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Abstract 
In this thesis an adaptive harmonic decentralized feedforward controller is implemented on an 

experimental setup.  The experimental setup consists of a double-panel structure which is mounted 

on top of an acrylic box with thick walls. In this box a speaker is installed which can produce 

disturbance signals. On each panel of the double-panel structure five actuator sensor pairs are 

installed which are controlled and observed by their own decentralized controller .The goal of this 

thesis is to minimize the sound transmission of the double-panel structure. The damping of the panel 

is increased by adding a low-authority feedback controller. The disturbance signal will contain only a 

few deterministic frequency components. Each frequency component is processed independently, by 

the harmonic decentralized controllers on the panels.  

The stability and convergence rate of decentralized feedforward control is analysed. In simulations it 

is demonstrated that a decentralized controller can reduce the noise transmission of the structure. 

There are multiple feedforward control configurations possible, for example, one strategy might only 

control the incident panel.  The most noise reduction is obtained by controlling only the radiant 

panel. This configuration can reduce the sound pressure level above the panel by 10 to 20 dB for 

frequencies below 250 Hz. Above this frequency almost no reduction of the disturbance signal is 

possible.  

 

The addition of feedback control improves the robustness of the system. It reduces the cross-

coupling between the decentralized controllers. There are also multiple feedback control 

configurations possible. The combination of feedback pressure speakers in the cavity and 

decentralized feedforward control of the radiant panel reduces the disturbance signal the most in 

the simulations. In practise this configuration could not be tested, because the pressure speaker 

feedback controller has not yet been realized.  

 

For optimal control of the double-panel structure the transfer functions between all actuators and 

sensors in the system must be known. Therefore, a system identification technique is developed. This 

technique uses the computational components available in the decentralized controllers. The 

communication with a centralized controller is minimized. 
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1 Introduction 
This introduction chapter starts with a literature survey of aircraft noise and active noise control. 

After this survey the research questions are formulated and the ultimate goal of this thesis is 

presented. This introduction concludes with an outline of the content of this thesis. 

1.1 Aircraft noise 
Aircraft noise is a major problem for residents near airports. However, also people inside an aircraft 

get disturbed by the noise the engines produce. The interior noise in an aircraft is mainly produced 

by two external sources, the fuselage boundary layer and the aircraft propulsion system. In Figure 1 

these disturbances are illustrated. The boundary layer noise is generated by movement of the 

fuselage wall. This wall moves through the outside pressure fluctuations produced by wind and 

turbulence.  This noise is difficult to reduce because it has a stochastic broadband disturbance, for 

which no time advanced reference signal is available. 

 

 

Figure 1 Aircraft noise. 

Currently most passenger aircrafts are equipped with jet engines which produce broadband noise. An 

advantage of jet engines is that they produce less noise at the lower frequencies than propeller 

propulsed aircrafts [1]. The noise generated by a propeller engine contains a few specific frequency 

components which are equal to the blade passage frequency (BPF) of the propeller and some of its 

higher harmonics [2]. In Figure 2  the power spectrum in the cabin of a propeller propulsed aircraft is 

shown. 

 

Recent developments make propeller engines more fuel efficient than yet engines, because of this 

reason some mayor aerospace corporations want to equip their commercial airplanes with propeller 

engines. The rotation frequency of the propellers can be measured, and thus the disturbance signal 

they generate can be predicted. 
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Figure 2 Noise in the cabin of a propeller propulsed aircraft. 

1.2 Active noise control 
Passive control is the traditional method to reduce the sound pressure at a given location. This 

technique uses an object that will absorb the radiated power of the disturbance source. The 

wavelength of the noise source must be small compared to the dimensions of the power absorbing 

object to well function. So this type of noise control works best for high frequencies [3] [4].  For 

lower frequencies you need larger damping objects which have a larger mass. For fuel efficiency, 

airplanes have to be as lightweight as possible so this is an unwanted feature. There are also more 

advanced passive control techniques such as for example a Helmholtz resonator. A Helmholtz 

resonator can increase the acoustical damping level inside a cavity between two plates. Simulations 

have shown that this can result in an overall improvement of 8dB in the 50-150 Hz range [5]. 

The other newer method, active control, uses secondary sources which generate a field that will 

interfere with the field produced by the primary noise source. This field will cancel the primary field, 

resulting in a reduced sound pressure. If the secondary sources are placed within half a wavelength 

of the disturbance signal of the primary source in all directions the field will be cancelled by a 

considerable amount [6] [7]. Although in most applications a similar setup is not possible, still active 

noise control performs well, especially at low frequencies.  The main advantage compared to passive 

control is that no heavy objects are required for the reduction in sound pressure.  

ANC and ASAC 

There are two active noise control methods, active noise control (ANC) and active noise and vibration 

control (ANVC), these methods can be used to control tonal noise disturbances in relative small 

enclosures [8]. The former method uses loudspeakers to cancel the disturbance source. Every 

speaker will only cancel the disturbance signal at a few points in space. So all these secondary 

speakers need to cooperate, which will result in a complex 3D model.  The global sound pressure in a 

space can be estimated by using multiple error sensors, each positioned at a different location [8]. 

The performance of this control system can be quantified by measuring the average attenuation at 

all measurement sensors.   
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The ASAC method uses a vibrating plate to reduce the transmission of the disturbance source. On 

this plate actuators and sensors are integrated so that the vibration of the plate can be observed and 

controlled. By controlling the vibration of the plate the sound transmission through the plate can be 

reduced. This simplifies the control problem to a two dimensional problem, because only the surface 

of the plate needs to be controlled. 

A vibrating panel radiates with a set of structural modes. Each mode has a sinusoidal component in 

both directions of the panel.  The spatial frequencies of these modes are dependent on the 

dimensions of the panel.  The radiation of sound of each mode is dependent on the amplitudes of all 

modes. For some vibration patterns the air in front of the panel can transfer from one side of the 

panel to the other. Such patterns will not radiate much sound, only vibration patterns that have a net 

volumetric component will produce a significant amount of sound [9]. The far-field sound radiation 

of a plate can thus be estimated by measuring the net volume velocity of the panel. The lower modes 

of the panel are the most efficient radiation modes [10] [11] [12]. 

Double panel structures can be used as noise insulators. In general they perform better than single 

panel structures. However, at low frequencies around the mass-air-mass resonance (double 

structures resonance) they perform worse than single panel structures. In the past years many 

techniques have been developed to solve this problem. These techniques can be classified in active 

control and passive control [5]. 

Tonal and broadband disturbances 

The tonal disturbance signal produced by the propeller engines contains only disturbances at a few 

harmonics. For these different harmonics a separate control filter, a harmonic controller, can be 

implemented. A harmonic controller measures only the error of that specific harmonic. It is advised 

to use an adaptive control filter for deterministic tonal disturbances. Because, the transmission from 

the disturbance source to the error sensor may change due to environmental changes [7].  An 

adaptive control filter can react on the phase and the magnitude variations of the disturbance signal 

so that the error is minimalized.  

If the disturbance source produces a broadband disturbance signal the above mentioned method is 

not suitable. The separate control filters will interfere with each other, and abrupt phase changes 

cannot be realised. In this case only a single filter for the entire spectrum can be used. This filter must 

be causal, which will limit its performance [7]. Implementing the controller in the frequency domain 

will reduce the computational complexity. The convergence speed of the adaptive algorithm is 

similar to the time-domain solution.  

Adaptive feedforward control 

The simplest adaptive algorithm is the steepest descent algorithm. This algorithm is implemented in 

the frequency domain, it adjusts the in-phase and quadrature components of the single tone signal 

fed to the secondary sources [13]. There are other adaptive methods available such as Newton’s 

algorithm or recursive least squares. These algorithms may have better convergence behaviour 

under certain circumstances. However, these methods have higher computational requirements [14] 

[7]. 

An adaptive feedforward controller usually formulates a cost function [7]. At each iteration the 

algorithm tries to minimise the cost. Therefore, it uses the Hessian matrix, this is the second derivate 
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of the cost function with respect to the control effort. Every eigenvalue of the Hessian matrix is 

related to a mode of the system. Every mode has its own power and convergence rate.  The speed of 

convergence of a mode is determined by the magnitude of the eigenvalue. Slow modes require an 

excessive high control effort. To limit the required effort a control effort weighting function can be 

added to the cost function, which will increase the eigenvalues of the system. Modes for which the 

eigenvalues are much smaller than the effort weighting parameter will not converge. Their 

contribution in the error signals of these modes will not be removed [13] [6].   

The adaptation rate of a steepest descent adaptive filter is dependent on the convergence coefficient 

of the filter. If the convergence coefficient value is too small, the algorithm will stop before the 

minimum error is reached. On the other hand, if this value is chosen to large the system will become 

unstable. For SISO systems the convergence coefficient is limited by the time delays in the 

cancellation paths of the secondary sources (23) [6]. For MIMO systems this is limited by the 

eigenvalues of the modes [13]. Faster adaptation does not result in better system performance, it 

usually decreases it. During fast adaptation unexcited system modes may be triggered, and this can 

lead to a performance decrease. A large sensor noise can also excite these unreferenced signal 

modes [15]. 

 

Model errors in adaptive controllers may lead to unstable systems or increased error signals [16]. By 

adding a bounded uncertainty region to the complex plant response optimal control can be obtained 

without making the system unstable [17].      

Centralized and decentralized control 

In comparison to centralized control, decentralized control is more scalable, however since each 

controller is designed based only on local sensor information (rather than all available sensor data), 

the performance is usually not as good as with a centralized control system.  

For the communication between the centralized controller and the error sensors is a great deal of 

wiring required (see Figure 3). Not all applications will have the required space for this wiring. 

Another disadvantage of a centralized controller is the amount of processing power required to 

update all the controller coefficients. This also requires a very complex model of the entire system. 

And a single defect actuator may result in a significant decrease of performance [18]. 

 

  

Figure 3 Centralized control and decentralized control 

In a decentralized system there is only feedback between every actuator sensor pair (see Figure 3). 

However, all actuators may excite every sensor. The intuitive condition for stability for a 

decentralized system requires that the direct coupling in the physical system is larger than the cross-
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coupling.  A system can thus only be stable if a sensor is closer to the actuator controlling it than to 

any other actuator. However, this is not a necessary condition for stability. The real upper limit of 

stability is found by looking at the eigenvalues of the product of the plant transfer matrix and the 

estimate of the plant transfer matrix which contains only the direct coupling components. If the real 

parts of all eigenvalues of this resulting matrix are positive then the system is stable [18]. 

An unstable decentralized system can be made stable by adding a control effort weighting parameter 

to the cost function of the controllers. But this will be at the expense of a larger steady-state error 

[18] [13]. 

HAC/LAC 

Feedforward and feedback control can be combined in one system. Such a system contains a high-

authority and low-authority control (HAC/LAC) architecture. The main goal of the low-authority 

feedback control, is to add active damping to the structure. This means that for a multi input multi 

output system the cross-coupling between the actuator sensor pairs is reduced. The decentralized 

high-authority feedforward controllers can benefit from this property, because better control at 

individual points is possible without interfering with other points on the structure. Furthermore, is 

the robustness to parametric uncertainty of the controller increased by the addition of the low-

authority controller and the controller will damp disturbances outside the bandwidth of the 

harmonic feedforward controller [19] [20]. 

Recent research 

Most papers on feedforward control focus on the control in the principal component space [21]. In 

these control algorithms, the modes that contribute most to the error are selected and controlled. 

The other modes are not controlled; the benefit of this method compared to a normal centralized 

controller is the reduction in computational complexity. This method is, for example, used to reduce 

the vibrations from gearboxes in helicopters [22] and cars [23].  

Many papers use decentralized feedback control to reduce the vibrations of panels [24] [25] [26] [27] 

[28] [29] [12]. The research in these papers is used in experimental setups; they are not applied to 

real applications. Only relative old papers focus explicitly on decentralized feedforward control [18] 

[13].  

1.3 Research objective 
The goal of this thesis is to implement decentralized adaptive harmonic controller for the double-

panel structure. This controller must be stable at all frequencies. Furthermore, should it be as simple 

as possible. So that only a very limited amount of hardware is required for each controller. 

At the start of this thesis a finite element model of the experimental setup was available. With this 

model the behaviour of the system can be analysed. Therefor first simulations with data of this finite 

element model are performed. Later the most promising configurations are implemented on the real 

setup.  

