
University of Twente

EEMCS / Electrical Engineering

Control Engineering

A Safe-Guarded Multi-Agent
Control System for Tripod

Gert Bonestroo

MSc Report

Committee:

Prof. dr. ir. J. van Amerongen
Dr. ir. T.J.A. de Vries

T.S. Tadele, MSc
Dr.ir. J. van Dijk

February 2012

Report nr. 006CE2012

Control Engineering

EE-Math-CS

University of Twente

P.O. Box 217

7500 AE Enschede

The Netherlands

1

A Safe-Guarded Multi-Agent Control System for
Tripod

G. Bonestroo, T.J.A. de Vries, Member, IEEE, T.S. Tadele and J. van Amerongen, Member, IEEE
Control Engineering, University of Twente, The Netherlands

Abstract—This paper presents an evaluation of a practical
solution for a complex control problem. This control problem
concerns the operation of a parallel manipulator. It is complex
in the sense that it entails a set of interdependent sub-problems
that require solutions with multi-operation modes and safety
features. One of the methods to realize such a control system
is by using a Multi-Agent based Control System (MACS) that
uses autonomous agents to handle specific control problems and
coordinate their output to attain an overall goal [1]. Recently
a generalized control solution for mechatronic systems together
with a supporting framework was developed by using MACS
and pattern based design. This control solution for complex
control problems is evaluated. This generalized control solution
includes safety patterns and is based on the concept of Multi-
Agent systems. It is found that after some adaptation this control
solution realizes a good working error handling mechanism.

I. INTRODUCTION

This paper is concerned with the position control of a
parallel manipulator, Tripod. Tripod is used at the Control
Engineering group of the University of Twente for testing
different types of advanced controllers. It is a three degree
of freedom setup driven by three linear motors, that can move
up and down to position a platform in a cylindrical operating
volume (Fig 1).

Fig. 1: Tripod

The overall system goal of controlling the Tripod is to
move the platform from one point to another in the workspace
within a defined accuracy. This can be achieved by controlling
each linear motor independently and adding an interaction
mechanism between the control systems of each axis. Vari-
ous mechanisms are needed to generate setpoints, design a
controller for each axis and coordinate their activities. So the

controller could have unique sub-controllers for each axis that
communicate and interact with each other to attain the system
goal. In addition, the control system of Tripod should enable
multi-operation modes like start-up, homing, normal operation,
shutdown, etc. Each operation mode can have different motion
trajectories, control system configuration (simple or advanced
controller), and control missions (accurate position control or
safe-guarded control). Moreover, while performing a certain
task, a robot system usually has to cope with various levels of
criticality of different errors that can affect the safety of the
system. If these errors are not identified and handled correctly,
they can bring dangerous situations for human and machine.
Handling these errors should also be part of the control system,
this will also influence the complexity of the control problem.
As a result, controlling Tripod is considered as a complex
control problem, because it entails a set of interdependent
sub-problems that require solutions with safety features and
multi-operation modes.

A commonly used strategy of solving a complex control
problem is by decomposing it into partial control problems
[2]. This strategy is called the divide-and-conquer approach
and consists of three steps:

• Decomposing the overall control problem into a complete
set of well-defined partial control problems.

• Solving the partial control problems.
• Integrating the partial solutions into an overall solution

As a result, the solution for a complex control problem is
typically a multi-controller system: a set of sub-controllers
that is combined into an overall solution. Various interactions
between these sub-controllers naturally arise in such systems
due to the dependencies between the partial problems to
be solved. Thus, a coordinating mechanism is needed to
coordinate the activity of each sub-controller such that the
system-wide goal is achieved. One general design method
that includes coordinating mechanisms is the Multiple Model
Approach [2]. Using this approach, the designer has to deal
with particular integration aspects, such as deciding when to
(in)activate a sub-controller and to combine control actions of
several sub-controllers. As an alternative to the above method,
a decentralized integration method has been developed, based
on the concepts of an agent and multi-agent systems [1].
The result is an open design environment for multi-controller
systems, such that individual sub-controllers can be added,
modified or removed from the overall multi-controller without
redesigning the remaining system [1]. Because each sub-
controller of such a system is based on the concept of an agent,

2

the resulting control system is called a Multi-Agent Control
System (MACS).

While different authors have presented the application of
MACS in solving various complex problems [3] [4] [5], recent
research has extended MACS to deal with safety issues of
mechatronic systems [6]. This has resulted in design patterns
that can be used to develop a safe-guarded MACS having good
performances and a short development time. The focus of this
paper is to evaluate MACS including the design pattern, by
applying the method to design a safe-guarded controller for
the Tripod. Evaluation of this method is done according to the
following aspects:

• Timing behavior of the control system: Improper timing
will influence the behavior of control system.

• Reusability of the design results: Reusability of the design
results will shorten development time.

• Behavior of safety patterns: Safety patterns should work
for all error sources that they are designed for.

• Behavior of communication mechanism: Communication
with the external environment (which is the real Tripod
setup) should be modernized and tested.

II. BACKGROUND AND RELATED WORKS

A. Multi-Agent Control System (MACS)

As already introduced, a multi-controller solution to com-
plex control problems is: a set of sub-controllers that
can be combined into an overall solution [6]. When each
(sub)controller is capable of autonomous decision making, it
is called a controller agent [1]. This means that an agent can
decide for itself whether it should undertake some action.
When a complex control problem is solved by a pool of
controller agents in which each one is responsible for solving
a part of the whole problem, it is known as a Multi-Agent
Control System (MACS).

