
UNIVERSITEIT TWENTE

Master thesis

A quest for the best automated tests
Estimating software reliability based on Spec Explorer’s on-the-fly test results

May, 2016

Candidate:
Jenny den Ouden

Graduation committee:
dr. M.I.A. Stoelinga (first supervisor)
ir. R. Kherrazi (external supervisor)

M. Gerhold, MSc
prof. dr. J.C. van de Pol

Image source: http://infiniteglobe.in/wp-content/uploads/2015/05/software-testing.jpg

Abstract

Spec Explorer on-the-fly testing does not provide any indication of coverage or reliability
regarding the system under test, or say whether testing can be stopped. This means that testing
is useful for fault discovery, but there is no way of knowing whether you’ve tested enough. As
a step towards remedying this, this thesis presents a tool that estimates the reliability of a
system under test after Spec Explorer on-the-fly testing has been applied to it. The on-the-fly
test results are used to construct a usage and a testing chain, from which the discriminant,
reliability, and mean time between failures can be estimated. The tool is applied to two simple
examples. The results that are obtained are used to draw conclusions about the usefulness of
the tool, as well as for providing suggestions for tool improvements and possible future research.

Acknowledgements

I want to thank Mariëlle and Rachid for their guidance and supervision. I am also grateful to
Marcus for all his feedback and help. I want to thank Jaco for agreeing to be in the graduation
committee, and for his feedback and encouragement.

I want to thank my friends for their support, with a shout-out to Ellen, who was not only
an indispensable source of support, but who also taught me a lot about using Latex.

1

Contents

1 Introduction 3

2 Problem statement 4

3 Background 6
3.1 Usage and testing chains . 7
3.2 Discriminant . 10
3.3 Reliability . 14
3.4 Mean time between failures . 15

4 Post processer tool 17
4.1 Purpose . 17
4.2 Using the tool . 18

4.2.1 Important model properties . 18
4.2.2 Introducing probabilities into the model . 18
4.2.3 Using the tool . 19

4.3 Tool structure . 19
4.4 Extendability . 22

5 Experiments 22
5.1 Simple example model . 24
5.2 Simplified case study . 28

6 Discussion 34
6.1 Discriminant . 34
6.2 Reliability . 37
6.3 Mean time between failures . 40
6.4 Limitations and future work . 43

7 Conclusion 44

A Stationary distribution 48

2

1 Introduction

In this thesis, commissioned by technical consultancy company Nspyre, we apply a reliability es-
timation technique from theory to model based software testing in practice. In our case, we add
reliability measures as described in [22], and a manner to include usage probabilities in models, to
the on-the-fly testing functionality in model based testing tool Spec Explorer. This results in an
estimate of the reliability of the system under test: a measure that is currently not available in the
Spec Explorer tool. We have also briefly studied a set of other model based statistical testing tools,
but found that reliability estimation is not much applied in general. We would like to take some
steps towards fixing this.

Anyone who has ever done any programming, should also have carried out some software tests,
to check whether their code does what they meant it to do. And all these people will know that
testing is a very time consuming process (not to mention, rather boring). However, testing is also
an essential part of software development, and since nearly everything contains technology of some
kind, refraining from testing (and consequently missing implementation errors) could have very
serious consequences. I would rather not be in an airplane, or even a car, when the entire system
crashes and the vehicle is uncontrollable.

Thus, software testing is paramount, and it is also a lot of work. A solution for this is auto-
mated testing, which happens in model based testing (MBT). The idea behind MBT is that you
translate the requirements of the system you want to test into a model, from which a MBT tool can
automatically generate and run tests. Model based testing has some startup costs in creating the
model. However, due to the formal, unambiguous definition of the model, defects in the system can
already be discovered during the creation of the model [9]. Additionally, the automated generation
and execution of the tests saves you enough time for it to be worth the initial investment [15], not
to mention that, when the application and the test evolve, it is often sufficient to update the model
incrementally with the corresponding changes [9].

According to [1], model based testing consists of four steps: modeling the system; generating
tests from that model; running the tests against an implementation; and comparing the results to
the results that were expected. During this final step, the tester should decide whether or not to
stop testing. To support this decision, the tester can, for instance, compute the reliability of the
system.

The reliability, which is defined here as the probability that a single, randomly selected test
is executed without the occurrence of any failure, can not only be used as (part of a) stopping
criterion for test generation, but it can also serve as an estimate of the system under test’s quality.
Neither of these two functions are available in Spec Explorer at the moment.

Finding a useful reliability measure is not easy; there is a real need for metrics related to soft-
ware and system reliability [5,18]. In many cases, coverage is used as a reliability measure [2]. The
idea behind this is that, once a test case is passed, the coverage points visited by the test suite
are reliable. The percentage of coverage points is directly translated to a reliability score. This
technique is, for instance, applied in [4, 7, 18].

For stochastically generated tests (statistical testing), some alternate reliability measures have
been defined, based on the statistical properties of the test suite and its outcomes. Statistical test-

3

ing is done by sampling the input space of a model, possibly according to a usage model [15]. Such a
strategy is also applied by Spec Explorer on-the-fly testing [19]. That paper suggests that transition
selection is not purely random, but it also emphasizes that the algorithm stochastically samples
the state space, implying that Spec Explorer’s on-the-fly testing is suitable for reliability estimation.

In order to apply the reliability estimate we selected, we need to know the usage model (or uni-
form model) that was used for test generation, as well as the on-the-fly test results. Spec Explorer
provides both these items as exploration files. We developed a tool that takes these outputs and
uses them to estimate the reliability of the system under test. This post-processor tool was used
in a set of experiments to study the way the reliability reacts to failures. Based on the results that
were obtained, we indicate some limitations of the tool, and the method, as well as recommending
some future work.

In section 2, we specify the problem statement. Section 3 of this document explains the afore-
mentioned reliability measures [22], and shows how they are computed. In section 4 we describe
the structure of the tool. Section 5 describes the experiments we carried out, the results to which
are discussed in section 6. Finally, we recap and conclude the thesis in section 7.

2 Problem statement

Nspyre, the company for which I carry out this research, is a Dutch company with its focus on tech-
nology. There are several Competence Units within Nspyre, one of which is ’Test and Integration’.
This unit focuses on providing software testing for (large) companies, and they regularly use Spec
Explorer, a model based testing tool, to achieve this.

The goal of this thesis is to provide a reliability estimate for the Spec Explorer tool, and to try it
out on some small examples to see what insights it provides, and to see whether it will be useful
for Nspyre. This problem statement gives rise to three follow-up questions: why do we want a reli-
ability estimate, why do we want to use Spec Explorer, and which method will we use to estimate
the reliability?

Motivation
First of all, we asked why a reliability estimate could be useful in this context. The purpose of
testing is to discover as many failures as possible early on in the development process. Since de-
tecting costs early on is considerably cheaper than detecting them later (for example after system
deployment) [13], making sure that you catch as many failures as possible in the testing stage will
save testers and companies both time and money.

An indication of the system’s reliability can provide some trust in the implementation under
test, and can serve as a stopping criterion for testing. This criterion could be used in two ways:
the tester can consider the reliability estimate and use it to decide whether or not to stop testing;
or the reliability estimate can be fed to the testing tool, which can make the decision to stop or
continue testing.

It is important to note that we are talking about a reliability estimate, and not a calculation.
Ideally, we would be able to tell the probability of failures occurring in a system in real life from the
test results. However, this is not possible. Even if the test case achieved complete path coverage,
which is impossible in most cases, external factors could still influence outputs and cause failures.

4

The best we can do is estimate the reliability.

Tool choice
The second question was why we want to use Spec Explorer. This tool is Nspyre’s preferred tool,
for several reasons. First of all, the company has a lot of experience with the tool [16, 17]. The
employees are used to working with Spec Explorer, and switching to another tool would require a
significant investment of time and money. Second of all, the tool is free. It only requires Visual
Studio to run, so it is also accessible for Nspyre’s customers. Thirdly, Spec Explorer is suitable for
embedded software, which is what most of the customers want to have tested. Additionally, the
tool has a set of advanced features, such as model-slicing, non-determinism and online testing, and
it is well documented.

However, there is no way to estimate the reliability of a system after it has been tested with Spec
Explorer [18], particularly in on-the-fly testing, there is not even an indication of the percentage of
state or transition coverage. In fact, in several Spec Explorer papers, the lack of reliability metrics
(both in Spec Explorer and in model based testing in general) is lamented. Spec Explorer seems
geared towards coverage as a reliability metric, but the authors acknowledge that this might be
difficult to achieve when dealing with nondeterminism [18,20,21].

There are other model based testing tools that do provide some reliability measure. The most
interesting one is the approach proposed by MaTeLo [14]. MaTeLo is a high-end test tool following
the model based testing approach, designed for testing complex information systems and embed-
ded systems. It can also generate tests based on a usage model. According to [6] their reliability
measure will be implemented into the MaTeLo tool, but we have not found any evidence of this
in the tool’s manual. Additionally, MaTeLo is a commercial tool, which would result in additional
costs for Nspyre.

A second alternative model based testing tool is JUMBL, a tool which can also generate tests
based on a usage model [12]. As opposed to MaTeLo and Spec Explorer, JUMBL works with
a command line interface, which makes operating it less intuitive than operating Spec Explorer.
JUMBL provides an indication of system reliability, which is computed according to [8].

So, with respect to relability measures, these two tools have some shortcomings. MaTeLo’s
reliability has not been implemented, and JUMBL’s reliability does not take the achieved coverage
into account: the coverage has no effect on the reliability value that is estimated. In this thesis, we
will try to remedy these shortcomings, or suggest improvements that will better them in a future
version of the tool.

These two tools are also lacking some functionality that Spec Explorer does have. First of all,
Spec Explorer is able to deal with non-deterministic systems, while JUMBL and MaTeLo are not.
Additionally, Spec Explorer allows for both online and offline test generation, whilst JUMBL and
MaTeLo can only do offline generation. Thirdly, Spec Explorer is very suitable for testing com-
plex models. Its modeling language is an extension of C#, and there are several constructs, such
as model slicing, data abstraction, and model composition, that support complex modeling and
reduce the state space explosion problem. The other two tools do not provide these, or similar
options. Lastly, Spec Explorer is extendable by users, which allows for useful adaptations of the
tool [3], [12].