In this thesis he following research questions are answered 

Examine in simulations if decentralized feedforward control can reduce the sound transmission of the 

double-panel structure. 
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On both panels sensors and actuators are installed. Which feedforward configuration reduces the 

sound transmission the most?  

Examine the interaction between feedforward and feedback control. Does this combination Improve 

the robustness of the system? 

Select the best feedforward  feedback combination 

Find a system identification technique that can initialise the feedforward controllers. This technique 

should use the components of the feedforward controller as much as possible.  

Is a complete decentralized system possible, that can initialise itself without communicating with a 

centralized controller? 

Implement a decentralized controller and test if noise reduction is possible. Also determine if the 

simulations agree with the practical measurements   

Can the decentralized controller react on a disturbance signal with a varying frequency? 

How much can the disturbance signal be suppressed by the best control strategy? 

 

 

1.4 Thesis outline 
The ultimate goal of this thesis is to minimise the sound transmission through the double-panel 

structure with a decentralized adaptive harmonic feedforward controller. To achieve this, first the 

basics of sound transmission of a structure are studied in chapter2. In this chapter also some acoustic 

power quantities are introduced. These power quantities are used in later chapters to measure the 

performance of the system. Chapter 3 focusses on the algorithms of multi-input multi-output 

harmonic control. In this chapter an adaptive harmonic feedforward controller will be presented. The 

stability and the convergence rate of this algorithm are analysed. And finally a decentralized 

algorithm is presented. This chapter will also focus on the detection of the phase and amplitude of 

the error signals. 

In Chapter 4, several system identification techniques are examined. In the last section of this 

chapter a technique is selected for the double-panel structure.  

With the theories and the mathematics presented in the previous three theoretical chapters in the 

following chapters feedforward controllers and system identification systems are realised and 

analysed. In Chapter 5, the performance of the adaptive decentralized feedforward controller is 

analysed in simulations. These simulations use transfer functions from a finite element model of the 

real-setup. This chapter will prove if it possible to reduce the noise transmission of the double-panel 

structure with decentralized feedforward control. The best combination of feedforward and 

feedback control is selected as well.  

The created systems which can control the real experimental setup are presented in chapter 6. The 

system identification system and the feedforward controller are introduced here.  

In Chapter 7 experiments on the real setup are performed. A system identification method is 

developed and compared with a proven method. An adaptive decentralized feedforward controller is 
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designed and tested. In the conclusion in Chapter 8 the research questions which were defined in in 

the previous section are answered and some recommendations for further research are made. 

2 Acoustics 
In this chapter some basic principles in the field of acoustics are treated. These basic principles are 

required for the analysis of the control of sound radiation from the double-panel structure. The first 

section is a short introduction to the propagation of waves. This section introduces the basic 

quantities in acoustic and their dependencies. In the next section acoustic power quantities are 

introduced. These power quantities are used everywhere in this thesis. In the last section the 

properties of a vibrating panel are examined. This section will relate the kinetic energy of the panel 

with its sound radiation. For a more extensive introduction to the field of acoustics see for example 

Elliott [7] or Fahy [30] 

2.1 Propagation of waves 

For the transmission of sound a medium is required, in this medium small particles are present that 

vibrate. A particle oscillates around its original position, it does not travel along with the sound wave. 

The particles oscillate at a frequency equal to the frequency of the transmitted signal.  

A sound wave travels with a velocity, ‘the speed of sound’, which is not related to the input 

frequency. Its speed depends on the ambient temperature and the gas constant of the medium. 

Under normal circumstances this relation can be represented by the following equation 

   √     ( 1 ) 

 

Where c0 is the speed of sound [m/s], γ is the ratio of specific heats of the gas, R the gas constant [J K-

1mol-1], and Ta the absolute temperature [K]. In air at a temperature of 20 °C, the speed of sound is 

around 343 m/s. In a fluid the velocity of sound is higher. A sound can be produced by a loudspeaker, 

if the cone of the speaker oscillates it will compress and rarefied the medium. This will increase and 

decrease the density immediately in front of the cone. The signal is transmitted through space with 

the speed of sound. The black dots in Figure 4 represent the air molecules. They are compressed and 

rarefied in a pattern equal to the output signal of the loudspeaker. 

 

Figure 4 Sound waves. 

The distance between two compressions, the wave length ʎ, is equal to one period of the 

transmitted signal multiplied by the speed of sound. 

Even a very loud noise source generates only small changes in the density of the medium. The 

ambient density is more than thousand times larger than density fluctuation produced by a very loud 
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source. Because these changes are so small compared to the ambient value, pressure and density 

can be considered linearly related. They are related by the following equation: 

    
   ( 2 ) 

 

where p is the pressure [Pa], ρ is the density [kg/m3] and c0 is the speed of sound [m/s]. The particle 

velocity is also linearly related to the pressure: 

        ( 3 ) 

 

In this equation u is the particle velocity and ρ0 is the ambient density.  The product       is known as 

the characteristic acoustic impedance of the medium. 

All fluctuations are very small compared to their ambient values and thus linearly related. Therefore, 

the principle of superposition may be applied to multiple waves which travel through the same 

medium.  

2.2 Acoustic quantities 

The variables pressure and particle velocity determine the acoustic power of a wave. In this section 

all the power quantities used in this report are introduced. 

2.2.1 Sound intensity and acoustic power 

The sound intensity is defined as the sound power per unit area. The intensity is the product of 

pressure and particle velocity: 

 ⃗    ⃗⃗ ( 4 ) 

 

The particle velocity and sound intensity are vectors, they have a direction and a magnitude. The 

acoustic power is calculated by integrating the sound intensity over an surface 

              
| | 

 
  ( 5 ) 

 

In free space waves propagate in all directions, every point of a radiating source emits spherical 

traveling waves in all directions. The acoustic intensity of spherical waves decays by 1/r2, where r is 

the distance from the source. This decrease in intensity can be considered a consequence of energy 

conservation for propagating waves. The energy spreads out over the surface of the expanding 

sphere. The integral of the sound intensity over the surface of each sphere is equal. 

2.2.2 Sound pressure level and sound velocity level 

The sound pressure level (SPL) is a logarithmic measure of the sound pressure of a sound relative to a 

standard reference value. It is measured in decibels (dB) above a standard level: 

          

     ̅̅ ̅̅ ̅̅ ̅

    
         

    

    
 ( 6 ) 

Pref is a reference pressure of 20 µPa. 

Sometimes the velocity is measured instead of the pressure. In this case the sound velocity level 

(SVL) can be calculated: 
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( 7 ) 

 

Uref  is the standard reference particle velocity and is equal to 5.0∙10-8 m/s [31]. 

The reference values of the SPL and SVL are scaled in such a manner that both quantities produce 

approximately the same dB level: 

    

    
     

                          
→              ( 8 ) 

 

 

2.3 Sound radiation from structures 

In this section some basic properties of a vibrating panel are treated. The purpose of this section is to 

relate the velocity of a panel with its sound radiation. Therefore the kinetic energy of the panel is 

determined and structural modes are examined. 

2.3.1 Kinetic energy 

When a panel is excited by an external source it starts vibrating. A vibrating panel radiates with a set 

of structural modes. Dependent on the frequency of the external source and the dimensions of the 

structure some modes of the structure will be excited.  Each mode has a unique vibrating pattern; a 

two-dimensional standing wave. The response of the panel is equal to the summation of all modes. 

Thus, the steady state velocity distribution of a panel can be written as: 

         ∑             

 

   

 ( 9 ) 

 

where  𝑛( ) is the amplitude of the m-th mode, and  𝑛( , ) represents the shape of the mode. The 

panel vibrates in the direction orthogonal to its surface. For a panel of dimensions Lx by Ly with edges 

that can not have any linear motion the structural mode shapes are given by 

           𝑛 (
𝑛   

  
)   𝑛 (

𝑛   

  
) 

( 10 ) 

 

 

where n1 and n2 are the modal integers. The structural mode with n1 = 1 and n2 = 3 is referred to as the 

(1,3) mode. In figure xxx the shapes of some of these modes are shown. 

 

Figure 5 Structural modes of a vibrating panel. 
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The total kinetic energy of the panel is equal to the total mass multiplied by the mean-square 

velocity.  Its equation, is shown below 

      
 

  
∫ |        |     

 

 

 ( 11 ) 

 

where S is the surface area of the panel. The mean squared surface integral of the shape of a 

structural mode has the property that it is equal to one 

 

 
∫       

     
 

 

   ( 12 ) 

 

Thus by combing equation ( 9 ) and ( 11 ), the kinetic energy can also be written as a summation of 

the amplitudes of the structural modes times the mass of the panel 

      
 

 
∑|     | 
 

   

 ( 13 ) 

  

Each structural mode has a self radiation efficiency, this efficiency relates the amplitude of the 
structural mode with the radiated power. The efficiency of a structural mode is determined by its 
shape and by the excitation frequency.  Especially structural modes that have a net volumetric 
component are efficient. These are the modes that have an odd modal integer, for example, the (1,3) 
mode. Modes with an even modal integer radiate much less efficient, for these modes the air in front 
of the panel can transfer from one side of the panel to the other, which will not result in a sound 
field. 

2.3.2 Radiated sound power 

The sound fields of different structural modes interact. If the panel vibrates with two modes there is 

a mutual radiation efficiency. Besides the original self radiation efficiency, an extra component is 

radiated. The radiated sound power is related by the amplitudes of the structural modes by the 

following equation   

        ( 14 ) 

 

where a is the vector of all mode amplitudes and matrix M contains all radiation efficiencies. The 
diagonal terms are the self radiation efficiencies and the off-diagonal terms are the mutual radiation 
efficiencies. 

If the panel is lightly damped and excited close to the resonance frequency of the m-th mode, then 

only this structural mode will contribute significant to the kinetic energy of the panel. Excitation in 

the region between resonance frequencies will excite all modes a little. At these frequencies almost 

no reduction in radiation power is possible. 

Excitation frequencies with wavelength smaller than the dimensions of the panel will excite multiple 

modes of the panel.  Thus, for low frequencies the far-field sound radiation of a plate is proportional 

to the kinetic energy of the panel. 

2.3.3 Controlling a radiating panel 

The kinetic energy of a panel can be measured by installing a couple of acceleration sensors on the 

panel. If these sensors are well distributed, the amplitudes of the structural modes can be derived 
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from their output. However, in most applications the kinetic energy is estimated by using equation    

( 11 ). 

In theory, with structural actuators the velocity of the structure can be cancelled. In this situation the 

panel has no kinetic energy, thus no sound is radiated. In practise, however, the vibration can often 

only be reduced by the action of secondary actuators, and minimising the total kinetic energy of a 

structure does not generally result in the minimisation of radiated sound. In fact a reduction of 

vibration may be accomplished by an increase in sound radiation. 

3 Adaptive Harmonic Decentralized Feedforward Controller 
This chapter starts with a basic harmonic feedforward control algorithm, each section this algorithm 

is extended till a decentralized adaptive harmonic feedforward controller is obtained. The stability 

and convergence rate of the controllers is analysed. Control effort weighting is added to the 

algorithms to stabilize them. In the principle component space the effect of effort weighting is 

examined. The last sections of this chapter focus on the detection of the harmonic error signals.     

3.1 Harmonic feedforward controller 
In Figure 6 the most basic active noise control system is shown. An external source produces a single 

tone deterministic disturbance signal d(n). This disturbance signal is measured by microphone, which 

is connected to the active noise control system. The measured signal is called the error signal, e(n).  

 

Figure 6 The principle of anti-sound.  

The controller will try to produce a control signal, u(n), that will completely cancel the disturbance 

signal at the microphone. The active noise control system will succeed in this task if it knows the 

complex transfer function between the loudspeaker and microphone. This transfer function, G, is 

called the complex frequency response of the plant. The error signal can thus be written as follows  

  𝑛    𝑛     𝑛  ( 15 ) 
 

The disturbance signals of the propeller engines contain multiple tones. And beside these tones 

background noise is present in the measured signal. However, a controller very similar to the above 

mentioned method can be created in the frequency domain. The sampled periodic disturbance signal 

of the propeller engines can be represented as a finite summation of its harmonics 

  𝑛  ∑    
      

 

    

 ( 16 ) 
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where k is the harmonic number, Dk is the complex amplitude of the k-th harmonic. 

