1

)

· 1

σ2

√
2π

exp

(

−(α2 − µ2)
2

2σ2
2

)

(2.44)

=
1

σ1σ22π
exp

(

−(α1 − µ1)
2

2σ2
1

− (α2 − µ2)
2

2σ2
2

)

. (2.45)

In the paper, it is concluded that an analytical solution for Equation 2.43 is easily
obtained by the approximation of the term 1

α2
1+α2

2
by 1

2 . However, this assumption

has a severe impact on the repaired solution of Equation 2.42 with an nth-order term.
Although the approximation might ‘not be too rough’ for a simple pole, it certainly is
for an nth-order pole. The error of the approximation is amplified by the power n.

We conclude that the term should not be approximated; however, this results in an
integral of a very complicated function. To obtain the likelihood function, we have to



36 New likelihood function 2

solve the integral3 of a very high order pole multiplied with a Gaussian function.

p(z1, z2 | x) =

∫ ∞

−∞

∫ ∞

−∞

√

√

√

√

(

1
(

α2
1 + α2

2

)

)n

exp (f(α1, α2, . . .)) dα2α1 (2.46)

The improper integral for the Gaussian function itself is complicated, but solvable. How-
ever, Equation 2.46 remains unsolved due to the red-colored term.

2.3 Approximation by power series

The previous section concluded with the unsolved integral. To obtain the the likelihood
function, it is necessary to complete the final integration step. As an alternative to a
proper analytical solution, we have decided to approximate the expression with a power
series to obtain an approximate likelihood function. Because the series is of a pure
polynomial notation, the integral is always solvable for every chosen orde. The taylor
series for f(x) is defined as [17, pp 242]:

f(x) = f(a)+
f ′(a)

1!
(x−a)+

f ′′(a)

2!
(x−a)2 +

f (3)(a)

3!
(x−a)3 + · · · =

∞
∑

n=0

f (n)(a)

n!
(x−a)n

(2.47)
However, since we have more than one camera gain that needs to be marginalized, the
multivariate taylor series is required:

T (x1, . . . , xk) =

∞
∑

n1=0

· · ·
∞
∑

nk=0

(x1 − a1)
n1 . . . (xk − ak)

nk

n1! . . . nk!

(

∂n1+...+nkf

∂xn1
1 . . . ∂x

nk

k

)

(a1, . . . , ak).

(2.48)
Due to the complexity of the expression, the multivariate taylor expansion is computed
with the use of Maple. The required scripts are given in Appendix E. For example, the
first order expansion about α1 = 1 and α2 = 1 is given by:

f0(ρ) =
K√
2n

exp

(

−1

4
(ρ11 + ρ22 − 2ρ12)

)

(2.49)

The even order terms of the expansion are zero if the integration boundaries about α1

and α2 are chosen symmetric. The third order expansion is given by:

∫ b

−b

∫ a

−a

taylor(f(. . .), 3) dα1 dα2 = c0

(

c1(ρ11 − ρ22)
2 − (4n + 4)c2(ρ11 + ρ22) . . .

− 8c1ρ12 − 32
(

a2

σ2
1

+ b2

σ2
2

)

+ 4n2c1 + 96

)

,

(2.50)

3This double integral can be written as a multivariate integral, as shown in the generalization of
Section 2.5
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with the constants c0, c1, and c2:

c0 =
K

24
ab exp

(

−1

4
(ρ11 + ρ22 − 2ρ12)

)

(2.51)

c1 = a2 + b2 (2.52)

c2 = a2 − b2 (2.53)

2.3.1 Computational complexity

The complexity of the first and the third order expansion seems acceptable. However,
the number of terms increases significantly for higher order terms. This is especially the
case if more than two cameras are involved in the likelihood function. The number of
coefficients (that have to be computed for every window) for k cameras and order o is
given by:

c(k, o) = bc(M(k) + o − 1, o − 1) =

(

1
2k2 + 1

2k + o − 1
)

!

(o − 1)!
(

1
2k(k + 1)

)

!
, (2.54)

with bc(n, k) as the number of therms:

bc(n, k) =
n!

k!(n − k)!
, (2.55)

and M(k) as:

M(k) = bc(k + 1, k − 1) =
1

2
k(k + 1) (2.56)

Table 2.1 gives an impression of the enormous number of coefficients that have to be
computed for higher order approximations. Every

Order 2 cams 3 cams 4 cams 5 cams

1 1 1 1 1
3 10 28 66 136
5 35 210 1001 3876
7 84 924 8008 54264
9 165 3003 43758 490314

11 286 8008 184756 3268760
13 455 18564 646646 17383860
15 680 38760 1961256 77558760

Table 2.1: Number of coefficients (required multiplications per window).

2.3.2 Approximation results

It was deemed that investigation of the effects of the Taylor expansion is useful. It was
already conluded in the previous section that the complexity of the expansion increases
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significantly for higher orders. The approximation can be used only if the error is small
enough.

We investigate how good the taylor expansions of certain orders fit to the original
function. In Figure 2.1, the taylor expansion for the 3rd, the 5th and the 16th order is
given for a likelihood function with a window size of 2. It became clear in the previous
section that the Taylor expansion is practical for low expansion orders only. However, it
appears in Figure 2.1 that even a very high order (16) expansion fits the original function
poorly.

Figure 2.1: Marginalization on one-dimensional taylor approximations about α = (1, 1)
for n = 2

Next, we simulate the effects of the Taylor expansion for larger windows. The results
shown in Figure 2.2 indicate that the expansions fit even worse for a likelihood function
with a larger window. This is very unfortunate, because the likelihood function should
work for very large window sizes.

Further simulations indicate that the Taylor expansions sometimes even become un-
stable for likelihood functions with certain window sizes. The reults for a seventh order
Taylor expansion are shown in Figure 2.3. Some window sizes are selected that become
unstable in the range of interest. The use of approximations is useful only if the error is
not large; however, it has become clear from the simulations that a Taylor expansion is
not a good method to the solve the last integration step.
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Figure 2.2: Marginalization on one-dimensional taylor approximations about α = (1, 1)
for n = 16

Figure 2.3: Marginalization on a two-dimensional seventh-order taylor expansion

2.4 Suggestion for alternative analytic solution

This section should be read as a suggestion for future research. It appeared that the
method that was used to solve the Gaussian function in the first place, also simplifies
the expression that has to be solved to obtain a solution for the likelihood function.
Although the transformed expression is more complex and remains unsolved, we expect
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that is a step in the right direction to solve the integral in the future.

Our proposal for an alternative solution is:
⊲ Step one: transform the expression to polar coordinates.
⊲ Step two: apply Cauchy’s inegral formula on the transformed integral.

2.4.1 Polar coordinates

The first step is (partially) given in this section. We define the following variables for
the transformation:

α1 = r cos θ (2.57)

α2 = r sin θ, (2.58)

for which the jacobian is definied by:

|J(r, φ)| =
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]∣

∣

∣

∣

= r(cos2 θ + sin2 θ) = r (2.59)

The expression for the Gaussian function that model z1 and z2 with a normal distribu-
tion:

p(z1, z2 | x, α1, α2)

=

√

|P|
(2π)n

√

(

1

(r2)

)n

exp

(

−r2 sin2 θρ11 + r2 cos2 θρ22 − 2r2 sin θ cos θρ12

2r2

)

=

√

|P|
(2π)n

1

rn
exp

(

−1

2

(

sin2 θρ11 + cos2 θρ22 − 2 sin θ cos θρ12

)

)

(2.60)

This results in the following rewritten expression for the likelihood function:

K

∫ ∞

0

∫ 2π

0

1

rn
exp

(

−1

2

(

ρ11 sin2 θ + ρ22 cos2 θ − 2ρ12 sin θ cos θ
)

)

p(α1)p(α2) r dθ dr

(2.61)
The parametrization of the camera gains yields:

p(α1)p(α2) =
1

σ1σ22π
exp

(

−r2
(

sin2 θ + cos2 θ
)

− r (µ2 sin θ + µ1 cos θ) + µ1µ2

2σ2
1σ

2
2

)

=
1

σ1σ22π
exp

(

−1

2

r2 − r (µ2 sin θ + µ1 cos θ) + µ1µ2

σ2
1σ

2
2

)

=
1

σ1σ22π
exp

(

−1

2

r2 − r
√

2 cos
(

θ − π
4

)

+ 1

σ2
1σ

2
2

)

(2.62)
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2.5 Generalization for multiple cameras

One of the initial goals of this research project was to explore the possibilities to extend
the algorithm of Sanja for more than two cameras. It was hypothesized that taking
advantage of the information of more camera views would improve the performance of
the similarity measure. More information is available, and partially occluded surfaces of
objects can be visible in a subset of the available set of camera views. It was concluded
in Section 2.2.3 that an analytical solution for the statistical model that was proposed
in the paper of S. Damjanović [4] is far more difficult than first expected. The problem
of the similarity measure remains unsolved, and even a proper approximate solution
appeared to be out of reach. However, an alternative method was proposed in Section
2.4 in which a transformation of the integral simplifies the expression. We expect that a
solution to the last marginalization step is possible if Cauchy’s integral formula is used
to handle the singularity in the expression.

In this section, we show that the extension of the model for more than two cameras
leads to an expression that is more complex. The marginalization steps required to
obtain the analytical solution for the similarity measure are, however, possible if the
problem is solved for two cameras.

In the first marginalization step we remove the unknown texture s from the expres-
sion. The generalized expression we have to obtain for k cameras is defined as:

p(z1, . . . , zk | d1, . . . , dk−1, α1, . . . , αk) = p(Z | d, α), (2.63)

where the variables in the expression have a higher dimensionality as defined by:

Windows Z ∈ R
k×n

Unknown texture s ∈ R
n

Disparity d ∈ R
k−1

Camera gains α ∈ R
k

. (2.64)

The integral that has to be solved for marginalization of the unknown texture s is (in
this section) referred to as F . F is obtained by the improper multivariate integral:

F = p(Z | d, α) = K

∫ ∞

−∞
p(Z | d, s, α)p(s | d) ds. (2.65)

This integral is solved in an identical way as the integral in Section 2.2.2, as defined
in Equation 2.17. This extended derivation has several trivial steps compared to the
derivation for two cameras. Therefore, this derivation should be read as an extension to
Section 2.2.2 where all steps are explained in more detail. For example, the substitution
for n cameras is omitted. The expression of conditional probabilities for k cameras
generalizes to a product of Gaussians:

F = K

∫ ∞

−∞

k
∏

i=1

G(zi − αis, 0,P
−1) ds (2.66)

= K

∫ ∞

−∞

k
∏

i=1

√

|P|
(2π)n

exp

(

−1

2
(zi − αis)

T
P (zi − αis)

)

(2.67)
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First, the integral is rewritten to exclude the constant part. Then, the expression can be
rewritten to bring the product into the exponent, because a product of exponents can
be rewritten as an exponent of additions. This yields the expression:

F = K

√

|P|k
(2π)nk

∫ ∞

−∞

k
∏

i=1

exp

(

−1

2
(zi − αis)

T
P (zi − αis)

)

(2.68)

= K

√

|P|k
(2π)nk

∫ ∞

−∞
exp

(

−1

2

k
∑

i=1

(zi − αis)
T

P (zi − αis)

)

(2.69)

The integral is solved by applying the theorem of Appendix A.3. This theorem requires
a rewrite of the expression to the form:

F = K

√

|P|k
(2π)nk

∫ ∞

−∞
exp

(

−
(

k
∑

i=1

α2
i

2

)

sTPs +

(

k
∑

i=1

αiz
T
i P

)

s −
k
∑

i=1

zT
i Pzi

2

)

(2.70)

The input parameters (a, b, c, d, and f) for the formula of Appendix A.3 are extracted
from Equation 2.70. This results in:

a = K

√

|P|k
(2π)nk

(2.71a)

b =
1

2

k
∑

i=1

α2
i (2.71b)

c = 1 (2.71c)

d =

k
∑

i=1

αiz
T
i P =

k
∑

i=1

αiPzi (2.71d)

f = −1

2

k
∑

i=1

zT
i Pzi (2.71e)

Finally, the solution for the integral is:

F = K

√

|P|k
(2π)nk

√

√

√

√

(

2π
∑k

i=1 α2
i

)n
1

|P|

· exp

(

−1

2

k
∑
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zT
i Pzi

)

· exp

(

1

2
∑k

i=1 α2
i

(

k
∑

i=1

αiz
T
i

)

P

(

k
∑

i=1

αizi

))

(2.72)

The marginalization of the camera gains introduces a second integration step with re-
spect to ai. Therefore, it is practical to rewrite Equation 2.72 to a constant part, and
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a part that depends on ai. This last part contains the same
(

n
2

)th
-order pole as the

high-order pole that was discussed in Section 2.2.3:

F = K

√

|P|k−1

(2π)n(k−1)
exp

(

−1

2

k
∑

i=1

ρii

)

(2.73)

·
(

1
∑k

i=1 α2
i

)n
2

exp

(

∑k
i=1

∑k
j=1 αiαjρij

2
∑k

i=1 α2
i

)

(2.74)

The symmetry of the covariance matrix requires the computation of the upper triangle
of the coefficients only. Therefore, a simplified expression reduces to:

F = K

√

|P|k−1

(2π)n(k−1)
exp

(

−1

2

k
∑

i=1

ρii

)

(2.75)

·
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2
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 (2.76)

This integral has the same properties as the integral of Equation 2.46.
Also, we can apply the same transformation for the generalized expression as we did

apply for the expression with two cameras. For example: we have to transform to a
spherical coordinate system instead of polar coordinate system for three cameras:

α1 = r sin θ cos φ (2.77)

α2 = r sin θ sin φ (2.78)

α3 = r cos θ (2.79)

The same method can be used for more than three cameras (hyperspherical coordinates).

