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Abstract

Motivation: The prostate biopsy and needle intervention surgery are the im-
portant procedure of prostate cancer diagnosis and therapy. Different from the
conventional manually needle intervention in prostate surgery, MIRIAM project
aims at minimally invasive robotics in MR environment to give an efficient and
accurate clinical solution. Accordingly, a fully automatic prostate segmentation and
3D reconstruction in real-time intervention procedure is required for positioning
and visualizing the prostate to get a correct needle path plan and be able to track
this.

Problems: The lack of knowledge of prostate position and deformation in 3D
space during needle intervention hinders the active appearance models (AAM) from
being trained. Besides, the conventional 3D model fitting is not applicable in a
real time needle intervention since the 3D image acquisition is time-consuming. As
a result, the feasibility of using a phantom to build the deformed prostate data set
and a 2D slices based model search will be examined.

Approach: A deformable prostate phantom was made for MRI guided needle
intervention simulation and data acquisition. The phantom was designed anthro-
pomorphically and made of soft PVC. Full 3D MR images of the phantom were
collected for training AAM. Before building AAM, a group-wise parameterization
based shape correspondence was establishment. A 2D slices based AAM search
approach was proposed to get a 3D shape segmentation and texture reconstruction.
After the AAM was established and trained, the leave-all-in and leave-one-out
schemes were applied for validation. Some metrics were also calculated for results
evaluation.

Results: The phantom showed a good bio-mechanical property and MR com-
patibility, where the deformations were clearly observed. For the segmentation
results, leave-all-in scheme validate the feasibility of 2D slices based AAM search,
but the leave-one-out scheme showed worse results which lost the deformations
for both 3D and 2D fitting. This could result from the lack of training data. The
further research and verifications would be taken with larger data set and more
considerations should be taken on generalization from the phantom to the real case.
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Chapter 1

Introduction

Prostatic diseases such as prostate cancer (PCa) and benign prostatic hyperplasia
(BPH) are common among men, especially in Europe and America. An early stage
diagnosis can help to make an appropriate therapy plan. Hereby, it is common
to inspect whether the prostate is cancerous or benignly enlarged by biopsies.
In the needle intervention, magnetic resonance (MR) imaging and ultrasound
are necessary for locating the prostate and needle. Nevertheless, some studies
have shown a high false negative rate in trans-rectal ultrasound (TRUS) guided
biopsies[1], which missed up to 31% of prostate cancer because some zones of the
prostate cannot be detected by using ultrasound. Alternatively, the MRI gives
more attractions in prostate biopsy and local therapy since its hight soft-tissue
contrast and multi-parametric capabilities.

Conventionally, the biopsies are taken manually and all the imaging methods
(e.g. MR and ultrasound) are helping the doctor to locate the needle and the
prostate. Presently, the robot-assisted biopsy device is favorable to increase the
target accuracy. Minimally Invasive Robotics In An MR environment, MIRIAM
project is concentrating on this, which, consequently, requires an automatic prostate
segmentation and image reconstruction during the needle intervention. In this
chapter, we will briefly introduce the project and some relative knowledge, and
review the common used approaches for the prostate segmentation. Based on these,
we will put forward the research questions and objectives. In the end, we will give
the framework of the whole article.

1.1 Project Overview

MIRIAM project is aiming at developing new solutions for minimally invasive
surgical procedures in an MR environment. This project is collaborated by the Uni-
versity of Twente (UT) MIRA, the University Medical Center (UMC) St. Radboud
Nijmegen Radiology department, Demcon, Siemens and XiVent Medical. Finally
a MRI compatible device can lead to better diagnosis of prostate cancer, which
will decrease the overtreatment of patients due to the limitations associated with
prostate-specific antigen (PSA) test while reducing the incidence of false-negative
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Chapter 1. Introduction

biopsies [2]. Meanwhile, it will lead to a better treatment decision and focal thera-
pies with fewer side effects.

The major task of the UT-SAS group is to develop a detection system of the
needle in the MR images for adjustment of the scanning planes, a prediction of
prostate deformation and position, and 3D prostate reconstruction. Because the
needle path is planned in a 3D space, it requires a 3D prostate representation and a
3D tracking during the insertion, since the prostate might deform and move during
intervention. However, taking a 3D volume image is time consuming. It is not
applicable to stop the biopsy for image acquisition. However three orthogonal slices
can be taken in real time for the radiologist to see where the needle and prostate
are. This inspires us to segment prostate only relying on these 2D MR image slices.
Before we can figure out how to accomplish it, we would like to gain some anatomy
and MRI knowledge and review the commonly used approaches for segmentation
of the prostate, especially the MR modality.

1.2 Prostate Anatomy

The prostate is a relatively small organ in the pelvis and is part of the male
reproductive system [3]. It is located under the bladder and against the rectum.
Pubis is in front of it and the urethra goes through. The anatomic annotation of
the male pelvis part is shown in Figure 1.1(a)1 .

(a) Male pelvis anatomical illustration (b) Prostate schematic drawing

Figure 1.1: Prostate anatomy illustration

From this geometry, the prostate apex refers to the caudal part, and the prostate
base refers to the head part. The prostate can also be divided into three zones in
terms of functions: Transition zone, central zone and peripheral zone, as Figure
1.1(b)2 shows. The central zone surrounds the ejaculatory ducts, and the transition
zone is located around the urethra, where the BPH happens most probably; the
peripheral zone is wrapping at the posterolateral part and comprises the majority of

1Source: http://www.yoursurgery.com/ProcedureDetails.cfm?BR=7&Proc=55
2Source: http://www.pathologyoutlines.com/topic/prostateanatomy.html

2



Chapter 1. Introduction

prostatic glandular tissue [3]. Some study reveals that 65% to 74% of the prostate
tumors are located in the peripheral zone [4], which would be firm, hard or stony
compared with the health tissue.

1.3 MR Imaging Principle

An MRI scanner has large homogenous magnets, which generate the magnetic
filed that tends to line up all the magnetic moments of the nuclei, the spin of the
nuclei and the hydrogen in the human body where water is concentrated. When
a radio frequency pulse is put on, the magnetization of the hydrogen nuclei can
be turned 90 degrees away from the direction of the magnetic field. Then a radio
frequency signal, as the protons return to original equilibrium will be induced in
the coils around. For determining where the signal comes from, another magnetic
field gradient is put on the top of the homogeneous one, with different strength
and different directions, causing nuclei at different locations to precess at different
speeds. All the data are recorded and the measured signals are Fourier transformed
to recover the spatial information.

There are some basic MRI scan types, such as T1-weighted, T2-weighted, T2* etc.
For diagnosis of PCa, T2-weighted image has been used for many years [3]. A
T2-weighted MRI scan mainly shows the tissue difference in terms of transverse
relaxation time. As the PCa tissue may appear a similarity with BPH in the MR
scan, it is necessary to take biopsies to increase the diagnosis accuracy. Figure
1.2(a)1 shows an instance of T2-weighted image slice of male pelvis, and the prostate
is enclosed with yellow line. Figure 1.2(b)2 shows a sagittal real time slice with
manually annotations in a MRI-guided cryotherapy.

(a) An example of MR image
slice of male pelvis.

(b) An annotation of sagittal
MR image in the cryother-
apy. (1. Prostate; 2. Blad-
der; 3. Pubis; 4. Rectum;
5. Needle)

Figure 1.2: MR image example of prostate

1Source: http://promise12.grand-challenge.org/
2Source: UMC St. Radboud Nijmegen
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Chapter 1. Introduction

Nowadays MRI can scan a full 3D image, making the 3D prostate detection easier.
By viewing the axial, sagittal, coronal or with any other orientation of the image, it
can show the prostate completely so that the biopsy or treatment can be planned
precisely.

1.4 Prostate Segmentation Methods

There have been a lot of prostate segmentation researches in TRUS and MR images.
The methods can be classified into different strategies: contour and shape based,
region based, classification based approach, and hybrid method [5]. Here we give a
short review of these approaches.

1.4.1 Contour and Shape Based Approach

The contour and shape based segmentation is the most commonly used method.
It exploits contour features and shape information to segment the prostate. As
for the edge based approach, Liu et al. [6] developed a new method for automatic
prostate boundary detection in ultrasound images. Kwoh et al. [7] implemented a
harmonics method using Fouriere information for noise removal and boundary en-
coding. Aarnink et al. [8] used the local standard deviation to identify homogenous
and heterogeneous regions in a multi-resolution image framework, and Pathak et al.
[9] reduced the speckle by applying a stick filter based on the non-zero correlation
value of the speckle over large distances. There are of course many other articles
addressed in this approach. An advantage of the edge detection based method is
that it can neglect the prior knowledge of shapes. It fits our task because we do
not have the knowledge of prostate deformation in the biopsy. Even though, the
edge detection based approach is still not applicable, since we can only get the
edges in the slices extract for segmentation but it is not possible to use several
slices to reconstruct a 3D segmentation without any priori knowledge.

A similar problem also occurs in the method based on probabilistic filtering,
though it has been applied in image segmentation successfully. This method fea-
tures a moving object tracking constrained by a dynamic model, such as the work
of Abolmaesumi et al. [10], which aims at projecting equi-spaced radii from an
arbitrary seed point inside the prostate cavity towards its boundary. However,
these methods suffer from a sensitivity to initialization and dependence of image
completeness which is not the case in our task.

Most researches are concentrating on the deformable model based segmentation.
In the early stage, Kass et al. proposed active contour models (ACM), which also
called snakes algorithm. It controls continuous closed curves composed by discrete
points, and evaluates an energy function for matching. The ACM method has
been applied in many fields. As to segment the prostate, Knoll et al. [11] proposed
the technique for elastic deformation restriction to particular object shapes of any
closed planar curve using localized multi-scale contour parameterization based on
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Chapter 1. Introduction

the 1D dyadic wavelet transform. Ladak et al. [12] proposed a semi-automatic
segmentation of the prostate with the initialization by selecting four points from
which the outline of the protate can be estimated using cubic interpolation and
shape information. The estimated contour is then deformed automatically to
better fit the image. In contrast, Ding et al. [13] developed a 3D segmentation
method. They used a cardinal spline to construct the initial contour and then the
internal and external forces were calculated. They propagated the final contour
slices by slices until all boundaries are segmented then a 3D mesh can be formed
for calculating the volume of prostate. Jendoubi et al. [14] experimented with
an improved deformable 2D snakes modeling technique with median filtering for
speckle noises removal and gradient vector flow computed from the gradient map
obtained using Sobel and Laplacian of Gaussian as external force to drive the active
contour towards the boundary of the prostate. Most of these applications were in
TRUS images segmentation. As an evolution of ACM, statistical shape models
(SSM) were soon proposed. The research then was concentrated on two typical
SSM methods, active shape models (ASM) and active appearance models (AAM).

ASM, proposed by Cootes et al. [16], worked in the deformable framework main-
taining the principal modes of shape variation of the anatomical structures. By
assuming the input data have Gaussian distributions, ASM applies principal com-
ponents analysis (PCA) of the aligned shapes to find the principal shape variances
and point distribution models (PDM) to construct the linear relationship between
the weights and shape vectors. For the model searching, gray level information,
normal to the contour point, is acquired offline. Then by minimizing the difference
between the detected gray levels and the modeled ones, the object shape can be
obtained by updating the pose and weight parameters iteratively [17]. Cootes
et al. also applied it to many applications [15], including segmenting MR slices
[18]. Zhu et al. [19] proposed a hybrid ASM approach for prostate segmentation.
This approach was investigated when the volumetric data, namely the prostate
slices are sparse, so that a 3D ASM tends to be less robust, where a 2D plus
3D methodology can be employed. This application resembles ours but differs.
Although we both aim to use 2D information for a 3D construction, their approach
is suitable for the training set and testing set are equivalently sparse. And this
method is actually still a 2D ASM. However, we can get a full 3D data for training
but less data for testing, compared with Zhu’s application. Kirschner et al. [21]
has proposed a automatic prostate segmentation approach in MR images with a
probabilistic ASM (PASM). They employed a boosted prostate detector to locate
the prostate in the image, followed by a PASM for the delineation of its contour.
The full 3D ASM is applicable to our condition, but the texture information re-
lies on the position of landmarks, which might not be included in the extracted slices.

AAM, as an advanced version of ASM, also proposed by Cootes et al. [20],
incorporates the texture information as well as shape information to construct the
linear relation between a combined weights and appearance (shape and texture).
Because of more accurate performance, AAM replaced ASM gradually and it was

5



Chapter 1. Introduction

applied widely in medical image segmentation. In the 2012 international conference
on Medical Image Computering and Computer Assisted Intervention (MICCAI)
challenge, some participants have used AAM in their system, such as the work
of Vincent et al. [23] and Maan et al. [22]. A 3D AAM can help us build the
model. In the model searching, not like ASM searching, there are always texture
information available in the extracted slices. This feature gave us the chance to
consider our problem, and we will discuss them in the latter chapters.

Another two techniques from the deformable model based method are using edge
based level set and curve fitting. Although they have shown a good performance in
TRUS, they were rarely implemented with MR images.

1.4.2 Region Based Approach

In addition to the contour and shape based segmentation, the region based one is
mainly exploiting the atlas or a graph partition or a region based level sets. An
atlas approach converts the segmentation problem to a image registration problem
since the registration can help to find a transformation to map a pre-segmented
image to a new image. Klein et al. [24] presented a three dimensional multi-
atlas approach to segment the prostate, measuring a localized version of mutual
information, and considering a majority voting rule and the “simultaneous truth
and performance level estimation” algorithm for atlas fusion then producing the
final segmentation decision. Dowling et al. [25] improved the Klein’s result [24],
and introduced the diffeomorphic demons method for non-rigid registration and a
comparison of alternate metrics for atlas selection. Many other relevant researches
on graphic partition and region based level sets haven been investigated, and most
of them were considered in a TRUS environment. Nevertheless, this method is not
suitable since the image for segmentation only contains several 2D slides, while
this approach requires the full 3D information. However, it provides a good choice
for building a prediction model when it can be incorporated with probabilistic
methods.

1.4.3 Classification Based Approach

The classification based approach is aiming at obtaining a partition of the feature
space into a set of labels for different regions[5], where a classifier or clustering
based method can make the system learn the features from labeled the training
set, then label the testing data set. Maan et al. [26] has shown a new prostate
segmentation approach using multispectral MRI and a statistical pattern classifier.
By examining the Bayesian-quadratic classifier and assuming a normal density
likelihood, and a k-nearest-neighbor classifier, they segmented the prostate precisely
with the knowledge from multispectral MR images. Other similar methods have
been proposed for TRUS images. However, in the feature extraction part, the
problems from edge detection part also exists in this approach. As for our task, it
cannot be well deployed in 3D condition.

6



Chapter 1. Introduction

1.4.4 Hybrid Approach

The hybrid approach may be any combination of the methods listed in the preceding
parts, which aims at improving the accuracy. Martin et al. [27] applied a hybrid
registration framework which coupled an intensity-based registration with a robust
point-matching algorithm for both atlas building and atlas registration. Tsai
et al. [28] proposed a shape and region based level set framework to segment
the 3D prostate MR images. They made the PCA coefficients of aligned shapes
incorporated in the level set function, and segment the prostate by minimizing
this function. Firjani et al. [30] proposed a new segmentation framework based
on maximum a posteriori estimation of appearance descriptors, spatial rotation
variant and shape descriptor. Toth et al. [29] used mean, standard deviation,
range, skewness and intensity values and its kurtosis in a local neighborhood to
propagate ASM automatically initialized from MR spectroscopy information. MR
spectroscopy information was clustered using replicated k-means clustering to
identify the prostate in a mid slice to initialize multi feature ASM [5]. There are
more studies concerned with different hybrid approaches, which can be referred to
the study of Ghose et al. [5] for a detailed summary.

1.5 Research Questions and Objectives

As we discussed in the previous sections, we wish to track the prostate during the
needle insertion in order to update the needle path to target the correct position
of prostate. Briefly stated, the task is to segment the prostate and reconstruct
the 3D representation in the real time intervention. However, two major problems
arise. First, due to a lack of 3D image data of prostate in needle intervention, we
do not know how the prostate will deform or move during the intervention; second,
only three orthogonal slices could be available in the intervention since the full 3D
image acquisition is time consuming. Accordingly, we can put forward our research
questions:

• Is it feasible to learn the prostate deformation and motion during needle
intervention in 3D space?

• Is it feasible to segment the prostate based on three orthogonal slices in a 3D
MR environment?

Currently, we cannot get the knowledge by taking 3D images of patients in the
intervention, as the needle intervention is fast and it will not stay in the body for
long. The acquisition of full 3D MR images will take 2 to 4 minutes depending on
the resolution. Moreover, it is impossible to repeat the procedure in the patient
to collect a statistical data set. As a result, we resort to a anthropomorphic
phantom. The phantom should be representative, namely have resemblance with a
real prostate in terms of mechanical properties, and also MR compatible.

As to the second question, according to the review of the prostate segmenta-
tion methods, we turn to a full 3D AAM relying on the deformable prostate
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Chapter 1. Introduction

phantom, and then test the feasibility of model search based on three orthogonal
2D slices. Therefore, our objectives are:

• Make an anthropomorphic deformable prostate phantom to simulate the
prostate motion in needle intervention and collect MR image data with
respect to prostate deformations.

• Build active appearance models using the collected data and segment the
prostate by means of three orthogonal 2D slices based model search.

1.6 Thesis Outline

According to the research questions and objectives, this thesis is organized as
follows:

• Chapter 2 introduces our innovative design of prostate phantom based on
the prior works. It includes material selection, structural design and other
relevant issues.

• Chapter 3 reviews the standard principles of basic AAM including the shape,
texture and appearance modeling specifications and model search procedure.

• Chapter 4 discusses the correspondence problem and addresses our choice
of correspondence establishment method, namely parameterization based
group-wise minimum description length approach.

• Chapter 5 proposes our innovative 2D slices based AAM search, including
the mathematical principles and algorithm procedures.

• Chapter 6 specifies the experimental setup and implementation issues in-
cluding the phantom fabrication details, data collection experiments, AAM
modeling procedures, and shape segmentation and texture reconstruction
results.

• Chapter 7 evaluates the phantom properties and segmentation results in
quantitive metrics and 3D visual representations.

• Chapter 8 summarizes the whole work and gives the general remarks and
recommendations for future work.

8



Chapter 2

Prostate Phantom

According to the previous chapter, an effective anthropomorphic phantom is
required to mimic the needle intervention for visualization of 3D deformations.
There are plenty of phantoms built in different research orientations. It is necessary
to learn from the retrospective literatures that can provide valuable suggestions
and essential advices. In the following section, a brief literature review for the prior
arts is firstly presented. Afterwards, the detailed annotation and description of our
phantom will be proposed.

2.1 Prior Arts

The previous phantoms are varying from simple single component phantom to
complex multiple components that imitate the prostate and surrounding tissues.
For the sake of more accurate simulation of needle insertion, a complex phantom
with multiple components will be studied more.

Ho et al. [31] investigated the prostate intervention device. They evaluated
the software’s safety, and workflow protocol by modeling a phantom that was
made of egg. Specifically, they suspended a shelled hard boiled chicken egg into
transparent gelatin, which were placed in a plastic box. This prostate phantom
was tested in the biopsy gun insertion guided by ultrasound. For an economic sake,
Wilkin et al. [32] used cooked beets and corned beef or gelatin mixture to make
a cheap prostate phantom for the application in measuring prostate volume and
taking prostate biopsies guided by ultrasound. Heikkilä et al. [33] has proposed a
technique for needle insertion in prostate seed implantation, where a corresponding
phantom has been made of bolus material building the perineal surface, a plastic
tube for rectum, and gelatin for the prostate which is fixed to the case. However,
the mechanical properties and visibility in MRI has not been tested for these
ultrasound oriented phantoms. What is more, the motion of the prostate in the
insertion of biopsy needle/gun was not taken into consideration as well, which are
necessary for building the phantom in our experiment.

Similar problems have also happened in some commercial prostate phantom prod-
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Chapter 2. Prostate Phantom

ucts fabricated by CIRS (Computerized Imaging Reference Systems, Inc.). The
most popular prostate phantoms are the 053, 058 and 066 series1. These phantoms
have modeled the prostate, the rectum, the perineum wall, the urethra and the
seminal vesicles, most of which are made of Zerdine®. This is a patented solid elas-
tic material that has good elastic property, is not sensitive to temperature variation
and has good ultrasonic, MRI and CT performance. Some phantoms have been
employed in medical and imaging researches such as MRI and Ultrasound fusion
[34][35] and are valid in performance. Although these commercialized phantoms
are aimed at modeling the application of biopsy, sonoelastography, cryosurgery,
brachytherapy and other general purposes, they are neither designed for MRI
modality (except 053-MM 2), nor for simulating the realistic prostate motions.
In addition, these phantoms are expensive (e.g. $480 for CIRS 053-MM model,
$602.67 for CIRS 058 model. etc3), where price is also an important factor. An-
other product from CIRS is the pelvic phantom, CIRS 048 4, which is a more
complete version of prostate phantom. It adds pubic bone/pelvis that is made
of tissue equivalent epoxy resin, and bladder made of Zerdine®, compared with
their prostate phantom, but loses the perineum part. This phantom shows good
performance in MRI, CT and ultrasound, while it has difficulty in trans-perineal
biopsy intervention because of the absence of perineum. In addition, the price is
over $3300 5, which makes it unsuitable for destructive experiments.

Zerdine® would be a good choice of material for the prostate phantom, but
it cannot be purchased separately and very expensive. Besides, it does not have
evident deformation during the needle insertion. Dehghan et al.[36] have selected
polyvinyl chloride (PVC) plasticizer to make the prostate model, and also the
surrounding tissues with a mixture with softener. This phantom also contains a
rectum into which a stiff cylinder made of hard plastic was inserted to simulate the
rectal probe. Besides, the prostate was connected with the base. These designs are
made for estimating the rotation and motion of prostate around the pubic bone
and the effects from the rectal probe. The investigation of motion and deformation
of prostate is prior to other studies. A well fitted model and method have been
established to estimate and measure the interaction between the needle and tissue.
It also proposed an appropriate adjustment for improve the simulator. It is reported
that the displacement of the prostate in axial direction is less than 4 mm during
the needle insertion. However, it was not indicated how much this phantom fits to
the realistic condition and was not tested in MR environment.

Sherman et al. [37] has made a phantom that created the true prostate envi-
ronment for experimenting an unconventional prostate stabilizing technique to
decrease the motion of prostate during the brachytherapy procedure. The phantom

1http://www.cirsinc.com/products/all
2http://www.cirsinc.com/products/modality/64/multi-modality-prostate-training-phantom
3http://www.pnwx.com/Accessories/Phantoms/Radiology/Ultrasound/CIRS/Prostate/
4http://www.cirsinc.com/products/modality/62/multi-modality-pelvic-phantom/?details

=specs
5http://www.supertech-to-go.com/mupeph.html
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consisted of three distinct regions, the perineum, the prostate and the surrounding
fascia tissue, made of different concentrations of PVC. It is important to indicate
that the proportion of hardener and plasticizer of these layers were based on
prior experimentation with PVC, which attempted to obtain the force and dis-
placement seen in the operation room table, namely in vivo measurement, during
brachytherapy procedures [38]. Moreover, in order to determine the extent of the
prostate displacement accurately using ultrasound scanner, vitamin E capsules
were placed along the outer region of the prostate. The phantom was used in a
vertical orientation with two orthogonal ultrasound probes for visualization. The
experiment indicated that the motion is up to 11 mm during the needle insertion.
Unfortunately, this phantom has not been tested in MRI either.

