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Abstract

It is expected that in the future noise will become dominant in minimum size CMOS logic,
inducing probabilistic behaviour. This allows for a trade off between performance and energy
consumption. The trade off can be visualized with an Energy-Probability (E-P) curve, which
defines the relationship between energy consumption and probability of correctness. This work
presents a more realistic view on probabilistic CMOS behaviour for both isolated logic gates and
connected systems.

Theoretically, the probability of correctness of an ideal CMOS system in the presence of noise
can be represented by a function of the energy consumed, the so called error function. However,
CMOS speed drops rapidly around the threshold voltage. This introduces additional errors when
signals miss the setup time deadline at their next sample point. The exact probability at a specific
supply voltage level is influenced by factors such as noise levels, operating frequency, transistor
size and temperature. Current models of Probabilistic CMOS ignore these imperfections and are
therefore unrealistic at low supply voltage levels.

At a system level, designs can be made with Probabilistic CMOS. Similar to conventional
deterministic logic, such designs should ideally be made up of separately characterized standard
building blocks. Current models of probabilistic systems only model the propagation of noise
and errors through a system. In order to get a better model of probabilistic systems, errors due
to missed deadlines should be added to the models of probabilistic systems. A missed deadline in
this context is a changing signal that does not assume the correct value before the next sample
moment. In contrast to conventional digital logic, these propagation delays have a large variance.
When a more accurate prediction of the expected total error of a probabilistic system can be made
for a specific energy distribution, an algorithm can be developed that finds the optimal energy
distribution for a certain total error. For a system with two independent parts an algorithm was
developed that can find the optimal energy distribution for low expected errors.



1 Introduction

Just after the second world war, in 1948, British writer George Orwell wrote his famous novel
Nineteen Eighty-Four. Observations during the second world war had led him to believe that
democracy would not survive. He foresaw an ommnipresent totalitarian government that could
track your every move. Orwell used many new concepts to define this government, the most
famous being Big Brother, which has since become synonym for a government that abuses power
for mass surveillance. Fortunately, the future as predicted by Orwell has not come true (at least
not entirely). In fact, Orwell’s work may have inspired a different path. Even in 2011, staying
clear of a Nineteen Eighty-Four type of society was used as an argument against surveillance laws
in American politics. We resist it’s consequences and turn the prediction into a self-defeating
prophecy.

In the semiconductor industry predictions are also written, though they usually aren’t pub-
lished as a novel. Some come in the shape of a technology roadmap and are meant as more
of a goal/agreement than a prediction and are often self-fulfilling prophecies. Sometimes future
problems are predicted in a paper. In successive papers the problem may then be solved, either
temporary or permanently. Such a paper was published by Laszlo B Kish in 2002. He predicted
that within 7 years, noise may dominate the performance in minimum size digital logic [1]. Even
though that did not come true, his calculations are still valid and predict a significant increase
in noise. More effort will have to be put into coping with the noise.

This approach of preventing errors caused by noise is rooted in the classical use of digital
circuits. If only a single bit flips, the output is considered incorrect. In some cases however this
flipped bit may have little influence on the usefulness of the data. Take for example an audio
stream. Though the quality of the audio is degraded, the information it carries (e.g. human
speech) may still be received correctly if a few bits are flipped.

What if we took that audio signal and processed it on a system that is dominated by noise? It
would be wise to compensate for the noise, but only where compensation is needed. By spending
more energy on the critical parts of the message (i.e. the most significant bit of a data word), it
is ensured that energy is used where it matters most and saved where a mistake cannot do much
damage. The advantages of a system that only spends energy where needed are obvious. But
how can such a system be designed? How can it be ensured that the system will make no more
than the allowed amount of errors and for the least amount of energy? In order for probabilistic
systems to be implemented on a large scale, these design questions need to be answered.

This report presents a basis for understanding probabilistic digital logic. First the theory
behind probabilistic digital logic is explained in chapter 2. The fundamental limits in energy
saving are discussed, along with current models for probabilistic hardware. An analysis of the
performance of PCMOS is made for single elements in chapter 3 and for a PCMOS ripple carry
adder in chapter 4.



2 The theory of probabilistic CMOS

Every year CMOS devices become smaller. The improvements are governed by the well known
self-fulfilling Moore’s law. The growth is exponential, doubling the number of transistors on a
die every eighteen months. While the size shrinks, the supply voltage is lowered. It has been
lowered substantially over the last decades and is still being lowered. Figure 2.1 shows the ex-
pected supply voltage for the next years according to the International Technology Roadmap for
Semiconductors (ITRS)[2]. For digital logic, lowering the supply voltage decreases the dynamic
power consumption and is therefore a desirable effect. Unfortunately, the supply voltage does
not scale with Moore’s law, but has a linear trend. If it would be lowered more in order to
decrease dynamic power consumption faster, the circuits would become substantially slower.
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Figure 2.1: The ITRS roadmap for High Performance, high Vdd transistors.

Thermal noise in a transistor depends on the channel resistance and parasitic capacitance (see
Figure 2.2 for a model of the parasitic capacitances). When the width and length of the channel
are scaled down by the same factor, the channel resistance remains approximately the same
because resistance is proportional to the resistor’s % factor. Capacitance on the other hand
is proportional to the gate area, which decreases in both the length and width. Capacitance
therefore decreases for smaller feature sizes. This is good news for the speed of MOSFETs,
because the channel resistance and parasitic capacitors together form an RC low pass filter that
puts an upper limit to the speed of the MOSFET. For noise immunity however this is not good,
because less high frequency noise is filtered out. The root mean square (RMS) effective thermal

noise voltage across a capacitor is given as[3]:

Vo =) 2 (2.1)
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Figure 2.2: Schematic image of a MOSFET with parasitic capacitors. On the left capacitances
are drawn over the cross section of a schematical implementation of a MOSFET. On the right
the same capacitances are shown in a schematic view.

Where k; is Boltzmann’s constant, T the temperature in Kelvin and C the capacitance. The
noise is actually generated by a resistor and filtered by the resistor and capacitor. The resistance
value drops out of this equation, making it appear as if the capacitor generates the noise. In the
case of a transistor, the channel is the resistor. It generates noise, which is filtered by parasitic
capacitors. The effective thermal noise produced by the transistor can therefore be approximated
by this equation. In reality, the noise processes are more complex and include a noise efficiency
factor (NEF) that describes the relative amount of noise generated by transistors for the same
drain current and bandwidth. In this work the simplified equation is used to get a rough estimate
of the amount of noise to be expected in the future.

A recent study of field effect transistor dielectrics[4] shows an oxide capacitance in the order of
several 5uF per square centimeter for the near future. For a 25nm? transistor (an expected feature
size in 15 years[2]) this would result in an effective noise level of 60mV at room temperature for
a system without load. While the noise levels are rising over the years, the supply voltage is
lowered. This combination has a negative impact on the noise immunity of a transistor[3]. For
future technology nodes the effective thermal noise may become too large for digital cmos logic
and cause errors[1].

Much effort is put into keeping future digital circuits deterministic in spite of the increasing
noise. Methods range from error correcting codes to dynamic voltage scaling [5] or triplication and
majority voting. All of these methods however have the disadvantage that additional circuitry
is needed. Also, the goal of each solution is to keep the result error free. This is not always
necessary. In domains such as audio or radio astronomy, adding a little noise during calculations
may be acceptable as long as the amount of noise can be controlled. In 2003 Krishna V. Palem
wrote a series of papers that looks into circuits that make errors[6]. Palem showed that there
is a fundamentally lower limit to the energy consumption of circuits that work probabilistic
instead of deterministic. He proposes to use Probabilistic CMOS (PCMOS) as an alternative
for its deterministic counterpart in situations where errors can be tolerated to some degree. In
return for allowing an increased amount of noise or even errors, much less energy is consumed
by PCMOS.