Because multiple controller agents are acting on their own
particular problems to solve the overall problem, conflicts
between individual controller agents may arise, as these partial
problems are interdependent. Conflicts between individual
controller agents may also arise when outputs of these agents
are combined. These conflicts are solved by coordination
mechanisms between controller agents. These coordination
mechanisms determine when and how actions of the controller
agents are applied to the plant. There are at least five main
coordination mechanisms used in MACS [6]:

• Fixed priority: Each controller agent in a group is as-
signed a fixed priority. The sub-agent with the highest
priority that wants to become active, becomes active.

• Sequential: Makes controller agents in a group active in
succession, for a single round only.

• Cyclic: Makes controller agents in a group active in
succession, repeatedly.

• Master-Slave: Master-Slave is a subordination depen-
dency in which the slave agent depends on the master
agent. The slave is active only when the master is active.

• Parallel: All controller agents in a group can be concur-
rently active.

B. OROMACS: implementation framework for Multi-Threaded
MACS

OROMACS is an implementation framework for MACS,
based on the OROCOS framework. OROCOS is an open
source software framework for general robot control that pro-
vides a real-time toolkit to develop component-based real-time
control applications [7]. Each Orocos component is defined
as a TaskContext and executes a certain task on a defined
environment or context by using its own thread of control.

In OROCOS, hierarchically structured control programs are
not possible because composite components are not supported
in OROCOS. OROMACS uses the features of OROCOS
to build component-based real-time control applications and
makes it possible to create composite components to build
a MACS [6]. OROMACS also implemented the coordination
objects that are important while designing and implementing
MACS.

C. Existing Control System

The original control system of Tripod is a single threaded
MACS, running at a personal computer with MS-DOS. To
accomplish hardware access, expansion cards with MS-DOS
drivers are used for digital and analog input/output signals [8].
A simplified system layout is given in figure 2.

P.C. With MS-DOS

Expansion
Cards for I/O

Original Tripod Control System:

3 Current
Controllers

3 Linear Motors

Expansion
Cards for I/O

P.C. With MS-DOS

Expansion
Cards for I/O

3 Current
Controllers

3 Linear Motors

Expansion
Cards for I/O

Fig. 2: Simplified system layout of the original Tripod
Control System

The existing controllers of Tripod only consist of PID based
feedback controllers whose performance can be enhanced
with addition of learning feedforward controllers. A learning
controller is a controller that uses a learning process to adapt
it’s behavior during control. This learning process is used in
such a way that a desired behavior of the controlled system
is obtained [9]. The learning process of such a controller
can cause computational load and is not time-critical. Thats
why it should preferably run in another (non-real-time) thread
than the rest of the control system. This is not possible
in the software environment of the original control system,
because it does not support multi-threaded applications. The
just explained OROMACS framework does support this. The
OROMACS framework only runs on a Linux OS. Because
there are no Linux drivers for the expansion cards in the
P.C., new drivers should be developed or other hardware
components should be used to accomplish input/output access.

3

III. NEW CONTROL SYSTEM

A. Introduction

The Control Engineering group at University of Twente
is interested in high performance mechatronic systems that
implement Distributed Control Systems (DCS) used with dif-
ferent fieldbus technologies to have a modular system design.
One of the technologies used in line of this goal is EtherCAT,
which enables fast flexible systems to connect different I/O
devices. CANopen is used as a high level communication
protocol to have a CANopen over EtherCAT (CoE) system.

The research group recently developed a CoE Master driver
for OROCOS that can be used to connect a special kind of I/O
devices to the computer [10]. These I/O devices are terminals
from the Beckhoff Company [11]. Because this CoE Master
driver can be used with OROCOS and OROMACS, this driver
is used for the Tripod control system. The P.C. of the Tripod
Control System can be connected with the EtherCAT I/O
devices by means of an Ethernet cable. A simplified system
layout of the new Tripod Control System is given in figure 3.

New Tripod Control System:

P.C.
(linux)

EtherCAT Coupler 3 Current
Controllers

3 Linear MotorsEtherCAT I/O
modules

Ethernet
cable

Fig. 3: Simplified system layout of the new Tripod Control
System

B. Software requirements

As explained, the Tripod control system should be based on
the OROMACS framework, that is based on OROCOS. The
Tripod control system also has real time requirements. These
requirements can be achieved by using Linux as operating
system. There are several definitions of real-time systems. In
this thesis hard real-time systems are addressed: those with
timing deadlines that must not be missed otherwise the system
fails [12].

To achieve real-time behavior of the control system, a Linux
kernel is installed that can support the desired deadlines of the
real-time tasks (even under worst-case loads). Different real-
time architectures are possible. An easy to use architecture is
to make the standard Linux kernel preempt-able [13]. This is
done by using the PREEMPT RT patch [14]. The PREEMPT
RT patch provides several modifications to yield hard real-time
support.

Other architectures are for example Real-time Application
Interface (RTAI), and Xenomai. These architectures make use
of a second kernel that runs separate from the (non real-
time) Linux kernel. Real-time tasks are running in this second
kernel. The second kernel ensures that the non real-time Linux
kernel cannot preempt the operation of it. In contrast with the

PREEMPT RT patch, a drawback of this architecture is that
non real-time tasks do not have full Linux platform support
[13]. Because the PREEMPT RT patch provides full Linux
platform support, it is fast and easy to use. For example, there
is no extra effort needed to install video drivers and network
drivers. That’s why this architecture is used in this thesis.

C. System design and Simulation

Goal of this research is to implement and evaluate a MACS
for Tripod that is based on a generalized control solution
for complex control problems [6] that includes different error
handling mechanisms. In order to evaluate different features
of the control system described in the introduction, various
system configurations were developed. These configurations
are described in the next chapters.