On the basis of the preceding two mobile phantoms, Hungr et al. [39] has built
a more realistic and deformable prostate phantom. This phantom consists of a
harder prostate embedded in a softer surrounding, both of which are made of PVC
with different mixture proportions. Besides, a rectum structure was constructed
as an air tube for the placement of ultrasound probe and the perineum is part
of the frame which has the same material as the prostate. With the phantom,
the speed of sound, stress-strain relationship, the imaging characteristics in CT,
MRI, ultrasound, needle insertion force and prostate motion have been examined
respectively. It is worth mentioning that most of the experimental data were
comparable with the results tested with the tissue in vivo or in vitro. For instance,
the stress-strain relationships for PVC with different proportions were published
with the corresponding in vitro prostate tissue, and the needle axial force measured
with the phantom was comparable to the in vitro liver puncture curve by Maurin
et al. [40], the dog in vivo prostate test by Kataoka et al. [41], as well as the in
vivo force measurements by Podder et al. [38]. Apart from that, the experiment
revealed that the movement of the phantom prostate along the needle insertion was
between 2 and 4 mm, with rotations between 0◦ and 2◦, which were comparable
with the range of 3 − 10 mm of translation and 0◦-10◦ of rotation published in
vivo [42]. But the rotation of the prostate was tended to be downward (toward
the rectum) rather than upward toward (the pubic arch). This phantom provides
sufficient technical instructions and supports since it satisfies most requirements
concern with our research compared with other phantoms.

2.2 Phantom Specifications

The phantom in our research concerns with the motion and deformation of prostate
in the needle insertion. As stated above, the phantom made by Hungr et al. [39]
was selected as our phantom prototype. Our phantom also includes a frame, a
rectum, a prostate, surroundings. But we added a pubic bone and replaced the
homogeneous structure of the prostate with a two-layer structure (capsule plus
inner core). In this section, the phantom details in terms of material, structure
and components, as well as some relevant issues will be described.
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2.2.1 Phantom Material

The choice of material is very important, for it determines most mechanical
properties of the phantom. Three major issues are concerned, namely the kind of
material, the appropriate concentration for these materials, and the material costs.

2.2.1.1 Material Type

Based on the preceding section, most commonly used materials for the phantom
include agar, gelatin, PVA, PVC, silicone, Zerdine®, etc. In the design of Hungr
et al. [39], a detailed comparison of these materials has been listed in terms of
density, Young’s modulus etc., which has shown that agar and gelatin are too
fragile for motion particularly in condition of soft surrounding materials; Zerdine®,
as discussed, is neither economic nor suitable for evident deformation; while PVA
is too complicated to prepare so that it increases the difficulty in fabrication, as
well as it has inappropriate acoustic property if the phantom would be used in
ultrasound environment. Accordingly, considering the trade-off between mechanical
and imaging characteristics, as suggested by Hungr et al. [39], soft PVC is the best
choice at present.

The soft PVC used in our phantom is a mixture of PVC polymer solution and the
softener diethyl hexyl adipate. Both the polymer solution and softener were ordered
from the company specialized in fishing bait construction, Bricoleurre (Mont Saint
Aignan, France), same as the phantom of Hungr et al. [39] did. Table 2.1 shows
the ingredient proportion of 4 premixed polymer-softener mixture products called
Plastileurre®. Each product can be either ordered from Bricoleurre company
directly, or generated by mixing hardener (i.e. Super Rigide) and softener (i.e.
d’assouplissant) with the specific ratio. This proprietary recipe can also be found
on their official website 1.

Table 2.1: Ingredients proportion of soft PVC mixture products

Plastileurre® Products Hardener(%) Softener(%)

Super rigide (Hardener) 100 0
Rigide (Hard) 75 25
Standard 50 50
Soft 25 75

2.2.1.2 Material Concentrations

As for the concentration of the mixture, its elasticity property should be comparable
to the human tissue. Generally, the Young’s modulus is an important factor for
evaluating the elasticity of any tissue. Normally it can be obtained by measuring
the stress-strain relationship, and the higher the value, the stiffer the material.

1http://www.bricoleurre.com/index.php?main page=index&cPath=1
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Krouskop et al. [43] tested the elastic moduli in normal and abnormal (PCa and
BPH prostate tissues in vitro) tissues. For the normal tissue the moduli were at
63 ± 18 kPa (anterior) and 70 ± 14 kPa (posterior); for BPH tissue, they were
36± 11 kPa; but for cancerous tissue they were 221± 32 kPa which showed the
cancerous tissue had a measurable elevated modulus compared with that of the
healthy tissue. As for the stiffness of same specimen, Kemper et al. [46] has investi-
gated the stiffness of healthy human prostates with an in vivo magnetic resonance
elastography (MRE), where the result showed the peripheral portion of the prostate
was stiffer than the central portion. In the research of Phipps et al. [44], the Young’s
moduli of cancerous prostate glands from 9 specimens (4 Treated and 5 untreated)
ranged from 68− 168 kPa. While Zhang et al. [45] did the unconstrained stress-
relaxiation tests on 8 normal prostate specimens and 9 cancerous prostate specimens
in vitro, and the measured Young’s moduli were 15.9±5.9 kPa and 40.4±15.7 kPa
respectively. Yang et al. [47] has used an electro-mechanical shaker to do a macro
and micro-mechanical testing in vitro, and the Young’s modulus was up to 200 kPa.

To make an appropriate phantom, the prostate capsule and the surrounding
material should be distinctive. Apart from the 4 Plastileurre® products, Hungr
et al. [39] defined the super soft mixture for making the surrounding tissue that
on most condition is fat. As proposed, the super soft mixture is the blend of 10%
hardener and 90% softener. Then, Hungr et al. [39] have measured the stress-strain
relationships for these five mixtures with different polymer-softener concentrations,
and the Young’s moduli for super rigide, rigide, standard, soft and super soft
were approximate 200, 150, 100, 50, 3 kPa respectively. Combining the measured
Young’s Moduli of prostate in vitro [48, 49, 43] and that of soft PVC mixtures,
Hungr et al. suggested the frame and prostate in the phantom can be made of
the standard mixture corresponding to a combination of 50% hardener and 50%
softener, and the surrounding part can be filled with super soft mixture. It was
fair enough for selecting standard mixture also to make the frame, since it can be
stiff enough not only for supporting the whole phantom, but also for simulating
the perineal skin layer and the anus area. Krouskop et al. [43] also tested the
normal fat in the breast tissue, and the Young’s moduli range from 11 to 30 kPa,
whereas the modulus for super soft PVC mixture is only around 3 kPa. It seems
to be too soft, but soft enough for the prostatic mobility during needle insertion
and ultrasound probe placement.

Although Hungr et al. indicated Plastileurre® standard can be generated by
mixing the hardener and softener with equal proportion, the outcome of the self
mixture appears not to be the same as the premixed standard mixture as indicated
by our experiments. In preliminary research (B. Maan, personal communication,
September, 2012) , the testing results showed that the Young’s modulus of premixed
standard PVC mixture is around 86.5 kPa instead of 100 kPa that is the reference
from the website, and the modulus of super rigide (hardener) is 208.8 kPa that
is close to the reference value 200 kPa. While the Young’s modulus of self mixed
standard PVC based on the given proportion is approximate 23.5 kPa, which is
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too small (too soft) for making the frame.

In summary, it can be concluded that, firstly our prostate capsule and phan-
tom frame can be made from the same material, namely the standard mixture
according to the elastic moduli of prostatic peripheral tissue and soft PVC mixture;
secondly, using the premixed standard mixture product is recommended rather
than using mixing hardener and softener manually. As for the prostate inner part,
because the capsule is harder than the inner part, we choose a 62.5% premixed
soft mixture with 37.5% softener to fill the inner part of prostate.

We would like to form a rectum part in the phantom because it can be feasi-
ble in trans-rectal biopsy, and also help to locate the prostate. Due to the stiffness
of the frame, we build the rectum in the frame as an air tube instead of filling with
any materials.

As for the surrounding material, which simulates the fat tissue surrounding the
prostate, the super soft mixture proposed by Hungr. et al. appealed to be too soft
compared with the real fat in terms of hand feelings and the Young’s modulus.
Therefore it is better to use a harder mixture. Originally, we advised to use 40%
premixed soft mixture with 60% softener to make the super soft mixture proposed
by Hungr et al.. Nevertheless, we find this mixture is too soft compared with fat.
With several experiments we slightly change the recipe to 60% soft mixture with
40% softener.

The pubic bone is taken into consideration for the possibility of its influence
on the prostate mobility during the needle insertion, because it is close to the
prostate and also a fixed part. The material for making the pubis should be hard
firstly, and also contains no metal components that can cause artifact in the MRI
scanner. Initially the pubis was constructed as a simplified shaped block with dried
clay bought from toy shop (Intertoys™). However, it caused a lot of air bubbles
around the its surface and showed artifact in the MR images due to the material
itself. Instead, we selected Fullcare® VeroWhite Plus™ or VeroClear™ material
specific for Objet Eden series 3D printer. This material can not only stay stable
when we pouring the surrounding material in a high temperature, but also show
few artifact in the MRI scanner. Actually other materials such as perspex, delrin,
PVC black, PVC gray, and teflon were also tested. They performed well in the
MR images, but they have high melting points that makes shaping difficult. For
obtaining an anthropomorphic pubis, it is preferred to print it directly as the
printing material is suitable. To sum up, the materials used in our phantom and
proportion of ingredients are listed in Table 2.2.

2.2.1.3 Material Price

The cost of one phantom does also matter. Because some components, such as all
the apparatus, molds and pubis model are retainable, they are expensive though, we
put them into one time cost. Only the soft PVC mixtures that cannot be reusable
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Table 2.2: Phantom ingredients and proportion.

Components Ingredients

Frame Plastileurre® Standard mixture
Prostate capsule Plastileurre® Standard mixture
Inner Prostate 62.5% Plastileurre® Soft mixture+37.5%Softener
Surroundings 60% Plastileurre® Soft mixture+40%Softener
Pubic bone Fullcure® VeroWhite Plus™/VeroClear™
Rectum Air

would be considered here as the variable cost. Unlike Zerdine®, the premixed soft
PVC mixtures from Bricoleurre company is much cheaper. From the website, the
price per liter can be easily found. Table 2.3 is a brief summary.

Table 2.3: Premixed soft PVC mixtures and softener price (Currency: Euro).

PVC Mixture Volume
Plastileurre® Product 0.5L 1L 3L 5L

Standard − 19 53 84
Soft − 19 53 84
Softener(d’assouplissant) 12 20 54 −

We have estimated the frame and prostate will take around 1 liter standard mixture
and surrounding part will take approximate 1 liter soft mixture plus softener,
therefore each phantom will roughly cost e40 for PVC mixtures, which makes the
phantom more practical and economic.

2.2.2 Phantom Structure and Components

The phantom was designed based on the patients specimens to make it more
anthropomorphic, including the shape of pubis and prostate, and the relative
position of them. As said in the preceding section, the phantom has the following
components: the prostate (capsule and inner tissue), the pubis, the rectum tube
and the frame.

2.2.2.1 Prostate

The prostate model comprises a hard capsule and a soft inner part. The capsule is
made of standard mixture and the inner part is made of a relative soft mixture.
Hence, for casting the model, an outer matrix and an inner mold should be made
beforehand, We first made two prostate molds of the same shape but with different
sizes. The bigger one was for making the matrix to cast the outer surface of prostate
capsule, and the smaller one is for saving the space for the inner prostate and
casting the inner surface of capsule.

15



Chapter 2. Prostate Phantom

The prostate shape was a mean of 10 specimens shapes segmented from MR
images 1. The relevant data sets information is listed in Appendix Table A.1. After
the construction of each prostate specimen, their surfaces were normalized to voxel
spacing of 1 × 1 × 1 mm3 and translated to the origin. Then each of them was
smoothed by interpolation between slices. The interpolation was carried out by
resampling the contours using Fourier descriptors, and normalizing the starting
point. After resampling, the interpolated contours were generated using PCA
by varying the first weight factor of eigenvector linearly. When all the prostate
specimens were interpolated to get the same number of vertices, the positions
of corresponding vertices were averaged and then each slice was masked to con-
struct the mean shape of the prostate. The small mold is 30% smaller than the
big mold in each dimension. Figure 2.1 shows the 3D draft of prostate in Solidworks.

Figure 2.1: Capsule with inner part

2.2.2.2 Pubis and Rectum

The shape of the pubis in the phantom was derived from nine male specimens
which were segmented manually in the CT abdominal tomography images. 2. The
specimen image information are summarized in Appendix Table A.2. The surfaces
of these sample images were normalized by rotation and translation, and then
smoothed by interpolation the same as the prostate specimens. Finally the voxel
spacing was normalized to 1×1×1 mm3. The pubis model applied in the phantom
was the mean shape of these specimens. The constructed pubis model was then
presented in Solidworks as Figure 2.2 shows. Initially most parts of pubis were
segmented, including superior rami, pubis symphysis, and inferior rami. Because
of phantom size limit, only pubic tubercles, pubis symphysis and parts of inferior
rami remained. The rectum in the phantom is an air tube. The mold for casting
the tube is finalized the as Figure 2.3 shows, a curved pipe and a hemisphere at
the end.

1The images were provided by radiology department of UMC St. Radboud in Nijmegen
2The datasets is provided by Radiology department in UMC St. Radboud Nijmegen
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Figure 2.2: 3D pubis model Figure 2.3: 3D rectum mold

Figure 2.4: 3D Frame sketch

2.2.2.3 Phantom Frame

The frame is the skeleton of the phantom, which has three main functions. First, it
works as a container to support the phantom and maintain all the components in
the correct positions. Second, one side of the wall mimics the perineum which has
to be stiffer as the perineal skin and hypoderm when the needle is inserted. Third,
the base of the phantom should form an air tube as the rectum which should be
strong enough in case the air tube collapses. Therefore, the frame of the phantom
was made similar to the frame by Hungr et al. [39], but with a slope face at the
bottom considering the relative positions of phantom components. The relative
positions statistics among these components were collected by UMC St. Radboud
from 100 patients. A detailed annotation and statistical dimensions are shown in
Appendix Table A.3 and Figure A.1. The frame sketch is presented in Figure 2.4

2.3 Summary

From all the reviewed phantoms, the art from Hungr et al. [39] was selected as the
prototype of our phantom. We redesigned the prostate with a two layer structure
to give more deformation and added a pubis in the phantom. The phantom would
be composed fully as shown in Figure 2.5(a). During the construction and testing,
the phantom would be placed as Figure 2.5(b), which corresponds to the patient
position and orientation, namely Head First Supine (HFS). The full dimension
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specifications of the phantom are attached in Appendix Figure A.2.

(a) Composed phantom sketch (b) Composed phantom sketch with HFS pos-
tion

Figure 2.5: Complete Phantom

The phantom can be made based on this information. The detailed mold and
phantom fabrication procedures will be presented in chapter 6. The bio-mechanical
and MRI properties will be evaluated in chapter 7.
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3D Active Appearance Models

In this chapter, a 3D AAM approach will be presented, which is based on [20]
and more details will be explained. Firstly, we review AAM in medical imaging
application briefly. Secondly, we show how to build the 3D appearance1 model
based on a 3D shape model and texture model. Thirdly, the standard 3D AAM
Search is introduced.

3.1 AAM in Medical Imaging Applications

As discussed in the first chapter, 3D AAM is selected as the 3D prostate segmenta-
tion approach. The classic AAM was firstly proposed by Cootes et al. [20]. It was
originally meant for an application on 2D face segmentation with some extension
to medical image applications such as knee joint MR image slices. It was further
developed in [50, 51, 52]. Later on, its application in multiple modalities medical
images begins to thrive and also from 2D to 3D. Mitchell et al. [53] applied the
3D AAM in segmentation of cardiac MR and ultrasound images. Vincent et al.
have performed a fully automatic segmentation of the knee Joint [54] and 3D MR
prostate images [23]. Kroon et al. investigated the segmentation in knee cartilage
[55] and mandibular canal [56] of 3D CT data. Maan et al., as mentioned in the
previous chapter, proposed a segmentation of 3D prostate MR data as well [22].

Besides the full 3D AAM, a multi-view AAM approach was proposed to represent
the 3D pose and shape variance in a particular view-point and the correlations
between models of different view-points[57, 58]. Lelieveldt et al. built the left
ventricle shape and appearance models from multiple standardized views. Üzümcü
et al. [60] presented an uncoupled multi-view AAM for simultaneous segmentation
of cardiac MR images. Oost et al. [61] proposed an automated contour detection
of the left ventricle with coupled multi-view AAM and dynamic programming for
relaxing the constrains on shape change and 3D motions, and so did Leung et
al. [63]. Hanseg̊ard et al. [62] have shown an multi-view and multi-frame AAM
applied in triplane echocardiograms.

1The appearance, in our context, means the combined shape and texture.
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As for our work, since the scanned MR 2D slices are different from case to case,
namely it is not like echocardiograms where the triplanes and multi-view points
are relatively fixed, a multi-view AAM could not be a good option. Therefore, we
will build the full 3D AAM.

3.2 3D AAM Modeling

The AAM modeling includes the shape modeling and texture modeling using
variance statistics. A combined model can be synthesized afterwards, namely the
appearance models. The following context will introduce them in turn.

3.2.1 Shape Modeling

In the three dimensional space, the shape of an object can be represented as
3D vertices and a closed surface mesh1 connecting these vertices. Shapes are
independent on rotation, scaling and translation of the object. Ideally, the vertices of
each shape are representative as landmark points. Generally, landmarks are featured
as anatomical structural meaningful positions, junctions connecting distinguished
boundaries, geometrically defined point collections, or evenly spaced points on an
objects surface between existing landmarks. Moreover, landmark points in the shape
set should have a good correspondence. However, for a 3D shape it is impossible
to label the landmarks manually. As a result, it’s essential to use an automatic
approach to get landmark points of each shape with a good correspondence between
different shapes. We will discuss how to establish the correspondence in the next
chapter. Now it is assumed that all the shapes in the training set have a good
correspondence, which means all the shapes are represented with well labelled
landmarks of the same number and connectivity topology (i.e. mesh topology). The
landmark points in each shape are represented by vertices with three dimensional
Cartesian coordinates.

3.2.1.1 Shape Alignment

Initially, the shapes can differ with respect to size, orientation and position in the
3D space. This does not contribute anything to the shape variation. In order to
get the shape variance statistics, we have to scale, rotate and translate all the
shapes into a common coordinate. This is what shape alignment will do. The
shape alignment can be done with a Procrustes analysis.

We define a single shape S as a collection of np points2, which can be denoted

as a np × 3 matrix X, where each row vector xi = (x
(x)
i , y

(x)
i , z

(x)
i ) represents the

Cartesian coordinates of the ith points in this shape and i ∈ {1, 2, · · · , np}. Let us

1Here the mesh in our work is a triangular mesh
2In the following context of this chapter, shape points, vertices, and landmark points are the

same.
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consider two shapes represented as matrix X and Y, where shape Y is fixed but
shape X is moving. We wish to find a transformation T to align X with respect to
Y, which can be written as

T (X) = s ·XR + jtT w.r.t. Y (3.1)

where s is a scaling factor, R is a 3 × 3 rotation matrix in 3D space, and t is a
column translation vector (tx, ty, tz)

T , j is a np length unit vector (1, 1, · · · , 1)T .
We consider two common methods for finding an appropriate pose parameter
set {s,R, t}, namely orthogonal Procrustes analysis and unit quaternions based
procrustes analysis.

1. Orthogonal Procrustes Analysis

The basic orthogonal Procrustes analysis problem was discussed and solved in [64].
Generally, this can be identified as an extended orthogonal Procrustes problem,
which holds the residual matrix L = sXR + jtT − Y. The objective is to find
the least square solution {s,R, t} to minimize the sum of squares of the residual
matrix, which can be written as

{s,R, t} = arg min trace{LTL} (3.2)

= arg min trace{(sXR + jtT −Y)T (sXR + jtT −Y)} (3.3)

where trace means the sum of the diagonal elements in a square matrix. The
problem also has anther implicit condition, which is an orthogonal rotation matrix,
namely RTR = I, where I is an identity matrix. Then we can write the Lagrangean
function and set its the derivatives with respect to {s,R, t} to zero in order to
obtain a least squares estimate (LSE). Afterwards, we can get the solution as
follows:

R = UVT (3.4)

s =

trace

{
RTXT

(
I− jjT

np

)
Y

}
trace

{
XT

(
I− jjT

np

)
X

} (3.5)

t = (Y − sXR)T
j

np
(3.6)

where U and V are two orthogonal matrices derived from the Singular Value
Decomposition (SVD) of matrix S that is,

S = XT

(
I− jjT

np

)
Y (3.7)

and its SVD holds the format S = UΣVT , where Σ is a diagonal matrix. Actually,
(I − jjT /np)Y performs the translation of Y from its centroid to the coordinate
origin. In practice, we prefer to normalize X and Y first then calculate the rotation
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matrix. For more details, it can be referred to Appendix B.

When ASM was proposed by Cootes et al. [16], a 2D weighted orthogonal Pro-
crustes analysis was performed using a linear equations set to find the solution.
The weights for each point can give more significance to the points which are
more stable across the set. However, it is hard to find a solution with respect to
3 dimensional space. In [65], the solution of a weighted orthogonal Procrustes
analysis was also given, which can be derived from the unweighted one with minor
changes. The details can also be referred to Appendix B.

2. Unit Quaternions based Procrustes Analysis

Alternatively, the unit quaternions based approach can give an absolute orientation
[66]. To be specific, the objective is also to minimize the sum of squares of
residual errors, as equation 4.3 shows. We also define X and Y as X = {xi =

(x
(x)
i , y

(x)
i , z

(x)
i )|i = 1, 2, · · · , np} and Y = {yi = (x

(y)
i , y

(y)
i , z

(y)
i )|i = 1, 2, · · · , np}

where each row is one point coordinate in each shape. The absolute translations
are the centroid coordinates as

x =
1

np

np∑
i=1

xi, y =
1

np

np∑
i=1

yi (3.8)

Now the centered shapes are (This is the same as using (I− jjT /np) to left multiply
X and Y, as last section states.)

x′i = xi − x, y′i = yi − y, i = 1, 2, · · · , np. (3.9)

The relative translation t is actually the difference of the centroid of Y and the
scaled and rotated centroid of X, namely,

t = y − sxR (3.10)

Once we get the scale s and the rotation matrix RT we can calculate the translation
t. The objective function now can be written as

np∑
i=1

‖y′i − sx′iR‖2 (3.11)

According to the derivation in [66], the scale can be obtained by

s =

np∑
i=1

[
y′i · (x′iR)

]
np∑
i=1

‖x′i‖2
(3.12)

This expression is similar with equation 3.5. As for the rotation, we aims at finding

22



Chapter 3. 3D Active Appearance Models

R that maximizes
∑np

i=1 [y′i · (x′iR)]. Now we use the quaternions approach to
solve this problem, which is to maximize q̇TMq̇ by finding the optimum quaternion
q̇. For more explanations, [66] can be referred. Technically, we first introduce a
3×3 matrix S which contains all the information required to solve the least squares
problem for rotation. S holds the form

S =

np∑
i=1

x′
T
i y′i or S = X′

T
Y, S =

Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz

 (3.13)

where X′ is the collection of x′i and each row is the row vector x′i. It is the same
with Y′ and y′i. Then we form the matrix M represented as M =

Sxx + Syy + Szz Syz − Szy Szx − Sxz Sxy − Syx
Syz − Szy Sxx − Syy − Szz Sxy + Syx Szx + Sxz
Szx − Sxz Sxy + Syx −Sxx + Syy − Szz Syz + Szy
Sxy − Syx Szx + Sxz Syz + Szy −Sxx − Syy + Szz


(3.14)

Afterwards, we can calculate the normalized eigenvectors and eigenvalues {nj , λj |j =
1, 2, 3, 4} of M, where Mnj = λjnj and ‖nj‖2 = 1 are satisfied. Then we
assume the maximal (most positive) eigenvalue is λmax which holds λmax =
max{λj |j = 1, 2, 3, 4}, and the corresponding eigenvector is nmax, which satisfies
Mnmax = λmaxnmax. It can be proved that the quadratic form q̇TMq̇ can be
maximized when q̇ = nmax, where q̇ is the unit quaternion representing the rotation
information.