In this chapter the concept of PCMOS is explained and modeled. The fundamental limits of
energy consumption are explored and current models of PCMOS are described. This provides a



basis for further investigation using simulations in the next chapters.

2.1 Thermodynamic theory

2.1.1 Introduction

To understand why probabilistic behavior can lead to fundamentally lower energy consumption,
the process of switching needs to be viewed from a thermodynamic perspective. A summary of
the reasoning is presented here, for the full explanation the reader is referred to [6].

A thermodynamic system T with N identical elements is considered. An example of such
a system is shown in Figure 2.3. It represents a sealed tube with four gas particles. Though
they are identical, different colours are given to each in order to distinguish between individual
particles.

Figure 2.3: A thermodynamic system with four identical elements.

Each particle has a set of so called classical observables. Examples are position and momen-
tum. For this example, we will only consider the property of being in either the left or the right
half of the tube. Therefore a total of 16 situations can be distinguished for this system, as shown
in Figure 2.4.

Figure 2.4: 16 uniquely distinguishable states for the thermodynamic system

There are two ways of looking at this system. We are either interested in the microstates or
the macrostates. A microstate has information about all the observables of each particle in the
system. A unique microstate can be assigned to every possible state of the system. In this very
simple example only 16 microstates are possible, but in reality (when position and momentum
are classical observables) the number of microstates may be infinite.

In contrast to microstates, macrostates only hold information about the system as a whole.
In this example the percentage of particles in the left or right half of the tube is considered.
Therefore only 5 macrostates are possible for this system. In more realistic systems the pressure
or temperature of a system are examples of macrostates.



An important concept in thermodynamics is entropy. The entropy of a system gives an
indication of the amount of disorder. The entropy of a system depends on the macrostate it is
in:

S = kban

Where kj, is Boltzmann’s constant and €2 is the number of microstates for the macrostate it
is in. It can be seen in Figure 2.4 that the macrostate with the highest amount of disorder (two
particles on each side) has the most microstates and therefore the largest entropy. According to
the second law of thermodynamics the entropy of a system can only be decreased by applying
energy; without external work the entropy can only increase or remain the same.

2.1.2 Lowering energy consumption

The four particle example system can be used to represent a bit of information (a 1 or 0). The
represented value is determined by sampling the location of a random particle. If it is in the left
half, a value of zero is chosen. For the right half, a value of one is chosen. If switching between
states should be deterministic, the system has to be either in the leftmost or rightmost state
shown in Figure 2.4, because in those states all particles represent the correct value. If one of the
particles is on the wrong side, there is a probability of 25% that sampling leads to an incorrect
value. However, since the entropy for the probabilistic state is higher it will also take less energy
to reach that state. In other words, a tradeoff can be chosen between probability of correctness
and energy consumption.

Even though this reasoning is relatively easy to follow, the formal proof of this is long and
complicated. Palem[6] wrote this proof down in its completeness. The conclusion of the proof is
that the minimal energy required for deterministic state switching is k,TIn(2), while the minimal
energy required for probabilistic state switching with probability p is kTin(2p). The potential
reduction of energy consumption for probabilistic is the difference between these two: kpTin(p).

2.1.3 Representing probabilistic bits

The example of a gas tube works well to explain the terminology and to get an idea of how
energy consumption can be lowered for the probabilistic case. In practice however, we represent
a bit in the electrical domain. More specifically, the convention is to let 0 volt represent a ’0’
and the supply voltage represent a 1. There is usually some tolerance for small deviations of
these voltages. For practical reasons this report will assume that an ideal measurement system
is used to determine the bit value by taking anything higher than half the supply voltage as a
one and anything lower than half the supply voltage as a zero. In reality such a system is very
difficult to make, but using it for the models makes every calculation much simpler.

Palem proposed to model a probabilistic bit (PBit) as a white Gaussian noise source around
the represented value .Figure 2.5 shows the resulting Probability Density Function (PDF). The
probability of measuring the correct value can be found by integrating the part of the PDF which



is on the desired side of half the supply voltage. Integrating a Gaussian PDF results in a so called
error function[7]:

P(X < z) = 0.5 + 0.5erf( x\/_ﬁ:) (2.2)

Its properties depend on the noise standard deviation o and the average voltage level u (either
Vaa or zero, depending on the bit). For the supply voltage and noise RMS only positive values
are considered. An example of an E-p curve for ¢ = 0.1 is shown in Figure 2.6. We are only
interested in the probability of measuring a value lower than half the supply voltage when a zero
is intended (p = 0). This probability is the same as the probability of measuring a value higher
than half the supply voltage when a one is intended (this can easily be seen from Figure 2.5).

Vaa 0.5-Vyg
correct,0 = P(X < —)=0.54+0.5 erf(——=— 2.3
D t,0 ( ) ) €r ( \/50_ ) ( )
Vdd 0.5- Vdd — Vdd
correc =P(X Z —)=05-05 -erf(——mM——) = correc 2.4
D £,1 ( 3 ) =0.5—0.5 - erf( N )=p 4.0 (2.4)
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Figure 2.5: Zero and one representations for a probabilistic bit. Source: [8].

Equation 2.2 shows that the probability of correctness at a specific supply voltage depends
Vad

on the ratio “2¢. A larger effective noise level requires a higher supply voltage level for the same

probability. In other words, the probability of correctness at a specific voltage decreases as the
noise levels increase. This relation is shown graphically in Figure 2.7.
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Figure 2.6: Example of an E-p curve for ¢ = 0.1.
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2.2 Theoretical E-P curves

Up till now, PBits were assumed to simply exist, without giving any thought to the physical
process that creates them. In reality, these PBits are created by PCMOS. The PCMOS is part
of a circuit that performs a certain task, for example a mathematical multiplication. In order to
design such a circuit for a certain probability of error in an efficient way, the relation between
probability of correctness and energy consumption is required. The theory provided so far has
allowed us to construct a model for representing a PBit using the supply voltage and noise
standard deviation as parameters (equation 2.3).

2.2.1 Relating voltage to energy

The supply voltage can be related to the power consumption, which in turn can be integrated
over time to get the energy consumed. Power consumption in digital systems can be divided
into two parts: Dynamic and static consumption[9]. Static consumption is due to leakage in the
transistors and is generally much smaller than the dynamic part, though it is becoming more
dominant. The dynamic part of the Power consumption can be approximated by the equation:

denamic = ACVd2df (25)

Where C is the total load capacitance, Vy4 the supply voltage and f the operating frequency.
Not all gates switch every clock cycle. Therefore a compensation factor A is included, which is
equal to the average fraction of the circuit that is switching. In most digital systems the output is
changed at most once per clock period (though triggering on both flanks of the clock is possible).
Therefore charging and then discharging a capacitor takes at least two clock periods. This puts
an upper limit of % on A, though it will generally be lower because not every output changes
every clock period. The factor A depends on circuit usage and will be fixed (or at least be a
known random variable). For simplicity the factor A is assumed to be equal to % in the rest of
this document, indicating a circuit in which all gates are active every clock period.

Lowering the operating frequency results in less power consumption, but not necessarily less
energy consumption for the same task. When less operations are performed per time unit, more
time is required for the same number of operations. In fact, the total energy for an operation may
increase due to the static power consumption (even though it is neglected in approximations here).
Changing the load capacitance can be done at design time for a chip, by choosing appropriate
gate sizes for transistors. After the chip is produced, the capacitance is mostly fixed. Changes
in the supply voltage affect power consumption the most, due to the quadratic relation.

