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Management Summary 
The specialty General Surgery at HagaZiekenhuis (Haga) is struggling to keep access time for 

elective patients below the national set limits while keeping operating room (OR) availability 

for semi-urgent patients high. Scheduled elective patients are cancelled at the last moment 

for semi-urgent and emergency patients that require surgery. An analysis of current General 

Surgery performance shows an average utilization of 68% in elective surgical schedules with 

an overtime frequency of 38%. For semi-urgent patients, the probability of access to surgery 

within a week is currently 47%. For elective patients, Haga achieves a five week access time 

probability of 37% compared to the national allowed limit of 80%. The access time probability 

within seven weeks is 75% compared to the national allowed limit of 100%. We identify a 

number of underlying causes of poor performance and determined that these mainly originate 

on tactical and operational offline levels. We determine that on these levels, the current 

scheduling approach fails to properly manage uncertainties related to surgical demand and 

duration. For example, nearly 86% of the surgery duration estimates that OR planners use 

when scheduling are off more than 10 minutes. Therefore, our research objective is: 

To develop an OR scheduling approach which manages surgical demand and duration 

uncertainty for elective and semi-urgent patients. 

Solution approach 
Based on a theoretical framework, we propose a robust cyclic surgical schedule aimed on 

managing surgical demand and duration uncertainty. To manage this uncertainty, we 

decompose the solution approach into several steps. We apply a clustering approach 

proposed by van Oostrum et al. [1] as a method to combine individual surgical procedures into 

homogenous surgical procedure types in terms of duration. This allows us to reduce demand 

uncertainty through a pooling effect.  

To manage semi-urgent demand uncertainty we apply the discrete time slot queuing theory 

approach presented by Kortbeek et al [2]. The queuing model determines the probability of 

access within a week based on a chosen number of slots. We determine the number of slots 

to be the weekly demand for semi-urgent patients that we should cover to provide timely 

access and to prevent the current frequent elective patient cancellations. 

With elective and semi-urgent demand input known, we apply a mathematical programming 

approach with column generation approach based on van Oostrum et al. [3] to create a 

surgical procedure type schedule (SPTS). In this SPTS, we select operating room days (ORDs), 

which are ORs filled with surgical procedure types from an implicit set and assign these to 

specific dates and operating rooms. Implicit refers to the fact that we iteratively expand the 

set with potential ORDs. New ORDs are iteratively generated in a sub-model that offer an 

improvement to this set. This sub-model incorporates surgical slack and the portfolio effect 

by described by Hans et al. [4] for both Gaussian and log-normal distributed surgical duration 

procedures to manage overtime probability. For all sub-specialties, we select as many ORDs  

required to balance elective waiting lists to an acceptable level. The result is a schedule where 

surgical cases can be planned into the first available surgical procedure type slots that they 
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are part off. Only semi-urgent procedures should be scheduled in slots reserved for semi-

urgent procedure types.  

We propose a flexible approach to creating a SPTS that consists of a fixed SPTS and a variable 

number of monthly add-on ORDs that fluctuates in response to production estimate 

variations. The number of add-on ORDs should be determined monthly, based on production 

estimates for each sub-specialty. This approach presents two advantages. The fixed 

component allows for easy continuation in planning for surgeon planners, staff planners and 

admission office schedulers to cover the majority of monthly demand. Relative small 

variations in monthly demand are accounted for with the variable component, which ensures 

an overall close match of demand and capacity.  

Results  
We conclude that Haga will benefit from using a SPTS. The size of this benefit vary depending 

on which management choices are made with relation to overtime probability, semi-urgent 

slots, opening hours and whether a flexible or static SPTS approach is chosen.  

We introduce a default scenario where ORs are opened eight hours a day, only one sub-

specialty is allowed per OR and where we reserve 44 semi-urgent patient slots. The default 

scenario results in an OR utilization of 79%, one week access time probability of 85% and 

overtime probability of 30%. We also introduce a method where ORs are subdivided into 

several smaller ORDs of a different capacity. When we add the possibility of multiple ORDs 

capacity types, utilization may increase up to 85% and less capacity is required for the same 

throughput. The best results with a 30% probability of overtime can be achieved when 

implementing five and three hour ORDs in an eight hour day, with an OR utilization of 85%. 

For practicality, we advise Haga to implement a combination of eight and four hour ORDs that 

are planned into eight hour days, which result in an OR utilization of 82%. 

A monthly minimum of 43 slots is required to stabilize access time for semi-urgent patients, 

which results in a 82% probability of access within a week. Access time can be improved by 

reserving more slots, but the marginal access time benefit of each slot decreases. We advise 

to reserve 44 semi-urgent slots, which results in a 85% probability of access within a week for 

semi-urgent patients.  

Utilization is influenced by the amount of slack that is chosen by management to limit the 

probability of overtime. With an overtime probability of 40%, the estimated utilization 

increases to 89%. When we decrease the overtime probability to 20%, the estimated 

utilization drops to 73%. We recommend to limit the probability of overtime to 30%. 

We argue that Haga will also benefit from using the flexible approach towards using a SPTS. 

On paper, this approach is slightly outperformed with up to 2% by the static approach in terms 

of utilization. However, we anticipate that the flexible approach offers benefits in dealing with 

elective demand fluctuations, such a reduced risk of idle time in periods of low elective 

demand. 
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Recommendations 
Our main recommendation is to implement our flexible SPTS approach consisting of eight and 

four hour ORDs with monthly 44 semi-urgent slots and a 30% probability of overtime. We 

expect that the initial period requires closer monitoring to determine a proper balance 

between production and elective demand. To reduce the current waiting list, we advise to 

schedule an increased amount of ORDs in the SPTS and evaluate after that. After the two initial 

months, we advise to schedule a monthly capacity re-allocation meeting as recommended in 

subsection 6.3.1 to estimate the number of variable add-on ORDs required for the next month. 

An excel tool is available to determine the number of add-on ORDs required, based on the size 

of the waiting list.  

The SPTS provides an overview of those surgical procedures that can be assigned at each 

specific date and OR. Available elective procedures may be scheduled on a first come- first 

served base. The SPTS can be scheduled with available surgical cases for an entire month such 

that patients can be notified well in advance of their procedure date. Semi-urgent shots should 

be kept open for semi-urgent patients. We advise to send the schedule to the OR department 

one week in advance. If semi-urgent patients arrive after this time, these patients can be 

scheduled “online” in the still available slots. If semi-urgent slots are not filled two days in 

advance, we advise to schedule an elective patient in the available slot. For each sub-specialty, 

the added excel tool comes with a list of potential elective procedures that fit in the duration 

in a semi-urgent slot.  

We also provide some general recommendations: 

 Increase the quality of data by adapting how data is registered at the OR.  

 Implement an OR dashboard to monitor a chosen set of performance indicators.  

 Set specific utilization targets for specialties based on their case-mix when 

dimensioning capacity at strategic level. 

 Implement a monthly meeting with specialties to discuss production estimates and 

capacity re-allocation for the next month. 

 Implement a hierarchical structure with responsibilities at OR personnel related to 

morning preparations of the OR.  

 Implement two starting times at the OR to reduce workload for anesthesiologists 

during morning rush hour. 
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Management Samenvatting 
Het snijdend specialisme Heelkunde binnen het HagaZiekenhuis heeft moeite om de 

toegangstijd voor wachtlijst patenten onder de nationaal gestelde norm te houden en daarbij 

operatie kamers (OKs) toegankelijk te houden voor semi-spoed patiënten. Geplande wachtlijst 

patiënten kunnen op het laatste moment worden afgezegd om plaats te maken voor semi-

spoed patiënten. Een prestatie analyse van de Heelkunde laat een gemiddelde OK benutting 

zien van 68%, met een uitloop frequentie van 38%. De kans op toegang binnen een week voor 

semi-spoed patiënten is 47%. Vergeleken met de nationale norm van 80% hebben wachtlijst 

patiënten een kans van 37% om binnen vijf weken toegang te krijgen tot chirurgische 

ingrepen. Voor zeven weken is dit 75% vergelijken met de nationale norm van 100%.  We 

onderscheiden een aantal onderliggende oorzaken van prestatievermindering die vooral op 

tactisch en operationeel niveau bestaan. We concluderen dat de huidige planningsaanpak op 

deze niveau niet in staat is om onzekerheid met betrekking tot ingreep vraag en duur te 

managen. Een voorbeeld van een onderliggende oorzaak is dat schattingen van de ingreep 

duur in 86% van de gemeten gevallen met meer dan 10 minuten afwijkt van de realiteit. 

Daarom stellen we de volgende onderzoeksopdracht voor: 

Het ontwikkelen van een OK planning aanpak gericht op het managen van vraag en duur 

onzekerheid van chirurgische ingrepen van wachtlijst en semi-spoed patiënten. 

Aanpak 
Aan de hand van een literatuuronderzoek stellen we een robuste cyclische OK planning voor, 

gericht op het managen van vraag en duur onzekerheid van chirurgische ingrepen. Om dit te 

bereiken delen we onze aanpak op in stappen. Eerst passen we een cluster methode toe op 

de zes sub-specialismen binnen Heelkunde om verschillende ingrepen samen te voegen als 

ingreep typen. Deze methode is beschreven door van Oostrum et al. [1] en staat ons toe om 

onzekerheid in vraag te verminderen door aggregatie. 

Om de onzekerheid met betrekking tot de vraag naar semi-spoed ingrepen te managen passen 

we het discrete tijdvak wachtrijmodel van Kortbeek et al. [2] toe. Hierbij nemen we aan dat 

iedere patiënt binnen een tijdvak met onbepaalde lengte geholpen kan worden. Dit model 

bepaalt de kans op toegangstijd binnen een week aan de hand van een gekozen aantal vakken 

dat we reserveren voor semi-spoed patiënten. We bepalen het aantal vakken en stellen dat 

gelijk aan het aantal semi-spoed patiënten dat we wekelijks moeten reserveren om tijdig 

toegang te kunnen bieden, en om te voorkomen dat wachtlijst patiënten afgezegd moeten 

worden. Dit aantal vakken wordt aan de hand van historische observatie onder sub-

specialismen van Heelkunde verdeeld, net als de duur van een algemene semi-spoed ingreep 

binnen ieder specialisme. 

Nu de semi-spoed en wachtlijst vraag bekend is, passen we een wiskundig programeer model 

toe beschreven door Oostrum et al. [3] om een schema te maken met chirurgische ingreep 

typen. In dit schema selecteren we operatie dagen (ODs), gedefinieerd als een dag op de OK 

die volgepland is met chirurgische ingreep typen, uit een impliciete set met verschillende ODs. 

Nieuwe ODs worden iteratief gegenereerd door een sub-model en toegevoegd aan de set als 
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ze een verbetering zijn. Dit sub-model gebruikt slack tijd en het portfolio effect beschreven 

door Hans et al. [4] voor ingrepen met zowel een normaal als log-normaal verdeelde duur. 

Voor alle sub-specialismen kiezen we het minimale aantal ODs nodig om aan de ingreep type 

vraag te voldoen. Het resultaat is een schema waarbij ingrepen in het eerst mogelijk 

beschikbare passende ingreep type vak gepland kunnen worden. Ingrepen mogen alleen in 

hun eigen sub-specialisme vakken gepland worden, evenals semi-spoed. 

We stellen een flexibele methode voor om een ingreep type schema te maken. Deze methode 

bevat een vast schema en een variabel aantal extra toe te voegen ODs. Het aantal extra ODs 

wisselt per maand en hangt af van of productie schattingen voor de komende maand groter 

zijn dan momenteel gepland staat. Deze aanpak met een vaste en variabele component heeft 

twee voordelen ten opzichte van een volledig statisch schema. Het veruit grootste deel van 

het schema kan nog steeds herhaaldelijk gebruikt worden en hoeft daarom niet aangepast. 

Het relatief kleine variabele aantal extra ODs zorgt ervoor dat de capicteit netjes aansluit op 

de vraag, en voorkomt dat OKs onbenut blijven bij perioden met minder vraag.  

Resultaten 
We concluderen dat Haga profijt zal hebben van het gebruik van een ingreep type schema. De 

mate van de winst  hangt af van management keuzes die gemaakt worden met betrekking tot 

de kans op uitloop, het aantal semi-spoed tijdvakken, OK openingsduur en of een flexibele of 

statische methode wordt gebruikt voor het ingreep type schema. 

Het basis scenario resulteert in een OK benutting van 79%, met een kans van 85% op toegang 

binnen een week voor semi-spoed patiënten en een kans van 30% op uitloop van de OK. Als 

we de mogelijk van het gebruik van OKs met verschillende duur toestaan kan benutting 

toenemen tot 85%, waarbij minder OK capaciteteit nodig is. De beste resultaten met 30% kans 

op uitloop worden behaald met ODs van vijf en drie uur, met een benutting van 85%. Om 

pragmatische redenen adviseren we Haga een combinatie van acht en vier uur durende ODs 

die resulteert in een OK benutting van 82%. 

Een maandelijks aantal van 43 tijdvakken is nodig om toegangstijd voor semi-spoed patiënten 

te stabiliseren tot binnen een week met een kans van 83%. Deze kans kan worden vergroot 

door extra tijdvakken toe te voegen, maar met afnemende winst voor ieder tijdvak. We 

adviseren Haga om 44 vakken te reserveren, wat resulteert in een kans van 85% op toegang 

binnen een week.  

Benutting wordt beïnvloedt door de hoeveelheid “slack” dat gekozen wordt door 

management om de kans op uitloop te beperken. Met een kans op uitloop van 40% kan de 

benutting oplopen tot 89%. Wanneer de kans op uitloop beperken tot 20%, daalt de benutting 

naar 73%. We adviseren Haga om de kans op uitloop te beperken tot 30%. 

We denken dat Haga baat zal hebben bij het gebruiken van de flexibele methode om een 

ingreep type schema te maken. Op papier presteert leidt aanpak tot 2% OK benutting minder 

dan de statische aanpak. We denken echter dat de flexibele aanpak voordelen biedt in het 

inspelen op schommelingen in vraag van wachtlijst patiënten, zoals een verminderde kans op 

leegstand in perioden met minder vraag. 
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Aanbevelingen 
Onze hoofdaanbeveling is het implementeren van een ingreep type schema via de flexibele 

methode, met ODs van acht en vier uur en een maandelijks aantal van 44 tijdvakken voor 

semi-spoed patiënten. We verwachten dat de wachtlijst extra goed in de gaten gehouden 

moet worden in de eerste twee maanden om tot na te gaan hoe de instroom van nieuwe 

patiënten beïnvloedt wordt door het nieuwe schema. Om de huidige wachtlijst te 

verminderen adviseren we om de eerste twee maanden extra ODs te draaien. Na twee 

maanden adviseren we om een maandelijkse bijenkomst te houden, gericht op het schatten 

van toekomstige productie en het aantal benodigde extra ODs voor de komende maand. Een 

excel-tool is beschikbaar om het aantal extra ODs te bepalen aan de hand van een huidige 

wachtlijst.  

Het ingreep type schema biedt een overzicht van welke ingrepen op welke dag ingepland 

kunnen worden. Wachtlijst patiënten kunnen in het eerst beschikbare vak gepland worden. 

Het ingreep type schema kan voor een hele maand ingepland worden zodat patiënten tijdig 

op de hoogte kunnen worden gesteld van hun ingreep. Semi-spoed tijdvakken moeten 

vrijgehouden worden voor semi-spoed patiënten. We adviseren om een ingeplande week van 

het schema een week van te voren naar de OK te sturen. Semi-spoed patiënten die hierna nog 

in beeld komen kunnen in de vrijgehouden tijdvakken gepland worden. Wanneer er twee 

dagen van tevoren nog geen semi-spoed patiënt in beeld is, kan er getracht worden om alsnog 

een wachtlijst patiënt in te plannen. Voor ieder sub-specialisme is er een lijst met potentiele 

verrichten die in een semi-spoed tijdvak past.  

Verder hebben we nog enkele algemene aanbevelingen: 

 Verbeter de kwaliteit van gegevens huishouding door aan te passen hoe gegevens 

moeten worden geregistreerd op de OK. Implementeer daarbij een prestatie monitor 

aan de hand van een gekozen verzameling prestatiemeters. 

 Kies specifieke benutting doelen voor ieder specialisme, gebaseerd op hun patiënten-

mix, wanneer er jaarlijks capaciteit wordt toegewezen op strategisch niveau aan de 

hand van productie afspraken. 

 Las iedere maand een bijeenkomst in met vertegenwoordigers van alle specialismen 

om productie schattingen te bespreken voor de komende periode, en of er OK 

capaciteit herverdeeld kan of moet worden. 

 Implementeer een duidelijke structuur met verantwoordelijkheden binnen het OK 

personeel gericht op de voorbereidingen aan het begin van de dag binnen de OK. Kies 

voor twee starttijden met tussenpozen van een kwartier om de ochtend werkdruk van 

anesthesisten te beperken. 
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1 Introduction 
In this thesis we conduct a research on how to improve operating room (OR) performance of 

General Surgery at the HagaZiekenhuis (Haga). The first chapter provides with a short 

background introduction of Haga. Chapter 2 provides an analysis of how General Surgery 

functions, after which the problem and the research objective are explained.  

Section 1.1 provides some background information about Haga. Section 1.2 explains the 

motivation for this research. Section 1.3 explains the research methodology that we use to 

determine how to improve OR performance.  

1.1 Context 
In this section, we provide background information and key figures about HagaZiekenhuis and the 
specialty general surgery. 

1.1.1 HagaZiekenhuis 

HagaZiekenhuis is one of 28 top-clinical hospitals in the Netherlands, situated in The Hague. It 

facilitates highly specialized care, education to medical personnel and medical research. Its 

employees number nearly 3600, of which over 210 are medical specialists. Haga originated in 

2004 as a merger between three hospitals situated in The Hague and is still divided over 

multiple locations, with multiple OR departments. Note that OR department refers to the 

entire OR complex, OR to a single room and ORs to multiple operating rooms. The location of 

interest in this thesis is Leyweg which facilitates the OR department for General Surgery. Some 

key figures from 2014 are detailed in Table 1.  

 

Table 1.1: Key figures of Haga in 2014 (Source: Annual report 2014) 

1.1.2 General surgery 

The specialty General Surgery covers a wide array of medical sub-specializations such as for 

example vascular-, abdominal-, oncologic- and trauma-surgery. A total of 16 sub-

specializations are covered by 13 surgeons. These surgeons perform major surgical procedures 

in the OR, minor outpatient procedures and outpatient consults. In this thesis, only the major 

surgical procedures that are performed in ORs are of interest.  

General Surgery makes intensive use of the OR department by performing surgical procedures 

on three types of patients. Emergency patients (1) arrive through an unexpected incident and 

urgently require care, often immediately. The other patient types are both elective patients. 

Elective patients with more urgent requirements are a distinctive group called “semi-urgent” 

(2) patients. The date and time of their surgical procedure is urgent but can still be planned to 

Employees 3569 
Medical specialists 317 
Beds 611 
Admissions 29728 
Average length of stay per admission 5 
Single day admissions 29644 
New outpatient visits 200412 
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a various degree. Elective patients (3) that are less urgent are simply called elective patients. 

There is no clear definition to as what makes a patient elective or semi-urgent, but in general 

a border of 2 weeks is used.  

1.2 Research motivation 
The specialty General Surgery at Haga is struggling to keep access time for elective patients 

below the national set standards while keeping availability for (semi-)urgent patients high. 

Scheduled elective patients often give way at the last moment for unexpected semi-urgent 

and emergency patients that require surgery.  

Historically, operations research and management science approaches have rarely been used 

within Haga. However, an increasing number of operations research approaches have recently 

been introduced by Graduate and PhD- students through cooperation with the University of 

Twente. These methods have had positive results with complex problems. Haga hopes that an 

operations research approach will have similar results at General Surgery. 

1.3 Research methodology 
We would like to maximize the performance benefits of our solution approach. A problem 

however, is that there are many indicators of OR performance available and many factors that 

influence performance. How does one identify the key performance indicators and the main 

contributors to poor OR performance? Heerkens et al. [5] proposes a general managerial 

approach as a research framework to identify problems and determine the right solution 

approach that we will use as a guideline throughout this thesis.  

The general managerial approach demands that we first analyze the current situation and 

performance to determine of it meets the desired standard. We then identify the underlying 

causes that lead to the problems that were found in performance through a problem bundle. 

The problem bundle is a comprehensive cluster of all underlying causes and their 

interrelations, which enable us to determine the core causes that we want to focus on. This 

enables us to come up with tailored solution approaches that target the main contributors of 

poor performance. The framework also provides a research cycle if we lack information at 

some point in the general managerial approach. 

1.4 Research objective & demarcation 
Based on the research motivation, we propose our research objective to be: 

To develop an OR scheduling approach which manages surgical demand and duration 

uncertainty for elective and semi-urgent patients. 

A key goal of the new planning approach is to manage semi-urgent surgical demand 

uncertainty robustly in such a way that access time requirements are met without generating 

online operational chaos and elective patient cancellations. By robust, we refer to probabilistic 

robust optimization in which we quantify uncertainty in the “true” value of the parameters of 

interest by probability distribution functions. Similar to semi-urgent demand, our planning 
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approach should also be robust against overtime. Other gains from a new structured approach 

to scheduling should be increased utilization of resources and a smoother workflow for 

medical personnel.  