The control algorithm can be divided in K independent loops, each operating on an individual 

harmonic. Our application only needs to control a couple of harmonics. All other harmonics are not 

processed. In Figure 7, a harmonic controller in the frequency domain is shown. 

 

Figure 7 An implementation of the frequency-domain harmonic controller. 

This controller uses a Fast Fourier Transformation to transform the error signal to the frequency 

domain. Then a couple of harmonics are selected which are processed independently. The resulting 

control signals are joined and transformed back to the time domain. The error of the k-th harmonic 

can be written as 

       (      )   ( 17 ) 

 

The optimal control signal for this harmonic is: 

        
  

         
 ( 18 ) 

 

The double-panel structure has multiple sensors and multiple actuators. Therefore, a multichannel 

feedforward control system in required instead of a single channel feedforward control system. In 

Figure 8, a single panel of the structure with its five piezoelectric actuators is shown. On the 

actuators the sensors are mounted. Activating actuator one, will make the entire panel vibrate. All 

sensors will measure a response. 
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Figure 8 Mulitchannel plant response. 

Also the disturbance signal has a transfer function to all error sensors. For a multichannel system 

equation ( 17 ) is extended to a vector form 

       (      )   ( 19 ) 

where G is a matrix of the complex plant responses. All other elements are vectors. 

Not in all applications it is possible to produce control signals equal to its optimal value. For example, 

the control signals might be limited to an upper bound.  As a result not all disturbance signals are 

cancelled at the error sensors. The problem of finding the optimal value for the control signals can be 

split into L independent optimisation problems. However, most of the time a general formulation is 

used which weights all error signals equal. Its cost function is defined as the sum of the square error 

signals 

  𝑛    𝑛    𝑛  ( 20 ) 

3.2 Adaptive harmonic feedforward controller 
The harmonic feedforward controller presented in the previous section works only under perfect 

circumstances. In practise, due to environmental changes the responses might change over time. 

Temperature changes for example, change the speed of sound (see section 2.1 ) which will change 

the phase of the received signals. Instead of cancelling the disturbance signal it might now be 

amplified. Also small measurement errors of the re    

Therefore, in this section an iterative algorithm for adjusting the control signals is presented, the 

steepest descent algorithm. This algorithm updates the control signals at each iteration in proportion 

with the negative gradient of the cost function with respect to these control variables. This way, the 

algorithm will converge to the optimal solution. The steepest descent algorithm is shown below 

   𝑛        𝑛   
  

    𝑛 
 ( 21 ) 

 

where J  is the cost function, n is the iteration index, and   is the convergence factor. The derivative 

of the cost function is called the complex gradient vector, and can be written as 

      
   𝑛 

    𝑛 
       𝑛  ( 22) 

 

Combining equations ( 21 ) and ( 22) results in the following algorithm 
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   𝑛        𝑛        𝑛  ( 23 ) 
 

in which      is the convergence coefficient 

By combing equation ( 23 ) and ( 19 ) the following equation for the control signal is obtained 

  𝑛       𝑛   [    𝑛       𝑛 ] ( 24 ) 
 

This equation will reach a steady-state solution when U(n+1) is equal to U(n). The term in the square 

brackets is zero under these circumstances. The optimal control signal is thus equal to: 

      
 

 
 ( 25 ) 

 

This is equal to the optimal solution of the non-adaptive feedforward controller.  

The drawback of an adaptive controller is that the algorithm only converges to its optimal solution if 

a number of conditions are met. In an unstable system a certain parameter of the system cannot be 

controlled from the outside. This will result in an uncontrollable output signal, which can reach an 

unlimited value. The input signal will not be able to influence this output.  

The convergence of the algorithm can be examined by combining equation ( 24 ) and ( 25 )  

  𝑛                  (  𝑛      ) ( 26 ) 

 

Equation ( 26 ) can be rewritten to the following form, assuming U(0)=0 

  𝑛                      ( 27 ) 

 

The control signal can only obtain its optimal value if equation ( 27 ) converges. The convergence of 

this equation is determined by the eigenvalues of the matrix GHG. This matrix is called the Hessian 

matrix, and it is the second derivative of the cost function with respect to the control signal. The real 

parts of all the eigenvalues must be positive for the equation to converge. 

Furthermore, there is a limit on the convergence coefficient . The steepest descent algorithm will 

only converge if  

|     |                  ( 28 ) 
 

The above equation will be proven in the principal component space in section 3.6. For complex 

eigenvalues this equation can be written as  

    
       

|  | 
               ( 29 ) 

 

3.3 Control effort weighting 
In this section a method is presented which can make an unstable system stable.  
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An unstable system can become stable by the addition of a control effort weighting factor in the 

control law. The cost function for this system is defined as follows 

  𝑛    𝑛    𝑛     𝑛    𝑛  ( 30 ) 
 

This cost function will not minimise the squared error signals, but a combination of the squared error 

signal and the squared control signals.  So the optimal solution of this cost function will not cancel all 

disturbance signals. The derivate of the cost function, the complex gradient vector, is shown below 

  𝑛  
   𝑛 

   𝑛 
       𝑛     𝑛  ( 31 ) 

 

The steepest descent algorithm with control effort weighting is shown in the equation below 

  𝑛             𝑛     𝑛    𝑛  ( 32 ) 
 

By following the same steps as in the previous section the optimal control signal of this algorithm is 

derived 

      [      ]      ( 33 ) 

  

And the convergence of the algorithm depends on, assuming that U(0)=0  

  𝑛            [      ]       ( 34 ) 

 

The addition of the control effort weighting factor changes the eigenvalues of the system to the 

following values 

  
       ( 35 ) 

 

Thus by adding a control effort weighting factor an unstable system with negative eigenvalues can be 

made stable. Hence, the minimum required control effort weighting is 

                   ( 36 ) 
 

The convergence criteria presented in the previous section is still valid for this system, however the 

new eigenvalues should be used in the equation. In section 3.6.2 the effect of effort weighting on the 

average squared error will be demonstrated.  

 

3.4 Decentralized controller 
In this section decentralized control and the effect of plant uncertainties are introduced. From the 

theory of the latter the effect of decentralized control can be derived.   

3.4.1 Effect of plant uncertainties 

As was shown in equation ( 32 ), a steepest descent algorithm with effort weighting can be used to 

control the system to a minimum error solution when the phase and amplitude of the disturbance 

signal are unknown. However, in reality the response of the plant G is not known exactly. Thus, 

instead of G an estimate of the plant response function is used,  ̂. This uncertainty might change the 
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behaviour of the adaptive algorithm, the system might become unstable and a different finale state 

may be reached. The steepest descent algorithm with effort weighting and plant uncertainty is 

shown below 

  𝑛             𝑛    ̂   𝑛  ( 37 ) 
 

The addition of plant uncertainty to the steepest descent algorithm changes the optimal steady state 

control effort to 

      [ ̂     ]
  

 ̂   ( 38 ) 

 

3.4.2 Decentralized controller 

From the model of uncertainty in the plant response estimation a decentralized control algorithm 

can be derived. If the elements of the plant response matrix G are known or can be reliably 

measured,   ̂ can be set equal to the diagonal elements of G. Hence, each control signal is only 

updated by one error signal. This means that there are now k independent controllers, with an 

actuator sensor pair and they only know the response function between these two elements.  For a 

system with three actuator sensor pairs the estimated plant response is thus given by 

 ̂  [

     
     
     

] ( 39 ) 

 

When    and  ̂ are known the stability of the system can be calculated. The same rules for stability 

apply for a decentralized system as for a centralized system, the eigenvalues of the matrix ( ̂HG+βI) 

must be positive. Else will the adaptive algorithm given in equation ( 34 ) will not converge. Because 

the decentralized plant response estimation matrix  ̂ contains only diagonal elements, the system 

will be more unstable and require larger effort weighting to become stable. 

3.5 Gersgorin’s Theorem 
With Gersorin’s theorem the location of the eigenvalues are estimated. This technique might be 

useful for decentralized application. Because it does not require knowledge of the complete complex 

frequency response matrix at each decentralized location. In this section this method is 

demonstrated. 

3.5.1 The theorem 

In the equation below a square matrix A is given: 

  [

       

   
       

] ( 40 ) 

 

Every eigenvalue of this matrix satisfies at least one of the inequalities: 

|     |  ∑|   |

 

   
   

 ( 41 ) 
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Thus, each row of matrix A gives information on the location of a single eigenvalue. This eigenvalue 

will lie inside a circle region which is centred at aii and has a radius equal to the sum of all other 

elements of that row. 

If a square matrix is transposed, then its eigenvalues do not change. Thus, equation ( 41 ) is also valid 

for the columns: 

|     |  ∑|   |

 

   
   

 ( 42 ) 

 

By combining these two methods an even better assumption of the eigenvalues can be made. Let’s 

illustrate this theorem with a small example. For the square matrix A the following values are chosen:  

  [
    
   
   

] 

The diagonal elements of this matrix are the centres of the circles, in which the eigenvalues must lay. 

The sum of the non-diagonal elements in the associated row or column determines the radius of the 

circle. This is shown in Figure 9. 

Eigenvalue region rows  Eigenvalue region columns 

  

Center Radius 

1 1 

3 2 

7 1 
 

Center Radius 

1 0 

3 1 

7 8 
 

  

Figure 9 Eigenvalue regions 

The blue circles in Figure 10, represent the regions of the eigenvalues if both methods are combined. 

As you can see, combining these two methods can result in a significant improvement in estimating 

the eigenvalues. 
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Figure 10 Combined eigenvalue regions 

The estimation of the region in which the eigenvalues must lie can be further improved by applying a 

similarity transformation. There are however, an unlimited amount of similarity transformations 

possible which all can be combined whit each other.  

An equivalent matrix of A can be created by applying the similarity transformation TAT-1. This 

transformation creates a matrix which has the same eigenvalues as the original matrix A.  
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( 43 ) 

 

From this result the following equation is derived, every eigenvalue of this matrix satisfies at least 

one of the inequalities: 

|     |  ∑
  

  
|   |

 

   
   

 ( 44 ) 

3.5.2 Gersgorin’s theorem and decentralized control 

With Gersgorin’s theorem each decentralized controller can calculate its own control effort 

weighting factor. For this calculation it only requires the complex transfer functions from all 

actuators to its own sensor. 

 

The convergence of the adaptive decentralized feedforward algorithm with effort weighting is 

determined by the eigenvalues of the matrix  ̂     . Applying Gersgorin’s theorem on this matrix 

will result in a stability matrix A, which has the diagonal elements: 

    |   |
    ( 45 ) 

 

which are real and positive, the off-diagonal elements being 

       
     ( 46 ) 
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By using equations ( 45 ),( 46 ) and( 41 ) the following law can be derived, which guarantees stability 

|   |
    ∑|   

    |

 

   
   

              ( 47 ) 

 

This equation can be rewritten in the following form 

|   |  
 

|   |
⁄  ∑|   |

 

   
   

              ( 48 ) 
 

 

As explained earlier in this section a region is calculated in which the eigenvalues may lie. Thus, 

Equation ( 48 ) provides a sufficient condition for the stability of a decoupled system, but not a 

necessary one. It is possible that equation ( 48 ) is not satisfied and yet the system is stable.  

 

3.6 Principal component analysis 
In this section the complex plant response will be transformed to its principal components. This will 

result in a new block diagram and a new formulation of the cost function. The principal component 

form provides more insight in the behaviour of the system. With this information the effect of effort 

weighting is demonstrated. Also the algorithm will be investigated, to show if it can be used in a 

decentralized control system. 

3.6.1 The algorithm 

In a multichannel control system, different modes are excited by the disturbance signal. By 

transforming the complex plant response to its principal components the contribution to the error 

signal of each individual component can be determined. Each component has its own power and its 

own convergence rate.   