2.6 Discussion

The goal of this Chapter was to improve and generalize the likelihood function that
was derived in the paper of Damjanović et al. The derivation of the likelihood func-
tion started very promising. The assumptions in the paper [4] to formulate the sound
probabilistic model are valid and promising. Unfortunately, it became clear that a small
error was made in the paper during the first part of the derivation: the marginalization
of the unknown texture. The integral that is required to perform the marginalization
of the unknown texture was (probably) assumed to be univariate; however because the
unknown texture is a multi-dimensional variable, a multivariate integral should have
been used. It should also be noted that the derivation in the paper does not include a
Jacobian to compensate for the change of variables. However, this is just a sidenote for
a complete proof, because that part of the final likelihood function is correct.

In the paper, the solution for the marginalization of the gains is obtained by some
approximations. The term that was assumed to be constant (a first order pole) actually
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appeared to be a very high order pole (See Equation 2.46). The order of this pole depends
on the window size. This let us to the conclusion that this term should not be assumed
to be constant, with severe consequences for the solvability of the integral. Literature
research for integrals of complex Gaussian functions and several brainstorming sessions
have been futile in the quest for a complete analytical solution.

In our search for a sufficient solution, we have tried to perform several types of
approximations. In Section 2.3, it became clear that Taylor expansions for (parts of)
the expression introduced very large errors. Also, the expansion became very complex
for even low order expansions. We have to conclude that this method is useless to obtain
a proper likelihood function with (that satisfies the probabilistic model).

Research question (Q1b) was formulated to investigate the possibilities for a multi-
camera likelihood function: ‘How is the new likelihood function generalized for more

than two camera views?’. The absence of a solution for the two-camera likelihood func-
tion, unfortunately, has the consequence that we are unable to generalize the likelihood
function for more than two cameras. However, we have shown in Section 2.5 that the
derivation proccess becomes more abstract, but not more difficult to integrate. Once a
solution is found for the two-camera case, it is possible to use the same method to find
a solution for the generalized case.

The probabilistic model is built around normal distributions. We suspect that one
of the methods that is used to proof the Gaussian integral can be used to transform and
simplify the integral of Equation 2.46. Transformation of the function to polar coordi-
nates results in an expression that is easier to integrate. We suspect that it is possible
to solve the integral of the high-order pole with complex analysis. Cauchy’s integral for-
mula can be used to transform the integral to the complex domain and integrate around
the singularity. This method is recommended for future research.

Finally, we observe that the Mahalanobis appears as the core metric for the likelihood
function. Although we did not succeed in obtaining a complete solution, it is clear that
some assumptions have let to the generalization of the SSD to a Mahalanobis distance.
The difference in performance between the Mahalanobis distance and the Euclidean
distance is the main subject of the next chapter.



3

Mahalanobis distance versus

Euclidean distance

In previous chapters, the importance of a good similarity measure for windows around
candidate points in stereo views is addressed. The quality of the similarity measure lays
the foundation for the performance of the depth perception in the stereo vision system.
Section 2.1 introduced several matching metrics for block similarity amongst which the
Sum of Squared Differences (SSD) that is used as the basis for a stereo algorithm with a
Bayesian approach. It is based on the constant brightness assumption (CBA) that states
that the pixel values in two matching windows in the left and the right image are equal
apart from white noise [4]. The SSD is by definition the squared Euclidean distance.

The Euclidean distance of the residual error between pixel blocks in two images
appeared to provide a good basis for a similarity measure in [3] and [1]. The matching
is performed on the individual pixel intensities and provides a dense disparity map;
however, the correspondance problem remains difficult for occluded regions and smooth
texture. With an Euclidean distance, the pixel values within windows contribute equally
without utilizing additional information such as: the distance of the pixel location to
the window center, the mutual information between the primary color values of a pixel
and the information between different pixel intensities. We expect that replacing the
Euclidean distance with a Mahalanobis distance as the metric for similarity measure
offers a method to include these effects and improve the stereo correspondence. The
advantage of the Mahalanobis distance is that it takes into account the correlations of
the data set.

In this chapter, we research whether a modification of the similarity measure with a
Mahalanobis distance increases the stereo correspondence performance. The model with
the Euclidean distance that is based on the CBA appears to be incomplete. An extension
of the model with a Mahalanobis distance allows incorporation of geometric distortion,
sampling errors and other effects in the covariance matrix of the metric. Therefore, a
training stage is required to obtain a proper covariance matrix that describes the effects
that occur between the corresponding pixel blocks of the images. However, the covariance
matrix has to be inverted to its precision matrix counterpart to complete the algorithm.

45
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The components of the precision matrix are weights for all error residuals. Inversion
of a matrix requires the matrix to be positive definite. Unfortunately, an estimated
covariance matrix does not necessarily have to be invertible. It is possible to force the
positive definite requirement by regularization of the covariance matrix with spectral
decomposition. The matrix is invertible if and only if all its eigenvalues are positive.
After eigendecomposition, the eigenvalues of the covariance matrix are increased slightly
with a constant to suffice to suffice the requirement. The amount of regularization affects
the performance. Because the amount of regularization affects the performance of the
correspondance, the optimization of the regularization constant is an important part of
the experiment.

The model introduced by Belhumeur et al. [1] leads to a maximum likelihood cost
function based on the Euclidean distance as its metric. A more extensive model derived
by Cox et al. in [3] includes the possibility of a Mahalanobis distance, but the covariace
matrix is assumed to be a diagional matrix with a single constant weight to simplify
the algorithm. Also, the new likelihood cost function in Chapter 2.2.2 as proposed by
Damjanović et al. [4] includes the Mahalanobis distance as metric. The probabilistic
model describes the existence of an unknown texture, and uncertain gains and offsets.
Simplification of the gains and offsets reduces the likelihood function to the form that is
introduced by Cox et al. This generic model that includes a multivariate normal distri-
bution for the unknown texture is expected to provide improved stereo correspondance;
however, no experiments to validate this claim have been done.

The goal of this chapter is to research a Bayesian extension of the SSD metric with
the Mahalanobis distance and to answer: ‘is it useful to include a covariance matrix
built from a training set to enhance the generic SSD-likelihood function to improve
the stereo correspondance?’ The addition of the Mahalanobis distance to the model
increases the computational complexity of the model significantly; therefore, it should
increase performance substantially for it to be useful. The algorithm for the stereo depth
perception should not be unnecessarily complex.

Firstly, the Bayesian approach is described in Section 3.1 to lay a foundation for
the experiment. In Section 3.2, the implementation and design decisions are discussed.
Finally, the results presented in Section 3.3 are discussed in Section 3.4.

3.1 Mahalanobis likelihood derivation

In this section, a mathematical description of the maximum likelihood cost function is
given, as well as a method to generate a covariance matrix for it. This probabilistic
approach to the stereo correspondance problem formulates a probability density for the
observed data given a ground truth [4].

Let two cameras from different viewpoints produce corresponding images I1 and I2

of a scene and let p(z1, z2 | x) be a maximum likelihood function that evaluates local
measurements z1 and z2 in these images for a given disparity x. The respective windows
contain all local pixels within the region of interest reshaped to a one dimensional column
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vector:
z =

[

z1, . . . , zn

]T
(3.1)

Both images are assumed to be preprocessed and rectified; the search space is reduced
to one dimension. The conditional variable x of the likelihood function denotes the
horizontal shift of the local right window that is to be compared to the local left window.
In the Winner Takes All (WTA) model, the disparity x that results in the highest
likelihood is assumed to be the most likely. The pixel-based algorithm provides a dense
horizontal disparity map because the likelihood function provides a disparity candidate
for every pixel coordinate in the images. The depth is inversely propertional to the
disparity.

The expected improvement for the stereo correspondance with the Mahalanobis dis-
tance is compared to the reference method that was first introduced by Belhumeur [1];
it uses the Euclidean distance. The probabilistic model for the combined joint density
assumes independent identically distributed Gaussian noise processes having mean zero
and variance σ2, and is defined as:

P (z1, z2 | γ) =
1

(2πσ2)n

n
∏

i=1

exp

(

−(z1,i − z2,i)
2

4σ2

)

. (3.2)

A rewrite of this function results in the baseline likelihood function for the benchmarks
in this chapter. The monotonically decreasing function of the SSD with the squared
Euclidean distance is given by:

p(z1, z2 | x) ∝ K exp

(

− 1

4σ2
n

‖z1 − z2‖2

)

, (3.3)

where ‖z1 − z2‖2 is the SSD and a predefined variance σ denotes an equal weight for
every pixel contribution. The models of Cox et al. and Damjanović et al. are extensions
of this model.

Similarly to Chapter 2.2.2, if it is assumed that both measurement vectors are nor-
mally distributed about their ideal value s we can use the multivariate Gaussian distri-
bution for the conditional probability p(zi | s, x) such that [3]:

p(zi | s, x) = G(zi, s,Ci) =
1

√

(2π)k det(Ci)
exp

(

−1

2
(zi − s)TC−1

i (zi − s)

)

, (3.4)

where k is the dimension of the measurement vectors zi, and Ci are the covariance
matrices associated with the residual errors (s − zi). Because the true value of s is
unknown, it has to be approximated by the maximum likelihood estimate ŝ obtained
from the measurement pair z1 and z2 as follows1:

s ≈ ŝ = C2 (C1 + C2)
−1

z1 + C1 (C1 + C2)
−1

z2. (3.5)

1The derivation of the likelihood function and the covariance matrix is derived in detail by Cox et al.
in [3].
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Because the models for both cameras are assumed to be the same, from this point on it is
assumed that the covariance matrices C1 and C2 are equal as well. The approximation
for the unknown texture s in equation 3.5 then simplifies to

s ≈ ŝ =
1

2
(z1 + z2) . (3.6)

The approximation of the unknown texture is useful to complete the definition for the
observations that will be used to estimate the covariance matrix. Substitution of the
approximate unknown texture ŝ in the associated residual errors gives the expression:

(s − z1) ≈
1

2
(z2 − z1) . (3.7)

The accurate ground truths for the disparity maps included in the datasets are used to
extract a large set of measurements or observations from the left and the right images.
The same window that is used to compute the stereo correspondance defines every
observation as a block of pixels in the left image that corresponds to a shifted block of
pixels in the right image. Together, the measurements of the errors form a set of m

samples of random variables:

1

2
(z2,i − z1,i) , with i = 1, . . . ,m. (3.8)

The estimation of the covariance matrix from a sample of m observations of n-
dimensional random variables is then given by:

C =
1

m

m
∑

i=1

(z2,i − z1,i) (z2,i − z1,i)
T , (3.9)

with (z2,i − z1,i) as the i-th observation of the residual error. The final derivation to
obtain the likelihood function is proportionally equivalent to the first order expansion
of the proposed likelihood function in Chapter 2.2.2. Because the magnitude of the
likelihood is superfluous for the optimization it suffices to express the likelihood without
the exact scaling constants. The simplified likelihood function has a certain constant K,
includes a trainable matrix of weights C−1, and is given by:

p(z1, z2 | x) ∝ K exp

(

−1

4
(z1 − z2)

T
C−1(z1 − z2)

)

. (3.10)

The resulting expression includes a Mahalanobis distance as its metric, where the covari-
ance matrix C describes the (co)variances between all errors. Inversion of the covariance
matrix; however, is required after estimation only once. The inverted covariance matrix
is known as the precision matrix P and holds the coefficients for all multiplication pairs.
A final rewrite of the likelihood function p(z1, z2 | x) results in:

ρij = zi
TC−1zj = zi

TPzj (3.11)

p(z1, z2 | x) ∝ exp

(

−1

4
(ρ11 + ρ22 − 2ρ12)

)

, (3.12)
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that will be used in the experiment to research the effects of a trained covariance matrix
C. The model from Cox et al. for the total cost for all pairs also includes costs for
occlusions; however, in this experiment we will focus on the cost metric for matching
pixel blocks only.