A simulation model is used to simulate the Tripod setup.
This simulation model is written in the software package
20sim [15], that runs under Windows OS. 20Sim is designed
to simulate the behavior of dynamic systems by using sub-
models in the form of iconic diagrams, bond graphs, block
diagrams and equation models. The Tripod Control System
has been developed based on TaskContext components of
the OROCOS framework. The connection between the Tripod
Control System (running under linux OS) and the simulated
Tripod setup (running under Windows OS) is realized by
means of an OROCOS-20sim co-simulation tool [16]. This
co-simulation tool forms a co-simulation environment where
a safe-guarded MACS, running on a Linux OS, can be tested
with a 20-sim simulated plant running on a Windows OS.

IV. CONFIGURATION 1.A: A SIMPLE OROMACS BASED
MACS

A. Modelling

In an OROMACS based MACS, each agent is modularized
into two parts: a type and a specification. The type defines
its interface to the outside world. The specification defines its
implementation. When different agents in a MACS are from
the same type and have different specifications, the inside of
each agent can be totally different. However, the interface to
the outside world is the same.

An OROMACS based MACS consists at least of a main
agent. This main agent can only have composite specification
and contains all other agents. To test the Tripod Control
System before connecting it to the real setup, the controller
is first simulated with a co-simulation tool. That’s why the
main agent has two different specifications: deployment and
co-simulation. Depending on its specification, the main agent
has different sub-agents with different specifications. In this
configuration, the main agent can have the following sub-
agents:

• Controller agent: Implements the PD controller for one
motor. This controller agent includes a motion generator
object to generate the motion profile for one motor.

• Commutator agent: This agent implements a commu-
tation algorithm for a linear motor. The commutation
algorithm is implemented by means of a so-called Inverse

4

Clarke-Park transformation [17]. This transformation is
used to transform the control signal from controller to a
three-phase control signal that represents the three-phase-
current of the motor. The output signal of this agent is
dependent on the motor position and the control signal
from the controller.

• Co-simulation interface agent: The Co-simulation inter-
face implements an co-simulation interface by means of
the OROCOS-20sim co-simulation tool.

• Actuator agent: The actuator agent implements the CoE
driver for OROCOS to connect the control system to the
real setup. An overview of configuration 1.a with two
different specifications is given in figure 4.

OROMACS TaskContext

OROMACS Main-Agent

Cosimulation Specification:

Deployment Specification:

Controller 1

Parallel
Coordinator

Controller 2

Controller 3

OROMACS TaskContext

OROMACS Main-Agent

Actuator

(includes CoE
driver for Hardware

access)

Controller 1

Controller 2

Controller 3

Commutator 1

Commutator 2

Commutator 3

Cosimulation
interface

Parallel
Coordinator

Fig. 4: Configuration 1.a of Tripod Control System, with two
different specifications

B. Simulation

Simulation results are given in figure 5. Figure 5 shows a
motion profile which is usual for a parallel manipulator like
Tripod. It shows that one linear motor of Tripod is tracking
it’s motion profile within a given accuracy.

C. Testing and Conclusion

Although simulation of the given control system shows
a working controller, testing the control system with the
real setup shows different behavior. Sometimes the linear
motors hit the end stops. Because this behavior could probably

Fig. 5: Simulation results (for one motor) of configuration 1.a

damage the Tripod setup, this configuration was not executed
again to show it in a figure.

Because configuration 1.a does not show good performance
when controlling the real Tripod setup, a revision of this
configuration is needed. First the cause of this behavior should
be known and after that a new version of this configuration
should be tested. The given behavior can be caused by the
timing behavior of the control system. That’s why timing
behavior of different software components should be tested.

V. REAL-TIME TEST PROGRAMS

A. Modeling

To find out the cause of the given behavior, test programs are
developed to test the real-time behavior of different software
components. For each of the following, a test program is
developed to test real-time behavior:

• OROCOS: This test program consists of an OROCOS
TaskContext, running real-time at a given frequency. Each
sample time, this TaskContext derives its own latency.
After running a given amount of time, the real-time test
stops, and outputs the maximum latency.

• OROCOS + SOEM: SOEM (Simple Open EtherCAT
Master) is an EtherCAT master library, written in c [18].
This library is used by the CoE driver for OROCOS,
that is used in this thesis. The just explained OROCOS
test program consist of an OROCOS TaskContext. This
TaskContext contains a function that is executed each
sample time. In this function, communication via Ether-
CAT can be achieved by using the SOEM library. This
real-time test program toggles one digital output of an
EtherCAT module by using the SOEM library.

• OROMACS: This test program consists of an OROMACS
based Main-Agent. This Main-Agent consist of an agent
with real-time priority that derives its latency each sample
time.

Figure 6 shows the object structure of each real-time test
program. The latency of the SOEM driver influences the
latency of the TaskContext in which it is running. When a
MACS uses the SOEM driver in an agent, this will cause
the same latency for the agent in which the SOEM driver
is placed. This will result in a latency of the whole control
system. In practice, it would be preferable that the latency of

5

updatehook()

OROCOS TaskContext

OROCOS and OROCOS+SOEM:

OROMACS:

OROMACS TaskContext

OROMACS Main Agent

updatehook()

OROMACS Controller Agent

Fig. 6: Object structure of real-time test programs

the SOEM driver will not influence any latency in the control
system. A suggestion to achieve that is to place the SOEM
driver in another agent than the main agent of the control
system. To test this behavior, a test program is developed in
which a TaskContext is running separate from a TaskContext
that contains the SOEM activity. The two are connected with
each other via OROCOS ports. The SOEM TaskContext does
not have a periodic activity, but the ports are implemented
as event port. This implies that every time when new data is
available on that port, it will call its updatehook function. An
overview is given in figure 7.