If the f is left out of the expression for dynamic power consumption, equation 2.5 becomes
an equation for the average energy cost of a single switching operation. It can then be written

as:
2F namic
Va = || =i (2.6)
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Which can be used to make an Energy-Probability (E-p) curve from the definition of the
PBit (equation 2.3 on page 10):

\/ Edynamic
correct = 0.5+ 0.5 - erf(——— 2.7
p t ( 20’\/6 ) ( )

When using equation 2.1 from page 6 as the value for o, this equation reduces to:

(e (28)

correct = 0.5+ 0.5 - erf|
p t T

Which shows a direct relation between the probability of correctness and power consumption.

2.2.2 Theoretical probability of a PCMOS logic gate

Equation 2.7 relates the energy consumption while calculating a PBit to its probability of cor-
rectness. This is done by looking at the PBit as purely being a capacitor that is charged or
discharged, still ignoring the hardware that does the actual (dis)charging. In reality a PBit is
the output of a PCMOS circuit.

The current way of modeling PCMOS is by simply taking the ideal logical function and
applying noise to its output(s). Examples of this can be found in papers from Cheemalavagu[10]
(A probabilistic inverter) and Lau[11][12] (resp. a probabilistic ripple carry adder and multiplier).
The probability of correctness is calculated by taking the noise into account while performing
ideal logical operations. The result is an E-P curve that can be described by an error function.
This is supported by a more recent paper by J. Kim[13] on probabilistic circuits.

An assumption in these models is that the hardware still functions correctly at very low
supply voltage levels, or that the minimum required supply voltage can be lowered substantially
over the next decade. The latter will probably not happen, as the supply voltage roadmap by
the ITRS[2] suggests that the supply voltage of minimum size digital logic will only scale down
to around 0.7 volts over the next decade. Working with transistors below their threshold voltage
can be done, but channel conductance then drops rapidly. Lower conductance results in lower
currents for (dis)charging the load capacitor, which therefore takes longer. At a certain supply
voltage the circuit will become too slow and starts to miss deadlines. The theoretical models
that are presented by Cheemalavagu and Lau therefore give an unrealistic image of the future
performance of probabilistic circuits.
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3 Performance of a PCMOS inverter

In the previous chapter the existing models of Probabilistic CMOS were explained. These models
assume that the PCMOS circuits can function at any supply voltage level and errors are only
introduced by the added voltage noise. In this chapter, the influence of reduced speed at lower
supply voltage levels is added to this model.

When the gate-source voltage drops below the threshold voltage the transistor goes from
saturation to weak inversion and the drain source current drops rapidly. When the drain source
current is lowered too much, the load capacitance cannot be (dis)charged in time and the output
is interpreted in the wrong way. In a noise free environment (and with an ideal interpreter of a
binary one and zero) there is an infinitely small difference between the supply voltage at which
the system still makes the deadline and the supply voltage at which it just misses it. If it is too
slow, the value of the output is determined by the previous bits (transition from 1 to 1 is easier
than from 1 to 0). For an uncorrelated random sequence, the probability of correctness without
the influence of noise therefore drops from 1 to 0.5 at one specific supply voltage. Therefore the
operating frequency of a system that can be considered noise free should always be reduced when
lowering the supply voltage, otherwise the probability of correctness immediately drops to 0.5.

When the noise that is generated by the transistors is taken into account, the transition
from 1 to 0.5 probability of correctness is smoothed out over a larger supply voltage range.
Due to the random nature of the noise, sometimes it has a positive influence on the desired
transition and sometimes a negative influence. Therefore already at voltages higher than that
of the noiseless transition from 1 to 0.5, noise will sporadically make the transition slower and
introduce errors. Similarly, below the threshold sometimes the noise will have a positive influence
on the transition, preventing an error that would otherwise be made. As a result there is a
gradual transition from 1 to 0.5. The exact characteristics of the transition are determined by
many physical parameters, of which the most important are discussed in this chapter. The goal is
to determine how an imperfect system influences the theoretical E-P curves that were presented
in the previous chapter. An inverter is chosen as the circuit to be studied, because it is the most
simple CMOS circuit possible. In this chapter the influence of other connected circuits is not yet
taken into account.

3.1 Simulation

Throughout this chapter and the next, theory is backed up by simulation results. For all the
simulations the supply voltage is shown on the horizontal axis of E-P curves. This is done because
a voltage can be related directly to MOSFET parameters such as threshold voltage, but is still
a good representation of the consumed energy per unit time, as was explained in the previous
chapter. A circuit with a lower supply voltage level is always considered to have a lower energy
consumption than its counterpart with a higher supply voltage level.
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Transistors of the size that we are interested in ( 25nm?) cannot be made or modeled yet. We
want to model smaller transistors because they have larger noise levels. In order to get an idea
of how those transistors may behave, an available technology node is simulated with increased
noise. The umc65 library is chosen, because it is widely used and available. Cadence IC is used
for the simulations. A parameter called noise scale is used to multiply every type of noise by a
given factor. The 65nm technology with increased noise is used to represent the much smaller
future transistors. This does not model the changes in behaviour for future CMOS, but these
simulations can be used to analyze the effects of large amounts of noise, which is expected in
the future. This model will not provide absolute predictions on performance, but can be used to
analyze the qualitative behaviour of such a system.

E-P curves cannot be simulated directly, because the probability of correctness (which is on
the vertical axis of the curve) cannot be derived directly from a schematic. The points on the
curve are estimated by simulating many bit periods for a supply voltage setting and counting
the number of correct and incorrect samples. A long transient simulation is performed using
Cadence, which can simulate time domain noise. The results are then exported to Matlab,
where the sampling and processing of the data is done. In order to get all the points for the E-P
curve, a parameter sweep is performed for the Vy,; parameter. This generates one E-P curve. If
a parameter sweep on another parameter is also desired (generating multiple E-P curves), the
number of transient simulations quickly rises. Simulations therefore sometimes take multiple
days. In order to keep the simulation time down, the number of points (the supply voltage step
size) for the E-P curves is often kept low. This results in a less smooth curve, but also a shorter
simulation time.

In each of the following sections of this chapter a design or environment parameter is analyzed
and simulated. Four parameters are analyzed in total: Noise amplification, transistor width,
operating frequency and temperature. These parameters are analyzed separately in order to
isolate their influence. Table 3.1 shows the default parameters for the simulation. The four bold
parameters are the ones that are analyzed. In the rightmost column the effect of changing the
parameter is summarized.

The circuit that is used for simulation is shown in Figure 3.1. The only difference between
this circuit and the ones used by Palem|[6] and others is that no separate noise voltage source is
included in the simulations in this circuit. Noise in this circuit is generated in the simulation by
the transistors according to the ume6511 N/P__12_llrvt model, while the input is noise free. The
impact of having an input with noise is considered in the next chapter.

The PMOS is chosen to have double the width of the NMOS in order to compensate for
difference in carrier mobility. When the PMOS and NMOS are not perfectly balanced there will
be a difference in probability for a rising and falling edge. With a factor of 2 the PMOS and
NMOS are approximately balanced, it is assumed to be enough to not influence the results. In
future research the influence of this factor may be investigated further.

The load is chosen to be a capacitor of 10fF. This is chosen to approximately match a fanout
of four inverters at 65nm. The output capacitor is part of the filter that determines the effective
noise levels, therefore noise will have even more influence on smaller loads. Further research

could be put in investigating the effect of the load capacitance.

The E-P curves that are shown in this chapter and the next are derived from transient

15



’ Parameter Value \ Effect of sweep
MOS type umc65ll N/P_ 12 llrvt
NMOS and PMOS length | 60nm
NMOS gate width 80nm A larger gate width de-
creases effective noise and
increases speed
PMOS/NMOS width ratio | 2

Vaa

range: 0-2V, 10mV steps

Vi Alternating between 0V and Vgqy

Cout 10fF

Temperature 27°C Improves V4, but increases
noise

Noise amplification 200x Smooths transition from 1
to 0.5 probability

Operating frequency 1GHz Lower operating frequency
shifts transition area to
lower Vdd

Number of bits simulated | 800

Table 3.1: Default parameters for the simulations. Bold parameters are analysed and sweeped.
A summary of their effect is shown.

simulations. Each point on the E-P curves is determined by sampling a transient simulation of
800 bits. The output of the inverter is sampled after each bit period. The sample is considered
Vaa

correct if it is higher than -4¢ and the expected value is 1, or if it is lower than % and the

expected value is 0. No setup or hold times are assumed. The fraction %{m is used
as probability of correctness for the corresponding point on the E-P curve. The signal source

shown in the schematic switches between OV and Vjy. It has a rise and fall time of 20ps.