The singular value decomposition of the complex plant response of a system with L error sensors and 

M actuators is defined as  

       ( 49 ) 
 

The unitary matrix R contains the complex eigenvectors of GGH and the unitary matrix Q contains the 

complex eigenvectors of GHG. The L columns of R and the M columns of Q are called the left singular 

values and the right singular values, respectively. Ʃ represent the singular values matrix, this is an L 

by M matrix, the diagonal components contain the singular values all other elements are equal to 

zero.  The singular values,   , are sorted by size; the upper left element of the matrix contains the 

largest singular value. The singular values are equal to the square roots of the eigenvalues,   , of the 

matrix GHG or  GGH 

   √   ( 50 ) 

 

The complex Hessian matrix can be expressed as 
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           ( 51 ) 

 

Using equations ( 30 ),( 33 ),( 51 ) and ( 52 ) the optimal control signal without control effort 

weighting is now given by  

       [   ]        ( 52 ) 

 

By combining equation ( 15 ) and ( 49 ) and multiplying both sides by RH the following equation is 

obtained 

    𝑛           𝑛  ( 53 ) 

 

This equation can be transformed to a useful form which is given by 

  𝑛       𝑛  ( 54 ) 
 

In this equation a few new terms are defined; the transformed input signal y(n), the transformed 

disturbance signal p and  the transformed control vector v(n): 

         𝑛  ( 55 ) 
      [               ] ( 56 ) 
  𝑛      𝑛  ( 57 ) 
 

In Figure 11 the block diagram of this transformed system is shown. Because only the diagonal 

elements of the matrix ∑ contain a value that is non-zero, every transformed error signal y is only a 

function of a single transformed disturbance function and a single transformed control signal (when 

the number of sensors and actuators is equal).   

 

Figure 11 Principal component block diagram of a multichannel tonal control system. 

By minimalizing all the independent components of y(n) the error signal  e(n) is minimalized as well . 

Thus the optimal values for the individual transformed control signals are:   

         
 
    ( 58 ) 

 

Because the matrix R is unitary the cost function can be written as a function of y(n) 

          ∑|  | 
 

   

 ( 59 ) 
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The behaviour of a system which is transformed to its principal components is not changed. So the 

convergence behaviour is still the same. The benefit of this transformation is that the individual 

components of the error signal are better observable and controllable.  With this transformation it is 

possible to only control the principle components that contribute most to the error signal. The other 

principal components will just be ignored, and so not proportional high control signals can be 

avoided. 

The adaptive feedforward algorithm of equation ( 23 ) is written in the principal component form as 

follows: 

  𝑛       𝑛       𝑛  ( 60 ) 
 

Because  ∑ is a matrix with only diagonal elements the above equation van be written as M 

independent equations:  

   𝑛        𝑛        𝑛  ( 61 ) 
 

By combing equations ( 61 ),( 58 ) and ( 54 ) and using the fact that    
     the following equation 

is obtained 

(   𝑛        )          (            ) ( 62 ) 

 

The limitation on the convergence coefficient    as shown in section 3.2 is proven by the above 

equation.  

The convergence behaviour of the cost function is shown below. Every mode converges 

independently. Of course only the modes which are controlled will converge, the modes that are not 

controlled will always contribute |  |  to the cost the function. 

  𝑛  ∑|  | 
 

   

        
( 63 ) 

3.6.2 Effort weighting 

As explained in section 3.2 only modes with a positive eigenvalue will converge (see for example 

equation ( 63 ) ). Systems with negative eigenvalues are unstable and must be made stable by adding 

effort weighting. In the principal component form effort weighting is added as follows: 

        [      ]   ( 64 ) 

 

The optimal control signal is obtained by a similar derivation as in the previous section 

       [      ]      ( 65 ) 

 

By combining multiple equations (see Elliott [13]) it can be shown that the minimum mean squared 

error is equal to 
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         ∑
  

  
   

 

 

   

| 
 
|
 
 ( 66 ) 

3.6.3 Conclusion 

The principal component form gives a good overview of the effect of effort weighting. Modes for 

which   
     will not have their contribution to the sum of the squared errors removed by the 

control algorithm. A suitably chosen value of   will not only make the system stable, but can also 

prevent physically unreasonable values of control effort. 

Some applications only control the modes that contribute most to the total error. A decentralized 

implementation of such a system is not possible. Modes are not related to sensor actuator pairs. A 

system that controls only a couple of modes requires the information of all sensors, and has to 

control all actuators. This information can only be processed by a centralized controller. 

3.7 Phasor arithmetic 
In a harmonic controller all calculations are performed with phasors. A phasor is a representation of 

a sine wave whose amplitude and angular frequency are time-invariant. Phasors decompose the 

behaviour of a sinusoid into two components; amplitude and phase.  

The sensors of the system measure a continuous time error signal, which is assumed to have a 

constant frequency and amplitude, this signal is transformed to a phasor. Then some calculations are 

performed, which will result in a control signal in phasor form. This phasor is transformed back to a 

continuous time signal and transmitted by the actuator. In this section the best methods for these 

phasor operations are examined.    

All sinusoid signals have a phase and amplitude. In the equation below, a cosine is written as a 

complex signal: 

              {         } ( 67 ) 

 

In this equation      is the phasor. A phasor can be stored with an amplitude and phase component 

or with a real and imaginary component.  

Two complex numbers are multiplied as follows (using real and imaginary components): 

                                   ( 68 ) 
 

This equation can be modified to a form that uses only three distinct multiplications to calculate the 

real and imaginary part [32]. This new formulation requires a few extra additions, however on most 

systems the computational cost of additions is much less than multiplications. 

     [     ]  [                ]  ( 69 ) 
The process of multiplying two complex numbers is best visualised in polar coordinates. The complex 

signal can be converted to a magnitude and phase signal.  

     [            𝑛    ] ( 70 ) 

 

And two complex numbers in polar coordinates can be multiplied as follows: 
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            [               𝑛       ] ( 71 ) 
 

In polar coordinates only two operations are required, the magnitudes of the two signals are 

multiplied and the two phases are added to each other. However, addition is much harder in polar 

coordinates. For an addition operation the signals need to be transformed to complex numbers 

before they can be added. This is shown in the equation below: 

  
  (                   )

 
 (    𝑛         𝑛    )

 
 ( 72 ) 

        𝑛 (
    𝑛         𝑛    

                   
) ( 73 ) 

3.8 Error signal detection 
The error signal produced by a rotating propeller consists only of a few frequency components. Its 

main error component is equal to the blade passage frequency. The other excited frequencies are 

higher harmonics of this fundamental frequency.  The harmonic controller only has to know the 

errors of these frequencies. In other frequencies the controller is not interested. In this section, three 

techniques are presented for the detection of the phase and the magnitude of these error 

components. In the final part of this section, these techniques are compared and the best solution is 

chosen. 

3.8.1 Fast Fourier Transformation (FFT) 

A Fast Fourier transformation (FFT) measurement of the spectrum has two possible sources of errors. 

The first one is the aliasing error, the power of higher frequencies is mirrored at the lower 

frequencies. This can be avoided by setting the sample frequency higher than 2 times the highest 

frequency present in the measurement signal. Generally it is advised to low pass filter the 

measurement signal before applying a FFT operation. The second source of error is called the leakage 

error, single frequencies will be smeared out in neighbouring frequency bins. This error appears if no 

integer number of periods of the excitation signal is measured. This problem can be avoided by 

changing the configurations of the measurement setup, for example by adjusting the duration or the 

sample time of your system. If this is not possible the error can be minimized by using a window 

other than a rectangular window. In general, a window will smoothly weight the first and last 

samples of a measurement less heavy in order to decrease the discontinuities of the measurement 

signal. 

The spectrum is split in different frequency bins. This introduces another limitation, the desired 

signal must be exactly centred in a frequency bin. Else its power is spread into the two closest bins.  

The FFT algorithm has to gather all N samples before it can calculate the spectrum. Thus, it has to 

store all these samples temporarily. 

3.8.2 Goertzel algorithm 

The Goertzel algorithm identifies only a single predefined frequency component of a signal. While an 

FFT analyses the entire spectrum. Multiple implementations of this algorithm are required to 

measure multiple frequency components. The Goertzel algorithm computes the following sequence: 

  𝑛    𝑛              𝑛       𝑛     ( 74 ) 



26 
 

 

where (s-2) and s(-1) are equal to zero. From this sequence the phasor of the signal can be derived 

with the following equation 

            𝑛       𝑛     ( 75 ) 
 

A great advantage of this algorithm compared to the FFT is that there is no leakage error. Thus an 

arbitrary length of the measurement can be chosen. This reduces the complexity of the 

measurement setup. Also the algorithm can process samples as they arrive. Only when all samples 

are received a small extra operation is required to calculate the phasor.  

The frequency resolution of the Goertzel algorithm is the same as for the FFT. Thus, the same 

number of samples is required to remove the effect of undesired neighbouring frequency 

components. 

3.8.3 Linear Least Square (LLS) technique for phase estimation 

The LLS phase estimation technique uses a maximum likelihood (ML) approach for an optimum 

estimation of the phase and amplitude of the signal. This method can find multiple frequency 

components with a single operation.  

A signal that consists of M sinusoids can be written as follows: 

  𝑛  ∑         𝑛     

 

   

 
( 76 ) 

 

where Am>0, ωm ϵ (0,π) and φm ϵ (-π,π) denote the amplitude, frequency and phase of the m-th 

sinusoid. The cosine term of a single sinusoid can be written as the product of two vectors: 

        𝑛      [      𝑛         𝑛  ] [
          
          

] 
( 77 ) 

 

Notice that the second vector is not dependent on n, and contains all phase and amplitude 

information of the signal.  

Each measurement N samples are measured. And from these samples the phase and amplitude are 

derived. Equation ( 77 ), can be rewritten as a vector of N samples: 

     ( 78 ) 
 

where   [              ] ,  α is a 2 by 1 vector and H is a N by 2 matrix. In this equation H is a 

reference signal with which the input signal is compared. The phase and amplitude differences are 

stored in α. The reference signal H has the following format: 

 

  

[
 
 
 

               𝑛      

                  𝑛         

  
                       𝑛              ]

 
 
 

 ( 79 ) 
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where A1 and      are the reference amplitude and phase. Thus, to find the phase and amplitude of 

the input signal x, parameter α must be estimated. The LLS estimate for α is computed as: 

 ̂             ( 80 ) 
 

The LLS method calculates (HTH)-1 for each measurement.  If the reference signal is the same for each 

measurement this has to be done only once. By extending the vectors multiple signal components 

can be detected (see So [33]). The detection of multiple frequency components will increase the size 

of the matrix HTH, this will significantly increase the complexity of the inverse operation performed 

on this matrix. 

The accuracy of this method is equal to the Goertzel algorithm. If these two algorithms are tuned to 

detect only a single frequency component their frequency responses are exactly the same.  

3.8.4 Comparison 

The disturbance measured by the sensors can obtain any frequency within a certain range, and this 

frequency may change over time. The FFT method is not flexible enough for this situation. It can not 

centre a frequency component in a frequency bin for all situations. This will introduce unacceptable 

large errors in the estimation. Therefore, only the Goertzel algorithm and the LLS phasor estimation 

method can be used for this application. 

In the table below the computational complexity of the different algorithms are shown. Unlike all 

other methods the LLS method compares its phase to a reference phase. Therefore, this method is 

considerably less efficient. In this table also the simple DFT method for a single frequency bin is 

shown. 

 Multiplications Additions / subtractions Sinusoid function 
computations 

Radix-2 FFT 2N log2(N) 3N log2(N) 2N 

DFT single frequency 
bin 

2N 2N 2N 

Goertzel algorithm N+2 2N+1 2  

LLS phasor estimator (3+2)N (3+2)N 2N 

 

In the harmonic controller first the LLS phasor estimator technique will be implemented. This method 

is chosen because it has the best accuracy and is easy to implement. Later this method will be 

replaced by the Goertzel algorithm because it is less computational complex and has the same 

performance. 

4 System identification 
For optimal control of the double-panel structure the transfer functions between all actuators and 

sensors in the system must be known.  With these transfer functions the control algorithm can be 

configured. For optimal control it is required that transfer function estimations are accurate, else the 

system might get unstable. 
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In this chapter various system identification techniques are presented. These techniques are 

compared and the best solution is chosen. The important factors in this decision are measurement 

time and system complexity. 

4.1 Possible implementations 
The dynamic behaviour of a system can be derived from measurements of the input and output 

signals. In the double-panel structure it is possible to excite each input with an arbitrary chosen 

signal.  In normal operating mode the decentralized actuator sensor pairs do not need to 

communicate with each other. Thus, no centralized controller is required. However, in the system 

identification phase communication between these elements is required, there has to be a 

mechanism that tells each decentralized controller when it has to listen and when it has to produce a 

control signal. Else, all components will talk at the same time and no information of the system is 

obtained. Of course, the best option is to limit the communication between the elements as much as 

possible. The disadvantage of such systems is that each controller has to calculate complex functions, 

for which complex hardware is required. This hardware might not be needed in normal operating 

mode. However, there are also techniques that require less complex hardware but they might be too 

slow. 