The covariance matrix has several important properties that guarantee invertibility
of the covariance matrix C to its counterpart P, the precision matrix. As proved in
Appendix A.4, every covariance matrix satisfies:

• C is symmetric, thus ρ12 = ρ21, and

• C is positive-semidefinite, and therefore invertible if non-singular.

However, due to numerical instability, the high dimensionality of the window, and the in
comparison small set of available samples available for estimation, this often results in
an estimated covarance matrix that does not satisfy the strict conditions specified above.
Unfortunately, a singular covariance matrix is unsuitable for the Gaussian distribution,
but this problem can be solved by regularization.

Factorization and regularization

The estimated covariance matrix is a square n-by-n that is obtained with the expression
of Equation 3.9. The definition of the estimator implies that the estimated covariance
matrix is diagonalizable. Every diagonalizable matrix can be factorized into a canonical
form, whereby the covariance matrix is represented in terms of eigenvalues and eigen-
vectors. Let A be a square (n × n) diagonalizable matrix, then A can be factorized
as

A = QΛQ−1, (3.13)

where Q is a square (n × n) matrix whose ith column is the eigenvector qi of A and
Λ is a diagonal matrix whose diagonal elements are the corresponding eigenvalues, i.e.
Λii = λi. Corollary: the symmetric property of the estimated covariance matrix allows
Q−1 = QT. Also, if none of the eigenvalues of A is zero, its inverse is given by:

A−1 = QΛ−1Q−1. (3.14)

The inverse of Λ is easy to calculate because it is a diagonal matrix, and only the
eigenvalues have to be inverted:

(Λ−1)ii =
1

λi
. (3.15)

Therefore, once the singular eigenvalues are dissolved, it is easy to obtain the required
precision matrix from the inverted regularized eigenvalues and the eigenvectors as P =
C−1 = QΛ−1QT.

The matrix A is positive definite if and only if all eigenvalues of A are positive. The
regularization process forces the eigenvalues to be sufficiently positive by adding a small
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fraction c of the largest eigenvalue λmax to all eigenvalues. The regularized matrix Â is
then given by:

Â = Q
(Λ + cλmaxIn)

1 + c
Q−1, (3.16)

where In is the n-dimensional identity matrix. The regularized matrix A converges to
a diagonal matrix as the regularization constant increases and the diagonal matrix with
eigenvalues converges to a scaled identity matrix:

QQ−1 = QQT = QInQ
T = In. (3.17)

If Equation 3.10 is substituted with Equation 3.16, we obtain the final likelihood function
for the Mahalanobis distance:

p(z1, z2 | x, c) ∝ exp

(

−1

4
(z1 − z2)

T
Ĉ−1

c (z1 − z2)

)

, (3.18)

where Ĉc is the regularized covariance matrix with regularization factor c.

Once the regularization c approaches infinity, Equation 3.18 (the Mahalanobis distance)
converges to Equation 3.3 (with the Euclidean distance) as follows:

lim
c→∞

exp

(

−1

4
(z1 − z2)

T
Ĉ−1

c (z1 − z2)

)

(3.19)

= lim
c→∞

exp

(

−1

4
(z1 − z2)Q

(

Λ + cλmaxIn

1 + c

)−1

Q−1(z1 − z2)
T

)

(3.20)

= exp

(

−1

4
(z1 − z2)I(z1 − z2)

T

)

(3.21)

= exp

(

−1

4
‖z1 − z2‖

)

. (3.22)

From this result follows that we can compare the Mahalanobis distance to the Euclidean
distance with the same likelihood function if the regularization is varied enough to reach
convergence. The regularization parameter allows us to observe the stereo correspon-
dance performance from a Euclidean distance metric to a proper Mahalanobis distance
metric.

3.2 Method of evaluation

The theoretical background for the hypothesized improvement of the likelihood function
is discussed in the previous section. It was proposed that an extension of the likelihood
function with a Mahalanobis distance instead of a Euclidean distance as metric could
increase matching performance for difficult regions. This section discusses the imple-
mentation and design decisions used to the the validity and usefulness of the approach.
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We expect that for the occluded and distorted parts of the images — which remained
difficult to find proper correspondance for — the matching performance will improve.
The main goal is to compare the correct correspondances of Equation 3.10 (Mahalanobis)
to the correct correspondances produced with Equation 3.3 (Euclidean).

Results for the experiment are obtained by implementation of Equation 3.18 where
the covariance matrix is regularized with different constants. It was shown in Equation
3.19 that a large constant converges to a Euclidean distance. Therefore, a parame-
ter sweep is applied for regularized covariance matrix, where the regularization factor
ranges from 10−6 (near singular covariance matrix) to 103 (approximately the Euclidean
distance).

Unfortunately, the addition of the trained coveriance matrix to the likelihood function
is not free in terms of computational power. The required matrix multiplications of
the measurement differences (z1 − z2) with the precision matrix P for every likelihood
computation increases the computational complexity, and thereby decreases the degrees
of freedom to explore in the available timeframe. Therefore, some presets have to be
chosen carefully without compromising the results of the experiment. The experiment
is run with a fixed window size on one image scale.

3.2.1 Data selection

To test for a possible improvement of correct matches with the Mahalanobis distance, a
dataset is required with a precise and proper ground truth. Also, we prefer a varied set
of scenes with a very large depth-of-view and good illumination.

The vision group from the Middlebury College provides several very good datasets
that are used globally to compare common and state-of-the-art stereo-vision algorithms.
Each subset from the dataset consists of sevens high-resolution (1240-1396 by 1110 pix-
els) views taken under three different illuminations and three different exposures. Very
accurate disparity maps are provided for two of the seven views to provide good bench-
mark possibilities. All images have been pre-processed to remove radial distortions and
to rectify the images [11, 13]. A subset of eight datasets is selected from the entire
dataset to benchmark for a varied spread of scenes. The optimal settings for the illu-
mination (subset 1) and exposure (subset 2) are selected. An overview of the selected
images and accompanying disparities is given in Appendix C on page 85.

The Middlebury datasets are used to generate the covariance matrices as well as for
the benchmarking of the different algorithms. Three covariances matrices are generated
for every dataset to benchmark for different cases:

• A generic matrix with the leave-one-out method: the other datasets are used as
training datasets. This method should generate a realistic experiment for scenes
and images not yet known.

• A self-trained matrix is generated from the dataset (to be tested) itself. If the
self-trained matrix produces better stereo correspondance than a generic matrix,
it tells us that there is room for improvement. Otherwise, the generic matrix
appears to approach an optimum.
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• Because we expect the performance to improve in difficult parts of the images
with (partial) occlusions, we train a special matrix on pixel blocks with these
effects. The model can be extended with segmentation if the gain in performance
is significant.

3.2.2 Window size and image scaling

The computational requirements for the experiments with the Mahalanobis distance
forces us to limit the degrees of freedom in the simulation. Large images imply more
pixels to be processed, but contain more information. Also, larger windows increase the
computional compelexity significantly, because the number of pixels in the measurement
vectors and the rank of the covariance matrix increases in a squared order with respect
to the window size. Consequently, the required number of operations is of the second
order with respect to the number of pixels, Therefore, the effect of the window size on
the complexity is of the fourth order: T (d) ∈ O(d4), with d as the base of the window.
However, the window should be large enough to support different weights for the pixel
intensities within the window.
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Figure 3.1: Stereo correspondance performance for different window sizes and image
scales.

A quick comparison of window sizes and smaller image scales for the SSD is shown in
Figure 3.1. Although the original images contain more information, a trade-off is made
to reduce computation time. Half-sized images in combination with a window size of 5
provides good testing scores that can be used as a baseline. The half-sized images have
only 620 to 698 rows with 555 pixels each that have to be tested for each case. The
window size of 5 describes the size of the window in each direction measured from the
center pixel, and implies a window size of (5 × 2 + 1)2 = 121 pixels with three primary
colors each. The color images are chosen to take advantage of the correlations between
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color values of the pixels. The dimension of the covariance matrix is therefore 363 by
363, and the measurements zi contain 363 pixel intensities each.

3.2.3 Occluded regions

Most errors in the stereo correspondance seem to occur near occluded and distorted re-
gions. For estimation of the regular covariance matrix, visible regions are used as well as
the partially occluded regions. We suspect that a small improvement in performance is
possible if we train a specific covariance matrix for these effects. In future models, special
covariance matrices can be incorporated in the system with the use of image segmen-
tation. However, segmentation is useful only if the number of correct correspondances
does indeed increase with special covariance matrices.

(a) Bowling2 dataset (b) Baby3 dataset

Figure 3.2: Correct and incorrect correspondances near occluded regions for the likeli-
hood function with an Euclidean distance. Black pixels are occluded, grey pixels are
correctly matched and light pixels indicate the room for improvement.

Figure 3.2 illustrates where the classic algorithm with the Euclidean distance has
difficulties to obtain the correct correspondances. Likelihoods near occlusions appear to
be less reliable than likelihoods of pixels in continuous surfaces of objects. The matching
is difficult for windows that contain regions with different depths. The generic covariance
matrix is mostly trained on smooth surfaces; therefore, we expect that it is worthwhile to
research the possibilities of a covariance matrix that is trained on these different effects.

For this experiment, about 10% of the measurements contains 10 to 50 percent of
occluded pixels for half sized images and a window size of 5 (11 × 11). Larger windows
are more prone to include occlusions within the local measurement range; however, a few
occluded pixels will have less impact on the final result. The scaling of the image affects
the distribution, because windows of the same size cover a larger area of the scene.

The difference in performance is tested by using a special covariance matrix that is
estimated in the same way as the regular covariance matrix for windows, but only on
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windows that are moderately occluded. The additional experiment in run on the subset
of windows that fit the category of 10% to 50% occlusions, both with the regular co-
variance matrix and the covariance matrix that is trained on occlusions only. Especially
this subset of windows seems to suffer incorrect likelihoods in comparison to the ground
truth. Accurate disparities near occlusions are important to define the boundaries of
objects. Therefore, a small increase in local performance for the difficult regions benefits
the total performance.

For this subset of 10% of the measurements, a special covariance matrix is generated
and the results are compared to the generic simulations. The goal is to test whether
special training for occluded regions improves performance for the likelihood function
with the Mahalanobis distance.

3.2.4 Experiment

The planned simulations can be broken down in two important parts. First, the al-
gorithm requires a trained covariance matrix, either from a training set or from the
dataset itself. Second, the trained covariance matrix is used in the evaluation part of
the simulations to obtain the most likely disparity map for the dataset to benchmark.

Both steps require a considerable number of computations. Therefore, the work is
split in lots of chucks to distribute the work and save intermediate results. Because of
its convenient prototyping environment and large set of high level instructions, the algo-
rithms are implemented in Matlab. There are no additional requirements or toolboxes
to run the simulations. A description of all scripts and implemented functions can be
found in Appendix B.

Generation of the covariance matrix

The first step of the experiment consists of the generation of the covariance matrices.
Equation 3.9 in the previous section stated the formal definition to estimate a covariance
matrix.

The measurements that are used to estimate the covariance matrix contain the dif-
ferences of the pixel intensities within the window between the left and the right image;
as described in Equation 3.7. The ground truth of the dataset is used to determine
which measurements will be taken into account, and which will be left out. It is also
used to pair the window in the left image with the correct window in the right image.
Measurements that contain too much occlusions, or are too close to the border of the
images are not used. Also, windows without ground truth information cannot be used,
because the disparity between the windows is not known.

The simulations for the datasets in combination with the respective covariance matri-
ces incorporate an important parameter for the regularization of the covariance matrix.
Because most estimated covariance matrices appeared unstable due to reasons described
in Section 3.1, the regularization method of Equation 3.18 is implemented to provide
robust matrices that satisfy the properties of the covarance matrix, and to make it in-
vertible. The matrix is factorized with spectral decomposition in a square matrix with
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all eigenvectors and a diagonal matrix whose diagonal elements are the corresponding
eigenvalues. The regularization factor defines an addition to the value of all eigenval-
ues, based on the largest eigenvalue. This parameter controls the regularization and
has significant impact on the covariance matrix and the performance of the algorithm;
therefore, all experiments are run for a range of regularizations.

Disparity computation

In the second step, the performance of the algorithm is evaluated by implementation
of Equation 3.12. Because input images from the Middlebury dataset are already pre-
processed, rectification of the inputs can be omitted. However, different types of covari-
ance matrices are to be tested on the datasets, and therefore have to be generated before
stereo matching can commence.