It should also be noted that Spec Explorer has regularly been applied in the industry. There is
more literature, and user experience with regard to this tool, compared to JUMBL and MaTeLo.

5

An in-depth comparison of the available statistical model based testing tools is outside the scope
of this thesis, but based on this short comparison, neither of the alternative tools warrant a switch
for the entire competence unit. Instead, our goal is to estimate the reliability of a system after it
has been tested with Spec Explorer. For this thesis, we will limit the testing to online (on-the-fly)
testing.

Reliability estimation method
We would like to extend Spec Explorer with a reliability measure. But the question remains: which
one is suitable? A study of all possible reliability measures is outside the scope of this thesis. There-
fore, we will select from four options that came up during literature review: LeGuen [6], Miller [8],
Sayre [11], and Whittaker [22]. Due to time constraints we decided not to find any additional
reliability estimation methods.

Out of these four techniques, we are most familiar with Sayre, and Whittaker. LeGuen’s work
is based on these two techniques, so it could be interesting. However, it is also very complex. We
decided to drop this technique for now, but we should definitely keep it in mind for future work.

The Sayre method seems interesting, but when we studied it in detail, some things remained
unclear with regard to the computation algorithm. It would take considerable time to discover the
correct configuration. For this reason, we have decided to drop the Sayre technique.

When considering the remaining two techniques, our preference is to use the Whittaker mea-
sures. This is for two reasons: first of all, we are more familiar with the Whittaker reliability
measures, and second of all, they are slightly more recent than the Miller ones.

In this thesis, we want to see how the quality of Spec Explorer on-the-fly test sets, as well as
the quality of the system under test, can be quantified in a way that is useful for Nspyre. For this
purpose, we have developed a post-processing tool, which takes Spec Explorer’s on-the-fly testing
results and computes the reliability of the system based on these, as proposed by Whittaker [22].

Next, we investigate how useful these Whittaker measures are. The post-processing tool will be
tried on a small example, and on a simplified Nspyre case study, to see how it performs and what
insights it gives. Based on these results, we will indicate some limitations of the tool, as well as
propose possible future extensions.

3 Background

In this section we will describe the reliability measures introduced by Whittaker in [22]: discrimi-
nant, reliability, and mean time between failures. We will use a small example to show how each
of these measures is computed. In section 5 we apply our tool, which computes all three measures,
to several test sets.

The model we use is shown in figure 1. It was purely designed for demonstration purposes, and
consists of five states, and eleven transitions that allow moving between those states. The black
letters on transitions are the action names L (left), S (straight), R (right), and E (end). The gray
numbers are transition probabilities according to a usage model. State names are shown as black
text inside the state. End is the accepting state, and 0 is the initial state.

6

Figure 1: Example usage chain

3.1 Usage and testing chains

The basis for the techniques presented in [22] lies in the construction of two different models: the
usage, and the testing chain. In the usage chain (definition 1), transitions are labeled with actions
from the input domain of the software. These transitions are annotated with probabilities according
to a usage model, or a uniform distribution if there is no information regarding the system’s use.
System logs from a prototype or prior version of the software, for example, may be used to estimate
the probabilities.

Definition 1 A usage chain (or usage model) is a 6-tuple (S, sinit , Sfinal , A,C, P).

• S is a non-empty, finite set of states, with sinit ∈ S as exactly one initial state,

• Sfinal ⊆ S is the non-empty set of final states,

• A is a non-empty finite set of actions,

• C ⊆ {S ×A× S} is the set of transitions,

• P : S×A×S → [0, 1], is a usage probability, such that ∀i ∈ S : (
∑
k∈A,j∈S P (si, ak, sj) = 1),

Tests (definition 2) are generated from the usage chain by selecting the next action according
to the probabilities assigned in the chain. Additionally, more information can be extracted from
the chain, such as expected test case length, and mean first passage times [23]. This information
can be used in test planning.

7

Definition 2 A test for a usage chain U = (S, sinit , Sfinal , A,C, P) is a sequence of transitions

{(s0, a0, s1)(s1, a1, s2)...(sn, an, sn+1)}

where s0 = sinit , sn+1 ∈ Sfinal , and si ∈ S ∪ Serror , for i = 0, ..., n, and where Serror is a set
of error states.

Testing chains (definition 3) are constructed during the testing process. The initial chain is a copy of
the usage chain, with all probabilities set to 0. For each test sequence that is executed, the number
on each transition is incremented when that transition is carried out. Transition probabilities can
be determined by normalizing these numbers.

Definition 3 A testing chain (or testing model) is a 6-tuple (S, sinit , Sfinal , A,C, F), based on a
set of tests O.

• S is a non-empty, finite set of states, with sinit as exactly one initial state,

• Sfinal ⊆ S is a non-empty, finite set of final states,

• A is a non-empty, finite set of actions,

• C ⊆ {S ×A× S}, is a set of transitions,

• F : S×A×S → N is the frequency with which this transition has been crossed in test set O,

If failures occur, they need to be incorporated into the testing chain. To this end, a new failure
state is introduced, with an incoming edge numbered 1, which can again be incremented, should
the failure occur more often. If it is a catastrophic failure, the system moves into the terminal
state (a transition from the error state to the terminal state is added). Otherwise, a transition is
added to the state from which the system continues. These edges are also numbered 1, and can be
incremented later.

Construction of the testing chain is illustrated in figure 2. Figure 2a shows the initial testing
chain: a copy of the usage chain, where the probabilities are replaced by frequencies, which are
initialized at 0. Figure 2b shows the same testing chain after one test has been incorporated in
the chain. This test is SRLRRE. It was successful, which means that all transitions succeeded and
no errors need to be introduced. Figure 2c shows how failures are introduced into the chain. We
consider a test LRRLE, which contains two failures. The first is a non-terminal failure in the second
transition (R). The testing chain shows that an error state is introduced that is reached with R.
Because this failure is not terminal, a transition from the error state to state 2, from which the sys-
tem continues. The rest of the test is included in the chain, until we reach the final transition (E).
This transition causes a terminal failure: the system cannot continue and the test is terminated.
The image shows an accepting error state that is reached by E. There are no outgoing transitions
from this state.

The testing chain is used to obtain analytical results to answer two questions. First, at what
point does the test history become representative of the usage; second, how does each failure im-
pact the testing process?

8

(a) Empty testing chain
(b) Testing chain with successful test (SRLRRE)
added

(c) Testing chain from 2b with failed test (LRRLE) added

Figure 2: Creation of testing chain

9

Whenever the system is updated (to fix bugs), the testing chain can either be reset, or left intact.
This results in two possible testing chains that can be constructed: a chain over the testing of the
current system, and a chain over the complete testing process. The first can be used to estimate
the current reliability, whereas the second could be used to study the failure identification rate. If
no errors occur, the testing chain will eventually converge to the usage chain.

In our tool, we will only use the first type of testing chain.

Now that we have constructed this testing chain, we want to use it to say something about the
system’s reliability. The idea is that the more similar the two chains (usage model (U) and testing
chain (T)) are, the more reliable the system is. U and T are regarded as equivalent when they are
indistinguishable sequence generators, i.e. when given a sufficiently large test set, it is very difficult
to determine if it was generated from U or from T. This is where the discriminant comes in.

3.2 Discriminant

In the previous section we mentioned that the similarity between the usage chain and the testing
chain is a useful measure. However, we have not yet said anything about determining the level of
similarity between the two chains.

The log likelihood ratio [10, 22] known as discriminant is used to measure how two stochastic
processes relate to each other. If two stochastic processes tend to converge towards each other, the
value of the discriminant approaches zero. Only if both are the same, the value is zero. Since usage
chain U and testing chain T converge, the value of their discriminant approaches zero.

We calculate the discriminant according to the following equation (equation 1).

D(U, T) = Σ(i,j)πi ∗ pij ∗ log2
pij
p̂ij

(1)

Here π is the stationary distribution of U, pij is the probability of a transition from i to j in U, and
p̂ij is the corresponding probability in T.

In the above formula, an error occurs in two cases: when pij = 0 and when p̂ij = 0. In practice,
this means that we should only consider the transitions that occur with a probability larger than
0 in the usage chain. This also means that transitions to error states are not directly included in
the computation. Their effect takes place in the testing chain probabilities from a state that is the
source of a faulty transition: a fraction of outgoing transitions is siphoned away to an error state,
and is not considered in regular state discriminant computations.

Additionally, we can only compute the discriminant once all these transitions that occur in the
usage chain, occur at least once in the testing chain.

We will explain this formula by applying it to the example in figure 1, extended with a transi-
tion from the end state to the initial state (state 0). We need to make this adjustment because we
are using online testing, which does not have a stopping criterion (at least, not in Spec Explorer).
This means that, when one test is completed, Spec Explorer will start from the initial state and
generates a new test.

Since we need to cover each transition at least once, before we can even compute the discrimi-
nant, we will fast forward to a point where this condition is satisfied. For this, we generated a set

10

Transition Probability Frequency Relative frequency
0→1 0.6 4 0.444
0→2 0.1 2 0.222
0→3 0.3 3 0.333
1→2 0.7 3 0.375
1→4 0.3 5 0.625
2→2 0.1 1 0.077
2→3 0.6 9 0.692
2→4 0.3 3 0.231
3→1 0.4 4 0.333
3→2 0.3 7 0.583
3→4 0.3 1 0.083

Table 1: Relative frequencies after nine tests on example 1

of 9 tests: SRLRRE, RLRRRRRE, LE, LE, RLSRLE, LRRLE, LRE, SRLRLRRE, RE. Table 1
summarizes the absolute and relative frequencies of each of the transitions. Figure 3 displays the
relative frequencies visually, and compares them to the original usage model.

At this point, we can compute the discriminant. If we compute an updated discriminant value
after each new test, we can plot the discriminant over time. When the testing chain grows quite
similar to the usage chain i.e. the test history reflects the actual usage pattern, the value of D (U,
T) becomes very small. Whenever a failure occurs the value of D (U, T) increases, so additional
tests are required for minimizing that effect.

In order to compute the discriminant we need the stationary distribution of our model. The compu-
tation of the stationary distribution is elaborated on in appendix A. The result of this computation
is shown in equation 2.