3.2 Influence of noise

In the previous chapter the influence of feature size on effective noise levels was explained (see
equation 2.1 on page 6). The effective amount of noise generated is proportional to the square
root of the channel capacitance, which is determined by its feature size. In simulations the
noise can be scaled by a factor. This factor multiplies all generated noise. For this circuit only
the transistors generate noise, due to their channel resistance. More noise is generated during
switching than in a steady state. Therefore it is not possible to link a noise scaling factor to a
fixed standard deviation of the output. This is illustrated in Figure 3.2. It shows signal standard
deviation at the sample moment. For higher supply voltages the signal is stable before the sample
moment. At lower voltages the signal becomes slower and has not reached a steady state at the
sample moment. At a noise scaling factor of 100 the steady state noise is approximately 50mV,
which is only slightly less than the 60mV that is predicted for 15 years from now. Noise scaling
of 200 or even 400 times would imply even smaller transistor sizes than what can be expected
in 15 years. They are included to amplify the effects that are analyzed even further, but do not
represent expected noise figures in the near future.
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Figure 3.1: Schematic for the inverter simulations

The theoretical model for probabilistic bits by J. Kim predicts[13] that the E-P curve can be
described by an error function. This model is very simple and allows for easy calculations on a
system level. It assumes that the digital function is always performed without error, across the
entire supply voltage range. However, channel impedance increases drastically below the thresh-
old voltage. Even at a slightly lowered supply voltage the system will have a slower response and
may produce results too late due to the increase in impedance. Therefore performance decreases
at a lower supply voltage (around the threshold voltage) and the probability of correctness drops
for a fixed operating frequency. The steepness of the slope depends on the amount of noise. Fig-
ure 3.3 shows this effect in simulation and also includes the E-P curve according to J. Kim[13]
for a noise standard deviation of 100mV, which was previously shown to correspond to a noise
scaling factor of approximately 200. These simulations confirm that the simple error function
model is incorrect.

In order to make the process of noise influences more insightful, some transients were plotted.
For V34 = 0.7V each bit period for the 1 to 0 transitions is plotted in a single plot, shown in
Figure 3.4. Each of these plots is half the data gathered for a single point on an E-P curve (the
other half is the 0 to 1 transitions, which are not shown). A clear trend is visible in the plots
with noise scaled by a factor 50, but the trend becomes less clear when more noise is present. It
can be seen that no errors are made at 50 or 100 noise scale, some at 200 and many at 400.

The situation becomes even more clear when these curves are combined into a single curve
with an average and a standard deviation. This is shown in Figure 3.5. The middle line is the
average, the top and bottom lines indicate the average plus or minus the standard deviation.
The lines are considered to have a normal distribution, because the noise that generates the
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Figure 3.2: Standard deviation of the output at the sample moment.

differences is Gaussian. The first plot shows a normally functioning system with only minimal
noise influence. In the second plot the average still shows normal functionality, though the
asymptote seems to have moved to slightly above zero due to the noise. The third and fourth
plot show that the noise further impedes the correct functioning of the system; even though the
same supply and input voltage levels are used, the system does not settle to OV before the sample
moment at 1ns. The existing models of PCMOS predict that a PCMOS inverter can be described
as a noise free inverter with noise superposed on the output. However, these simulations show
that the propagation delay is also affected by the noise.
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3.3 Operating frequency

The inverter becomes slower when the supply voltage is lowered. It makes sense to compensate
for this by decreasing the operating frequency, allowing the system more time to settle to the
correct value. This method is currently used in some low power microprocessors. It is a way of
keeping the system operating deterministically at voltages where it would fail at full speed.

In this research however, the goal is not to keep the performance deterministic, but to design
a probabilistic system with a known fixed probability. Amongst other parameters, the supply
voltage level at which the device enters its probabilistic region depends on the operating fre-
quency. This can be seen in the drain current equation for a MOSFET. The area we want the
MOSFET to operate in is sub-threshold. The drain current can then be written as[14]:

Vags—Vin ~Vbs

Ip=Ipg-e "7 -(1—e V7 ) (3.1)

Where Ipg is the current that would flow at Vgg = Vip, Vi is the threshold voltage, n =
1+ CC;—E; is the slope factor that depends on the capacitance of the depletion layer and the
capacitance of the oxide layer, Vpg is the drain source voltage and Vp = kaT is the thermal

voltage.

In the case of discharging the load capacitor, the input is stepped up until Vgg = Vyq. It is
assumed that this step is much faster than the discharge time of the load capacitor. The voltage
across the load capacitor (Viyqq) drops due to the current discharged from it by the MOSFET.

-V
Viead 18 equal to the drain source voltage of the NMOS. The term (1 — e"igs) is negligible for
Vbs > V. At 300K, Vi = 25.9mV. Vps = Vipad, which should be discharged until at least
half the supply voltage. For any V3 > 100mV it holds that Vpg > 2 - Vi, therefore the term is
neglected. The load voltage can be written as:

t

/ Ipdt (3.2)

load
0

Vioaa(t) = Vaa —

None of the terms left in Ip depend on time, therefore they can be placed in front of the
integral as constants. We are in this case looking for the moment in time that Vj,.q reaches %,
which is the transition from a binary 1 to 0 in our ideal case. In other words, we are looking for

the moment when:

Vaa 1 Vad—Vin
— = V _ I nv .t 33
2 ad CYload boe ! ( )
Which can be rewritten as:
Vad - Cload
t= Viad—Vin (3'4)

2.Ipg-e "vr
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The result is an equation for the propagation delay. It goes exponential with V4, until
Via < Vi An approximation of this curve is plotted in Figure 3.6. The parameters used are:
Ipo = 1pA, T = 300K, Cloqq = 10fF, Vi, = 0.5V, n =1 (Cox > Cp). In case Cpx is not much
larger than C'p, the line will keep the exponential behaviour but be less steep; the propagation
delay at low voltages will then be shorter.
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Figure 3.6: Propagation delay plotted for sub threshold operation.

The exponential behaviour of the propagation delay for different supply voltage levels is
inconvenient for the speed of CMOS circuits. Lowering the supply voltage for a fixed probability
requires a much lower operating frequency. In other words, the probabilistic area of operation
can be shifted to lower V44 by greatly lowering the operating frequency.

In this low V4 area, noise is a larger problem. The errors due to noise that were described
by Palem and others re-emerge. Even if the operating frequency is lowered enough to allow
the signal to settle, the signal to noise ratio (SNR) may be very low and a sample may be
misinterpreted. In other words, if the CMOS circuit is still fast enough at low Vg4, errors will be
made due to noise in the output signal.

Three different operating frequencies were simulated for a part of the E-P curve. The default
parameters of table 3.1 were used. Lower operating frequencies make the simulations long.
Therefore only the transition area was simulated instead of the entire E-P curve. This results in
a decent resolution for the relevant part of the curve. The results are shown in Figure 3.7.

The yellow, red and blue line represent parameter sweeps on the supply voltage for a specific
operating frequency. At the sample moment the standard deviation of the noise was measured.
The standard deviations were approximately the same. For each supply voltage, the measured
standard deviation was used to calculate the expected performance due to noise according to
Equation 2.3 on page 10.