The disparity map is built row-by-row and pixel-by-pixel. For every pixel, the max-
imum likelihood function is used to generate a set of probabilities that the local mea-
surement in the left image matches a candidate set of shifted measurements in the right
image. These probabilities are used to determine the most likely disparity map. The
most likely pair of measurements indicates the most likely horizontal disparity. The Win-

ner Takes All (WTA) method is implemented to measure and compare performance, but
other algorithms can also be used in which the optimization of the maximum likelihood
is applied to a larger range of pixels. However, this type of post-processing requires tun-
ing and clouds the exact performance of the maximum likelihood function which would
make it difficult to compare it objectively. Hence, the implementation with the WTA
method is not optimal, but the goal is to explore the possibilities and the usefulness of
a Mahalanobis distance.

The estimated disparities are used to compare the difference in correct matches for
the selected range of regularization values. Appendix B summarizes the implemented
algorithms and visualization scripts.

Preliminary experiments

The primary goal of the experiment is to explore the difference in the number of correct
matches between different algorithms and methods. However, interesting information
unveils itself during the initialization process in which the covariance matrix is generated.
The structure of the precision matrix (the inverse of the covariance matrix) gives an
impression of the weights allocated to the different elements. Therefore, the first step in
the experiment is to present and discuss the structure of a generated precision matrix.

• We expect that the weights on the diagonal contribute the most. In other words,
windows are mostly mapped one-to-one where distortions are not dominant.

• The distance of a pixel within a window is expected to influence the weight of
the measurement pair. Pixels futher away from the center are more vulnerable to
distortions and occlusions.
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• Mutual information between the primary colors of the pixels is expected.

Also, spectral analysis of the covariance matrix could give an impression for the results
we can expect. The difference in the size of the eigenvalues gives an indication for
the variation in variances and the effect of the applied regularization. The individual
eigenvectors (ranked by eigenvalue) show which patterns contribute, and which do not.

Protocol

The purpose of the experiment is to test the following hypotheses:

1. The Mahalanobis distance produces better results than the Euclidean distance.
(Equation 3.18 versus Equation 3.3.)

2. A covariance matrix trained on the dataset itself results in better correspondances
between the left and the right image. (There is room for improvement for the
generic covariance matrix generated on other datasets.)

3. A special covariance matrix for the partially occluded regions improves perfor-
mance for these regions.

All three experiments require the Middlebury dataset[11] for the stereo images and depth
groundtruth (Appendix C). The required Matlab scripts that contain the implemented
algorithms are described in Appendix B.

Experiment 1: Mahalanobis distance

1. Select a dataset.

2. Generate a covariance matrix from the remaining datasets with Equation 3.9.

3. Apply different regularizations to the covariance matrix.

4. Compute the likelihood for every possible pixel pair with Equation 3.18.

5. Extract a disparity map from the likelihoods with the WTA method.

Experiment 2 (extension of experiment 1): Covariance matrix generated from the same

dataset

2. Generate the covariance matrix only from the dataset that is selected for process-
ing.

Experiment 3 (extension of experiment 1): Occlusions

2a. Generate a covariance matrix from the remaining datasets, but on windows with
moderate occlusions only (10% to 50% occluded).

2b. Generate the covariance matrix from the same dataset (equal to experiment 2),
but also on 10% to 50% occluded windows only.



3.2 Method of evaluation 57

4. Compute the likelihoods for windows where the window in the left window has
10% to 50% occlusions.

5. Extract the disparity map only for the pixels that correspond to the windows of
(4.)

Controls:

• Window size is chosen at 5 pixels from the center pixels: 11 × 11 windows.

• The images are scaled by a factor two to limit the required computuing power.

• The regularization constant is sweeped from very small (10−6) to very large (103):
convergence to euclidean distance.

Data interpretation:
The covariance matrix is generated in the first stage of the experiment. Because the
inverse of the covariance matrix (the precision matrix) can be seen as a matrix of weights
for the measurement residuals, it is inspected before running the second stage of the
experiment. The diagonal of the precision matrix holds the primary weights and is
expected to have the highest energy. The diadonal elements have the same constant
values for the euclidean distance. For the mahalanobis distance, however, we expect that
the diagonal is dominant, but models the importance of the pixels within the windows.
The elements on the diagonal for pixels in the center are expected to have more energy
than pixels near the border (of the window). Also, we expect that correlation between
the primary colors becomes visible on the diagonals between the different colors. The
content of the precision matrix confirms the chosen model if it satifies our expectations.
Spectral analysis shows the importance of the different eigenvectors by the value of their
accompanying eigenvalue.

The second stage of the experiment returns likelihoods for all possible window com-
binations. We compare the performance of the different settings and experiments by
extracting the most likely window pair (best matches; WTA). These window pairs com-
bined form the estimated disparity map, which is inversely proportional to the depth.
The total number of mismatches is obtained by comparison of the disparity map with
the ground truth of the dataset. The raw number of mismatches is given in Appendix
D.

In order to compare the difference in performance properly, we normalize the number
of mismatches with the euclidean distance as baseline. The euclidean distance is indi-
cated in the graphs by the very large regularization constant of 103 and has a relative
performance of 1. A relative score larger than one indicates that there are more incorrect
matches, and is therefore worse than the euclidean distance. A lower score equals less
incorrect matches, and therefore represents better performance. For example, a score of
0.9 equals 10% less incorrect matches

The first experiment contains the results for the indivual datasets, as well as the
average performance over all datasets. For the additional experiments with self-training
and training on occlusions, only the mean performance is used, and compared to the
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mean performance of the first experiment (baseline). Again, Lower scores indicate less
incorrect matches.

3.3 Results

This section presents the results obtained by the experiments described in the protocol
of Section 3.2.4. The raw data of the experiments (the number of incorrect matches per
dataset) is bundled in several tables in Appendix D on page 89. Also, additional images
that hold the individual gains and losses of correct pixels are given in the supplemental
chapter.

3.3.1 Preliminary: covariance matrix

The precision matrix for the maximum likelihood function is generated according to the
recipe of Section 3.2.4. The disparities from the ground truths of the remaining datasets
are used to extract a large set of samples from which the covariance matrix can be
estimated. Consequently, the precision matrix is obtained from the covariance matrix
after regularization of its eigenvalues. In the previous section, a few expectations were
given in the protocol of the experiment. We expect that the assumed model has some
noticeable consequences for the shape of the elements in the precision matrix.

(a) 3D view (7× 7 windows)
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(b) Diagonal (11× 11 windows)

Figure 3.3: The precision matrix built from residuals of the Bowling2 dataset.

Figure 3.3(a) shows an example of a generated precision matrix for 7-by-7 sized win-
dows. The protocol of the experiment specified 11-by-11 windows for all experiments,
but for a proper 3D-representation of the weights this window size appeared to be pro-
duce an indistinct graph. With 7-by-7 windows, the effects present in the precision
matrix are exactly the same; however, it is much clearer the recognise the seperate rows,
columns and colors. The diagional elements of the matrix represent the weights for the
residuals between the same colors and pixels. It consists of three parts for red, green,
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and blue respectively. Every column in the window is recognizable as a small slope of
seven pixels. It is clear that the outer pixels have considerable lower weights than the
center pixels, which confirms our first prediction. Also, it is clear that there is signifi-
cant correlation between the color values of the same pixels. Weights for pixels in the
left window that are shifted one position in the right window even appear to have a
negative weight. Most other elements are near-zero, and can therefore be left out in
simplifications of the algorithm. The simplification will have a very small impact on the
performance, but reduces the computational complexity significantly.

The diagonal elements for a precision matrix generated with an 11-by-11 window
are given in Figure 3.3(b). Similar to the 3D-representation, the columns are stacked
together ordered from left to right for each color. The weight of the residuals falls off
from the center to the border of the window. Also, it appears that for every dataset
more weight is allocated to the color green. It is possible that this effect is caused by
properties of the cameras.

Eigendecomposition

With spectral decomposition, the covariance matrix can be factorized and represented
by its eigenvalues and eigenvectors. The eigenvalues determine the scaling of the accom-
panying eigenvector. A properly estimated covariance matrix is invertible and positive
definite (Appendix A.4). This constraint implies that all eigenvalues positive and suf-
fciently large. The eigenvalues for the covariance matrices that belong to all datasets
used in this experiment are given in Figure 3.4. (The covariance matrix for the Bowling2
dataset was given in Figure 3.3.)

Unfortunately, one of the eigenvalues is very small and approaches zero. Hence, it
is clipped in the graph to keep the range of the logarithmic scale useful. This indicates
that regularization is required to obtain the proper precision matrix from the covariance
matrix. Also, note that the range of the eigenvalues is quite large and indicates that
there is a significant difference in the scaling of the eigenvectors. This implies that
the estimated covariance matrix for the mahalanobis distance differs from the euclidean
distance, and that we should expect differences in performance.

The eigenvectors for the Bowling2 dataset are shown in Figure 3.5. The image
contains all eigenvectors of the covariance matrix, with every block as an individual
eigenvector transformed back to two dimensions. The dominant eigenvector is placed
in the top-left corner, and the accompanying eigenvalue decreases column-wise to the
bottom, and then column-by-column to the right. The smallest eigenvalue of the covari-

ance matrix belongs to the top-left eigenvector; however, because the precision matrix
is the inverse of the covariance matrix, the top-left block is the most important and the
bottom-right block is the least important for the similarity measure.

The constant eigenvector has the largest contribution to the precision matrix. Fur-
thermore, it appears that high-frequency eigenvectors contribute the most to the preci-
sion matrix weights. Also, the (large) eigenvectors show a clear drop-off in importance
from the center of the window to the outside of the window. Hence, it takes the shape of
a two-dimensional Gaussian. The tilted planes and low-order eigenvectors (on the right



60 Mahalanobis distance 3

Bowling2

Baby3

Midd1

Monopoly

Aloe

Wood1

Flowerpots

Rocks1

Combined

0 50 100 150 200 250 300 350 400
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Figure 3.4: Eigenvalues of the covariance matrix built from the available datasets. The
covariances are generated from the half-size images with 11 by 11 windows.

side of the image) contribute most to the covariance matrix, and therefore implies that
these are the least important eigenvectors for the precision matrix.

In conclusion, it appears that the trained covariance matrix confirms the predictions
from the protocol. Therefore, the Mahalanobis distance is still expected to improve the
matching performance for the selected datasets.
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Figure 3.5: Eigenvectors of the covariance matrix for the Bowling2 dataset. The covari-
ance matrix is generated from gray-scale images with window size = 11 × 11.

3.3.2 Mahalanobis distance vs. Euclidean distance

The number of correctly found disparities is tested with the algorithms described in
Section 3.2.4 and compared to the ground truths of the selected datasets from the Mid-
dlebury dataset.

The first experiment of the protocol supplied a recipe to compare the performance
of the Mahalanobis distance versus the Euclidean distance. Figure 3.6 shows the results
for this experiment. For a regularization constant of 103, the likelihood function has
converged to the Euclidean distance. The number of mismatches is shown relative to
the Euclidean distance. A lower score indicates less incorrect matches, and therefore a
better stereo correspondence performance.

In Figure 3.6, the experiment produces varying results for the individual datasets
in terms of relative decrease of incorrect correspondences. However, the optimal regu-
larization constant that leads to the least number of incorrect matches is quite stable
about 10−2. For this regularization, the mean of the relative performance shows a clear
optimum with an average increase in performance of almost 4%. Unfortunately, it ap-
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pears that it remains difficult to provide a good correspondence for every position in the
scene.
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Figure 3.6: Number of errors for a regularized covariance matrix normalized to the
Euclidean distance.

However, if we take a closer look at the gains and losses, it becomes clear that
some segments are very difficult to process. Regions with lots of occlusions or regions
with very little information are amonst the most difficult. Figure D.1 in Appendix D
shows images for all processed datasets in which the exact gain and loss in performance
occurs. Figure 3.7 is a larger version of one of these datasets and shows the increase
in performance for the Bowling2 dataset. Correct matches for both the Mahalanobis
distance and the Euclidean distance are colored gray. Correct disparities gained with
the Mahalanobis distance are colored green, and the red color indicates disparities that
are computed correctly with the Euclidean distance, but produce errorneous disparities
with the Mahalanobis distance. Furthermore, the blue color indicates regions for which
no ground truth is known (due to occlusions or out-of-range disparities). Finally, the
pixels for which the correspondences are computed incorrectly, but are geometrically
possible to compute correctly, are colored black. Yellow pixels are the same as black
pixels, but with the complication that there is almost no texture available in the scene
to work with (e.g. a white background). Hence, black and yellow indicate the room for
improvement.
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Figure 3.7: Difference for the Bowling2 dataset between the Mahalanobis distance for
optimal regularization and the Euclidean distance.