π0 = 0.1875

π1 = 0.1916

π2 = 0.2357

π3 = 0.1977

π4 = 0.1875

(2)

For clarity, we will display the computation of the discriminant in a table (Table 2), as well as
in a figure (Figure 4). This table contains a column for each element in equation 1. Because the
equation is a sum, we also use a column ”partial discriminant”. This column shows the partial sum
for each transition. Finally, these partial discriminants are summed to find the discriminant value.

The same elements are displayed in figure 4. The number in a state is its steady state distribu-
tion. The three numbers on a transition are its usage probability (in orange), its relative frequency
in the testing chain (in blue), and the partial discriminant for this transition (in green) respectively.

When the discriminant grows sufficiently close to zero, testing can be stopped. Additionally,
we can attach some significance to the reliability (R) and mean time between failures (M) values.

11

(a) Original usage chain (b) Testing chain after 9 tests

Figure 3: Usage model and relative frequencies testing model for example 1

Transition Steady state
probability

Transition
probability

Relative fre-
quency in
testing chain

Partial dis-
criminant

0→1 0.1875 0.6 0.444 0.049
0→2 0.1875 0.1 0.222 -0.022
0→3 0.1875 0.3 0.333 -0.008
1→2 0.1916 0.7 0.375 0.121
1→4 0.1916 0.3 0.625 -0.061
2→2 0.2357 0.1 0.077 0.009
2→3 0.2357 0.6 0.692 -0.029
2→4 0.2357 0.3 0.231 0.027
3→1 0.1977 0.4 0.333 0.021
3→2 0.1977 0.3 0.583 -0.057
3→4 0.1977 0.3 0.083 0.110
4→0 0.1875 1.0 1.000 0
Sum 0.16

Table 2: Computation of the discriminant after nine tests for example 1

12

Figure 4: Visual representation of discriminant computation after nine tests in example 1

13

Transition Probability Frequency Relative frequency
0→1 0.6 2 0.222
0→2 0.1 2 0.222
0→3 0.3 3 0.333
0→ERROR 0 2 0.222
1→2 0.7 3 0.375
1→4 0.3 5 0.625
2→2 0.1 1 0.077
2→3 0.6 9 0.692
2→4 0.3 3 0.231
3→1 0.4 4 0.333
3→2 0.3 7 0.583
3→4 0.3 1 0.083

Table 3: Relative frequencies after nine tests, including failures

Note that we are discussing trend analysis here, not a single value.

3.3 Reliability

Once the discriminant is sufficiently close to zero, we can compute the reliability R. This value can
be interpreted as an estimate of the single use reliability: the probability that a random single test
(from the initial to the final state) can be executed without the occurrence of failures. So, if the
value of R is 0.976, we can say that a randomly selected test sequence has 97.6% chance to execute
successfully without failure.

The value for R is computed according to equation 3. Note that it is not necessary to achieve
complete transition coverage in order to compute the reliability, but that the resulting reliability
value should only be used once the discriminant approaches zero.

Rinit,final = p̂init,final + Σj∈t (p̂init,j ∗Rj,final) (3)

Here init is the initial state, final is one of the final states, and t is the set of transient (non-
absorbing) states. The formula assumes that there is only one final state. If this is not the case, the
reliability can be found by summing the reliabilities from the initial state to each of the final states.
Alternatively, the model can easily be converted into one with a single final state, by introducing a
new state that will be the final state, and by including transitions from all original final states to
this state. These transitions will have probability one. Then, we can make the original final states
regular states, which results in a equivalent system with a single final state.

In order to clarify this formula, we will apply it to a small example. This example will be very
similar to the one used in explaining the discriminant computation, but here we will introduce some
failures. Let’s assume that the transition from state 0 to state 1 is faulty, and that it has failed
twice. The resulting relative frequencies are summarized in table 3.
.
Let’s start with entering the data we know into the formula. Note here that the set of transient

14

states t contains states 0, 1, 2, and 3. States 4, and ERROR are not included. The probabilities
p̂i,j can be found in Table 3. If there is no entry, the probability is equal to 0, and the term can be
dropped from the formula. Entering the probabilities into the formula yields the following equation
(equation 4):

R0,4 = 0 + (p̂0,0 ∗R0,4 + p̂0,1 ∗R1,4 + p̂0,2 ∗R2,4 + p̂0,3 ∗R3,4)

= 0 + 0 ∗R0,4 + 0.222 ∗R1,4 + 0.222 ∗R2,4 + 0.333 ∗R3,4

= 0.222 ∗R1,4 + 0.222 ∗R2,4 + 0.333 ∗R3,4

(4)

Similarly, we can determine the equations for R1,4, R2,4, and R3,4. The resulting system of equations
can be found below (equation 5)

R0,4 = 0.222 ∗R1,4 + 0.222 ∗R2,4 + 0.333 ∗R3,4

R1,4 = 0.625 + 0.375 ∗R2,4

R2,4 = 0.231 + 0.077 ∗R2,4 + 0.692 ∗R3,4

R3,4 = 0.083 + 0.333 ∗R1,4 + 0.583 ∗R2,4

(5)

All that remains is solving a system of linear equations. The solution to the system in equation 5 is
shown in equation 6. The single use reliability, which is the probability that a single test run from
the initial state 0 to the final state 4 executes without any failures, is estimated by R0,4, which is
approximately equal to 0.776. This means that any random test case has a 0.776 probability of
executing without failures.

Note that we use the approximation sign in the formulae in equation 6. This is due to the
fact that we work with numbers that were rounded up or down, in order to make everything more
readable. Also note that the computation of R places complete faith in the test history. If no
failures have occurred, the reliability will be one (as it is in states 1, 2, and 3 in our example).

R0,4 ≈ 0.776

R1,4 ≈ 1

R2,4 ≈ 1

R3,4 ≈ 1

(6)

3.4 Mean time between failures

Finally, [22] introduces the mean time between failures. This is the expected amount of transitions
between the occurrences of two failures. In order to compute M, we need to slightly adjust the
model we are working with by introducing a transition from all terminal states (terminal error
states, and terminal final states) to the initial state. This is due to the fact that the computation
contains a steady state computation. Equation 7 shows the formula for computing the mean time
between failures.

M = Σi∈f vi ∗ (Σj∈u p̂ij ∗ (mj+1)) (7)

15

where vi is the conditional long-run probability for failure state i: given that the process is in a
failure state, what is the probability that it is in state i?, mj is the mean number of steps until the
first occurrence of any failure state from usage state j, u is the set of usage states, f is the set of
failure states.

We will apply this formula to the same example as above: the one where the transition from
state 0 to state 1 has caused a failure twice. The absolute and relative frequencies are summarized
in table 3. We can use the relative frequencies from this table as probabilities p̂i,j , but before we
can compute the mean time between failures, we first need to know the values for vi and mj .

As mentioned above, vi is the conditional long run probability for a failure state i, given that
the process is in a failure state. Basically this means: if we know that we’re in a failure state, what
is the probability that it is failure state i. To find this number, we need to compute the steady state
distribution of the testing chain T. The steady state probability that the system is in a failure state
is the sum of the steady state probabilities of all failure states. Vi for any state can be computed by
dividing the steady state probability for that state by the steady state probability that the system
is in a failure state (vi = πi∑

s∈f πs
).

Since we only have one error state, vi = πi

πi
= 1.

Mj is the mean number of steps until the first occurrence of any failure state from usage state
j. This can be computed by the following formula (equation 8). In this formula, usage state j
should be substituted for p, and q is one of the error states.

mpq = 1 +
∑
r 6=q

p̂pr ∗mrq (8)

By simply entering the relative frequencies (and 0 whenever there is no entry in the table for a
specific transition), we obtain the following set of linear equations (equation 9). These solutions
can be solved, which results in the values shown in equation 10. The computation of mean time
between failures M is summarized in table 4.

m0 = 1 + (0.222 ∗m1 + 0.222 ∗m2 + 0.333 ∗m3 + 0.222 ∗mERROR)

m1 = 1 + (0.375 ∗m2 + 0.625 ∗m4)

m2 = 1 + (0.077 ∗m2 + 0.692 ∗m3 + 0.231 ∗m4)

m3 = 1 + (0.333 ∗m1 + 0.583 ∗m2 + 0.083 ∗m4)

m4 = 1 + (1 ∗m0)

mERROR = 0

(9)

m0 = 21.600

m1 = 25.251

m2 = 27.002

m3 = 27.027

m4 = 22.600

mERROR = 0

(10)

In the case where no failures occur, the value of M will be equal to 0. Some other interesting

16

vi Usage state (j) mj p̂ij Partial M

vERROR = 1

0 21.600 1.0 22.600
1 25.251 0.0 0.0
2 27.002 0.0 0.0
3 27.027 0.0 0.0
4 22.600 0.0 0.0

sum (MTBF) 22.600

Table 4: Computation of mean time between failures after nine tests in example 1

observations are, firstly, that the mean time between failures for our example is not completely
correct, due to the fact that we’ve slightly changed the model. This means that the transitions
we’ve added between the final state and the initial state are also counted as a step between the
failures. Per successful test, one reset transition is included in M. To counter this, we would have to
estimate the average test length, and subtract those additional steps from the total. Additionally,
the formula also counts the transition that fails as a step. Thus, the minimum of M is 2.

Finally, note that we are only dealing with terminal failures, i.e. failures that force the system to
terminate. It is also possible to encounter non-terminal failures. In this case, there will be outgoing
transitions from error states to usage states. In our tool, we only deal with terminal failures, but
this is an interesting area for future work.

4 Post processer tool

This section is focused on the on-the-fly post processing tool that was developed. We will explain
its purpose in section 4.1, and give some usage instructions in section 4.2. Section 4.3 shows the
tool’s structure, and section 4.4 shows how it could be extended with different input languages, or
reliability measures.

4.1 Purpose

The idea behind this tool is to use Spec Explorer’s OTF output as the basis for some calculations.
When you perform on-the-fly tests on your system, the results are stored in the form of Spec Explorer
exploration files (.seexpl). This record of the tests performed can be used to say something about
the reliability according to several measures that were mentioned above: discriminant, reliability,
and mean time between failures. This cooperation is shown in figure 5.

In principle, the reliability measures that were selected are used in statistical testing: testing
based on a usage model. However, a regular model has an implicit usage model: the uniform
distribution. This means that each outgoing transition from a given node is chosen with the same
probability.