updatehook
1
()

OROCOS TaskContext

OROCOS+SOEM(event-based):

OROCOS TaskContext
Including SOEM driver

updatehook
2
()Data ports

trigger port

Fig. 7: Object structure of real-time test program for testing
latency in OROCOS TaskContext and SOEM driver

B. Test conditions
The main goal of a real-time system is to guarantee timing

behavior under all circumstances. The real-time system must
also guarantee timing behavior in worst-case scenario. That’s
why a stress test program is developed to execute the real
time test programs under heavy load. All given real time tests
in this research are performed simultaneously with this stress
test. The stress test includes the following functionality:

• 100 % CPU activity, using continuously called ping
command.

• 100 % I/O activity using a continuously called tar com-
mand.

• 100 % cache activity using a Cache-Memory and TLB
Calibration tool.

Figure 8 shows a screen shot of CPU usage when performing
the stress test.

Fig. 8: CPU history when running the stress test

C. Test results

Test results of the real-time tests are shown in table I to IV.
The given values are the latencies after running the test for 10
minutes. Table II and IV shows that the SOEM driver causes
a relatively high maximum latency. However, this is not the
case with the mean latency and standard deviation of it. Table

TABLE I: Mean (and standard deviation) latency (µSec) at 1
kHz

Core-i7 Pentium 4
Mean ± SD Mean ± SD

OROCOS 1 ± 2.8 6 ± 8.6
OROCOS + SOEM 1 ± 6.1 9 ± 11.4
OROCOS + SOEM
(different threads)
- OROCOS 1 ± 1.3 11 ± 14.1
- SOEM 0 ± 1.4 5 ± 13.5
OROMACS 1 ± 1.7 10 ± 14.0

TABLE II: Maximum latency (µSec) at 1 kHz

Core-i7 Pentium 4
OROCOS 81 75
OROCOS + SOEM 521 79
OROCOS + SOEM
(different threads)
- OROCOS 40 83
- SOEM 877 803
OROMACS 71 93

TABLE III: Mean (and standard deviation) latency (µSec) at
10 kHz

Core-i7 Pentium 4
Mean ± SD Mean ± SD

OROCOS 0 ± 1.3 5 ± 6.9
OROCOS + SOEM 162 ± 4.8 n/a
OROCOS + SOEM
(different threads)
- OROCOS 0 ± 1.4 n/a
- SOEM 164 ± 4.9 n/a
OROMACS 0 ± 1.1 1 ± 1.8

TABLE IV: Maximum latency (µSec) at 10 kHz

Core-i7 Pentium 4
OROCOS 209 50
OROCOS + SOEM 1127 57179
OROCOS + SOEM
(different threads)
- OROCOS 200 n/a
- SOEM 1138 n/a
OROMACS 33 41

6

IV shows a very high latency for the Pentium 4 PC, running
at a sample frequency of 10 kHz. This is because the CPU
usage has become too high. When the program needs more
CPU capacity than possible, real-time behavior is not possible
anymore. Figure 9 shows CPU usage when running the test
program at a sample frequency of 10 kHz, without using the
stress test. This shows that the program needs full CPU usage,
which results in non-real-time behavior.

Fig. 9: CPU history when running the stress test

D. Conclusion

The given test results shows that the SOEM driver causes
relatively high latencies. When this driver is used in an
OROCOS TaskContext the latency of the TaskContext will
be influenced by the SOEM driver.

For the same reason, it can be expected that the latency
of an OROMACS agent will be influenced when using the
SOEM driver within that agent. Probably this will influence
the behavior of the whole OROMACS based control system.
That’s why it is not preferable to use the SOEM driver in this
way within an OROMACS based control system.

The SOEM driver uses the standard linux network protocol
stack. A suggestion for further research is to check the timing
behavior of this network protocol stack and to consider an
adaptation to achieve hard real-time behavior. An example
of a hard real-time network protocol stack is RTnet [19].
However, this network protocol stack is currently not usable
in combination with the RT-PREEMPT patch.

VI. CONFIGURATION 1.B: A WORKING OROMACS BASED
MACS

A. Modeling

The first presented MACS (configuration 1.a) did not show
good performance when testing it with the real Tripod setup.
Configuration 1.a consists of a Main-Agent that contains all
the other agents. One of them is the actuator agent that
includes the CoE driver. This CoE driver uses the SOEM
library to communicate with the outside world. The real-time
test results show that SOEM causes unwanted non-real-time
behavior in some cases. The latency of the SOEM driver
influences the latency of the agent in which it is running.
This will result in a different behavior of the whole control
system. In practice, it would be preferable that the latency
of the SOEM driver will not influence any latency in the
control system. A suggestion to achieve that is to place the

SOEM driver outside the OROMACS based control system.
Just like the real-time test program (fig. 7), this is implemented
in the next control system: Configuration 1.b. Figure 10
shows a schematic view of configuration 1.a (which is another
view of figure 4) and configuration 1.b. Only the deployment
specification is shown. Just like the real-time test programs,

Configuration 1.a Configuration 1.b

OROMACS TaskContext

(hardware
access)

CoE
TaskContext

OROMACS TaskContext

Controller 1

Parallel
Coordinator

Main-Agent

Controller 2

Controller 3

Commutator 1

Commutator 2

Commutator 3

Controller 1

Parallel
Coordinator

Main-Agent

Controller 2

Controller 3

Commutator 1

Commutator 2

Commutator 3

Actuator (including
CoE driver for
hardware access)

Fig. 10: Deployment specification of configuration 1.a and
configuration 1.b. Ports and connections between sub-agents
are invisible to keep it clear

configuration 1.b contains an agent that is not influenced by
the latency of SOEM. The updated CoE TaskContext is given
in figure 11. Each periodic activity is removed, and an event
port is added to trigger each updatehook() function.