 

The system identification process can be performed with the following three configurations 

Decentralized System identification 

The first implementation is almost completely decentralized. One after the other, all actuators will 

produce an excitation signal. During this stage all sensors will listen to the response. This way, all 

decentralized controllers will know the response from all actuators to their sensor. According to 

Gersgorin’s  theorem this is enough for a stable system. With this information they can calculate 

their own values for alfa and beta  

Decentralized data analysis, centralized parameter calculation 

This implementation uses the same techniques to determine the transfer functions as the first 

method. Now, however the calculated transfer functions are sent to a centralized controller which 

will determine optimal values for alfa and beta. 

Centralized system identification 

All data received by the sensors is directly sent to a centralized controller which will calculate the 

transfer functions between all elements. This centralized controller will then configure each 

decentralized controller 

4.2 Excitation signals 
The selection of a suitable excitation signal is an important step in the design of an identification 

system [34]. There are different signal patterns possible each has its own advantages and 

disadvantages. In the past, the most common method to measure transfer functions was a 

combination of a slowly swept sine and a tracking filter (consisting of a series of single sine 

measurements at the desired frequency). Nowadays, more advanced digital signal processing 

algorithms are used. These algorithms use the fast Fourier transform to analyse the response.  This 

makes it possibly to use more complex input signals. Instead of exciting the system frequency by 
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frequency, refined waveforms with a broadband spectrum are generated. These waveforms collect 

all spectral information in just a single measurement. 

4.2.1 Measurement time 

Before the transfer function of the system can be measured, the system has to reach its steady state. 

Every time the source signal changes it takes some time before the response is stable and periodic 

again. This initial situation is often called the transient state or the warm-up period.  In the transient 

state the response changes due to the different time delays of the transmission paths between the 

actuators and the sensors. Remember that there are multiple transmission paths between a single 

actuator and sensor (due to reflections in the system). In Figure 12, this situation is shown for the 

actual system. At t=0.5s a single actuator is turned on, producing a 200 Hz signal. After a waiting time 

TW the response is approximately stable. This waiting time is approximately 0.4 seconds; it is the 

same for all excitation frequencies. 

 

Figure 12 Wait time of the double-panel structure. 

The stepped sine method has to wait Tw seconds at each frequency before it can measure the 

response. For an accurate measurement only a few samples are required when for example a 

Goertzel algorithm is used (this algorithm does not need a complete period of a sine for accurate 

results). The measurement time of the stepped sine method can thus be expressed as:       

             ( 81 ) 
 

where Tm and F denote the measurement time of a single sinusoid and the number of frequency 

steps. 

A broadband excitation contains a single period in which all frequencies in a specified range are 

excited. This period is repeated so that a periodic signal is created. When there is a good SNR this 

method only has to measure a single period. This measurement contains information for all 

frequencies. This measurement can start after the transients have disappeared, thus after a waiting 

time Tw. The broadband measurement time is 

    
 

  
    ( 82 ) 
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where    is the frequency resolution, one period of the broadband measurement equals 1/  . 

A broadband signal distributes its power over F frequencies, while a stepped sine measurement 

concentrates all its power on a single frequency. Thus, the SNR ratio is much higher for the stepped 

sine method. To compensate for this poor SNR often the average of multiple periods of broadband 

excitation is used. 

4.2.2 Broadband excitation signals 

In this section broadband excitation signals are examined. The goal of this section is to understand 

the basics of these methods and to determine which resources are required to generate them and 

what is needed to extract information from their response. Broadband excitation signals are 

discussed in more detail by Pintelon [34].  In this section, two deterministic signals are inspected and 

a general conclusion about random excitation signals is presented. 

Periodic chirp 

This is the most basic broadband excitation signal. In one period a sine is swept from its lowest to its 

highest frequency. This is repeated so that a periodic signal is created. 

        𝑛(       )                 ( 83 ) 

 

With T0 the period,             ,          ,       . The lowest frequency in this equation 

is      and the highest     . 

A periodic chirp can be generated by a single frequency controlled oscillator. This component is 

already present in the original setup. From the response all frequency components must be extracted 

by a FFT operation.  

Schroeder multisine 

The Schroeder divides it power in all frequencies equal. This broadband excitation signals is created 

by adding all frequency component together. This is shown in the equation below 

     ∑               

 

   

 ( 84 ) 

 

with Schroeder phase              .  

This signal has a perfect spectrum, it excites only frequencies within the aimed frequency band. In 

Figure 13, this spectrum is compared with the spectrum of the periodic chirp method.  In this figure 

the aimed frequency band had a lower limit of 2 Hz and an upper limit of 42 Hz. 
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Figure 13 Broadband excitation signals in the frequency domain. 

The main problem of the Schroeder multisine method is that it requires a FFT technique to generate 

the signal. This is too complex to implement it decentralized. For the analysis of the response also a 

FFT operation is required. 

 

Random excitations 

The mayor difference compared with periodic excitations is the variation in excitation from one 

realisation to the other. A random signal is transmitted by the actuator and received by the sensor. 

To extract the frequency response the original signal is required. This means that this method cannot 

be implemented decentralized. The original signal is only known at its source.    

Deterministic excitations also have superior properties compared with random excitations. Random 

excitations putt less power in the system and are prone to leakage errors.  

4.3 Conclusion 
The preferred method for system identification is the decentralized implementation. In experiments 

the performance of such a system must be compared with a system which calculates the control 

effort weighting factor and the convergence rate centralized (see section 3.2 ). If the performance 

degration of the decentralized controller under normal circumstances is not very huge this method 

will be used. Else one of the other two methods should be chosen. Decentralized data processing 

might reduce the requirements on the data transport between the decentralized controllers and the 

centralized controller. Therefor as an alternative this method is chosen. 

The extra hardware required for analysing and producing the excitation signals must be as little as 

possible. Hence, the best method is the simple stepped sine excitation signal. All hardware for this 

method is already present on the decentralized controllers. To accelerate this process a few 

frequencies can be analysed in parallel, similar to the Schroeder multisine method  

5 Simulations 
The simulations in this chapter use models of the transfer functions from a finite element model of 

the experimental setup. With this model the transfer functions between all actuators and sensors for 

frequencies from 10 to 1000 Hz were calculated. This includes the transfer function from the primary 

source to the sensors on the double-panel structure. All these transfer functions are an estimate of 

the true behaviour. Feedback control was also integrated in this model. So that the transfer functions 

with feedback could be obtained as well.  
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This chapter contains two sections. In the first section the control effort weighting factor for a 

decentralized controller is calculated for the entire frequency range. The resulting effort weighting 

factor will show if a decentralized implementation in the double-panel structure is realisable. In the 

second section a decentralized feedforward control system is created. This system will also contain a 

model of the plant, so that the performance of the controller can be analysed.  

5.1 Control effort weighting 
In this simulation the minimum control effort weighting factor β for the experimental setup is 

determined for the entire frequency range. In Chapter 3, two methods were presented to calculate 

the control effort weighting factor. The first method is an optimal solution based on the eigenvalues 

of the Hessian matrix of the cost function (see section 3.3). The second method uses Gersgorin’s 

theorem (see section 3.5). This method is not optimal but easier to implement in a decentralized 

application.  

The main goal of this section, is to determine if noise reduction can be realized by decentralized 

control of the double-panel structure. With equation ( 66 ) from section 3.6.2, shown below, this is 

analysed.  

         ∑
  

    
 

 

   

| 
 
|
 
 

If the system has a mode with an eigenvalue that in size is comparable to the effort weighting factor, 

then for this mode attenuation of the disturbance can be achieved. Therefore, in this analysis the 

largest eigenvalue is compared with the effort weighting factor. 

Below, equation ( 47 ) from section 3.5.2 is shown. With this equation the effort weighting factor is 

determined according to Gersgorin’s theorem. 

|   |
    ∑|   

    |

 

   
   

              

The ratio of |   |
  to   is determines if Gersgorin’s theorem can make an accurate estimate of the 

eigenvalue. If beta is much larger than the square of the direct coupling than this theorem is not very 

useful. 

First a configuration which only controls the radiant panel is examined. Then a system using both 

panels is analyzed and as last the effect of feedback is shown. 

Controlling the radiant panel 

With the data from the finite element model the values for          ,            , |   |
  and       

are derived for all frequencies.  In Figure 14, these parameters for the decentralized controller 

positioned in the middle of the radiant panel are shown. In this simulation, only the actuators on the 

radiant panel are controlled. For frequencies until approximately 320 Hz no control effort weighting 

is required (eigenvalue method). Thus, all modes of the disturbance signal can be suppressed in this 

region.  From 320 to 400 Hz no attenuation is possible, all eigenvalues are negative in this region. At 

higher frequencies some results may be obtained especially in the 400 to 500 Hz range. 
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Figure 14 Simulation results of actuator sensor pair 1. 

The beta determined by the eigenvalues of the Hessian matrix is lower for most frequencies than the 

beta of  Gersgorin’s method. However for some frequencies with Gersgorin’s method a lower value 

for beta is obtained, this is because Gersgorin’s method calculates for each decentralized controller a 

separate value for beta. A lower beta at a single decentralized controller will result in higher values 

for beta at the other decentralized controllers. Hence, the overall performance of the eigenvalue 

method is better. In Figure 15, the simulation results for another decentralizd controller are shown, 

to demonstrate this effect. For frequencies between 300 and 400 Hz the effort weighting factor is 

now higher for Gersgorin’s method. 

 

Figure 15 Simulation results of actuator sensor pair 2. 

In the next experiment the direct-coupling and the cross-coupling of the decentralized controllers is 

examined. In Figure 16, the normalized power received by the centre acceleration sensor of the 

radiant panel is shown. This power is transmitted by the five actuators of the radiant panel. No 

control effort weighting is required if the cross-coupling of the system is smaller than the direct 

coupling. Thus, R1 must be larger than a half. The frequency regions that require no effort weighting 

correspond to the regions shown in Figure 15. 
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Figure 16 Actuator sensor pair 1: Direct coupling versus cross coupling. 

Controlling both panels 

If the decentralized controllers of both panels are used there is more cross coupling. Each sensor 

receives a signal from all sources. Which makes the overall contribution of the own actuator smaller. 

In Figure 17, the normalised received power of the centre sensor of the radiant panel is shown. At 

low frequencies the cross-coupling between the two panels is significant. At higher frequencies only 

the actuator in the middle of the incident panel has a significant contribution to the cross-coupling.  

 

Figure 17 Actuator sensor pair 1: Direct coupling versus cross coupling both panels. 

 

Controlling the radiant panel with feedback 

In Figure 18 beta is determined for the decentralized control in the middle of the radiant panel with 

feedback. The feedback reduces the direct coupling, the values of|   |
   are smaller. For large regions 

the ratio  (eigenvalue) to max eigenvalue is smaller with feedback. However, there are some 

frequency ranges where the hessian matrix contains no positive eigenvalues, in this regions almost 

no noise attenuation can be obtained.  
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Figure 18 Simulation results with feedback of actuator sensor pair 1.  

In Figure 19 the direct coupling and cross coupling are shown for the decentralized controller with 

feedback. The power distribution is much smoother; this makes it easier to estimate the entire 

spectrum. For the estimation of the spectrum, only a limited number of frequencies are measured. 

Between those frequencies an interpolation technique is used to estimate the response at the other 

frequencies. Hence, a smoother distribution requires a smaller amount of measured frequency 

components to estimate the entire spectrum.  

 

Figure 19 Actuator sensor pair 1: Direct coupling versus cross coupling with feedback. 

Conclusion 

With decentralized control the noise transmission of the double-panel structure can be reduced. All 

decentralized controllers interfere, and the more active actuators the larger the mutual disturbance. 

Controlling only the radiant panel requires the smallest control effort weighting factor. Feedback 

decreases the ratio   to largest eigenvalue, thus it might improve the overall noise reduction.  

5.2 Adaptive decentralized Harmonic controller 
In this section a model of an adaptive decentralized harmonic controller is developed in Simulink. 