Online test generation in Spec Explorer is consistent with this, as transition selection is proba-
bilistic and yields a stochastic sample of the state space [19]. Our aim is to extend this to generating
tests according to any usage profile. In the future, we would also like to compute these reliability
measures whilst Spec Explorer is running the OTF process. They might be used as a stopping
criterion.

17

Figure 5: Integration of Spec Explorer and our post processor tool

4.2 Using the tool

4.2.1 Important model properties

There are a few important properties a model must have, in order to make sure that the tool will
work correctly.

• The model must have exactly one initial state.

• A probe must be defined. It must be used to ensure that all states have a unique name.

• State names cannot start with ”ERROR ”. This is a prefix reserved for error states.

• At this point in tool development, non-determinism is not allowed.

4.2.2 Introducing probabilities into the model

As we mentioned above, a regular model already has an implicit usage profile. Thus, when no usage
model is provided, the tool will assume a uniform distribution. However, it also provides a way for
the user to specify a different usage model.

We use Spec Explorer’s requirements structure to incorporate our probability information into
the model, and the tests generated from it. In the model file, you can use the requirement capture
method to attach a requirement to a transition. For example:

[Rule(Action = "Open()/result ")]

static int Open()

{

Condition.IsTrue(state == State.Closed);

state = State.Opened;

Requirement.Capture ("p = 0.8");

18

return 0;

}

In the example above, the probability of taking transition ”Open” from state ”Closed” is set to 0.8.
In order for the tool to be able to extract this probability, the notation is crucial: it has to be a
lowercase p, followed by a space, an equals sign and another space. After this, the probability needs
to be specified as a double between 0 and 1. Additionally, the probabilities can only be added to
active transitions: transitions that provide an input to the system under test (as opposed to actions
that report on outputs from the system under test). And finally, a correct usage model should be
provided, where for each state, the probabilities on the outgoing transitions sum to 1.

At this moment we have not yet adapted the online test generation algorithm in Spec Explorer.
Therefore, we cannot yet say anything useful on the reliability of models with a specified usage
model.

4.2.3 Using the tool

The tool works with Spec Explorer’s on-the-fly test results. This means that the user will need to
provide the location in which these test results can be found. Additionally, the tool needs to know
what the original model looks like. Therefore, it also needs the location of the model.

There are several possible outputs that can be provided: relative frequencies, the discriminant,
the mean time between failures, the reliability, and the development of these last three measures over
time, all described in section 3. The tool allows for both separate and simultaneous computation
of these measures. The user can specify their preference by setting an option.

To use the tool, open up a command prompt window and go to the directory that contains the
.exe file. For example:

> cd "Users\jenny.den.ouden\Documents\Visual Studio 2010\

Projects\Postprocessing OTF run\Postprocessing OTF run\

bin\Debug"

Call the tool with the following arguments: path to the exploration file of the model, path to
the folder containing the OTF test results, and option. The possible options are -r for relative fre-
quencies, -d for discriminant, -p for plotting the discriminant over time, -w for Whittaker reliability,
-pr for plotting the reliability over time, -wm for Whittaker mean time between failures, -pm for
plotting the mean time between failures over time, and -all for all of the above. The default option
enables all whittaker options, (d, p, w, pr, wm, pm). For example:

> "Postprocessing OTF run.exe" "C:\ Users\jenny.den.ouden\

Documents\Visual Studio 2010\ Projects\VoorbeeldVerslag\

ExplorationResults\AccumulatorModelProgram.seexpl" "C:\

Users\jenny.den.ouden\Visual Studio 2010\ Projects\

VoorbeeldVerslag\VoorbeeldVerslag\TestResults\

AccumulatorModelProgram \2016 -01 -04 14 _36_39" -all

4.3 Tool structure

This section describes the structure of the post-processing tool we developed. Figure 6 shows the
tool as a set of interacting modules.

19

Figure 6: Structure of post-processing tool

The green rectangle represents an input to the system: the exploration and test results, U and
T, which are the Spec Explorer exploration of a model, and the Spec Explorer test results obtained
from that model respectively. They are inputs to the basics module. The red ellipses represent
outputs. They are numeral values D, R, and M, which represent the discriminant, reliability, and
mean time between failures; as well as plots for each of these three measures.

Blue rectangles represent modules. A module represents a single component or functionality in
the system. It can take inputs, from other modules or from the user, and it can provide outputs,
to other modules or to the user. The tool contains a total of six modules. We will provide a short
description of each of them.

The first module is Basics. The purpose of this module is to collect the user input, and pass
it on to the relevant modules. It makes sure that the exploration file is processed, and that each
individual test set is considered. Additionally, if the user has provided a parameter, the Basics
module makes sure that only the computations that were specified by the user are carried out.

Next, we have the Processing module. This module gets individual exploration files. If the input
is the exploration of the Spec Explorer model, the Processing module uses it to construct the usage
chain. If the input is a test case, the Processing module adds it to the testing chain.

The third module is the Linear Solver. This can be regarded as a helper module. In the
computations of discriminant, reliability, and mean time between failures, we always need to solve
a system of linear equations. This module takes a matrix representing such a system of equations
as input and it uses row operations to find a solution (as demonstrated in appendix A), which is
returned to the caller module.

20

The Discriminant module uses the usage model and testing model that were constructed by the
Processing module to compute the discriminant. It also needs the linear solver, to find the steady
state distribution of the usage model. If the user only wants the discriminant value for the entire
test set, the Discriminant module is applied after all test cases have been processed, and the testing
model is complete. If the user wants a plot of the discriminant over time, the module is used each
time a test case is added to the testing model. The results are stored, and once the testing model
is completed, they are displayed in a graph.

Similarly, the Reliability measures module uses the testing model to compute either the reli-
ability, or the mean time between failures. The computation of the reliability consists of solving
several linear equations, which is why it needs to use the Linear Solver module. Computation
of the mean time between failures also relies on the Linear Solver. First of all, the computation
requires the conditional steady state distribution, for which we need the Linear Solver. Second of
all, the computation relies on mj , which is the mean number of steps until the first occurrence of
any failure, starting from state j. This mj is also computed by solving a system of linear equations
with the Linear Solver. Like the discriminant, reliability and mean time between failures can both
be computed over the complete test set, and plotted over time.

The final module is the Plotting module. This module gets two sets of values, and plots them
against each other. The first set of values contains the test numbers. These are included, because
the discriminant and mean time between failures cannot be computed at all times. The second set
of values are the discriminant, reliability, or mean time between failures values for the testing model
constructed up to and including the test with that test number. As well as plotting the graphs, the
Plotting module also stores a copy of the graph, and a csv file containing both datasets in the map
with Spec Explorer test results.

Finally, the purple rectangles represent global variables of the type Model; a type which we have
introduced ourselves. This type is used to store the Usage Model and Testing Model as displayed
in figure 6. Figure 7 shows the structure of the Model package. Basically, a model consists of three
main parts: Model, State, and Transition. Model is the overview class, from which the entire model
can be accessed. A model has an initial state, a set of final states, a set of all states, and a set of
all transitions.

Model has two subclasses: TestingModel and UsageModel. UsageModel is used to store the
usage model, which is extracted from the exploration of the Spec Explorer model. TestingModel is
used to store the testing model, which is extracted from the test set. Since the testing model can
contain failures, we add a set of error states to TestingModel, to keep track of them.

The transitions can also be one of two subclasses: TestingTransition, and ModelTransition. The
difference between these two is that a TestingTransition has a frequency, whilst a ModelTransition
has a probability. Every transition has a source and a target state.

There is only one State class, but there are different types of states: error states, initial states,
accepting states, and regular states. The type of a class can be specified in the constructor. We
chose not to use inheritance in this case, because it is possible for a state to be both initial and
accepting.

For clarity, the three figures used to describe the tool (figures 5, 6, and 7) are combined in fig-
ure 8 to show how they cooperate. In this figure, Spec Explorer models are represented by green
rectangles. Tools are orange rectangles, and the system under test is a red rectangle. Red cir-
cles represent outputs from our post-processor tool. Blue rectangles are tool modules, and purple

21

Figure 7: Model Package

rectangles are classes. The purple rectangles in the post-processor tool are objects of the types Us-
ageModel and TestingModel. These classes, along with the other modelling classes, are contained
in the Model package, shown as a light purple rectangle.

4.4 Extendability

It’s possible to extend the tool to work with another input language. For this, one has to provide
their own version of the Basics and Processing modules, in order to translate their model and tests
into a usage model and testing model respectively.

Note that the basics module is also responsible for extracting the options supplied by a user,
and calling the respective computation methods, as well as storing intermediate results for plotting.

Additionally, it is possible to add extra, or different reliability measures to the tool. This can
be done by introducing a new module similar to Discriminant and Reliability measures. This mod-
ule should be able to work based on the usage and testing models, and it should be called from the
Basics module. This means that not all measures will be suitable to extend the tool.

5 Experiments

22

Figure 8: Structure and integration of post-processing tool

23

In this section we will carry out several experiments with the tool, to see the practical difference
between the values and respective development over time of the discriminant, the reliability, and
the mean time between failures.

We have constructed two example models, and thus, we have divided our experiments into two
rounds. Each of these rounds will be elaborated upon below.

5.1 Simple example model

The model for the first round of tests is a very simple model without meaning. It is equivalent to
the model in example 1 (figure 1). State 0 corresponds to Start, state 1 corresponds to Left, state
2 corresponds to Middle, state 3 corresponds to Right, and state END corresponds to End.

There is an initial state, from which one of the actions Left(), Straight(), and Right() can be
chosen. This leads to one of three states Left, Right, and Middle, between which the system can
move using the same actions. Additionally, from these three states, the system can enter the final
state End by taking action End(). The final state is absorbing, so a test case is complete once the
final state is reached.
Figures 9 and 10 show the example model with two different distributions: a usage distribution,

and a uniform distribution, modeled in Spec Explorer. The initial state is gray, the final state has
a green border, and the text on the transitions describes the action and the return value expected
from the system, as well as the transition’s probability. For example, the transition from state
Start to state Right in the usage model has the following text: Right()/0, Captured: p = 0.3. This
means that this transition is taken when the action Right() is chosen from state Start. We expect
the return value 0, and when any other value occurs, the test fails. According to the usage model,
this transition is taken with probability 0.3. The output is specified because Spec Explorer uses it
as a means to detect failures. If the model’s output and the test’s output do not match, a failure
is recorded. When the expected output is unspecified, the associated action does not have a return
value.