We introduce the framework presented by Hans, et al. [6] to subdivide planning decisions in 

four hierarchical levels of planning and four managerial areas. Figure 1.1 visualizes the 

framework. Our focus of OR scheduling is identified in the framework as the domain of 

resource capacity planning. Section 2.2 provides an extensive description of the hierarchical 

levels, and how Haga operates on these levels. We will research a new solution approach to 

resource allocation on Tactical and Operational offline levels. We found that problems 

reported at online operational level have their origins mainly in planning decisions at these 

two levels. We reason that interventions at these levels exert positive influence on 

performance at online operational level, while interventions at online operational level will 

result only in minor efficiency gains within a framework of inadequate planning decisions. We 

will also exclude interventions at strategic level. We anticipate that we are able to increase 

performance within the current framework of strategic decisions, such as current case-mix 

and long horizon capacity dimensions. 

 

 

Figure 1.1: Thesis demarcation within the hierarchical framework presented by Hans, et al. 

To demarcate this research further, we exclude the observed surgeon consult scheduling 

problem that leads to the lack of admission control. This means that we will research a new 

solution approach for the numbers 6 to 13 and 16 of the observed core problems in subsection 

2.5.4. We will exclude performance measurement related core problems 19 and 20 in our 

research since Haga is already developing a performance measurement system in its new data 

registration system. The research will focus on improving OR performance only within the 

general surgery specialism on the Leyweg location, which covers both elective surgery care- 

and emergency care services as shown in the framework above. Any procedures that occur 

outside of the general OR department at Leyweg, such as small outpatient surgical procedures, 

are excluded. To scope this research, effects on pre- and postsurgical wards, ambulatory- and 

inpatient care services are not taken excluded.  
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1.5 Research questions 
Based on the research objective and methodology, the following research questions are 

formulated. Each research question corresponds to a chapter in this thesis. 

 How is the current scheduling approach organized and how does it perform? 

o How is the current system organized? 

o How are planning and control of the current system organized? 

o How does the current scheduling process perform? 

o Where should our research focus on? 

We describe the current system and the current planning and control approach in chapter 2. 

We define performance indicators and analyze the current system performance to determine 

the underlying causes of poor performance. We then introduce our research objective and 

demarcation. 

 Which operations research techniques could be applied in our solution approach? 

Through literature research we compose a theoretical framework with promising 

mathematical techniques for our solution approach in chapter 3.  

 How should the organizational intervention be modeled? 

We introduce our solution approach and describe the underlying models and assumptions in 

chapter 4. 

 How does the proposed intervention perform? 

We determine the performance of our proposed solution approach and conduct additional 

experiments. We describe the results and compare them with current performance in chapter 

5. 

 What are the main findings and what recommendations could be made for 

implementation? 

The findings of this thesis are summarized and discussed in chapter 6.  
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2 Analysis of current situation 
In this chapter we conduct a study of the current system of General Surgery to chart 

performance and underlying causes of bad performance.  

To understand the context of the performance measurements, first the current system is 

explained. The current system is divided in 2 components, the OR department and the control 

component. The Operation Rooms department is described in section 2.1. Understanding of 

how the OR department works will provide insight in the methods and restrictions 

encountered when reviewing the control process explained in section 2.2. In section 2.4, we 

describe some of the demand characteristics of general surgery patients. In section 2.4, we 

conduct a performance analysis of the current system. In section 0, performance results are 

analyzed to determine the problem bundle and ultimately the core problems that result in 

lack of performance. With the core problems charted, section 1.4 describes the research 

objective and section  the scope. Finally, section 2.6 provides a brief summary of this chapter.  

2.1 OR Department description 
In this section, the OR department is described. To gain an understanding of the OR 

department, first the general lay-out and staff are described in subsections 2.1.1 and 2.1.2. 

Subsection 2.1.3 explains the process of a surgical procedure.  

2.1.1 OR department lay-out 

All of General Surgery’s capacity is allocated to operating rooms at the location Leyweg. This 

OR department was delivered in June 2015 and features 15 rooms divided over two floors. 

This set-up was designed to separate three different types of surgical procedures, children’s, 

fast-track and “regular”. Children procedures are all procedures on patients under the age of 

18 and require special facilities and personnel. Fast track procedures “quick” procedures and 

generally do not involve narcosis. The remaining procedures can be described as “regular”. 

For the General Surgery department, only “regular” procedures are of importance. 

The first floor contains the fast-track area for single day admission patients with 2 smaller ORs 

and a lounge-like holding and recovery ward. These ORs are mainly used for eye-surgery. It 

also contains a section with 3 ORs and a holding and recovery ward dedicated to children. Due 

to their high specialization, these 5 ORs are never used by General Surgery. Apart from these 

5 dedicated rooms, the first floor does contain 2 “regular rooms” that are used frequently by 

General Surgery. The second floor contains 8 ORs, that may be used by all the medical 

specialties, but most rooms do feature some facility that benefits some specialties more than 

others. For example, an OR may have a drain which is useful for Urology procedures or 

connection-points for a Heart-Lung machine. General Surgery may perform surgery in any of 

these 8 ORs on the second floor, or in the 2 “regular” ORs on the first floor. 

The second floor also contains the Holding, Recovery and PACU wards that are used by 

General Surgery. Note that the Holding, Recovery and PACU wards are small and temporary 

wards surrounding a surgical procedure, and are distinct from the general wards which have 

much higher capacity and are intended for longer stay. The Holding ward contains 4 beds is 
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and used to check, prepare and hold patients for surgery. The Recovery ward contains 7 beds 

and is used to monitor patients until they are recovered enough to transport them back to the 

other wards. The PACU ward contains 4 beds and is used for as a recovery area for patients 

who require more intensive monitoring. The PACU ward is a separated space in the same room 

as the Holding and Recovery with its own beds, but shares personnel with the other two 

wards.  

Figure 2.1 depicts a schematic view of the 2nd floor of the OR department. We may observe 

that 2 ORs in the right corner are larger than the others. These particular ORs are more 

beneficial to Orthopedics due to their space requirements, but can be used by all specialties.   

 

Figure 2.1: Schematic overview of 2nd floor OR Department 

General wards 

General Surgery has access to several different General Surgery wards and a short-term ward 

where patients recover after transport from the Holding ward. The General Surgery back office 

states that there is always capacity for patients but that ward personnel workflow varies.  

2.1.2 Personnel 

In this subsection we describe the personnel involved with surgical procedures and the 

planning process, and their responsibilities.  

We define groups and assign personnel to these groups based on their tasks and 

responsibilities. An overview of the groups is visualized in Table 2.1, 

Personnel group Personnel 
Project manager Arnoud van der Zalm 
Day coordinators Program-, surgeon- and anesthesia-coordinators 
Surgeons All surgeons 
Anesthesiologists All anesthesiologists 
OR personnel Surgical-and anaesthesiologist assistants,  

nurses, surgeon-residents, cleaners and support personnel 
Ward personnel Holding- and Recovery- and PACU ward personnel 
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Admission office Unitmanager & OR planners 
Table 2.1: Overview of involved personnel (2016 

Project manager 

A key role in the OR planning process is played by project manager who is involved with many 

planning related subjects. Examples are capacity re-allocation decisions, OR performance 

measurement, and allocating capacity to specialties and creating the master surgical schedule, 

which is further explained in section 2.2.  

Day coordinators 

Three key coordinators within the OR department are the program-, surgeon and anesthesia-

coordinator. The program coordinator is responsible for the day activities such as capacity-, 

schedule- and personnel-management. The program coordinator is involved with any 

uncertainty or non-clinical issue that may come up during the day, and is the contact for ORs 

and the admission office. The other two coordinators are mainly involved with the clinical 

discussion involving new emergency patients, and any clinical challenge in their field that may 

arise during the day.  

Surgeons 

Surgeons perform the surgical procedures and supervise the remaining personnel during 

surgery. They are responsible for anything that happens during the procedure. Surgeons 

generally switch surgical activities with other activities, such as outpatient consults. The time 

that surgeons spend at the OR department may vary greatly, unlike most of the personnel 

involved with surgery.  

Anesthesiologists 

Anaesthesiologists are responsible for anything narcosis related regarding the patient, which 

is common for most procedures in the OR department. Each anaesthesiologist supervises 2 

ORs at the same time. Anesthetization occurs in the OR just before the surgical procedure. 

After anesthetization, the patient is monitored by an anaesthesiologist-assistant who is 

present at the room and the surgeon receives full control over the patient. At the end of the 

procedure, the anaesthesiologist returns to awake the patient from narcosis. 

Anaesthesiologists generally work full time and only within the OR department. 

OR personnel 

The OR personnel consists of a large group such as surgery assistants, anaesthesiologist-

assistants, nurses, cleaners, residents and all other support personnel. Assistants are 

specialized personnel that assist surgeons and doctors with the surgical procedures. Generally, 

each OR has 2 surgery assistants and 1 anaesthesiologist-assistant that are supervised by 

either the surgeon or anaesthesiologist. Cleaners are responsible for cleaning the ORs during 

patient changeovers and at the end of the day. Residents have no acting function but may 

sometimes perform tasks under supervision of the surgeon. The OR personnel, excluding the 

residents, generally works only within the OR department. Note that OR personnel is not the 

same as OR department personnel, which consists of all the personnel at the OR department.  
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Holding, Recovery and PACU Ward personnel 

These wards contain the personnel that is specialized in preparing and recovery of patients 

before and after surgery. These wards share the same room and personnel, and thus can be 

seen as one large group. This personnel generally works only within the OR department. 

Admission office OR patient planners 

The admission office is a different department in another part of the building than the ORs. At 

the admission office, we may identify the unit manager and patient planners. The unit 

manager often confers with the earlier described project manager about specialty capacity 

related issues. There are also two patient planners who are responsible for scheduling surgical 

cases into available ORs. These planners seldom physically enter the OR department but play 

an important role in the control process explained in section 2.2.  

2.1.3 OR Process 

For both elective and the vast majority emergency patients, the Holding ward receives 

patients before their surgical procedure and performs a time-out. In this time-out, the patient 

and requirements for the planned procedure are reviewed. Patients often require a range of 

preparations for surgery, such as blood-tests and suspension of some medication. If a patient 

is not adequately prepared, the Anesthesiologist may reject him as unfit for surgery or 

narcosis. For the patient, this may mean a delay varying from hours to days depending on the 

required preparations. After a successful time-out, the ward prepares the patient for surgery 

where possible. Holding is not responsible for calling or transporting the patients from their 

respective wards, and may announce an admission-stop to the program-coordinator of the 

OR department if their 6 beds are all occupied. The OR rooms call directly to the wards on 

where the patients are and the wards are responsible for transporting the patients. The first 

patients of the day are generally ordered a day in advance, so that they arrive at 07:30 at the 

Holding. The only exceptions to this process are extremely urgent emergency patients in dire 

need of surgery. For example, patients with a ruptured aorta need to be helped within minutes 

if they are to have a chance at survival. 

Once the OR is available, the patients (if ready for surgery) are picked up from Holding by the 

OR personnel. At the OR, the patient receives a final time-out check for which both surgeons 

and anesthesiologists have to be available. Often, the patient is then brought under narcosis 

after which the surgical procedure starts. When the patient wakes up from narcosis in the 

room, he is brought for monitoring to either PACU or the Recovery ward. After the criteria of 

recovery are met, the patient is transferred back to his own ward. Times can be registered in 

SAP at several moments. 

1. When the patient is ordered from his or her ward 

2. When the patient arrives at Holding ward 

3.  When the patient arrives at the OR 

4. When the anesthesiologist is finished anaesthetizing 

5. When the surgical procedure starts 

6. When the surgical procedure is finished 

7. When the patient is awakened 
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8. When the patient leaves the OR 

9. When the patient leaves the Recovery ward 

The timestamps and the different actions and waiting times that they entail are depicted in 

Figure 2.2. Unfortunately data registration is optional, which means that data is often lacking. 

The most consistent registrations are found at numbers 3 and 8.  

 

Figure 2.2: Visualization of timestamps  

2.2 OR Planning & Control 
This section describes the resource capacity planning decisions which control the flow of 

patients through the OR department described in section 2.1. The framework presented by 

Hans, et al. [6] and introduced in section 1.4 is applied to structure the different resource 

capacity decisions which are observed. 

The entire control process is also visualized in Table 2.2 and Figure 1.1. Table 2.2 briefly 

describes the demand and supply characteristics, planning horizon and planning criteria on 

each level. Figure 2.4 visualizes the stakeholders and their decisions on each level of the 

framework. Each level of the scheduling process is explained in detail in subsections 2.2.1, 

2.2.2, 2.2.3 and 2.2.4. 

 

Table 2.2: Key attributes of control process 

2.2.1 Strategic 

On the strategic level, Haga planners allocate OR capacity to specialties based on production 

data and forecasts.  

Demand Supply Horizon Optimization Criteria

Strategic Production estimates 

from specialties

Product of ORs, shift 

duration and weekdays per 

year

1 year > Check accuracy of production estimates. 

Reserve enough capacity per specialty to 

cover check production estimates

Reserved capacity for 

General Surgery

Product of ORs, shift 

duration and weekdays per 

year

1 year > Smooth allocation of ORs over 4 week 

cycle MSS

Surgeons requesting 

weekly OR capacity

MSS OR Capacity 6  weeks > Equal distribution of available capacity to 

surgeons

Operational 

Offline

Surgery waiting list Scheduled ORs and 

surgeons

14 - 3 days > Schedule semi-urgent patients within 

maximum access time. Maximize 

utilization. Schedule elective patients 

FCFS

Operational 

Online

Scheduled patients and 

emergency patients

Scheduled ORs and 

surgeons

Daily Minimize access time for emergency 

patients. Maximize utilization. Minimize 

make-span. 

Tactical
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Data regarding surgery frequencies and durations about past years amount of procedures 

performed and procedure durations are gathered from the hospital system (SAP). Apart from 

these achieved numbers each surgery performing specialty is interviewed about current 

perceived bottlenecks and next year’s case mix and production forecasts. The gathered 

forecasts are compared with historical achieved numbers for consistency. For each procedure, 

the resulting production number is multiplied with its historical average duration to determine 

the required OR capacity in minutes. This capacity is increased by a factor of 15% to 

compensate for idle time, and the resulting time is computed to units of OR days. An OR day 

is defined as exclusive access to an OR for the duration of 8 hours (during weekdays). Each 

specialty is allocated a number of OR days for the next year based on these calculations. The 

allocations are adjusted for the total available capacity available. The full distribution can be 

inspected in Figure 2.3. Next, the number of OR days per week is determined for two staff 

settings. One is the setting in which the specialism operates within the OR with fully staffed. 

The other is a reduced “holiday” staffing with some estimated percentage of the normal 

available staff. Haga distributes the amount of OR days between a fixed number of 41 normal 

working weeks and about 10 holiday weeks with a reduced staffing. With this distribution, the 

number of OR days per week are determined for the 2 different situations. The specialty 

General Surgery receives 12 OR days each week, and a dedicated emergency OR, also known 

as a flex room, which is staffed by surgery personnel receives (on average) 7,5 days per week.  

 

Figure 2.3: Distribution of OR capacity amongst specialties (Source: SAP OR planning, numbers for 2015). 

2.2.2 Tactical 

On Tactical level, Haga Planners create a four week cycle Master Surgical Schedule (MSS) 

based on the input from the Strategic level. Also, some background information is given on 

the methods used to schedule the personnel described in subsection 2.1.2. We differentiate 

the personnel in 2 groups based on how they are scheduled. 
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Master Surgical Schedule 

A specialty may have received a fractional number of weekly OR days at Strategic level. In such 

a case, the actual allocation in the MSS is adjusted such that over the four week cycle the 

average number of allocated OR days equals the earlier calculated fraction. This procedure is 

done for both the normal week situations and the reduced holiday week situations. While OR 

planners are aware of period variations in surgery demand, this information is currently 

disregarded in the design of the block schedule. A collection is made of procedures which are 

too rare to effectively estimate the demand from but the majority of this information is also 

disregarded in the scheduling. The normal four week cycle is applied until the complete year 

is planned. For known holiday periods and days, the adjusted holiday schedule is used. Any 

resulting discrepancies between the number of actual yearly scheduled OR days and earlier 

allocated yearly OR days due to such holiday adjustments are manually minimized. This results 

in a Master Surgical Schedule where on each day all the ORs are allocated to specialties. 

Surgeon schedules 

General Surgery surgeons are scheduled six weeks in advance by the General Surgery ward 

staff. Surgeons have fixed weekdays on which they have outpatient consults, educational days 

and surgery. A surgeon may determine this based on his own preferences. In principle, each 

surgeon is allocated a full OR day per week, regardless of patient demand. The scheduler 

makes sure that surgeons of each sub-specialty are on call for emergency patients.  

Remaining personnel schedules 

The remaining personnel can be described as all the described personnel from subsection 

2.1.2, excluding surgeons. They are scheduled one month in advance without any regard 

patient demand. Personnel are scheduled “by hand” by a scheduler. OR Department 

Personnel either scheduled in the normal day shift, which runs from 07:30 to 16:30, the 

support shift, which runs from 09:00 to 18:00 or in one of the evening and night shifts. Each 

OR is manned by personnel from the day shift, and two support shifts make sure that the day 

shift personnel get to lunch. The support shifts also take over ORs that are running late, to 

prevent frequent overtime of the day shifts. The scheduler will make sure that there is an even 

balance in the amount of shifts each personnel member receives. Within General Surgery, 

there are no real specializations for the OR personnel. The scheduler will make sure that there 

is always a certain balance between experienced and inexperienced personnel for any surgical 

procedure.  

Elective patient control 

Apart from surgeries, the surgeon also performs in- and outpatient consults. Some of these 

out-patients are referenced by a general practitioner and result in inflow of elective patients. 

Currently, there are admission controls in check at the outpatient clinic to influence the inflow 

of new elective patients. All out-patient consults are accepted and scheduled on a first come- 

first served base.  
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2.2.3 Operational Offline 

At Operational Offline level, OR patient schedulers at the admission office schedule patients 

to the allocated capacity in the MSS.  

Admission office 

When a medical specialist decides that a patient should be planned for surgical operation, his 

or her personal information, net surgery time and urgency (or maximum access time) are 

registered in a physical admission form and forwarded to the OR patient schedulers at the 

admission office. The urgency of a surgical procedure may vary between days to several 

months. There are no clear definitions for urgency, but in general access time below two 

weeks is considered “semi-urgent”, and smaller than five days is considered “urgent”. The 

definition “net surgery time” defines the duration of time between the first incision of the 

surgeon, and closing of the entry points. Another definition called “slack” is used to denote all 

extra time needed for a single surgery, such as preparation of the OR and cleaning afterwards. 

This slack is a fixed estimate of twenty minutes.  

When registered, the patient is automatically placed on a waiting list in SAP. However, OR 

patient schedulers manually check the admission papers too. Over time, they have 

accumulated insight in urgency of different surgical procedures. New physical admission files 

are checked with their corresponding position on the digital waiting list for potential human 

errors.  

The amount of available ORs is known for each day through the MSS.  Surgeon availability is 

planned well in advance by General Surgery schedulers. Initially, patients that are feasible for 

the scheduled surgeons are scheduled according to urgency. Each procedure is scheduled with 

the net surgery time registered on the admission form and twenty minute slack time. This 

process is repeated until the full capacity of the OR is reached. No room is reserved for 

unexpected elective patients. Patients are not scheduled into flex rooms. 

Apart from some general surgical procedures, surgeons can only perform surgery within their 

own sub-specialization. Often, some semi-urgent patient demand from sub-specializations for 

which there is no capacity left remains. As a result, OR patient schedulers often try to swap 

surgeons around in cooperation with the General Surgery personnel schedulers. The resulting 

offline schedule is updated every day, until it is forwarded to the OR department three days 

in advance. 

Program Coordinator 

The program coordinator at the OR department receives the concept schedule three days in 

advance. The program coordinator may adjust the sequence of the scheduled patients to 

minimize conversion times between the different procedures, based on her experience. Apart 

from conversion times, it is preferred that day-admission patients are scheduled early in the 

day, so that they can recover in time to be discharged on the same day. Patients with a high 

narcosis risk are preferred in the morning so that their recovery can be monitored by the same 

anesthesiologist.  Any changes in sequence are communicated back to the admission office, 

so that that the patients can be notified. The program coordinator reviews all the planned 

surgical procedures of all the specialties and determines the allocation of specialties to the 
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ORs based on their necessities of all the procedures. The flex room is usually allocated to one 

of the remaining ORs.   

Any urgent patients that arrive within and need to be treated within the 3 day window of the 

concept schedule are planned in consultation between the program coordinator and the 

admission office. This may result in overtime or cancellations of less urgent patients since the 

initial schedule is often filled completely. Sometimes, these patients are not scheduled but 

told to come back the next day and admit themselves as emergency patients.  

2.2.4 Operational Online  

At operational online level, the OR concept schedule is executed and the program coordinator 

allocates emergency patients that arrive during the day. On the day of the surgeries, the 

program coordinator manages most of the decisions. The program coordinator will for 

example find the next replacement if a patient is unexpectedly rejected or does not show up. 

At the end of the day, the program coordinator determines if ORs may finish up or take in 

patients that were scheduled in an OR that is progressing slow, to minimize the make-span.  

Emergency Patients 

Emergency patients may either have arrived sometime during the night, or during the day.  

For the emergency patients that “arrived” overnight, a meeting is held with the surgeon- and 

anesthesia-coordinators at 07:30 in which these patients are discussed medically and planned 

for surgery. If emergency patients are determined fit for surgery, they are scheduled in the 

flex-room that has its own personnel but no surgeon. The surgeon is determined by the-   
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Figure 2.4: Control process visualized 
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surgeon-coordinator of the day, since each emergency patient may require a specific area of 

sub-specialization within General Surgery. This means that an emergency patient sometimes 

has to wait before the right surgeon is available, depending on the schedule of the surgeon. 