Although there are still a lot of pixels with incorrect disparities, it appears that the
Mahalanobis distance does lead to a lot of new important correct correspondences. Es-
pecially the gains near occlusions might prove valuable with additional post-processing.
With the WTA method, a new correct match does not influence its region. However,
if we use the information of neighboring correspondences, it is possible to produce an
improved disparity map in which very unlikely jumps in depth are discarded. Combined
with object segmentation, the small percentage of newly gained correspondences could
lead to much more accurate disparity map.

3.3.3 Results for self-training

The second experiment of the protocol describes a re-run of the experiment with a co-
variance matrix generated on the dataset and the ground truth itself. This self-training
allows us to explore the leeway for further performance improvement if the covariance
matrix is optimal for the testcase at hand. All simulations are repeated for precision
matrices that are self-trained on the ground-truths. In Figure 3.8 the combined results of
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the eight datasets is presented. For optimal regularization, the difference in performance
appears to be negligable, but it is present for the entire range of regularizations. There-
fore, it can be concluded that the generated precision matrices used for the simulations
presented in Figure 3.6 approach the maximum attainable disparty performance. Table
3.1 gives the exact differences of (in)correct matches.
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Figure 3.8: Number of errors for the covariance matrix trained on the test image itself.
The window size is 11-by-11 applied on the half size images.

Dataset Regular Self Net. gain Samples Incorrect

Bowling2 158 209 +51 299698 54832
Baby3 149 253 +104 281712 29448
Midd1 602 708 +106 320494 185852
Monopoly 423 662 +239 337470 178075
Aloe 474 508 +34 306092 61026
Wood1 176 180 +4 332762 43469
Flowerpots 248 567 +319 259313 47236
Rocks1 134 113 −21 289511 17918

Table 3.1: Difference in performance for the Mahanalobis distance with a covariance
matrix trained with the leave-one-out and on the dataset itself method.
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3.3.4 Results for occluded regions

Preliminary experiments indicated that the likelihood function contained a lot of in-
correct correspondances near occlusions. The occlusions and discontinuities result in
windows in the left and the right image where pixels cannot be mapped one-to-one.
Therefore, those pixels will result in high contributions to lower the likelihood.

The third experiment in the protocol proposed to test if covariance matrices can be
trained properly to included occlusion effects. Contrary to a generic covariance matrix,
it is trained on windows that fit the category of partially occluded windows. It was
expected that the prediction of correct disparities is especially difficult for pixels bor-
dering occlusions. Unfortunately, the hypothesis that special training and segmentation
improves performance appears to be false. The results of the experiment are shown
in Figure 3.9. The relative performance of incorrect likelihoods is given for covariance
matrices trained on other datasets, as well as on the dataset itself. Both cases result in
negligible differences in performance between training on all windows and on partially
occluded windows only.
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Figure 3.9: Comparison of different covariance matrices for 11-by-11 windows evaluated
on half size images of the Middlebury dataset.

3.4 Discussion

This chapter is dedicated to research the usefulness and practical implications of a maxi-
mum likelihood function that uses Mahalanobis distance instead of a Euclidean distance.
The Mahalanobis metric introduces a covariance matrix to the likelihood function that
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has to be generated from taining datasets. The proposed model of Section 3.1 is tested
with the protocol of Section 3.2.4.

The first part of the experiment was implemented to answer the primary research
question for this chapter by researching whether the Mahalanobis distance produces less
incorrect correspondences than the classic Euclidean distance. The estimation of high-
dimensional covariance matrices often leads to unstable solutions that are not invertible
to the required precision matrix. This problem is overcome by regularization of the
covariance matrix; however, the intensity of the regularization has a direct effect on the
performance of the likelihood function. For this experiment, a regularization that adds
about the order of one percent of the maximum eigenvalue to all eigenvalues appeared
to give the best results. Eight datasets from the Middlebury dataset were processed and
the average reduction of incorrect matches appeared to be about 4%. Unfortunately,
this reduction of incorrect matches is relatively quite small; although it generally implies
several tens of thousands of extra correct correspondences in the disparity map. Also, the
extra correct correspondences occur in difficult regions that contain partially occluded
windows.

In the second experiment, generation of the covariance matrix on the dataset itself
resulted in slightly better performance than performing the experiments with a generic
matrix. Therefore, the generic covariance matrix does not appear to be an optimal
solution for the likelihood function. In the third experiment, a simulation targeted
to explore whether the performance for partially occluded windows can be increased
resulted in no observable difference in performance.

The hypothesis that the Mahalanobis distance improves the performance compared
to the Euclidean distance is validated. The initial assumption that pixels in both win-
dows have an additive white noise to the unknown texture indeed seems to be valid.
However, the small reduction of incorrect matches comes at the cost of a severe increase
in computational complexity. Because the addition of the covariance matrix requires
a full matrix multiplication with high-dimensional matrices, the number of required
multilplications is a few orders higher than for the Euclidean distance.

Suggestions

In the preliminary analysis of the precision matrix it became clear that most elements
contribute very little to the likelihood function. A selective use of a several diagional
elements decreases computational complexity, but probably doesn’t lower the matching
performance of the likelihood function. Also, large matrix multiplications can be ac-
celerated quite a lot by exploiting the highly parallelized structure of modern graphics
cards.

Lastly, a variable window size that adapts to borders of the images might be able
to cover a larger surface of both images, and thereby producing a larger disparity map
for the available pixels. In the current implementation, the entire window has to fit the
images taken by both cameras.
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Conclusions and Discussion

The goal of this thesis was to examine the likelihood function that was introduced in the
paper of Damjanović et al.[4]. Several research questions defined the framework of the
research project. The contents of the thesis are largely divided in two parts: the first
part focused on the solution for and improvement of the new likelihood function. The
second part describes the experiment that was designed to test the difference between the
Mahanalobis distance and the Euclidean distance as metric for the likelihood function.
In the first section of this chapter, the research questions are answered. The final section
gives recommendations for future research.

4.1 Research questions

Q1 How can the algorithm as introduced by Damjanović et al. be improved, taking into

account the complication of the analytical derivation?

Halfway the derivation, it became clear that an error was made in the marginal-
ization of the unknown texture. The correct solution of the marginalization of the
unknown texture introduced a very high order pole in the expression. The final
solution is obtained by marginalization of the gains. Unfortunately, the high order
pole prevents a proper final solution. Although we did not succeed in improving
the likelihood function, it is an important result that the error in the derivation
has been corrected. We expect that the integral should be solvable with some
transformations and Cauchy’s integral formula.

(Q1a) Are approximations sensible to obtain a solution for the likelihood function?

No, it appears that the correction complicates the term that was approxi-
mated in the paper. It is an essential part of the likelihood function, and care
should be taken with respect to equating the gains to constants in certain
situations. However, the scaling constant of the likelihood function can be
discarded without consequence, because only the difference in likelihoods is
used.

67
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In our quest for a solution, we have tried to approximate certain parts of the
expression with a Taylor expansion. The Taylor expansion is very complex for
even low order expansions, and it appeared that even high order expansions
introduce severe approximation errors. Therefore, we conclude that it is not
a useful method to obtain a solution for the likelihood function.

(Q1b) How is the new likelihood function generalized for more than two camera

views?

The n-view generalization of the likelihood function is an extension of the two-
view likelihood function. Because we were unable to find a proper complete
solution for the two-view likelihood function, we were also unable to provide
a generalized likelihood function. However, it is shown in Section 2.5 that
the derivation of the generalized likelihood function is more abstract, but not
significantly harder to solve. Therefore, we conclude that an n-view variant
of the likelihood function can be obtained once the two-camera solution is
found.

Q2 Does a simplified version of the likelihood function improve performance?

It was concluded in Chapter 2 that a simplified form of the new likelihood function
equals a monotonically decreasing function of the SSD. In Chapter 3, the difference
in performance between the Mahalanobis distance and the Euclidean distance is
evaluated. Literature research revealed that it — the likelihood function with a
Mahalanobis distance as its metric — is an extension of the similarity measure
that was used in both the paper of Cox et al.[3] and the paper of Belhumeur[1].

The similarity measure with the Mahalanobis distance produces better results for
all eight tests in the experiment of Section 3.3. However, it appeared to be neces-
sary to regularize the estimated covariance matrices to avoid negative eigenvalues
and keep it invertible.

(Q2a) How significant is the reduction of errors in the stereo correspondence?

The performance of the Mahalanobis distance is dependant on the amount
of regularization. For good regularization, the number of incorrect matches
compared to the Euclidean distance was about 4% lower. Although 4% does
not seem much at first, a closer inspection revealed that most the the new
correct matches lie close to discontinuties and occlusions. This gain in perfor-
mance is important, because these pixels will have a significant contribution
to the post-processing algorithms, such as the one-dimensional Viterbi or the
two-dimensional Belief Propagation.

The similarity measure with the Mahalanobis distance, however, is far more
computationally complex than the Eucldean distance.

(Q2b) Is it possible to improve the matching performance of the simplified likelihood

function?

The matching performance does depend on the specific covariance matrix.
Figure 3.8 shows the results of the experiment where the covariance matrix
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is built on the dataset itself. It appears that the generic matrix is not yet
optimal for every image; however, the difference is very small.

It was also hypothesized that the use of different covariance matrices for dif-
ferent segments of the scene could improve performance. A lot of mismatches
occur near occlusions. Therefore, we have decided to run extra experiments
on the occluded parts of the datasets. The difference in performance between
a covariance matrix generated on all data and on the occluded regions only
appeared to be negligible, as shown in Figure 3.9. We conclude that it is not
useful to segment the image and use specific covariance matrices for every
segment type.

4.2 Recommendations

The main recommendation is to find a proper and complete solution for the likelihood
function. However, it has become clear during this project that this will not be an
easy task. It might be useful to approximate the expression that was obtained by
the marginalization of the unknown texture. Special care should be taken to reduce
the approximation errors as much as possible. We expect that it is possible to obtain
an analytic solution by transforming the expression to polar coordinates. After the
transformation, it seems that the difficult part of the integral can be solved with Cauchy’s
integral formula.

Once a solution is found for the likelihood function, it is highly recommended to
investigate the performance of a generalized likelihood function for more than two ca-
meras. Current similarity measures for n-view vision compute measures for camera pairs
and combine the results afterwards. Our method allows incorporation of all information
in one model. In other words: the generalized likelihood function then depends on all
available cameras directly.

In Chapter 3, it was concluded that the Mahalanobis distance improves the stereo
correspondence slightly; however, it was noted that this comes at the cost of signifi-
cantly more processing power. If we take a closer look at Figure 3.3(a), it appears that
a lot of weights in the precision matrix are very close to zero. These weights contribute
little to the likelihood. It might be possible that an approximation of the Mahalanobis
distance with only a few coefficients performs almost the same as the complete Maha-
lanobis distance in terms of matching performance. This could reduce the computational
complexity of the simplified likelihood function without sacrificing much matching per-
formance.

It was concluded that the number of errors in the matching process decreases with a
good Mahalanobis distance instead of a Euclidean distance. The gained correct matches
appeared to lie in difficult regions (e.g. near occlusions and discontinuities). It might
be interesting to investige whether these new matches contribute to better performance
when post-processing methods are used.
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Proofs and Reference

A.1 Integral of a Gaussian function

Theorem

∫ ∞

−∞
a exp

(
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)
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)
√
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(A.1)

Proof

F =

∫ ∞

−∞
a exp

(

−(x + b)2

c2

)

dx (A.2)

Factor out a; change the variable of integration to y = x + b:

F = a
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−∞
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(

−y2

c2
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dy (A.3)

then change the variable of integration to z =
y

|c| :

F = a|c|
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−∞
exp
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−z2
)

dz = a|c|
√

π (A.4)

However, for ease of use this can be rewritten to an alternative form in which the
refactored form is used to separate the constant part of the exponent from the integrand.
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Thereafter, the integral can be evaluated as a regular Gaussian integral:
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A.2 Multidimensional Gaussian integral

Let x = [x1 x2 . . . xn]T and its variables of integration dnx ≡∏n
i=1 dxi.

Theorem

One of the basic properties of the coveriance matrix states that the covariance matrix
Σ is symmetric positive-semidefinite (See Appendix A.4), thus let Σ be a symmetric
positive definite matrix and f : R

n → R, where f(x) = exp (−1
2x

TΣ−1x).
Then

∫ ∞

∞
exp

(

−1

2
xTΣ−1x

)

dnx =
√

(2π)n|Σ|, (A.6)

where |Σ| = detΣ.