The above model was used to generate on-the-fly tests in a dummy implementation that we sup-
plied. This implementation did nothing, except return a value when a method was called. If that
value matched the one in the model, the transition would be crossed successfully. If the values in
the model and in the implementation did not match, a failure occurred, and the test terminated.

In between tests, the implementation was adjusted manually, in order to introduce failures and
create diverse test sets. The resulting set of test sets that was carried out is summarized in table
5, along with the values for the discriminant, reliability, and mean time between failures that were
computed over each set. If possible, the progress over time of each measure was graphed. In the
interest of readability, these graphs were combined into several plots, which are included in figure
11, and figure 12.

The table shows how many tests were performed in each test set, as well as how many failures
occurred. The failures were introduced in a dummy implementation that could return incorrect
return values. The column ”Remarks” shows the nature of the failures that were introduced.

The tool was run on each test set twice, once with a usage model exploration, and once with a
uniform model exploration. The computation of R and M is completely based on the testing chain.
In our case, this means that the values for the usage model and uniform model are exactly the
same. Therefore, we have only included the plots for R and M that were computed based on the
usage model.

24

Figure 9: Spec Explorer usage model of example 1

Figure 10: Spec Explorer uniform model of example 1

25

(a) Discriminant over time for test sets 1.1, 1.2, 1.6,
and 1.9

(b) Discriminant over time for test sets 1.3, 1.7, 1.11,
and 1.14

(c) Discriminant over time for test sets 1.8, 1.10, 1.15,
and 1.16

Figure 11: Discriminant over time

26

(a) Reliability over time for test sets 1.1, 1.2, 1.3, and
1.4

(b) Reliability over time for test sets 1.5, 1.6, 1.7, and
1.8

(c) MTBF over time for test sets 1.1, 1.2, 1.3, 1.4, 1.5,
1.6, and 1.7 (d) MTBF over time for test set 1.8

Figure 12: Reliability and mean time between failures over time

27

Test
set

Nr of
tests

Nr of
failures

Remarks Type
of
model

D R M

1 354 0
Usage 0.1525 1 -1

Uniform 0.0017 1 -1

2 346 100
Half the actions
”Straight” fail

Usage 0.1896 0.7118 13.44

Uniform 0.1997 0.7118 13.44

3 354 101
New random
seed, setup test
set 2

Usage 0.2385 0.7127 13.32

Uniform 0.2009 0.7127 13.32

4 353 353
All actions
”End” fail

Usage -1 0 4.78

Uniform -1 0 4.78

5 354 354
All transitions
fail

Usage -1 0 2

Uniform -1 0 2

6 350 24
One step in 50
fails

Usage 0.1825 0.9315 67.29

Uniform 0.0257 0.9315 67.29

7 352 24
24 steps in a
row fail (13-36)

Usage 0.1726 0.9320 67.57

Uniform 0.0237 0.9320 67.57

8 355 24
24 steps fail in a
row (267-290)

Usage 0.1739 0.9326 67.99

Uniform 0.0236 0.9326 67.99

Table 5: Summary of first round of experiments

Note that this is only the case because we are using the same test results. When Spec Explorer
can generate tests based on a usage model, a different test set would be generated, and the values
would not be the same.

5.2 Simplified case study

The second round of tests is based on a different, and slightly bigger model. This model is based
on a large car reservation system that was co-developed by Nspyre. Due to confidentiality issues,
our model is a simplification of adding a new car to the system.

Even this simplified model is too large to display as an image in this report. We have therefore
included a very abstract representation of our model in figure 13.
Basically, the system contains three main stages. First, there is the idle stage, in which the system

is waiting for the user to navigate to the menu for adding a new car. When the user does this,

28

Figure 13: Abstract representation of car reservation model

29

State Transition Usage Probability Uniform probabil-
ity

ReservationForm
[Null, Null]

addCar 1 1

ConfirmationForm
[Ford, Eindhoven]

close 1 1

ConfirmationForm
[Renault, Eindhoven]

close 1 1

AddCarForm[X, Y],
where X==0 OR
Y!= Eindhoven

addModel(Renault) 0.30 1/6
addModel(Ford) 0.15 1/6
addStation(Eindhoven) 0.30 1/6
addStation(Utrecht) 0.15 1/6
addClass 0.05 1/6
cancel 0.05 1/6

AddCarForm[X, Y],
where X!=0 AND
Y== Eindhoven

addModel(Renault) 0.20 1/7
addModel(Ford) 0.10 1/7
addStation(Eindhoven) 0.20 1/7
addStation(Utrecht) 0.10 1/7
addClass 0.05 1/7
cancel 0.05 1/7
confirm 0.30 1/7

Table 6: Summary of probabilities in car reservation model

by selecting the option ”add car”, the system moves to a new stage. This represents the form for
adding cars. In this stage, the user can cancel and move back to the first stage, or they can add
one of three types of information to the form: a car class, a car type, and a car location. The
latter two are mandatory options. To prevent a state space explosion, we’ve limited the car types
to either Renault, or Ford, and we’ve limited the locations to Eindhoven, or Utrecht. The class is
an empty method; it’s just there to show that adding a class is an option, but we haven’t specified
any possible inputs.

Once all mandatory options are supplied, the user can move on to the confirm form. However,
there is a guard on this transition: the location must be Eindhoven, and the type of the car must
have been specified. If the guard is satisfied, the system moves to the third stage: the confirmation
stage. In order to represent this, we have used two add car form stages. In the first, the guard
condition is not satisfied, in the second, it is. The system can move between these two according to
its current state. We use this representation in order to be able to show the transition probabilities
we have assigned. The purple probabilities are those that occur when a uniform distribution would
be used. The orange ones are those that occur when the usage model is used.

From the add car form stage, the user can move back to the idle stage by closing the confirmation
form.

Like in the previous round of experiments, there are two versions of the model: one with a usage
distribution, and one with a uniform distribution. These are shown in table 6.

As in the previous example, the model described was used to generate a set of test sets on a
dummy implementation. Crossing a transition in the implementation only returns a value. When

30

Test
set

Nr of
tests

Nr of
failures

Remarks Type
of
model

D R M

1 350 0
Usage 0.2204 1 -1

Uniform 0.0062 1 -1

2 350 350 all steps fail
Usage -1 0 2

Uniform -1 0 2

3 350 71
failure distance
is 50

Usage 0.2625 0.8795 50.39

Uniform 0.0389 0.8795 50.39

4 350 71
failure distance
0, offset 100

Usage 0.2632 0.8795 49.45

Uniform 0.0384 0.8795 49.45

5 350 71
failure distance
0, offset 3000

Usage 0.2430 0.8795 49.80

Uniform 0.0386 0.8795 49.80

6 350 1 offset 500
Usage 0.2207 0.9985 4375

Uniform 0.0065 0.9985 4375

7 350 36
generated with
failure
probability 0.01

Usage 0.2370 0.9426 109.28

Uniform 0.0219 0.9426 109.28

8 350 209
generated with
failure
probability 0.1

Usage 0.3736 0.5466 10.70

Uniform 0.1894 0.5466 10.70

Table 7: Summary of second round of experiments

that value matches the one predicted by the model, the transition succeeds, otherwise, a failure is
recorded and the test fails. The dummy implementation was adapted in between each test set, in
order to introduce failures in different places.

The resulting test sets that were carried out are summarized in table 7. This table also contains
the values for the discriminant, reliability, and mean time between failures. The graphs were
combined into multiple plots for readability. They are shown in figure 14 and figure 15.
The structure of table 7 is equal to the structure of table 5, which was used in the first round of

experiments. However, the way in which failures were introduced is slightly different than before.
Specifically, this example was developed with tool demonstration in mind; all methods return either
true or false. True is returned as a correct answer, and false as an incorrect one. The value that
is returned is determined by a helper method in the dummy implementation. The implementation
contains a few variables to tweak the failure settings. For this reason, the remarks that are included
are of a slightly different nature. Additionally, we’ve included some tests that introduce failures

31

(a) Discriminant over time for test sets 2.1, 2.3, 2.4,
2.7, and 2.14

(b) Discriminant over time for test sets 2.5, 2.9, 2.11,
2.12, and 2.15

(c) Discriminant over time for test sets 2.6, 2.8, 2.13,
and 2.16

Figure 14: Discriminant over time

probabilistically.
Two test sets have disappeared: the test set with a new random seed, and the test set where all

occurrences of a certain action fail. The former didn’t appear to have any interesting results, and
the latter was impossible to realize with the failure introduction mechanism that was used.

32

(a) Reliability over time for test sets 2.1, 2.5, 2.6, and
2.7

(b) Reliability over time for test sets 2.2, 2.3, 2.4, and
2.8

(c) MTBF over time for test sets 2.2, 2.3, 2.4, 2.7, and
2.8 (d) MTBF over time for test set 2.5, and 2.6

Figure 15: Reliability and mean time between failures over time

33

6 Discussion

In this section, we will look at the results that were obtained in the experiments in section 5. We
will repeat the purpose of each of the three measures, and study the influence of the failures that
were introduced in the experiments. Additionally, we will point out some limitations of the tool,
as well as some possible future enhancements.

6.1 Discriminant

The discriminant was introduced as a measure of similarity between the usage chain and the test-
ing chain. The premise is that if the models are similar enough, transitions to error states are
negligible, and the testing chain is suitable for use in computing the reliability and mean time be-
tween failures of the system. When the two models are exactly the same, the discriminant will be 0.

Computation
In order to compute the discriminant, each transition in the usage model must be crossed at least
once in the testing model. This is evident from equation 1, which contains the fraction

pij
p̂ij

. If p̂ij
is 0, this fraction and the discriminant are undefined.

We can see this in our experiments in two ways. Firstly, none of the discriminant over time plots
start for x equal to 0. Take the plot in figure 16 for example. The test set in this experiment is one
where each transition fails with a probability of 0.01. The first point at which the discriminant can
be computed is after approximately 30 tests.

Secondly, for some test sets, the discriminant can never be computed. This occurs when one or
more of the transitions in the usage model remain uncrossed in the testing model. Test sets 1.4,
1.5, and 2.2 show this issue. In test set 1.4. all tests fail because the End() action always fails. This
means that the testing model will contain a transition from states Left, Middle, and Right to an
error state, which is taken with probability 1. The correct transitions to state End have probability
0, because they are never crossed, and thus, the discriminant can never be computed.