The program-coordinator determines the sequence of the flex room schedule based on the 

availability of the surgeons.  

The urgency of emergency patients that arrive during the day are determined by the surgeon- 

and anesthesiology-coordinators. Coordinators may decide to perform surgery on the same 

day on that the patient is scheduled to the flex room. Emergency patients are always initially 

allocated to the flex room and kept separate from elective patient programs. In some 

instances, such as multiple high urgent patients or procedures with room specific necessities, 

the program coordinator may decide to break in the program of an elective OR. A patient may 

also be deemed urgent or semi-urgent, after which he or she is registered on an admission 

form and forwarded to the admission office. The patient is then registered as described in 

subsection 2.2.3. 

2.3 Demand characteristics 
In this section, we analyze some of the patient demand characteristics. Wee analyze access 

times and patient distribution and take  a deeper look into demand variability. 

Patient distribution 

We analyse the requested and recorded access times from December 2012 to December 2015 

to obtain a better understanding of the patient characteristics of General Surgery. We 

introduce two different variants of access time. Requested access time is the maximum stated 

access time by the surgeon on a surgery request. Notice that emergency patients are often 

not placed on the waiting list and hence do not have a registered requested access time. We 

therefore introduce the recorded access time as the realized number of days between the 

request and the actual surgery. This is technically also a measure of performance, but we 

require it to approximate the number of emergency patients. Both request and recorded 

access times may vary per patient for the same procedure, due to varying urgency.  

Figure 2.5 shows a histogram of elective requested access times from a sample of 11159 

patients. Access time in days is plotted horizontally against the recorded frequency. Notice 

that patients with higher access times than two months are not included to keep the image 

comprehensive, but are added in statistics as “elective”. While Haga does not use clear 

distinctive categories of urgency some natural levels of urgency for elective patients can be 

identified from the peaks in frequency. Noticeable is that surgeons seem to prefer certain 

fixed time domains for their access times, such as one to four weeks.  



29 
 

 

Figure 2.5: Requested access time up to 60  days for elective General Surgery patients (Source: SAP, data between 03-13 and 
10-15). 

Figure 2.6 shows a histogram of recorded access times of 11159 patients with a realized access 

time of less than two months. Noticeable is the large peak for patients with access times within 

one day, which can be attributed to emergency and semi-urgent patients. 

 

Figure 2.6: Recorded access time up to 60  days for General Surgery patients (Source: SAP, data between 03-13 and 10-15). 

While there is a policy for registering patients as emergency at Haga, it is not strictly enforced. 

It is difficult to determine whether patients with an access time of one day were emergency 

patients who arrived after office hours and could not be helped, or were simply less urgent. 

From the peaks around seven and fourteen day access times it can be reasoned that many 

urgent patients undergo surgery right before their requested access times expire. Since 

cancellations are not recorded at Haga, it is impossible to determine any statistics about 

cancellations and resulting waiting times.  



30 
 

Figure 2.7 shows a distribution made from the recorded access time of 9957 patients on which 

surgery was performed between June and October. The boundaries between patient types 

were selected based on access time patterns in Figure 2.5 and Figure 2.6. 

 

Figure 2.7: Distribution of urgency of patients of General Surgery (Source: SAP, data between 06-15 and 11-15). 

We can easily see that half of the patients are either semi-urgent or emergency and arrive 

within two weeks prior to the surgical procedure. Approximately 21% of General Surgery 

patients is even scheduled online (within the 3 day period) on top of the initial schedule by 

the program coordinator.  It can be easily reasoned that if the elective ORs are completely 

filled with known patients three days in advance at operational offline, planning such a large 

group of extra patients on top of the schedule will cause a lot of strain. 

Apart from the urgency distribution, we also review the distribution of surgical procedure 

types. This provides us some insight in the repetitiveness of surgical procedures at General 

Surgery. Figure 2.8 shows a distribution of the frequency of surgical procedures. When 

assuming the current planning cycle of four weeks at Haga, it seems that 86% of the executed 

procedures are repetitive in nature and performed at least once every period.  

 

Figure 2.8: Distribution of frequency of surgical procedures of General Surgery (Source: SAP, data between 06-15 and 11-15).) 

Demand variability 

We can examine the arrival statistics per month in 2014 to determine demand variability 

between sub-specialties of General Surgery. We also examine the average emergency patient 

demand per day of the week. Insight in demand variability helps understand demand and 

50%

36%

14%
>5 Times per month
(Frequent)

1<<5 Times per month
(Frequent)

<1 Times per month (Rare)
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supply unbalances since Haga mainly works with fixed capacity allocation based on surgeon 

preferences.  

To illustrate the variability, Figure 2.9 depicts the amount of patients that request surgical 

procedures of the sub-specialties Traumatology and Vascular surgery. We notice that there is 

a lot of variability per month between these sub-specialties. In-hospital factors that cause 

variability such as reduced staffing in February, August and December may affect different 

sub-specializations differently. They result in a reduction of both surgery and patients 

consults. An external factor noticed by surgeons is that patients prefer to postpone surgery 

till after holiday periods. 

 

Figure 2.9: Average monthly demand of  Traumatology and Vascular surgery (Source: SAP, data from 12-12 to 12-15) 

We can also observe variability within the arrival statistics of emergency patients. Table 2.3 

depicts the average number of arrivals of emergency patients per day of the week. These 

numbers might be biased since Haga does not record the first visit of Emergency patients, only 

the date a surgical procedure was performed. In reality, demand on Monday may be even 

further increased since some of the patients that arrive in the weekend have to wait until 

Monday for surgery. Note that there is possibly also variability between arrival statistics on, 

for example, Mondays between spring and summer.  

Weekday of… Q1 Q2 Q3 Q4 

Sunday 2.7 3.4 3.3 2.8 

Monday 3.8 3.4 4.3 3.8 

Tuesday 3.6 3.9 4.3 3.7 

Wednesday 3.9 3.7 4.1 4.4 

Thursday 3.8 3.7 4.0 3.7 

Friday 4.5 3.9 4.6 4.3 

Saturday 2.8 3.0 3.0 2.8 

     

Table 2.3: Average arrival of emergency patients during weekdays (Source: SAP, data between 12-12 and 12-15). 
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2.4 Performance analysis 
This section analyses the performance of the current system. Subsection 2.4.1 provides some 

insight into access time performance. In subsection 2.4.2, we analyse the utilization of the 

current system in depth to determine core problems that undermine performance.   

2.4.1 Access time 

In this subsection, we study the realized achieved access time of patients to gain insight in 

General Surgery performance. We recall realized access time to be the number of days 

between the first request for a surgical procedure and the date of the actual procedure.  

General Surgery has both a lot of different procedures and large variation in access time per 

procedure. For most surgery requests, the surgeon determines the maximum allowed access 

time that is then used when scheduling the patients at operational offline level. We would like 

to determine whether patients gain access within the maximum time window requested by 

their surgeon. Since most emergency patients do not have a recorded allowed access time, 

we will only focus on semi-urgent and elective patients. We define that any procedures with 

a requested between one and seven days are semi-urgent and that those with requested 

access times of 8 days and upward are elective.  

 

Figure 2.10: Access time performance for semi-urgent patients (Source: SAP, data between 03-13 and 10-15). 

Figure 2.10 presents the access time performance for semi-urgent patients. We can observe 

that 53% of semi-urgent patients, which we define as those with a requested access of within 

a week, cannot be helped timely. To gain more insight in access time performance, we analyze 

the access times for elective patients. Since these patients receive a large maximum access 

time from their surgeons, we may assume that there is little medical urgency for this type of 

patients. Differently said, we may assume that elective patients have equal priorities that 

make them suitable for comparison. 

For elective patients, we find that 60% did not receive access within the timeframe requested 

by their surgeon. In 2012, the Nederlandse Zorg authoriteit (Dutch Healthcare Authority) 

determined that the national maximum allowed access time for elective surgery should be 7 

weeks, of which 80% of patients should have an access time of 5 weeks [7]. We compare 
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elective access performance against theses limits and find that only 37% of all elective patients 

receives access within five weeks, and 75% within seven weeks. Figure 2.11 presents an 

overview of the results. It can be seen that the required access times are not met. Some of 

the requested access times by surgeons exceed the seven week limit, which may occur on the 

request of a patient. Around 40% of the surgeon requested elective access times are not 

realized. For those requested times within seven weeks, we can see that 25% of patients does 

not receive timely access. At five weeks, we can see that rather than 80%, only 37% of patients 

has received access.  

 

Figure 2.11: Access time performance of elective patients (Source: SAP, data between 03-13 and 10-15). 

Figure 2.12Figure 2.12 depicts the descriptive access times statistics of the 6 most frequent 

occurring elective surgical procedures of General Surgery. It may be noted that both the 

average and median access time for 5 out of these 6 procedures exceed the maximum allowed 

standard greatly. With the access time for the most common procedures known, we have a 

probable cause to determine whether this results from a lack of performance at the OR 

department.  

 

Figure 2.12: Average, Median and standard deviation of access time in days of the 6 most common elective procedures of 
general surgery (Source: SAP, data between 06-15 and 11-15).) 

2.4.2 OR performance indicators 

In this subsection, we define and determine OR performance indicators of general surgery.  

Utilization is frequently used as a key performance indicator in literature, but is inherently 

influenced by management decisions such as case-mix and willingness to accept overtime [8]. 
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Additional  performance indicators should complement utilization to present a true and 

representative picture of performance [9]. We will discuss utilization performance, after 

which we introduce other performance indicators.  

Utilization 

Weak performance in terms of production may in general result from either lack of capacity 

or underutilization of existing capacity. If underutilization occurs, it means that production can 

be increased without adding additional capacity. Because there is no standardized definition 

of utilization in Healthcare or at Haga it first has to be defined in detail. Hence, we define 

utilization as the duration that a patient occupies the OR divided during the time that “regular” 

OR procedures are scheduled. Occupation of an OR by a patient is defined as the time between 

time-registration points 3 to 8 in Figure 2.2. 

Due to frequent missing time registrations of OR-in or OR-out timestamps, a lot of OR 

utilization would have to be estimated. To create a well representing picture of utilization, we 

only take days on which the entire OR program of General Surgery was performed in the 

original planned ORs into account. We chose this method of filtering because General Surgery 

has the tendency to bring in surgeons that break into ORs of other specialties. This makes it 

impossible to determine a reasonable capacity and also does not fairly represent the 

utilization of the “authentic” capacity of General Surgery. Our method prevents 

misrepresentation of planning performance. Break-ins result in higher utilization but do not 

necessarily signify good planning. Utilization was also defined under the following conditions: 

1. Only days on which surgery was performed in an equal amount of ORs as was 

planned originally by the admission office were taken into account 

2. There were no General Surgery break-ins into other specialty ORs 

3. Occupation is defined as (OR out - OR in) time registration in SAP 

4. Procedures take place on office days, during the normal OR day shift (07:30 – 16:30) 

5. All the procedures that took place in any of the ORs have both OR arrival and 

departure time registrations 

6. There is no overlap in procedures in any of the ORs 

 
𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =

∑ 𝑂𝑅 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛

𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑂𝑅
 

(2.1) 

 
This means that a patient if a patient enters the OR at 16:00 and leaves the OR at 17:00, this 

patient only adds 30 minutes to the utilized capacity. If General Surgery performs 15 surgeries 

in 4 ORs in one day, and one of the surgical procedures lacks an exit time registration, the 

entire day is excluded from the utilization calculations. Figure 2.13 shows that after rejecting 

days with unusable data registrations and days where OR break-ins occurred, 30% of the initial 

amount of days remains usable to determine utilization. Break-ins into elective programs can 

be observed in nearly 57% out of usable registered days. This fact reveals some of the unrest 

and constant challenges at operational live level.  
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Figure 2.13: Usable days for utilization analysis (Source: SAP, data between 06-15 and 11-15, N= 40 days). 

Using the remaining usable 30% of days, the utilization can be calculated for each day and OR 

averages are taken to determine utilization per day. Note that the days that were used for 

utilization are not perfectly consecutive since there may be days missing in between the used 

days.   

With the sample and utilization defined, we may calculate utilization for two situations. The 

first instance only takes elective (non-urgent and semi-urgent) patients and capacity into 

account. Figure 2.14 depicts the utilization of the elective program. This presents a sense of 

how General Surgery is performing in their elective program. General Surgery emergency 

break-ins into elective ORs are not taken into account when calculating the elective utility, 

which might affect utilization. We later adjust for emergency patients when calculating total 

utilization in the other situation. The elective program utilization varies per day with an 

average utilization of 68%. This means that over two third of capacity is actively used to 

perform elective surgical procedures.  
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Figure 2.14: Utilization per day of elective General Surgery (Source: SAP, data between 06-15 and 11-15, N= 40 days). 

Since there is often some overlap in emergency and elective patients being treated in the 

same room, we calculate utilization for both elective and emergency patients. We determine 

the flex room capacity for each day and add this to the earlier determined elective capacity. 

Figure 2.15 depicts the resulting utilization, with an average of 58%. This drop in utilization 

compared to the elective program may be explained by the fact that flex rooms are often kept 

available for emergency patients, which affects total utilization.  

 

Figure 2.15: Utilization per day of elective and emergency General Surgery (Source: SAP, data between 06-15 and 11-15, N= 
40 days). 

We compare utilization with a benchmark study performed by Healthcare consultant Plexus 

in 2009 to determine whether OR capacity of General Surgery is underutilized. In this study, 

utilization was measured at 45 hospitals that resulted in an average of 78%, with a best 

practice of 90% [10]. Compared to the national average, General Surgery at Haga is 
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underperforming by 10%. Apart from sub-standard averages it may be noted from the graphs 

that there is a lot of variability in the utilization, a sign of inefficiency.  

With utilization known, a lot of about the different aspects that determine the performance 

are still unclear. Utilization is the result of a combination of actions, some of which are counted 

as utilized time and some as idle time. Apart from gathering a single statistic on utilization, it 

is useful to visualize which of these actions may be an underlying cause of poor utilization. 

Figure 2.16 depicts the different actions that occur within a day at a single OR. Utilized time is 

depicted as the white blocks while “unused” capacity is depicted as colored blocks. It is useful 

to determine the performance of each “type” of block to insight in the causes of poor 

performance.  

 

Figure 2.16: Utilization of an OR 

In the next part of section 2.4, Starting times, Surgical Procedure durations, Change-over times 

and Finishing times are analyzed further to determine the causes of this underutilization.  

Starting Time 

We define the starting time of an OR as the moment that a patient enters the OR and is ready 

for induction. At that time, surgeons, OR personnel and anesthesiologists are expected to be 

in the room. Delayed morning starts of the surgical programs may lead to OR underutilization 

at the start of the day [11].  Figure 2.17 displays the registered arrival times of patients at the 

Holding ward and at ORs. The 319 patients in this graph were all part of the elective schedule, 

and only the first patients of the day are taken into account. The OR department has a soft 

target start of surgery time at 08:00, but it can be seen that 77% arrives at the OR only after 

08:05. About 47% arrives only after 08:15. Noticeable are the multiple smaller peaks at 

Holding arrival and the corresponding peaks at OR arrival. We may notice that patients 

frequently arrive at the Holding after the target time of 07:30. The Holding is not responsible 

to pick up patients at the ward and has no insight in which patients are scheduled when for 

surgery. Patient wards may either forget to transport patients to Holding or are too busy in 

the morning. Personnel of the OR will find out at some point in the morning, and will call the 

ward. This causes a delay in the entire OR program for the rest of the day.  



38 
 

 

Figure 2.17: Arrival times at Holding and ORs (Source: SAP, data between 06-15 and 11-15, N=319). 

A factor that enables errors such as late patients at the Holding is a lack of clear responsibility 

at the OR department personnel. There is no clear leader within the OR staff, responsibility is 

shared by the entire staff, hence no one feels really responsible to motivate preparations at 

the start of the day. Anesthesiologists carry authority with the staff during anesthetization but 

do not really feel responsible for the progress of the day schedule.  The surgeon typically 

carries authority once he arrives, but surgeons may arrive late on purpose because they have 

experienced starting delay in the past. This in turn, increases the lack of authority and 

responsibility at OR personnel in the morning. Another factor is that there are conflicting 

definitions of what the actual OR starting time should be. 

Apart from review Holding and OR arrival times, we review the time between arrival at the 

ORs and the actual start of surgery. After arrival, a patient first has to be anesthetized by the 

anesthesiologist. Figure 2.18 depicts the registered times of arrival at ORs and the start of 

surgery.  The 371 patients in this graph were all part of the elective schedule, and only the first 

patients of the day are taken into account. The sample size differs from Figure 2.17 since 

arrival times at the holding are often not registered. Noticeable is the width of the curves 

between the arrival at OR times and the start of surgery. The explanation lies in the sudden 

high demand on a limited capacity of anesthesiologists. Each anesthesiologist has to work 2 

ORs, meaning that if ORs both want to start at 08:00, one of them has to wait till the 

anesthesiologist is done at the other.  
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Figure 2.18: Arrival times at OR and start of surgery (Source: SAP, data between 06-15 and 11-15, N= 371). 

Planning Time 

The time that is scheduled for a procedure is based on estimations of the surgeon, that is often 

based on a variant of the average time a surgeon spends on that procedure, sometimes based 

on the patient characteristics. In Figure 2.19, the difference between realized time in the OR 

and time that was scheduled is depicted for 12998 recorded surgical procedures within 

General Surgery. Large deviation from the red target line (0 minute difference) can be 

observed. One issue with this system is that an average estimation does not takes variation in 

consideration which tends to be large for many procedures. Also, the surgeon that makes the 

estimation is often not the surgeon that performs the actual surgery and differences in 

experience many cause deviations in average procedure times. One more factor is there is no 

clear definition between all the stakeholders which actions are factored in the estimated time. 

Some surgeons estimate only the net surgical time, others take the anesthetization into 

account. These factors lead to a difference of at least 10 minutes between planned an realized 

time in at least 86% of all the surgical procedures.  

 

Figure 2.19: Difference in planned and actual OR times (Source: SAP, data between 06-15 and 11-15, N=10040). 
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Changeover Time 

To determine whether capacity is underutilized between surgeries we determine the change-

over times between surgeries. Changeover times in minutes of 2058 surgical procedures are 

depicted in Figure 2.20. Procedures were only taken into account if they are during office 

hours and if they are not the first procedure of the day. The Admission office uses an 

estimation of twenty minutes of changeover time between surgical procedures. It may be 

noticed that the actual changeover time often deviates greatly from the twenty minute 

estimate and is smaller in 76% of the cases. While this does not necessarily lead to 

underutilization in practice, it does show that using an average is not an accurate method in 

scheduling. 

 

Figure 2.20: Changeover times between surgical procedures (Source: SAP, data between 06-15 and 11-15, N=777). 

Figure 2.18 depicts another visualization of changeover times. The two-directional 

changeovers between two surgical procedures are graphed in the a-axis, in descending order 

of frequency of occurrence. Changeover duration in minutes can be read from the left y-axis. 

The cumulative share of total number of changeovers can be read from the right y-axis. The 

top 90% of changeovers in terms of frequency is included in the graph. We can identify some 

changeovers that either result in startling low or high changeover durations. This may also be 

the result of poor registration or intention as we cannot case-wise determine the reasons 

behind changeover durations. However, the aggregated data allows for the interesting 

suggestion that the sum of changeover durations in a surgical schedule could be manipulated 

through scheduling choices. 
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Figure 2.21: Changeover duration and cumulative frequency (Source: SAP, data between 07-15 and 11-15, N= 1105). 

Finish Time 

To determine whether capacity is underutilized at the end of an OR program, we create an 

overview of the finish times. Finish time is defined as the time that a last patient of a 

continuous elective schedule leaves an OR. Schedules in which a break-in by an emergency 

patient has occurred are also taken into account, though only elective patients are recognized 

as “last patient”. Figure 2.22 depicts the finish time of ORs with a sample size of 98 ORs, which 

were only taken from the same selection as which was used in determining the utilization. The 

red reference line depicts the first soft target finish time of 16:00, which is a comfortable finish 

time for the OR personnel. The green finish line depicts the second soft finish time at 16:30, 

after which OR personnel is working overtimes. The admission office strives to finish all ORs 

within the two target times. It is easily seen that OR personnel is often working overtime, with 

38% almost a third of the cases. These finish times put the utilization of 58% in perspective. If 

more capacity between office hours could be utilized, OR personnel would not have to work 

in overtime this frequently. At the same time, in 23% of the times some capacity is left unused 

at the end of the day because an OR finishes before 16:00. The finish times are a clear indicator 

of the inability to estimate the several times associated with the surgical schedule accurately.

 

Figure 2.22: Overtime of OR schedules at  General Surgery. The red line indicates the first finish target, the green line indicates 
the second target (Source: SAP, data between 06-15 and 11-15, N=98). 
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2.5 Problem Identification 
This section creates the problem bundle consisting of all the observed problems within section 

2.1, 2.2 and 2.4. First, subsection 2.5.1 introduces the stakeholders and their perceived 

problems. Subsection 2.5.2 describes managerial deficiencies in the control process. All the 

perceived and observed problems create the problem bundle presented in subsection 2.5.3. 

Subsection 2.5.4 derives the core problems from the problem bundle. 

2.5.1 Stakeholders 

In this subsection, we describe several stakeholders that are involved in some way with the 

system are distinguished and the problems they perceive.  

Admission office 

The admission office wants to make sure there is enough capacity for (semi-)urgent patients. 