Now we assign {q0, qx, qy, qz} constructing the unit quaternion q̇ with the four
elements in nmax respectively, then the transpose of the rotation matrix can be
written as

RT =

q20 + q2x − q2y − q2z 2(qxqy − q0qz) 2(qxqz + q0qy)
2(qyqx + q0qz) q20 − q2x + q2y − q2z 2(qyqz − q0qx)
2(qzqx − q0qy) 2(qzqy + q0qx) q20 − q2x − q2y + q2z

 (3.15)

or in matrix notation as

RT =

qxqy
qz

qxqy
qz

T +

 q0 −qz qy
qz q0 −qx
−qy qx q0

2

(3.16)

With the rotation matrix R we can calculate the scale s and translation vector t,
then we can obtain the aligned shape as represented by equation 3.1.

Later on Horn et al. [67] proposed another closed form solution for absolute
orientation using orthonormal matrices, which is an advance of the quaternions
based approach.
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We define ns shapes {Si|i = 1, 2, · · · , ns} in the training set, and the shape points
in shape Si can be denoted as Xi. Then we use an iterative way to align all the
shapes as follows:

(1) Set the first shape X1 as the mean shape X.

(2) Align all the shapes Xi with respect to X to the aligned shape points X
(a)
i =

Ti(Xi) as well as the pose parameter sets {si,Ri, ti},

(3) Calculate the mean shape X from the aligned shapes X
(a)
i , and mean pose

parameter set {s,R, t} over the training set and save them.

(4) Transform the mean shape X inversely with inverse pose parameter set

{1/s,R−1,−t} to update the mean shape X, namely T −1(X).

(5) Return to step (2) with the updated mean shape X, until stable.

(6) Align all the shapes Xi with respect to the stable mean shape X, save the

aligned shape X
(a)
i and the pose parameter sets {si,Ri, ti},

Actually both of the approaches discussed above are available, but the quaternion
based approach has the advantage of using less parameters (only 4 elements can
represent the rotation) to control the transformation, which is more preferable in
AAM.

3.2.1.2 Shape Variance Modeling

Now we suppose all the shapes have been aligned. As introduced in [20], we define
a 3np dimensional shape vector x in 3D space to represent the aligned shape points
X(a) in a single shape S as

x = (x1, x2, · · · , xnp , y1, y2, · · · , ynp , z1, z2, · · · , znp)T (3.17)

where (xj , yj , zj) is the Cartesian coordinates of the jth points and j ∈ {1, 2, · · · , np}.
Therefore, the shape points of ns shapes can be represented as a column vector set
{xi|i = 1, 2, · · · , ns}. Then we can apply PCA to construct the point distribution
model for modeling the shape statistics. It is worth noting that if the scattering of
shape points is Gaussian in the space, the PCA can find the optimal principal axes.
If the data do not have a Gaussian distribution, then the variance cannot be used
as criterion of evaluating the component significance, and PCA decomposition is
not the optimal approach, though it may work well. In this case, the independent
components analysis (ICA) could be applied.

We consider a data set with Gaussian distribution. Usually we first calculate
the centroid of all shape vectors. The maximum likelihood estimate (MLE) of the
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covariance can be given as

x =
1

ns

ns∑
i=1

xi, S =
1

ns

ns∑
i=1

(xi − x)(xi − x)T =
1

ns
DDT (3.18)

where D is 3np × ns matrix as D = (x1 − x,x2 − x, · · · ,xns − x).

By PCA, we can get the 3np × 3np diagonal matrix Λs in which the diagonal
elements are eigenvalues, and the 3np × 3np orthogonal matrix Ps which is com-
posed by 3np column-wise corresponding eigenvectors. This can be denoted as

SPs = PsΛs, Ps = (p
(s)
1 ,p

(s)
2 , · · · ,p(s)

3np
), Λs =


λ
(s)
1

λ
(s)
2

. . .

λ
(s)
3np


(3.19)

We arrange the eigenvalues in a descending order, and corresponding eigenvectors,

and we assume now λ
(s)
1 ≥ λ

(s)
2 ≥ · · ·λ

(s)
3np

. Based on these parameters, we can have
a linear representation for a shape instance, as

x = x + Psbs (3.20)

where bs = {b(s)1 , b
(s)
2 , · · · , b(s)3np

} is shape model parameter, or mode weight vector.
There are 3np elements in bs and each of them gives a weight to one mode. Because
the shape data are satisfying the Gaussian distribution, the weight should be

constrained by −3

√
λ
(s)
m ≤ b(s)m ≤ +3

√
λ
(s)
m where

√
λ
(s)
m is the standard deviation

of the parameters and m ∈ {1, 2, · · · , 3np} is the mode index. For any shape points
from the training set, the mode weight vector can be obtained by

b
(s)
i = PT

s (xi − x) i = 1, 2, · · · , ns (3.21)

When there are many points in the shape, we would like to take the modes with
more significances to represent the shape and the rest ones are seen as noise.
Whereas the explained variances of each eigenvector is equal to the corresponding
eigenvalues and we have arranged the eigenvalues in a descending order, so it is
practical to take the first ts modes. We introduce p to represent the percentage of
retained variation, and ts can be chosen as

ts∑
m=1

λ(s)m ≥
p

100%

3np∑
m=1

λ(s)m (3.22)

Actually, when the number of shapes in the training set ns is much smaller than the
shape vector dimension 3np, it is computationally expensive to get the eigenvalues
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and eigenvectors since the covariance matrix is huge. Because if there are ns shapes,
there are at most ns− 1 non zero eigenvalues (non computational zero value). As a
result in the case of ns− 1 < 3np, we can calculate the eigenvalues and eigenvectors
faster in the following way:

We define a ns × ns matrix S′ as

S′ =
1

ns
DTD (3.23)

Then we find the eigenvectors and corresponding eigenvalues of S′ as P′s =

(p′
(s)
1 ,p′

(s)
2 , · · · ,p′(s)ns

) and Λ′s = diag{λ′(s)1 , λ′
(s)
2 , · · · , λ′(s)ns

} respectively. According
to [16], the first ns eigenvalues of S (which are already in a descending order) are
same as the eigenvalues of S′, and the corresponding eigenvectors of S are linear
compositions of eigenvectors of S′. This can be represented as

λ
(s)
i = λ′

(s)
i i = 1, 2, · · · , ns (3.24)

p
(s)
i =

1√
λ′

(s)
i ns

Dp′
(s)
i (3.25)

Finally with the first ts modes, the shape instance is

x ≈ x + Ps,tsbs,ts = x +

ts∑
m=1

p(s)
m b(s)m (3.26)

Briefly Ps is used to briefly denote Ps,ts which contains ts column-wise eigenvectors.

3.2.2 Texture Modeling

Similarly to shapes, a linear relationship can be formed to obtain the texture
instance. The texture information in our implementation is the image gray value,
i.e. intensity, in each voxel. In the basic AAM, we do not extract all the texture
information in each image, and only the voxels enclosed by the shape points will
be used. To be specific, we should first warp all the shapes in the training set to
match the mean shape x in order to build ‘correspondence’ between the candidate
voxel positions in different shapes. Then, like the alignment in shapes, the gray
values should also be normalized. Finally, the texture statistics will be constructed
using PCA.

3.2.2.1 Obtaining Texture

In the basic 3D AAM, we first take the mean shape x points as base points
and normalize them to a unit cubic space. If the base points can be denoted as
x = {(xi, yi, zi)|i = 1, 2, · · · , np} where np is the number of landmarks, then the
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normalization can be made by

(xi, yi, zi)←
(xi, yi, zi)− (xyzmin, xyzmin, xyzmin)

xyzmax − xyzmin
(3.27)

where xyzmin is the minimal value of all the three coordinates in all points of
the base points, and xyzmax is the maximal value of all point three coordinates.
Then, we map this normalized base points to a cubic grid space of which the size is
predefined as texture size. We call the mapped points inside the grid of texture size
the mapped base points. Afterwards, we use this mapped base points to calculate
(1) a voxel template, and (2) tetrahedrons in the shape.

The voxel template specifies the voxel positions where the texture information
would be taken out. By examining the triangular faces of the mapped base points,
we divided each triangular face into two triangular sub-faces from the longest edge
in each face if the longest edge is larger than half of a voxel size. After splitting
the faces, we assigned all the face vertices to the grid to get the voxel positions of
the shape surfaces in the voxel template. After emphasizing the voxels inside the
surface, we can finally obtain the voxel template, where all the voxels on and inside
the mapped base points are labelled 1 and others are 0, which is like a segmented
image. Figure 3.1 uses a 2D circle to illustrate a pixel template.

Figure 3.1: A pixel template of a circle in 2D

However different shapes have different texture sizes. In order to get the equivalent
texture information, namely voxel intensities following the order as in the voxel
template, we should transform the voxel in each shape into the voxel in mapped base
points, which can be done by image warping techniques. It is worth noting that the
shape points in shape S from the training set should not be aligned, namely they
are original shape points different from the shape represented by shape vector xi.

1. Image Warping

In general, Image warping is to build the spatial relationship between two different
images. To be specific, in the 3D shapes, we would like to map the spatial position
of voxels inside the mapped base points to relative spatial positions in a given
shape, namely in all the shapes in the training set. Mathematically, if we define
the voxel points inside the mapped base points as a set {v1,v2, · · · ,vng}, where
vi = {(xi, yi, zi)|i = 1, 2, · · · , ng} is the spatial coordinate of each point and ng is
the total number of voxels, then we can define a mapping function f which can
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map vi from the mapped base points to the relative position v′i inside the a shape
S, namely,

f(vi) = v′i i = 1, 2, · · · , ng (3.28)

For simplicity, we perform the image warping by a piecewise affine transformation
and assume the mapping f is linear. In [68] the 2D warping specifications were
introduced. For a 3D case, we apply the affine transformation between two
tetrahedrons instead of delaunay triangles. Figure 3.2 shows an illustration of 3D
image warping.

Figure 3.2: Tetrahedron transformations

We assume a single tetrahedron from the mapped base points with four vertices
defined in the Cartesian coordinates as vi = {(xi, yi, zi)T |i = 1, 2, 3, 4}, then we can
define the tetrahedral coordinate system with three edge vectors in the tetrahedron,
For instance, we define the three vectors as ei = {(vi − v4)|i = 1, 2, 3}. So for any
point v = (x, y, z)T , it can be represented as

v = v4 + α1e1 + α2e2 + α3e3 (3.29)

= v4 + α1(v1 − v4) + α2(v2 − v4) + α3(v3 − v4) (3.30)

= α1v1 + α2v2 + α3v3 + α4v4 (3.31)

where α1 + α2 + α3 + α4 = 1. Therefore, we should find the representation of αi
using the Cartesian coordinates of vi and v. We first rewrite the equation 3.29 as

v =
[
e1 e2 e3

] [
α1 α2 α3

]T
+ v4 (3.32)

Hence, we can derive that[
α1 α2 α3

]T
=
[
e1 e2 e3

]−1
(v − v4) α4 = 1− α1 − α2 − α3 (3.33)

For a singe tetrahedron represented as {v′i|i = 1, 2, 3, 4} in another shape S, we
can find the Cartesian coordinate corresponding point of v, the v′ = (x′, y′, z′)T as

v′ = α1v
′
1 + α2v

′
2 + α3v

′
3 + α4v

′
4 (3.34)

If the point v is inside the tetrahedron, the tetrahedral coordinates should suffice
0 ≤ αi ≤ 1, for i = 1, 2, 3, 4. So we can use this criterion to find all the tetrahedral
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coordinates of the voxels inside all the tetrahedrons constructed from the mapped
base points. With the same tetrahedral coordinates (α1, α2, α3, α4) the correspond-
ing positions in the each shape S in the training set can be obtained.

However, these found corresponding points positions v′ in image of shape S could
not right lie in the voxel grid. For obtaining the voxel intensity in that position, we
will apply the trilinear voxel interpolation to these corresponding points positions.

2. Trilinear Voxel Interpolation1

The trilinear interpolation is identical to three successive linear interpolations.
Figure 3.3 interprets how to obtain the interpolated gray value at an arbitrary
position. We suppose the point Vxyz is the point position in shape S corresponding

Figure 3.3: Trilinear Voxel Interpolation

to the voxel inside the reference, the mapped base points. The cubic lattice represents
the eight adjacent voxels points Vijk around point Vxyz, which hold the coordinates
as {(xi, yj , zk)|i, j, k ∈ {0, 1}}. The gray values in the eight voxels are gijk (e.g.
the intensity in voxel V000 is g000 and so forth). Firstly, we calculate the relative
position ratio of Vxyz as

γx =
x− x0
x1 − x0

γy =
y − y0
y1 − y0

γz =
z − z0
z1 − z0

(3.35)

Then by linear interpolation, the gray values in Vx00, Vx10, Vx01, Vx11 can be
calculated respectively as

gx00 = g000(1− γx) + g100γx (3.36)

gx10 = g010(1− γx) + g110γx (3.37)

gx01 = g001(1− γx) + g101γx (3.38)

gx11 = g011(1− γx) + g111γx (3.39)

1This can be referred to http://en.wikipedia.org/wiki/Trilinear interpolation
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Similarly, the intensities in Vxy0 and Vxy1 are

gxy0 = gx00(1− γy) + gx10γy (3.40)

gxy1 = gx01(1− γy) + gx11γy (3.41)

Finally the intensity in Vxyz is

gxyz = gxy0(1− γz) + gxy1γz (3.42)

After obtaining all the interpolated intensities inside all the tetrahedrons of each
shape from the training set, it is easy get a texture map Ji inside a set of fixed
shape points for each shape Si. One texture map Ji is a collection of corresponding
intensities1 from a shape in training set, and the fixed shape points positions, i.e.
mapped base points, here i = 1, 2, · · · , ns. Accordingly, we use the voxel template
to resample all the texture maps to ensure all textures have the same voxel number
and order. After vectorization of these textures, for a shape Si, we obtain a ng × 1
shape texture vector gi, where ng is the number of voxel/intensity values in the
shape and i = 1, 2, · · · , ns.

3.2.2.2 Texture Normalization

Like the alignment in shape points, texture, namely gray values of the shape should
also be normalized to dismiss the variance in the global illumination. Conventionally,
this procedure would be done in an iterative way [20, 68]. Briefly, the normalized
intensity vector of shape Si can be processed as following.

(1) Calculate the mean of all texture vectors, namely, g =
1

ns

ns∑
i=1

gi.

(2) Standardize the mean texture by g 7→ 1

σ2
(g − g1), where g is the mean

estimate of the mean texture vector as g =
1

ng
g · 1, and σ2 is the variance

estimate represented as σ2 =
1

ng
(g − g1) · (g − g1)

(3) For all the texture vectors of all shapes, gi, i = 1, 2, · · · , ns, update the
normalized gray value vector as

gi 7→
gi − β1

α
(3.43)

where α = gi · g, and β = (gi · 1)/ng.

(4) Return to step (1), until g is stable.

1They are the intensities at the corresponding points in the shape, which correspond to the
voxels inside the mapped base points
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Alternatively, if the illumination variance is minor, we can use a more simple way
to normalize the texture vectors. We still apply the equation 3.43 but assign α with
the standard deviation of gi and β with the mean gray value of the ng intensities
in gi [56].

3.2.2.3 Texture Variance Modeling

With the same procedure as processing the shape points data, we apply the
PCA to the texture vectors set as well. Briefly, we define the ng × ns matrix
G = (g1 − g,g2 − g, · · · ,gns − g), then calculate the covariance or use the SVD to

get the eigenvectors Pg = {p(g)
i |i = 1, 2, · · · , tg} and the eigenvalues Λg = {λ(g)i |i =

1, 2, · · · , tg} where tg represents the number of modes used. Using the PDM we
can obtain the texture instance g with a linear model written as

g ≈ g + Pg,tgbg,tg = g +

tg∑
m=1

p(g)
m b(g)m (3.44)

where bg,tg is the mode weight vector containing tg weight scalar b
(g)
m for each mode.

Due to the statistic feature, each weight should be constrained by −3

√
λ
(g)
m ≤

b
(g)
m ≤ +3

√
λ
(g)
m for the mode m ∈ {1, 2, · · · , tg}. The weight vector b

(g)
i of any

texture instance from the training set can be obtained as

b
(g)
i ≈ PT

g,tg(gi − g) (3.45)

If there is no special explanation Pg will stand for Pg,tg .

3.2.3 Appearance Modeling

From the last two sections, it is easy to build the shape models and textures
models given the mean and eigenvectors and the mode weights (also called model
parameters). If the variance of shape landmark points and the variance of shape
texture are correlated, it is possible to build an appearance model, synthesizing
the shape and texture model.

3.2.3.1 Shape and Texture Combination

For a certain appearance instance, we wish to use a model parameter b to generate
the appearance model. Simply b is concatenated from weighted shape parameters
bs and the texture parameters bg, as

b =

[
Wsbs

bg

]
=

[
WsP

T
s (x− x)

PT
g (g − g)

]
(3.46)

where Ws is a diagonal matrix of weights for each shape parameter to unify the
shape and gray values. If we apply PCA to the combined parameters, a synthesized
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parameter c can be obtained by

b = b + Qtbc (3.47)

where Qtb is tb eigenvectors of appearance model corresponding to the first tb largest
eigenvalues, and c is the model parameter. Then for a given shape appearance
from the training set, the model parameter c can be obtained by c = QT

tb
(b− b).

Approximately b is zero since both bs and bg have zero means theoretically. Hence,
in some literature, the appearance model could be represented as

b = Qtbc (3.48)

If there is no extra interpretation, Q will stand for Qtb .

3.2.3.2 Parameter Weights Selection

For determining the weight matrix Ws, a common way is simply using unified
weights placed in the diagonal [68], namely,

Ws =


λg
λs

. . .
λg
λs

 λg =

tg∑
m=1

λ(g)m λs =

ts∑
m=1

λ(s)m (3.49)

A more general way is to give a small change in shape parameter bs and to find
how much the texture parameter bg will change. Since Pg is an orthogonal matrix,
an unit change in texture vector g is identical to unit change in texture parameter
bg. Therefore, the root mean square (RMS) change of g when there is unit change
of shape parameter bs forms the weights Ws [20, 68].

Specifically, we first calculate the original gray vectors gi in each shape with
the optimum shape parameters. As extracting the gray values, the shape points
should be aligned inversely (adding the scale, rotation and translation) for finding
the right shape in the original image. We assume ts modes can be used. Then, for

each shape mode weight, we change around the optimum value (b
(s)
m ± 0.5) and

calculate the displaced shape points respectively. We use these inversely aligned
displaced shape points to sample the image to obtain a displaced gray value vector
g′i. Afterwards we calculate the RMSi between g′i and gi, and get a mean RMS
for i = 1, 2, · · · , ns, as a result the mean RMS of gray value displacements from all

ns instances is actually the weights element w
(m)
s with respect to mode m. Finally

we can get the weights matrix accordingly.
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3.3 Standard AAM Search

After establishing the shape, texture, and appearance model based on the training
set, it is important to consider how to utilize this information to perform a model
search given a new image. The model search1 should provide a way to find the
appropriate pose parameters and appearance parameters to segment the object as
accurate as possible. The standard AAM search algorithm was also proposed in
[20] and implemented in many applications. The basic approach is to minimize the
objective function, which is defined as

∆ = |δg|2 = |gs − gm|2 (3.50)

where gs is the sampled intensity values given the current found shape points, and
gm is the gray values derived from the current model parameters. So we wish to
update the appearance parameters c and the pose parameter set {s,R, t} iteratively
to minimize the magnitude of the difference vector δg. Hence it is of importance
to learn the relationship between the offset of appearance model parameters plus
pose parameters i.e. δc and {δs, δR, δt}, and the intensity difference i.e. δg.

3.3.1 Parameter Update Modeling

We define a parameter vector p is the combination of appearance parameter c, the
translation t and the scaled rotation parameters q (the quaternions with scale2). It
can be written as p = (cT , tT ,qT )T . As for the relationship between the parameter
p and intensity difference δg, we define a mapping r for the intensity residual,
which suffices

r(p) = gs(p)− gm(p) = δg (3.51)

If we change the parameter p with a difference δp, we wish to minimize the sum of
squares of intensity residual rT r. Following the Gauss-Newton optimization, we
use the first order Taylor expansion,

r(p + δp) ≈ r(p) +
∂r

∂p
δp (3.52)

After an update of p, we ideally wish r to be zero, then we get

r(p + δp) = 0⇒ r(p) = − ∂r

∂p
δp (3.53)

where ∂r/∂p is the Jacobian at p. From equation 3.53, given r(p) i.e. the intensity
difference δg, we can calculate the optimal parameter update δp with parameter

1Model search will be also denoted as model fitting, or simply fitting.
2Here we only use quaternions multiplied by scale to denote the rotation and scaling, the full

rotation matrix can be recovered using the formulas discussed in shape alignment.
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offset to intensity displacement matrix, which can be denoted as A, namely,

δp = −Ar(p) (3.54)

where A can calculated using the Mooore-Penrose pseudo-inverse, as

A =

(
∂r

∂p

)†
=

[(
∂r

∂p

)T ( ∂r

∂p

)]−1(
∂r

∂p

)T
(3.55)

where columns of ∂r/∂p are linearly independent. Instead of recalculating ∂r/∂p at
every searching step, it can be computed offline using numeric differentiation from
the training set. Actually when the AAM was first introduced [69] , a multivariate
linear regression (MLR) approach was applied to calculate the linear transform
matrix A, which was interpreted further in [68], where it built the parameter
and intensity displacement matrices and used a principal component regression
approach. This MLR approach is slower than the numeric differentiation method,
but both of them can deduce a similar result.

Specifically, for an instance S from the training set, given the parameter p, we can
extract the appearance model parameter c, translation t and rotation quaternions
with scale q. Then, we can calculate the shape model parameters bs and texture
parameters bg by [

Wsbs
bg

]
= b + Qc (3.56)

With the shape model parameters bs, we can calculate the shape point instance x
by x = x + Psbs. Then we align the shape inversely to the real coordinate T −1(x),
warp the image within the inversely aligned shape points to the mapped base points
and normalize it to get the texture instance gs. Then, we use the sampled intensity
vector gs to find the model parameter c′ by

c′ = QT

([
WsP

T
s (x− x)

PT
g (gs − g)

]
− b

)
(3.57)

Then by applying [
Wsb

′
s

b′g

]
= b + Qc′ (3.58)

we can get the modeled intensity gm = g + Pgb
′
g

If we give a small offset δσi to the ith parameter pi in parameters p from the
training set S, where δ is a small value between −0.5 and 0.5, and σi is the stan-
dard deviation of one parameter pi (for appearance model parameters c, σi =

√
λi,

and for pose parameters it is set to 1), we can get the permuted parameters ṗ
where ṗi = pi + δσi. Then we warp the image within the inversely aligned shape

34



Chapter 3. 3D Active Appearance Models

points of ẋ (i.e. T −1(ẋ))) derived from the permuted parameters ṗ to the mapped
base points obtaining the sampled texture g′s. Similar with equation 3.57 and 3.58,
we convert the sampled texture back to modeled texture g′m.

Therefore, we can permute each component in parameter p around the known
optimal value, and get the instensity displacement to parameter offset ratio (with
respect to pi ∈ p) by

∂r

∂pi
=

r(p + δσi)− r(p)

δσi
w′i ≈ (g′s − g′m)wi (3.59)

where wi is weight factor wi = exp
(
−δ2/(2σ2i )

)
/δ and pi is the ith parameter.