Test sets 1.5, and 2.2 are sets in which each transition fails. This means that all transitions in
the testing model with a frequency that is higher than 0 are error transitions. None of the correct
transitions are ever crossed, and the discriminant cannot be computed. Figures 11 and 14 do not

Figure 16: Discriminant over time for test set 2.7b (Uniform - random with p = 0.01)

34

Figure 17: Discriminant over time for test set 2.5b (Uniform - failure distance 0, offset 3000)

contain a plot of the discriminant for any of these test sets (1.4, 1.5, 2.2).

Effect of failures
Since the discriminant measures similarity, and the usage model doesn’t contain any failures, we
expect the value of the discriminant to increase when errors occur. This is supported by test set
2.5 (figure 17). In this test set, 71 consecutive failures are introduced around the 250th test case.
The graph clearly shows an increase at that point.

As a result, we expect that the discriminant will only approach 0 when relatively few failures
occur. The discriminant values in table 7 support this idea. Specifically, when looking at the values
for test sets with a uniform distribution, it clearly shows that the discriminant value is higher, the
more failures occur in a test set. For test set 2.1, which contains no failures, and test set 2.6, which
contains one failure, the discriminant after 350 tests is smaller than 0.01.

Moreover, we expect that the effect of failures near the start of testing is larger than the effect
of failures near the end of testing. This is due to the fact that when there are fewer transitions,
one failure transition has a higher relative frequency than when there are many transitions. In the
long run, each equivalent failure will have the same effect on the discriminant.

This expectation is confirmed by test sets 1.7 and 1.8. In test set 1.7, 24 consecutive failures
occur near the start of testing. Its development over time is shown in figure 18 In test set 1.8, 24
consecutive failures occur near the end of testing. The discriminant over time for this test set is
shown in figure 19.

In figure 18, we see the discriminant jump from approximately 0.12 to approximately 0.45: a
difference of about 0.33. The difference in figure 19 is only about 0.025. However, we also see
that the discriminant values after 350 tests are almost equal for both test sets: 0.0237 and 0.0236
respectively (see table 5). This shows that the eventual value of the discriminant is similar, even
though the time of occurrence of the failures, and their effects on the discriminant at the time of
occurrence, are different.

Miscellaneous observations
Finally, we would like to discuss several remaining issues concerning the discriminant. First of
all, we expect the discriminant to approach zero when the model distribution matches the testing

35

Figure 18: Discriminant over time for test set 1.7b (Uniform - 24 steps in a row failed)

Figure 19: Discriminant over time for test set 1.8b (Uniform - 24 steps in a row failed later in the
test)

36

Figure 20: Discriminant over time for test set 1.8a (Usage - 24 steps in a row failed later in the
test)

distribution, and when there are few failures. In Spec Explorer, tests are generated probabilisti-
cally with a uniform distribution. Thus, in our experiments, the discriminant should only approach
zero when we test a uniform model. This is supported by the experiment outcomes in tables 5 and 7.

Second of all, we want to remark that the discriminant is not a monotonous function: it is possible
for the discriminant to go up, when failures occur, or when statistically unlikely paths are taken.
The fact that the discriminant can increase means that simply reaching a certain threshold value
isn’t necessarily a good enough stopping or reliability criterion. Instead, the discriminant should
be allowed to stabilize (which happens by carrying out a large amount of tests), or decisions should
be based on trends in the development of the discriminant over time.

Unfortunately, [22] doesn’t provide any hand holds on this. If we want to use the discriminant
as a stopping criterion, we will need to look into this.

Finally, some of the plots of the discriminant over time seem to follow an upward trend, whereas
we expect a downward one. An example is the plot for test set 1.8b, shown in figure 20. Test set 1.8
contains 24 consecutive failures around test 250. However, even disregarding these failures in the
graph, there is an upward trend. We assume that this happens because the test set is based on the
usage model. Since Spec Explorer generates tests according to the uniform model, the discriminant
will never approach zero on the long run. However, before stabilization the testing model might
coincidentally resemble the usage model, resulting in a smaller discriminant.

This assumption is strengthened by the fact that none of the test sets based on the uniform
model have an upward trend in the development of their discriminant over time.

6.2 Reliability

The reliability is the probability that a randomly selected test case will execute without the occur-
rence of any failures: the single use probability. It is computed based on the testing model alone,
which is why the results are the same within a test set. When all tests fail, the reliability will be 0,
and when they all succeed, the reliability will be 1.

37

Figure 21: Whittaker reliability over time for test set 2.5 (failure distance 0, offset 3000)

Computation
There are no restrictions on the computation of the reliability. As soon as the first test is completed,
the reliability can be computed. However, the resulting value is only meaningful if the discriminant
approaches zero. This can be shown in two examples.

First of all, there could be too few tests. For instance, consider test case 2.5. This test case
contains 71 consecutive failures from about test 250 onwards. Figure 17 shows that the discriminant
is defined from 30 tests onward. Before this point, not even all transitions are crossed. Nonetheless,
the reliability, shown in figure 21 is 1. According to the computation, the probability of successfully
executing any single test case is 100 %, even when there are some transitions that have never been
tested.

Second of all, the incorrect usage distribution could influence the weight of a failure. Let us
illustrate this with a small example: a system with a single state, and two self loops. In the usage
model, loop a is taken with a probability of 0.9, and loop b is taken with probability 0.1. Now,
we assume that loop b always fails. Intuitively, we would expect the single use reliability of this
system to be 0.9: 0.9 from a, which always succeeds, and 0 from b, which always fails.

Next we assume that the actual distribution in the testing model is a uniform distribution. This
means that the discriminant would not be approaching zero. When the reliability is computed
based on this distribution, it would be 0.5: 0.5 from a, which always succeeds, and 0 from b, which
always fails.

Effect of failures
We expect the reliability of a system to drop when failures occur, and to converge to one when cor-
rect tests are carried out. Our experiment results support this. For instance, test set 2.6 illustrates
this very clearly. This test set contains one failure. The reliability plot for this test set is shown in
figure 22. The reliability for this test set is 1, until it shows a drop around test 35, where the single
error occurs. From that point on, all tests succeed, and the reliability grows towards 1.

Following from this, we expect the reliability to be lower if the testing model contains more
failures, and vice versa. This is supported by the reliability values in tables 5 and 7.

Additionally, the effects of failures that occur early on in the test set is larger than those oc-
curring later on in the test set. Again, in the long run, the overall impact of the failures is the

38

Figure 22: Whittaker reliability over time for test set 2.6 (1 failed)

same. This is confirmed by test sets 1.7 and 1.8. Both these test sets contain the same amount of
failures, but the failures in test set 1.7 occur early on in the testing process, whereas the failures in
test set 1.8 don’t occur until the 250th test. Nevertheless, the reliability for both these test sets is
nearly the same.

Unfortunately, we cannot yet alter the testing distribution. However, once the desired adapta-
tions to Spec Explorer have been made, some experiments should be dedicated to studying the
influence of different testing distributions on the reliability.

Miscellaneous observations
There are two more issues that we would like to discuss. First of all, we want to emphasize that the
computation of the reliability is completely based on the test results. This means that the reliability
is 1 if all tests succeed, it is 0 if all tests fail, and otherwise it is somewhere in between. However,
how realistic is it to say that the reliability of your system is 1 if no failures have occurred thus far?
Even when the discriminant is equal to zero, and no failures have occurred, one still might occur
in the future.

The only way to solve this issue is to look into different reliability measures, such as LeGuen [6],
and Sayre [11].

Second of all, the reliability for test sets 2.3, 2.4, and 2.5 are exactly the same. Each of these
test sets consists of 350 tests, and 71 failures, but the places in which those failures occur are
different. In test set 2.3, one failure occurs every 50 transitions. In test set 2.4, all 71 failures occur
consecutively, and they occur near the beginning of testing. In test set 2.5, the failures also occur
consecutively, but they take place near the end of testing.

Looking into this, we discovered that the reliability could be computed as 1− Number of failures
Number of tests

for both our experimental setups. However, this is not apparent from the data in result tables 5
and 7. For the first round of experiments, this is due to the fact that we stopped the on-the-fly
testing manually. This means that the test that was in progress was immediately aborted when the
stop button was pressed. As a result, the test sets in the first round of experiments might contain
an additional partial test, causing slight deviations from the value computed with our formula.

For the second round of experiments, the values computed with the above formula don’t match

39

the values provided by the tool, either. The reason for this is the structure of the model. Unlike
the model in the first round of experiments, this model doesn’t have an absorbing final state: it’s
possible to continue testing once the final state is reached. The tool’s reliability estimation depends
on a model with an absorbing final state, so we simulate this by splitting each test into subtests
consisting of single runs that end as soon as the test returns to the final state. Since the final state
is also the initial state, we can see how many simulated tests were run by counting the number of
outgoing transitions from the initial state. Using this number as the amount of tests, we get the
exact values we expected from our formula.

This also explains why we found three values that were exactly the same for test sets 2.3, 2.4,
and 2.5: each of these test sets contained 71 failures, and there were 589 outgoing transitions from
the initial state. The fact that each of these three test sets has the same amount of simulated tests
could be a coincidence. It could also be due to Spec Explorer’s settings, but it has nothing to do
with the computations carried out by our tool.

At this point in our research, we are not able to explain why the tool’s reliability values match
those computed with the formula introduced in this paragraph. We have studied the computations
and examples in detail, but the solution is not yet evident. Due to time constraints, we need to
leave this issue unsolved. We hope that future research will look into it.

6.3 Mean time between failures

The mean time between failures is the expected number of transitions between two failures. This
value, too, is computed solely based on the testing model, so the results within a test set are the
same. When all transitions fail, the mean time between failures will be 2: the failing transition,
and the implicit transition back to the initial state. The fewer transitions fail, the higher the mean
time between failures.

Computation
The mean time between failures can be computed as soon as at least one failure has occurred. Here,
too, the resulting value is only meaningful if the discriminant approaches zero.

The computability is supported by test sets 1.1 and 2.1. Both these test sets do not contain
any failures, and we can see in tables 5 and 7 respectively that the mean time between failures
for these test sets is not defined (-1). Additionally, consider test set 2.6. This test set contains a
single failure, so what we expect to see is that the mean time between failures is undefined until
this failure occurs, after which it keeps growing. The plot included in figure 23 confirms this.