They want to plan as many elective patients as possible while keeping track of urgency and 

capacity. The admission office often has to notify a lot of patients very shortly before the 

surgical procedure about cancellations. They also invest a lot of time in trying to swap sub-

specialized surgeons and find extra capacity to schedule all the semi-urgent patients in feasible 

ORs within an appropriate period. 

Surgeons 

Surgeons want to be able to schedule both elective and urgent patients within a reasonable 

horizon. Often, a specialist wants to operate within a preferred sub-area of their specialization 

and preferably on patients that they have personally met in their consults. Surgeons perceive 

a lot of chaos in the OR department. To deal with the stochastic arrivals of (semi-) urgent 

patients with differing sub-specialized demands, they sometimes need to re-adjust their OR 

schedule short in advance and re-prepare their ORs several times per day. Surgeons perceive 

that delays in the surgery progress causes patients to be cancelled at the end of the day.  

Patients 

Patients prefer to be operated on by the same surgeon as they have met during consult. 

Elective patients have to deal with long access time. Often, they are notified only very shortly 

in advance of their surgery date and time. Unfortunately, a lot of less urgent patients also 

rescheduled at the very last moment, sometimes only hours in advance.  

OR Department Personnel 

The OR department consists of a large group of OR personnel such as planning & coordinating 

staff, surgery assistants, anaesthesiologist-assistants, nurses, cleaners and all other support 

personnel. OR personnel often works late hours to finish all scheduled patients. OR 

Department personnel also perceivers that surgeons may abuse their power by overstating 

the urgency of emergency patients. A surgeon may push such a patient through the OR at the 

end of the day, causing overtime for the OR department personnel and the surgeon.  

Anaesthesiologists 

An issue that anaesthesiologists describe is that sometimes patients need to be rejected at 

the very last moment if not prepared correctly for surgery. They experience the same 
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frustrations from surgeons overstating the urgency of emergency patients as OR Department 

personnel do.  

2.5.2 Managerial deficiencies 

In this subsection, we identify several managerial deficiencies in the control process at Haga. 

Such poorly addressed planning functions at tactical level lead to time consuming resource 

allocation challenges at operational level.  

Poor capacity requirement prediction 

Each year the required capacity for specialties is estimated on a strategic level. Surgical 

procedure amounts and the average time of each procedure are combined to determine a 

total required amount of capacity. This capacity is increased by 15% to compensate for 

utilization. It can easily be observed that a 15% increase would amount to an 86% utility rate, 

which is unrealistically high. Apart from high utilization estimates, the project manager does 

consider the fact that General Surgery also performs surgical procedures during the nights and 

weekends. It is simply assumed that all procedures are within office hours. Though this 

compensates the high utilization factor, the overall method is still prone to inaccuracy. 

Research shows that capacity dimensioning at strategic level strongly influences OR 

performance [12], [13]. 

Lack of flexibility towards temporary demand changes 

Lack of periodic flexibility can be observed on tactical level. Currently, capacity is allocated in 

a fixed four week cyclic MSS. This MSS is annually made based on yearly demand data and 

predictions and takes capacity reductions due to holidays into account. However, demand 

fluctuations that might occur within a yearly period are not measured and hence not also 

taken into account when creating the MSS. For elective surgical procedures, average demand 

for a specialty may fluctuate per seasonal or monthly period.  For emergency patients, average 

demand fluctuations may be observed within a single week. Failure to cope with such demand 

fluctuations may lead to resource allocation inefficiencies [12].  

Lack of capacity re-allocation  

Lack of unused capacity re-allocation can be observed on tactical level. A medical specialists 

may return OR capacity due to a number of reasons, such as lack of surgeons due to a medical 

congress or lack of patient demand. Rules about returning OR days are made between de 

project managers that create the MSS and the medical specialists. Medical specialists may 

return OR days down to ninety days in advance, after which the project manager will make an 

effort to swap these OR days with other specialties. After this period, there is no guarantee 

that other specialties have time and surgeons available to use the returned OR capacity (a 

specialty “loses” the capacity). The project manager involved with capacity re-allocation 

estimates that about 75% of returned capacity is returned in time to make swaps, and that 

90% of returned capacity was actually used by other specialties. However, since there are no 

control methods in check to monitor utilization of OR time, these numbers may deviate. 

Research by Dexter et al. shows that effective capacity re-allocation has positive results on OR 

performance [14]. 
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Lack of admission Control 

Lack of admission control can be observed on tactical level in 2 different stages.  

The first stage address the allocation of surgeons between OR surgical procedures and surgical 

consults in the clinic. It can be reasoned that this allocation influences direct inward patient 

flow towards surgical consults and thus, indirectly towards the OR department.  More surgical 

consults mean more patients on the waiting list for surgery, and more OR surgical procedures 

means less surgical consults, hence less patients on the waiting list.  Currently, the available 

OR capacity is evenly distributed between the different surgeons of General Surgery. Surgeons 

provide the scheduler with their availability and receive one day per week in the OR. This fixed 

capacity based on surgeon preferences is often unbalanced compared to the patient demand 

per sub-specialization. There is also no admission control that balances access times between 

(semi-) urgent and elective patients, or surgical procedures with a deterministic or stochastic 

nature. It can be observed that this unbalance between surgeon capacity and patient demand 

causes a lot of problems on lower levels of the control process, for example when scheduling 

patients on operational offline level. A research by Oostrum et al. [3] shows that balancing 

resource allocation to surgeons based on demand on tactical level has positive results on OR 

performance, such as utilization.   

On the second stage, the different types of patients are scheduled for a consult with a surgeon. 

Lack of admission control here refers to the fact that not all consults result in planning a 

surgical procedure. Often, the first consult is an introduction consult and some consults are 

only for check-ups. By adjusting the ratio of the type of consults that are planned with 

surgeons, the periodical inflow of elective patients could be controlled. Currently, consults are 

planned on first come- first served base that result in little control on patient inflow to the 

waiting list.  

Inappropriate patient scheduling approaches 

Several inappropriate approaches can be noticed when patients are scheduled at operational 

offline level. We will list the five foremost problems: 

First, there is no clear patient scheduling algorithm used at Haga. At operational level, patients 

are loosely scheduled on first-come, first-served while checking if patients are scheduled 

within their medical maximum access-time. Currently, Admission office schedulers hope to 

create a time efficient schedule by hand where computer algorithms can compare thousands 

of combinations from several different scheduling approaches within seconds. A research by 

Dexter et al. [15] shows that the scheduling approach may have large impacts on OR 

performance.  

Second, schedulers at the admission office create a concept schedule for the OR department 

three days in advance. In this schedule, available ORs are filled with known waiting elective 

patients. From section 2.4 it can be observed that nearly a quarter of all patients that need 

access to the OR will arrive in the final three days before the surgical procedure. Due to lack 

of insight in the demand distribution of these patients, they are not taken into account when 

creating the concept schedule. This creates a lot of challenges in scheduling these patients, 
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and results in a lot of last minute changes in the schedule, cancellations, break-ins and 

overtime. 

Third, the estimated times for required surgical procedure are inaccurate. This inaccuracy 

stems from three reasons. First, surgeons and schedulers have conflicting definitions about 

which actions are included in the estimation. Second, surgeons are optimistic in their 

estimations. This often results in an estimated time of their 10 “best” performances. 

Procedures that took extra time for some reason are seen as “exceptions” and not taken into 

account.  Third, using an average as estimation inherently ignores the variability of a surgical 

procedure. For example, when we assumr that surgical procedure times are gaussian 

distributed, this would mean that half of the procedures would take longer than estimated. 

For log-normal, his number would be even greater. General Surgery procedures seem to have 

a lot of variability, and lack of admission control ensures that all elective OR programs have a 

large share of variability. Research shows that managing surgical duration variability will result 

in positive effects on OR performance [4], [16]. 

Fourth, there is no clear standard for buffer-time or slack that an OR should have. Patient 

schedulers have an available capacity in minutes and try to fill this capacity as much as 

possible. Due to the discrete surgical procedure times, this often results in some amount of 

capacity at the “end of the day” that is either unused or overbooked. This decision lies with 

the patient scheduler, and the program coordinator at the OR has to approve it. Patient 

schedulers may “overbook” ORs on purpose, if they feel that leftover capacity is otherwise 

wasted. This overbooking is not driven by insight in no-show statistics, but by necessity to 

allocate semi-urgent patients within the required access time. This tendency has a large 

potential to cause overtime  [4], [17].  

Fifth, for changeover time between patients a standard of 20 minutes is used. Changeover 

times are not pooled and there is no insight in the actual realization. The deviation from this 

estimation can be observed in section 2.4. A research by Dexter et al. [18] shows that 

determining an accurate change-over period results in positive effects on OR performance. 

Lack of coherence 

Lack of coherence can be observed between vertical levels of the planning process and 

between stakeholders.  

First, there is a lack of vertical interaction between hierarchical levels at Haga. Daily 

performance is not measured at the OR department. There are no agreed upon indicators 

such as utilization, throughput and overtime to measure performance. Hence, there is no 

upward vertical feedback towards offline and tactical level that resource planning decisions 

should be adjusted. Only production numbers are checked yearly at strategic level when 

capacity is distributed between specialties. This lack of short-term feedback leads to lack of 

accountability for medical specialties and inhibits the drive for performance improvements. 

The lack of insight in OR performance at higher levels leads to absence of objectives and 

standards for the OR department. This leads to a lack of necessity to measure performance 

such as throughput, utilization, overtime and waiting time at the OR department. This further 

hampers the drive for improvement. 
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Second, there is a lack of coherence between different stakeholders. Stakeholders have 

conflicting interests that can lead to a lot of frustration. Surgeons work the OR once a week 

and are used to working evenings. Their interest lies with performing surgery on all the 

scheduled patients, and they are not bothered by overtimes. This frustrates OR personnel who 

work the OR every day, especially since they experience overtime frequent with different 

surgeons. In turn, surgeons are frustrated when patients are cancelled to prevent overtime (if 

OR personnel is not available) and when OR personnel is changed (day shift to support shift) 

during surgical procedures. These conflicting interests lead to frustrations because 

adjustments have to be made “online” to deal with unexpected delays.  

2.5.3 Problem Bundle 

We cluster all the perceived and observed problems into a problem bundle to identify the core 

problems and their relations. Figure 2.23 depicts the problem bundle. We can observe that 

problems at the OR, such as unrest, overtime and underutilization are the result of both 

problems that rose earlier during the planning process (time consuming capacity challenges 

at operational offline level) and inefficient practice at the OR department at operational live 

level. The underlying root causes, or core problems, of the observed problems are depicted in 

yellow boxes. 

 

Figure 2.23: Problembundle 

Performance measurement 

Figure 2.23 lacks one of the observed core problems in subsection 2.5.2. We can observe lack 

of upward vertical interaction due to the lack of performance measurement. This lack of 
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performance measurement is increased by the poor data management and registration at 

Haga, which makes it difficult to determine short term performance. This status quo is 

preserved by a lack of clear performance and objectives set for the OR department, which are 

the result of a lack of insight on higher levels.  Figure 2.24 depicts the interdependency of 

these problems. 

 

Figure 2.24: Lack of performance measurement 

The reason that these observed problems are not visualized in the problem bundle is because 

they are the “hidden” root cause behind virtually all the core problems. The problem bundle 

itself was found simply by measuring the outcome of resource planning decisions at Haga.  

2.5.4 Core Problems 

When reviewing the problem bundle from subsection 2.5.3, we can identify several core 

problems that lead to bad performance: 

1. Lack of clarity in responsibilities and targets at the start of the day 

2. Lack of anesthesiologists to serve patients simultaneously at the start of the day 

3. Misuse of emergency patient autonomy by surgeons 

4. Patients are inadequately prepared for surgery when they arrive at Holding 

5. Delays at holding due to lack of Holding capacity management 

6. Inaccurate estimates for surgical procedures due to biased estimates 

7. Inaccurate estimates for surgical procedures due to lack of consideration of 

variability  

8. Inaccurate estimates for surgical procedures due to conflicting definitions of what 

the estimate entails 

9. Inaccurate estimates for changeover times 

10. Lack of clear standards for “buffer” time 

11. Lack of consideration of un-arrived “semi-urgent” patients when scheduling 

12. Lack of a clear planning method for scheduling patients 

13. Poor OR admission control due to capacity allocation based on the preferences of 

surgeons instead of demand 

14. Poor waiting list admission control due to lack of control methods when planning 

surgical consults 

15. Lack of capacity balancing through capacity re-allocation due to lack of insight in 

whether surgeons will utilize their capacity 

16. Lack of capacity balancing through periodical capacity allocation variation 

17. Poor capacity requirement predictions due to inaccurate utilization estimate 
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18. Poor capacity requirement predictions due to inconsideration of the ratio of surgical 

procedures in- and outside of office hours 

19. Lack  of performance measurement due to poor data registration and management 

20. Lack of performance measurement due to lack of performance objectives for the OR 

department 

The core problems related to data- and performance management  are not listed in this 

overview. We consider these to be the most underlying core problems and a first step to 

improving performance. We do not include them in our research since Haga is planning to 

implement a new IT system that includes a performance dashboard. 

2.6 Summary 
Through a review of the current situation and a performance analysis, we identified the core 

problems of poor performance and scoped our research. Core problems related to surgical 

demand uncertainty are: 

 No consideration of expected “semi-urgent” patients when scheduling 

 Lack of a clear planning method for scheduling patients 

 Poor OR admission control due to capacity allocation based on the preferences of 

surgeons instead of demand 

 Lack of capacity balancing through periodical capacity allocation variation 

Core problems related to surgical duration uncertainty are: 

 Inaccurate estimates for surgical procedures due to biased estimates 

 Inaccurate estimates for surgical procedures due to lack of consideration of 

variability  

 Inaccurate estimates for surgical procedures due to conflicting definitions of what 

the estimate entails 

 Inaccurate estimates for changeover times 

 Lack of clear standards for “buffer” time 

We will conduct a literature research in the next chapter to gain insight into potential 

solution approaches.  
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3 Theoretical Framework 
In this chapter, we perform a literature study of organizational interventions in healthcare to 

create a theoretical framework of potential solution approaches.  

Our goal is to find relevant operations research and management science oriented solution 

approaches thath could be applied to the problems we identified in chapter 2. In recent years, 

operations research has been increasingly more applied in healthcare. Cardoen et al. [19] 

performed a literature review on this subject, while Hulshof et al. [20] presented an extensive 

taxonomy. Both reviews provide an excellent review of available publications and will be the 

starting base of our research. Apart from these reviews and general literature search engines, 

we use the ORchestra bibliography provided by CHOIR. Due to the scope of our thesis, we will 

restrict our research to relevant interventions on the tactical and offline operational level in 

the surgical care domain. Key search terms related to operations research on these levels are: 

linear, mathematical programming, stochastic, deterministic, uncertainty, queuing theory, 

simulation, heuristics, algorithm, MSS, block-scheduling, capacity, clustering, semi-urgent, 

elective, operating room, operating theatre, scheduling, surgical care services. 

We will use the structure provided by Hulshof et al. to present our findings. Section 3.1 

describes interventions that deal with planning a MSS at a tactical level. Section 3.2 describes 

interventions that deal with operating room scheduling at the operational level.  

3.1 Tactical level 
In this section, we discuss several organizational interventions found in literature related to 

master surgical schedule planning.  

On a tactical level, planning decisions traditionally revolve around the creation of an master 

surgical schedule. Various methods of creating a MSS can be found in literature, often aimed 

at achieving specific goals or performance. In our literature study, we examine the different 

goals and methods that were used and their results. The process of creating a MSS can be 

divided in three subsequent steps. In the first step, different types of surgical procedures are 

defined and often grouped by some criteria to simplify the scheduling process. In the second 

step, OR department capacity and other resources are allocated to the patient groups. A wide 

variety of methods, models and criteria are used to drive these allocation decisions. In the 

third step, allocated capacity is assigned to specific dates, times, surgeons and ORs to create 

a MSS. The first step of patient group identification is discussed in subsection 3.1.1, subsection 

3.1.2 discusses the second step of time subdivision and subsection 3.1.3 the third step of block 

scheduling. 

3.1.1 Patient group identification 

In the majority of literature, patients are grouped together by urgency and/ or (sub-) 

specialization, where capacity is reserved for urgent patient groups. A paper from Van 

Houdenhoven et al. [21] demonstrates efficiency gains through the portfolio effect when 

clustering elective surgeries within a specialization in a fixed amount of bins based on their 

variability and allocating capacity based on bin demand and utilization targets [22]. The 
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portfolio effect was first described by Markowitz et al. [23] and is extensively used in 

operations research for risk pooling. Clustering also allows allocation of capacity to rare 

surgical procedures through demand pooling. A paper from Van Oostrum et al. [1] presents a 

hierarchical clustering method for elective surgical cases based on surgical case demand. This 

paper also describes the trade-between loss of information and efficiency when varying bin 

size and bin quantity. The method could be used as a suitable alternative for a fixed-bins 

method who Van Houdenhoven et al. propose. 

3.1.2 Capacity allocation  

Most literature shows that capacity allocation should be demand driven to balance access 

times and increase throughput, and that managing demand uncertainty is key to performance 

increase [21,22]. A paper by Gupta et al. [26] presents a mathematical programming model 

that allocates OR capacity to various sub-specializations within the specialty General Surgery. 

The paper is cost oriented and focuses on balancing the trade-off between the benefit of 

contribution and the cost of excess allocation per time-unit of OR capacity. In his paper, Van 

Oostrum et al. [27] uses several mathematical programming models to create a MSS in two 

phases. In the first phase, operating room days (ORDs) are selected from an implicit set, that 

is iteratively increased by generating improving ORDs. In the second phase, the MSS is created 

by assigning ORDs to specific ORs during the planning cycle with the objective of minimizing 

the maximum bed requirement during any day of the cycle. Van Oostrum et al. also finds that 

it is better not to allocate capacity to rare surgical procedures. Zonderland et al. [28] present 

a queuing theory model that can be used to determine expected semi-urgent patient access 

times with a given arrival rate and capacity, and Kortbeek et al. [2] uses presents a discrete 

time slot queuing model to anticipate unplanned arrivals in an outpatient clinic. Queuing 

modeling is interesting since it models “knock-off” and “overspill” effects from decisions in 

one period into subsequent periods. One key practice of that effect at general surgery is 

cancelling an elective surgery at the last minute to free capacity for a more urgent patient. 

That cancelled patient is then often re-admitted as a semi-urgent patient as compensation for 

the inconvenience, which results in the cancellation of another elective patient 

A paper from Adan et al. [29] reviews varying ranges of slack and bin-interchange flexibility in 

allocating block time to patient groups to determine an optimal strategy in dealing with 

uncertain demand. Slack is additional reserved OR capacity to deal with uncertainty in surgical 

duration. These strategies were derived from an earlier research by Dellaert et al [30] but 

expanded to allow for uncertainty. In their research, Adan et al. show a clear trade-off 

between utilization against service level and overtime by adjusting the amount of slack. 

Vissers et al. [31] provides a similar insight through a simulation study of four extreme MSS 

strategies that focus on different objectives such as maximize resource utility, minimize access 

times and staff preferences. A paper from Bowers et al. [25] also presents a simulation study 

that examines the trade-off between utilization and service level in reserving capacity for 

emergency patients.  One limitation of the research of both Vissers et al. and Bowers et al. is 

that only one type of surgery is taken into account. 
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3.1.3 Block scheduling 

Common criteria when creating a MSS are surgeon preferences, staff- and OR capacities and 

patient demand [32]. We can distinguish cyclic and non-cyclic block schedules, or MSSs, in 

literature. Cyclic block schedules are most common and may greatly reduce planning efforts 

in environments with repetitive procedures [33].  Non-cyclic block schedules can be adjusted 

more easily to seasonal demand variations but are more unpredictable to surgeon planners 

and downstream resources than a cyclic schedule. Mathematical programming is a frequently 

described method to create MSSs in the literature. Dellaert et al. [30] presents an MSS integer 

linear programing approach to minimize weighted deviations from utilization goals of the OR, 

staff and IC wards. Van Oostrum et al. [27] present a minimax mathematical program to create 

an adaptation of a MSS that levels the maximum bed occupancy on any  day based on recorded 

average length of stay of surgical procedures. Beliën et al. [32] construct an initial MSS using 

mathematical programming, but then apply a simulated annealing algorithm to level bed 

occupancy. Instead of average length of stay, their local search allows empirical distributions 

as input.  

3.2 Offline operational level 
In this section, we discuss several organizational interventions found in literature related to 

surgical case scheduling into the MSS at offline operational level.  

On an offline operational level, planning decisions mainly concern the scheduling of surgical 

cases into the MSS. Numerous objectives and methods to schedule surgical cases can be found 

in literature. The scheduling process can be decomposed in three subsequent steps. In the 

first step, the planned duration of a surgical procedure is determined. In the second step, a 

specific date and OR are assigned to the procedure. In the third step, the sequence and start 

times of surgical procedures within an OR is determined. Subsection 3.2.1 discusses the first 

step of surgical case duration estimation, subsection 3.2.2 the second step of assigning dates 

and ORs to cases, subsection 3.2.3 the third step of surgical case sequencing.  

3.2.1 Procedure duration 

A common method reported in literature is that surgeons estimate the surgical duration for 

each patient based on patient characteristics. This method is currently also in practice at Haga. 

Papers by Hans et al. and Houdenhoven et al. [12,18] introduce another method to estimate 

surgical case duration. They assume a Gaussian l distribution fit and take empirical historical 

averages and standard deviations into account when determining surgical procedure 

duration. All the standard deviations are bundled together to create slack with the benefits of 

the portfolio effect. The precise amount of slack on a total OR day schedule is determined by 

the scheduled surgical duration variabilities and aimed probability of overtime of the 

schedule. One positive aspect of this method is that it takes variability in surgery durations 

and change-overs into account. Bosch et al. [34] presents a method to linearize exponential 

overtime probability that makes it feasible for implementation in mathematical programs. 