In practice, δ is taken symmetrically around 0 with ±0.5 in turn to get different
∂r/∂pi and we assign it a mean value. For all ns images, we calculate the jth ratio
∂rj/∂p where j = 1, 2, · · · , ns and get the mean by

∂r

∂p
=

1

ns

ns∑
j=1

∂rj
∂p

(3.60)

Afterwards the linear transform matrix A can be obtained by equation 3.55.

3.3.2 Parameter Optimization

Given a new image, we will apply an iterative approach to optimize the displacement
of parameters δp for minimizing difference between the sampled and the modeled
textures. The following steps show the procedure.

(1) Begin with the mean appearance parameter c = c, . Given the parameter
number (mode number for shape and texture) ts and tg from the training set,
extract the shape parameter bs and bg with the help of Ws. Then we can give
an initial shape points by xs = T −1(x + Psbs). The inverse transformation
T −1 uses the mean pose parameters obtained in the mean shape alignment.

(2) Find the initial parameter p. Given the initial shape xs, align xs to x = T (xs)
and get the pose parameters (tT ,qT )T . Meanwhile, warp the image with
respect to mapped base points to exact the normalized texture gs within xs.
Use the equation 3.57 to get the appearance model parameter c. Constrain c

within ±3

√
λ
(c)
i and form the parameter p = (cT , tT ,qT )T .

(3) Start the parameter update iteratively. The pseudocode is

(I) Initialize the damping factor k = 1, the maximum iteration number Niter,
parameter po. Set the initial intensity difference magnitude Eo =∞.

(II) for iter = 1 : Ns

(i) Split the parameter p into appearance model parameter c, the pose
parameters (t,q).
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(ii) Apply equation 3.56 to calculate the shape parameter bs and then
get the aligned shape points x = x + Psbs, then calculate the real
position in image by xs = T −1(x), where the transformation T −1
is constructed by the pose parameters (t,q).

(iii) Warp the image to mapped based points to obtain the sampled
normalized texture gs within xs.

(iv) Apply equation 3.57 to get a new appearance model parameter
c′ and apply equation 3.58 to get the texture parameter b′g then
calculate the modeled texture by gm = g + Pgb

′
g.

(v) Evaluate the intensity difference δg = gs − gm and its magnitude
E = δgT δg.

(vi) if E > Eo
Update damping factor k ← 0.9k, the parameter p ← po, and
found shape points xs ← xo;

else

k ← 1.1k, Eo ← E.

end if

(vii) Update the parameter po ← p and found shape points xo ← xs.

(viii) Permute the parameter p with the predicted offset δp = −Aδg, by
p← p + k · δp and constrain the updated p within ±3σi.

end for

(III) if E > Eo,

update the parameter p← po, the found shape points xs ← xo and
the intensity difference magnitude E ← Eo.

end if

(IV) Optimize the parameter p using the local minimization algorithm re-
garding the intensity difference E.

(4) Once the optimal p is found, execute step (i) to (iv) to get the sampled texture
gs, the modeled texture gm, and the found shape points xs.

(5) Realign the texture vector gm with respect to the voxel template, and inversely
normalize the intensity, warp the image with shape points of mapped base
points and texture of realigned gm, with respect to the found shape points xs.
Then we can get the segmented image.

(6) Use the technique of obtaining the voxel template, we can get the discrete
voxel based segmentation.

This standard model fitting is based on the linear modeling, which makes it only
valid for the object locating in the neighborhood. Besides, this approach requires
a full image in which all the voxels inside the shape can be reached to calculate
the texture information. Actually there are more approaches for AAM search
approaches, and we will discuss them in the latter chapter as well as the method
on the condition when only three 2D slices are available.
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Shape Correspondence

Since we choose to use a typical statistical shape model, AAM, to learn the
appearance including shape and texture variation, two major important issues
should be considered: how to find the appropriate landmark points in a 3D
shape. And how to build the correspondence between the landmarks in different
shapes from the training set. In this chapter, we aim to solve these problems by
a combined approach. Firstly, before introducing the approach, we will reveal
the correspondence problem. Then, we will briefly review the approaches of
correspondence establishment. Afterwards, the parameterization based group-wise
MDL approach will be interpreted in details.

4.1 Correspondence Problem

As shown in the previous chapter, good shape variation modeling must rely on
a good landmark selection and a good correspondence establishment. It means,
first, the landmarks should be chosen carefully considering the geometric features
and mathematical meanings. Second, the landmarks from different shape vectors
at the same position should represent the same feature in the objects, namely
have the correct correspondence. If there is an inappropriate correspondence,
for instance, it will lead some ‘illegal’ representation, which means the produced
shape variation modes cannot interpret the actual object variation. Figure 4.1
shows an example of landmark correspondence. The colored dots are landmarks
manually labeled on the contours of bolts. The first and second shape have a
consistent correspondence, but the third one has not, where the points with same
color indicates the correspondence.

With the bad correspondence, the shape alignment will go wrong. Even though the
shapes are aligned when small deviation happens, the landmarks will be scattered
widely, which makes the allowable shape domain larger. All of these will affect the
PCA and bad principal axes will be generated, resulting in bad models.

In 2D images, manually labeling landmarks is feasible only for small amount
of points and images and also for obvious visible features. In 3D images, it is
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Figure 4.1: Left and Middle: The shape landmarks of bolts have consistent
correspondence. Right: The landmarks lose consistent correspondence with the
left one.

impossible to manually place the landmarks, because it is difficult to define the
reproducible points in smooth surface and locate the points with visualization. In
addition, manual landmarking is tedious and time-consuming. ASM and AAM
would help to accomplish it. However these method are based on statistic prior
knowledge. Therefore an interpretation of images for training is needed and these
training images should be segmented manually beforehand. For medical images, a
specialist should help to segment the shapes. In obtaining the training set, it is
essential to get the manual segmentation of objects, which can be represented as a
binary matrix where 1 stands for the pixels of object and 0 is the background. In a
3D case, each slice image in 2D will be labeled manually to get a 2D segmentation.
All the binary slices will be in a stack to form a 3D volume. To construct the
surface, iso-surface extraction using the marching cube algorithm [70] could be
applied. Accordingly, the vertices and mesh faces will be constructed and the
landmarks can be a subset of these vertices. Next we should consider (1) how to
select the landmarks among candidate points, then establish the correspondence,
and (2) how to manipulate the landmarks to optimize the correspondence.

4.2 Common Approahes

The correspondence establishment can be divided into many categories in terms of
different standards, such as manual landmarking, feature-based approach, param-
eterization based approach, physical properties based method, and image based
correspondence [79], or using another categorizing criterion such as the mesh to
mesh approach, mesh to volume, volume to volume, parameterization to param-
eterization approaches etc.[88]. However, all the approaches are not individually
applied, they are always combined for a better result. Besides, the correspondence
establishment is related largely with image registration methods, both rigid and
non-rigid image registration. As a result we will not make an explicit distinction
between these methods. Here we just pick some typical methods for a brief review.

Early methods focused more on rigid registration. Some were based on equally
spacing labeling on a mesh surface to get the landmarks and build the correspon-
dence, such as the method of Bastuscheck et al. [72]. They used fast Fourier
transform to determine the least square difference between the sequences of points
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sampled in equal spacing on the 3D curves. Then they used the returned rotation
and translation to register the curves. Besl et al.[71] create the iterative closest
points (ICP) algorithm to align the unlabelled points together by means of minimiz-
ing the distances between pair of points iteratively with similarity transformation.
This algorithm also works for surfaces with potential different number of vertices
before the initialization of building the correspondence. Many derived simpler
algorithms and modified algorithms have been implemented. However, because
of the restrictions to these algorithms using similarity transformation and based
on distance between the equivalent points, these approaches are not suitable for a
non-rigid registration.

For non-rigid registration, Bookstein [76] proposed thin-plate spline (TPS).
Soon Bookstein [77] used it to adjust the landmarks along the tangential directions
of the shape contour to minimize the correspondence error defined by thin-plate
bending energy to control the correspondence. Richardson et al. [78] improved this
method with sliding, inserting and deleting landmarks to minimize the landmark
correspondence error and representation error, and to improve the representation
compactness.

Declerck et al. [74] and Subsol et al. [73] adapted ICP algorithm together with a
B-spline transformation to minimize the influence of an erroneous matched points.
Similarly, Rueckert et al. [75] have proposed the B-splines based free-form defor-
mation, applied on the breast MR images. They applied the global transformation
with rigid image registration algorithm such as ICP, but local deformation using
B-spline. In contrast to TPS, B-splines are locally controlled, resulting in an
efficient computation for large amount of control points. The free-form deformation
registration is robust to noise and popular in medical imaging, but not accurately
invertible. So for generating a diffeomorphic deformation, a novel interpolating
spline, the clamped-plate spline (CPS) has been introduced by Twining et al. [85].
This approach can guarantee diffeomorphic warps between pairs of images with a
dense pixel to pixel correspondence, which overcomes the drawbacks of B-splines
and TPS. Marsland et al. [87] has implemented a polyharmonic CPS to perform
the non-rigid registration group-wise.

An alternative is based on shape context registration proposed by Belongie et
al. [81]. This method also allows the input points with different number of vertices.
It firstly constructs the feature vector in each data set, then matches these vectors
by minimizing the defined cost function. Kroon et al. [55] has applied this approach
to the correspondence establishment of MR cartilage images and further to the
mandibular image registration [56] with the histogram enhancement and B-splines
approximation, and so did Maan et al. [22].

The approaches above manipulate the correspondence directly on the object surface,
no matter if they are based on distance or features. Another group of distinctive
methods are based on the parameterization of shapes, which manipulate the
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correspondence in the parameterization instead of the shape itself. Kelemen et al.
[82] proposed a spherical harmonics (SPHARM) representation of shape surface
providing the parametric descriptions of object shapes, where the coefficients of
a parameterized basis function are fit to surface. Then the correspondence of
object shapes are consistent with the parameterization. The parameterizations are
developed mainly based on the work of Brechbühler et al. [83] or the developed
version with a hierarchical optimization by Quicken et al. [84]. These methods
were later used for the initialization of correspondence. Davies et al. [86] used the
spherical parameterization to initialize the correspondence, and optimized them
using a cauchy kernel representation with respect to minimize the description
length. Heimann et al. [88] used a conformal mapping based on the spherical
parameterization and minimum description length (MDL) as the objective function1

with a gradient descent optimization to evaluate the correspondence. Davies et al.
[89] have also proposed an automatic model building by direct optimization of de-
scription length where the CPS was applied for manipulating the parameterization2.
Kirschner et al. [90] suggested to use the ICP alignment before parameterization,
and to remove the area distortion [91] to correct and refine the parameterization
for correspondence. They also investigated the work from Davies et al. and made
a comparison. Vincent et al. have adopted the parameterization based group-wise
MDL registration to build the correspondence of landmarks to utilize the active
appearance models for cartilage [54] and prostate [23] segmentation respectively.

Some approaches above are performed pairwise, such as the ICP, B-splines based
free-form deformation [75], shape context approach [81] etc. But some are group-
wise performed, such as the polyharmonic CPS non-rigid registration [87] and MDL
based approaches [86]. Actually, the pairwise algorithm is problematic for some
cases, even though most of them work fine. From a theoretical viewpoint, the
match between pair of shapes needs to be determined within the wider context of
the group [79], since some ambiguity can be removed by the information introduced
from the group instead of the pair. The group-wise registration mainly differs in
the objective function where the global information would be considered. The
group-wise objective functions are featured to be based on the models, such as
the determinant of the model covariance, or based on the information theoretical
measurement such as MDL. Because we apply the AAM which requires a consis-
tent correspondence across the data set, a group-wise registration algorithm for
correspondence establishment and optimization would be preferable.

The correspondence optimization can be regarded as an optimization problem
since it can be seen that the aim of the approaches above are to minimize some
objective functions. Therefore, we can generalize the framework of correspondence
optimization into three phases [79]: manipulating the correspondence, calculating

1MDL is similar with the cost function, energy function, erroneous function or distance function
in the former methods. This is also used to evaluate the shape correspondence

2The parameterization as a meshed sphere can also be manipulated using CPS, so all the
methods for manipulating the shape mesh can also be applied to control the parameterization
mesh
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the objective functions, and optimizing the correspondence. Figure 4.2 illustrates
this framework. This flow can be conducted iteratively until we get a satisfying
result. There are multiple choices of approaches in each phase. For instance, CPS,
symmetric theta transformation can both achieve the correspondence manipulation;
either MDL or the model covariance determinant can be the objective function.

Figure 4.2: Framework for correspondence optimization

We choose the group-wise correspondence optimization based on parameterization
of shapes with the MDL objective function. The following sections will interpret
the whole procedure in detail.

4.3 Correspondence Establishment and Optimization

Unlike the shape context and B-splines manipulating the shape vertices directly,
the basic idea is mapping all the shapes to a spherical space, where each point on
the sphere corresponds to a vertex in the object shape. This approach performs
better for objects with spherical topology, hereby it is suitable for the prostate. An
initial correspondence can be established by means of propagating the consistent
landmarks over all the shapes and their parameterizations (i.e. the points on
sphere). Furthermore, these parameterized landmark points can be manipulated to
minimize the MDL objective function, to select the optimum model which has the
optimum correspondence. The previous works from Davies et al. [79, 86, 89] and
Kirschner et al. [90, 91] are fundamental to this section.

4.3.1 Spherical Parameterization and Re-parameterization

Because we use the spherical parameterization based representation of shape points
[83], some concepts and definitions should be clarified. We define a single shape
S ∈ R3 which contains nv vertices with Cartesian coordinates

V = {vi = (xi, yi, zi)|i = 1, 2, · · · , nv} (4.1)
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and the topology of mesh faces

F = {tα = (vαA,v
α
B,v

α
C)|vαA,vαB,vαC ∈ V} (4.2)

where tα stands for the α triangular face in the surface mesh, and A,B,C are the
three vertices indices in V in the triangle.

Then we define a parameterization space P , where all the points are scattered on
the unit spherical surface. These points are vertices of the sphere, which can be
denoted using Cartesian coordinates and polar coordinates respectively as

X = {xi = (xi, yi, zi)|x2i + y2i + z2i = 1, i = 1, 2, · · · , nv} (4.3)

= {xi = (1, θi, ψi)|i = 1, 2, · · · , np} (4.4)

If a common topology F is maintained in both shape space S and parameterization
space P , then a mapping X from the parameterization space to the shape space
can be represented as

X : P 7−→ S , V = X(X ) (4.5)

The mapping from the shape space to the parameterization space is called the
parameterization1, which is a inverse mapping of X, denoted as X−1, namely
X = X−1(V). An example of relationship between V and X is illustrated in
Figure 4.3. The tetrahedron represents a object shape and the red nodes on

Figure 4.3: An example of the mapping between the shape vertices and parameter-
ization on the spherical surface

the sphere are its parameterization. Now we have a training set with ns shapes
{Si|i = 1, 2, · · · , ns}, we can parameterize all the shapes to their parameterization,
namely

Xi = X−1(Vi) = {x(i)
j = X−1

(
v
(i)
j

)
|i = 1, 2, · · · , ns, j = 1, 2, · · · , nv} (4.6)

1Parameterization has two meanings here. One is the mapped points on the unit sphere and
the other is the mapping from shape space to these unit spherical space.
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The re-parameterization means to manipulate the parameterized sphere points X
to new positions on the same sphere X ′, which can be represented as

X ′ = φ(X ) (4.7)

If we have a same parameterization X for all the object shapes {Vi, i = 1, 2, · · · , ns},
the object shapes will have a consistent correspondence, namely

Xi(X ) ∼ Xj(X ) 7−→ Vi ∼ Vj i, j ∈ {1, 2, · · · , ns} (4.8)

4.3.1.1 Initial Parameterization

We follow the methods from Brechbühler et al. [83] to parameterize the shapes. In
most conditions, shape points V are represented in the Cartesian coordinates, and
unit spherical parameters X can be represented using Polar coordinates, so we can
form the mapping with the help of the geographic coordinates system of the earth,
and θ is defined as latitude, and ψ is defined as the longitude, where they suffice
θ ∈ [0, π], ψ ∈ [0, 2π). We take a shape with np vertices and topology F as shown
in equation 4.1 and 4.2 as an example, and the steps are interpreted as follows.

(1) Define ‘south pole’ and ‘north pole’ in the shape vertices. In a simple way, the
vertex vS with the smallest z coordinate value is defined as the ‘south pole’
which is assigned with latitude θS = 0, and the vertex vN with highest z value
and assigned with θN = π. This way is simple but not sufficient for an object
with non-spherical topology, for which a Dijkstra’s algorithm can be used for
searching the ‘north pole’.

(2) Assign all the shape points vi with latitude values θi. The corresponding
continuous problem can be formulated as Laplace’s equation ∇2θ = 0 with
Dirichlet conditions θS = 0 and θN = π. This means the latitude θi assigned to
the vertices vi (i ∈ {1, · · · , nv} and it is neither ‘north pole’ vertex nor ‘south
pole’ vertex) is the average of the latitudes of its neighbor points. Specifically,
it can be solved using the following pseudo-codes.

The latitudes can be calculated by solving the equation Aθ = b, where
A is a nv × nv matrix and both b and θ are nv × 1 column vectors. The
steps for constructing A = {ai,j |i, j = 1, 2, · · · , nv} as

(I) Initialize A as a zero matrix, namely ai,j = 0 for i, j ∈ {1, 2, · · · , nv}.
(II) for i from 1 to nv

(i) If the ith vertex vi in V is vS or vN , set ai,i to 1;
otherwise, set ai,i with the number of direct neighbor vertices,
which can be obtained from F .

(ii) for j from 1 to nv where j 6= i & vi 6= vS and vi 6= vN

If the vertex vj is the direct neighbor vertex of vi, set ai,j = −1;
otherwise set ai,j = 0.
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For constructing b = {bi|i = 1, 2, · · · , nv}
(I) Initialize b as a zero vector, namely bi = 0 for i = 1, 2, · · · , nv.

(II) for i where vi = vN , set bi = π.

The latitude values θ = {θi|i = 1, 2, · · · , nv} can be obtained by θ = A−1b.

(3) Determine the meridian line1. We define the current candidate meridian vertex
is vc. Among the latitude value {θi} where {vi} are the direct neighbor vertices
of vc, find the minimal latitude θmin ∈ {θi}, then the vertex vmin is the next
meridian point candidate, then perform this procedure again. We start from
the ‘north pole’ vN and until it reaches the ‘south pole’ vs. Then we will have
a meridian vertex sequence {vnk

|k = 1, 2, · · · ,m,vn1 = vN ,vnm = vS}, where
m is the meridian vertices number.

(4) Assign all the shape points vi with longitude values ψi. First we dismiss the
connections to the poles. Similar with the latitude, the longitude value for a
vertex vi is the average of the longitudes of its neighbor vertices. But there is a
leap of 2π from the east to the west. So we have to define whether the vertices
connected to the meridian points are western vertices or eastern ones. Then
for the meridian points, every western neighbor connection should be added
2π and for the western points, each meridian neighbor connection should be
subtracted 2π. We also have to define the zero value to a meridian point. The
detailed pseudo-codes is as follows:

Similarly with calculating the latitude, longitude values will be also derived
from a modified equation A′ψ = b′. For getting A′, it can be done by
modifying A in step (2).

(I) Initialize A′ with A, namely A′ = A, a′i,j = ai,j , for i, j ∈ {1, 2, · · · , nv}.
(II) for i from 1 to nv where vi 6= vN & vi 6= vS ,

(i) if vS ∈ {v(i)
neighbor} or vN ∈ {v(i)

neighbor}, where {v(i)
neighbor} are the

direct neighbor vertices of vi,

set a′i,i = ai,i − 1.

(III) for i = n2, where vn2 is the meridian point next to vN ,

(i) set a′i,i = ai,i + 2

(IV) for i, where vi = vN or vi = vS ,

(i) for j from 1 to np
set a′i,j = 0 and a′j.i = 0.

We should define if the vertex connected to the meridian points is in the
west or east before we compute b′. For one meridian vertex vnk

, the two
other meridian vertices are vnk−1

and vnk+1
. For one direct neighbor vertex

1This meridian line is different from the geographic meridian. In the geographic definition,
longitude increases to the east until π, and decreases to the west until −π; here we define the
longitude ψ increases from 0 to 2π along the east direction.
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v to the vnk
, we define v as a western point sufficing the one of following

conditions.

• Both the three vertices of triangle {v, vnk−1
, vnk+1

} and the three
vertices of triangle {v,vnk−1

,vnk
} are clockwise1 placed.

• Both the three vertices of triangle {v, vnk−1
, vnk+1

} and the three
vertices of triangle {v,vnk

,vnk+1
} are clockwise placed.

• Both the three vertices of triangle {v, vnk
, vnk+1

} and the three
vertices of triangle {v,vnk−1

,vnk
} are clockwise placed.

Then for constructing b′, the steps are

(I) Initialize b′ as a zero vector, namely b′i = 0 for i = 1, 2, · · · , nv.
(II) for k from 2 to m− 1, namely nk from n2 to nm−1, assuming there

are m meridian points as in step (3), and vn1 = vN ,vnm = vS .

(i) for every j where vj ∈ {v(nk)
neighbor} & vj 6= vnk−1

& vj 6= vnk+1

( {v(nk)
neighbor} are the set of direct neighbor points of vnk

)

if vertex vj is a western point

b′j ← b′j + 2π

b′nk
← b′nk

− 2π

(III) Applying A′ and b′, the longitude values ψ = {ψi|i = 1, 2, · · · , nv}
can be obtained by ψ = A′−1b′. The longitude values in both poles
are implicitly assigned to 0.

(5) From the preceding steps the parameterization can be written in polar coordi-
nates and Cartesian coordinates as

X = {xi = (1, θi, ψi)|i = 1, 2, · · · , nv} (4.9)

= {xi = (sin θi cosψi, sin θi sinψi,− cos θi)|i = 1, 2, · · · , nv} (4.10)

This procedure will yield a unique solution for the initial parameterization. An
example of initial parameterization of the prostate is shown in Figure 4.4.

4.3.1.2 Re-parameterization Approaches

Because we want to manipulate the parameterization to change the correspondence,
a re-parameterization approach should be considered. Actually there were many
re-parameterizations introduced in [79], but we mainly use two approaches.

1. Sigmoid Transformation

This approach has been proposed in [91] for a fast initial area preservation. This
transformation only affects on the latitude dimension, so the clusters of sphere
nodes will be dissolved in latitude directions. If we use the polar coordinates

1The viewing point should be outside the object surface.
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(a) The example of a prostate shape and parameterization, where color
going from blue to red is along the increment of latitude.

(b) The example of a prostate shape and parameterization, where color
going from blue to red is along the increment of longitude.

Figure 4.4: The initial parameterization example

in parameterization as X = {xi = (1, θi, ψi)|i = 1, 2, · · · , nv}, the transformed
parameterization can be represented as

X ′ = φ(X ) = {x′i = (1, f(θi), ψi)|i = 1, 2, · · · , nv} (4.11)

where

f(θi) =
π

1 + e−α(θi−θip)
(4.12)

In equation 4.12, α is a weight scalar, and θip is the sigmoid inflection point. When
θi > θip, the parameterization point will be mapped to the northern hemisphere,
and when θi < θip, it will be to the southern hemisphere. Normally, we take the
mean value, namely,

θip =
1

np

nv∑
i=1

θi (4.13)

This re-parameterization transformation is particularly for a fast spread of the
sphere nodes to the to poles. From the examples in Figure 4.4, it can be seen that
the nodes in initial parameterizations are clustered near the ’equator’. Therefore
this transformation can make the parameterization more uniformly distribute on
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the sphere.