Proof

Σ−1 is real and symmetric ((Σ−1)T = (ΣT)−1 = Σ−1). For convenience, let A = Σ−1.
We can decompose A into A = TΛT−1, where T is an orthonormal (TTT = I) matrix
of the eigenvectors of A and Λ is a diagonal matrix with the eigenvalues of A. Then
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Because T is orthonormal, we have T−1 = TT. Now define a new vector variable
y ≡ TTx, and substitute:
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In this equation |J| is the determinant of the Jacobian matrix Jmn = ∂xm

∂yn
, and in this

case, J = T. The n-by-n-matrix T is of the special orthogonal group, a subgroup of the
general orthogonal group, for which the determinant is always equal to 1. Therefore,
the integration by substitution is free as |J| = 1. (The special orthogonal group is the
kernel of the Dickson invariant [19].)

Since Λ is diagonal, the integral may be separated into the product of n independent
Gaussian distributions. Each independent part can be integrated separately using the
well-known formula (equation A.5):
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Solving the integral for every independent part gives:
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Now, we have |A| = |TΛT−1| = |T||Λ||T−1| = |Λ|, so this becomes
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To finalize the proof, A has to be substituted back in for Σ−1 which results in the
theorem to be proved:
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)
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A.3 Integral of a multi-dimensional Gaussian function

First, to simplify the integral notation, we introduce:

∫ ∞

−∞
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−∞
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with f : R
n → R, where f(x) = a exp

(

−bxTPx + cdTx + f
)

.
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Theorem

Let C be a symmetric positive definite matrix and f : R
n → R. Then:

a
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where |C| = detC.

Proof

The exponent contains a shift vector d = [d1, . . . , dn] and a constant f . As is the case
with the basic multivariate integral in Appendix A.2, the matrix P is constrained to
be symmetric and positive semidefinite. These constraints imply that P is a precesion
matrix of covariance matrix C = P−1. (See Appendix A.4.)

This multivariate integral of Equation A.18 is difficult to evaluate; however, it is
possible to use the properties of the precision matrix P to represent this matrix in terms
of eigenvalues and eigenvectors that can be integrated separately. With eigendecompo-
sition it is possible to factorize a matrix into a canonical form such that P = TΛT−1.
Replacing P with a diagonal matrix Λ of eigenvalues Λii = λi and accompanying matrix
T with corresponding eigenvectors ti on its columns gives:
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Because the multivariate integral results in a scalar, it is possible to rewrite the matrix
notation to summations as presented in Equation A.54:
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In the proof of Section A.1, the expression in the exponent is brought into a vertex form
to separate the constant part from the integral. The same method can be applied to
the current expression while keeping in mind that we would like to bring the eigenvector
matrix into the variable of integration. The vertex form becomes:
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 exp (f) .

(A.22)
In the current state of the expression a term is evaluated n3 times over all three sum-
mations; however, it is possible to rewrite the summations to a vertex form such that
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the multiplication of every eigenvector with each input variable is evaluated within the
factor. This brings us one step closer to the regular Gaussian integral expressed as:
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The constant contributions γi and f within the exponent of the integral are extracted and
removed from the integrand in equation A.24. The constant summation is temporarily
compacted to g = −b

∑n
i=1 γi. The quadratic function is factored to bring the expression

in vertex or standard form, for which the solution for αi and γi is:

αi =
c

2bλi
dT−1Sii (A.25)

γi = −λiα
2
i , (A.26)

where Sij ∈ R
n×n is the single-entry matrix which is zero everywhere except for the

(i, j)-th entry, in which case the value of the entry equals one. The constant part is then
grouped in g, with:
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2
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With substitutation of αi from equation A.25, g can be written back to matrix form,
where the eigendecomposition is reversed to regain an expression with the precision
matrix P. The inversion property of the eigenvalue matrix is used in equation A.30 to
bring P to the numerator.
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The next step is reached by substitution of the new integration variable yi =
∑n

j=1 tjixj.
Unfortunately, the substitution introduces a derivative in the expression as described in
Appendix A.2 so that the new integral to be evaluated transforms to:

F = a exp (f + g)
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In equation A.31, |J| is the absolute determinant of the Jacobian matrix Jmn = ∂xm

∂yn
,

and in this case, J = T and therefore equal to one (see Appendix A.1 and [19]). Hence,
the change of integration variable further simplifies the integral. Because the integration
is applied from minus infinity to infinity, the shift variables αi of the integrand have no
contribution to the final result of the integral, and can therefore be omitted:

F = a exp (f + g)
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The integral of the Gaussian function is now brought in the same form as the integral in
equation A.11. The summation of the multivariate integrand-part inside the exponent
is equal to a multiplication of the same number of exponents.

Because the integration of the exponents is independent for every y, the integral of
products can also be written as a product of independent integrals:
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This product of integrals can be solved with the same recipe as Appendix A.2, which
results in:
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Again, by substitution of |Λ| with |P| = |C−1| = |C|−1 and g with its respective value,
we obtain:
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This completes the proof for the improper integral of a multivariate Gaussian function.
This result can be used to solve the marginalization of probability density functions that
contain an expression with a Gaussian function.
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A.4 Proof symmetric positive-semidefinite covariance

The symmetry for the covariance matrix Σ corresponding to a random vector X follows
from its definition:

cov(X,Y) = E
[

(X− E [X]) (Y − E [Y])T
]

= E
[

(Y − E [Y]) (X− E [X])T
]

= cov(Y,X) (A.40)

The positive semi-definiteness property of the coveriance matrix is obtained by starting
with the definition that Xik is the k-th observation of the i-th pixel of m by n length
respectively. This implies an observation matrix X ∈ R

n×m where every row has a
number of observations for a certain window value. The resulting covariance matrix
then is Σ ∈ R

n×n. For any vector z ∈ R
n:

zTΣz =
n
∑

i=1

n
∑

j=1

(ziΣijzj) (A.41)

=

n
∑

i=1

n
∑

j=1

(cov (Xi,Xj) zizj) (A.42)

=

n
∑

i=1

n
∑

j=1

(E [(Xi − E [Xi]) (Xj − E [Xj])] zizj) (A.43)

= E





n
∑

i=1

n
∑

j=1

(Xi − E [Xi]) (Xj − E [Xj]) zizj



 (A.44)

=
1

m

m
∑

k=1

n
∑

i=1

n
∑

j=1

(xik − E [Xi]) (xjk − E [Xj ]) zizj (A.45)

(A.46)

In order to simplify the equation we can rewrite xik to vectors with zero mean and divide
it by the sampling size to include the encapsulating expected value:
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xik − E [xi]
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The equation then simplifies to:
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Let w = UTz:

zTΣz = wTw =

n
∑

i=1

wiwi =

n
∑

i=1

w2
i ≥ 0 (A.52)

Hence, w2
i is never negative as long as z and Σ statisfy the condition of being real.

Thus results the conclusion that every covariance matrix must be a symmetric positive
semidefinite matrix.

A.5 Vector and matrix properties

In this report, several multivariate functions are used with a scalar output: f : R
n → R.

To proof some theorems it is practical to switch to a summation notation, where x =
[x1 . . . xn]T, y = [y1 . . . yn]T and A ∈ R

n×n:

xTAy =
n
∑

i=1

n
∑

j=1

xiaijyj. (A.53)

For a decomposed case, an extra diagonal matrix is introduced with eigenvalues on the
diagonal of the matrix and zeros everywhere else:

xTADBTy =

n
∑

i=1

n
∑

j=1

n
∑

k=1

xjajidibkiyk, (A.54)

with B ∈ R
n×n and D ∈ R

n×n.

Also, the determinant of a the diagonal matrix has a useful alternate notation:

det(D) =

n
∏

i=1

dii. (A.55)
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A.6 Fubini theorem

Fubini’s theorem1 establishes a connection between a multiple integral and a repeated
integral if f(x, y) is measurable on the rectangular region A × B and if

∫

A×B

|f(x, y)|d(x, y) < ∞, (A.56)

then:

∫

A

(∫

B

f(x, y) dy

)

dx =

∫

B

(∫

A

f(x, y) dx

)

dy =

∫

A×B

f(x, y) d(x, y). (A.57)

Consequentyly, for f(x, y) = g(x)h(x):

∫

A

g(x) dx

∫

B

h(y) dy =

∫

A×B

f(x, y) d(x, y) (A.58)

A.7 Integration by substitution for multiple variables

Sometimes, integrals to may look hard to perform at first hand can be transformed
to easier ones through algebraic substitution. The counterpart to the chain rule of
differentation is for a continuous function:

∫ b

a

f(g(t))g′(t)dt =

∫ g(b)

g(a)
f(x) dx, (A.59)

with the substitution x = g(t). Hence, this yields dx
dt

= g′(t), or dx = g′(t)dt.

When integrating functions with multiple variables it is possible to use the same
method, a change of variables, to simplify the integral. For the substitution function
(v1, . . . , vn) = ϕ(u1, . . . , un) the integration variables have to be changed to2:

dv1 · · · dvn = |det(D ϕ)(u1, . . . , un)|du1 · · · dun, (A.60)

with det(D ϕ)(u1, . . . , un) holding the partial derivatives of ϕ. For any real-valued, com-
pactly supported, continuous function f and a real valued set of substitution variables
ϕ, the integral can be rewritten to a new set of integration variables:

∫

ϕ(U)
f(v) dv =

∫

U

f(ϕ(u)) |det(D ϕ)(u)| du, (A.61)

with the absolute value of the determinant as the spanned volume of the given vectors.

1http://en.wikipedia.org/wiki/Fubini’s_theorem
2http://en.wikipedia.org/wiki/Integration_by_substitution
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A.8 Cauchy’s Residue Theorem

∮

Γ
f(z) dz = 2πi

n
∑

k=1

Res(f, zk) (A.62)

Res(f, z0) =
1

2πi

∫

γ

f(z) dz = lim
z→z0

1

(m − 1)!

dm−1

dzm−1
[(z − z0)

mf(z)] (A.63)

Cauchy’s principal value:

p.v.

∫ ∞

−∞
f(x)dx := lim

ρ→∞

∫ ρ

−ρ

f(x)dx (A.64)

Figure A.1: Contour integral around poles zi
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List of project files

B.1 Data and file structure

/

matlab/.....................................Matlab workspace, see Table B.1
data/

delta/..........................................Window size benchmarks
energy/................................Benchmarks for low energy regions
full/..........................Leave-one-out benchmarks (high resolution)
full self/.......................Self-trained benchmarks (high resolution)
scaled2/.......................Leave-one-out benchmarks (half resolution)

self/ ......................................... Self-trained benchmarks
occmed/............Benchmarks trained and applied on occluded regions
occmed self/ .............. Self-trained benchmarks on occluded regions

scaled4/.................Leave-one-out benchmarks (one-fourth resolution)
self/ ......................................... Self-trained benchmarks
occmed/............Benchmarks trained and applied on occluded regions
occmed self/ .............. Self-trained benchmarks on occluded regions

results/

images/

Aloe/.......................................................Figure C.1(a)
Baby3/ ..................................................... Figure C.1(c)
Bowling2/..................................................Figure C.1(e)
Flowerpots/................................................Figure C.1(g)
Midd1/......................................................Figure C.1(i)
Monopoly/..................................................Figure C.1(k)
Rocks1/....................................................Figure C.1(m)
Wood1/.....................................................Figure C.1(o)

81
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B.2 Scripts and programs

Script Description

funcgui.m Visual exploration of the likelihood function
cell filter.m Select a subset from the dataset (leave-one-out)
collect cov.m Collect covariance matrices required for a sweep
compute cov.m Compute a covariance matrix for applied datasets
compute cov occ.m Compute a covariance matrix for occluded parts only
compute energy.m Compute the energy of windows for stereo images
covmat reg test.m Explore the effects of regularization of covariance matrices
dataset info.m Generate information descriptor for the results datasets
diff mask.m Visualize image regions based disparity errors
disparity diff.m Compute difference between ground-truth and results
row fw.m Optimal path for a disparity row with the forward algorithm
row fwbw.m Optimal path for a disparity row with forward-backword
row viterbi.m Viterbi optimal path for a disparity row
gen covmat.m Generate all required covariance matrices for the benchmarks
gen covmat occ.m Generate covariance matrices for occluded regions
genreport covplot.m Function to plot the 2D-eigenvectors of a covariance matrix
genreport imerrors.m Visualization of the gains and losses between two methods
genres eigenvalues.m Extract the eigenvalues and eigenvectors from results datasets
gt occlusion.m Detect occlusions between the left and the right ground-truth
occlusion mask.m Generate a mask based on occlusion detection
occlusion range.m Generates map for how occluded every window is
scale disparity.m Scale a disparity map or ground-truth for downsampled benchmarks
stereo compare.m Computation of the actual results (calls measure, returns disparity)
stereo image slice.m Extract a selection from an image or ground-truth
stereo row ncc.m Compute the normalized cross correlation for an image row
stereo row ssd.m Compute the similarity measure with the Mahalanobis distance
stereo row ssdu.m Compute the similarity measure with the Euclidean distance
sweep const.m Initialization parameters for the sweeps (names, paths, and config)
sweep.m Generate the primary result files (distributed computing)
sweep cov.m Generate results for variations of the covariance matrix
sweep delta.m Generate results for a changing window size
sweep eye.m Generate results for the Euclidean distance
sweep occ.m Mahalanibis distance results trained on occlusions
sweep ssd noise.m Measure the effect of different noises (Euclidean)
sweep <TYPE> collect.m Collect the partial results and combine in a single dataset