Strum et al. [35] compares distributions for case-duration estimation and finds that a log-

normal distribution is more accurate to estimate surgery duration compared to a Gaussian 

distribution. In turn, Stepaniak et al. [36] compares different log-normal distributions and 
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finds that the 3-parametric log-normal distribution has the best predictive case duration 

results. One drawback of using a log-normal distribution is that its open nature prevents the 

use of pooled slack, which is employed in the earlier reported portfolio effect. A solution to 

this drawback is presented by Van Oostrum et al. [27] with the Fenton-Wilkinson approach as 

a method to estimate the distribution of the sum of log-normal distributed variables, that he 

then uses to estimate the portfolio effect. A paper by Olivares et al. [17] presents the news 

vendor model to determine capacity for individual surgical procedures, based on OR cost 

characteristics of reserving too much or too little time.  

3.2.2 Assigning dates and ORs 

Hans et al. [9] presents a constructive algorithm where surgeries are scheduled based on the 

resulting sum of historical surgery averages and slack. Their goal is to maximize utilization by 

filling available capacity as possible, while minimizing slack. Hans et al. also demonstrate a 

strong performance of Simulated Annealing as local search improvement algorithm. Dexter et 

al. [37] attempt to maximize utilization through an algorithm where multiple procedures are 

scheduled simultaneously. Several papers present methods with other goals than maximizing 

utilization. A paper by Testi et al. [12] presents a mathematical programming model to 

schedule patients based on medical priority instead of surgical duration. Unfortunately, the 

model has some limitations such as no uncertainty in arrival rate or surgical duration, no 

emergency patients and excess demand. A paper by Min et al. [38] presents a dynamic 

programming model to schedule patients based on medical priority. In this model, a trade-off 

between surgery overtime and postponement costs result in a MSS. A drawback of this model 

is that it assumes all surgery types and durations to be identically distributed, and relaxation 

of this assumption increases the model complexity dramatically.  

3.2.3 Surgical case sequencing 

Sequencing by preference of surgeons is the most practiced method encountered in literature. 

Surgeons may prefer complicated procedures first so that they can monitor their recovery 

during the rest of the day [39]. Van Oostrum et al. [40] presents an interesting method of 

sequencing to smooth surgical procedure starting times over all ORs on a particular day. This 

allows for emergency patients to break into an OR (during a changeover) and eliminates the 

need for dedicated emergency rooms. However, simulation shows that a large set of ORs on 

a particular day is required to really gain good results, while general surgery only has three or 

four per day. Other sequences focus on performance by attempting to minimalize the make-

span for a given set of planned surgeries in an OR. A paper by Kwak et al. [41] finds that the 

classic longest processing time first (LPTF) algorithm outperforms most other sequences, such 

as random and FCFS. A paper by Denton et al. [42] finds that sequencing procedures on 

decreasing variance outperforms LPTF in turn. 

3.3 Summary 
In this section, we will summarize the results from the literature study.  
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Several papers provide promising interventions. The queuing theory methods proposed by 

Zonderland et al. and Kortbeek et al. seem good representations of the “kock-off” effect that 

occurs frequently between semi-urgent and elective patients at general surgery. Elective 

capacity allocation and semi-urgent capacity reservation should be demand driven and 

effectively incorporated in the MSS together. Clustering techniques may prove useful if 

surgical procedure demand is too scarce to schedule. Mathematical programming seems a 

robust method to incorporate these elements together in a MSS. Non-cyclic MSSs may handle 

demand variations better, but cyclic MSSs provide practical benefits for OR schedulers.  

Adding slack adds robustness against overtime and incorporating the portfolio effect reduces 

the required amount of slack through variance pooling. A  3 parametric log-normal distribution 

reflects surgical procedure duration more accurately than 2-parametric and Gaussian 

distributions. Since surgical case scheduling is currently done manually, interventions should 

be implemented on a tactical level as much as possible. 
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4 Solution approach 
In this chapter we propose a robust solution approach to our research objective. Our solution 

approach is founded on groundwork from earlier chapters. Core causes of poor performance 

are identified in chapter 2, potential interventions available in literature are reviewed in 

chapter 3.   

We will describe our solution approach over several sections. In section 4.1, we introduce the 

solution approach as a conceptual model to express the correct interpretation of our model. 

In section 4.1, we discuss how data was gathered and adapted to be suitable as input for our 

model. In section 4.3, we provide a detailed description of the complete solution approach 

and technical models. We briefly summarize this chapter in section 0. 

4.1 Conceptual model 
We propose a robust cyclic surgical schedule aimed on managing surgical demand and 

duration uncertainty based on the research of van Oostrum et al. [3] , van Houdenhoven et al. 

[22] and Kortbeek et al. [2]. We believe that managing procedure demand and duration 

uncertainty will result in both timely access time to patients and economic use of operating 

rooms. While non-cyclic surgical schedules have advantages towards managing demand 

variability, they greatly complicate OR staff scheduling manageability.  

The framework presented by Hans et al. distinguishes a strategic, tactical, operational offline 

and operational online level of scheduling [20]. Our solution approach applies extensive data 

driven admission planning at tactical level to manage uncertainty. Capacity requirements for 

surgical procedures are determined in such way that patient access times are controlled, 

overtime probabilities limited and efficiency maximized. The result is a tactical framework that 

describes OR schedules exactly which surgeons and procedure types to schedule at date. It 

also describes for each surgeon how much capacity to reserve for the accommodation of semi-

urgent procedures. We define this tactical framework as a surgical procedure type schedule 

(SPTS) instead of the conventional master surgical schedule (MSS), as it describes clusters with 

procedure types instead of defined surgical procedures. The SPTS describes exactly how much 

of each surgical procedure type should be scheduled in a specific OR at a specific day. It can 

be viewed as a very specific version of a conventional MSS. Our solution approach will greatly 

reduce complexity that currently resides at operational levels. The distinction between the 

current scheduling approach and proposed solution approach will become clear in the rest of 

this section. A visual comparison in accordance with the framework of Hans et al. is made in 

Figure 4.1. We propose our SPTS to have a 4 week cycle, determined 3 months in advance. 

The SPTS can be filled by the admission office planners with surgical cases over a 1 week 

planning horizon.  
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Figure 4.1: Comparison of scheduling approaches 

4.2 Model input 
In this section, we discuss data gathering and the underlying assumptions of our models. Our 

data was gathered through interviews with the stakeholders described in 2.5.1 and through 

Haga registration system SAP. Specifically, we used the OR statistics and admission office data 

of all patients that underwent surgery between 03-13 and 10-15.  We identify three main 

patient groups as input for the solution approach. We recall the three different levels of 

urgency:  

 Elective patients require access within 7 weeks. They are scheduled operational offline. 

 Semi-urgent patients require access within a week. They are scheduled online. 

 Emergency patients require access within a day, some may require immediate access. 

They too are scheduled online.  

Each patient may undergo one of nearly 350 unique surgical procedures, performed by one of 

15 surgeons. All of these procedures may be categorized in one of 6 surgical areas: 

 General 

 Traumatology 

 Cardiology 

 Pulmonology 

 Abdominal & Gastro-intestinal 

 Oncology 

Surgeons are sub-specialized in one or more areas and cannot perform procedures outside 

their area of sub-specialization. General procedures are relatively simple procedures that can 

be performed by any surgeon. An uncommon feature at Haga is that there is no surgeon 

specific demand within a sub-specialty; any patient is allowed to be served by any surgeon. 

This uncommon feature allows us to pool demand amongst surgeons, which greatly reduces 

surgeon specific variability. We assume that surgeons are capable to perform all the surgical 

procedures within their area of sub-specialization. This assumption is confirmed to hold 

reasonably well for Haga. We therefore drop the notion of allocating surgical procedures to 

different surgeons entirely, and will allocate to sub-specializations instead.  
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Our thesis solely focuses on OR scheduling during office hours. Similar to our definition for 

utilization in section 2.4.2, this requires us to identify which surgical procedures should not be 

performed during office hour demand. Our solution approach will “include” patients from 

with all levels urgency of the current case mix at Haga, and employ the current 4 week cycle 

used at Haga. We ignore procedures performed before 07:00 after 20:00. We will assume that 

these procedures were not caused by online management problems with the scheduling 

approach, but for clinical reasons. For the same reason procedures outside of weekdays are 

also excluded. We define the arrival of a patient as the date at which a patient is registered in 

the hospital registration system SAP. We exclude any online operational issues that might 

occur in our solution approach, such as no-shows, late-shows and late-starts. We will also 

exclude emergency patients from our SPTS, since common practice at Haga is to reserve at 

least one flexroom per day. For Haga, it is unfeasible to schedule any patients other than 

emergency in these ORs. To achieve good performance, the method proposed by van Oostrum 

et al. requires a larger number of ORs than we have available [40]. 

We assume that no specialized staff is required to take into account when scheduling. 

Similarly, we assume that surgical procedures require no special resources or equipment. We 

assume that all operating rooms are identical and suitable for general surgery and that 

operating room availability is unbounded. Operating room capacity that is left at the end of a 

surgical schedule is considered “waste”. These assumptions hold well in reality for Haga. 

4.3 Technical models 
In this section, we discuss how we allocate demand to the patient sets we identified in section 

4.2 and we construct a SPTS in several steps. In subsection 4.3.1 we present a clustering 

approach as proposed by van Oostrum et al. [1] as a method to combine individual surgical 

procedures into homogenous surgical procedure types. This allows us to reduce uncertainty 

by pooling demand. In subsection 4.3.2 we will present the queuing theory approach 

presented by Kortbeek et al. [2] as a method to predict weekly required capacity for semi-

urgent patients. The queuing model will determine the number of slots required to provide 

timely access to nearly 90% of semi-urgent patients. We then consider semi-urgent patients 

to be “just another elective surgical procedure type” with the determined number of slots as 

its demand. In subsection 4.3.3 we introduce a mathematical programming approach based 

on van Oostrum et al. [27] to allocate capacity to all surgical procedure types and to construct 

a SPTS. In subsection 4.3.4 we discuss a flexible approach to implement the SPTS. 

4.3.1 Clustering 

We have already defined 6 surgical sub-specializations, but still have a large number of unique 

surgical procedures within each sub-specialty. Estimating periodic demand for each unique 

procedure is possible but each estimation would be subjected to some amount of periodic 

variability. With nearly 350 unique procedures the total resulting variability could erode the 

robustness of the demand estimation. We solve this issue by clustering surgical procedures 

together as surgical procedure types as demonstrated by van Oostrum et al. [1]. This allows 

us to pool demand of individual surgical procedures which reduces uncertainty. In order to 

economically allocate OR resources we need to ensure that surgical procedure type clusters 
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are homogenous in terms of expected and variability. We therefore perform an analysis to 

determine whether we can exclude very rare procedures. For each procedure, we determine 

the share of the total number of performed procedures and exclude those procedures that 

together make up less than 5% of the total number. Figure 4.2 visualizes surgical procedures 

graphed against their cumulative share of total production.  

 

Figure 4.2: Cumulative share of surgical procedures sorted in descending frequency, graphed as blue. We exclude 133  surgical 
procedures that together make up less than 5% of all performed procedures. The remaining 108 procedures are used for 
clustering (Source: SAP, data taken between 03-13 and 10-15). 

Our clustering approach can be described as follows and is subsequently applied to each sub-

specialty. We use the determined log-normal parameters as input variables to create a scaled 

Euclidian distance matrix. We then use an agglomerative clustering algorithm with wards 

linkage to determine a suitable 𝐾 number of clusters, based on visual inspection of a 

dendogram. Such a dendogram provides us with information on the loss of information when 

reducing the number of clusters. For traumatology, such a dendogram is visualized in Figure 

4.3. Two key factors when determining 𝐾 are that we preserve enough demand for each 

cluster and that we minimize surgical procedure distance within each cluster. We determine 

on a range of 𝐾 clusters for that we will later examine performance. We then re-cluster the 

dataset again with a 𝐾-means algorithm. The result is a 𝐾 number of clusters with aggregated 

demand and homogenous duration and variability. We call these clusters surgical procedure 

types, compared to the individual surgical procedures we used as input.  
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Figure 4.3: A dendogram of the merging process within sub-specialty traumatology. Surgical procedures (x-axis) are plotted 
against the distance between clusters (y-axis). Each horizontal line represents a merge. The boxes present an example of 4 
surgical procedure types. 

To determine the duration of a surgical procedure type, we fit a distribution based on all 

individual procedures that comprise a procedure type. In section 0, we determined that 

monthly demand for sub-specialties fluctuates. From an economic point of view, we would 

like to prevent idle time by adjusting capacity to such demand fluctuations, similar as to what 

happens in a non-cyclic schedule. We reason that any fixed capacity will ultimately lead to 

situations where capacity is either lacking or underutilized. We therefore use a quantile 

function to describe demand spread for each surgical procedure type. The result is a 

distribution of monthly observed demand over 4 quartiles, each with a 25% probability. The  

quartiles can be visualized with a box-and whiskers plot, shown in Figure 4.4. Rather than only 

using the average monthly demand, we can now separate demand into a fixed and variable 

component. The fixed component equals the lower observed quartile of monthly demand. 

The variable component fluctuates between 0, the second (that equals the median), third and 

fourth quartile of monthly demand, and is adjusted when management perceives that waiting 

lists are either shrinking or growing.  

 

Figure 4.4: Quartile box-and whiskers plot of monthly demand of the (general)  first 3 surgical procedure types (Source: SAP, 
data taken between 03-13 and 10-15). 
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A detailed motivation of the decisions used in clustering is given in Appendix C, cluster results 

are given in Appendix D. An unfortunate collateral effect of clustering surgical procedures is 

that we cannot manipulate required changeover times by sequencing specific individual 

procedures. However, we predict that the beneficial effects of clustering outweigh those of 

manipulating total required changeover time. To incorporate changeovers in our model, we 

clusters all changeovers and define them to be a surgical procedure type. In subsection 4.3.3 

we will model the special requirements related to changeovers. 

4.3.2 Queuing theory  

Our initial aim is to determine how much capacity we should reserve such that semi-urgent 

patients have a certain probability of receiving access within a week time. We fitted a Poisson 

distribution to describe weekly semi-urgent arrival, but are still uncertain about how much 

capacity we should reserve to achieve our access time goal. Reserving too much capacity will 

reduce access time but also result that capacity is frequently left idle. Reserving too little 

capacity will result in frequent “knock-off” effects as is currently the case, but also higher OR 

utilization and more frequent overtime. Reserving capacity is a trade-off between these 

scenarios that will both occur to some extent.  

Weekly required capacity is determined by 2 components: the number of patients per week 

and the duration of their surgical procedures. To simplify our problem, we temporarily ignore 

procedure duration uncertainty and assume that each procedure has a deterministic duration 

of one time unit. The only question remaining is then how many time slots of one time-unit 

we require on weekly basis, with consideration to both independent new arrivals and “knock-

off” effects from earlier weeks. Using the deterministic queuing theory model presented by 

Kortbeek et al. [2] we may determine the number of slots per week required to accommodate 

semi-urgent patients within their allowed access time of 1 week in 90% of the times. In other 

words, we may determine the number of semi-urgent patients we need to reserve time for 

per week.  

We used Minitab to identify distributions that might describe semi-urgent arrival demand. We 

removed outliers outside a two sided confidence interval of 95%. However, poor registration 

and unnatural confounding influences prevent us from finding surgical procedure-, or even 

sub-specialty specific arrival distributions. We can only describe the weekly arrival of the 

complete set of semi-urgent patients by a Poisson process with rate 𝜆𝑤. We use that 

distribution and may later distribute the total determined capacity amongst surgical sub-

specializations based on historical distribution. 
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Figure 4.5: Visualization of Queuing model with blue dots representing arriving patients. 

We first need introduce some mathematical notations before we can effectively describe the 

queuing theory model in technical terms. These notations are also summarized in Table 4.1. 

Symbol Definition 
𝒘 Current week 
𝑾 Cycle length in weeks 
𝝀𝒘 Average arrival rate per week 
𝑩𝒘 Backlog at the beginning of week 𝑤 
𝒄𝒘 Capacity at week 𝑤 
𝑨𝒘 Number of arrivals in week 𝑤 
𝑬𝑺𝒘 Number of empty patient slots in week 𝑤 
𝑨𝑻𝒘 Access time of a patient arriving in week 𝑤 

Table 4.1: Symbols used in discrete time queuing slot (Source: Kortbeek et al.) 

On arrival, patients join a single queue that is served on first-come first served base by a single 

server. We assume that patients cannot be scheduled in the same week as they arrive. This 

may seem a limitation, but has no real significance due to the stationary nature of the model. 

Weekly, the batch of patients that is removed from the queue can be described by: 

 (𝐵𝑤 − 𝑐𝑤) + (4.1) 

In which 𝐵𝑤 is the backlog of patients at week 𝑤, 𝑐𝑤 the capacity, or number of slots, at week 

𝑤 and (𝑥)+ = max (𝑥, 0). In words, the batch of patients removed equals at most the weekly 

number of slots. This process is visualized Figure 4.5. We introduce the number of weekly 

arrivals 𝐴𝑤 and can now define the backlog in the next week as: 

 𝐵𝑤+1 =  (𝐵𝑤 − 𝑐𝑤) + +  𝐴𝑤 
 

(4.2) 

The probability of transitioning from a backlog 𝑖 in week 𝑤 to 𝑖′ in week 𝑤 + 1 can then be 

described by: 

 
𝑃(𝐵𝑤+1 = 𝑖′ |𝐵𝑤 = 𝑖) =  {

𝑃(𝐴𝑤 = 𝑖)                        𝑖𝑓 𝐵𝑤 ≤ 0

𝑃(𝐴𝑤 = 𝑖′ − 𝑖 +  𝑐𝑤)     𝑖𝑓 𝐵𝑤 ≥ 0 
 

 

(4.3) 

Kortbeek et al. presents an exact method based on probability generating functions to 

determine the stationary backlog probability distribution, but finds that it is only 

computationally feasible for small problems. For larger problems, he approximates the 
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stationary vector by determining the eigenvector of a large but finite stochastic matrix with 

backlog probabilities. This not alternative methods makes the model suitable for larger 

instances such as this one. With the stationary number of patients waiting in queue known, 

other important statistics can be determined such as expected access time and expected 

number of empty slots. The expected weekly number of slots is given by: 

 

𝔼(𝐸𝑆𝑤) = ∑ (𝑐𝑤 − 𝑏)

𝑒𝑤−1

𝑏=0

¶(𝐵𝑤 = 𝑏) 

(4.4) 

We may also identify the expected access time for semi-urgent patients, which is our 

performance indicator of interest. The probability of having an access time 0 weeks is 0,  the 

probability of an access times larger than 𝑦 weeks is given by: 

Where the number of patients that arrived in week 𝑤 and is scheduled within 𝑦 weeks is 

represented by 𝑠. If the backlog in week 𝑤 exceeds the capacity, then 𝑠 is given by ∑ 𝑐𝑤+𝑖
𝑦
𝑖=0 +

𝑖 − 𝑏. If not, then 𝑠 is given by ∑ 𝑐𝑤+𝑖
𝑦
𝑖=0 . Hence: 

 
𝑠 = 𝑚𝑖𝑛 { ∑ 𝑐𝑤+𝑖

𝑦

𝑖=1
 , ∑ 𝑐𝑤+𝑖 − 𝑏

𝑦

𝑖=0
 } 

 

(4.5) 

In other words, the conditional probability of an access time of at least 𝑦 weeks is 1 when 

backlog 𝑏 is larger than available capacity till week 𝑦. If capacity exceeds backlog, all semi-

urgent patients until 𝑠 can be scheduled within 𝑦 weeks. The conditional access time is then 

given by: 

 
𝔼(𝐴𝑇𝑤 | 𝐵𝑤 = 𝑏) =  ∑ 𝑃(𝐴𝑇𝑤 > 𝑦 | 𝐵𝑤 = 𝑏)

∞

𝑦=0

 

 

(4.6) 

Which can be simplified into: 

 
𝔼(𝐴𝑇𝑤) = ∑ 𝔼(𝐴𝑇𝑤  | 𝐵𝑤 = 𝑏) ∗  𝑃( 𝐵𝑤 = 𝑏)

∞

𝑏=0

 

 

(4.7) 

And thus: 

 
𝔼(𝐴𝑇) = ∑

𝔼(𝐴𝑇𝑤) ∗  𝔼(𝐴𝑤)

∑ 𝔼(𝐴𝑞)𝑊
𝑞=1

𝑊

𝑤=1

 

 

(4.8) 

We can determine the minimal number of weekly slots required to provide 90% of patients 

with an access time of up to one week. We can now regard semi-urgent patients as another 

“elective” surgical procedure type and the weekly determined number of slots as its demand. 

Figure 2.1 visualizes the distribution of this demand amongst the sub-specialties based on 

historical observations. For each distribution, we fit a 3 parameter log-normal distribution to 

describe surgical duration using Minitab. Details are provided in Appendix C.  
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Figure 4.6: Distribution of semi-urgent demand amongst sub-specialties (Source: SAP, data taken between 03-13 and 10-15). 