Original CoE driver

CoE TaskContext

updatehook()

TaskContext terminal 1

updatehook()

TaskContext terminal 2

updatehook()

TaskContext terminal ...

updatehook()

TaskContext terminal n

Data ports

Updated CoE driver

CoE TaskContext

updatehook()
triggered by
event port

TaskContext terminal 1

updatehook()
triggered by
event port

TaskContext terminal 2

updatehook()
triggered by
event port

TaskContext terminal ...

updatehook()
triggered by
event port

TaskContext terminal n

Event port

Data ports

Fig. 11: Original and updated CoE TaskContext

7

B. Test

Timing results are shown in table VI and V. It clearly shows
the difference between the latency of CoE TaskContext and a
controller agent of configuration 1.b.

TABLE V: Mean (and standard deviation) latency (µSec) at
1 kHz

Core-i7 Pentium 4
Mean ± SD Mean ± SD

Configuration 1.b
- OROMACS agent 1 ± 4.5 2 ± 4.3
- CoE TaskContext 4 ± 10.5 6 ± 8.8

TABLE VI: Maximum latency (µSec) at 1 kHz

Core-i7 Pentium 4
Configuration 1.b
- OROMACS agent 149 93
- CoE TaskContext 735 633

The controller agents of configuration 1.b contain a log
function that logs all input and output data. Before closing the
program, the data is written to disk. This data can be imported
in 20sim to generate a graph. Figure 12 shows this graph. It
shows that configuration 1.b is working with the real tripod
setup.

Fig. 12: Actual position and error when controlling the real
Tripod setup

C. Conclusion

Configuration 1.a resulted in a non-working control system
in combination with the real Tripod setup. Test results of
configuration 1.b shows a working MACS when placing the
CoE driver outside of it. This suggests that the latency of the
SOEM library (that is used by the CoE driver) causes strange
behavior in an OROMACS based MACS which will result in
uncontrollable behavior.

VII. CONFIGURATION 2: A LOCAL SAFE-GUARDED MACS

A. Modeling

As already mentioned in the background information, a
generalized control solution for simple mechatronic control
problems has been developed at the University of Twente.

This control problem is simple in the sense that it is given
by a motion system with one degree-of-freedom.

The control problem in this report is given by the Tripod
robot. Tripod consists of three linear motors that can move
up and down to move a platform. When the platform of
Tripod is removed, it consists of three linear motors that can
move independently of each other. In this situation, controlling
Tripod can be seen as three simple control problems. The
control system of one motor is based on the generalized control
solution for simple control problems and is given in figure 14.

Parallel
Coordinator

Axes Controller

Axis Controller
Agent

Axis Controller,
Specification: Axis 2

Axis Controller
Agent

Axis Controller,
Specification: Axis 1

Axis Controller
Agent

Axis Controller,
Specification: Axis 3

Fig. 13: Overview of Axes Controller

Overall Safe-Guard,
Specification: Single Station

Fixed-Priority
Coordinator

Axis Controller,
Specification: Axis 1

Multi-Mode,
Specification: Axis 1

Sequential
Coordinator

Axis Controller
Agent
Startup Mode,

Specification: Axis 1

Axis Controller
Agent

Shutdown Mode,
Specification: Axis 1

Axis Controller
Agent
Normal Mode,

Specification: Axis 1

Fig. 14: Overview of Axis Controller

The generalized solution for simple mechatronic control
problems is based on different design patterns. These design
patterns are described by means of agents and sub-agents that
can have different specifications. For example, the Overall
Safe-Guard in figure 14 can have the specifications Single
Station or Multi Station. In the case of simple mechatronic
control problems, the scope of Overall Safe-Guard is limited
to one axis (one station). That’s why this agent has Single

8

Station specification in the generalized solution for simple
mechatronic control problems. Each specification has its own
implementation. So, the inside of each agent can be totally
different. However, the interface to the outside world of each
specification is the same.

In figure 14, one specification of Axis Controller is given.
It consists of two sub-agents: an Overall Safe-Guard, and
a Multi-Mode agent. Each sub-agent can decide for itself
whether it wants to become active. When both sub-agents want
to be active, the one with the highest priority will become
active. This is because the coordination mechanism in the axis
controller is Fixed-Priority. Because the Overall Safe-Guard
has the highest priority, it will become active when it wants
to become active.

The Multi-Mode agent in figure 14 consists of different
sub-agents that become active in a sequential manner. This
is because the coordination mechanism in Multi-Mode is
Sequential. Each mode can decide for itself whether it wants to
become inactive. For example, when the Startup-Mode agent
wants to become inactive after five seconds, the Normal-Mode
will become active after five seconds. Each mode consists of
a motion generator and a feedback controller to control the
motor of one axis.

The Overall Safe-Guard in figure 14 is responsible for
detecting safety problems of different levels. Three different
problem levels are possible: Dangerous, Serious and Warning.
Each problem level has its own priority in which the Dan-
gerous problem level has the highest priority. That’s why the
Overall Safe-guard consists of three sub-agents, coordinated
by a Fixed-Priority coordination mechanism. An overview of
the Overall Safe-guard is given in figure 15.