Table B.1: Matlab scripts used to run the experiments

B.3 Image dataset

The image dataset structure:

/data/images/<DATASET>/
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disp1.png...........................Disparity grond-truth for the left camera
disp5.png..........................Disparity grond-truth for the right camera

Illum{1,2,3}/... 1: normal illumination
2: alternative illumination
3: alternative illumination

Exp{0,1,2}/ ... 0: very short exposure time → dark image
1: short exposure time
2: optimal exposure time for illumination 1

view1.png.............................Image taken with left camera
view5.png............................Image taken with right camera
view{0,2,3,4,6,7}.png..................... Images > 2-view vision





C

Dataset

(a) Aloe left view (b) Aloe dispary

(c) Baby3 left view (d) Baby3 dispary

85
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(e) Bowling2 left view (f) Bowling2 dispary

(g) Flowerpots left view (h) Flowerpots dispary

(i) Midd1 left view (j) Midd1 dispary
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(k) Monopoly left view (l) Monopoly dispary

(m) Rocks1 left view (n) Rocks1 dispary

(o) Wood1 left view (p) Wood1 dispary

Figure C.1: Images selected from the Middlebury dataset



(a) Aloe (b) Baby3

(c) Bowling2 (d) Flowerpots

(e) Midd1 (f) Monopoly

(g) Rocks1 (h) Wood1

Figure C.2: Overview of the image regions of the selected datasets. Green: ground-truth
is known. Red: impossible to estimate disparity due the the offset in camera location.
Black: ground-truth is undefined. Blue: region with very low energy, and therefore
difficult to match between images.
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Supplemental results

Reg. Bowling2 Baby3 Midd1 Monopoly Aloe Wood1 Flowerpots Rocks1
10−6 57314 29713 189914 184095 61203 43633 49071 18079
10−5.5 57300 29694 189823 184007 61192 43651 49027 18066
10−5 57271 29681 189697 183874 61185 43674 48979 18048
10−4.5 57161 29643 189350 183417 61129 43682 48831 18018
10−4 56876 29605 188817 182725 61085 43668 48623 17980
10−3.5 56408 29568 188015 181602 61054 43617 48310 17957
10−3 55848 29549 187107 180318 61027 43565 47970 17924

10−2.5 55281 29562 186424 179185 61088 43515 47723 17945
10−2 54987 29705 185975 178280 61325 43501 47545 18054
10−1.5

54878 29988 186117 178084 61679 43544 47599 18226
10−1 55099 30377 186973 178794 62127 43660 47934 18506
10−0.5 55466 30795 188610 180487 62669 43762 48590 18822
100 55847 31127 190121 182162 63206 43837 49204 19052
100.5 56066 31319 191302 183491 63568 43931 49684 19173
101 56149 31404 191838 184082 63745 43974 49906 19229
101.5 56200 31441 192048 184318 63809 43993 49993 19254
102 56216 31453 192118 184393 63827 43997 50020 19259
102.5 56220 31455 192156 184432 63830 43997 50035 19259
103 56220 31458 192165 184443 63835 43998 50039 19260
Samples 299698 281712 320494 337470 306092 332762 259313 289511

Table D.1: Incorrect pixel disparities
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Reg. Bowling2 Baby3 Midd1 Monopoly Aloe Wood1 Flowerpots Rocks1
10−6 56553 29713 49793 104729 61203 43633 49044 18079
10−5.5 56540 29694 49780 104667 61192 43651 49000 18066
10−5 56511 29681 49759 104568 61185 43674 48952 18048
10−4.5 56401 29643 49682 104248 61129 43682 48804 18018
10−4 56113 29605 49550 103774 61085 43668 48596 17980
10−3.5 55644 29568 49349 103043 61054 43617 48283 17957
10−3 55092 29549 49122 102170 61027 43565 47943 17924

10−2.5 54524 29562 48958 101398 61088 43515 47696 17945
10−2 54228 29705 48897 100767 61325 43501 47518 18054
10−1.5

54116 29988 48988 100602 61679 43544 47573 18226
10−1 54338 30377 49296 101003 62127 43660 47908 18506
10−0.5 54707 30795 49775 101991 62669 43762 48564 18822
100 55088 31127 50221 103017 63206 43837 49177 19052
100.5 55305 31319 50562 103818 63568 43931 49658 19173
101 55388 31404 50710 104173 63745 43974 49880 19229
101.5 55439 31441 50771 104317 63809 43993 49967 19254
102 55455 31453 50789 104362 63827 43997 49994 19259
102.5 55458 31455 50800 104385 63830 43997 50009 19259
103 55458 31458 50803 104392 63835 43998 50013 19260
Samples 297987 281712 193098 271628 306092 332762 259257 289511

Table D.2: Incorrect pixel disparities with low energy windows discarded

Reg. Bowling2 Baby3 Midd1 Monopoly Aloe Wood1 Flowerpots Rocks1
10−6 57320 29716 190558 184803 61210 43633 49067 18076
10−5.5 57304 29708 190418 184664 61186 43640 49006 18060
10−5 57285 29685 190150 184384 61188 43662 48899 18037
10−4.5 57183 29662 189576 183720 61170 43682 48658 18011
10−4 56898 29620 188708 182639 61131 43686 48295 17968
10−3.5 56545 29593 187485 181162 61087 43668 47820 17951
10−3 56032 29486 186571 179855 61046 43608 47486 17918

10−2.5 55420 29448 186009 178753 61026 43518 47283 17960
10−2 55018 29571 185852 178142 61084 43469 47236 18020
10−1.5

54832 29858 186127 178075 61334 43480 47346 18145
10−1 54933 30300 187007 178788 61794 43567 47693 18399
10−0.5 55275 30756 188713 180478 62345 43656 48376 18728
100 55724 31104 190623 182592 63018 43787 49153 18991
100.5 56014 31316 191922 184084 63463 43887 49677 19159
101 56132 31404 192515 184788 63699 43957 49913 19218
101.5 56190 31443 192723 185029 63787 43989 49996 19245
102 56212 31451 192794 185109 63822 43996 50022 19258
102.5 56217 31454 192827 185146 63828 43998 50035 19259
103 56219 31458 192836 185156 63832 43997 50039 19260
Samples 299698 281712 320494 337470 306092 332762 259313 289511

Table D.3: Incorrect pixel disparities for images processed with covariances matrices
trained on the dataset itself
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D.1 Performance differences

(a) Aloe: Mahalanobis vs. Euclidean (b) Aloe: trained on self vs. general

(c) Baby3: Mahalanobis vs. Euclidean (d) Baby3: trained on self vs. general

(e) Bowling2: Mahalanobis vs. Euclidean (f) Bowling2: trained on self vs. general



92 Supplemental results D

(g) Flowerpots: Mahalanobis vs. Euclidean (h) Flowerpots: trained on self vs. general

(i) Midd1: Mahalanobis vs. Euclidean (j) Midd1: trained on self vs. general

(k) Monopoly: Mahalanobis vs. Euclidean (l) Monopoly: trained on self vs. general
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(m) Rocks1: Mahalanobis vs. Euclidean (n) Rocks1: trained on self vs. general

(o) Wood1: Mahalanobis vs. Euclidean (p) Wood1: trained on self vs. general

Figure D.1: On the left side: the difference in performance between the Mahalanobis
method versus the Euclidean method. On the right side: the difference between co-
variance matrices trained with the leave-one-out method compared to training on the
dataset itself. The green pixels depict the gain of correct pixels, whereas the red pixels
show the loss of correct results. The netto gain in performance is the difference of the
gain and loss of correct disparities. Furthermore, the gray pixels denote common suc-
cesses for both methods. The black pixels represent regions for which depth cannot be
extracted or compared to the reference images. Low energy regions are highlighted with
yellow.

D.2 Eigenvectors

The images contain all eigenvectors of the covariance matrix, with every block as an
individual eigenvector transformed back to two dimensions. The dominant eigenvector
is placed in the top-left corner, and the accompanying eigenvalue decreases column-wise
to the bottom and to the right. The smallest eigenvalue of the covariance matrix belongs
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to the top-left eigenvector. Because the precision matrix is the inverse of the covariance
matrix, the top-left block is the most important and the bottom-right block is the least
important for the similarity measure.
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Figure D.2: Eigenvectors of the covariance matrix for the Aloe image; gray; window size
= 11 × 11

The eigenvectors for the covariance matrix genereated with the Aloe image dataset
is shown in Figure D.2. It was generated for grayscale high resolution images and a
window size of 11 by 11. It appears that the distribution of the eigenvectors is similar
to Figure 3.5. The constant eigenvector has the largest contribution to the precision
matrix. Then, the high-frequency eigenvectors contribute the most to the precision
matrix weights. Also, the (large) eigenvectors show a clear drop-off in importance from
the center of the window to the outside of the window. Hence, it takes the shape of a
two-dimensional Gaussian. The tilted planes and low-order eigenvectors (on the right
side of the image) contribute most to the covariance matrix, and therefore implies that
these are the least important eigenvectors for the precision matrix.
The covariance matrix used to test the performance of the Mahalanobis distance is
generated from color images. The dimensions of the covariance and precision matrix
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are therefore a factor three larger, and every eigenvector consists consequently of three
primary color blocks. The eigenvectors for a covariance matrix generated from the
color version of the Bowling2 dataset is given in Figure D.3. The importance of the
eigenvectors is sorted in the same way as Figure D.2. However, the introduction of
separate primary color values increases the number of eigenvectors. The shape and
order of high and low frequency is very similar to the gray scale versions.
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Figure D.3: Eigenvectors of the covariance matrix for the Bowling2 image; color; window
size = 11 × 11





E

Taylor expansions and

marginalizations in Maple

1 > p := (a1 , a2 ) −> K/( a1ˆ2+a2 ˆ2) ˆ(n/2)
2 ∗ exp(−1/2/( a1ˆ2+a2 ˆ2) ∗ ( a2 ˆ2∗ r11+a1ˆ2∗ r22−2∗a1∗a2∗ r12 ) )
3 ∗ exp(−(a1−1)ˆ2/ s1 ˆ2)
4 ∗ exp(−(a2−1)ˆ2/ s2 ˆ2) ;
5 > # expand about (1 , 1)
6 > a1 0 := 1 ; a2 0 := 1 ;
7 > tmp:= (xˆ2+yˆ2) ˆ(−(1/2)∗n) ;
8
9 > p ta y l o r [ 0 ] := s imp l i f y (p ( a1 0 , a2 0 ) ) ;