This controller operates on each harmonic separately. For every harmonic a different configuration is 

required. With this model the theoretical performance of the controller is studied.  

In Figure 20, the top level model of the simulation setup is shown. The plant and the controllers are 

created in the frequency domain, thus no time to frequency domain transformations are required.  
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The disturbance signal has a constant value.  In this model it is assumed that there are no time 

delays.  

The plant is transformed to the principal component form (see section 3.6), hence the behaviour of 

all modes of the plant can be examined. The model contains two controllers; with a manual switch 

you can select the desired controller. The Principle component controller is added to demonstrate 

that specific principal components can be supressed without influencing the other principal 

components. The decentralized harmonic controller is the real test controller which will be used in 

the normal configuration. Also notice the “turn control on” block, this block will turn the controller 

on after half a second. The first half second the disturbance signal is not suppressed. 

 

Figure 20 Top level presentation of the model. 

When this Simulink model is opened it will call a Matlab function which will load the transfer function 

data from an external file. From this date the gain matrixes of the model are derived for all possible 

frequencies. Also the minimum control effort weighting factor for a stable decentralized system is 

calculated for all frequencies (the equations of chapter 3 are used). 

However, the model operates only at a single frequency. In the “freq” block diagram this frequency 

can be specified. Every time when a new simulation is started, a Matlab function is called which will 

initialise the blocks of the Simulink model. The frequency dependent blocks point to matrixes in the 

Matlab workspace. This data is adjusted for the correct frequency. The values used for the control 

effort weighting parameter and the convergence rate are specified in this function, as well. 

Harmonic decentralized controller 

The decentralized harmonic controller uses the following equation to update the control signal. The 

initial control signal is equal to zero. 

  𝑛             𝑛    ̂   𝑛   
 

In this equation Ĝ is the estimated plant transfer matrix which contains only the direct coupling 
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elements. Thus, all non-diagonal components are zero.  In Figure 21 the block diagram 

representation of this control law is shown. The values of   and   are derived from the Hessian 

matrix of the cost function (see section 3.3). Furthermore, the minimum value of   is limited to one 

thousandth of the maximum value of   (  has a different value for each frequency). An enable signal 

is added to this model, it can reset the initial state of the control signal and can deactivate the 

controller. The controller is active when the enable signal is high; else it will output a value equal to 

zero. 

 

Figure 21 Decentralized adaptive controller with control effort weighting. 

For the Harmonic Decentralized controller different datasets can be selected. These datasets contain 

the transfer functions from the complex plant and from the disturbance source to the plant. Each 

dataset has a different feedback configuration of the plant (also no feedback). Furthermore, the 

feedforward configuration can be selected.   

In this simulation multiple configurations are simulated and their results are compared. For each 

configuration the behaviour between 10 – 1000 Hz is analysed. Each simulation had a length of 5000 

steps. In this amount of steps, the algorithm could converge to its optimal solution for all 

frequencies.   The best indication of the transmitted sound by the panel is by looking at the kinetic 

energy of the radiant panel (see section 2.3). However, in this simulation the mean square 

acceleration of the panel is measured. The mean square velocity of the panel is proportional to the 

kinetic energy of the panel. The magnitude of velocity is equal to the magnitude of the acceleration 

divided by the angular frequency,    
 ⁄ . The mean square acceleration is thus almost 

proportional to the kinetic energy of the panel. 

 

The following three configurations are examined: 

Pressure speaker feedback combined with radiant panel feedforward 

In the future, six pressure speakers will be installed in the cavity of the double-panel structure.  In 

Figure 22 the mean square acceleration of the radiant panel is shown for different control strategies.  

The previous section showed that low frequencies require no control effort weighting. This 

simulation shows that indeed the best performance is obtained in this region.  All resonance peaks 

below 400 Hz of the system are removed by the feedback and feedforward combination.  The 
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feedforward controller on its own can not remove the peak near 130 Hz. The resonance frequency of 

the acrylic box is 420 Hz, the peak in the frequency response at this frequency can not be removed. 

 

Figure 22 Mean square acceleration of the radiant panel with pressure speaker feedback and radiant 
panel feedforward control. 

In Figure 23, the summed control effort of all actuators on the radiant panel is shown. The control 

effort signal is compared with the magnitude of the disturbance signal. In this figure only the control 

effort of the feedforward algorithm is shown, the feedback algorithm requires additional control 

effort. Both configurations require the most control effort at low frequencies. The addition of 

feedback reduces the amount of control effort that is required. 

 

Figure 23 Control effort of the radiant panel. 

For all frequencies the adaptive algorithm converges to its optimal solution. Figure 24 shows how 

many steps were required to reach this optimal steady-state. This state is reached as soon as the 

algorithm stays within a 1% deviation range of its final state. 
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Figure 24 Convergence rate of the two configurations. 

Radiant panel feedback combined with radiant panel feedforward 

The same experiment is performed for a configuration with feedback from the radiant panel instead 

of the pressure speakers. This feedback configuration can only achieve little noise reduction on its 

own, as you can see in Figure 25. However, in combination with feedforward control some significant 

reductions can be obtained. Compared with the previous configuration, at high frequencies more 

reduction is achieved. At lower frequencies this configuration performs less well. The resonance peak 

near 130 Hz can not be removed. The required control effort and the convergence rate of this 

configuration are similar to the previous configuration. 

 

Figure 25 Mean square acceleration of the radiant panel with radiant panel feedback and radiant 
panel feedforward control. 

Pressure speaker feedback with both panel feedforward 

In Figure 26 the simulation results for this configuration are shown. The feedforward control is able 

to reduce the first two resonance frequencies by 20 dB. This is much more than the feedforward 

control of the radiant panel could achieve. At higher frequencies its performance is worse. The 

addition of feedback does not improve the noise reduction by much.  
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Figure 26 Mean square acceleration of the radiant panel with pressure speaker feedback and radiant 
+ incident panel feedforward control. 

In Figure 27 the control effort of the incident panel is shown. For low frequencies these control 

efforts are very high, approximately 2 to 3 times higher than the control effort of the radiant panel. 

Inserting such large control signals in the system may result in unstable behaviour.   

 

Figure 27 Control effort of the incident panel. 

6 Implementation 
In this chapter self-created C MEX S-functions and complete Simulink models are explained. The C 

MEX S-functions are used in Simulink to perform small tasks; they are used in the complete models.  

 Simulink models for system identification and decentralized feedforward control are treated in this 

chapter. From basic models more complex models are derived which will perform their task faster or 

with less resource.  All implementations in this chapter are used on the real setup, no offline analysis 

models are presented here. All blocks work in the real-time mode of Simulink, in the real-time mode 

no complex output signals are allowed. 
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Simulink has a large library of blocks which all perform a specific function. Most of these blocks are 

written in C MEX S-functions, this are C/C++ functions which have specified methods which are called 

by the Simulink engine.  They are written in C/C++ for faster execution.  In Simulink all these blocks 

are connected, and the execution order is determined.  The fewer blocks your model contains, the 

faster the execution is. In this paragraph the behaviour of the created blocks is explained. All created 

blocks can handle a dynamical number of inputs. So that they can be used to control a dynamical 

number of actuator sensor pairs without any modifications 

6.1 Stepped sine system identification 
In Figure 28 the stepped sine system identification diagram is shown. This system controls a single 

actuator and it measures the error signals of all sensors of the double-panel structure. The system 

identification model is connected to the plant, which is shown in this diagram as well. In reality, the 

plant is not inside the model and it should be replaced by AD and DA converter blocks with their 

corresponding filters.  

 

Figure 28 Stepped sine system identification. 

The stepped sine model contains some logic to generate the stepped sine wave and a LLS phasor 

detector. For all blocks the sample rates are shown. Every 0.4 seconds the frequency is increased 

with 10 hertz.  The identification process will end as soon as the frequency reaches 1000 Hz. After a 

frequency change the system waits 400 samples before the response is measured. In this time the 

transients of the system can disappear, so that a steady-state response is measured (see section 

4.2.1).  The following 400 samples are used for a linear least square estimation of the phasor of the 

error signals (see section 3.8.3).  In Figure 29 a timeline of this process is shown, the numbers on the 

horizontal axis are the sample times.   
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Figure 29 Input and output signals of the system identification model. 

The presented system identification model estimates for all sensors the frequency response of a 

single actuator. For a complete identification of the plant, this model must be executed for each 

actuator. The double-panel structure contains 5 piezoelectric actuators on both panels, hence the 

total time required for measuring all the transfer functions of the double-panel structure is   

                            

6.2 System identification parallel 
In Figure 30, the parallel stepped sine system identification model is shown. This model measures the 

transfer function from one actuator to all sensors. For a complete system identification this process 

must be repeated for all actuators. 

 

Figure 30 Parallel System identification model. 

In Figure 31 the timeline of the execution of this model is shown for the first samples. The 

transmitted signal by the signal generates consists always of four frequency components. Every 0.1 

seconds a frequency component is removed and a new one is added. In the simple stepped sine 

method of the previous section the LLS phasor estimate block was only working half the time. Every 

time it had to wait till the transmitted signal became stable again, before it could start a new 

measurement. In this model the LLS phasor estimate block is working continuously.  In 200 samples 

the phase and amplitude of a single frequency component is measured.  

                           0
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Figure 31 The output signals of the signal generator block. 

6.3 Decentralized feedforward controller 
In Figure 32 the scheme of the adaptive decentralized feedforward controller is shown. In the 

previous section the AD DA blocks were not shown, however in this scheme they are.  The three 

blocks that form the controller are shown in the centre of the figure.  The MIMO LLS phasor 

estimator block is used in the system identification part as well, this block measures the error signals. 

The green block is the feedforward controller, it determines the control signals from the error 

signals. The last block of the controller generates the time domain control signals. Furthermore, it 

generates the reverence signals for the LLS phasor estimator. The blue blocks in the diagram can be 

accessed and updated during the execution of the model. The blue blocks on the right store the 

measured signals and with the blue blocks on the left the frequency can be selected and several 

components can be activated or deactivated. Besides the controller also the disturbance signal is 

produced in this model. All input and output signals have a sample rate of 2000 Hz. The adaptation 

process has a frequency of 2.5 Hz. 
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Figure 32 The decentralized adaptive feedforward controller. 
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The MIMO single frequency decentralized feedforward controller is the crucial block of this scheme.  

This block calculates the control signals for multiple actuator sensor pairs, no information is 

exchanged between pairs. So it is a real decentralized feedforward controller. 

The input ‘Error Signal’ is a phasor which is split into a real and imaginary component. This input can 

receive a dynamic amount of error phasors. The ‘Error Signal’ has the following format: 

  

[
 
 
 
 
 
  {   

   }

  {   
   }

 
  {   

   }

  {   
   }]

 
 
 
 
 

 

The block diagram has three important parameters, α,   and G. These parameters must be 

specified before a simulation is started. Parameter G has the following format: 

  [
  (          )   (          )    (          )   (          )

     
  (          )   (          )    (          )   (          )

] 

The width of matrix G must be equal to the size of vector e. The parameters α and   are specified in a 

similar way. For each error signal at each frequency a value for these parameters is specified. 

However, these parameters are not complex, so they are not split into two components. 

Linear interpolation 

The input ‘frequency’ determines which values of the tables are used, Linear interpolation is used to 

fill the gaps between the table elements. The controller will react on changes of the disturbance 

frequency. At each iteration the output ‘control signal’ is updated. Equation ( 37 ) is used to calculate 

the control signal.  

7 Experiments 
In this chapter the experimental setup is introduced and its behaviour is analysed. This analysis will 

show if harmonic control with piezoelectric actuators is possible. The implementations from the 

previous chapter are tested in practise. Their results are compared with the results in the 

simulations. Furthermore, the effect of varying circumstances on the harmonic decentralized 

feedforward controller is examined. 

7.1 The experimental setup 
The fuselage wall of an airplane contains an inner wall and an outer wall. Between these two walls a 

cavity is present which can contain some materials. On the inner wall the noise reduction system will 

be mounted. Of this wall an experimental setup is created which has similar resonance frequencies. 

In Figure 33a the experimental setup is shown. An acrylic box with 40 mm thick walls is mounted on 

top of a structure which contains a large speaker. This speaker produces the primary disturbance 

signals. The 40 mm thick walls will transmit almost no sound, all sound is pertained in the box and 

can only escape through the double-panel structure which is mounted on top of the acrylic box ( and 



46 
 

through the structure of the speaker).  Through reflections of the top and bottom of the acrylic box 

resonance frequency will occur, which have wavelengths similar to the dimensions of the box.  