We can convert the weekly demand to four week demand to match the planning cycle. We 

will ensure for special constraints in the mathematical programming model presented in 

subsection 4.3.3 to ensure that the weekly required capacity is still met when constructing the 

SPTS. This queuing model can easily be generalized to accommodate semi-urgent patients 

with any access time by converting it back to its original form that determines daily required 

capacity. We can then apply the model to check any SPTS for access-time feasibility. Since our 

semi-urgent patients have an maximum allowed access time of exactly one week, the current 

model will suffice as long as we ensure that our SPTS has enough semi-urgent slots per week.  

4.3.3 Mathematical programming 

In this subsection, we introduce a mathematical programming approach to allocate capacity 

to surgical procedure types and construct a SPTS.  

Base model 

We propose a mathematical programming approach to assign surgical procedure types to 

specific days and ORs in a SPTS. The underlying objective is to minimize the required OR 

capacity to cover demand and ensuring timely access for semi-urgent procedure types. We 

first need to introduce some mathematical notations before we can effectively describe the 

model in technical terms. These notations are also summarized in  

Table 1.1. 

Indices 
𝒓  Operating Room capacity type of set 𝑹 
𝒔  Sub-specialty 𝒔 of set 𝑺 
𝒊  Surgical procedure type 𝒊 of set 𝑰 
𝒘  Week 𝒘 of set W 
𝒕   Day 𝒕 of set 𝑻 
𝒋  Operating room 𝒋 of set 𝑱 

Variables 
𝑽𝒓𝒘𝒕𝒋  Use OR 𝒋 of capacity type 𝒓 on day 𝒕 of week 𝒘 

𝑾𝒓𝒘𝒕𝒋𝒔  Assign sub-specialty 𝒔 to OR 𝒋 of capacity type 𝒓 on day 𝒕 of week 𝒘 
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𝒁𝒓𝒘𝒕𝒋𝒊      Number of procedure type 𝒊 in OR 𝒋 of capacity type 𝒓 on day 𝒕 of week 𝒘 

Parameters 
𝒅𝒓  Operating room capacity type 𝒓 duration in minutes 
 𝒔𝒊  Minimum demand for surgical procedure type 𝒊 
𝑴𝒊    Maximum number of surgical procedure type 𝒊 that fits in largest capacity type 
𝑨𝒘𝒕𝒋  Availability of operating room 𝒋 on day 𝒕 of week 𝒘 

𝑩𝒘𝒕𝒔   Sub-specialty 𝒔 is available on day 𝒕 of week 𝒘 
𝑫𝒔𝒊  Ability of sub-specialty 𝒔 to perform surgical procedure type 𝒊 

Table 4.2: Queuing model identifiers 

We introduce the set 𝑊 of weeks (𝑤 = 1, … , 𝑊), set 𝑇 of days 𝑡 (𝑡 = 1, … , 𝑇). Together they 

describe all the different dates in the cycle period. We also introduce set 𝐽 of operating rooms 

𝑗 (𝑗 = 1, … , 𝐽) and capacity type 𝑟 of set 𝑅 (𝑟 = 1, … , 𝑅). The capacity of each operating room 

can be described in minutes by parameter 𝑑𝑟. If we define binary variable 𝑽𝒓𝒘𝒕𝒋 as the use of 

operating room 𝑗 of capacity type 𝑟 on day 𝑡 of week 𝑤, we can describe our objective of 

minimizing the total required periodic capacity as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ ∑ 𝑉𝑟𝑤𝑡𝑗 ∗ 𝑑𝑟

𝐽

𝑗=1

𝑇

𝑡=1

𝑊

𝑤=1

𝑅

𝑟=1

 

We now introduce 𝐼 as the set with surgical procedure types 𝑖 (𝑖 = 1, … , 𝐼) that should be 

scheduled in the SPTS and parameter 𝒔𝒊 to denote the minimal periodic demand for each 

procedure type. Parameter 𝑀𝑖  describes the maximum number of surgical procedure of type 

𝑖 that fits in an operating room with the largest capacity. We can then describe the number of 

scheduled procedure type 𝑖 in OR 𝑗 of capacity type 𝑟 on day 𝑡 of week 𝑤 by variable 𝑍𝑟𝑤𝑡𝑗𝑖. 

Constraint (4.9) ensures that an OR is considered “used” when procedures are scheduled using 

the big-M method: 

 𝑍𝑟𝑤𝑡𝑗𝑖 ≤  𝑀𝑖 ∗ 𝑉𝑟𝑤𝑡𝑗    ∀𝑟, 𝑤, 𝑡, 𝑗, 𝑖 (4.9) 

And we introduce another constraint to make sure that periodic demand is met: 

 
∑ ∑ ∑ ∑ 𝑍𝑟𝑤𝑡𝑗𝑖 ≥ 𝑠𝑖      ∀𝑖

𝐽

𝑗=1

𝑇

𝑡=1

𝑊

𝑤=1

𝑅

𝑟=1

 

(4.10) 

We assumed an unbounded number of ORs in section 4.2 but will model some “virtual” OR 

availability limits to smooth ORDS assignment throughout the planning cycle. We introduce 

binary parameter 𝐴𝑟𝑤𝑡𝑗  to denote the availability of operating room 𝑗 on day 𝑡 of week 𝑤. To 

ensure that ORs are only used when they  are available we introduce constraint: 

 𝑉𝑟𝑤𝑡𝑗 ≤ 𝐴𝑟𝑤𝑡𝑗    ∀ 𝑟, 𝑤, 𝑡, 𝑗 

 

(4.11) 

We would like to ensure that the probability of overtime is limited to some safety factor 𝛼, 

that is chosen by management. Let 𝑓𝑟𝑤𝑡𝑗(𝑍) describe the probability distribution function of 

the sum of all surgical procedure types in OR 𝑗 of capacity type 𝑟 on day 𝑡 of week 𝑤, where 𝑍 

denotes the set of stochastic variables. We can then introduce the probabilistic constraint: 
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 𝑃(𝑓𝑟𝑤𝑡𝑗(𝑧) ≤ 𝑑𝑟) ≥ 1 −  𝛼      ∀ 𝑟, 𝑤, 𝑡, 𝑗 

 

(4.12) 

We introduce binary variable𝑊𝑟𝑤𝑡𝑗𝑠  to denote whether sub-specialty 𝑠 is assigned to OR 𝑗 of 

capacity type 𝑟 on day 𝑡 of week 𝑤. Let binary parameter 𝐷𝑠𝑖  denote whether procedure type 

𝑖 belongs to sub-specialty 𝑠. Using the big-M method we can force to assign sub-specialties to 

OR 𝑗 of capacity type 𝑟 on day 𝑡 of week 𝑤 if we schedule one of their procedure types: 

 
𝑍𝑟𝑤𝑡𝑗𝑖 ≤ ∑ 𝐷𝑠𝑖 ∗  𝑀𝑖 ∗ 𝑊𝑟𝑤𝑡𝑗𝑠 

𝑆

𝑠=1

   ∀𝑟, 𝑤, 𝑡, 𝑗, 𝑖 

 

(4.13) 

And we can ensure that only one sub-specialty is assigned to an OR: 

 
∑ 𝑊𝑟𝑤𝑡𝑗𝑠 ≤ 1

𝑆

𝑠=1

     ∀ 𝑟, 𝑤, 𝑡, 𝑗 

 

(4.14) 

Let binary parameter 𝐵𝑤𝑡𝑠 denote whether a sub-specialty is available on a specific date, 

constraint that sub-specialties only perform procedures when one of their surgeons is 

available: 

 
∑ ∑ 𝑊𝑟𝑤𝑡𝑗𝑠

𝐽

𝑗=1

≤ 𝐵𝑤𝑡𝑠   ∀ 𝑤, 𝑡, 𝑠

𝑅

𝑟=1

  

 

(4.15) 

Finally, we add a special constraint to ensure that the weekly number of “semi-urgent” surgical 

procedure types at least equals the output from our queuing model. If 𝑊 denotes the size of 

the set of weeks in our planning period, we can recalculate back to the weekly required 

capacity. Constraint ensures that semi-urgent capacity in our SPTS is still robust: 

 
∑ ∑ ∑ 𝑍𝑟𝑤𝑡𝑗𝑖 ≥

𝑇

𝑡=1

𝑊

𝑤=1

𝑅

𝑟=1

 
𝑠𝑖

𝑊
    ∀ 𝑤, 𝑖𝑠𝑒𝑚𝑖−𝑢𝑟𝑔𝑒𝑛𝑡 

 

(4.16) 

Summarizing, the base model can be formulated as a generic mixed integer programming 

model: 

Minimize: 

 ∑ ∑ ∑ ∑ 𝑉𝑟𝑤𝑡𝑗 ∗ 𝑑𝑟

𝐽

𝑗=1

𝑇

𝑡=1

𝑊

𝑤=1

𝑅

𝑟=1

 

Subject to: 

𝑍𝑟𝑤𝑡𝑗𝑖 ≤  𝑀𝑖 ∗ 𝑉𝑟𝑤𝑡𝑗    ∀𝑟, 𝑤, 𝑡, 𝑗, 𝑖 

∑ ∑ ∑ ∑ 𝑍𝑟𝑤𝑡𝑗𝑖 ≥ 𝑠𝑖      ∀𝑖

𝐽

𝑗=1

𝑇

𝑡=1

𝑊

𝑤=1

𝑅

𝑟=1
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𝑉𝑟𝑤𝑡𝑗 ≤ 𝐴𝑟𝑤𝑡𝑗    ∀ 𝑟, 𝑤, 𝑡, 𝑗 

𝑃(𝑓𝑟𝑤𝑡𝑗(𝑧) ≤ 𝑑𝑟) ≥ 1 −  𝛼      ∀ 𝑟, 𝑤, 𝑡, 𝑗 

𝑍𝑟𝑤𝑡𝑗𝑖 ≤ ∑ 𝐷𝑠𝑖 ∗  𝑀𝑖 ∗ 𝑊𝑟𝑤𝑡𝑗𝑠 

𝑆

𝑠=1

   ∀𝑟, 𝑤, 𝑡, 𝑗, 𝑖 

∑ 𝑊𝑟𝑤𝑡𝑗𝑠 ≤ 1

𝑆

𝑠=1

     ∀ 𝑟, 𝑤, 𝑡, 𝑗 

∑ ∑ 𝑊𝑟𝑤𝑡𝑗𝑠

𝐽

𝑗=1

≤ 𝐵𝑤𝑡𝑠   ∀ 𝑤, 𝑡, 𝑠

𝑅

𝑟=1

  

∑ ∑ ∑ 𝑍𝑟𝑤𝑡𝑗𝑖 ≥

𝑇

𝑡=1

𝑊

𝑤=1

𝑅

𝑟=1

 
𝑠𝑖

𝑊
    ∀ 𝑤, 𝑖𝑠𝑒𝑚𝑖−𝑢𝑟𝑔𝑒𝑛𝑡 

𝑉𝑟𝑤𝑡𝑗 = {0,1}, 𝑊𝑟𝑤𝑡𝑗𝑠 = {0,1}, 𝑍𝑟𝑤𝑡𝑗𝑖 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

Unfortunately the solution space of this model becomes computationally infeasible for larger 

problem instances. An additional issue is that probabilistic constraints often have to be solved 

using heuristic approximations [43]. We therefore propose a column generation approach 

aimed at reducing the solution space. In the remainder of this section we therefore discuss: 

 The column generation algorithm  

 The column generation primal model 

 The column generation pricing model 

 The technical implementation of the column generation model 

Column generation 

To reduce the computational burden, we propose to decompose the base model into two 

smaller models. In this way, our problem is comparable to a standard cutting stock problem 

as described by Gilmore et al. [44] and Bisschop et al. [45]. Instead of calculating the complete 

solution space explicitly, such problems are solved by implicitly expanding the model solution 

space with only improving solutions that are generated by a submodel. Implicit refers to the 

fact that we do not calculate the entire solution space prior to running the selection model 

(also referred to as an explicit solution space). This technique is also called delayed column 

generation, since each solution is essentially a column of the underlying linear program. It is 

successfully exploited by van Oostrum et al. [27], from who we in turn derive our 

mathematical model with some additional input from Bosch et al. [34].  

We apply a column generation approach to our problem and identify a primal- and a pricing 

model, that are respectively the main- and sub model described earlier. In the primal model, 

we select that combination of ORDs that minimize the required demand and assign these to 

specific dates and ORs in a SPTS. We follow van Oostrum et al. and define ORDs to be an OR-

day that is completely scheduled with surgical procedure types [3]. New ORDs are iteratively 
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generated in the pricing model and added to the implicit set of ORDs until newly generated 

ORDs offer no improvement anymore.  

 

Figure 4.7: Flowchart of column generation algorithm to construct a SPTS 

The choice as to which surgery types are scheduled in the pricing model is derived from their 

shadowprice of one of the primal model constraints. This constraint explained in detail when 

discussing the primal model. The pricing model selects those procedure types that maximize 

the sum of shadowprice and result in a feasible total schedule duration. A result of this 

sequence is that we require a feasible set of ORDs when running the primal model for the first 

time. We cannot obtain any ORDs via the pricing model since we have not yet generated 

shadow prices in the primal model. We solve this issue be initializing a feasible set of ORDs via 

a heuristic. In section 3.2.3, we determined that LPTF showed good performance and therefor 

apply this heuristic before we run the primal model. 

The total schedule duration in the pricing model is determined by the sum of procedure means 

and slack, which is dependent on pooled procedure type variance and a chosen probability 

factor of overtime. The use of slack allows the pricing model generate ORDs that have a limited 

probability of running into overtime. Schedule duration is constrained by the capacity of that 

particular ORDs. The new ORDs is then added to the implicit set of the ORDs selection model, 

which is then solved to obtain new shadow prices. Figure 4.7 depicts the entire process. We 

implement our model in commercial solver AIMMS. In the remainder of this section we will 

discuss: 

Primal model 

In the primal model we want to create a SPTS from generated ORDs. We first need to introduce 

some mathematical notations before we can effectively describe the model in technical terms. 

Table 4.3 summarizes these notations. 

Indices 
𝒓  Operating Room capacity type of set 𝑹 
𝒖  Operating Room Day types of set 𝑼 
𝒔  Sub-specialty of set 𝑺 
𝒊  Surgical procedure type of set 𝑰 
𝒘  Week 𝒘 of set W 
𝒕   Day 𝒕 of set 𝑻 
𝒋  Operating room 𝒋 of set 𝑱 

Variables 
𝑿𝒓𝒖  Number of selected ORDs 𝒖 of capacity type 𝒓 
𝒀𝒓𝒖𝒘𝒕𝒋   Assign ORDs 𝒖 of capacity type 𝒓 to operating room 𝒋 on day 𝒕 of week 𝒘 
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Parameters 
𝒅𝒓  Operating room capacity type 𝒓 duration in minutes 
𝒂𝒓𝒖𝒊   Number of surgical procedures type 𝒊 in ORD 𝒖 capacity type 𝒓 
𝒔𝒊    Minimum demand for surgical procedure type 𝒊 
𝒎𝒓   Number of available operating rooms of capacity type 𝒓 
𝑨𝒘𝒕𝒋  Availability of operating room 𝒋 on day 𝒕 of week 𝒘 

𝑩𝒓𝒖𝒔   Sub-specialty 𝒔 performs the surgical schedule of ORDs 𝒖 of capacity type 𝒓  
𝑫𝒘𝒕𝒔  Availability of sub-specialty 𝒔 on day 𝒕 of week 𝒘 

Table 4.3: Primal model identifiers 

Let set 𝑈 with ORDs 𝑢 (𝑢 = 1, … , 𝑈). Since not all ORDs have an equal size, we also introduce 

the set 𝑅 with capacity types 𝑟 (𝑟 = 1, … 𝑅), sorted in descending order of capacity size. To 

denote the selection of optimal ORDs we introduce variable 𝑋𝑟𝑢 that denotes the integer 

number of selected ORDs 𝑢 with capacity type 𝑟. Parameter 𝑑𝑟 denotes the capacity of type 𝑟 

in minutes, 𝑚𝑟 denotes the maximum number of ORDs 𝑢 that we allow to be scheduled in the 

SPTS. The value of 𝑚𝑟 is a management decision. The total number of capacity we use in our 

SPTS is determined by the sum of all ORDs of all capacity types: 

∑ ∑ 𝑋𝑟𝑢 ∗ 𝑑𝑟

𝑈

𝑢=1

𝑅

𝑟=1

 

We re-introduce 𝐼 as the set with surgical procedure types 𝑖 (𝑖 = 1, … , 𝐼) that should be 

scheduled in the SPTS. Each surgical procedure type 𝑖 has an expected duration 𝜇𝑖, variance 

𝜃𝑖  and minimal cyclic demand of 𝑠𝑖. For any ORD 𝑢 of capacity type 𝑟, we denote the number 

of surgical procedure types 𝑖 scheduled with the parameter 𝑎𝑟𝑢𝑖. Our goal is to select a set with 

ORDs that meets our demand requirement 𝑠𝑖 and semi-urgent access time target. Preferably, 

we would meet these requirements with as few ORDs as possible, so we could view this as a 

minimization problem. This objective function can be mathematically described as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑋𝑟𝑢 ∗ 𝑑𝑟

𝑈

𝑢=1

𝑅

𝑟=1

 

We add a constraint to ensure that enough ORDs are selected to cover demand of each 

surgical procedure type 𝑖: 

 
∑ ∑ 𝑋𝑟𝑢 ∗ 𝑎𝑟𝑢𝑖

𝑈

𝑢=1

𝑅

𝑟=1

≥  𝑠𝑖   ∀ 𝑖 

(4.17) 

We also constrain the maximum number of ORDs to be selected for each capacity type 𝑟: 

 

 
∑ ∑ 𝑋𝑟𝑢 ≤  𝑚𝑟    ∀ 𝑟

𝑈

𝑢=1

𝑅

𝑟=1

  

(4.18) 

So far, we have mainly introduced variables and parameters that refer to the selection of ORDs 

in the cycle. However, we also need to assign these ORDs to specific dates and ORs. Let 𝑊 be 

the set of weeks 𝑤 (𝑤 = 1, … , 𝑊) in the planning horizon and T the set with weekdays 
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𝑡 (𝑡 = 1, … , 𝑇) in each week. We also introduce set 𝐽 of actual ORs (𝑗 = 1, … , 𝐽). We now 

have everything available to define binary ORDs assignment variable 𝑌𝑟𝑢𝑤𝑡𝑗, that assigns ORDs 

𝑢 of capacity type 𝑟 to operating room 𝑗 on day 𝑡 of week 𝑤. We add a constraint to force the 

assignment of all selected ORDs: 

 ∑ ∑ ∑  𝑌𝑟𝑢𝑤𝑡𝑗 = 𝑋𝑟𝑢 ∀ 𝑟, 𝑢

𝐽𝑇𝑊

 

 

(4.19) 

Since the number of available ORs may vary per day, we introduce binary parameter 𝐴𝑤𝑡𝑗 that 

denotes the availability of operating room 𝑗 on day 𝑡 of week 𝑤. We add the constraint that 

ORDs may only be assigned to actual available ORs: 

 ∑ ∑ 𝑌𝑟𝑢𝑤𝑗𝑡

𝑈𝑅

 ≤  𝐴𝑗𝑡   ∀ 𝑤, 𝑡, 𝑗 

 

(4.20) 

Let 𝑆 be the set with sub-specialties (𝑠 = 1, … , 𝑆). We now define two binary parameters. Let 

𝐵𝑟𝑢𝑠 denote whether sub-specialty 𝑠 performs the surgeries in ORD 𝑢 of capacity type 𝑟 and 

𝐷𝑤𝑡𝑠 denote the availability of sub-specialty 𝑠 on day 𝑡 of week 𝑤. We may then add the 

constraint that sub-specialties may only be scheduled when they are available: 

 ∑ ∑ ∑ 𝐵𝑟𝑢𝑠 ∗  𝑌𝑟𝑢𝑤𝑡𝑗 ≤ 𝐷𝑤𝑡𝑠 ∀ 𝑤, 𝑡

𝐽𝑈𝑅

, 𝑠 

 

(4.21) 

For semi-urgent surgical procedure types, we need an extra constraint to ensure that each 

week we have at least as many patients planned as the weekly number of slots we determined 

in subsection 4.3.2. Therefore, we add constraint: 

 ∑ ∑ ∑ ∑ ∑ 𝑌𝑟𝑢𝑤𝑡𝑗 ∗  𝑎𝑖𝑟𝑢 ≥  ∑
𝑠𝑖

𝑊
𝐼𝑠𝑢

   ∀ 𝑤

𝐼𝑠𝑢𝐽𝑇𝑈𝑅

 
(4.22) 

Summarizing, we may describe the primal model as: 

Minimize:  

∑ ∑ 𝑋𝑟𝑢 ∗ 𝑑𝑟

𝑈

𝑢=1

𝑅

𝑟=1

 

Subject to: 

∑ ∑ 𝑋𝑟𝑢 ∗ 𝑎𝑟𝑢𝑖

𝑈

𝑢=1

𝑅

𝑟=1

≥  𝑠𝑖   ∀ 𝑖 

∑ ∑ 𝑋𝑟𝑢 ≤  𝑚𝑟    ∀ 𝑟

𝑈

𝑢=1

𝑅

𝑟=1

  

∑ ∑ ∑  𝑌𝑟𝑢𝑤𝑡𝑗 = 𝑋𝑟𝑢 ∀ 𝑟, 𝑢

𝐽𝑇𝑊
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∑ ∑ 𝑌𝑟𝑢𝑤𝑗𝑡

𝑈𝑅

 ≤  𝐴𝑟𝑗𝑡  ∀ 𝑟, 𝑤, 𝑡, 𝑗 

∑ ∑ ∑ 𝐵𝑟𝑢𝑠 ∗  𝑌𝑟𝑢𝑤𝑡𝑗 ≤ 𝐷𝑤𝑡𝑠 ∀ 𝑤, 𝑡

𝐽𝑈𝑅

, 𝑠 

∑ ∑ ∑ ∑ ∑ 𝑌𝑟𝑢𝑤𝑡𝑗 ∗  𝑎𝑖𝑟𝑢 ∗ 𝐵𝑟𝑢𝑠 ≥  ∑
𝑠𝑖

𝑊
𝐼𝑠𝑢

   ∀ 𝑤, 𝑠

𝐼𝑠𝑢𝐽𝑇𝑈𝑅

 

𝑋𝑢 = 𝑖𝑛𝑡, 𝑌𝑟𝑢𝑤𝑡𝑗 = {0,1} 

Pricing model 

The pricing model is solved subsequently for each capacity type and each sub-specialty. Any 

ORDs that offer an improvement to the primal set are added. The primal model is then solved 

with the updated ORDs set. This process is visualized in Figure 4.7. We introduce some 

additional identifiers in the pricing model, which are listed in Table 4.4. New ORDs are deemed 

an improvement to the set if they violate the reduced cost criterion: 

 
∑ 𝜆𝑖 ∗

𝐼

𝑖=1

𝑍𝑖
𝑟  >  𝑑𝑟 − �̅�𝑟 +  𝛿 

 

(4.23) 

In which 𝜆𝑖  denotes the shadow price of the primal surgery type 𝑖 demand and 𝜋𝑟 the shadow 

price of the maximum allowed ORDs of capacity type 𝑟 constraint. We define a small margin 

of error 𝛿 to allow for numerical inaccuracies in the shadow price. Variable 𝑍𝑖
𝑟 denotes the 

number of scheduled surgical procedure types 𝑖 in the new ORDs. It represents the parameter 

𝑎𝑟𝑢𝑖 from the primal model. The index 𝑟 may be dropped from this variable since the pricing 

model generates an ORD for each capacity type separately.  