To show the importance of the discriminant approaching zero, we will employ the same exam-
ple as for reliability: a system with one state and two self loops a, and b. According to the usage
model, a is selected with probability 0.9, and b with probability 0.1. If loop b always fails, we
expect the mean time between failures to be 10: for every time transition b is selected, transition
a will be selected 9 times, which means a total of 10 steps.

However, when the testing distribution is uniform, and the discriminant doesn’t approach zero,
the mean time between failures will be 2: for every time transition b is selected, a is selected once,
which means a total of two steps.

Effect of failures
When failures occur, we expect the time between failures to fall, and when correct tests are exe-

40

Figure 23: Mean time between failures over time for test set 2.6 (1 failed)

Figure 24: Mean time between failures over time for test set 1.6 (1 step in 50 failed)

cuted, we expect it to rise. The plot of the mean time between failures over time for test set 1.6
confirms this. Test set 1.6 contains one failure every 50 steps. In the graph in figure 24, we clearly
see that the mean time between failures keeps growing. Every 50 steps (approximately 10 tests) we
see a sharp drop in the mean time between failures. This is where the failures occur.

As a result of this first observation, we expect the mean time between failures to be higher,
the fewer failures are found in the test set. Conversely, when the test set contains very many fail-
ures, we expect the mean time between failures to be low. This is supported by the MTBF values
in tables 5 and 7.

Thirdly, as with the discriminant and reliability, the effects of failures that occur near the start of
the test set are different from the effects of later failures. In principle, failures near the start of the
test set will have a larger influence on the mean time between failures than failures near the end
of the test set. The graph in figure 24 shows this: the first peaks are significantly higher than the
last ones.

However, when looking at test sets 1.7 and 1.8, this effect seems opposite. The failures in test

41

Figure 25: Mean time between failures over time for test set 1.7 (24 steps in a row failed)

Figure 26: Mean time between failures over time for test set 1.8 (24 steps in a row failed later in
the test)

set 1.7 occur near the start of the test set, and the failures in 1.8 occur near the end, but figure
25, which shows the MTBF for test set 1.7, shows a peak that is significantly lower than the one in
figure 26, which shows the MTBF for test set 1.8.

This phenomenon makes sense, though. Since both test sets contain the same amount of failures,
and the same amount of tests, we expect the eventual values of the MTBF to be fairly close to each
other. Table 5 shows that this is indeed the case. In test set 1.7, the first failure occurs in test 13.
This means that there were 12 tests worth of correct transitions to balance out this first failure. In
test set 1.8, the first failure doesn’t occur until test 267, which means there are 266 tests worth of
correct transitions to balance out this first failure, resulting in a significantly higher peak.

Miscellaneous observations
Finally, we would like to draw attention to the mean time between failures values for test sets 1.6
and 2.3. Both these test sets are described as sets where one in fifty transitions fails. Logically, we
would expect the mean time between failures for both these test sets to be approximately 50. This
is indeed the case for test set 2.3, but the value for test set 1.6 is about 67.

42

This difference is caused by the models we use to generate the tests. The model for the first
round of tests has an absorbing end state, whilst the model for the second round of tests is recurrent:
the initial state is reachable from the final state. As a matter of fact: the initial state is the final
state in this model.

The reason that this makes a difference in mean time between failures is that the computation
requires a recurrent model. Consequently, we have updated the model by introducing a transition
from the final state to the initial state, which has probability 1. This means that the model is now
recurrent, but it also means that every test is one step longer in the computation than in reality.
The 67.29 expected steps between failures in test set 1.6 contain a number of these extra steps.
The average test length is 3.78 (computed according to [22]), which means that we expect these
67.29 steps to be comprised of 67.29

3.78 = 17.80 tests. For each of these tests, one reset step was taken.
Which means that the number of actual test steps will be around 67.29− 17.80 = 49.49.

6.4 Limitations and future work

The tool in its current state has a few limitations. The first four are theoretical limitations, that
should be solved by extra research and tool development. The remaining issues are caused by the
tool’s implementation. All of these should be looked into in future versions.

• Running on the fly testing takes quite a long time. Creating a test set consisting of 350 tests
for the car reservation model took approximately 10 minutes, and this is a very simple model,
consisting of 12 states and 59 transitions.

• There is no way to deal with failures of different severity. It makes sense that different failures
can have a different level of severity. Consider a system regulating the pressure on an airplane.
Two possible failures could be a dialog window that pops up on startup, and a decimal point
shift in the target pressure. Clearly it is more important to fix the wrong cabin pressure,
which could result in health issues, than fixing the pop up, which is only a minor annoyance.
However, our system has no way to differentiate between the two; this is in the hands of the
tester.

Similarly, it is impossible to steer the testing towards interesting paths without adapting the
model.

• The tool will award a reliability of 1 to any system with a test set that contains no failures.
Estimation methods such as LeGuen [6], Miller [8], and Sayre [11] do not contain this flaw.
Miller even provides an optimum reliability, which can be computed before testing, given the
total number of tests. It is also possible to compute the number of tests necessary to achieve
a given reliability value.

• In the current version of the tool, it is not possible to compute the reliability’s variance,
which could be used to determine a confidence interval. This measure is available in different
estimates, such as Sayre [11] and Miller [8].

In possible follow-up research, different reliability measures and variance computations can
be studied, and additional methods can be added to the tool.

• The tool can only detect and deal with terminal errors that occur on return transitions.
Terminal errors are errors the system doesn’t recover from. After a terminal error, Spec
Explorer starts a new test. Incorrect outputs are examples of terminal errors.

43

Some research into possible types of errors should be done, and a detection mechanism should
be added to the tool.

• Theoretically, a system could have more than one accepting state. However, this feature has
not yet been tested, so no guarantees about tool behavior can be made.

• The models we have tested in this thesis are rather small. In order to say something about
the scalability of the tool, additional experiments should be carried out, using larger systems,
and case studies from the industry.

In theory, the tool should work the same for large examples. However, this should be supported
by experiments. Moreover, we’ve already mentioned that the testing takes quite a long time,
even for small models. When the size of the model is increased, so will the testing time, and
possibly the computation time. This effect should be studied to determine whether use of the
tool, and statistical testing in general, is feasible when the size of the model grows.

Additionally, there are a few improvements that can be made by adding some extra functionality
to Spec Explorer.

• Spec Explorer’s algorithm for on-the-fly test generation is based on uniform choices. This
means that it cannot yet generate test sets based on a usage model that is not uniformly
distributed. We intend to supply additional test generation functionality to the Spec Explorer
tool.

• As it is now, our tool takes a completed test set and says something about the reliability of
the system based on this information. Another possibility could be to use the discriminant, or
a combination of the discriminant and the reliability or MTBF as a stopping criterion. This
requires running our tool parallel to Spec Explorer’s on-the-fly testing, and Spec Explorer
using the output from the tool to determine when to stop testing.
Before this feature can be implemented, we need to determine how exactly the discriminant
can be used as a stopping criterion, since crossing a threshold value is not a suitable solution.

• Alternatively, we could give the user the option to work from the existing testing model, or
to construct a new testing model. In this way, the user could stop testing and study the
development of the discriminant. If they are satisfied with the result, testing can stop. If they
are not satisfied, they could continue testing. If they reuse the testing model, it would be as
if they never stopped testing.

7 Conclusion

We’ve stated that model based testing seems like an interesting and useful tool in the world of
testing. Indeed, it is already used in commercial settings. For example, Nspyre uses the model
based testing tool Spec Explorer to test their customers’ (embedded) software.

However, we have also seen that Spec Explorer, as well as model based testing tools in general,
lack an estimation of the reliability of the system under test. As a switch to another tool was
not warranted, we have implemented a Spec Explorer post processing tool. This tool takes Spec
Explorer on-the-fly test results as input, which allows Nspyre employees to keep testing as they
always have. The tool will use the resulting test cases to estimate the reliability of the system
under test.

44

We have carried out two rounds of experiments, using a very simple model, and a simplified case
study. In each round of experiments, we played with the amount of failures, and the moment of
occurrence of these failures. The results were discussed in section 6. For the most part, the results
were as expected, or easily explained. However, one result was surprising: it turned out that the
reliability measure computed by the tool was the same as the percentage of successful tests, no
matter the location of failures. We are unsure whether this is due to a fault in the computations,
due to the models we used, or due to a mistake in the paper by Whittaker. Further experiments,
with different models, could help figure out if this phenomenon always occurs.

Additionally, we have mentioned some of the tool’s limitations. The most important ones being
that research into different types of failures that can occur is necessary; and that the tool’s scalability
should be investigated by using a larger case study for experiments. We have also suggested
researching different reliability estimates in literature. For better results, we also propose some
changes to Spec Explorer. These are implementing a test generation algorithm that probabilistically
generates tests, according to a usage model, and using the reliability estimation as a stopping
criterion for on-the-fly testing.

Despite its shortcomings, we feel that the post processor tool is a valuable addition to the testing
tools used by Nspyre. It provides an estimation of reliability, where they had none before, and it
doesn’t require the employees to start using a different tool.

Nspyre feels that on-the-fly testing is the way to go, especially for larger systems, which some
eighty percent of their projects are. The reliability estimate computed by the tool is most valuable
when the discriminant approaches zero, but it can be computed at any point in time.

With additional research, the tool can be improved with regard to several aspects. It could, for
example, be modified to interact with Spec Explorer and provide a stopping criterion for on-the-fly
testing, which could save valuable resources by stopping testing when its expected gain no longer
merits the testing costs. Additionally, the tool is a starting point for elaborate research on reliability
estimates.

45

References

[1] Sebastian Bauersfeld and Tanja Vos. A reinforcement learning approach to automated GUI
robustness testing. In 4th Symposium on Search Based-Software Engineering, page 7, 2012.

[2] Ed Brinksma, Mariëlle Stoelinga, and Laura Brandan Briones. A semantic framework for test
coverage (extended version). 2006.

[3] Vijaya Krishna Cherukuri and Piyush Gupta. Model based testing for non-functional require-
ments. 2010.

[4] Winfried Dulz. Model-based strategies for reducing the complexity of statistically generated
test suites. In Software Quality. Increasing Value in Software and Systems Development, pages
89–103. Springer, 2013.