2. Symmetric Theta Transformation

The symmetric theta transformation is one basic re-parameterization method based
on the Cauchy distribution. The idea is to smoothly adjust the points along the
series of great circles (like the longitude circles) intersecting at the kernel and its
antipodal points on the sphere. The geometric interpolation is based on the Cauchy
distribution and a sum of probability density functions will be used for a general
case. First we consider when the kernel center is at the ‘south pole’ where θ = 0,
then the re-parameterization will take place on θ only. The re-parameteriation
function [79] is defined as

f(θ) =
1

1 +A

(
θ +A arccos

(
(1 + Ω2) cos θ − 2Ω

1 + Ω2 − 2Ω cos θ

))
(4.14)

where Ω ∈ (0, 1) is the width parameter and A > 0 is the amplitude of the wrapped
Cauchy. At the kernel center and its antipodal point, the values do not change,
namely when kernel center is at θ = 0, then f(θ) ≡ 0 and f(π) ≡ π.

For an arbitrary kernel center, the equation 4.14 should be changed. Suppos-
ing we have the kernel center defined in the Cartesian coordinates as a ∈ R3 where
|a|2 = 1, we will have the representation of transformation for an arbitrary point x
defined also in Cartesian coordinates on the sphere as

cos θ′ = a · x (4.15)

x′ = a cos f(θ′) +
sin f(θ′)

sin θ′
(x− a cos θ′) (4.16)

where x′ is the new position where x will move after the transformation. Given a
fixed width, we can get different re-parameterizations by adjusting the amplitude A.
In practice, multiple kernels would be selected to perform the re-parameterization
for a better result.

There are also similar transformations such as asymmetric theta transformations
and shear transformations [79], which provide more complicated patterns to control
the parameterizations. In practice, the symmetric theta transformation will be
sufficient. Figure 4.5 shows examples of sigmoid transformation and the symmetric
theta transformation, where we set α in the sigmoid transformation to 5, the
amplitude, width in the symmetric theta transformation are 4 and 0.25 respectively,
the kernel center is at the ‘north pole’ (i.e. [0, 0, 1]).

4.3.1.3 Area Distortion Removal

It has been indicated that the parameters are gathered around the ‘equator’, but
rarely cover around ‘poles’, which is a major drawback using such a mapping.
If we use a uniform distributed vertices to sample the spherical surface, there
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Figure 4.5: The original parameterization(Left), the re-parameterizations after
sigmoid transformation (middle) and after symmetric theta transformation.

are considerable areal distortions. One solution is to use re-parameterization
approaches to remove the area distortions for area preservation. By means of
re-parameterizing the nodes on the sphere, we try to make each triangular face
have a similar area proportion among all the faces, with the area proportion of the
corresponding triangular face in the object shape mesh. To be specific, we define
the αth triangular face in the object shape mesh is tαv = (vαA,v

α
B,v

α
C) and that

in the spherical parameter mesh is tαx = (xαA,x
α
B,x

α
C), and there are β triangular

faces. So we can write the objective function as

L =

β∑
α=1

(
Area(tαv)∑β
α=1Area(tαv)

− Area(tαx)∑β
α=1Area(tαx)

)2

(4.17)

where Area(vα) means area of triangular face tα. Given the objective function, we
can use the representation functions to adjust the parameters on the sphere for
minimizing L. Similar with [91], we use two stages to reduce the area distortion.
We do not use the refinement in [91] since the first two stages are sufficient.

In the first stage, we apply the sigmoid transformation to re-arrange the lati-
tude first considering the ‘equator clustering’ feature of the allocation of the points
in the initial parameterization. By using a line searching algorithm, we can find
an optimal α in equation 4.12 minimizing the objective function L. In the sec-
ond stage, we perform the symmetric theta transformation for removing areal
distortions. A fixed width Ω is selected based on the case, and several uniformly
distributed spherical points are generated as the kernel centers. The uniformly
distributed sphere points can be obtained by subdividing the faces of an octahedron
or icosahedron into smaller triangles then normalizing the points vectors to the
unit sphere1. We also use a searching algorithm to find the optimal amplitude A
in equation 4.14 that can minimize L. Instead of selecting the nodes merely in
the cluster as kernel centers [91], we apply the transformation on all candidate
kernel centers iteratively. Finally we will get an area preserved parameterization.
The parameterization sphere of the example in Figure 4.4 will become as shown in
Figure 4.6 after the area preservation operation.

1Illustrations will be shown in the following sections
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Figure 4.6: The shape mesh and its parameterization mesh after area preservation

4.3.2 Correspondence Initialization

All the processes discussed above are done for a single shape. In order to establish
the correspondence, we should operate the training set pairwise or group-wise.
Normally, we select one shape as a reference, and then we can propagate the
correspondence to the rest shapes in the training set. However, all the training
shapes may not have the same number of vertices, and also there are too many
to process. As a result, we will decimate the number of vertices, namely select
the same number of landmarks during the propagation to get a coarse initial
correspondence.

4.3.2.1 Landmark Sampling

After a reference shape is selected, we can sample the landmarks on the reference
to give an initial correspondence with respect to the reference for other shapes in
the training set. We suppose the reference shape Sref has vertices Voref , and the
area preserved parameterization X oref . We choose to use uniform spherical mesh
nodes for sampling the landmarks. It was found that 20% of the original shape
nodes was sufficient [79]. In practice, we will decimate the vertices in the reference
shape firstly, namely sample X oref and then find the corresponding landmarks on
the reference shape. In the following part, we will show a more general case that
sampling an arbitrary parameterization X o and sampling its original shape Vo.

The uniform nodes on an unit sphere for sampling, denoted as X = {xi|i =
1, 2, · · · , np1}, can be derived similarly as the kernel centers in the re-parameterization
part. The octahedron or icosahedron derived uniform spheres are both available.
For instance, we obtain the uniformly distributed sphere nodes by subdividing an
icosahedron four times. As a result, there are 2562 uniform sphere nodes as the
sampling points/positions. Figure 4.7 shows this process.

We can then sample an arbitrary parameterization X o with this uniform nodes

1np is defined as the number of sampled landmarks, i.e. the node number of the uniformly
distributed sphere for sampling. The original vertices number is nv.
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Figure 4.7: The derivation of uniform spherical points from an icosahedron

X . 1 We use Figure 4.8 to illustrate the sampling process. The yellow points in

Figure 4.8: The example of landmark sampling

the parameterization refer to the sampling positions X , which are generated from
the subdivided octahedron/icosahedron. The red point x′ is the intersection of the
line connecting one sampling point x ∈ X and the origin, and the plane defined
by the αth triangular face tαx = (xαA,x

α
B,x

α
C) where the nodes xαA,x

α
B,x

α
C ∈ X o are

blue in the figure. Then we will have three sub-triangular faces tαxA
= (x′,xαB,x

α
C),

tαxB
= (xαA,x

′,xαC), tαxC
= (xαA,x

α
B,x

′). Therefore, the barycentric coordinates
(aα, bα, cα) of x′ with respect to the triangle tαx can be defined as

aα =
Area(tαxA

)

Area(tαx)
bα =

Area(tαxB
)

Area(tαx)
cα =

Area(tαxC
)

Area(tαx)
(4.18)

where Area()̇ calculates the area. If x′ lies in the triangular face tαx, as Figure 4.8
shows, these barycentric coordinates will suffice

x′ = aαxαA + bαxαB + cαxαC (4.19)

aα + bα + cα = 1 & aα, bα, cα ∈ [0, 1] (4.20)

So the corresponding point of x′ in the object shape is the red node v surrounded
by three shape points in triangle tαv = (vαA,v

α
B,x

α
C). Its position can be determined

1Here we are discussing a special case namely a uniform sampling. Actually X can also be
non-uniformly distributed sphere node set.
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using the same barycentric coordinates as

v = aαvαA + bαvαB + cαvαC (4.21)

Based on this knowledge, we can sample any shape (with points Vo) by sampling its
parameterization sphere (with nodes X o). Firstly we have to find all the barycentric
coordinates of X in X o. This can be achieved by

(1) finding the triangles in the parameterization X o close to xi ∈ X ;

(2) calculating the intersection points of ray starting from the origin to xi, and
planes defined by these triangles;

(3) calculating the barycentric coordinates of these intersection points;

(4) selecting the barycentric coordinates and triangles that suffice condition 4.20.

Secondly, we apply the found barycentric coordinates and triangle labels to obtain
the landmark vertices in the shape. These sampled landmarks correspond to X ,
denoted as V = {vi|i = 1, 2, · · · , np}.

When building the correspondence, we apply the sampling on the reference shape
firstly. We use the uniform sampling nodes X to sample the preserved parameteri-
zation X oref , then we will get the sampled reference shape with shape landmarks
Vref and parameterization Xref (= X ). The example of sampled reference shape is
shown in Figure 4.9.

Figure 4.9: The reference shape after uniform landmark sampling and its sampled
parameterization

4.3.2.2 Consistent Parameterization Propagation

After the landmark sampling on the reference shape, we would like to have consistent
landmarks labeled in the rest shapes so that an initial correspondence can be built.
It is assumed that the shapes are aligned1, so the initial correspondence can be
built by finding the shape vertices in Si(i 6= ref & i ∈ {1, 2, · · · , ns}) closest to

1Before the propagation, the original shapes should be aligned as chapter 3 states. If the shapes
have different vertices number, we can apply ICP first instead of the Procrustes alignment

51



Chapter 4. Shape Correspondence

the landmarks in the reference shape. We use Figure 4.10 to illustrate this process.
For a single training shape Si 6= Sref , let Voi = {vo,Bi |B = 1, 2, · · · , nv} (the green

Figure 4.10: Illustration of initial correspondence establishment.

points in the figure) denotes the original shape vertices before sampling, and

X oi = {xo,Bi |B = 1, 2, · · · , nv} represents the parameterization. Vref = {vAref |A =

1, 2, · · · , np} and Xref = {xAref |A = 1, 2, · · · , np} are the sampled shape vertices
(landmarks) and parameterization of the reference shape respectively (the red and
the light red points in the figure). The initial correspondence can be defined with
respect to the vertex index, written as

Ii(A) = B, where B = arg min ‖vAref − vo,Bi ‖ (4.22)

We then use the re-parameterization to minimize the sum of squared Euclidian
distance between the sampled parameterization Xref of the reference shape, and

the corresponding parameterization X o,{B}i of the shape Si, where B = Ii(A), to
make the parameterizations consistent. In Figure 4.10, it can be annotated as
minimizing the distance between the blue points and the corresponding light red
points in the parameterization. The objective function can be written as

L =
∑
A

‖xAref − xo,Bi ‖
2 (4.23)

In short, we will re-parameterize all the parameterizations {X oi |i = 1, 2, · · · , ns}
(expect the reference) to have a consistent correspondence with the sampled pa-
rameterization of reference Xref . The re-parameterization uses the symmetric
theta transformation with a uniformly distributed kernels and a fixed width. By a
line searching algorithm, we manipulate the amplitude to minimize the objective
function. This pairwise correspondence initialization will be processed iteratively
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until the value of objective function is under some threshold. To propagate the
correspondence, we use the same sampling X to all the consistent parameterizations
X oi and then we will get the sampled shape landmarks Vi = {vAi |A = 1, 2, · · · , np}
and sampled parameterization Xi = {xAi |A = 1, 2, · · · , np}, where np is the land-
mark number.

Davies et al.[79] have suggested to apply the area preservation on the reference
shape alone and to manipulate the parameterization in other shapes in the propa-
gation afterwards. So we can perform a sigmoid transformation and a rotation in
longitude followed by the iterative symmetric theta transformation to propagate
the area preservation. After that, we can sample all the shapes to have a consistent
initial correspondence. In practice, this propagation will be faster and more reliable.

4.3.3 Correspondence Optimization

After the initial correspondence is established, a group-wise registration algorithm
will help to optimize the correspondence. Because we are aiming at building good
statistical shape models, the correspondence can be evaluated using the properties
of good models. These properties can be summarized as [92]

• generalization ability it can represent any instance of the class of object.

• specificity it can only represent valid instances of the modeled class of
object.

• compactness the model can be represented with few parameters.

Here we choose to use the Minimum Description Length (MDL) principle as the
objective function, as suggested by Davies et al. [92].

4.3.3.1 Description Length Principles

The basic of MDL is to transmit the coded training set with a minimum description
length. According to the information theory, if we want to transmit a number
within some range of width R and a precision δ, it requires a codeword of length:

l(x;R, δ) = − log
δ

R
, y < x < y +R, (4.24)

To be more general, the shannon codeword length for transmission of an event α
with the occurrence probability Pα can be written as:

lα = − logPα. (4.25)

Based on this knowledge, we can calculate the description length, namely the
codeword length, of transmitting a set of shapes represented by statistical shape
models, which can be modeled using a multivariate Gaussian model [79].

For the statistical shape models, we have explained the detail in chapter 3. We
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can use equation 3.20 to build any shape instance, and use the method shown in
equation 3.23 to get the simplified way of getting compact models, since there
are always at most ns − 1 non-zero eigenvalues when there are limited number of
shapes (i.e. ns � np). So we rewrite it as

vi = v + Pbi = v +

ns−1∑
m=1

pmbmi (4.26)

where the shape landmarks in Si are all vectorized and aligned as column vectors
{vi|i = 1, 2, · · · , ns}, v is the mean shape vector, pm is the mth eigenvector, bmi
is the mode weight (model parameter) for a shape instance Si. If the shape
vector elements are bounded by −r/2 ≤ vi,j ≤ r/2, (vi,j ∈ vi, i = 1, 2, · · · , ns, j =
1, 2, · · · , 3np), the mode weights bmi also have a strict bound as R = r

√
3np, which

suffices |bmi | ≤ R. For the transmission, given a fixed precision ∆ and R, the
number of modes ns − 1, and the dimensionality of the shape vector 3np, the
description length can be formed as:

Ltotal = f(R,∆, ns) +

ns−1∑
m=1

(L(m)
params + L(m)

data) = f(R,∆, ns) +

ns−1∑
m=1

L(m). (4.27)

where f(R,∆, ns) is the fixed description length of the mean shape v, the PCA

directions {pm}, and other fixed parameters etc. For each mode m, L(m)
params is

the description length for the parameters of the mth centered Gaussian in the

direction pm, and L(m)
data is the description length for the data in this direction,

namely the mapping of the centered shape {vi − v} onto the principal axes {pm},
{b̂i = PT (vi − v)}.

For L(m)
params, each centered Gaussian has one parameter, the width (standard

deviation) σm, which can be calculated as,

(σm)2 =
1

ns

ns∑
i=1

(b̂mi )2, (4.28)

We quantize it to some precision δ, and set a upper bound σmax to R and a lower
bound σmin to 2∆ (It was numerically proven in [79, 86, 92] that this approximation
is good enough). For each direction, the description length1 can be written as

• If σm ≥ σmin, L(m) = L(m)
1 (σm, ns, R,∆). where,

L(m)
1 =1 + ln

(
σmax − σmin

δ

)
+ | ln δ| − ns ln ∆

+
ns
2

ln(2π(σm)2) +
ns
2

+
nsδ

2

12(σm)2
(4.29)

1It is not the full description length since some constant terms are ignored.
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where the optimum parameter accuracy δ is δ∗(σ, ns) = min
(

1, σ
√

12
ns

)
.

• If σm < σmin but the range of bm = {bmi |i = 1, 2, · · · , ns} > ∆,

L(m) = L(m)
2 (σm, ns, R,∆), where,

L(m)
2 =1 + ln

(
σmax − σmin

δ

)
+ | ln δ| − ns ln ∆

+
ns
2

ln(2πσ2min)− nsδ
2

24σ2min
+
ns(σ

m)2

2σ2min

(
1 +

δ2

4σ2min

)
(4.30)

where δ = δ∗(σmin, ns).

• Else L(m) = 0.

In the description length L(m), the first three terms are the code length of the

quantized parameter σ̂m and the quantization precision, which comprise L(m)
params.

The rest terms are the code length of data L(m)
data. For a detailed derivation,

[79, 86, 92] can be referred.

4.3.3.2 MDL Objective Function

Based on the last section, we can calculate the total description length for all modes.
For a given training set, if the correspondence is well established, the variance of
the points will be small, leading to the small description length; otherwise, the
description length will be large. Therefore, we are aiming at minimizing the total
description length. Then the objective function constructed from the full expression
of description length can be written as

L =

ng∑
p=1

L(p)1 (σp, ns, R,∆) +

ng+nmin∑
q=ng+1

L(q)2 (σq, ns, R,∆) (4.31)

where ng is the number of directions for σp ≥ σmin, and nmin is the number of
directions for σq < σmin but the range of bq > ∆.

Apart from the full expression, there are some approximations of MDL objec-
tive function, such as the case assuming ∆→ 0 and ns →∞ by Davies et al.[79],
and the case limiting the criteria by Thodberg [93]. Moreover, the gradient of
simplified MDL objective functions have also been investigated such as [79] and
[88].

4.3.3.3 Optimization Procedure

After establishing the initial correspondence, we have the sampled shapes with equal
number of landmarks, and the consistent sampled parameterizations, which are most
probably the same as the sampling sphere. We select a shape (except the reference
shape) in the training set in turn to perform the optimization, which aims at
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minimizing the total description length of training set by varying/re-parameterizing
the parameterization of each shape. The re-parameterization approach is mainly
based on symmetric theta transformation, where the kernel centers and width
are fixed in the optimization. By varying the amplitude, the parameterization
will be changed. The changed parameterization is used to sample the original
parameterization (before the sampling in the correspondence propagation) again
to get new sampled shape vertices. This new sampled shape together with other
sampled shapes are used to evaluate the total description length. We use a linear
searching optimization algorithm for finding the optimum value of amplitude which
can give a minimum total description length. The specific steps are listed as follows:

For i = 1, 2, · · · , ns, the sampled shape vertices are Vref and Vi, the sampled
parameterization nodes are Xref and Xi; The original shape vertices and
parameterizations are Voref , Voi , and X oref , X oi respectively. We choose a shape
Si, i 6= ref to start the optimization.

(1) Fix a Cauchy kernel center position and a width ω, re-parameterize Xi
using the symmetric theta transformation with a varying amplitude A.
to get X ′i.

(2) Use this re-parameterized X ′i to sample the un-sampled parameterization
X oi and the original shape surface Voi , then get the new sampled shape
vertices V ′i and parameterization X ′i.

(3) Form the shape vectors from Vref , V ′i and {Vj |j = 1, 2, · · · , ns; & j 6= i}
as the one in equation 4.26, which are vref , v′i and {vj |j = 1, 2, · · · , ns; &
j 6= i}.

(4) Concatenate these shape vectors together, apply the PCA to calculate the
eigenvectors {pm|m = 1, 2, · · · , ns − 1}, mean shape vector v and model
parameters {bmi |i = 1, 2, · · · , ns,m = 1, 2, · · · , ns − 1}.

(5) Fix a quantization parameter ∆ and use the model obtained in step (4) to
calculate the description length and evaluate the MDL objective function.

(6) Use a line searching algorithm to iteratively conduct step (1) to step (5)
to find the optimum A that can make the objective function value to a
minimum.

(7) Use the obtained optimum A to re-parameterize Xi using symmetric theta
transformation with the same kernel and width as step (1).

(8) Repeat step (2) to get the sampled shape vertices V ′i.
(9) Assign V ′i → Vi and X ′i → Xi.

(10) Move to the next kernel center among a set of uniform sphere nodes,
repeat the step (1) to (9) until all kernels are processed.

(11) Move to the next shape Si to repeat step (1) to (10).

(12) Iteratively conduct step (1) to (11).
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2D Slices based AAM Fitting

In this chapter, we will discuss the AAM search further. Firstly, a brief survey on
the AAM search approaches will be given, and then we will introduce the novel
algorithm used in our project, which is a 2D-slice based AAM search approach,
where only three 2D MR image slices are used for model fitting.

5.1 AAM Search Overview

In chapter 3, we have reviewed the standard AAM search algorithm. This works
only when the object is located in the neighborhood. When there is a large
difference (offset, scaling, rotation) between the initial shape (usually the mean
shape) and the actual object shape, the standard algorithm will lead to a mismatch
with the object. In that case, a multi-scale model can be made to apply a multi-
resolution search. In the low resolution image, a coarse contour would be found,
then the refinement will be processed using the higher resolution image. This
multi-resolution search was first introduced for ASM search [94] and implanted in
AAM later. Cootes et al. [95] have also proposed a way of reducing the texture
information in finding the transfer matrix A as updating the parameter p. They
believed there are redundant texture information not representative to the texture
change. As a result, they picked out the ‘important’ texture for parameter update
modeling. Meanwhile, they also suggested an approach to establish the relationship
between the texture change and the shape parameters directly, but it works better
only in some limited conditions. Similarly, Stegmann [68] investigated a border
AAMs, where only the texture around the shape border is extracted, instead of
the texture inside the shape. This approach solved the problem of shrinking in
the AAM search, and is also faster. Moreover, Stegmann [68] has also proposed
a constrained AAM search that forms some bounds for the parameter changes.
Actually these were improved later in the standard algorithm using a numeric
differentiation method. Matthews et al. [96] suggested an inverse compositional
alignment algorithm based approach to improve the AAM fitting efficiency. They
also presented an analytical derivation for gradient descent searching, an efficient
ad-hoc fitting algorithm that overcomes the inefficiency in standard gradient de-
scent algorithm. This approach was extended to a 3D case [97]. Beichel et al.
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[98] proposed a novel robust AAM matching algorithm, which contains two stages.
The first one is for analyzing the initial residuals with a mean-shape-based mode
detection. The second one is for utilizing an objective function for the selection
of a mode combination not representing the gross outliers. Donner et al. [99]
employed a fast canonical correlation analysis (CCA) based search to calculate the
derivative matrix with the reduced rank estimates obtained by CCA, instead of
the standard linear least square regression estimates. This approach has shown
faster training with fewer synthetic difference images and faster convergence with
equal accuracy. Tresadern et al. [100] has investigated additive predictors as a
substitute for the linear predictor in order to improve the AAM search accuracy
and efficiency. They have demonstrated that the proposed method is faster and
more accurate as well, and the linear models performs the same with non-linear ones.

Most of these works are for 2D AAM search. Actually in 3D AAM, the ma-
jority of model fitting approaches are still based on the standard one, such as
[53, 22, 23]. However, in terms of our project, the full 3D data is not available since
the acquisition of full 3D data is time consuming which is not acceptable in the
real time biopsy. For this purpose, we would like to figure out a method that can
utilize three orthogonal slices in the AAM search, with which we can reconstruct
the full texture map.

5.2 PCA based Prediction

In AAM modeling, both shape variance and texture variance was analyzed using
PCA to form a PDM. For instance, in texture modeling, we have the representation
as

g ≈ g + Pgbg = g +

tg∑
m=1

p(g)
m b(g)m (5.1)

where g is a ng × 1 texture vector, g is the mean texture vector from

g =
1

ns

ns∑
i=1

gi (5.2)

where gi is the normalized texture vector taken from image Si in the training set.
Pg is the eigenvectors representing the principal axes in the training set, bg includes
the weight vector for each mode, called texture parameters. Given an instance
gi(i ∈ {1, 2, · · · , ns}), we can get the texture parameter bg by approximately,

bg,i = PT
g (gi − g) (5.3)

Inversely, if bg,i is given, we can also recover the original normalized texture vector
gi using equation 5.1.