The incident panel of the double-panel structure is made of aluminium and the radiant panel has a 

honeycomb structure. Between these two panels is a 35 mm air gap. In the table below all the 

dimensions and the densities of the double-panel structure are shown. 

 Parameters Value Unit 

Acrylic box inner dimensions 
wall thickness 

420 ·297 · 350 
40 

mm3 

mm 

Aluminium panel dimensions 
density 

420 ·297 · 2 
2700 

mm3 

kg/m3 

Middle cavity dimensions 420 · 297 · 35 mm3 

Honeycomb panel dimensions 
density 

420 · 297 · 5.8 
409 

mm3 

kg/m3 
 

In Figure 33b the radiant panel is shown, on this panel five piezoelectric actuators are mounted. 

These actuators are controlled independently and can control the panel at different resonance 

modes. On top of actuators accelerometers are put. With five accelerometers on one panel an 

accurate estimate of the kinetic energy of the panel can be made till about 1000 Hz. On the 

aluminium panel the same configuration of sensors and actuators is installed. All sensors and 

actuators are installed on the upper side of the panels. 

     

Figure 33 a) the experimental setup, b) the radiant panel. 

7.2 Measurement system 
In the current development phase all actuators and sensors are connected to a Linux platform.  On 

this platform all outputs and inputs can be controlled with real-time models created in Simulink. 

These models have a sample time of 2 kHz. However, the signals send to the actuators are up 

sampled to 100 kHz.  

In the next phase of the development of this noise reduction system the collocated actuators and 

sensors will have their own processing unit. For decentralized feedforward control no connection 

with an external platform is required anymore, everything is processed locally. However, during the 

system identification phase still some connectivity with a centralized controlled is required to 

coordinate this process. Thus, not all wires on the panel can be removed. 
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The next section will specify the components used to measure signals in the current system. Also the 

behaviour of the platform is tested. With this information all measured signals can be transformed to 

real acoustic quantities. 

Accelerometer 

Accelerometer:  Deltaron accelerometer Type 4517-002  

Sensitivity:  1.0 mV/ms-2 

frequency range 1Hz to 20 kHz  (amplitude +-10%) 

This input signal is amplified with a factor 10 by the sensor signal conditioner before it is send to the 

tar-r1-xenomai.  

Microphone 

Sensitivity: 515 mV/Pa 

This is the sensitivity including all amplifiers. For the measurement a device was used which 

produced a 1 kHz signal with a sound pressure level of 94 dB (this is 1 Pascal).  

Platform 

Input gain tar-r1-xenomai:  0.037  

Output gain tar-r1-xenomai:  12.34 

The output signal of the platform is filtered by a low-pass and a high-pass filter. The low-pass filter is 

used to remove the DC-component and the high-pass filter is an anti-alliasing filter.To test the 

response of the system, the followinge experiment is performed. In a simulink model a sinusodial 

signal with an amplitdude of 0.1 volt is generated. This output signal is directly coupled to the input 

of the platform and measured again by the same simulink model. In Figure 34, the measured 

frequency response is shown. On an analog scope the same signal was measured, it had a simular 

shape as the signal shown in the figure below. Thus, the main transformation of the signal occurs at 

the output stage in the DA conversion. 

 

Figure 34 Frequency response of the platform. 
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7.3 Frequency response analysis 
In this section, the frequency response of a collocated actuator sensor pair is examined. For the 

control algorithm it is important that the signal produced by the piezoelectric actuators have low 

harmonic distortion and other distortions.  Each controller can control the disturbances only at its 

tuned frequency. So, all signals at other frequencies are uncontrolled and produce undesired sound. 

This will degrade the performance of the control system. 

In Figure 35, the transfer function of an actuator sensor pair is shown. The experimental setup only 

contained a single panel during this test, so the resonance peaks in the response differ from results 

shown elsewhere in this report.  

 

Figure 35 Transfer function of an actuator sensor pair of a single panel structure. 

In Figure 36, the complete output spectrum for each input frequency is shown. The actuator 

transmits a signal with the frequency shown on the “input frequency” axis. As input signal a slowly 

swept sine was used (see section 4.2). After measuring 800 samples, the frequency of the sine is 

increased with 10 Hz. The first 400 samples of the measured signal are ignored, because it takes 

some time to reach a steady state after there has been a frequency change.  A fast Fourier 

transformation is performed on the last 400 samples. The measured output spectrum is scaled; the 

frequency bin of to the input signal is set to one.  

 

Figure 36 Normalised frequency response of an actuator sensor pair. 
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The largest measured frequency component is equal to the fundamental frequency for all input 

excitation frequencies. For low and high frequencies the measured spectrum is more broadband, this 

is due to the settings of the DA converter which attenuates these frequencies (see Figure 34). The 

first harmonic is good visible around 300 Hertz. Higher harmonics are not excited much.  Even after 

normalisation the distortion is still larger at the resonance frequencies of the system than at other 

frequencies. All frequencies also excite the resonance frequencies, for all input frequencies there is a 

small response visible at approximately 190 and 630 Hz. When the actuator is controlled with a 

sinusoid of 630 Hz all other frequencies are also excited relatively more. 

7.4 Transient state inspection 
At each iteration of the adaptive algorithm the control signals change. In one sample time, Δt, the 

phase and the amplitude are modified to the new derived values. Due to this abrupt change in 

amplitude and phase the system needs time to reach its steady state again. In Figure 37, the 

response of a single error sensor during the feedforward adaptation process is shown. Each time the 

control signal is updated a peak in the response appears. This non steady state limits the speed of the 

convergence rate. After each update of the control signal you have to wait till the transients of the 

system disappear before the new steady state error can be measured. 

 

Figure 37 Response of a single sensor during the feedforward adaptation process. 

In this paragraph the response during the transient state is examined. This response is compared 

with responses of less abrupt changes in the control signal. If the control signal update excites other 

harmonics, the performance of the controller might be limited. Also when there is no leakage to 

other harmonics during the control signal update process, it may for example be possible to control 

and measure other frequencies during the current transient state. 

The rapid modification in the phasor results in a large change of the response of the system. 

Smoother transitions might have a positive effect on the response. In this paragraph a smooth 

transition will be compared with an abrupt modification of the phasor. In the equation below, a 

linear transition of the control signal is shown: 
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In Figure 38, for three different speeds of modification the time and frequency domain behavior 

during a control signal change are shown. At t=t0=0.05s the control signal is changed, its phase is 

shifted with 90 degrees and its amplitude is increased with a factor 2. The control signal will change 

between t0 and t1 linear to its new state. In  

 

Figure 38 Control signal updates at three different rates. The left figures show the time response of 
the collocated acceleration sensor, at t=0.05s the control signal of the piezoelectric actuator is 
changed. The right figures show the frequency response during this update, the first 100 samples 
after the start of the updating process are used.  

The slow linear transition between control signals removes the leakage to other frequency 

components significantly. The abrupt peaks in the time domain are removed. In the frequency 

domain the undesired peak close to 600 Hz is almost entirely removed. 

 

However, the above mentioned method can not be integrated in the current system. The 

feedforward controller stores the amplitude and the angle of the signal which it is currently 

transmitting. A change in phasor as described by equation ( 85 ) can not be realized in the current 

implementation without changing the structure significant. Thus, another comparable method is 

used instead. This method changes the amplitude and angle of the old control signal linear in 100 

steps to the new control signal. In Figure 39, this method is shown in action. The spikes during the 

control signal update process are removed. 
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Figure 39 Response of a single sensor during the feedforward adaptation process with slow control 
signal updates. 

In Figure 40 the Fourier transform of 200 samples direct after a control signal update is shown (blue 
solid line). The red dotted line is the old abrupt update method. The new method reduse he leakage 
to neighbouring frequencies and the excitation of other frequencies is reduced. 

 

Figure 40 Frequency response of a single sensor just after an adaptation step during the feedforward 
adaptation process. The red dotted line is the old abrupt control signal modification technique and 
the blue solid line is the new slowly adjusting technique. 

Conclusion 

The control signal update technique presented in the section has several benefits over the old abrupt 

control signal update technique. The first advantage is that the abrupt peaks during a state transition 

are removed, these peaks produce undesired sound. As can be seen in Figure 40, the total power of 

the signal during the transition is reduced. Also the leakage to other frequency components is 

significantly reduced. Thus, it may be possible to control and measure other frequencies during the 

current transient state. This phenomenon is examined further in section 7.5.2. 

7.5 System identification 
In this section the accuracy of the system identification models presented in the implementation 

chapter are examined. First the results of the most simple algorithm, which uses the LLS phase 

estimation technique is compared with a reference method from which is known that it behaves 

appropriate. Next the accuracy of the more complex parallel frequency excitation system is analysed. 

7.5.1 Verification of the stepped sine method 

The amplitude measured by the implementation explained in section 4.2 is compared with an 

existing trusted setup. This operation is performed to verify the correctness of the developed 
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method. The other method uses a device called SigLab, this device performs 100 fast frequency 

sweeps (periodic chirp, see section 4.2.2). The duration of each frequency sweep is approximately 0.5 

seconds. The results of all sweeps are averaged. The blue solid line in Figure 41 shows the amplitude 

response for the entire frequency range for this system. The LLS system identification method is 

shown in this figure as well. Between 100 and 600 Hz the two methods measure similar responses. At 

higher frequencies the results  differ, this is due to the limited passband of the platform (see section 

7.2).  

 

Figure 41 LLS amplitude estimation validation. 

The stepped sine method is run with 2.5 Hz and 10 Hz frequency steps. The 10 Hz steps miss the 

resonance peak at 310 Hz. With linear interpolation the response at this frequency can not be 

estimated. This might result in an unstable system. Thus, the frequency step size of the stepped sine 

must be smaller than 10 Hz. 

7.5.2 Parallel stepped sine method 

In this section the performance of the parallel stepped sine method of section 6.2 is examined. The 

response of this method is compared with the response of the non-parallel method of the previous 

section.  In Figure 42the magnitude response of both methods are shown. This is the response from a 

single actuator to its collocated sensor. The measured magnitudes of both methods are similar, only 

in regions where the response is very small some differences are noticeable.  



53 
 

 

Figure 42 Magnitude response of parallel and standard system identification. 

In Figure 43 the phase difference of both methods is shown. At the resonance frequencies the phase 

difference is small and at frequencies where the structure is only slightly excited larger phase 

differences are measured. For these slightly excited frequencies no control is required thus the 

parallel method for system identification can be used in the double-panel structure. 

 

Figure 43 Phase difference of the two system identification methods 
 

7.6 Offline analysis 
In the simulations of Chapter 5 the complex plant response was estimated by a finite element model. 

In this section the frequency response of the experimental setup is used in an offline setup. This 

setup is shown in Figure 44, it contains an adaptive decentralized feedforward controller, a model of 

the plant and a disturbance source. Furthermore, there are a few blocks that record the error and 

control signals. Each colour in the model represents a sample rate. Yellow blocks have multiple 

sample rates. An exact copy of the decentralized feedforward controller is used in the real setup. In 

this section, the theoretical performance of the decentralized feedforward controller is examined.  In 

the next section these results are compared with the true practical values.       
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Figure 44 Offline model of the feedforward controller and the plant. 

The decentralized controller is configured with two techniques. The first technique uses Gersgorin’s 

theorem to determine the value of the control effort weighting factor and the second method sets 

the control effort weighting factor based on the eigenvalues of the Hessian matrix of the cost 

function. In Figure 45, the kinetic energy of the radiant panel for both control strategies is shown. 

Only the radiant panel is controlled in this simulation.  
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Figure 45 Kinetic energy radiant panel with offline decentralized feedforward control. 

The performance of the configuration based on the Hessian matrix is better. However, the method 

based on Gersgorin’s  theorem, reduces the kinetic energy significant at low frequencies as well. In 

Figure 46 the maximum control effort of an actuator on the radiant panel is shown. This is the control 

effort required to the keep the structure in its steady state. At low frequencies the control effort of 

both methods is very similar. The control effort is small for all frequencies, the actuators on the real 

setup are able to produce control signals with this magnitude. 