Problem Handler,
Specification: Single Station

Dangerous

Fixed-Priority
Coordinator

Overall Safe-Guard,
Specification: Single Station

Local Safeguard,
Specification: Single Station

Dangerous

Parallel
Coordinator

Problem Handler,
Specification: Single Station

Serious

Problem Handler,
Specification: Single Station

Warning

Local Safeguard,
Specification: Single Station

Serious

Parallel
Coordinator

Local Safeguard,
Specification: Single Station

Warning

Parallel
Coordinator

Fig. 15: Overview of Overall Safe-guard

The Local Safe-Guards in figure 15 are responsible for
detecting and handling problems from a specific problem
level. An overview such an agent is given in figure 16. The

Local Safe-Guard is located inside one Axis Controller and
only detects problems that are limited to one axis. That’s
why the Local Safeguard has Single Station specification and
contains only one sub-agent. This sub-agent contains an Error
Detection agent and a Single Safe-Guarded Activity agent.
The Error Detection agent becomes active when it detects a
specific problem. Because of the Master-Slave coordinating
mechanism, the Single Safe-Guarded Activity becomes active
only when the Error Detection agent becomes active. When
the Single Safe-Guarded Activity becomes active, it handles
the desired error mechanism.

Axis 1 Safe-Guard,
Specification: Warning

Parallel
Coordinator

Local Safeguard,
Specification: Single Station

Warning

Error Detection,
Specification: Local Warning

Master-Slave
Coordinator

Single Safe-Guarded Activity,
Specification: Single station standby

Fig. 16: Overview of an Local Safe-guard

The main-agent of Configuration 2 consists of three sub-
agents. Each sub-agent is responsible for controlling one axis.
The main-agent of configuration 2 is called Axes Controller.
An overview of this Axes Controller is given in figure 13.

B. Simulation

When one Axis Controller detects an error, its Overall Safe-
Guard agent becomes active and handles the error. Because
the errors that are handled in this configuration are limited to
one axis, the other Axis Controllers should not react to this
(local) error. Figure 17 shows a simulation of configuration 2.
The simulation shows that each motor is controlled according
to a given reference motion. First part of the motion is
controlled by the Startup Mode agent (see fig. 14). When the
Startup Mode becomes inactive, the Normal Mode becomes
active. At t=9 seconds, the reference motion of motor 1
contains a step. This step causes a relatively large positioning
error of motor 1. That’s why its Error Detection agent with
Warning specification (see figure 16) becomes active. Because
of the Master-Slave coordination mechanism, the single Safe-
Guarded Activity becomes active and controls motor 1 to
standby mode. This clearly shows an Axis Controller that
handles a local error and operates independently of the others.

C. Test and Conclusion

When controlling the real Tripod setup with configuration
2, the same behavior as described in the last paragraph was
visible. This shows a working controller that is based on the

9

Fig. 17: Measured position and operation mode of each Axis

generalized control solution for simple mechatronic control
problems. Test results of configuration 2 also show that the
generalized control solution is reusable in a control problem
that consists of a set of independent simple mechatronic
control problems.

VIII. CONFIGURATION 3.A: A GLOBAL SAFE-GUARDED
MACS

A. Modeling

During a normal operation of Tripod, the platform has a
safe working area that is shaped as a cylinder. Although the
platform of Tripod can exceed the dimensions of the cylinder,
it is not recommended because this will cause overloading of
the joints. Exceeding its safe working area is an example of
a global problem, because it depends on the positions of all
linear motors.

The generalized control solution for complex mechatronic
control problems deals with safety patterns and separates local
problems and global problems. Local problems for Tripod are
problems within the scope of one axis. Global problems are
problems within the scope of more than one axis. Configura-
tion 3.a implements a safe-guarded MACS for Tripod which
is based on the generalized control solution presented in [6].

An overview of the Overall Controller of configuration 3.a is
given in figure 18. The Overall Controller consists of two sub-
agents: Overall Safe-Guard and Axes Controller. The Overall
Safe-Guard is responsible for handling local and global prob-
lems. As in configuration 2, the Axes Controller consists of

three sub-agents that are responsible for controlling each axis
of Tripod. In configuration 2, each axis controller contains an
agent that is responsible for handling local problems (figure
14). Because the Overall Controller in configuration 3 already
contains an agent that is responsible for local problems, the
Overall Safe-Guard is not part of each Axis Controller.

As already mentioned, the Overall Safe-Guard is responsible
for handling local and global problems. Three problem levels
are possible: Dangerous, Serious and Warning, in which each
problem level has its own priority. That is why the Overall
Safe-Guard consists of three sub-agents with a fixed priority
coordinator. Each sub-agent is responsible for local and global
problems from a specific problem level. An overview of the
Overall Safe-Guard is given in figure 19.

Parallel
Coordinator

Axes Controller

Axis Controller
Agent

Axis Controller,
Specification: Axis 2

Axis Controller
Agent

Axis Controller,
Specification: Axis 1

Axis Controller
Agent

Axis Controller,
Specification: Axis 3

Axes Controller

Axes ControllerOverall
Controller

Axes Controller
Overall Safe-Guard,
Specification: Multi

Station

Fixed-Priority
Coordinator

Without Overall
safe-guard

Fig. 18: Overview of Overall Controller

In figure 19, each Local Safeguard is responsible for han-
dling local problems of a specific problem level. An overview
of a Local Safeguard is given in figure 20. In case of Tripod,
problems are local in the sense that they are in the scope of
one axis. Because Tripod has three axes, the Local Safeguard
consists of three sub-agents. These sub-agents are responsible
for local problem handling of a specific problem level for a
specific axis. As in configuration 2, each agent consists of an
Error Detection and a Single Safe-Guarded activity. The latter
is responsible for error handling that the first one has detected.