Now we look how equation 5.3 is derived. As we review chapter 3, it is obvi-

58



Chapter 5. 2D Slices based AAM Fitting

ous that originally Pg is a ng × ng square matrix (p1, · · · ,pm, · · · ,png), where
each column is an unit (normalized) eigenvector and each eigenvector is always
orthogonal to any other (i.e. pTmpn = δm,n). Therefore we can hold the following
equation

gi − g = gc,i = Pgbg,i =

ng∑
m=1

p(g)
m b

(g)
i,m (5.4)

where gc,i is the centered vector. In this case, we can calculate bg,i, which is the
vector of gi − g mapping to the principal axes, as

bg,i = P−1g (gi − g) = PT
g (gi − g) = PTgc,i (5.5)

where P−1g = PT
g since Pg is an orthogonal matrix. However, when we use the

simplified method for calculating the principal axes (as the latter part of section
3.2.1.2 states), we only get the first ns eigenvectors and there are actually ns − 1
non-zero eigenvalues so that only ns − 1 eigenvectors will be used. This gives
P′g = (p1, · · · ,pm,pns−1) as a ng × (ns − 1) matrix where all column vectors are
still unit orthogonal to each other. And now equation 5.4 becomes

gi − g = gc,i = P′gbg,i =

ns−1∑
m=1

p(g)
m b

(g)
i,m (5.6)

If we want to get bg,i, we can use the Moore-Penrose pseudo-inverse of Pg since Pg

is not a square matrix any more. We can use the LSE1 to get the Moore-Penrose
pseudo-inverse, namely minimizing the objective function

L = ‖gc,i −P′gbg,i‖2 = (gc,i −P′gbg,i)
T (gc,i −P′gbg,i) (5.7)

= gTc,igc,i − 2bTg,iP
′T
g gc,i + bTg,iP

′T
g P′gbg,i (5.8)

by differentiating it with respect to bg,i, we get

∂L
∂bg,i

= −2P′
T
g gc,i + 2P′

T
g P′gbg,i (5.9)

For getting the minimum value, equation 5.9 should be zero, namely

b̂g,i = (P′
T
g P′g)

−1P′
T
g gc,i (5.10)

While we can also see pTmpn = δm,n, so P′Tg P′g = Ins−1 (i.e. identity matrix). In
conclusion we get

b̂g,i = P′
T
g gc,i = P′

T
g (gi − g) (5.11)

1LSE has also been implemented in orthogonal Procrustes analysis and AAM parameter update
modeling, where the derivations are not given.
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It also works when Pg has less eigenvectors such as tg ≤ ns − 1, as long as the
column vectors are orthogonal. Then usually we get equation 5.3 depending on this.

Next we consider the following form

gc,i = gi − g =

g1,i

g2,i

g3,i

−
g1

g2

g3

 =

gc,1,i
gc,2,i
gc,3,i

 (5.12)

where we divide the vector gc,i into three column vectors of length n1, n2, n3
respectively and n1 + n2 + n3 = ng. Similarly we divide Pg

1 as well, which is

Pg =

Pg,1

Pg,2

Pg,3

 (5.13)

where Pg,1 is a n1 × tg matrix, Pg,2 is of dimension n2 × tg, Pg,3 is of dimension
n3 × tg. And we have known that bg,i is a column vector of size tg × 1. Therefore,
from equation 5.1, we can derive the following three equations

gc,1,i = Pg,1bg,i, gc,2,i = Pg,2bg,i, gc,3,i = Pg,3bg,i (5.14)

Using the least square estimate solution shown in equation 5.10, we can obtain

b̂g,i = (PT
g,1Pg,1)

−1PT
g,1gc,1,i (5.15)

= (PT
g,2Pg,2)

−1PT
g,2gc,2,i (5.16)

= (PT
g,3Pg,3)

−1PT
g,3gc,3,i (5.17)

It should be noted that PT
g,1Pg,1 6= I as well as Pg,2 and Pg,3. These results show

that, when part of the texture vector (e.g. g1,i, g2,i or g3,i) is available, given the
mean texture vector, and the corresponding part of principal axes, we can always
predict the texture parameter and then give a full realization of gi by

ĝi = g + Pgb̂g,i (5.18)

As a result, this knowledge proved the possibility of only using part of the texture
information, such as three orthogonal slices, to accomplish the AAM matching.

5.3 2D Slices based Model Fitting Procedure

Because of the unpredictable position where the needle would be inserted, we do
not know which slices would be scanned for model fitting. Therefore, we cannot
build AAM with respect to any triple slices texture information. This is also why
the border AAM [68] or the texture reduced AAM [95] are not applicable in terms

1We assume here Pg has tg column vectors and tg could be either smaller than ns − 1 or
between ns and np.
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Chapter 5. 2D Slices based AAM Fitting

of our task. Hereby we should build the full 3D AAM for training to give the
complete information.

Suppose that the 3 slices for model fitting are placed in correct position and
orientation in 3D space. When updating the parameters to minimize the intensity
difference δg, only the intensities in the voxels from these slides will be examined.
The full texture parameters can be predicted using these known intensities and the
principal axes as well as the mean texture. Then the whole texture map can be
recovered using these predicted parameters and the models. The following steps
implement the whole procedure.

(1) Begin with the mean appearance parameter c ← c, . Given the parameter
number ts and tg from the training set, extract the shape parameter bs and
bg. Then we can give initial shape points by xs = T −1(x + Psbs).

(2) Given the initial shape xs, get the aligned shape vector x = T (xs) and get the
pose parameters (tT ,qT )T .

(3) Prepare two testing 3D images. One is that three slices are placed in the
correct position with the background filled with zero. The other is that three
slices are located in the correct position, and the background is composed of
the mean of all images in the training set. warp the both the test images with
respect to mapped base points to exact the normalized texture gs,1 and gs,2
within xs, respectively. Use the gs,1 which declares three slices to only get
the voxel positions, and use gs.2 which has the background of image mean to
extract the intensity in these slices, and get gs.

(4) Get the parameters p. Apply the same position of gs (same as gs,1) of Pg,
denoted as Pg,s. Then we calculate

c = QT

([
WsP

T
s (x− x)

(PT
g,sPg,s)

−1PT
g,s(gs − gs)

]
− b

)
(5.19)

where gs is the subset of the mean texture vector from the training set, of

the positions from gs. Constrain c within ±3

√
λ
(c)
i and form the parameter

p = (cT , tT ,qT )T .

(5) Start the parameter update iteratively.

(I) Initialize the damping factor k = 1, the maximum iteration number Niter,
parameter po. Set the initial intensity difference magnitude Eo =∞.

(II) for iter = 1 : Ns

(i) Split the parameter p into the appearance model parameter c and
the pose parameters (tT ,qT ).

(ii) Calculate the shape parameter bs from b,Ws, c,Ps and then get
the aligned shape points x = x + Psbs, and the real position in
image by xs = T −1(x).
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(iii) Warp the both test images to mapped based points to obtain the
sampled texture gs,1 and gs,2 within xs, and get the real normalized
slice intensity vector gs as in (3).

(iv) Apply equation 5.19 to get a new appearance model parameter
c′ and apply equation 3.58 to get the texture parameter b′g then
calculate the modeled texture by gm = g + Pgb

′
g, but only the

intensities in slices position are taken as gm,s.

(v) Evaluate the intensity difference δg = gs − gm,s and its magnitude
E = |δg|2 = δgT δg.

(vi) if E > Eo
Update damping factor k ← 0.9k, the parameter p ← po, and
found shape points xs ← xo;

else

k ← 1.1k, Eo ← E.

end if

(vii) Update the parameter po ← p and found shape points xo ← xs.

(viii) Permute the parameter p with the predicted offset δps = −Asδgs,
by p← p + k · δp and constrain the updated p within ±3σi.

end for

(III) if E > Eo,

update the parameter p← po, the found shape points xs ← xo and
the intensity difference magnitude E ← Eo.

end if

(IV) Optimize the parameter p using the local minimization algorithm re-
garding the intensity difference E.

(6) Once the optimal p is found, execute step (i) to (iv) to get the sampled slices
texture gs, the modeled full image texture gm, and the found shape points xs.

(7) Realign the texture vector gm with respect to the voxel template, and inversely
normalize the intensity, warp the image with shape points of mapped base
points and texture of realigned gm, with respect to the found shape points xs.
Then we can get the segmented image.

(8) Using the technique of obtaining the voxel template, we can get the discrete
voxel based segmentation.

In these procedure, we can see that it still follows the standard search approach,
but with only the voxel positions in the given slices are taken into consideration.
we added a fake background besides the given slices for decreasing the influence
from the surrounding voxels on the intensities in the positions of these slices.

Although it works, this 2D slices based method suffers from a slow convergence
since the parameter updating is insufficient in every iteration, resulting from the
intensity displacements are partially applied.
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Chapter 6

Experimental Setup and
Implementations

Based on the knowledge from previous chapters, we synthesized all the works and
implemented the phantom and AAM to conduct experiments. In this chapter, we
will mainly show the procedures and results of phantom fabrications, MRI settings
and 3D image acquisition, shape correspondence establishment and AAM modeling
as well as the shape and texture reconstruction based on the 2D fitting.

6.1 Phantom Fabrication

The phantom fabrication consists of mold establishment for making the model and
model fabrication for completing the phantom. The structure and materials are
chosen as chapter 2 states. The dimension for each part is shown in Appendix A.

6.1.1 Building Phantom Molds

Due to the special shapes of our phantom components, especially for the prostate
and pubis, corresponding molds were built. For the prostate, according to the
suggested 3D sketch, we changed the design where a cylinder with the diameter of
8 mm was added on the top (prostatic base) of the big prostate mold for reserving
a hole on the matrix for casting. A similar tail with the diameter of 4.3 mm was
added on the small prostate mold for suspending the small mold in the matrix.
Then we utilized the 3D printer1 to get the precise shape for the larger prostate
mold and the small prostate mold. The printed bigger prostate mold and smaller
mold are shown in Figure 6.1.

The matrix for casting prostate was made of a cold vulcanizing silicone-rubber
by mixing the silicone-rubber and the corresponding hardener. This matrix can
resist high temperature of 160-180 ℃ when the soft PVC mixture is poured in. We

1The Objet EDEN 250 3D printer is in UT Carré 3rd floor RAM lab.
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Figure 6.1: 3D printed bigger and smaller prostate molds with cylinders attached
on the top

chose the Siliconenrubber 620/TL95 1 and its hardener T58 2 produced by Harjon
Polyster B.V. in Netherlands. The exterior container for the matrix was made of
perspex and the printed prostate mold was suspended in the middle. We mixed the
silicone-rubber and the hardener with a ratio of 20:1, and vacuumed this mixture,
then poured the mixture into the container and wait for over 1 day. The matrix
can be obtained after taking out the prostate mold by cutting the silicone-rubber
in the middle. Figure 6.2 shows the completed prostate matrix for casting the outer
capsule, and the plexiglass box with a needle on the top for containing the matrix
and suspending the small prostate mold for saving space for the inner prostate.

(a) Prostate matrix made of
silicone-rubber.

(b) Plexiglass container with
needle for containing ma-
trix and suspending smaller
prostate.

Figure 6.2: Prostate matrix and container

For the pubic bone, we added an additional connecting part and a cylinder to
connect the left and right ramus. We also printed the model which was directly

1http://www.harjonpolyester.nl/index.php?pgname=SILICONENRUBBER%20620/TL95
&pid=535&cat id=220

2http://www.harjonpolyester.nl/index.php?pgname=HARDER%20T58%20VOOR%
20SILICONENRUBBER%20620/TL95&pid=536&cat id=220
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put in the phantom. The printed pubis model is shown in Figure 6.3(a).

Due to the rectum in the phantom is an air tube, considering the art processing,
a strong, heat-resisting and smooth rectum mold made of copper pipe as Figure
6.3(b) was fixed for saving the space. When the phantom was done, the rectum
mold should be removed to form the air tube in the frame.

To make the frame, a corresponding aluminium frame mold with a matched inner
casting block was constructed. The inner dimension of aluminium bin corresponds
to the outer size of frame, and the dimension of inner block corresponds to the
inner frame size. The copper rectum mold was be screwed on the 100 mm ×150
mm wall at the higher base, and above the bottom at 30 mm height approximately.
The final aluminium mold and inner block are shown in Figure 6.3(c).

(a) 3D printed pubis model (b) Copper
rectum mold

(c) Aluminium mold for frame making

Figure 6.3: Pubis model, rectum mold and aluminium mold

6.1.2 Building Phantom

We built the phantom in the laboratory1 in UT. The apparatus includes: a heating
plate, a BINDER oven/vacuum chamber, a ventilating duct, a aluminium pot
over 1liter, a stiring rod made of teflon, screws and a screw driver, a electronic
scale, a thermometer, a pair of oven mitten. Apparently the molds and models are
necessary, including the aluminium bin with the inner block, the silicone-rubber
matrix for prostate, the printed pubis model. The materials, as stated, include
Plastileurre® standard, premixed soft and softener for 3 liter respectively. The
whole procedure has two major steps. First, make the frame and prostate; second,
fill up the phantom surroundings.

6.1.2.1 Frame and Prostate Capsule Making

Firstly, we put the pot on the scale and weighed around 800 gram standard mixture
solution while pouring the mixture in the pot. The oven was set to 200 ℃ (It
should be over 160 ℃ but below 250 ℃ considering the polymerization temperature

1IMS (Inorganic Materials Science) Lab in Carré 3rd floor
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is around 160 ℃ and the heating tolerance of silicone matrix is 250 ℃). Then the
small prostate mold was suspended by inserting the needle to its tail, and was put
in the matrix contained by the matrix plexiglass box. The small prostate mold
should not touch the wall and bottom of the inner surface of the matrix. The
matrix container was bounded by heat resisting tapes in case of collapse. The
aluminium bin and the inner metal block as well as the matrix box (with matrix
and small prostate mold) were put into the oven for preheating in case of fast
curdling of polymer.

Secondly, the pot was put on the heating plate that was set to 260 ℃ (In spite of
the polymerization happens at 160 ℃, if the heating temperature is under 200 ℃
the process of polymerization would take too long; while if the temperate is too
high, such as over 300 ℃, the polymer would easily be burned). The polymerization
took approximately 30 minutes. During the heating, the solution was stirred slowly
with a teflon rod to make the material well heated. We put the ventilating duct
right above the pot to exhaust the unpleasant smell from heating the solution. The
standard solution at the beginning was white like milk, and it turned clear as the
heating went on, finally into some clear viscous creamy liquid, like glue.

Thirdly, the preheated aluminium bin, the inner metal block, and matrix box
were taken out onto a cleaning paper. Meanwhile, the pot with polymerized soft
PVC mixture was transferred to the oven with the same temperature. Then the
vacuum was turned on to exhaust the air bubbles in the mixture. At the beginning
of the vacuuming, the bubbles gathered on the surface, and they popped after a
while. The vacuuming took around 1 hour, until there were no obvious bubbles on
the surface. On the other side, the aluminium bin and inner block were put on the
heating plates to keep them warm.

Fourthly, after the vacuuming was done, the aluminium bin was kept on the
plate, the pot was taken out from the oven quickly. Then the solution was poured
into the aluminium bin until the solution was just above the rectum copper model.
The aluminium bin was slanted to let the solution drop along the wall to avoid
introducing air bubbles. After the base part was filled, the inner block was hung at
the correct place and was screwed tight on the wall to keep it from moving during
the pouring and vacuum. Then the frame wall was filled with the PVC mixture.

Finally, the matrix was filled up through the hole on top of matrix with the
standard PVC mixture. Then the filled bin and matrix were put carefully to the
oven for vacuuming around 40 minutes, because some bubbles were generated
during the pouring. At the same time, the pot stayed on the heating plate to
avoid PVC mixture curdling. This vacuuming took less time than before. After
taking out the aluminium bin and matrix, they were filled up again using the rest
materials. The cooling to a room temperature took more than 3 hours.
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6.1.2.2 Inner Prostate Filling

Firstly, after the prostate matrix cooled down, we took out the prostate capsule
with the small mold from the matrix. Because the capsule was wrapping on the
small prostate mold, we used a knife to cut up the top part (close to the tail) with
a small crevice and took the small mold out. Then we put this capsule back to the
matrix and bounded the matrix with taps. The matrix with the capsule was put
into the oven for a short time preheating with around 160 ℃.

Secondly, around 100 grams premixed soft solution together with 60 grams softener
were mixed in the pot. The pot was heated at 260 ℃ on the heating plate until
the mixture became clear. It took about 25 minutes. After the polymerization
completed, we took out the matrix from the oven then vacuumed the pot for around
10 minutes for exhausting the air bubbles. After the vacuuming was finished, we
took out the pot and poured the mixture solution slowly to the cavity of the
prostate capsule to fill it up. Afterwards, we put the capsule back to the oven for
vacuuming another 10 minutes. Then we took it out and waited until it cooled
down.

6.1.2.3 Surroundings Filling

Following a similar procedure, after the aluminium bin and prostate matrix cooled
down, we took out the prostate model and cut off the tail, and also took out the
inner block from the aluminium bin. We detached the walls of the bin for taking
out the inner block more easily. Afterwards, the walls were screwed on to support
the phantom.

Firstly, 600 grams premixed soft solution together with 400 grams softener were
mixed in the pot. The bin and frame were put into the oven for preheating at 180
℃. The pot was put on the heating plate at 260 ℃, and the mixed solution was
stirred. The polymerization took around 25 minutes. After the mixture became
transparent and the temperature in the oven reached over 160 ℃, the bin and frame
were taken out, then we put the pot into oven for vacuuming around 10 minutes.

Secondly, we tilted the bin and poured the solution in the bin slowly along the
frame wall to form the first thin layer. After it cooled down, the bin was tilted in
the opposite side and we poured mixture to form the valley at the bottom. The
cooling procedure took about 15 minutes. And the rest material was put on the
heating plate to keep warm.

Thirdly, the prostate model was put at the correct position in the valley. The
cylinder part of pubis was tapped for fixing on the metal strip. The pubis model
was hung at the correct place and the metal strip was fixed on the wall with
tapes. Then we filled the phantom up with the remaining soft solution. The whole
phantom was kept in the oven and vacuumed for 1 hour. Afterwards, the phantom
was taken out carefully to cool down over night.
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6.1.2.4 Phantom Completion

After the phantom cooled down to room temperature, the tape on the pubis and
the metal strip that hang over the walls were removed. The walls and bottom of
the aluminium bin were screwed off and the gel phantom was taken out. We made
a transparent perspex box to contain the phantom. We added a cover on the top
with a hole that made the cylinder of pubis get through for fixing. The plexiglass
in perineal part was spared for needle insertion. All parts were composed together
with plastic screws to complete the phantom. The constructed phantom is shown
in Figure 6.4. There are some additional remarks on phantom making in Appendix.

Figure 6.4: Constructed phantom

6.2 MRI Setup and Image Acquisition

We brought the constructed phantom to UMC St. Radboud, Radiology department,
and put it in the MRI scanner for acquiring the full 3D images. The 3 Tesla Skyra
Siemens wide-bore MRI scanner was used for the image visualization and acquisition.
We used 3D T2-weighted scans the same as in clinic applications. Table 6.1 shows
the relevant settings in the MRI scanner.

The voxel spacing was chosen under the consideration of the trade off between the
image resolution and the acquisition time. If we want to obtain a more precise image
(e.g. 0.5mm× 0.5mm× 0.5mm), it would take too long to keep the deformation.
But if the resolution is low, the image would be less accurate and perhaps the
deformation would disappear.

The scan was full 3D, and Figure 6.5 shows three example slices in axial, coronal
and sagittal plane respectively. Figure 6.6 shows the corresponding 3D placement
of these slides, where the horizontal plane is the axial plane. The corresponding
coordinates are also shown.
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Table 6.1: MRI Scanner Settings for 3D Image Acquisition

Magnetic Field Strength 3 Tesla
Total Acquisition Time 4 min
Echo Time (TE) / Repetition TIme (TR) 112 ms / 1600 ms
Image Size 192× 192
Voxel Dimensions 1mm× 1mm× 2mm
Slices Thickness 2mm
Image Format Dicom
Patient Position HFS
Number of Slices 60

(a) Axial (b) Coronal (c) Sagittal

Figure 6.5: The example MR Image slices in 3 planes

Figure 6.6: The example of 3D MR Image

69



Chapter 6. Experimental Setup and Implementations

As for the image acquisition, we scheduled 9 directions for inserting the biopsy
gauge needle after discussing with the radiologist and as we realized that the
cancerous tissue could happen to any zone. The 9 insertion directions are: (1)
from caudal (down, inferior) central to head (up, superior) central, (2) from caudal
central to ventral (anterior, frontal), (3) from caudal central to dorsal (posterior,
or back), (4) from caudal central to right (of patient), (5) from caudal central to
left (of patient), (6) from caudal ventral to head central (7) from caudal dorsal to
head central (8) from caudal right to head central, (9) from caudal left to head
central. The schematic figure 6.7 will illustrate these directions.

Figure 6.7: Illustration of needle insertion direction. The numbers are correspondent
to the text above. Blue direction is perpendicular to axial plane, red directions are
in sagittal plane, green directions are in coronal plane, yellow arrows are coordinates
in axial plane.

In addition, we also took two scans without the needle. So there were totally
eleven full 3D images. Actually, these directions are way too less than the clinical
conditions. The selection of insertion positions obeys a uniform distribution, we
intend to include as many cases as possible. Due to the time limitation, only the
eleven images were scanned.

It is also noted that the needle should be held by people during the whole acquisition
time, since the deformations would be gone if the tension is lost. Besides, it was
difficult to acquire a series of images to show the whole fashion of deformation
in time sequence. The reason is once the needle is inserted, the needle will move
slowly further if the tension is held. However the deformation can only happen
when the tip of needle goes into the capsule until most part of the needle is in the
prostate. This whole period will take all the time of acquisition, when only one 3D
image can be obtained.
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6.3 AAM Modeling

After the images were scanned, we extracted the images from the Dicom files using
Matlab. The whole process includes: manual segment shape surface, build the
correspondence and sample the shape surface to get landmarks, build shape and
texture models then synthesize the appearance models, and then use the full 3D
model search and 2D slices based search for testing. The following parts annotate
each course specifically.

6.3.1 Surface Acquisition

First we have to manually segment each image with respect to the shape of prostate.
The manual segmentation was taken slice by slice, where a serial points was labelled
around the contour of prostate and the inner part was masked 1’s and the outside
part was 0’s. The labeling and binary outline are shown in Figure 6.8.

(a) Labeling the contour of
prostate

(b) Binary segmentation of
prostate outline.

Figure 6.8: Slices segmentation for shape acquisition

It is noticed that the voxel size is not equal, so we secondly resized the voxel
size from 1mm× 1mm× 2mm to 1mm× 1mm× 1mm by interpolation in the z
direction. Then the image size, for both binary and the original scanned image,
were transformed to 192× 192× 120. By stacking the binary slices together, we
can reconstruct the 3D surfaces using the marching cube algorithm [70]. Then each
shape was assigned a vertices matrix and triangular faces matrix connecting the
vertices. But the correspondence was not established, so the next phase is building
the correspondence.

6.3.2 Establishing Correspondence

As stated in chapter 4, the correspondence establishment has three phases: first,
parameterizing the reference shape and removing the area distortion and also
parameterizing the rest shapes; second, sampling the landmarks from the reference
parameterization and reference shape, then initializing the correspondence and
propagating the parameterization by sampling the rest images the same as the
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reference; third, optimizing the correspondence with MDL objective functions. We
illustrate each phases separately.

6.3.2.1 Initializing Parameterizations

We arranged the training set in the order as: first two images are scans without
needle, and the third to the eleventh images are scans with nine needle insertion
directions, as section 6.2.2 states with the same label order. Then we chose the
first scan, namely the image without the intervention, as the reference image. The
reference has 13296 vertices and 26588 triangular faces on the surface initially.
We performed the parameterization using the approach in section 4.3.1.1. The
parameterized reference shape and its parameterization are shown in Figure 4.4.
With the same procedure, we parameterized the remaining training images (second
to eleventh). We take 2 examples to show the results, which are caudal central to
left (Figure 6.9(a)) and caudal left to head central (Figure 6.9(b)) respectively. The
same color in the shape surface and parameterization stands for the correspondence.

(a) Image 7 (caudal central to left).