The shift in the probabilistic area due to lowering the operating frequency can clearly be seen.

The noise levels at the sample moment were also measured and filled into equation 2.3 on page
10. The result is plotted as the dotted line. It shows that if the operating frequency is lowered
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Figure 3.7: Part of the E-P curve for multiple operating frequencies. The dotted line represents
the maximum performance according to equation 2.3 on page 10.

enough, noise becomes the performance limiting factor. In other words, equation 2.3 describes
the maximum probability for a specific amount of noise.

3.4 Transistor size

Until now the assumption was that minimum size transistors are used. In some cases however
more current may be required, for example because of a large load or when a higher speed
is required. The transistors are then scaled in one dimension, the width. This increases the
parasitic capacitance and decreases channel resistance, which decreases effective noise levels.
The output current also increases, which is necessary to charge a larger load. Or, if the load is
the same, it is charged faster. Faster charging and lower noise both increase the probability of
correctness. Scaling up transistors does come at an energy price. Larger transistors have bigger
gate capacitance that is charged and discharged at each state change. Cross bar current is also
increased.

Scaling transistors gives a designer the possibility to create multiple PCMOS gates that
operate at the same voltage, but have different probabilities of correctness when operated at
the same frequency, due to the difference in propagation delay and effective noise level. Further
research should be put into the applications of this, considering the increased energy consumption.

Besides decreasing the noise, larger parasitic capacitors also increase the capacitive coupling
between input and output. Due to the inverting nature, the output is at V33 when the input is at
0V. Therefore in steady state a voltage of V4 is across the parasitic capacitors when the input
is at OV. V},, is then stepped up to Vzg in 20ps. This pushes the potential of the electrons in the
parasitic capacitors up, charging the load capacitor a bit further. How much the output voltage
rises due to this effect depends on the ratio of the parasitic capacitance to the load capacitance
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and the steepness of the rising edge of the input voltage. After this step, the inverter has to
compensate for this additional voltage, thus taking longer to discharge the load capacitor. At low
supply voltages, it is not fast enough to discharge the load capacitor before the sample moment;
only the input step is then visible on the output. The inverting behaviour then changes into
buffering behaviour (which is always wrong). This behaviour can be seen in Figure 3.8. The
effect is diminished by noise, which always drives the probability towards 0.5 due to its Gaussian
nature. Therefore the effect is larger in large transistors, where noise is less dominant.

Using the default parameters, the inverter circuit was simulated for multiple transistor widths.
In this simulation, the load capacitance is kept constant. The results of this simulation are shown
in Figure 3.9. The three influences of increasing the transistor width that were described above
can be seen in these simulation results:

1. The slope of the probabilistic area increases for increased width due to decreasing noise
levels.

2. The probabilistic area shifts to lower Vg4 for increased width due to larger currents (same
effect as lowering the operating frequency).

3. The probability of the inverter drops below 0.5 due to the capacitive coupling between
input and output. The effect is more clearly present for wider transistors due to lower
noise levels.

In practice a probability of less than 0.5 does not pose a problem. As soon as the probability
is allowed to approach 0.5, the calculation should not be performed at all and replaced by a
wire to either ground or Vg4, which does not use any energy and has a probability of 0.5 (given
a uniform distribution between ones and zeroes). Another option is to substitute the digital
function for a simpler one that provides a correct output in the majority but not all of the cases.
This is called approximate computing[15].
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3.5 Temperature

Temperature has an effect on most aspects of MOSFET performance. Increasing temperature
decreases electron and hole mobility. It also increases the thermal voltage: Vp = ’“TT. In
equation 3.1 on page 21 it was already shown that an increase of the thermal voltage decreases
the drain current in sub-threshold operation.

The effective noise voltage is given as V,, = 4/ % in chapter 2. While mobility and thermal

voltage influence the speed of the transistor and therefore shift the probabilistic area, the tem-
perature also influences noise and therefore an increase in temperature widens the probabilistic
area.

The three effects mentioned above all have a negative influence on probability of correctness.
One parameter that is improved by increasing the temperature is the threshold voltage. In a
paper from 1991 Z. Prijic[16] showed that the threshold voltage is significantly lowered at high
temperatures. This keeps the transistor out of the sub-threshold region longer, increasing the
performance. This effect is shown for (old and large) Si-gate CMOS transistors in Figure 3.10.
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Figure 3.10: Threshold voltage temperature dependency for Si-gate CMOS transistors, as shown
in [16].

The effect of the lowered threshold voltage on probability was simulated for five different tem-
peratures using a parameter sweep. The default parameters were used. Note that the simulation
does not increase the thermal noise at higher temperature. It is a recommendation that this
simulation is repeated with the inclusion of increased thermal noise. The results are shown in
Figure 3.11. It shows that increasing the temperature improves probability around the threshold
voltage, while it has little effect at high Vgq.
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Figure 3.11: E-P curves for multiple temperatures (unit: degrees Celsius). Thermal noise is not
increased with temperature.

3.6 Conclusion on PCMOS inverter performance

The probability of correctness of a PCMOS inverter can be greatly influenced by the parameters
that were analyzed. Existing models of PCMOS are shown to be incomplete. The E-P curves
that are predicted by existing models are shown to be correct only in cases when the output
signal is allowed enough time to settle before the sampling moment. The time required increases
exponentially when lowering Vg, in the sub-threshold region. The operating frequency of a
PCMOS inverter can be lowered in order to shift the probabilistic region of the E-P curve to
lower Vy4. Increasing the width of a transistor both increases the speed and decreases the noise.
Increasing the transistors’ speed shifts the probabilistic region to lower Vy4 (similar to lowering
the operating frequency). Less noise results in a shorter probabilistic region (the transition from
0.5 to 1 probability becomes steeper). Higher temperature also increases noise, but at the same
time it lowers the threshold voltage.
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4 Using probabilistic hardware in a design

In the previous chapters, only a single gate PCMOS circuit was considered. In this chapter, a
series of PCMOS building blocks is considered. The goal of this chapter is to provide insight
into the influences that linked probabilistic building blocks have on each other when connected.
This goal is related to the ultimate goal for probabilistic systems: Being able to easily design a
probabilistic system with a known expected error that uses the least amount of energy possible.
For this we need:

1. An effective way to determine the expected error at the output of a probabilistic system
for a specific energy distribution.

2. An algorithm to find the optimal energy distribution for a specific expected error.

Some steps are already taken towards algorithms for finding optimal energy distributions.
A notable example is a series of papers by M. Lau[12][11] in which he designs a probabilistic
ripple carry adder and multiplier. His methods are purely mathematical and use deterministic
full adders with output coupled noise sources to model probabilistic full adders. However, it was
shown in the previous chapter that this model does not hold for low supply voltages. Another
example is a paper by J. George[17] in which he uses a method called biased voltage scaling to
create an energy distribution for a ripple carry adder. Biased voltage scaling means assigning
supply voltages to specific parts of a system (in this case a ripple carry adder) according to a
predefined function that is optimal with respect to energy consumption for that configuration.
A ripple carry adder was chosen because it has a regular structure and is commonly used.
The validation of his method uses deterministic logic blocks with output coupled noise sources,
according to existing models. Therefore it ignores the influences that each full adder has on
its successor in the chain. This method also does not guarantee finding the optimal energy
distribution, because it is based on approximate models and has no iterative feedback to correct
for approximations.

All of the existing methods and models lack a proper way to accurately determine the expected
error at the output of a probabilistic system. Therefore in the first part of this chapter the
influences of a block on subsequent blocks is analyzed. A ripple carry adder is used as an
example. In the second part of the chapter, the problem of finding an optimal energy distribution
is re-examined using the newly gained insights.