Indices 
𝒏  Breakpoint n of set 𝑵 
Parameters 
𝒅𝒓  Operating room capacity type r usage  
𝝀𝒊   Shadow price of surgical demand 𝒔𝒊  of primal model 
𝝁𝒊  Expected duration of surgical procedure 𝒊 
𝝈𝒊  Square root of variance of surgical procedure type 𝒊 
𝜶   Risk of overtime 
Variables 
𝒁𝒊

𝒓  Number of surgical procedures of type 𝒊 planned in an ORDs with capacity 𝒓 
𝝆𝒏    

Table 4.4: Additional identifiers of the pricing model 

Our goal in the pricing model is to find a column of 𝑍𝑖
𝑟that violates the reduced cost criterion, 

preferably by as much as possible.  Let binary parameter 𝐶𝑠𝑖 denote the ability of sub-specialty 

𝑠 to perform surgical procedure type 𝑖. The pricing objective may then be mathematically 

denotes as: 
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𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝐶𝑠𝑖 ∗ 𝜆𝑖 ∗

𝐼

𝑖=1

𝑍𝑖
𝑟 

We require a constraint to ensure that the total schedule duration does not exceed the OR 

capacity. The total required duration is determined by the sum of individual expected 

durations and their slack. Slack is in turn determined by the safety factor α and surgical 

procedure type variance. To reduce the size of summated slack, we would like to implement 

the portfolio effect by pooling variance of multiple scheduled procedures. In section 4.3.1 we 

determined that surgical procedure type durations are described by both Gaussian and 3 

parametric log-normal distributions. These distributions require a different approach to 

incorporate the portfolio effect. Unfortunately, we cannot simply implement a non-linear 

probabilistic constraint (4.12) into our linear program. We therefore discretize the values for 

expected duration 𝜇𝑖 and variance 𝜎𝑖
2 of surgical procedure type 𝑖, and will discuss 

approximations of the portfolio effect for both distributions in our model.  

For Gaussian variables, we assume the sum of multiple Gaussian variables 𝑖  to be also 

Gaussian distributed with 𝜇𝑠𝑢𝑚 =  ∑ 𝜇𝑖
𝐼
𝑖=1  and variance 𝜎𝑆𝑢𝑚 =  ∑ 𝜎𝑖

2𝐼
𝑖=1 . It can then be 

shown that the total duration is then determined by the square root of the pooled variance, 

that is again non-linear. In Appendix B, we describe a linear piecewise approximation between 

intervals of the square root function in the ORDs capacity constraint as demonstrated by Bosch 

et al. [34]. We introduce a set 𝑁 of breakpoints (𝑛 = 0,1, … 𝑁) that separate each linear 

interval. We introduce the breakpoint value 𝑥𝑛 and breakpoint function value 𝑦𝑛. It can be 

shown that each interval can then be described as a weighted sum of the breakpoints, where 

the sum equals 1. Let parameter 𝜌𝑛  denote the weights for each breakpoint. We can then 

formulate the following constraints to incorporate the portfolio effect for Gaussian distributed 

duration in the ORDs capacity constraint as: 

 
∑(𝑍𝑖

𝐼

𝑖=1

∗ 𝜇𝑖) + (1 − 𝛼) ∗ ∑ 𝜌𝑛 ∗ 𝛾𝑛

𝑛∈𝑁

≤ 𝑑𝑟   

(4.24) 

 
∑ 𝜌𝑛𝜒𝑛 = ∑ 𝑌𝑖

𝑖∈𝐼

𝐼

𝑛∈𝑁

𝜎𝑖
2 

(4.25) 

 ∑ 𝜌𝑛 = 1

𝑛𝜖𝑁

 
(4.26) 

Due to their open form, we cannot (power) summate 3-parameter log-normal variables like 

we did with Gaussian variables, which makes pooling variance difficult. We therefore propose 

the approximation of the portfolio effect by van Oostrum et al. [3]. We describe this 

approximation in detail in Appendix B. This approximation first requires us to convert our 3-

parameter log-normal to 2-parameter log-normal distributed values. We achieve this by 

subtracting the third parameter that describes the shift of the log-normal function, from all 

the observations in the empirical dataset. We then refit a 2-parameter to the adjusted dataset. 

We introduce prediction bound 𝑛𝑖
𝑎 that denotes the upper bound value for which the duration 

of a single surgical procedure type 𝑖 is smaller than with probability 𝑎. This prediction bound 

is a shorthand notation and can again be decomposed into the expected duration and slack. 

To determine the total duration of multiple procedure types, we summate the prediction 
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bounds and subtract an approximated value of the portfolio effect. The size of the portfolio 

effect is determined by the difference between the summated prediction bounds and the 

prediction bound of a Schwartz-Yeh-Ho approximation of the power sum of all the scheduled 

procedures 𝑖 [46]. We can then model the portfolio effect as a function 𝑔 that only depends 

on the number of surgical procedures 𝑖: 

 
∑(𝑍𝑖

𝐼

𝑖=1

∗ 𝑛𝑖
𝑎) − 𝑔(∑ 𝑍𝑖

𝐼

𝑖=1

)  ≤ 𝑑𝑟   

 

(4.27) 

To implement this function in a commercial solver, we introduce set 𝐸 (𝑒 = 0,1 … , 𝐸) of 

power summated duration log-normal distributed surgical procedure types in an ORDs. We 

introduce the binary counter variable 𝐹𝑒𝑖 that denotes whether there is an 𝑒𝑡ℎ surgical 

procedure type 𝑖 scheduled. Let 𝑔𝑒𝑖 represent the portfolio effect when 𝑒 surgical procedures 

of type 𝑖 with log-normal distributed durations are scheduled. We can then formulate the 

following constraints to incorporate the portfolio effect for log-normal distributed duration in 

the ORDs capacity constraint as : 

 
∑(𝑍𝑖

𝐼

𝑖=1

∗ 𝑛𝑖
𝑎) − ∑(𝑔𝑒𝑖)

𝐼

𝑖=1

≤ 𝑑𝑟   

(4.28) 

 
𝑍𝑖 = ∑ 𝐹𝑒𝑖

𝐸

𝑒=0

 ∀ 𝑖 

(4.29) 

 𝐹𝑒𝑖 ≥ 𝐹𝑒+1,𝑖   ∀ 𝑒, 𝑖 (4.30) 

We can combine the Gaussian and log-normal constraints to a single constraint by adding 

parameter 𝑔𝑖 and 𝑙𝑖, that indicate the distribution of each surgical procedure type 𝑖. We 

formulate the set of constraints as: 

 

∑(𝑍𝑖

𝐼

𝑖=1

∗ 𝑙𝑖 ∗ 𝑛𝑖
𝑎) − ∑(𝑔𝑒𝑖 ∗ 𝑙𝑖)

𝐼

𝑖=1

+ ∑(𝑍𝑖

𝐼

𝑖=1

∗ 𝑔𝑖 ∗ 𝜇𝑖) + (1 − 𝛼) ∗ ∑ 𝜌𝑛 ∗ 𝛾𝑛

𝑛∈𝑁

≤ 𝑑𝑟   

(4.31) 

∑ 𝜌𝑛𝜒𝑛 = ∑ 𝑌𝑖

𝑖∈𝐼

𝐼

𝑛∈𝑁

∗ 𝑔𝑖 ∗ 𝜎𝑖
2 

∑ 𝜌𝑛 = 1

𝑛𝜖𝑁

 

𝑍𝑖 = ∑ 𝐹𝑒𝑖

𝐸

𝑒=0

 ∀ 𝑖 

𝐹𝑒𝑖 ≥ 𝐹𝑒+1,𝑖   ∀ 𝑒, 𝑖 

Recall that we consider change-overs to be a surgical procedure type. In the primal model, its 

periodic demand 𝑠𝑖 is zero and therefore its shadow price is also zero. To ensure that an 

appropriate amount of changeovers are scheduled we add another constraint: 
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𝑍𝑖 = ∑ (𝑍𝑖) − 1

𝐼𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒𝑠

𝑖=1

 ∀ 𝑖𝐶ℎ𝑎𝑛𝑔𝑒𝑜𝑣𝑒𝑟 

 

(4.32) 

Apart from the ORDs capacity constraints, we require a constraint to prevent overzealous 

pooling of semi-urgent procedure types. This might would result in infeasibility for constraint 

(4.22) in the primal model. We re-introduce 𝑀𝑖  as the maximal number of procedure types 𝑖 

in an ORDs, and set the value for semi-urgent procedures equal to the weekly demand. We 

can formulate this  constraint as: 

 ∑ 𝑍𝑖
𝑟

𝑖 ∈ 𝐼𝑆𝑈

≤ 𝑀𝑖  
(4.33) 

The pricing model can then be summarized as: 

Maximize: 

∑ 𝜆𝑖 ∗

𝑖 ∈ 𝐼𝑠

𝑍𝑖
𝑟  

Subject to: 

∑(𝑍𝑖

𝐼

𝑖=1

∗ 𝑙𝑖 ∗ 𝑛𝑖
𝑎) − ∑(𝑔𝑒𝑖 ∗ 𝑙𝑖)

𝐼

𝑖=1

+ ∑(𝑍𝑖

𝐼

𝑖=1

∗ 𝑔𝑖 ∗ 𝜇𝑖) + (1 − 𝛼) ∗ ∑ 𝜌𝑛 ∗ 𝛾𝑛

𝑛∈𝑁

≤ 𝑑𝑟   

∑ 𝜌𝑛𝜒𝑛 = ∑ 𝑌𝑖

𝑖∈𝐼

𝐼

𝑛∈𝑁

∗ 𝑔𝑖 ∗ 𝜎𝑖
2 

∑ 𝜌𝑛 = 1

𝑛𝜖𝑁

 

𝑍𝑖 = ∑ 𝐹𝑒𝑖

𝐸

𝑒=0

 ∀ 𝑖 

𝐹𝑒𝑖 ≥ 𝐹𝑒+1,𝑖   ∀ 𝑒, 𝑖 

∑ 𝑍𝑖
𝑟

𝑖 ∈ 𝐼𝑆𝑈

≤ 𝑀𝑖   

𝑍𝑖 ∈ ℕ, ∀𝑖 ∈  𝐼𝑠 

Technical implementation 

We use the commercial solver AIMMS 4.15 to model the mathematical programs. For end-

users like the planners at the admission office, a graphical user interface is added. It does not 

only show an overview of the SPTS, but also information about which surgical procedure types 

an ORDs contains and estimated procedure starting and duration times. A Gantt chart 

provides additional visual context.  
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Figure 4.8: Graphical user interface of SPTS mathematical programming model (Source: AIMMS). 

Input parameters such as surgical demand, duration, OR availability, probability of overtime 

and OR capacity can be adjusted and loaded through an user friendly excel file. Most of these 

parameters rarely need to be adjusted. We chose for an optimality tolerance of 1% for the 

primal model.  

Validation 

We will perform a simulation to determine the validity of our SPTS. Our main interests are 

whether our estimated utilization and overtime probability are valid 

We first introduce the default scenario. This scenario is determined to closely mimic the 

current situation at Haga in order to make a fair comparison in performance. The current 

planning horizon and opening hours of the OR department are chosen as input. We choose a 

30% probability of overtime and determine that 11 weekly semi-urgent slots are an 

appropriate choice, based on interviews with professionals. We choose the median, or third 

whisker, as demand input. The default scenario is: 

 Median monthly demand (third whisker) 

 Planning horizon of 4 weeks 

 11 semi-urgent slots per week/ 44 semi-urgent slots per cycle 

 ORDs capacity of 8 hours 

 Probability of overtime 𝛼 = 0.3 

 

Indicator Model Simulation 
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Estimate Confidence interval (95%) Average 

Utilization 79% [77.2%-78.5%] 77.9% 
Overtime 30% [19.9%-22.7%] 21.0% 

Table 4.5: Average monthly utilization and overtime frequency model estimates and simulation results (N = 30 runs) 

We performed a simulation to test whether our model estimates for utilization and overtime 

probability are valid. Our main interest is whether these performance estimates hold when 

we schedule surgical cases rather than the surgical procedure types planned used the SPTS. 

We therefore scheduled randomized surgical procedures, based on their relative demand 

within a surgical procedure type, into the default scenario SPTS. We performed thirty runs, 

equivalent to 30 months. We deem this number to be large enough to create a reliable 

confidence interval. Table 4.5 contains the confidence intervals and averages. Our model 

estimates utilization based on the ratio mean duration sum of scheduled procedure types and 

ORDs capacity. Changeovers are considered as idle time. In the simulation, we draw semi-

random surgical procedures, based on their relative number of historical observations, for 

each scheduled surgical procedure type. For surgical duration, we draw a random values from 

the surgical procedure distributions which we used as input in subsection 4.3.1. We consider 

overtime when the sum of surgical procedure durations exceeds 8 hours. We measured an 

21.0% overtime frequency and a 14.2% overtime frequency of overtimes that exceed half an 

hour. The average duration of overtime is 17.7 minutes. We see that for both performance 

indicators in Table 4.5: Average monthly utilization and overtime frequency model estimates 

and simulation results (N = 30 runs)Table 4.5, the model estimated values lie outside of the 

simulation confidence interval results. Despite this, the utilization simulation average is close 

to our model estimate, and can be seen as a rough approximation. Even though our model 

estimate of overtime frequency is off by some margin from the confidence interval, we can 

reason that a worst case scenario overtime frequency of up to 30% holds.  

We believe that discrepancies between model estimates and the simulation results are caused 

by inter-cluster duration variability within surgical procedure types, as also reported by  van 

Oostrum et al. [22]. We should take our model estimates with a grain of salt, with utilization 

being a “rough” estimate and overtime frequency a worst case scenario result. 

4.3.4 Flexible SPTS approach 

In this subsection, we discuss a flexible approach to applying our SPTS. This approach consist 

of a fixed component and a variable number of monthly add-on ORDs. This approach presents 

two advantages. The fixed component allows for easy scheduling for both surgeon planners, 

staff planners and admission office schedulers to cover the majority of monthly demand. The 

relative small variations in monthly demand are accounted for with the variable component, 

which ensures an overall close match of demand and capacity. We expect that this will prevent 

ORDs waste. 

Fixed SPTS component 

The fixed component of the SPTS model need only be updated once a year when a new case-

mix is determined. When the case-mix changes, new elective surgical procedure types should 

be clustered as presented in subsection 4.3.1, with according new demand functions. It is also 
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recommended to update the number of slots determined in subsection 4.3.2, based on a new 

Poisson distribution that describes semi-urgent arrivals. Haga should decide on a probability 

that they want to risk overtime, which is required as input for the SPTS model. Haga should 

also decide on a number of semi-urgent slots, based on their access time target. We assume 

semi-urgent demand to be adequately described by the same Poisson distribution throughout 

the year, which results in a fixed number of slots as input for the SPTS model.  

The seasonal variability of elective demand described in section 0 is also represented through 

the quartile distribution. For demand of the fixed component of the SPTS, we decide to take 

the second whisker of the quartile function. This accounts for the lowest 25% of observed 

elective monthly demand. Figure 4.9 depicts the position of the second whisker in a box-plot. 

With this relative low expected monthly demand, we can reasonably assume that little to no 

OR capacity is wasted if Haga keeps a sufficient waiting list buffer of one month. If Haga has 

decided on a probability of overtime, we can use the model presented in section 4.3.3 to 

construct the fixed component of the SPTS.  

The model consists of a set of ORDs assigned to specific dates, which contain surgical 

procedure types. Each surgical procedure type in turn consists of a set of surgical procedures. 

Staff- and surgeon planners can simply assign surgeons to the sub-specialty ORDs assigned in 

the SPTS. If a certain assignment turns out to be infeasible for the surgeon, the constraint 

input in the excel file for the SPTS model can be adjusted and the model re-solved. The surgical 

case schedulers at the admission office can use the graphical user interface to determine 

which surgical procedure types should be scheduled in which ORDs. Using an included excel 

tool, they can simply process the waiting list in FCFS order and assign each surgical case to the 

first available ORDs. Surgical duration estimates and slack are determined by the model, and 

estimations for surgical starting time can be read from the graphical user interface. We do 

recommend that patients arrive early by some margin to avoid OR idle time when a surgical 

schedule advances quicker than expected. 

  

Figure 4.9: Whisker numbers of a box-and whisker plot. The shape of the box is determined by the spread of observations. 

Variable SPTS component 

With the variable component, we likely require additional capacity to cover monthly demand. 

Since monthly demand will vary, we propose the add a flexible number of extra ORDs. The 

exact number of these ORDs should be determined monthly, based on the waiting list arrivals 

of the previous month. Our model includes an excel tool which can be used to convert waiting 

list demand into surgical procedure type demand. This demand can then be used as input for 

the SPTS model to create add-on ORDs. Since the differences in demand between the second, 
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third and fourth whiskers are generally small, we can expect a relatively low number of add-

on ORDs. These ORDs can then be added on top of the fixed component based on surgeon 

and OR availability. Patients can be scheduled into the SPTS in the same way as with the fixed 

component. Table 4.6 depicts how the demand input would be for the mathematical program 

for both components. 

Approach Component 
Demand input per whisker 

2 3 4 5 

Static Fixed 2 3 3 3 

Flexible 
Fixed 2 2 2 2 

Variable - (3-2) (4-2) (5-2) 
Table 4.6: Top four whiskers demand input for the SPTS components. 

4.4 Summary 
In this chapter, we presented a clustering method based on van Oostrum et al. [1] to form 

elective surgical procedure types within sub-specialty domains with reduce demand 

uncertainty and included variable levels demand in our models. We presented a queuing 

theory method based on Kortbeek et al. [2] to determine weekly capacity for semi-urgent 

patients with the underlying condition that arrival follows a Poisson process. We also 

presented a column generation approach based on van Oostrum et al. [3]to create a SPTS with 

inclusion of semi-urgent patients and changeovers. In this model, we fill ORDs with patients 

and assign these to specific dates and ORs. The result is a SPTS in which each ORDs can be 

filled with a specific number of surgical procedures from that sub-specialty and assigned to a 

surgeon. This model incorporates slack and the portfolio effect by Hans et al. [4] to manage 

overtime probability. Furthermore, we include both Gaussian and log-normal distributed 

durations in our model while most literature only incorporates one. An underlying condition 

is that each surgeon can perform all surgical procedures within his sub-specialty. However, 

the model can also be applied to instances without this condition by determining surgeon 

specific demand. The result would be a SPTS with ORDs assigned to surgeons instead of sub-

specialties. Lastly, we showed how this model can be implemented in a flexible way that deals 

with elective patient demand fluctuations.  
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5 Results 
In this chapter, we perform a quantitative analysis of the solution approach introduced in 

chapter 4. In section 5.1, we describe the performance indicators by which we measure 

outcome. In section 5.2, we introduce the factors which we use in our experimental approach. 

In section 5.3, we present and discuss the results of our experiments. We summarize this 

chapter in section 5.4. 

5.1 Performance indicators 
We first describe indicators that provide insight in the performance of our solution approach. 

We introduce the probability of access time within a week for semi-urgent patients as a 

performance indicator to quantify our robustness for arrival uncertainty. To quantify the 

economic performance of our solution, we introduce utilization estimates and monthly 

required capacity as performance indicators. We approximate utilization in our SPTS model by 

determining the ratio between total scheduled procedure duration and ORD capacity. The 

total required capacity in a planning horizon is the result of selected ORDs and their capacity. 