(b) Image 11 (caudal left to central).

Figure 6.9: Original shape surfaces and Initial parameterizations

From Figure 6.9 it can be seen that the initial parameterizations are not area
preserved, and the nodes are clustered near the ‘equator’ in the parameterization.
Besides, the deformations caused by the needle insertion are shown clearly. Then we
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only removed the area distortion in the reference shape (image 1). The result is in
Figure 4.6. We did not remove the areal distortions in the initial parameterization
of other images, but optimized them with respect to the reference in the second
phase.

6.3.2.2 Initializing Correspondence

We firstly sampled the reference image parameterization with uniform sphere nodes
derived from a 4 time subdivisions of an icosahedron. There were 2562 landmarks
and correspondingly, the reference shape surface was also sampled as discussed
in section 4.3.2.1. The results of sampled reference shape surface and sampled
parameterization are shown in Figure 4.9

Next, we used the consistent parameterization to initialize the correspondence and
propagate the sampling and correspondence afterwards. We found the vertices in
all other un-sampled shape surfaces in the training set, which are closest to the
sampled reference shape vertices. This formed the initial correspondence. The
correspondence vertex indices were stored and the corresponding parameterization
nodes with the same indices were extracted to form the objective function, as
represented in section 4.3.2.2. As for the re-parameterization for manipulating the
parameterizations, we chose a rotation adjustment in the longitude values, then
a sigmoid transform and then 50 iterations of symmetric theta transformations
with a fixed width of 0.2 and uniform sphere kernel centers derived from 1 time
subdivision of an icosahedron. The total 42 kernel centers were visited one by
one within one iteration. The whole procedure was processed pairwise, namely we
adjusted the image one by one with respect to the reference. Two examples of the
re-parameterized initial parameterizations are shown in Figure 6.10, which are still
image 7 and 11. The same color labeled the same corresponding vertices between
shape surfaces and parameterizations.

From Figure 6.10 we can see that these re-parameterization are effective to manipu-
late the parameterizations and the results are more area preserved, which are good
for propagating the correspondence next. We used the same sampling as in the
reference to propagate the correspondence between different shape vertices. After
all the shape surfaces were sampled, the initial the correspondence was established
and maintained by the same sampled parameterizations. The sampled shape sur-
faces and parameterizations of two examples are shown in Figure 6.11. This result
shows the established initial correspondence with the same parameterizations. The
shape details were not lost much and the number of landmarks was largely reduced
and consistent.

6.3.2.3 Optimizing Correspondence

Once we obtained the initial correspondence, we started the correspondence op-
timization using the MDL objective function. We defined our MDL objective
function with the full description length, as equation 4.31 represents. We followed
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(a) Image 7 (caudal central to left).

(b) Image 11 (caudal left to central).

Figure 6.10: Original shape surfaces and re-parameterized initial parameterizations
using consistent parameterization.

the suggestions in [86] and had 30 iterations for optimization totally. In the first 15
iterations, we selected the symmetric theta transformations for re-parameterizations
with a fixed width of 0.25 and 18 uniformly distributed sphere kernel centers derived
from a 1-time subdivision of an octahedron . The kernel centers were generated as
Figure 6.12 shows. For the latter 15 iterations, the width started at 0.5 and was
halved every 5 iterations (i.e. 0.5, 0.25, 0.125) and the kernels were increased from
original octahedron vertices every 5 iterations by one more face subdivision (i.e.
8, 18, 66). In each iteration, the ten shape vertices (except the reference) were
optimized successively. For one shape, the kernel centers were selected in turn for
one group-wise evaluation of description length. By optimizing the amplitude in
the symmetric theta transformation with respect to minimize the full description
length, the correspondence was optimized.

After the correspondence optimization, we had the well labelled shape landmarks
in each image for modeling the AAM. The correspondence optimized shape vertices
and parameterizations of two examples (image 7 and 11) are shown in Figure 6.13.
The correspondence optimized shapes show tidier distributions of the vertices mesh
lines, compared with the ones after initial correspondence in Figure 6.11.
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(a) Image 7 (caudal central to left).

(b) Image 11 (caudal left to central).

Figure 6.11: Sampled shape surfaces and sampled uniform parameterizations.

Figure 6.12: The derivation of uniform kernel center points from an octahedron
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(a) Image 7 (caudal central to left).

(b) Image 11 (caudal left to central).

Figure 6.13: Optimized shape landmarks and parameterizations.

6.3.3 Building the Shape Model

Once we obtained the shape vertices with good correspondence we started to model
the shape variance1. It includes the alignment of shape vertices and building the
PDM with respect to the aligned shape landmarks.

6.3.3.1 Aligning the Shapes

We chose the unit quaternions based Procrustes alignment and set the reference
as the mean shape at first. We followed the steps interpreted in section 3.2.1.1,
and implemented 2 iterations for getting the mean shape and then obtained the
aligned shape points set. The shape vertices before alignment and after alignment
are shown in Figure 6.14. Each shape is assigned with one color, and we display
them in a common coordinate space. It can be seen that the aligned shapes have
more overlaps (darker colors), which means the shape variations were minimized
by dismissing the influence from scaling, rotation and translation.

1D. Kroon, ASM and AAM. URL: http://www.mathworks.com/matlabcentral/fileexchange/26706-
active-shape-model-asm-and-active-appearance-model-aam
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Figure 6.14: Left: 11 Shape surfaces before alignment. Right: 11 Shape surfaces
after alignment.

6.3.3.2 Modeling Shape Variances

We calculated the eigenvectors using the SVD approach [102] instead of calculating
the covariance matrix first as stated in section 3.2.1.2. Specifically, we stored
the centered shape vectors (i.e., subtract each the aligned shape vector with the
mean shape vector of all aligned shape vectors) in a 7686× 11 matrix X, where
7686 = 2562 × 3 is 3 times the landmark number, and 11 represents 11 shapes.
Neither calculating XTX nor XXT , we directly used SVD which held the equation
X = USVT . Then by mathematical derivation, it has been proven that the column
vectors of U are eigenvectors of the covariance matrix XXT and the square of
diagonal elements of S are eigenvalues. The eigenvectors were in a descending
order. We picked the 99% variance significance resulting in 10 modes. Figure 6.15
shows the first 3 modes as the shape parameter varies from −3

√
λs to 3

√
λs, where

λs is the corresponding eigenvalue. From the variations we can see the different
modes control different deformations. After the PDM was built, we store the
mean shape vectors, the aligned shape vectors, eigenvectors and eigenvalues, mean
transformation factors (scaling, rotation and translation).

6.3.4 Building Texture Model

We set the normalized mean aligned shape in 3 dimensions to mapped base points,
where the texture size was set to 60 × 60 × 60 and a margin of 5 voxels around
the edge to give the voxel template. The voxel template was from the mean shape
vector. Figure 6.16 shows the representation of mean shape vector, the voxel
template, and three example slices of voxel template in three planes.

At the same time, we divided the mean shape mesh into the tetrahedrons for
interpolating the corresponding voxels from each image. The tetrahedrons are
shown in Figure 6.17

From the figure it is clear that some parts of the background were also included
in the tetrahedrons. As a result, in the image warping from each shape to the
mapped base points, the included background voxels were removed by masking
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Figure 6.15: The first 3 modes of variation of ±3
√
λs of the produced shape model

(a) Mean shape and Voxel template

(b) Voxel template slices

Figure 6.16: Voxel Template
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Figure 6.17: The tetrahedrons constructed from the surface mesh of mean shape

using the voxel template. Three examples slices in three planes of a warped image
are shown in Figure 6.18, which in turn are image 1(reference), 7 and 11 respectively.

Only the regions of the voxel template were extracted and vectorized. Then they
were normalized using the simple approach introduced in section 3.2.2.2. Similarly,
the PDM was employed as well in texture model.

When both shape and texture models were built, we combined them together
to form the appearance model, as introduced in section 3.2.3. In calculating the
weight matrix, we chose to give a displacement in shape model parameter to find
out the displacement of intensity, and use the mean of accumulated RMS to form
the weight matrix diagonal element.

6.4 AAM Search Testing

The appearance model was built for AAM search. Before we implemented a test
image, we built the parameter update model to give the linear relationship between
parameter update and intensity displacement. Following the context in section
3.3.1, we used the numeric differentiation method to find the linear transform
matrix A. Then we implemented the model in AAM fitting. For a same testing
image, we use a 50 iterations full 3D search and a 50 iterations regional slices based
search respectively. There were only 3 orthogonal slices extracted from the original
image for testing, which were parallel to three MR planes and located in the place
where the needle was inserted. In our implementation, we not only placed the three
slices in their correct position, but also replicated the each slice twice and then put
the two copies at two sides parallel to the original one with only one voxel distance.
An illustration is shown in 6.19. 1

From the illustration it can be seen that the intersection point of these slices
was located in the position where the needle was inserted. It is reasonable to im-

1The left one states the actual appearance, and the right one increases the intervals between
the parallel placed replicated slices only for annotating the relative position.
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Figure 6.18: The warped image texture after voxel template casting. Left: Axial.
Middle: Sagittal. Right: Coronal. First row: Image 1. Second row: Image 7. Third
row: Image 11

Figure 6.19: The example of 3 slices placement for 2D searching. Left: Actual
placement. Right: Aggrandized slices intervals for illustration
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plement the three slices like this since the slices are always for visualizing the needle.

The testing was validated using 2 schemes, leave-all-in and leave-one-out scheme.
In the leave-all-in scheme, we use all the images for training and use the two
approaches for segmenting each of them individually. This scheme is mainly for
validating the algorithm. The leave-one-out scheme is mainly for testing the perfor-
mance of these two approaches, where one image was left for testing and all others
were for training. Therefore, we can perform both of the schemes for 11 folds.
Figure 6.20 shows two examples of the segmented results using full 3D searching
and 2D fitting by leave-all-in scheme. Figure 6.21 shows the segmented result using
both approaches by leave-one-out scheme. The testing image in the example is
image 7. From the geometric result we can see the leave-all-in validation gave a
more similar segmentation compared with the original shape.

Figure 6.20: The segmentation of image 7 by leave all in validation. Left: Using
full 3D AAM search. Right: Using slices based 2D regional AAM search

We also calculated the Dice Similarity Coefficient (DSC), the Absolute Distance
(AD), its mean (MAD), and the image distance map to evaluate the performance
of model based segmentation with 3D standard AAM search and 2D slices based
AAM search. The DSC equals to two times the amount of overlapping voxels
between the manual segmentation and the results from AAM search, divided by the
sum of the amount of voxels in both the manual segmentation and the searching
result. The AD, MAD and distance map are concerned with the Euclidean distance
between the segmented shape surfaces and the original the surfaces. We assume
the correspondence have been established then the surface distance can then be
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Figure 6.21: The segmentation of image 7 by leave one out validation. Left: Using
full 3D AAM search. Right: Using slices based 2D regional AAM search

measured using corresponded vertices. These metrics would be discussed in next
chapter for evaluation.

After the segmentation using 2D slides AAM search, we can reconstruct the
3D prostate representation using the segmented surface and the texture statistics.
Normally if the full 3D testing image is available, the texture information can
be segmented using the obtained shape surface. As a result, there is no point
reconstructing the texture information from the model. However, if we only have
3 slices available, then the prostate tracking should all be based on the model,
and the texture can be rebuilt. Two examples of the reconstructed texture slices
are shown in Figure 6.22, which are from the reconstructed texture model of
image 7 in leave-all-in scheme and leave-one-out scheme respectively using 2D
slices based AAM search. We can construct the 3D representation by stacking
the slices together. Figure 6.23 shows three arbitrary slices constructed in 3D space.

We calculated the mean texture difference for evaluation of reconstructed textures.
The texture distance is the absolute Euclidian distance between two texture maps,
which are both segmented by a same surface. The surfaces we used is from the 2D
slices based AAM search in both leave-all-in scheme and leave-one-out scheme. We
masked the original 3D texture with these surfaces to get the standard texture,
and calculate the absolute texture difference between this standard one and the
reconstructed one from AAM. The evaluation would be discussed in next chapter.
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(a) Texture reconstruction in leave-all-in scheme.

(b) Texture reconstruction in leave-one-out scheme

Figure 6.22: The reconstruction of image 7 by slices based AAM search. Left:
Axial plane. Middle: Coronal plane. RIght: Sagittal plane

(a) 3D reconstruction in leave-all-in scheme.

(b) 3D reconstruction in leave-one-out scheme.

Figure 6.23: The 3D reconstruction of image 7 by slices based AAM search.
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Chapter 7

Results Evaluation and
Discussion

In this chapter we will give the results with evaluations of the implementation from
the last chapter. Considering the objectives, we mainly evaluate three issues: the
performance of the phantom to mimic the biopsy; the performance of AAM to
represent the geometric changes; the segmentation accuracy for both full 3D model
search and the 2D slices based model search.

7.1 Phantom Property

In the experiments, we have scanned the 3D images. From the results, we can
evaluate the phantom bio-mechanical property in the needle insertion and the
visibility and compatibility in MRI, From the T2-weighted scans, such as Figure
6.5, we can see the structure of the phantom clearly, where the darker parts are
the frame, rectum, pubis and prostate capsule that have a higher stiffness. The
Lighter parts are the soft tissues and the inner prostate. Besides, we did not see
obvious artifacts so that the visibility is good and compatible with MRI. There
are some parts with much lighter part in the surrounding soft tissues resulting
from some inappropriate proportion of ingredients such as a higher percentage of
softener. However, it would not affect much so that the experiments were all based
on this phantom.

We have also examined the bio-mechanical property, namely checking whether there
are some visible deformation and motions and if any whether they are comparable
with the practical observations. For viewing a real time prostate mobility, we used
an interactive, real-time, multi-slice TrueFISP sequences (BEAT IRTTT) with an
Interactive Front End (IFE) prototype, which is a dedicated interactive navigation
system in interventional MRI. Figure 7.1 shows two instances before and after the
needle was inserted into the prostate. The biopsy needle was inserted perpendicular
to the axial plane, approximately.

Because we used a faster sequence, though it was T2-weighted scan, the artifacts
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Figure 7.1: The real time slices in sagittal (Left), coronal (Middle), and axial
(Right) planes before (Upper) the insertion and after (Lower) the insertion

from the air bubbles in the phantom, the needle, the outer plexiglass and probably
the pubic bone are clear in these slices. Actually, in the biopsy, this sequence would
be implemented, but for the 3D image acquisition, the previous one will be employed.

A clear deformation in the position can be seen where the needle was inserted.
Also, in the opposite side (In this example near the prostate base, both anterior
and posterior parts) there was a slight deformation. The total translation is not
obvious, but the displacement in the insertion point is obvious. We quantitively
measured the displacement using the segmented shape vertices, the displacement
statistic curve, the mean and maximum displacements are shown in Figure 7.2
and Tabel 7.1 respectively. The average displacements are a little bit less than the
proposed 3− 10 mm in both the real time patient radiotherapy [101] and Hungr’s
phantom [39], but comparable. Besides, it fits the maximum displacement, which
makes the phantom sufficient. This may result from the surrounding material is
not soft enough. So we suggest a softer surrounding part to fill the phantom.

Table 7.1: Maximum displacement

Image 3 4 5 6 7 8 9 10 11

Maximum(mm) 4.97 5.01 6.67 6.67 7.78 4.96 5.90 6.89 5.84
Mean(mm) 1.80 1.51 2.01 2.93 3.25 1.89 1.57 1.66 1.65
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Figure 7.2: The displacement between the cases with and without intervention
(reference shape).

7.2 Correspondence

In chapter 6 we have learnt the correspondence problem is important to AAM
performance. We used the parameterization based approach for establishing the
correspondence. From the principles in chapter 6, it can be seen that the correspon-
dence is determined by the topology of parameterization in the sampling sphere. A
significant procedure is to manipulate the mesh in the original parameterization
more area preserving and similar with each other. We chose a simple rotation
followed by sigmoid transformation and an iterative symmetric theta transforma-
tion to achieve this. The objective function measuring the sum squared Euclidean
distances of corresponding vertices can be rapidly minimized from over 600 to 50
and the iterative procedure can further minimize it. If we only apply the Cauchy
kernel based re-parameterization, the process would take long and hard to get
minimized once it is under 100. The examples of the resulting sampled shape and
its original parameterization in this case are shown in Figure 7.3.

Figure 7.3: Sampled shape vertices and initial parameterizations of image 11 with
labelled sampling points, when sigmoid transformation is not applied in consistent
parameterization.
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From the example we can see that the sampled shape vertices is clustered on the
top (and bottom), which is not the case in the reference. In this condition, the
correspondence is not well built, and the there would be illegal shapes as varying the
shape parameters. Figure 7.4 shows the correspondence comparison between the
cases of single cauchy kernel re-parameterization and multiple re-parameterizations
in the consistent parameterizations. This correspondence is between reference and
image 11.

Figure 7.4: Left: Correspondence between reference image and image 11 using
single re-parameterizaiton. Right: Correspondence between reference image and
image 11 using single re-parameterizaitons.

In Figure 7.4, the short lines connect the corresponding points. In the left figure it
clearly shows the bad correspondence concentrating in the center, namely the top
and bottom of the prostate shape. In the right one, there is no such a phenomenon.

The correspondence was optimized using the MDL objective functions. We used
a uniform kernel centers and a fixed width for each iteration. The description
length was minimized gradually, and the correspondence was optimized as well.
Figure 7.5 shows the MDL for each iterations. We totally implemented 30 iterations.

Figure 7.5: The Minimum description length in each iteration.
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Figure 7.6 shows the correspondence among the training set. The reference shape
and image 7 and 11 are taken as examples and the corresponding points are labeled
with same colors.

Figure 7.6: The shape vertices correspondence across the data set. Left: Image
1(reference shape). Middle: Image 7. Right: Image 11

As proposed by Davies et al. [86], it is more effective by optimizing one kernel in
turn since the optimization by controlling a bunch of kernel re-parameterizaiton
is difficult and inefficient. This optimization approach has a big drawback that
running time is long. The optimization for 11 cases with 30 iterations would take
over days and nights. This is also the reason why some researchers preferred a
covariance matrix objective function or an approximate MDL objective function.
The recommendations in [79] suggest a gradient descent optimization that is com-
putational readily. Considering the process is offline so that the computational
problem would not be the biggest bottleneck. However if the approach would
considerably speed up the optimization with respect to the same or better result,
it would be quite preferred.

Another problem we have found is that the MDL based optimization performs
worse when some vertices are gathered as clusters. As we have discussed, when
the initialization of correspondence fails to manipulate parameterization well dis-
tributing on the sphere, there would be some parts, such as the top and bottom,
clustering with shape vertices. Once this happens, it will not be a unique case but
spread to other shapes. In this condition the MDL optimization tends to gather the
points much more to make the description length become shorter. Obviously this
is not what we want. This happens more often when the shape is not spherically
topological. So we can conclude that the MDL based optimization is very sensitive
to the clustering of shape vertices, and it is more suitable for the spherical shaped
objects, such as the prostate.

7.3 Shape Segmentation

By implementing AAM trained with these data set, the system can learn the shape
and texture variance and segment the similar object given a new image. As stated in
the last chapter, we used two approaches for segmentation: the full 3D AAM search
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and three slices based AAM search. The leave-all-in and leave-one-out scheme were
also applied. The evaluation would be conducted for the two approaches in each
scheme in turn.

We used the metrics DSC, AD, MAD and distance map for results evaluation,
which have been employed in MICCAI 2012. The DSC should range from zero to
one, where zero represents no overlaps between the original segmentation (Manual
segmentation) and the model based segmentation. In previous research, the mean
DSC ranges from 0.66 to 0.88 [22, 23, 25, 103, 104, 105] using MRI modality. The
DSCs in the leave-all-in scheme and leave-one-out scheme are listed in Table 7.2
for each image. The mean and standard deviation were calculated as well.

Table 7.2: DSCs for each image evaluated for segmentation using full 3D AAM
fitting and 2D AAM fitting.

Leave-All-In Leave-One-Out
Image DSC using DSC using DSC using DSC using

3D Fitting 2D Fitting 3D Fitting 2D Fitting

1 0.88978 0.8909 0.89031 0.89127
2 0.88842 0.89188 0.85979 0.88027
3 0.88703 0.88598 0.88888 0.88654
4 0.87639 0.84166 0.86736 0.84762
5 0.88531 0.87647 0.86264 0.89505
6 0.886 0.87789 0.87541 0.84915
7 0.88712 0.87331 0.88156 0.86386
8 0.88772 0.89104 0.88446 0.88397
9 0.88688 0.88488 0.88469 0.88225
10 0.88671 0.88563 0.88228 0.87536
11 0.88551 0.88817 0.87738 0.87898

Mean 0.8861 0.8807 0.8777 0.8758
Median 0.8869 0.8856 0.8816 0.8803
SD 0.0035 0.0144 0.0104 0.0158

From the table we can see the leave-all-in scheme generally performs better than
the leave-one-out. This is proper since the system has known the testing cases
in leave-all-in scheme, while it has not in leave one out scheme. Besides, it is
noticeable that the DSC in this data set is high, however, it does not represent
that the segmentation is accurate. In this phantom experiment we have noted that
the shape deformation and displacement are minor, though visible. In addition, all
the images are generated from the same model, which means they do not differ
much in shape. As a result, even if the AAM fails and as such as a mean shape
is given, the DSC could also be high enough. Therefore it can be concluded that
DSC cannot be a significant factor of evaluating the result.

The absolute distances were calculated based on the corresponding shape ver-
tices pairwise. We averaged the Euclidian distances over all the vertices for each
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image and obtained each absolute distance. We calculated the mean over the 11
images and got the MAD. Table 7.3 shows the the ADs and MADs for both the
3D fitting and 2D fitting in each scheme.

Table 7.3: ADs and MADs for each image evaluated for segmentation using full 3D
AAM fitting and 2D AAM fitting. (Unit:mm)

Leave-All-In Leave-One-Out
Image AD using AD using AD using AD using

3D Fitting 2D Fitting 3D Fitting 2D Fitting

1 1.53 1.56 1.56 1.62
2 5.78×10−6 0.46 1.41 1.41
3 6.16×10−8 0.408 0.876 1.21
4 3.98×10−5 1.29 1.67 2.02
5 2.28×10−5 0.415 2.22 1.41
6 3.26×10−6 0.55 1.46 2.19
7 4.16×10−5 0.683 2.74 5
8 2.38×10−7 0.514 1.06 1.44
9 6.44×10−5 0.247 0.952 1.16
10 2.71×10−6 0.579 0.834 0.8
11 1.05×10−6 0.446 0.865 1.38

Mean 0.139 0.65 1.42 1.79
SD 0.461 0.403 0.613 1.13

From this table we can see more clearly that the 3D AAM search was valid on
most condition, and the 2D slices based AAM fitting provided an acceptable result
in leave-all-in scheme, which shows the feasibility of application in model searching.
In leave-one-out scheme, both the two model searching approaches performed
equivalent results, which are acceptable but worse than the results in leave-all-in
validation. In [23] and [103], the MAD are 1.44(±0.48)mm and 1.32(±1.53)mm;
wheres in [104] and [106], the MAD are 3.97(±2.74)mm and 2.41mm, and even
in [104] it is indicated that the traditional statistical shape model based method
gave a 4.05(±2.74)mm of MAD. In this case both of 3D fitting and slices based 2D
fitting have shown satisfying results.