4.1 Finding the expected error of a probabilistic system

The first step towards being able to design a probabilistic system with a known expected error
for the lowest possible energy consumption is creating a way to predict the expected error for a
given design. Using physical simulations to determine the behaviour of the entire system may
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take a long time depending on the size. A method for predicting system level behaviour based
on the behaviour of the individual blocks is desired. Traditional digital CMOS circuits solve
this by characterizing the gates through parameters such as propagation delay and rise/fall time
of signals. Through simulation using these simplified parameters it is determined whether the
outputs are calculated in time or not.

For probabilistic systems we would like the same situation. Characterize each basic building
block only once, then do a relatively simple simulation in order to estimate performance. Thus,
information is needed on how connected probabilistic systems influence each other and the output.

Similar to traditional digital logic, signals propagate through the system at a certain speed.
Unlike traditional digital logic however, there is a large uncertainty in the propagation of the
signals. Voltage noise can cause misinterpretations at the sample moment, but during transitions
voltage noise also causes an uncertainty in the propagation delay. This is illustrated in Figure 4.1.
When the curve around the halfway point is approximated by a straight line, the probability
density function (PDF) in the time dimension is a scaled version of the PDF in signal dimension,
which is a normal distribution.
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Time [s] %107

Figure 4.1: Voltage noise during transitions causes time noise.

When two of these probabilistic systems are connected, the situation becomes slightly more
complicated. Consider two probabilistic systems that both have a known PDF of their propaga-
tion delay, that can be described by a normal distribution. The parameters used in this example
are 1 = 10ns, o1 = Ins, pus = 15ns and o9 = 1ns. The starting time of the second system has a
PDF that is equal to the propagation delay PDF of the first system. Its propagation delay is also
a normal distribution, that is shifted in time depending on the actual starting time. Therefore
the PDF of the propagation delay of the second system can be calculated as the convolution
of the PDF of the propagation delay of the first system and its own propagation delay PDF
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assuming a starting time of ¢t = 0. The convolution of two Gaussian functions can be calculated
easily using a Fourier transform, it results[18] in another Gaussian function, with properties
p = 1+ pe and 0 = \/0o? + o5. This is visualized for the two example systems in Figure 4.2.

The standard deviation of combined probabilistic systems goes as v N, where N is the number
of systems combined.
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Figure 4.2: The convolution of two Gaussian functions results in another Gaussian function
width a larger standard deviation.

4.1.1 Ripple carry adder

The interdependence of connected probabilistic systems is analysed for the specific case of a
ripple carry adder. It is a commonly used digital building block that performs the mathematical
addition of two binary numbers. There are many different ways to implement such an addition

in hardware, but one of the most simple implementations is the ripple carry adder. A block
diagram of a four bit ripple carry adder is shown in Figure 4.3.

The ripple carry adder consists of multiple identical blocks: One bit full adders. Each full

adder has two data inputs and a carry input. It produces a sum and a carry output. The

carry output is used as an input for the next block. The output of stage n can therefore only
be calculated after stage n-1 has produced its carry output. This effect makes the ripple carry

adder ideal for analyzing the influence of blocks on each other: All the blocks are identical, but
one of their inputs is determined by the previous block.
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Figure 4.3: Block diagram of a 4 bit ripple carry adder. Source: commons.wikimedia.org.

A | B | Cin || Sum | Cout
0|0 0 0 0
0|0 1 1 0
0|1 0 1 0
0|1 1 0 1
110 0 1 0
1 0 1 0 1
1 1 0 0 1
111 1 1 1

Table 4.1: Truth table of a full adder.

Full Adder simulations

A full adder is a digital block that performs a single bit addition. Its truth table is shown in
Table 4.1. This function can be implemented in many different ways. A common implementation
using standard logic gates is shown in Figure 4.4.

Cout

Figure 4.4: Block diagram of a full adder. Source: commons.wikimedia.org.

When implementing a full adder in CMOS, this circuit can be optimized to a less readable
version that uses less transistors. It is shown in Figure 4.5. In this circuit, two intermediate steps
can be distinguished. The inputs A, B and C are used to calculate Cout. Its value is then used
to calculate both Cout and Sum (also using the inputs A, B and C). Finally, Sum is calculated
by inverting Sum. Therefore Cout can be viewed as a PBit that is the output of a series of 2
probabilistic circuits and Sum as a PBit that is the output of a series of 3 probabilistic circuits.
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Figure 4.5: Full adder circuit implementation.

Comparing Sum and Cout to a PCMOS inverter, Sum needs the lowest clock frequency,
followed by Cout. Simulations were performed to confirm this behaviour. A full adder was
simulated using the default parameters of chapter 3. The Cout and Sum outputs were simulated
using a parameter sweep on the supply voltage. The resulting E-p curves are shown in Figure 4.6.

Even though a full adder is a much more complex circuit than an inverter, all the rules from
the previous chapter are assumed to still apply to it, because it is a series connection of multiple
CMOS sub-circuits. A property of a digital CMOS circuit is that for every possible combination
of logical inputs its load is always connected to either ground or V4. Therefore the more complex
CMOS circuits that calculate Cout and Sum are similar to a CMOS inverter, but with a more
complex channel that has multiple gates. Figure 4.7 shows a simulation of a full adder at multiple
noise levels, which confirms that it behaves similar to an inverter.
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Figure 4.7: E-P curve simulations of the full adder circuit for several noise factors.
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Propagation of errors

Since each part of a large probabilistic system is a probabilistic system itself, errors can be made
in any part. These errors then have a probability of propagating to the output depending on
the path to that output. Any subsequent part that uses an erroneous signal as an input can
either produce a wrong output itself (propagating the error) or a correct output (stopping the
propagation). In other words, the probability of correctness of the sum output of stage n of
the ripple carry adder depends on the probability that its inputs are correct, but also on the
probability of the block itself. If the correct calculation is done on wrong data, the output may
still be incorrect. From the truth table (Table 4.1) it can be seen that changing only the carry
input will always change the sum output. Therefore a wrong carry input results in a wrong sum
output, unless another error is made. A correct sum output is thus produced when both the
input and the calculation are correct, or both are wrong:

P(3¢+1 =Si41) = pf+1 *pi + (1 — pf+1) * (1 —pj) (4.1)

Where 5;:+1 is the correct sum output of stage i+1, s;41 is the actual output of stage i+1,
p; is the probability of calculating the correct sum output at stage i given correct inputs and
p$ is the probability of calculating the correct carry output at stage i. In this expression the
carry output of stage i-1 is equal to the carry input of the next stage. For identical full adders
placed in the same environment, it is assumed that Vi : p§ = p® and Vi : pj = p* = 1. If
the probability of the carry output is 1, the expression simplifies to P(s;+1 = 8i41) = Pipq- If
the probability of the carry output is 0.5 (randomly chosen value), the expression simplifies to
P(s;q = 8i+1) = 0.5 (pjy + (1 —piyq)) = 0.5.

Following this way of calculation, the probability of correctness for each sum and carry output
can be calculated. M. Lau did this in a previously mentioned paper[11] and found the following
expression for the probability of an error in the sum output of a full adder stage in a ripple carry
adder:

/ 11, 1, 1
P(Si+1 = ﬁsiJrl) = 5 - (5 _pz'rr,iJrl) : [H(§ _pccirr,j) + Z H(§ _pgrr,l)] (42)

j=1 k=11=k

Note that in this expression different conventions of notation are used than in this report.
De,r; denotes the probability of a calculation error in the carry of stage i. pg,.,.; denotes the prob-
ability of a calculation error for the sum in stage i. In this report the probability of correctness
is used rather than probability of error. Rewriting expression 4.2 results in:

%

P(siy = si1) = 5 + (ois — 5) - [[105 — )+ ST — ) (13)

j=1 k=11=k
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If all full adders are identical, Vi : pf = p® and Vi : pf = p°. The equation then simplifies to:

P(sin = i) = 5+ (0" = 5) - [0° = 50 + 30F — )" (4.4
k=1

In the hypothetical situation that the sum is always calculated correctly given correct inputs
(p® = 1), the probability of the sum output only depends on the probability of the carry output
of the previous stage (this can be seen by filling in p; = 1 in equation 4.1). Using p® = 1
equation 4.4 results in:

Plsiy =sin) = 5+ 3 [(0°— 30 + 30— )" (45)
k=1

N |

Consider an infinite series of full adders. The last full adder then has the accumulated carry
probability of an infinite amount of carry calculations. For lim;_,, this expression is solved as:

p°—0.5

1
2 1—(pc—0.5) (46)

. : 1 I, . 1
lim P(3¢+1=8i+1):§+52(p —*)k=§+

i—00

This hypothetical limit shows that the influence of an error in the carry diminishes (if not,
the accumulated error of an infinite amount of carries would have fixed the probability at 0.5).
In other words, an error in the carry is not expected to propagate far up the chain towards more
significant bits.