10 > p ta y l o r [ 1 ] := c o l l e c t ( eval ( (
11 s imp l i f y ( d i f f (p(x , y ) , x ) /tmp) ∗ ( a1 − a1 0 )
12 + s imp l i f y ( d i f f (p(x , y ) , y ) /tmp) ∗ ( a2 − a2 0 )
13 )∗tmp , [ x=a1 0 , y=a2 0 ] ) , [ exp , K] ) ;
14 > p ta y l o r [ 2 ] := c o l l e c t ( eval ( 1/2 !∗ (
15 s imp l i f y ( d i f f (p (x , y ) , x$2 ) /tmp) ∗ ( a1 − a1 0 ) ˆ2
16 + 2∗ s imp l i f y ( d i f f (p (x , y ) , x , y ) /tmp) ∗ ( a1 − a1 0 ) ∗ ( a2 − a2 0 )
17 + s imp l i f y ( d i f f (p (x , y ) , y$2 ) /tmp) ∗ ( a2 − a2 0 ) ˆ2
18 )∗tmp , [ x=a1 0 , y=a2 0 ] ) , [ exp , K] ) :
19 > p ta y l o r [ 3 ] := c o l l e c t ( eval ( 1/3 !∗ (
20 s imp l i f y ( d i f f (p (x , y ) , x$3 ) /tmp) ∗ ( a1 − a1 0 ) ˆ3
21 + 3∗ s imp l i f y ( d i f f (p (x , y ) , x$2 , y$1 ) /tmp) ∗ ( a1 − a1 0 ) ˆ2 ∗ ( a2 − a2 0 )
22 + 3∗ s imp l i f y ( d i f f (p (x , y ) , x$1 , y$2 ) /tmp) ∗ ( a1 − a1 0 ) ∗ ( a2 − a2 0 ) ˆ2
23 + s imp l i f y ( d i f f (p (x , y ) , y$3 ) /tmp) ∗ ( a2 − a2 0 ) ˆ3
24 )∗tmp , [ x=a1 0 , y=a2 0 ] ) , [ exp , K] ) :
25 > p ta y l o r [ 4 ] := c o l l e c t ( eval ( 1/4 !∗ (
26 s imp l i f y ( d i f f (p (x , y ) , x$4 ) /tmp) ∗ ( a1 − a1 0 ) ˆ4
27 + 4∗ s imp l i f y ( d i f f (p (x , y ) , x$3 , y$1 ) /tmp) ∗ ( a1 − a1 0 ) ˆ3 ∗ ( a2 − a2 0 )
28 + 6∗ s imp l i f y ( d i f f (p (x , y ) , x$2 , y$2 ) /tmp) ∗ ( a1 − a1 0 ) ˆ2 ∗ ( a2 − a2 0 ) ˆ2
29 + 4∗ s imp l i f y ( d i f f (p (x , y ) , x$1 , y$3 ) /tmp) ∗ ( a1 − a1 0 ) ∗ ( a2 − a2 0 ) ˆ3
30 + s imp l i f y ( d i f f (p (x , y ) , y$4 ) /tmp) ∗ ( a2 − a2 0 ) ˆ4
31 )∗tmp , [ x=a1 0 , y=a2 0 ] ) , [ exp , K] ) :
32 > p ta y l o r [ 5 ] := c o l l e c t ( eval ( 1/5 !∗ (
33 s imp l i f y ( d i f f (p (x , y ) , x$5 ) /tmp) ∗ ( a1 − a1 0 ) ˆ5
34 + 5∗ s imp l i f y ( d i f f (p (x , y ) , x$4 , y$1 ) /tmp) ∗ ( a1 − a1 0 ) ˆ4 ∗ ( a2 − a2 0 )
35 +10∗ s imp l i f y ( d i f f (p (x , y ) , x$3 , y$2 ) /tmp) ∗ ( a1 − a1 0 ) ˆ3 ∗ ( a2 − a2 0 ) ˆ2
36 +10∗ s imp l i f y ( d i f f (p (x , y ) , x$2 , y$3 ) /tmp) ∗ ( a1 − a1 0 ) ˆ2 ∗ ( a2 − a2 0 ) ˆ3
37 + 5∗ s imp l i f y ( d i f f (p (x , y ) , x$1 , y$4 ) /tmp) ∗ ( a1 − a1 0 ) ∗ ( a2 − a2 0 ) ˆ4
38 + s imp l i f y ( d i f f (p (x , y ) , y$5 ) /tmp) ∗ ( a2 − a2 0 ) ˆ5
39 )∗tmp , [ x=a1 0 , y=a2 0 ] ) , [ exp , K] ) :

E.1 Third order approximation

1 > pt3 := unapply (
2 > s imp l i f y ( c o l l e c t (
3 > i n t ( i n t ( p t ay l o r [0 ]+ p t ay l o r [1 ]+ p t ay l o r [ 2 ] , a1=a1b . . a1e ) , a2=a2b . . a2e ) ,
4 > [exp , K]
5 > ) /2ˆ( −(1/2) ∗n) ) , r11 , r12 , r22 , n , s1 , s2 , a1b , a1e , a2b , a2e ) :
6 > pt3s := s imp l i f y ( pt3 ( r11 , r12 , r22 , n , s , t , 1−a , 1+a , 1−b , 1+b) ) ;
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E.2 Three cameras

1 >p3:= (a1 , a2 , a3 ) −> K / ( a1ˆ2+a2ˆ2+a3 ˆ2) ˆ(n/2) ∗ exp ( (
2 − r11 ∗ ( a2ˆ2+a3 ˆ2)
3 + r12 ∗ (2∗ a1∗a2 )
4 + r13 ∗ (2∗ a1∗a3 )
5 − r22 ∗ ( a1ˆ2+a3 ˆ2)
6 + r23 ∗ (2∗ a2∗a3 )
7 − r33 ∗ ( a1ˆ2+a2 ˆ2)
8 ) / (2∗( a1ˆ2+a2ˆ2+a3 ˆ2) ) )
9 ∗ exp(−(a1−1)ˆ2/ s1 ˆ2)

10 ∗ exp(−(a2−1)ˆ2/ s2 ˆ2)
11 ∗ exp(−(a3−1)ˆ2/ s3 ˆ2) ;
12
13 > a1 0 := 1 ; a2 0 := 1 ; a3 0 := 1 ;
14 > tmp:= (xˆ2+yˆ2+z ˆ2) ˆ(−(1/2)∗n) ;
15 > s := [ x=a1 0 , y=a2 0 , z=a3 0 ] ;
16
17 > p3 t ay l o r [ 0 ] := s imp l i f y ( p3 ( a1 0 , a2 0 , a3 0 ) ) ;
18 > p3 t ay l o r [ 1 ] := c o l l e c t ( eval ( (
19 s imp l i f y ( eval ( d i f f ( p3 (x , y , z ) , x ) /tmp , s ) ) ∗ ( a1 − a1 0 )
20 + s imp l i f y ( eval ( d i f f ( p3 (x , y , z ) , y ) /tmp , s ) ) ∗ ( a2 − a2 0 )
21 + s imp l i f y ( eval ( d i f f ( p3 (x , y , z ) , z ) /tmp , s ) ) ∗ ( a3 − a3 0 )
22 )∗tmp , s ) , [ exp , K] ) / 1 ! ;
23 > p3 t ay l o r [ 2 ] := c o l l e c t ( eval ( (
24 s imp l i f y ( eval ( d i f f ( p3 (x , y , z ) , x$2 ) /tmp , s ) ) ∗ ( a1 − a1 0 ) ˆ2
25 + s imp l i f y ( eval ( d i f f ( p3 (x , y , z ) , y$2 ) /tmp , s ) ) ∗ ( a2 − a2 0 ) ˆ2
26 + s imp l i f y ( eval ( d i f f ( p3 (x , y , z ) , z$2 ) /tmp , s ) ) ∗ ( a3 − a3 0 ) ˆ2
27 +2∗ s imp l i f y ( eval ( d i f f ( p3 (x , y , z ) , x , y ) /tmp , s ) ) ∗ ( a1 − a1 0 ) ∗ ( a2 − a2 0 )
28 +2∗ s imp l i f y ( eval ( d i f f ( p3 (x , y , z ) , x , z ) /tmp , s ) ) ∗ ( a1 − a1 0 ) ∗ ( a3 − a3 0 )
29 +2∗ s imp l i f y ( eval ( d i f f ( p3 (x , y , z ) , y , z ) /tmp , s ) ) ∗ ( a2 − a2 0 ) ∗ ( a3 − a3 0 )
30 )∗tmp , s ) , [ exp , K] ) / 2 ! :
31 > p3 t ay l o r [ 3 ] := c o l l e c t ( eval ( (
32 s imp l i f y ( eval ( d i f f ( p3 (x , y , z ) , x$3 ) /tmp , s ) ) ∗ ( a1 − a1 0 ) ˆ3
33 + s imp l i f y ( eval ( d i f f ( p3 (x , y , z ) , y$3 ) /tmp , s ) ) ∗ ( a2 − a2 0 ) ˆ3
34 + s imp l i f y ( eval ( d i f f ( p3 (x , y , z ) , z$3 ) /tmp , s ) ) ∗ ( a3 − a3 0 ) ˆ3
35 +3! /2 ! /1 ! /0 !∗ s imp l i f y ( eval ( d i f f ( p3 (x , y , z ) , x$2 , y ) /tmp , s ) ) ∗ ( a1 − a1 0 ) ˆ2 ∗ ( a2 − a2 0 )
36 +3! /2 ! /1 ! /0 !∗ s imp l i f y ( eval ( d i f f ( p3 (x , y , z ) , x$2 , z ) /tmp , s ) ) ∗ ( a1 − a1 0 ) ˆ2 ∗ ( a3 − a3 0 )
37 +3! /2 ! /1 ! /0 !∗ s imp l i f y ( eval ( d i f f ( p3 (x , y , z ) , y$2 , x ) /tmp , s ) ) ∗ ( a2 − a2 0 ) ˆ2 ∗ ( a1 − a1 0 )
38 +3! /2 ! /1 ! /0 !∗ s imp l i f y ( eval ( d i f f ( p3 (x , y , z ) , y$2 , z ) /tmp , s ) ) ∗ ( a2 − a2 0 ) ˆ2 ∗ ( a3 − a3 0 )
39 +3! /2 ! /1 ! /0 !∗ s imp l i f y ( eval ( d i f f ( p3 (x , y , z ) , z$2 , x ) /tmp , s ) ) ∗ ( a3 − a3 0 ) ˆ2 ∗ ( a1 − a1 0 )
40 +3! /2 ! /1 ! /0 !∗ s imp l i f y ( eval ( d i f f ( p3 (x , y , z ) , z$2 , y ) /tmp , s ) ) ∗ ( a3 − a3 0 ) ˆ2 ∗ ( a2 − a2 0 )
41 +3! /1 ! /1 ! /1 !∗ s imp l i f y ( eval ( d i f f ( p3 (x , y , z ) , x , y , z ) /tmp , s ) ) ∗ ( a1 − a1 0 ) ∗ ( a2 − a2 0 ) ∗ (

a3 0 − a3 0 )
42 )∗tmp , s ) , [ exp , K] ) / 3 ! :

Marginalizations:

1 > p3t3 := unapply (
2 s imp l i f y ( c o l l e c t (
3 i n t ( i n t ( i n t ( p 3 tay lo r [0 ]+ p3 tay l o r [1 ]+ p3 tay l o r [ 2 ] , a1=a1b . . a1e ) , a2=a2b . . a2e ) , a3=a3b . . a3e

) ,
4 [ exp , K]
5 ) /3ˆ( −(1/2) ∗n) ) , r11 , r12 , r13 , r22 , r23 , r33 , n , s1 , s2 , s3 , a1b , a1e , a2b , a2e , a3b , a3e ) :
6 > p3t3s := s imp l i f y ( p3t3 ( r11 , r12 , r13 , r22 , r23 , r33 , n , s , t , u , 1−a , 1+a , 1−b , 1+b , 1−c , 1+c )

) ;

Fifth order coefficient extractor

1 > e x t r a c t c o e f f 3 5 := proc ( f , i11 , i22 , i33 , i12 , i13 , i 23 )
2 l o c a l res , tmp , i , j , k ;
3 # ext r ac t c o e f f i c i e n t
4 r e s := c o e f f ( f ∗ r11 , r11 ˆ( i 11+1) ) ;
5 r e s := c o e f f ( r e s ∗ r22 , r22 ˆ( i 22+1) ) ;
6 r e s := c o e f f ( r e s ∗ r33 , r33 ˆ( i 33+1) ) ;
7 r e s := c o e f f ( r e s ∗ r12 , r12 ˆ( i 12+1) ) ;
8 r e s := c o e f f ( r e s ∗ r13 , r13 ˆ( i 13+1) ) ;
9 r e s := c o e f f ( r e s ∗ r23 , r23 ˆ( i 23+1) ) ;

10
11 # c o l l e c t s , t , u and n
12 tmp:= r e s ;
13 r e s := 0 ;
14 for i from 0 by 2 to 4 do
15 for j from 0 by 2 to 4 do
16 for k from 0 by 2 to 4 do
17 r e s := re s + c o l l e c t ( s imp l i f y ( c o e f f ( c o e f f ( c o e f f ( tmp/ s ˆ i / t ˆ j /uˆk , 1/ s ˆ4) , 1/ t ˆ4) , 1/u

ˆ4) / s ˆ(4− i ) / tˆ(4− j ) / uˆ(4−k) ) , n ) ;
18 end do ;
19 end do ;
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20 end do ;
21
22 # return r e s u l t
23 re s ;
24 end proc :
25
26 > max order := 4 :
27 > cnt := 0 :
28 > for i 11 from 0 to max order do
29 > for i 22 from 0 to max order do
30 > for i 33 from 0 to max order do
31 > for i 12 from 0 to max order do
32 > for i 13 from 0 to max order do
33 > for i 23 from 0 to max order do
34 > i f ( i 11+i22+i33+i12+i13+i23<=max order ) then
35 > c35 [ i11 , i22 , i33 , i12 , i13 , i 23 ] := ex t r a c t c o e f f 3 5 ( p3t5 poly , i11 , i22 , i33 , i12 ,

i13 , i 23 ) ;
36 > cnt := cnt + 1 ;
37 > end i f ;
38 > end do ;
39 > end do ;
40 > end do ;
41 > end do ;
42 > end do ;
43 > end do ;
44 > p r i n t f (”Number o f c o e f f i c i e n t s found : %d” , cnt ) ;
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