Nevertheless, we care the distances in different regions in the prostate much
more, since we aim at representing the 3D deformation by model searching. Hence
we cannot only examine the AD and MAD, but should also examine the surface
error, namely the vertex distance for each case. We have examined the distance
map in the leave one out scheme for both approaches (3D and 2D fittings). Figure
7.7 shows the distance map of image 6 in leave-all-in scheme (first row) and in
leave-one-out scheme (second row). Figure 7.8 shows the same but for image 7. We
can see that the results in leave-all-in scheme performed much better with respect
to the vertex distance map, from which the deformations in the position of needle
insertion were detected and the errors were low. Whereas for the leave-one-out
scheme, with respect to image 6 and 7, the deformation has not been detected
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Figure 7.7: The distance map of image 6.

well. An interesting phenomenon is that the segmentations of image 7 using both
approaches resemble the case image 11 which has shown many times as example in
previous chapters. We infer this happened because the image 7 and 11 are similar.
As it is known, AAM is a statistical model so it always fits the object using the
learnt information. When image 7 was for testing in leave-one-out scheme, image 11
was used for training, therefore, an image 11-like result was produced. As for the
image 6, the shape is more unique, so the learnt information cannot give the correct
model parameters to construct the model. Also this result does not resemble any
one in the training set. We have looked through all of our results in both schemes,
this inference can be validated. In summary, to avoid the problem happened in
leave-one-out scheme, the training set should be large enough to cover most of the
situations. A major problem in our experiment is the training set is too small,
which is insufficient for AAM to learn the deformation.

Another abnormal result is the segmentation from image 1. Normally the leave-all-
in scheme, at least for full 3D AAM search, can give a good segmentation. But
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Figure 7.8: The distance map of image 7.

here the AD is higher than other results. We think it is because of the problem in
correspondence. We have assumed that the correspondence was well established.
However, we find that the correspondence between the shapes except the reference
is much better than between the reference shape and other shapes. Due to our
optimization on the shapes except the reference, the correspondence would be
better for those shapes of which the vertices can be freely manipulated. However
the vertices and parameters of reference shape were fixed during the initialization
and optimizaiton, the correspondence would be worse between other shapes and
the reference. Thus the correspondence problem still existed. Although, this would
not be a big problem since the segmentation can be accurate which can be seen
from the high DSC of reference shape. This problem can be minimized by enlarging
the data set and optimizing the correspondence further.

We have mentioned the positions of the slices taken for testing are at the the
needle insertion point. Although it satisfies the real condition in biopsy, we have
also verified that this positions are optimum since the most shape and texture
difference information can be included, which is of significance for 2D fitting. We
tested the other positions such as in the middle of each axis and so forth, even the
leave-all-in validation failed to get the appropriate segmentation, which led to a
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more general result, like a mean shape. In fact, the slices are not always parallel to
the MRI planes. Mostly they will be orthogonal to each other and the needle lies
in the intersectional line. Actually, the slice which is perpendicular to the needle
will not contribute much to the deformation information, so that it can be placed
in the middle or near the needle. No matter which slices are used, the essence is to
include the most deformed part.

One more notice is the replication of these three slides and the mean texture
background were for getting more realistic intensities at the positions of the given
slices. From chapter 3, it is known that the intensity in the corresponding position
is obtained from interpolation. If there are only three slides and the background
is black, the actual intensities extracted for comparison with the modeled ones
would be deeply influenced by the background. Therefore we chose to use a mean
intensity map for filling the background of the testing image. Apart from that, only
three slides are insufficient to give ‘real’ information, so we supposed the texture in
a very short range is similar. Thus the copies of the original slides can play the
role of neighbor slides. It was proven that this implementation worked better than
either using only black background or using only three slices in the 2D fitting.

To summarize, the 2D slices based AAM search is feasible for the segmenta-
tion. Although it is worse than the full 3D fitting, the results are acceptable. As
the training set becomes bigger, more possible cases can be included, which can
make the results in leave-one-out scheme tend to the leave-all-in validation.

7.4 Texture Reconstruction

As the segmentations were taken, the corresponding texture information can also
be obtained. It is meaningless to evaluate the texture obtained from the full 3D
AAM search, since the texture information in the testing data must be available if
the image can be searched in 3D space. Therefore we only discuss the reconstructed
textures using the slides based AAM fitting, in terms of both leave-all-in scheme
and leave-one-out scheme. We calculate the mean absolute offset between the
textures masked with the same shape segmentation to evaluate the gray level
difference. Table 7.4 shows the mean difference and standard deviation for each
testing image in each scheme.

From the result we see that all the mean texture differences are small and the
leave-one-out scheme shows higher mean differences in most cases. Since the seg-
mentations in the leave-one-out scheme are not as good as the leave-all-in validation,
there are more texture variation. The intensity differences between the results
validate the remarks on the segmentation performance. To be more specific for
the evaluation of reconstructed texture, we examined the texture difference map
of both the slice position where the testing slices were given and the slices in
other positions. Figure 7.9 shows an comparison with the texture map in different
schemes at different positions. We picked image 7 as example, and used the 2D
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Table 7.4: Texture difference for each image evaluated for segmentation by leave-
all-in validation and leave-one-out validation.

Leave-All-In Leave-One-Out
Image Mean SD Mean SD

1 0.0013027 0.024487 0.0074165 0.065187
2 0.0013041 0.025069 0.0073844 0.065339
3 0.0012416 0.024215 0.0074348 0.064994
4 0.0012249 0.01972 0.0068594 0.062985
5 0.0012696 0.022429 0.0074653 0.065527
6 0.001338 0.023468 0.0071104 0.064822
7 0.0013806 0.023875 0.0070439 0.063589
8 0.0013267 0.025 0.0075215 0.06588
9 0.0013628 0.024846 0.0073075 0.064168
10 0.00148 0.025602 0.007319 0.064559
11 0.0013803 0.025925 0.0074865 0.065672

Mean 0.0013 0.0241 0.0073 0.0648
SD 0.0001 0.0017 0.0002 0.0009

slices based fitting. It shows the reconstructed texture slices and the original
texture using the masks from shape segmentations at axial 54th slice and 70th slice
respectively. The texture difference maps are shown as well.

It can be noted that the reconstructed textures have a better resemblance for
leave-all-in scheme and the most different parts are always near the contours. The
slices in the position of the given slices have a lower texture difference than the
slices in other places. However, most of the results show the reconstruction of
texture using the 2D fitting is feasible and comparable to the results of the 3D
searching.
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Figure 7.9: The comparison between the reconstructed textures and original ones.
z=54 is the position of given image slices for segmentation, and z=70 has not been
given. In the first two columns, black is 0 and white is 1, and in the last column 0
is grey
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Chapter 8

Conclusion and
Recommendations

8.1 Summary

In the previous chapters we have introduced the project background, problems
and goals. By summarizing the previous works we put forward the problems
and objectives in the project. We finally decided to use an anthropomorphic
deformable prostate phantom to simulate the biopsy for acquiring the 3D images
for training, and use 3D AAM for tracking the prostate in the biopsy only using
the 2D slices based AAM search. For AAM specifications, we reviewed the basics
about alignments, shape and texture variance statistics. Then, we explained the
standard AAM search in detail. Based on the standard approach and the previous
knowledge we proposed the approach for AAM search relying on 3 slices. We have
implemented all of these, and obtained a satisfying prostate phantom and a reliable
AAM training system. We have applied the leave-all-in and leave-one-out schemes
for validation of the AAM system and evaluation of our proposed approach. By
showing the segmentation and reconstruction results with quantitive evaluations
we gave our experimental conclusions. Also, for some abnormal observations and
unsatisfying results we have given the possible explanations and suggestions.

8.2 Remarks

As in chapter 1, we have stated the problems and given the research questions
and objectives. Now we examine whether we have achieved the objectives in
our experiments and implementations. Firstly, we made the anthropomorphic
prostate phantom with soft PVC, which could give the phantom sufficient elastic
deformations during the intervention. With different concentrations, the phantom
has different bio-mechanical properties in different parts. The prostate model and
pubis model were made based on real patient MR segmentations and CT scans
and the relative positions were determined under the doctor’s suggestions. By
examining the MR images, we concluded that the T2-weight scans showed the good
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visibility and MR compatibility. In both the BEAT IRTTT sequence and full 3D
sequence the deformations were obvious and the displacements were minor. The
motion under intervention was clear in the real time sequence. The data resolution
and acquisition time were acceptable. The collected MR images can be easily
implemented for 3D image processing. By doing all of these, the objective ‘Make an
anthropomorphic deformable prostate phantom to simulate prostate motion in needle
intervention and collect MR image data with respect to prostate deformations.’ is
accomplished.

Secondly, in terms of the other objective, we built the statistic data set using
multi-direction needle insertions. For each image, shape and texture informa-
tion was collected by a manual shape segmentation. By means of a spherical
parameterization based MDL group-wise correspondence optimization, we built
the shape data variance statistic model using PCA. With a 3D image warping
method the texture of different scans can be associated and modeled statistically.
The active appearance model can be established by combining the shape model
and the texture model. We improved the standard model search approach which
conventionally uses 3D image for shape and texture segmentation, with respect to
three orthogonal slices that contain more information of shape deformations. By
means of searching the intensities on these 2D slices, the parameters for adjusting
the shape, transformation, and modeled intensities were updated, until the differ-
ence between modeled intensity and the searched intensities were minimized. We
used the leave-all-in method for validation and it proved the 2D slices based AAM
fitting is convergent and the expected shape and texture can be generated with
a small acceptable error distance. Though in the leave-one-out verification, the
performance was not as good as that in leave-all-in scheme. Therefore, the objective
‘build active appearance models using the collected data and segment the prostate by
means of three orthogonal 3D slices based model search’ is not completely achieved.
However, the main problem is that the data set is too small for the AAM system to
learn most of the shape and texture variations. The verification can be developed
using more data set such as building a new phantom and choosing more practical
insertion points to collect the data as many as possible. We can anticipate the
segmentation results would be better with more training images presence.

Now we will see with these mostly achieved objectives, whether the research
questions can be answered.

1 Is it feasible to learn the prostate deformation and motion knowledge in a 3D
space?

We planned to use the prostate phantom to simulate the possible motions in the
MR guided intervention and indeed we have seen a satisfying dynamic property
in the MRI based intervention. This observation stimulated us to aim at learning
the rules of motion and deformation of a general prostate. For the sake of
making the shape more representative, we designed the prostate shape from
a real case. The multi-direction needle insertions were designed for including
most of the cases. To learn the prostate deformation and the motion in the
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biopsy, we want to generalize the situation from the phantom to the real case.
However, what we have is the AAM trained from only a phantom and the limited
experimental insertions. In consequence, the obtained statistical models worked
well with the phantom, but could not be applicable in the real case. There are
several reasons for this. First, PCA extracts the principal axes that represents
the most shape point variance. But the shape, though, is almost the same
(because all the shapes are from the same phantom), the correspondence cannot
be perfect since the image registration approach could be problematic and the
segmentation for each image was done manually which always has a huge amount
of deviated labeling. When the shape points difference in the deformed part
has an equivalent magnitude with the variation in other points caused by false
manual segmentation, the principal components for the deformation would be
sinked in the false shape variations. In this case, if we apply the shape principal
components to the real case, the generated shape would be problematic. Another
problem is that the texture pattern of the phantom is way too much different
with the MRI scan of male pelvis. In conclusion, the motion and deformation
were simulated, and the shape variance of phantom could be learnt if the noise
can be neglected.

2 Is it feasible to segment the prostate based on three orthogonal slices in a 3D MR
environment?

As we discussed above, we have implemented the 2D slices based AAM search
for segmenting the shape and texture in 3D space. The leave-all-in validation
has proven the feasibility of prostate segmentation depending on the 3D AAM
training and 2D fitting. However, the reliability of this approach has not been
verified for the leave-one-out scheme. As a result, we need to collect sufficient
training data set that has a precise manual segmentation and well establish the
shape points correspondence. Another problem is the slices for testing were
orthogonal and parallel to the three MR planes (axial, sagittal and coronal).
While in the biopsy implementation, it could not be absolute orthogonal and
also not parallel to the three planes. Theoretically this problem can be solved as
long as the slices include most of the deformable part and the AAM system is
precisely employed, which requires the phantom to be simulated the deformation
correctly. Moreover, when we compare the 3D T2-weighted MR images with the
image slices from BEAT IRTTT sequence, we can see a lot of differences mainly
in intensities. Because the real time sequence is very fast, more artifacts could
be observed which can significantly influence the phantom image quality. This
would lead to a bad model search with problematic intensities. In fact, in human
tissue there would only be the texture difference between the intensities. But
for the phantom, since it’s hard to get rid off all the air bubbles so the artifact
could be a problem in a faster sequence. In summary, prostate segmentation
depending on three orthogonal slices is feasible, but for the practical verifications
it requires more work.

In short, we have used the phantom to mimic the motion of prostate in biopsy,
and tested the deformation by means of using AAM modeling. We successfully
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reconstructed the 3D representation with the aid of three orthogonal slices. For a
generalization from the phantom to the real case, the current work cannot guarantee
a good performance.

8.3 Recommendations

According to the possible problems, we give our suggestions for approaching to our
objectives further and answering the research questions thoroughly. Also, these
could be the future works.

With respect to the intensity differences in the 3D data and the real time slices, a
bubble-less phantom is required. This could be achieved by either advancing the
fabrication art, or developing a new material. In addition, the gray level difference
can be found by some intensity transformation or normalization. Moreover, the
surrounding part should be a little bit softer to ensure a range of displacement.

As for the generalization from the phantom case to the real case, we should
figure out the general principal axes for only shape deformations, which, in other
words, aims at minimizing the influence from the shape correspondence problem
on the AAM. There are mainly two aspects considering this problem as stated in
last section. Firstly, due to a high gray level contrast between the capsule and
the surrounding tissue in the phantom, we could find out an automatic way of
segmenting the contour of prostate instead of manual slices based segmentation,
such as using canny edge detector. This application would highly decrease the
error in some blurred part, where it is likely to cause a subjective error in placing
the contour points. Secondly, the descending gradient MDL correspondence opti-
mization can be employed for a faster convergence, or use an alternative approach
for correspondence establishment such as shape context registration. No matter
which approach is used, the shape variance in undeformed parts must be minimized
extremely.

Furthermore, a more comprehensive experiment should be setup. Developing
more directions for needle insertion could lead to an expectable improvement. Not
only differing in the needle positions, but also set up the multiple force experiments.
Then the training set can become larger for leave-one-out validation. On the basis of
some researches (e.g.[107]), the mechanical property and the prostate displacement
or deformation have been related for prediction. Therefore it is possible to measure
the relationship between the deformation and the force in the needle, and the
Young’s modulus of the phantom quantitively. Initially, we planed to build the
dynamic AAM for one step forward predicting the deformed prostate shape and
texture. However, as it was discussed, the motion of prostate during the 3D data
acquisition is difficult. It is preferable to figure out a way of capturing the motion in
3D scans, since it will bring a lot of advantages. For instance, firstly it is possible to
implement the prediction such as using Kalman filter which has been employed by
statistical shape models (e.g. [108]) or using the active appearance motion models
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(e.g.[109]). Secondly, the prediction can also be helpful when combined with the
model search methods. The proposed 2D fitting is still based on the standard AAM
search. But we can imagine that the insertion points are always near the apex of
prostate, which allows us to build a deformation position probability model. These
probabilities could help with the initialization of model fitting, such as by means of
a random forest regression voting mechanism [110], which could be more accurate
than the standard approach.

Moreover, the suitability of the PCA in AAM for our task should be examined fur-
ther. As we all know, the deformations are caused by the needle insertion, namely
the external forces. As a result, the deformations could not suffice a Gaussian
distribution, which means PCA could not give an optimum modeling. Former
studies have shown some statistics of the prostate displacement but they are rarely
summarized into some statistical models. From some results we sometimes can see
an approximate Rice distribution instead of the Gaussian. In this case, we could
also try to implemented the ICA instead of PCA in AAM modeling.

Finally, it is always a good option to verify the system using the real cases,
namely the image slices from patients. Considering the lack of prostate textures in
the phantom, the implementation of real cases would be more desirable.

Due to the limitation in time, we cannot implement these for testing. For the
further research, reviewing and following these recommendations would be a good
start.
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Appendix A

Phantom Information

A.1 Image Data for Prostate and Pubis Making

Table A.1: Segmented prostate image information

Specimen label 0 1 2 3 4 5 6 7 8 9

Pixel spacing 6 6 6.25 6.25 6.25 6.25 6 6.25 6.25 6.25
(×0.1mm)

Spacing between 4 4 3.6 3.6 3.6 3.6 4 3.6 3.6 3.6
slices (mm)

Slice number 15 15 20 20 20 20 15 20 24 20
for segmentation

Slice number 14 13 9 13 17 14 14 14 18 16
finally used

Volume (cc) 48.9 52.2 16.6 45.5 62.9 47.1 109.7 80.3 73.2 73.6

Table A.2: Abdominal tomography image information

Specimen label q x xx xxx y yy z zz zzz

Pixel spacing 7.23 7.81 7.82 7.422 7.422 7.82 9.10 7.813 7.227
(×0.1mm)

Spacing between 0.8 0.6 0.8 0.7 0.8 0.8 3 0.8 0.7
slices (mm)

Slice number 82 82 82 82 82 82 20 82 82
for segmentation

Slice number 42 67 42 59 42 42 14 42 59
finally used
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Chapter A. Phantom Information

A.2 Phantom Components Position Statistics

Table A.3: Prostate dimension data statistics*

Dimension Vol. Anterior Apex Left Anus Anus Table Rotate
-Posterior -Base -Right -Apex -Base -Posterior Angle

(cc) (mm) (mm) (mm) (mm) (mm) (mm) (◦)

Mean 50.8 36.2 52.4 52.8 44.8 94.7 107.7 99.1

Maximum 60 50.8 70.7 66 63.4 118 146.2 130

Minimum 45 25 37.1 41.8 20.7 55.5 89.1 74.1

*These data are provided by UMC St. Radboud .

Figure A.1: Annotation of dimensions
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A.3 Phantom Dimension Specifications

Figure A.2: Phantom dimensions in 3 views (Unit: mm)
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A.4 Phantom Fabrication Remarks

There are some problems during the fabrication. Firstly, the polymer would turn
yellow after a long heating. If the temperature is too high at the beginning, although
the polymerization would be faster, it also turn yellow faster. Actually the yellow
material does not vary much but it seems to be a little harder than the normal one
and the more yellow it is, the harder it would be. As a result, the polymer should
be avoid heating for a long time. Consequently, the temperature of heating plate
should not be as high as 450 ℃ suggested by Hungr et al.. We suggest 250-350 ℃
is appropriate.

Secondly, the material would shrink after cooling down. It happens especially
to the frame wall. If it happens, we can fill the space again with same material.
Moreover, from the empirical experiments, a cavity would be easily formed in the
base of frame because of the inner block which makes the path for air escaping
so thin. As a result, it can be fixed after the frame is cooled down by filling the cavity.

Thirdly, air bubbles can be easily attached on the surface of pubis and prostate. It
is not wise to fill the surroundings in two steps, where the first one could be to fill
the soft material to half of the prostate for fixing it. This is because there would
be more bubbles gathering on the surface after the first step during the vacuum,
which are more hard to remove. One attempt is to fill the surroundings up once the
pubis and prostate placed then vacuum the phantom. But the time for vacuuming
should be experimented further and we did not find an optimum one so far.
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Appendix B

Orthogonal Procrustes Analysis

B.1 Derivations of Extended Orthogonal Procrustes
Analysis

An extended orthogonal Procrustes problem holds the residual matrix

L = sXR + jtT −Y (B.1)

where X and Y are two np × 3 point matrices, R is a 3 × 3 rotation matrix,
jT = [1, 1, · · · , 1] is 1 × np unit vector, t is a 3 × 1 translation vector and s is a
scale factor. Together with the orthogonal rotation matrix RTR = I constrain, we
can write the Lagrangean function

F = tr{LTL}+ tr{L(RTR− I)} (B.2)

= tr{(sXR + jtT −Y)T (sXR + jtT −Y)}+ tr{L(RTR− I)} (B.3)

= tr{YTY}+ s2 tr{RTXTXR}+ npt
T t− 2s tr{YTXR} − 2 tr{YT jtT }

+ 2s tr{RTXT jtT }+ tr{L(RTR− I)} (B.4)

where tr{·} is short for trace{·} to calculate the sum of the diagonal elements of
the matrix.

In order to obtain a least square estimation, the partial derivatives of the La-
grangean function with respect to s,R, t must be zeros, namely,

∂F

∂R
= 2s2XTXR− 2sXTY + 2sXT jtT + R(L + LT ) = 0 (B.5)

∂F

∂t
= 2npt− 2YT j + 2sRTXT j = 0 (B.6)

∂F

∂s
= 2s tr{RTXTXR} − 2 tr{YTXR}+ 2 tr{RTXT jtT } = 0 (B.7)
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The translation vector can be obtained directly from equation B.6,

t = (Y − sXR)T j/np (B.8)

Then we multiply equation B.5 on the left side by RT ,

s2RTXTXR− sRTXTY + sRTXT jtT +
L + LT

2
= 0 (B.9)

− s2RTXTXR + sRTXTY − sRTXT jtT =
L + LT

2
(B.10)

BecausemathbfRTXTXR and L+LT are symmetric matrices, RTXTY−RTXT jtT

should also be symmetric. According to equation B.8, we have

RTXTY −RTXT jjT

np
(Y − sXR) (B.11)

=RTXTY −RTXT jjT

np
Y + sRTXT jjT

np
XR (B.12)

is symmetric. It is obvious that RTXT jjT

np
XR is symmetric, so the rest of the

equation must also be symmetric, namely,

RTXTY −RTXT jjT

np
Y (B.13)

=RTXT

[
Y − jjT

np
Y

]
(B.14)

=RTXT

(
I− jjT

np

)
Y (B.15)

is symmetric. We define

S = XT

(
I− jjT

np

)
Y (B.16)

If equation B.15 is satisfied, then we have

RTS = STR⇒ S = RSTR (B.17)

If we use SVD for S, then S = UΣVT where U and V are orthogonal matrices.
So we can get

UΣVT = RVΣUTR (B.18)

Then R can be

R = UVT (B.19)
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Then by synthesizing these results, we can also get the scale s as

s =

trace

{
RTXT

(
I− jjT

np

)
Y

}
trace

{
XT

(
I− jjT

np

)
X

} (B.20)

B.2 General Algorithms for Calculation

We usually use the following steps to calculate the transformation parameters
s,R, t.

1 Center the points X and Y to the coordinate origin by subtracting the centroids
xc and yc. The centered points are denoted as Xo and Yo.

2 Normalize Xo and Yo using Frobenius norms.

3 Calculate the SVD of normalized XT
o Yo, and obtain the rotation matrix R.

4 Calculate the optimum scaling s and translation t.

B.3 Weighted Extended Orthogonal Procrustes Anal-
ysis

We think of adding a weight matrix to minimize the function

F = tr{
(
sXR + jtT −Y

)T
W
(
sXR + jtT −Y

)
} (B.21)

where W is a np × np weight matrix. It can be decomposed into a lower and an
upper triangle matrix by Cholesky decomposition W = QTQ. So the equation can
be written as

F = tr{
(
sXR + jtT −Y

)T
QTQ

(
sXR + jtT −Y

)
} (B.22)

= tr{
(
sQXR + QjtT −QY

)T (
sQXR + QjtT −QY

)
} (B.23)

We substitute Xw = QX, Yw = QY, jw = Qj, then we get

F = tr{
(
sXwR + jwtT −Yw

)T (
sXwR + jwtT −Yw

)
} (B.24)

Therefore it turns into a normal extended orthogonal Procrustes problem. We
construct the matrix Sw which equals to

S = XT
w

(
I− jwjTw

jTwjw

)
Yw (B.25)
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and we get the two orthogonal metrics U and V using its SVD, then the transfor-
mation parameters are

R = UVT (B.26)

s =

trace

{
RTXT

w

(
I− jwjTw

jTwjw

)
Yw

}
trace

{
XT
w

(
I− jwjTw

jTwjw

)
Xw

} (B.27)

t = (Yw − sXwR)T
jw

jTwjw
(B.28)
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