4.1.2 Ripple carry adder simulations

In section 4.1.1 a full adder was analysed. It is viewed as a sequence of probabilistic sub-systems,
2 in series for calculating the carry and 3 in series for calculating the sum. A ripple carry
adder (RCA) is a sequence of full adders. Therefore the carry output of stage n of the RCA is a
connection of 2n probabilistic sub-systems in series and the sum output of stage n is a connection
of 2n + 1 probabilistic sub-systems in series. Therefore both the sum and carry output of each
stage have a lower probability of correctness than the previous stage (given all parameters are
the same). In Cadence IC four full adders were connected to form a four bit ripple carry adder.
It was simulated with the default parameters, except for the noise amplification, which is set to
100. During the simulations each full adder is given the same supply voltage. This is done in
order to remove the effect of differences in binary interpretations of voltages. The results are
shown in Figure 4.8. Sum n and Carry n represent the sum and carry output of the nth stage of
the ripple carry adder respectively, counting starts at the LSBit.

According to Lau, the sum outputs 2,3 and 4 can also be predicted using equation 4.4. This

(simplified) version can be used here because each full adder is identical and has the same supply
voltage. The resulting E-P curves of each stage then always have the same shape as the first
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Figure 4.8: E-P curves for a four bit ripple carry adder with noise scaled 100 times.

stage sum and carry outputs, because they are always a linear combination of the E-p curves of
the first stage. It has been shown however, that each stage has a probabilistic area that is shifted
with respect to the previous stage, not scaled. Moreover, equation 4.4 predicts that each sum
output has the same probability when the carry probability is equal to 1. Figure 4.9 shows the
simulated sum E-P curves next to their counterparts calculated using equation 4.4. Figure 4.10
shows the same for the carry outputs. Both predictions are inaccurate because they ignore the
effect of propagation delay.

4.1.3 Conclusion on ripple carry analysis

The existing model of a probabilistic ripple carry adder works on the same assumption as the
existing models of a single component probabilistic system, namely that errors are only caused
by voltage noise and not by errors due to missed deadlines. Models for propagation of errors
are developed, but do not provide accurate predictions of probability due to this assumption.
Therefore better models are required that take propagation delay and missed deadlines into
account.
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Figure 4.9: Calculation of sum errors using the model by M. Lau.
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Figure 4.10: Calculation of carry errors using the model by M. Lau.
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4.2 Finding the optimal energy distribution

In the previous section the interaction of probabilistic building blocks in a system was analyzed.
In this section that knowledge is used to better describe the problem of finding the optimal
energy distribution for a given total error. Until now, the total error has not been used as a
measure of performance, but rather the probability of correctness. Therefore definitions of the
total error are first introduced.

Finding the optimal energy distribution for a given total error is a complicated problem,
because there are many degrees of freedom. Especially since it has become clear from the ripple
carry adder analysis that blocks have a substantial influence on subsequent blocks. Therefore it
is important to first define the problem mathematically and analyze it.

4.2.1 Definition of error and optimum

Consider a system that consists of N digital blocks with M outputs. A block is considered to
have a known probability of correctness, which can depend on both its assigned energy E and
the assigned energy of previous blocks (due to propagation delay). An error produced by a block
has a probability of propagating to each of the outputs, p?7°P. If it is not connected to an output
m at all, pP"°? = 0. Each of the outputs has an assigned weighing factor W,, that accounts
for the impact of that output(e.g. 8 for the fourth bit of a ripple carry adder). The total error
produced by a block i is then:

M
e = P(Ey, E2,..,Ex) Y plnor - W, (4.7)
j=1

The total expected error is then defined as:

N N M
€total :Zei :Zpi(ElvEQM'»EN)ZP%OP‘Wm (48)
i=1 j=1

i=1

For an isolated block, ¢; will be equal to its E-P curve multiplied by a weighing factor. If
more blocks are connected to the output of a block however, their performance may also depend
on the performance of their predecessor. Both ¢; and FE; are bounded by the half open interval
[0,00). The physical implications of these bounds are:

e A block can only use energy, not provide it (E > 0).

A block can only cause errors, not correct errors made by other parts of the system (e > 0).

The amount of energy consumed by the block can be arbitrarily large.

e The error contribution of a block can be arbitrarily large.
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In practice the upper bound of the energy consumption is not realistic, because the device
will break down at a certain voltage. One could compensate for this by applying an artificial
boundary: Make the error contribution of the block equal to infinity for any energy higher
than the desired energy boundary. No optimal solution will then incorporate that voltage. The
arbitrarily large error contribution can be realized by assigning infinity as the weighing factor of
an output. This forces any viable solution to ensure that the probability of correctness for that
output is 1.

From the ripple carry adder analysis it became clear that changing the energy of one block
may influence the probability of correctness of another block. When the energy assignment of
a single block is changed, the difference in the total error depends on the difference in error of
each block:

detotal _ al afj (4 9)
dE; ~ £ 0F, '

If a block j is not influenced by block i, its partial derivative will be zero. If a block j is
influenced by the change in energy assigned to block i, this derivative is assumed to be smaller
than or equal to zero. In other words: If more energy is assigned to a block ¢, every block is
assumed to make the same amount of errors or less. Block ¢ finishes its calculations sooner, giving
the blocks that use its output more time to calculate their answer. This effect is similar to the bit
period simulation of the previous chapter (section 3.3), where it was shown that the performance
of a probabilistic inverter increased when the bit period was increased. The consequence of this
effect is that the derivative of total error to energy assigned is always smaller than or equal to
Zero:

detotal

dE;

<0 (4.10)

Going back to the original problem, we want to find the optimal energy distribution for a
given total error. In this case the optimal energy distribution is the one that uses the least
amount of energy. The total energy consumption is equal to the sum of the energy consumption
of each block:

N
Etotal = Z E’L (411)
=1

The optimal distribution is that which minimizes equation 4.11 while keeping its total error
according to equation 4.8 within the given limit. A smaller total error will in most cases also
suffice, but in practice the total error will be exactly equal to the maximum allowed error for
minimal energy consumption, because if it is less, some additional energy can be saved until the
maximum allowed error is reached.
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4.2.2 Algorithm for finding the optimum

As an example of a probabilistic system, a system with two elements is considered, in this case
a two bit binary AND operation. The two elements are independent. Their E-P curves can be
described by the same function:

P =0.5+05-erf(E)? (4.12)

Both propagate to one output with a probability of 1. However, element 2 has a weighing fac-
tor of 2, whereas element 1 has a weighing factor of 1. Using equation 4.7, the error contributions
are found:

€1 =0.5—0.5-erf(F1)?
€2 =2-(0.5—0.5-erf(E2)?)