In figure 19, each Global Safeguard is responsible for
handling global problems of a specific problem level. An
overview of a Global Safeguard is given in figure 21. Each
Global Safeguard consists of an Error Detection Agent and
a Multi Safe-Guarded Activity. Because of the Master-Slave
coordination mechanism, the Multi Safe-Guarded Activity
becomes active only when the Error Detection agent wants to

10

Axes ControllerSafe-Guard,
Specification: GlobalAxes ControllerOverall Safe-Guard,
Specification: Multi Station

Problem Handler,
Specification: Multi Station

Dangerous

Fixed-Priority
Coordinator

Problem Handler,
Specification: Multi Station

Serious

Problem Handler,
Specification: Multi Station

Warning

Global Safeguard,
Specification: Warning

Fixed-Priority
Coordinator

Local Safeguard,
Specification: Multi Station

Warning

Fig. 19: Overview of Overall Safe-Guard

become active. This is the case when the Error Detection agent
detects a global error of a specific problem level. The Multi
Safe-Guarded activity consist of three sub-agents to activate
the error handling mechanism for each axis of Tripod.

B. Simulation

To check the error handling mechanism of local problems, a
local error is created during simulation. Just like in the simula-
tion of configuration 2 (see figure 17), a local error is created
by simulating a relatively large step in reference position of
motor 1. This should activate Axis 1 Safe-Guard, which should
handle this local error. Figure 22 shows a simulation plot.
After 10.5 seconds, a peak is shown in the reference position
of motor 1. Figure 22 shows that the safe-guarded mode of
motor 1 becomes active and controls this motor to standby
mode. However, in contrast with configuration 2, motor 2 and
3 are not tracking the reference motion after the local error
of motor 1 has occurred. This shows that local errors of one
axis will influence behavior of the other axes, which should
not be the case.

C. Test and Conclusion

When controlling the real Tripod setup with configuration
3.a, the same behavior as described in the last paragraph was
visible. This shows a controller that handles local problems
incorrect in the sense that a local problem will influence
control behavior of other axes, which should not be the case.
The next chapter will explain this behavior and will adapt this
configuration to overcome this problem. This chapter shows
that the general solution for complex control problems should

Axis 1 Safe-Guard,
Specification: Warning

Parallel
Coordinator

Local Safeguard,
Specification: Multi Station

Warning

Error Detection,
Specification: Local Warning

Master-Slave
Coordinator

Single Safe-Guarded Activity,
Specification: Single station standby

Axis 2 Safe-Guard,
Specification: Warning

Axis 3 Safe-Guard,
Specification: Warning

Fig. 20: Overview of Local Safe-Guard

Master-Slave
Coordinator

Global Safeguard,
Specification: Warning

Error Detection,
Specification: Global Warning

Multi Safe-Guarded Activity,
Specification: Warning

Single Safe-Guarded Activity,
Specification: Standby

Single Safe-Guarded Activity,
Specification: Standby

Single Safe-Guarded Activity,
Specification: Standby

Parallel
Coordinator

Axis 1

Axis 2

Axis 3

Fig. 21: Overview of Global Safe-Guard

be adapted to enable a good working local error handling
mechanism.

11

Fig. 22: Measured position and operation mode of each Axis

IX. CONFIGURATION 3.B: FINAL SAFE-GUARDED MACS

A. Modeling

This chapter deals with an adaptation of configuration 3.a
resulting in configuration 3.b. Simulation of configuration 3.a
showed that local errors of one axis will result in different
control behavior of other axes. This paragraph will explain
this behavior.

Overall
Controller

Overall Safe-Guard,
Specification: Multi

Station

Axes Controller

Fixed-Priority
Coordinator

Fig. 23: Simple overview of Overall Controller

Figure 23 shows a simple overview of the Overall Controller
of configuration 3.a and 3.b. This Overall Controller consists

of an Overall Safe-Guard and an Axes Controller. When the
Overall Safe-Guard wants to become active, it will become
active because of the Fixed-Priority coordinating mechanism
in the Overall Controller. In configuration 3.a, when a local
error at one axis is detected, a sub-agent in the hierarchical
structure of Overall Safe-Guard will become active. This sub-
agent will handle the local error of that axis. When no error is
detected at the other axes, no error handling mechanism of the
other axes will become active. However, because of the Fixed-
Priority coordinating mechanism, the Axes Controller will
become inactive. In this situation, the Overall Safe-Guard will
control one axis according to the error handling mechanism,
and the Axes Controller will control no axes because it is
not active anymore. In this situation the other axes are not
controlled anymore by any agent. This situation has happened
during simulation of configuration 3.a and clearly represents
a wrong coordination mechanism.

The previously described situation has occurred because the
Overall Safe-Guard (in figure 23) handles local errors, which
will result in deactivation of the Axes Controller. To overcome
this problem, the Overall Safe-Guard could be changed in
such a way that it does not handle local errors anymore,
but only global errors. Local errors can than be handled by
means of the Axis Controllers as used in configuration 2
(see figure 24). In this situation, each axis controller handles
its own local problems. When a local problem at one axis
controller is detected, the other axis controllers will stay active,
because of the Parallel coordination mechanism in the Axes
Controller. In this situation, a local problem at one axis should
not influence control behavior of the other axes. Configuration
3.b implements the adapted version of configuration 3.a.