 

Figure 46 Steady-state control effort of the hardest working actuator. 

Both methods obtain significant reduction in the kinetic energy of the double-panel structure. 

Therefore, the performance of both methods must be examined on the real setup. 

7.7 Adaptive harmonic feedforward controller 
In this section the performance of the feedforward algorithm on the real setup is analysed. In the 

first part of this section the performance of the algorithm based on the Hessian matrix of the cost 

function is analysed extensively. It is also compared with the simulations. In the last part of this 

section different control strategies of the panel are compared with each other. For all experiments 

the controller shown in section 6.3 is used. 
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The performance of the controllers is analysed by measuring the kinetic energy of the panel and the 

sound pressure level above the structure. The kinetic energy of the panel is approximated by the 

following equation 

         
 

 
       [∑(
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] ( 86 ) 

 

Where ai is the amplitude of the acceleration measured by sensor i, N the number of sensors,   is 

the angular frequency and vref is the reference velocity. The reference velocity is equal to 5.0∙10-8 m/s 

(see section 10). The calculated value is proportional to the kinetic energy.   

Minimising the total kinetic energy of a structure does not generally result in the minimisation of 

radiated sound. In fact a reduction of vibration may be accomplished by an increase in sound 

radiation. Therefore, a microphone is placed 15 cm above the panel to measure the transmitted 

sound of the panel.  

7.7.1 Configuration based on the Hessian matrix of the cost function 

In Figure 47 the kinetic energy of the radiant panel is shown. At each frequency a disturbance signal 

is produced for 10 seconds. During the first second the controller is not activated, hence the 

disturbance is not suppressed. After one second the controller is activated and the control algorithm 

has 9 seconds to reduce the disturbance as much as possible. In the first second the noise without 

control is measured and in the last second the noise with control is measured. 

The kinetic energy reduction in the simulation gives a good identification of the reduction on the 

real-setup. Only minor differences are observable. Still the simulation is a bit to optimistic. 

 

Figure 47 Kinetic energy of the radiant panel. 

In Figure 48 the sound pressure level(SPL) measured by a microphone above the structure is shown. 

The background noise was 30dB. The SPL is not reduced as much as the kinetic energy. Below 300 Hz 

the reduction is proportional to the kinetic energy reduction. At 320 Hz the resonance frequency is 

even amplified. In the conference paper Panel Resonance Control and Cavity Control in Double-Panel 

Structures for Active Noise Reduction [35] it is shown that this resonance peak comes from the 
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radiating panel where all lower resonance frequency come from the incident panel.  This might 

explain this difference but further investigation is required. 

 

Figure 48 Sound pressure level above the panel. 

The control effort in the simulation is compared with the control effort in the real setup, this is 

shown in Figure 49. In the real-setup the control effort is slightly higher, but no real large differences 

are observed. Except, at 780 Hz were the algorithm became unstable. 

 

Figure 49 Kinetic energy of the panel in simulation and in the real-setup 

In section 4.2.1 it was shown that the adaptation step must at least be 0.4 seconds long. Else a signal 

is measured that has not reached its steady state yet. However, 0.4 seconds is pretty long and faster 

adaptation is desirable. Therefore in the following experiment the adaptation step is reduced to 0.2 

seconds. In Figure 50 the results of this experiment are compared with the 0.4 seconds adaptation 

step configuration. For each frequency the steady state is reached after a different waiting time. For 

frequencies of 310 Hz and 250 Hz this waiting time is the largest. The algorithm will measure wrong 

phase and amplitude information for these frequencies with the decreased adaptation step time and 

can not converge to its optimal solution.  
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Figure 50 Kinetic energy of the panel for different adaptation rates. 

7.7.2 Comparison of different configurations 

The configuration of the previous section is compared with two other configurations. The first 

configuration configures its parameters according to Gersgorin's theorem. The second algorithm uses 

the actuators on the incident panel and the sensors of the radiant panel. It is a decentralized 

algorithm, which requires a connection between the two panels. This configuration is not analysed 

elsewhere in this thesis. However, some experimental tests shown its potential, so this technique is 

analysed as well. The control effort weighting factors of this configuration are determined with the 

eigenvalue method. 

The results in this section may differ from those in the previous section. Absorbing foam was inserted 

in the acrylic box which may result in a different frequency response of the system. Also the 

ventilation in the room in which the experiment was performed was turned off, which lowered the 

background noise. 

The same technique as in the previous section is used here to determine the noise reduction for the 

entire frequency range. In Figure 51 the kinetic energy of the radiant panel for different control 

strategies is shown. Both algorithms that use the actuators on the radiant panel can reduce the 

kinetic energy till approximately 250 Hz. The algorithm based on the eigenvalues of the Hessian 

matrix performs better. The control strategy that uses the incident panel actuators can reduce the 

kinetic energy till almost 400 Hz. However, the absolute noise reduction obtained at low frequencies 

by this algorithm is less.    

 

Figure 51 Kinetic energy of the radiant panel for different control strategies. 
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Furthermore, this control strategy is unstable at several frequencies (for example at 160 Hz). The 

reason of this unstable behaviour is that the system has not reached its steady state, before its phase 

and amplitude are measured. The connection between the radiant and incident panel apparently has 

a larger wait time. In Figure 52 the error signal of a sensor is shown during the adaptation process. 

 

Figure 52 The steady state is not reached after a control signal update. The disturbance signal has a 
frequency of 160 Hz. 

The measured sound pressure level is almost proportional to the kinetic energy of the panel. The 

sound pressure level is shown in Figure 53. The large reductions of the kinetic energy at 200 Hz of the 

Gersgorin and eigenvalue method are not proportional. The microphone measures much smaller 

reductions here.  

 

 

 

Figure 53 Sound pressure level above the structure for different control strategies. 

7.8 Varying disturbance frequency 
The blade passage frequency of an airplane is not constant. Dependent on the velocity, the altitude, 

the acceleration and other factors this frequency may change. In this section the performance of the 

decentralized harmonic feedforward controller on a frequency changing disturbance signal is 

analysed. Therefore a disturbance signal that has the following changing frequency is used 

                                     

 

In this frequency range the controller can achieve a large reduction with a stationary disturbance 

signal. For three different control frequencies the noise reduction of the feedforward algorithm is 



60 
 

examined. During 90 seconds the sound pressure above the double-structure panel is measured. The 

first 30 seconds no feedforward control is applied, the next 60 seconds the feedforward controller is 

activated. In Figure 54, the results of this experiment are shown.  

 

Figure 54 a) fcontrol= 1/30Hz, b) fcontrol= 1/10Hz, fcontrol= 1/2Hz 

In this figure, the repeating pattern of the disturbance frequency is clearly visible. The faster the 

disturbance signal changes the lower the reduction in the measured sound pressure.  The 

performance is quantified by calculating the RMS value of the sound pressure for the both regions. 

For the control frequency of 1/30 HZ the RMS sound pressure was reduced by a factor 3.18 by the 

feedforward control. For the other two control signals the RMS sound pressure was reduced by 2.53 

and 0.97. Hence, no reduction can be obtained when the frequency changes to fast.   

8 Conclusion and recommendations 
In this chapter the research questions as described in section 1.3 are answered. Furthermore 

recommendations are given for further improvement of the harmonic decentralized feedforward 

controller. 
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8.1 Conclusion 
Examine in simulations if decentralized feedforward control can reduce the sound transmission of the 

double-panel structure. 

With the finite element model of the experimental setup the transfer functions between the 

different components of the structure are derived. For all frequencies the minimum effort weighting 

factor of the decentralized controllers is determined. This effort weighting factor is required to make 

the system stable. If this effort weighting factor is larger than the largest eigenvalue of the plant 

almost no noise reduction can be obtained. The simulations showed that at almost all frequencies 

the control effort weighting factor was lower (especially at frequencies below 400 Hz) . Thus, noise 

reduction is possible with a harmonic decentralized controller.   

On both panels sensors and actuators are installed. Which feedforward configuration reduces the 

sound transmission the most?  

The sound transmission is related to the kinetic energy of the radiating panel. To obtain maximum 

noise reduction the kinetic energy of this panel should be minimised. Experiments have shown that 

the minimisation of the kinetic energy of the incident panel is not useful. The addition of the extra 

actuators in this small space makes the system more unstable and larger control effort weighting 

factors are required. This reduces the overall performance of the system.  

Examine the interaction between feedforward and feedback control. Does this combination Improve 

the robustness of the system? 

The addition of feedback control improves the robustness of the system. It reduces the cross-

coupling between the decentralized controllers. Thus, smaller effort weighting factors are required, 

which will result in a larger reduction of the disturbance signal. Feedback control also makes the 

frequency response of the double-panel structure more flat. This makes it easier to estimate the 

frequency response; a smaller amount of measurements are required to estimate the entire 

spectrum accurate.  

Select the best feedforward feedback combination 

The combination of feedback pressure speakers in the cavity and decentralized feedforward control 

of the radiant panel reduces the disturbance signal the most in the simulations. In practise this 

configuration could not be tested, because the pressure speaker feedback controller has not yet 

been realized. 

Find a system identification technique that can initialise the feedforward controllers. This technique 

should use the components of the feedforward controller as much as possible.  

The extra hardware required for analysing and producing the excitation signals must be as little as 

possible. Hence, the best method is the simple stepped sine excitation signal. All hardware for this 

method is already present on the decentralized controllers. Multiple frequency components can be 

transmitted at once. While waiting till the transients of a single frequency disappear, the steady state 

response of another frequency can be measured.  

Is a complete decentralized system possible, that can initialise itself without communicating with a 

centralized controller? 

A decentralized controller has to know the transfer functions from all actuators in the system to its 

own sensor. With this information a stable decentralized controller can be configured. With 

Gersgorin’s theorem the parameters of the controller are configured. For this process the 
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decentralized controller has to estimate all the transfer functions. The response of an actuator can be 

processed locally. However, there has to be a mechanism that tells each decentralized controller 

when it has to listen and when it has to produce a control signal. Else, all components will talk at the 

same time and no information of the system is obtained. A decentralized control system that is 

configured by Gersgorin’s theorem can not reduce the sound transmission as much as an optimal 

algorithm. However, it still can obtain significant reduction at low frequencies. 

Implement a decentralized controller and test if noise reduction is possible. Also determine if the 

simulations agree with the practical measurements   

With the system identification system the transfer functions between all components were 

measured. This data is used in an offline simulation. The observed noise reduction from these models 

was very similar to the tests on the real-setup. A decentralized feedforward control algorithm can 

reduce the noise transmission significantly till approximately 250 Hz.  

Can the decentralized controller react on a disturbance signal with a varying frequency? 

The decentralized controller can react on a varying disturbance signal. Although this signal should not 

change too fast. The faster the frequency changes the lower the reduction of the disturbance signal. 

How much can the disturbance signal be suppressed by the best control strategy? 

The sound pressure level above the panel can be reduced by 10 to 20 dB for frequencies below 250 

Hz. Above this frequency almost no reduction of the disturbance signal is possible. This reduction is 

obtained by controlling the radiant panel. The control strategy that uses the actuators on the 

incident panel and the sensors on the radiant panel can achieve more noise reduction. The sound 

pressure level above the panel is reduced by 10 to 30 dB for frequencies below 350 Hz. Above this 

frequency again almost no reduction can be obtained. 

 

8.2 Recommendations 
The current system uses the linear least square (LLS) phasor estimator technique to estimate the 

error signals. This technique should be replaced by the Goertzel algorithm. By replacing this method 

the computational cost of the decentralized feedforward controller can be reduced significantly. 

Both techniques can estimate the error signals with the same accuracy.  

Feedback control still does not work on the double-panel structure. Also the loudspeaker sources in 

the cavity of the panel are not yet implemented. Therefore it was not possible to examine the 

behaviour of the feedforward controller in combinations with the feedback controller. However, in 

simulations this combination showed significant improvement, so this should be examined in the 

future. 

In this thesis a small experiment on a changing input frequency is performed. However, no real data 

during a flight of an airplane is used as input to test the controller. This data is required for a real 

validation of the system.   

The feedforward controller can process frequencies parallel as well (similar to the system 

identification system). A large part of this algorithm is created, however small modifications of this 

algorithm are required and the system must be tested before it can be used in practise. For optimal 
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utilisation of the components of a decentralized controller an upgrade to this configuration should be 

made.  
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