When filled into equation 4.8 it becomes:

€total = 0.5 — 0.5 - erf(E1)% +2- (0.5 — 0.5 - erf(E2)?) (4.13)

This equation can be depicted as a surface, for which the total error is equal to the height.
The contour lines of this surface represent all possible combinations of E1 and E2 assignments
that lead to the same total error. The surface for this system is shown in Figure 4.11, along with
the contour line that belongs to a total error of 0.3. The red marker on the line represents the
optimal energy distribution for that contour.

Finding the optimal energy distribution is represented here as finding the location of the red
marker on this surface. Assume that we walk across this surface starting on the point E1=E2=2
and that only straight steps in the direction of E1 or E2 can be taken. A step taken then
corresponds to a unit of energy less consumed. The point of least energy consumption for the
desired error is the one that takes the most steps to reach for a certain height while only going

up.

For such a surface the slope corresponds with the increase in error per unit decrease of energy
consumption. We therefore always want to take a step int the direction that has the largest (least
negative) slope. The change in slope (second derivative) indicates whether decreasing the same
energy assignment the next time becomes more or less favorable. The first and second order
derivatives of equation 4.12 are:

d -2 e
75 (0.5 —0.5er f(E)?] = NG Eerf(E) (4.14)
%[0.5 — 0.5erf(E)?] = (% By erf(E) — %6—2’32) (4.15)
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Error

Figure 4.11: A surface formed by equation 4.13, with a contour line and optimal energy distri-
bution for that contour line indicated

When stepping from the point E2 = E1 = 2 towards the origin (the highest point of the
surface), an area can be defined where the first order derivative is negative and the second order
derivative is positive in both the E1 and E2 direction. From equation 4.10 it follows that this
surface has a negative first order derivative for any point in any direction. The second order
derivative is given in equation 4.15, from this equation it can be found that both second order
derivatives are positive where E2 and E1 are both larger than 0.62. The increase in expected
error can be found from the step size and the derivative:

ofi
0E;

N
Aerotar = »_AE; - (4.16)
=0

Since both the step size and the first order derivative are negative, the error increases for
each step towards the origin. After the step the first order derivative has also changed:

A

) 2 £
Of _ g O

or, ~ AP gE2 (4-17)

which is negative while F; > 0.62. If in that area a step is taken towards the origin in
the direction with the largest (least negative) first order derivative, that derivative decreases
(becomes more negative), making it less favorable. After a few steps the situation is reached
where both first order derivatives are equal, and the most favorable step alternates between both
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blocks. A sort of trench is shaped that can be followed, always ensuring the most steps are
taken to reach a certain height. This is shown in Figure 4.12. Though this explanation makes it
plausible that the optimal energy distribution can be found by continuously choosing the lowest
first order derivative, a formal proof has not been found and is therefore not given. The algorithm
followed is:

Double El1 = E MAX;
Double E2 = E MAX;
Double error = f(E1, E2);
Double step = 0.1;

while (error < MAX ERROR)
{
//Check if we are at a border
if (E1 = 0)
{
E2 —= step;
}
else if(E2 = 0)
{
El —= step;
}
//Take a step in the direction that gives the
//lowest decrease in performance
else if(f(El — step, E2) < f(E1, E2 — step))
{

El —= step;
}
else
{

E2 —= step;

}

//Update the current error
error = f(E1, E2);

In this algorithm, f is the function that calculates €;tq; according to equation 4.8. The
algorithm is defined for two dimensions, but can be extended to more dimensions.

Even though this algorithm takes rather large steps, it approximates the optimal energy point
nicely. To show this in more detail, the optimal energy point for each height is plotted along
with the curve that the algorithm follows in Figure 4.13 as a line of red markers.

When the algorithm reaches the point where the second order derivative becomes negative,
something curious happens. A discontiuity appears in the optimal path. Because the algorithm
takes incremental steps, it cannot follow the discontinuity. This proves that the algorithm cannot
find the optimal energy distribution in every situation.
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Figure 4.12: The path from maximum energy consumption to the optimal energy distribution
for an error of 0.30.

4.3 Conclusion on using PCMOS in a design

Using PCMOS in a complex design requires both accurate estimations of the expected error
for a system and an optimal algorithm for finding the optimal energy distribution for that
error. Existing models of PCMOS systems ignore the effects of errors due to missed deadlines
and propagation delay. This causes an unrealistic estimation of the performance of a PCMOS
system, even when the E-P curves of a building block is known for the situation that they are
isolated. Existing models do offer precise descriptions of the propagation of errors through a
PCMOS system.

The algorithm to assign different energy levels to different parts of a digital circuit that was
given in this chapter provides an easy way to approximate the optimal energy distribution for a
system, but not for the entire problem space. Its optimality cannot be proven for every situation
and it has even been proven that a situation exist where it cannot find the optimal distribution at
all. In order to create an algorithm that can find the optimal solution for any situation, a better
understanding of the problem of finding an optimal energy distribution is required. The analysis
in this chapter should be expanded in further research in order to find an optimal algorithm.
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Figure 4.13: Optimal energy distribution per height (red dots) and path chosen by algorithm.
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5 Conclusion

Existing models of probabilistic CMOS (PCMOS) are inaccurate in their prediction of Energy-
Probability (E-P) curves. They only provide an accurate prediction in situations where the
output signal is allowed enough time to settle before the sampling moment. In the sub-threshold
region of CMOS transistors, the operating frequency should be lowered exponentially with the
supply voltage in order to meet this requirement. Lowering the operating frequency of a PCMOS
inverter effectively shifts the probabilistic area of the E-P curve to lower V4 (the transition from
0.5 to 1 is shifted). The same effect can also be achieved by increasing the width of a transistor,
which also decreases noise. Less noise results in a shorter probabilistic region (the transition
from 0.5 to 1 probability becomes steeper). Higher temperature also increases noise, but at the
same time also lowers the threshold voltage.

Using PCMOS in a complex design requires both accurate estimations of the expected error
for a system and an optimal algorithm for finding the optimal energy distribution for that error.
Existing models of PCMOS systems ignore the effects of errors due to increasing propagation
delay at low supply voltage. This causes an unrealistic estimation of the performance of a
PCMOS system, even when the E-P curves of a building block are known for the situation that
they are isolated. No algorithms exist that guarantee finding the optimal distribution of energy
for a specific error. In order to create an algorithm that can find the optimal solution for any
situation, a better understanding of the problem of finding an optimal energy distribution is
required.
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6 Recommendations

This report ended with the description of an algorithm that can approximate the optimal energy
distribution for a probabilistic system, though not for every situation. Such an algorithm mas-
sively reduces the amount of work it takes to design an optimal probabilistic system. However,
much more information about the interaction between probabilistic building blocks is needed
before such an algorithm can be attempted. This should be the main focus of future research on
this subject.

The analysis of the PCMOS inverter covered some important parameters, but many more
parameters exist that influence the performance of probabilistic CMOS. One of the influences
that was only briefly mentioned is the difference in supply voltage levels between elements. Due
to different interpretations of the same voltages it can be expected that the performance of a
system will decrease. It should be researched how this difference influences performance.

Another factor that was not analyzed is the balancing between N-MOS and P-MOS. The
assumption during this report has always been that the performance for a rising edge is the same
as that for a falling edge. If the N-MOS and P-MOS are not balanced, this is not the case. The
average performance may drop due to such imperfections.

The simulations that were presented in this report can be improved upon. Making the input
sources random instead of a fixed pattern will create more realistic E-P curves. This reduces
the errors that may have been introduced into the data in this research due to repetitive input
patterns. Any future simulations should use randomized input sources to prevent these errors
and make the simulations even more realistic.

In order to make these kinds of systems feasible for production in the future, a limited number
of supply voltage levels should be used. This technique is called Voltage Binning. In most existing
research an unlimited amount of unique supply voltage levels are allowed. Adding a restriction
on this adds a new dimension to the problem of finding the optimal distribution, making it even
more complex, but also improves the feasibility of implementing a PCMOS system.
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