B. Test
As in configuration 3.a, a peak in reference position of

motor 1 is created to obtain a local error. Figure 25 shows
the results when controlling the real Tripod setup. After 11
seconds a peak is shown in reference motion of motor 1,
resulting in a local error. The figure shows that motor 1 goes
into local safe-guarded mode which will standby the motor. In
contrast with configuration 3.a, the other motors are controlled
to their reference position as should happen. Because of the
local error handling of motor 1, the platform of Tripod exceeds
the safe operation area at 11.5 seconds, which is an example
of a global error. As a result, the Global Safe-guarding mode
becomes active, which controls all motors to standby mode.
This simulation shows a local error handling mechanism that
does not influence other local controllers. It also shows a
global error handling mechanism that takes over control of
all motors.

C. Conclusion
Test results shows a controller that handles local problems

that does not influence the behavior of other axes, which
should be the case. It also shows a global error mechanism
that takes over control of all axes to handle these errors.
This paragraph shows that the adapted general solution for
complex control problems enables a good local and global
error handling mechanism.

12

Overall
Controller

Overall Safe-Guard,
Specification: Multi

Station

Problem Handler,
Specification: Multi Station

Dangerous

Fixed-Priority
Coordinator

Global Safeguard,
Specification: Dangerous

Local Safeguard,
Specification: Multi Station

DangerousAxes Controller

Axis Controller,
Specification: Axis 1

Overall Safe-Guard,
Specification: Single Station

Multi-Mode,
Specification: Axis 1

Fixed-Priority
Coordinator

Parallel
Coordinator

Fig. 24: Adaptation of configuration 3.a to configuration 3.b

X. CONCLUSIONS AND RECOMMENDATIONS

This paper evaluates the timing, communication, reusability
and safety handling issues of a proposed generalized control
system for mechatronics systems on a three D.O.F. parallel
manipulator. The test set-up has been modified to use Ether-
CAT, OROCOS and OROMACS.

The given real-time test results show that the SOEM driver
causes relatively high latencies. When using this SOEM
driver in an OROMACS agent, the behavior of the whole
OROMACS based control system can be influenced in such
a way its behavior is unpredictable. In contrast, test results
show that placing the SOEM driver in a separate OROCOS
thread, outside the OROMACS based control system, results
in a control system with the desired behavior. However, the

Fig. 25: Measured position and operation mode of each Axis

problem of relatively high latencies is not solved. Because
the SOEM driver is used as a communication mechanism
between the controller and plant, it can be expected that its
timing behavior will still influence the behavior of the whole
system. A Recommendation for further research is to fix this
behavior of the SOEM driver in combination with OROCOS
and OROMACS. Because the SOEM driver uses the standard
linux network protocol stack, it is recommended to study the
timing behavior of this network protocol stack, and to consider
an adaptation to achieve hard real-time behavior.

Test results also show a working controller based on the
generalized control solution for simple mechatronic control
problems. This control solution is easily reusable for different
simple control problems that are independent.

Additional test results show that the generalized control
solution for complex mechatronic control problems causes
changes in behavior of well-operating axes because of a local
problem in another axis. In this research, an adaptation is done
to this generalized control solution which results in the desired
local and global error handling.

13

REFERENCES

[1] A. J. N. van Breemen, “Agent-based multi-controller systems,” Ph.D.
dissertation, University of Twente, 2001.

[2] T. Johansen and R. Murray-Smith, The Operating Regime Approach to
Nonlinear Modelling and Control. Taylor & Francis, 1997.

[3] H. Proenca and E. Oliveira, “Marcs - multi-agent railway control
system,” Advances in artificial intelligence, vol. 3315, pp. 12–21, 2004.

[4] H. D. Wang, G. Z. Qiu, and S. S. Huang, “Cement industry control
system based on multi agent,” Journal of central south university of
technology, vol. 11, pp. 41–44, 2004.

[5] A. J. N. van Breemen and T. J. A. de Vries, “Design and implemen-
tation of a room thermostat using an agent-based approach,” Control
engineering practice 9, pp. 233–248, 2001.

[6] D. B. Phong, “Safe-guarded multi-agent control for mechatronic sys-
tems,” Ph.D. dissertation, University of Twente, 2011.

[7] Orocos, “The open robot control software project,” 2011. [Online].
Available: http://www.orocos.org

[8] M. Eglence, “Design and realization of a safe control system for a
parallel manipulator,” Master’s thesis, Control Laboratory, University
of Twente, 2003.

[9] W. J. R. Velthuis, “Learning feed-forward control - theory, design and
applications,” Ph.D. dissertation, University of Twente, 2000.

[10] B. Burgers, “Automated i/o access with coe in orocos,” Master’s thesis,
Control Laboratory, University of Twente, 2010.

[11] Beckhoff, “Beckhoff automation,” 2011. [Online]. Available:
http://www.beckhoff.com

[12] R. Stephan, “Real-time linux in control applications area,” Master’s
thesis, Control Laboratory, University of Twente, 2002.

[13] M. T. J. Jones, “Anatomy of real-time linux architectures,” 2008.
[14] P. McKenney, “A realtime preemption overview,” 2005. [Online].

Available: http://lwn.net/Articles/146861/
[15] Controllab, “Controllab products b.v.” 2011. [Online]. Available:

http://www.20sim.com
[16] Z. Bozlak, “Co-simulation of an orocos-based controller and a 20-sim

plant,” 2009.
[17] L. Prokop and P. Grasblum, “3-phase pm synchronous motor vector

control using a 56f80x, 56f8100, or 56f8300 device,” Freescale Semi-
conductor, Application Note 1931, 2005.

[18] SOEM, “Simple open ethercat master,” 2011. [Online]. Available:
http://developer.berlios.de/projects/soem

[19] RTnet, “Hard real-time network protocol stack for xenomai and rtai,”
2011. [Online]. Available: http://www.rtnet.org