[5] Winfried Dulz and Fenhua Zhen. Matelo-statistical usage testing by annotated sequence dia-
grams, markov chains and ttcn-3. In Quality Software, 2003. Proceedings. Third International
Conference on, pages 336–342. IEEE, 2003.

[6] Helene Le Guen, Raymond Marie, and Thomas Thelin. Reliability estimation for statistical
usage testing using markov chains. In Software Reliability Engineering, 2004. ISSRE 2004.
15th International Symposium on, pages 54–65. IEEE, 2004.

[7] Michael R Lyu et al. Handbook of software reliability engineering, pages 531–563. McGraw-Hill
inc, 1996.

[8] Keith W Miller, Larry J Morell, Robert E Noonan, Stephen K Park, David M Nicol, Branson W
Murrill, and Jeffrey M Voas. Estimating the probability of failure when testing reveals no
failures. Software Engineering, IEEE Transactions on, 18(1):33–43, 1992.

[9] Ahmad Saifan and Juergen Dingel. Model-based testing of distributed systems. School of
Computing Queen’s University Canada, 2008.

[10] Kirk Sayre and Jesse H. Poore. Stopping criteria for statistical testing. Information and
Software Technology, 42(12):851–857, 2000.

[11] Kirk D Sayre and Jesse Poore. Improved techniques for software testing based on Markov chain
usage models. PhD thesis, Citeseer, 1999.

[12] Software Quality Research Laboratory. JUMBL 5.0 User’s Guide.

[13] Gregory Tassey. The economic impacts of inadequate infrastructure for software testing. Na-
tional Institute of Standards and Technology, RTI Project, 7007(011), 2002.

[14] Rene-Christian Tuyishime, Baptiste Boissier, and Laurent Raffalli. MaTeLo: Getting Started.
All4Tec.

[15] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-based testing.
University of Waikato, Hamilton, New Zealand, 2006, 2006.

46

[16] AP van der Meer, R Kherrazi, and M Hamilton. Using formal specifications to support
model based testing asdspec: A tool combining the best of two techniques. arXiv preprint
arXiv:1403.7257, 2014.

[17] AP van der Meer, R Kherrazi, N Noroozi, and A Wierda. The synergy between user experi-
ence design and software testing. In Software Engineering and Formal Methods, pages 11–21.
Springer, 2015.

[18] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram Schulte, Nikolai Tillmann, and
Lev Nachmanson. Model-based testing of object-oriented reactive systems with spec explorer.
In Formal methods and testing, pages 39–76. Springer, 2008.

[19] Margus Veanes, Colin Campbell, Wolfram Schulte, Pushmeet Kohli, N Tillmann, and
W Grieskamp. On-the-fly testing of reactive systems. Submitted for publication, 2005.

[20] Margus Veanes, Colin Campbell, Wolfram Schulte, and Nikolai Tillmann. Online testing with
model programs. In ACM SIGSOFT Software Engineering Notes, volume 30, pages 273–282.
ACM, 2005.

[21] Margus Veanes, Pritam Roy, and Colin Campbell. Online testing with reinforcement learning.
In Formal Approaches to Software Testing and Runtime Verification, pages 240–253. Springer,
2006.

[22] James Whittaker, Michael G Thomason, et al. A Markov chain model for statistical software
testing. Software Engineering, IEEE Transactions on, 20(10):812–824, 1994.

[23] James A Whittaker and Jesse H Poore. Markov analysis of software specifications. ACM
Transactions on Software Engineering and Methodology (TOSEM), 2(1):93–106, 1993.

47

A Stationary distribution

In this appendix, we will show how to compute a stationary distribution for a system model as
supplied to Spec Explorer. The stationary distribution (or steady state distribution) shows the
relative amount of time the system is in each state. This is a well known mathematical concept,
and it can be computed according to the formula π = πP , using the knowledge that

∑
i πi = 1.

Here, P is the transition matrix of our model. Note that the initial distribution has no effect on
the eventual stationary distribution.

In order for the distribution to be meaningful, the model must be a connected graph. This means
that there must be a path between any two states in the model. In this example, we want to
determine the steady state distribution of the model in figure 1, which is not connected. To remedy
this, we need to change our view of the problem. What we are trying to do is generating a bunch
of tests. We do this by making one test, that begins in the initial state (0) and terminates in the
final state (END, or 4). Then, we move back to state 0 and start again. To connect the graph, we
will represent this starting again as an additional transition from the final state to the initial state,
with probability 1 (we always take this transition). Now we do have a connected graph, and we
can start our calculations.

Creating the transition matrix
In computing the stationary distribution we need the transition matrix. This matrix is basically
a summary of the model in matrix form. The horizontal and vertical indices correspond respec-
tively to the target and source states of a transition. The entry in the matrix at this point is the
probability of the transition from the source to the target.

Let’s look at the transition from state 0 to state 1, which has a probability of 0.6. This transition
leads to an entry of 0.6 in the first row of the second column.

0 0.6 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Once all transitions have been added to the matrix in the same fashion, the following matrix

is obtained.This matrix (the transition matrix) can now be used in the equation we introduced:
π = πP .

0 0.6 0.1 0.3 0
0 0 0.7 0 0.3
0 0 0.1 0.6 0.3
0 0.4 0.3 0 0.3
1 0 0 0 0

Obtaining a system of equations
We know now that the vector containing the steady state distribution (π) is equal to πP . Let’s
grab a vector π of length 5 (the amount of states), where π = {π0, π1, π2, π3, π4}, and let’s insert
this vector and the transition matrix into the formula.

48

πP =
[
π0 π1 π2 π3 π4

]

0 0.6 0.1 0.3 0
0 0 0.7 0 0.3
0 0 0.1 0.6 0.3
0 0.4 0.3 0 0.3
1 0 0 0 0

=
[
π4 0.6π0 + 0.4π3 0.1π0 + 0.7π1 + 0.1π2 + 0.3π3 0.3π0 + 0.6π2 0.3π1 + 0.3π2 + 0.3π3

]
= π

(11)
We now have a system of 5 equations, and we can add one more: the sum of the steady state proba-
bilities (π0+π1+π2+π3+π4) is equal to 1. This means that we now have a system of six equations:

π0 = π4

π1 = 0.6π0 + 0.4π3

π2 = 0.1π0 + 0.7π1 + 0.1π2 + 0.3π3

π3 = 0.3π0 + 0.6π2

π4 = 0.3π1 + 0.3π2 + 0.3π3

π0 + π1 + π2 + π3 + π4 = 1

(12)

Solving the system of equations
There are multiple ways to solve this system of equations: graphing, substitution, and elimination.
We will use the latter method here. Specifically, we will use matrices to solve the system of
equations.

The first step is to write all equations in a standard form (Aπ0 +Bπ1 +Cπ2 +Dπ3 +Eπ4 = F).
Doing this for all the above equations results in the following:

−1π0 + 0π1 + 0π2 + 0π3 + 1π4 = 0

0.6π0 +−1π1 + 0π2 + 0.4π3 + 0π4 = 0

0.1π0 + 0.7π1 +−0.9π2 + 0.3π3 + 0π4 = 0

0.3π0 + 0π1 + 0.6π2 +−1π3 + 0π4 = 0

0π0 + 0.3π1 + 0.3π2 + 0.3π3 +−1π4 = 0

1π0 + 1π1 + 1π2 + 1π3 + 1π4 = 1

(13)

Next, we transform these equations to matrix form. This is really simple. We grab the coefficients
in the equations above and insert them into the matrix. The vertical line is a handhold to remember
that the last column only contains constants.

−1 0 0 0 1 0
0.6 −1 0 0.4 0 0
0.1 0.7 −0.9 0.3 0 0
0.3 0 0.6 −1 0 0
0 0.3 0.3 0.3 −1 0
1 1 1 1 1 1

49

To find a solution from this matrix, we need to apply row operations (scaling and sweeping) until
the part of the matrix to the left of the vertical line is in reduced row echelon form. This means
that the first non-zero element in each row is equal to 1, and that this 1 is the only non-zero element
in its column. Here, I will show two scaling operations and one sweeping operation.

The scaling operation comes down to multiplying each entry in a row by a factor. This is
allowed, because we’re dealing with an equality: if a + b = c, then 2a + 2b = 2c. Because we want
the first element in every row to be one, it makes sense to scale the first row in such a manner that
the first element equals 1. For this we need to multiply with factor -1. We will immediately scale
the second row as well, because this is good preparation for the sweeping of this row. To make the
first element in the row equal to 1, we need to multiply with factor 10

6 . The resulting matrix is
displayed below:

1 0 0 0 −1 0
1 −10

6 0 4
6 0 0

0.1 0.7 −0.9 0.3 0 0
0.3 0 0.6 −1 0 0
0 0.3 0.3 0.3 −1 0
1 1 1 1 1 1

Now we apply the sweeping operation. This comes down to subtracting one row from another.
This, too, is allowed because we are dealing with equalities: if ax + by = c, and dx + ey = f, then
ax + by - (dx + ey) = (a-d)x + (b-e)y = c - f. This explains why we have also scaled the second
row in such a manner that the first element is 1: no more non-zero elements are allowed in this
row, and by subtracting row 1 from row 2, we can eliminate the first element in the second row.

1 0 0 0 −1 0
0 −10

6 0 4
6 1 0

0.1 0.7 −0.9 0.3 0 0
0.3 0 0.6 −1 0 0
0 0.3 0.3 0.3 −1 0
1 1 1 1 1 1

If we keep applying these operations to the matrix, we will eventually reach the reduced row echelon
form:

1 0 0 0 0 0.1875
0 1 0 0 0 0.1916
0 0 1 0 0 0.2357
0 0 0 1 0 0.1977
0 0 0 0 0 0
0 0 0 0 1 0.1875

Stationary distribution
When we have obtained the above matrix, retrieving the stationary distribution is very simple.

50

Remember that we made the matrix by taking the coefficients from our system of equations. The
matrix that we have now is still a representation of that system of equations, we just simplified
them. When we translate the matrix back to equations we obtain the following:

1π0 = 0.1875

1π1 = 0.1916

1π2 = 0.2357

1π3 = 0.1977

0 = 0

1π4 = 0.1875

(14)

From this we can easily construct the stationary distribution π:
[
0.1875 0.1916 0.2357 0.1977 0.1815

]
.

51