To gain some more insight in the computational performance of our mathematical 

programming model, we measure integrality gap and model runtime. Our SPTS calculates the 

required capacity in a planning horizon to cover demand. This capacity will likely not be 

optimal since the model is an integer programming model and our problem is non-polynomial 

hard, which results in an enormous computational burden. Such problems are circumvented 

by relaxing the model to a linear program, which is then solved in conjunction with a solution 

rounding strategy. The integrality gap can be seen as an approximation ratio for the 

approximation algorithm that attempts to find the best integer solution. It is determined by 

the ratio of the best found integer solution and the optimal (fractional) solution, which is at 

least 1. The runtime provides us with information about the size of the solution space and the 

efficiency of our model. To summarize, the solution related performance indicators are: 

 Semi-urgent access time 

 Utilization 

 Required monthly capacity 

And the model related performance indicators are: 

 Integrality Gap 

 SPTS model runtime 

5.2 Experiment approach 
We will introduce the default scenario and a number of internal- and external experimental 

factors. In each experiment in subsection 5.2.2, we adjust the value of a single factor and 

compare it against a default scenario.  
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5.2.1 Default scenario 

We first introduce the default scenario. This scenario is determined to closely mimic the 

current situation at Haga in order to make a fair comparison in performance. The current 

planning horizon and opening hours of the OR department are chosen as input. Based on 

interviews with, we choose a 30% probability of overtime and 11 weekly semi-urgent slots. 

For elective demand, we choose the most likely demand encountered at Haga during four 

weeks between 3-13 and 10-15, the median demand (or third whisker). The default scenario 

is: 

 Median monthly demand (third whisker) 

 Planning horizon of 4 weeks 

 11 semi-urgent slots per week/ 44 semi-urgent slots per cycle 

 ORDs capacity of 8 hours 

 Probability of overtime 𝛼 = 0.3 

 Third whisker demand input 

5.2.2 Experimental factors 

In this subsection, we introduce several internal experimental factors. To avoid 

misinterpretation of effects, we will only perform experiments adjusting one experimental 

factor at the time. This means that if one factor is adjusted for testing, all other factors will be 

fixed at the default scenario setting described in subsection 5.2.1. 

Number of semi-urgent slots 

The number of weekly reserved semi-urgent slots influences the probability of a one week 

access time, but also utilization and the required number of ORDs. We conduct experiments 

to with a range of slots quantify this influence. Table 5.1 provides an overview of the input 

values. 

OR opening hours 

Currently, the ORs are opened for 8 hours per day. Management is considering to increase 

opening hours by an extra hour. We conduct experiments with a range of daily opening hours 

to determine the effects on utilization and the number of required ORDs. Table 5.1 provides 

an overview of the input values. For ORDs combinations with five and three or eight and four 

hours, we need to elaborate. We assume that physical ORs are  opened eight hours per day. 

Therefore, we can assign two four hour ORDs, ore one five hour and one three hour ORDs, to 

the same OR on the same day. The exception is the combination with 4.5 and nine hour ORDs. 

In this option, we assume that physical ORs are opened nine hours a day. That would mean 

that two 4.5 hour ORDs can be assigned to the same OR at the same day. In all scenario’s, we 

still only allow one surgical sub-specialty per ORD. In reality, it could mean that in the morning, 

one sub-specialty is scheduled in a four hour ORDs, and in the afternoon another specialty in 

another ORDs.  
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Overtime probability 

We adjust the safety factor 𝑎 for the probability of overtime. We perform various experiments 

with adjustments of 𝑎 to gain more insight in this trade-off. Table 5.1 provides an overview of 

the input values. 

Planning horizon 

The current MSS planning horizon for all specialties at Haga is four weeks. We conduct an 

experiment to determine how performance compares against a cycle of two weeks. Other 

cycle lengths would be ungainly to implement since it would not match properly with other 

specialty planning cycles.  

Relaxation of constraints 

Currently, only surgical procedure types of one sub-specialty are allowed in an ORDs to 

simplify the planning of surgeons and staff. This assumption is enforced by constraint  (4.20) 

in the primal model. We perform two experiments with semi-urgent and all procedure types 

in which we relax to constraint to allowing multiple sub-specialties, to examine the potential 

benefits of such a challenging scheduling approach.  

SPTS schedule approach & variable demand 

We test how both the flexible and static SPTS approaches described in subsection Flexible 

SPTS approach 4.3.4 perform with variable amounts of demand to determine the best 

approach. For each whisker, we will compare the average utilization of both components of 

the flexible approach against utilization of the static approach. We will test this for only eight 

hour ORDs, and for a combination of eight and four hour ORDs. Table 4.6 provides the whisker 

input demand for the static approach and two components of the flexible approach. 

Expected Surgical duration  increase 

We test how utilization and the number of required ORDs in the default scenario are 

influenced by an increase of 20% in the expected duration of surgical procedures. Such a 

scenario may occur because of new clinical techniques or due to an increase in unexperienced 

residents or surgeons.  

Factor Values 
Number of slots 43-50 
OR hours 4, 7, 8, 8.5, 9, 10, 8+4, 5+3, 9+4.5 
Probability of overtime 20%, 30%, 40% 
Planning horizon 2 weeks, 4 weeks 
Surgical duration increase 20% 
Allow semi-urgent procedures in any specialty ORDs Relaxation 

Primal model constraint (4.20) Relaxation 
Elective demand variability 8 hour ORDs 2-4 whisker demand 
Elective demand variability 8+4 hour ORDs 2-4 whisker demand 

Table 5.1: Values of experimental factors 
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5.3 Results 
In this section, we present the performance results of our experiments. We first discuss the 

performance results of the default scenario, then the results of the internal- and external 

factor experiments.   

5.3.1 Default scenario 

In this subsection, we describe the results of our default scenario described in subsection 

5.2.1. Table 5.3 contains the results for the default scenario. We can observe a utilization of 

79% with a 30% probability of overtime and with a 85% probability of access within a week for 

semi-urgent patients. With eight hour surgical time, we monthly require 60 ORDs. This is a 

slight increase compared to the current number of 55 ORDs. However, in the current situation 

we also observe an increase of the waiting list, hence the current capacity is not a fair 

comparison. Figure 5.1 provides a graphical example of how surgical procedure types are 

scheduled in an OR in the default scenario. 

 



0 
 

 

 

Figure 5.1: Gantt chart of a part of the default SPTS. Visible are the scheduled surgical procedure types and changeovers per each week, day and OR. Each bar consists of an ORDs of the specified 
sub-specialty on the right side of the bar. The x-axis depicts the duration in minutes. The y-axis depicts the week-number, day-number and OR-number (AIMMS).
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5.3.2 Experimental results 

In this section, we describe the performance results of the experiments described in 

subsection 0. For each performance indicator, we will discuss the influence of the 

experiments. Table 5.3 provides an overview of the results. 

Number of semi-urgent slots 

We ran the queuing model described in subsection 4.3.2 in Matlab to determine the 

performance influence of the number of semi-urgent slots. Weekly semi-urgent can be 

described by a Poisson distribution with rate 𝜆𝑤 = 10.5. To ensure a stable model, we require 

a capacity that at least equals demand. This means that in a 4 week cycle, we require at least 

43 slots. We determine  the influence of the amount of slots on access time. Table 5.2 depicts 

the results. 

Number of slots 1 week access 2 week access 3 week access 
43 82% 99% 100% 
44 85% 99% 100% 
45 87% 100% 100% 
46 89% 100% 100% 
47 91% 100% 100% 
48 92% 100% 100% 
49 93% 100% 100% 
50 94% 100% 100% 

Table 5.2: Access time probability per monthly number of semi-urgent slots, in which probabilities are rounded up to the 
nearest integer. 

We can obtain several insights when we inspect the results. First, we can observe that the 

probability of access within 2 weeks is already nearly 100% with the minimum required 

number of slots for a stable queuing system. Second, we can notice the decrease in marginal 

benefit when adding extra slots. This can be explained by the nature of the Poisson distributed 

arrival process in which the duration between two consecutive arrivals is exponentially 

distributed. If we are persistent in guaranteeing a 90% probability of access within a week, it 

will be relatively more costly than if we settle for a 82% or 85% access time. Management 

should therefore decide how much OR time they want to invest for a particular access time.  

Utilization 

We determine the effects of internal experimental factors on utilization, which are visualized 

in Table 5.3. The effects of OR opening hours on utilization are interesting to note. A half hour 

increase in opening hours actually results in an equal utilization, but seven, nine or ten hour 

days result in A 1% increase compared to the default eight hours. Four hour ORDs lower the 

estimated utilization to 77%. We might argue that the ratio of surgical procedure type duration 

to ORDs capacity influences the number of scheduling options for our model. 
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Table 5.3: Performance results of default scenario and experiments. 
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Default scenario 105 32 60 0 0 0 32400 27035 20% 48.1 79%

Opening hours: 4 156 9 139 0 0 0 33360 30320 10% 20.6 77%

Opening hours: 7 123 29 70 0 0 0 29400 26670 10% 33.5 80%

Opening hours: 8.5 107 31 62 0 0 0 31620 27160 16% 41.6 79%

Opening hours: 9 137 43 75 0 0 0 32400 27035 20% 47.2 80%

Opening hours: 10 129 41 69 0 0 0 32400 26607 22% 94.4 80%

Opening hours: 8 and 4 hours 101 15 42 144 7 32 28800 25957 11% 46.6 82%

Opening hours: 5 and 3 hours 166 8 67 247 1 44 28020 25640 9% 47.7 85%

Opening hours: 9 and 4.5 hours 207 13 31 206 7 48 29700 26294 13% 93.8 81%

Overtime probability: 20% 79 25 72 0 0 0 34560 29239 18% 41.8 72%

Overtime Probability: 40% 74 40 60 0 0 0 28800 24182 19% 60.6 89%

Relaxation SU-ORDs constraint 67 30 58 0 0 0 29580 27168 9% 42.4 80%

Relaxation ORDs constraint 319 282 54 0 0 0 27540 26358 4% 381.2 82%

Semi-urgent slots: 43 107 53 59 0 0 0 31860 26728 19% 76.2 79%

Semi-urgent slots: 45 108 35 60 0 0 0 32400 26968 20% 69.9 79%

Planning horizon: 2 weeks 81 44 34 0 0 0 36720 30762 19% 35.5 76%

Whisker 2, 8 hours 50 20 51 0 0 0 24480 20157 21% 17.5 78%

Static SPTS whisker 3, 8 hours 63 22 65 0 0 0 31200 27113 15% 24.2 79%

Static SPTS whisker 4, 8 hours 86 24 85 0 0 0 40800 36614 11% 28.7 80%

Flexible SPTS whisker 3, 8 hours 89 56 70 0 0 0 33600 27536 - - 80%

Flexible SPTS whisker 4, 8 hours 97 59 90 0 0 0 43200 36984 - - 80%

Whisker 2, 8+4 hours 48 18 29 82 4 35 22320 19510 4% 28.2 78%

Static SPTS whisker 3, 8+4 hours 57 16 37 115 7 46 28800 25957 11% 43.1 82%

Static SPTS whisker 4, 8+4 hours 78 16 47 160 6 64 37920 35422 7% 57.9 83%

Flexible SPTS whisker 3, 8+4 hours 74 41 36 108 13 54 30240 26270 - - 81%

Flexible SPTS whisker 4, 8+4 hours 84 37 56 144 7 54 39840 35738 - - 81%

Procedure duration increase: 20% 93 37 72 0 0 0 34560 29565 17% 35.3 72%
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As the ratio becomes smaller, our model has less maneuverability to schedule procedure 

types. For openings hours larger than four, we might argue that after some threshold the 

number of hours is no bottleneck in terms of utilization performance. We do see that shorter 

ORDs can contribute to efficient allocation when combined with longer ORDs. The opening 

hour combinations show an increased estimated utilization, with the combination of three and 

five hours resulting in 85%. It seems that this combination caters very well to efficient 

scheduling options. Other options with multiple capacity types also show an increase in 

utilization. 

When we review the influence of the probability of overtime on utilization, we may notice a 

classic trade-off. Decreasing the probability of overtime also decreases utilization, and vice 

versa. A larger probability of overtime decreases the duration of procedure types, which 

makes them easier to schedule. While the resulting utilization of 89% is very high, we then 

also have to contend with a 40% probability of overtime. Similar, reducing the risk of overtime 

to 20% also reduces our utilization to 72%. 

A utilization increase is gained by dropping the constraint that prevents that semi-urgent 

schedules are scheduled in ORDs of other sub-specializations. This results in a utilization of 

80%, a minor increase.  It can be argued that an increased set of options gives our model more 

maneuverability to schedule procedure types economically. This effect is increased when 

relaxing the entire constraint, which allows multiple sub-specialties in the same ORD. This 

results in a utilization of 82%. The setback is a higher challenge in scheduling surgeons and 

staff to accommodate this maneuverability. We observe that a planning horizon of two weeks 

performs 3% worse in terms of utilization to a four week horizon. We can attribute that to the 

reduced number of planning options reduces when scheduling in only two weeks, and that the 

portfolio benefits are therefore less. 

When we compare our approaches in constructing the SPTS against demand variability, we 

may observe small variations in utilization performance. For only eight hour ORDs, we can 

observe that the static SPTS is slightly outperformed by the flexible  SPTS at the third whisker., 

and that utilization is equal or the fourth whisker. This is contrary to what one could expect, 

since the static approach should have larger demand for a single SPTS, and thus more 

scheduling options. It seems that the higher utilization is caused by the variable component of 

the flexible approach, that has a 81% utilization. We cannot provide a solid explanation for 

this behavior. For the combination of eight and four hour ORDs, we do see the effects that we 

would expect. The largest difference between the static and flexible approach is 2% at the 

fourth whisker. 

The surgical procedure type duration increase has a negative effect on utilization in that it 

decreases to 72%. It is reasonable to assume that there is less room to maneuver surgical 

procedures as their durations increase, similar to the effect when decreasing the number of 

opening hours. 
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Monthly required OR capacity 

Interesting are the effects of opening hours on total required capacity. Shortening the opening 

hours to seven decreases the required capacity, while increasing it to eight and a half hours 

increases the required capacity. When only operating with one number of opening hours, a 

seven hour ORDs shows the best results with 29400 minutes of required OR capacity per 

month.  If Haga is committed to only performing surgery within office hours, this may actually 

increase the burden on  OR capacity. Nine and ten hour ORDs have no impact on the required 

capacity, and a four hour ORD increases the required capacity. Shorter ORDs can probably not 

be filled economically, which leads to an increase in ORDs and hence an increase in capacity. 

When looking at the combinations of OR opening hours, we see the same performance 

increase as with utilization. The five and three hour combination again performs best, with 

only 28020 minutes of required capacity per month, followed by the eight and four  hour 

combination with 28800 minutes per month.  

We can spot a sizeable decrease to 27540 minutes per month when we relax the sub-specialty 

constraint, but this again costs us in terms of staff planning challenges, and a similar but 

smaller effect when we relax the constraint only for semi-urgent procedures. A reduction in 

required capacity to 28800 minutes per month can be observed when we increase the allowed 

probability of overtime. However, this improvement is deceiving since the number of 

overtimes will likely increase. Capacity will probably still be required, but more frequent after 

office hours. While a two week and four week horizon perform equally in terms of utilization, 

we may now notice that a two week horizon underperforms in terms of capacity requirement. 

We may attribute this to some extent to rounding errors in demand. Demand for a two week 

horizon was derived from the monthly demand, and fractional demand was rounded upwards.  

We can spot something similar with how the fixed and variable SPTS approaches perform with 

demand fluctuations, where the fixed SPTSs outperforms our variable SPTS approaches for 

both opening hour options. For the combination of eight and four hour ORDs, we see that the 

flexible approach leads to a 5% increase in required capacity. For the option with only eight 

hour ORDs, the increase is 7.7% for the third whisker and 5.9% for the fourth whisker. It is 

reasonable to assume that with dividing demand up amongst two SPTSs, scheduling surgical 

procedure types will be less economic. This effect is reduced when adding four hour ORDs, 

which increases the number of planning options.  

Integrality gap 

For most experiments, the integrality gap lies in the range of 10% and 20%, with an average 

gap of 15%. While this is not negligible, it is still in the acceptable domain. It serves that our 

model is relatively complex, which is caused by the combination of selecting ORDs and 

assigning them in a single model. This is emphasized by the fact that the integrality gap is 

smaller when the sub-specialty constraint is dropped, and the solution space reduced. This 

feat of combining the selection and assignment of ORDs is only since recently possible due to 

the advance in computational strength in computer hardware.  



89 
 

Model runtime 

A general trend which we may notice is that the runtime increases along with the solution 

space. When we increase the number of opening hours, procedure demand or overtime 

probability, the solution space increases too. This is reflected in longer running times. A similar 

thing can be observed when relaxing the sub-specialty constraint. While one could expect that 

runtime should decrease when dropping constraints, we also see that the number of 

scheduling options increases. We might therefore also argue that the particular constraint was 

not a bottleneck with regards to procedure runtime.  

5.4 Summary 
In this chapter, we performed experiments and measure model and solution performance. 

We performed various experiments with a range of opening hours to determine which options 

perform best. The highest utilization of 85% is achieved by implementing both five and three 

hour ORDs, followed by the combination 8 and 4 hour ORDs with 82% utilization. These 

combinations also require the lowest amount of capacity, with respectively 28020 and 28800 

minutes per month. A decent increase of 1% utilization is also shown by only using eight, nine 

or ten hour ORDs, but with no capacity requirement reduction. Figure 5.2 visualizes the 

utilization of the five and three hour ORDs against the current results. 

 

Figure 5.2: Comparison of current and best solution approach utilization (Source current utilization: SAP, data between 06-15 
and 11-15). 

A minimum of 43 slots is required to stabilize access time for semi-urgent patients, which 

results in an access time probability of 82%. Access time can be improved by reserving more 

slots, but the marginal benefit of each slot decreases. Adjusting the number of slots has no 

influence on utilization, but increase the required amount of capacity. Relaxing the constraint 

that only one sub-specialty may perform semi-urgent surgery in an ORDs increases utilization 

but also likely staff planning challenges. These effects are further increased when relaxing the 

constraint for all surgical procedure types. These effects however small compared the benefits 

of using multiple ORDs capacity types. There exists a clear trade-off between the willingness 
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to risk overtime and utilization. Utilization is influenced by the amount of slack that is chosen 

by management to limit the probability of overtime.  

We tested a flexible SPTS approach with a fixed and variable component in response to 

variable demand. The best results for both methods are shown when using eight and four hour 

ORDs. Then, the flexible approach results in 81% utilization for both whiskers, while the static 

approach scores 82% for the third, and 83% for the fourth whisker. At both whiskers, the static 

approach will require 5% less capacity per month than the flexible approach. However, the 

flexible approach offers some other advantages. For the flexible approach, staff and surgeons 

for the fixed component will mostly not have to be altered in advance. A relatively low number 

of additional ORDs is scheduled. A variable set of ORDs can then be added to the existing 

schedule when required. Compared to the “static” approach, the flexible approach also 

prevents the risk of idle time when demand is low. Finally, we determined the runtime and 

integrality gap of our SPTS model to be still in an acceptable range. 
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6 Conclusion 
In this chapter, we present conclusions and recommendations based on our research and 

results. Section 6.1 discusses the conclusions while section 6.3 provides some discussion about 

our solution approach. Section 6.3 proposes some recommendations for Haga and future 

research.  

6.1 Conclusions  
We conclude that Haga will benefit from using a SPTS. The size of this benefit vary depending 

on which management choices are made with relation to overtime probability, semi-urgent 

slots, opening hours and whether a flexible or static SPTS approach is chosen.  

The default scenario results in a utilization of 79%, one week access time probability of 85% 

and overtime probability of 30%. When we add the possibility of multiple OR capacity types, 

utilization may increase up to 85% and less capacity is required for the same throughput. The 

best results with a 30% probability of overtime can be achieved when implementing five and 

three hour ORDs, with a utilization of 85% and capacity requirement of 28020 minutes per 

month, followed by eight and four hour ORDs with a utilization of 82% and 28800 minutes per 

month.  

Reserving capacity for semi-urgent patients will result in a reduction of last minute changes, 

elective patient cancellations and improvement of semi-urgent access time. Reserving 43 slots 

per month results a 82% probability of access within a week. Reserving extra slots results in a 

higher probability of one week access, but at a marginal higher cost.  

We argue that Haga will also benefit from using the flexible approach towards using a SPTS. 

On paper, this approach is slightly outperformed by the static approach in terms of utilization 

and capacity requirement. However, we anticipate that the flexible approach offers practical 

benefits in dealing with elective demand fluctuations.  

6.2 Discussion 
We recall that the objective of our research is “To develop an OR scheduling approach which 

manages surgical demand and duration uncertainty for elective and semi-urgent patients”. 

Based on our performance analysis in chapter 2, we identified twenty core causes of poor 

performance and demarcated our research to nine: 

 Inaccurate estimates for surgical procedures due to biased estimates 

 Inaccurate estimates for surgical procedures due to lack of consideration of 

variability  

 Inaccurate estimates for surgical procedures due to conflicting definitions of what 

the estimate entails 

 Inaccurate estimates for changeover times 

 Lack of clear standards for “buffer” time 

 Lack of consideration of un-arrived “semi-urgent” patients when scheduling 

 Lack of a clear planning method for scheduling patients 
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 Poor OR admission control due to capacity allocation based on the preferences of 

surgeons instead of demand 

 Lack of capacity balancing through periodical capacity allocation variation 

Our solution approach incorporates techniques that overcome problems, which is reflected in 

our model performance. Results show that our model performs well compared to the current 

situation in terms of utilization, access time- and overtime probability. We anticipate that 

reserving capacity for semi-urgent patients does not only result in a performance increase in 

access time, but also a reduction of elective patient cancellations and last-minute changes.  

However, we do note that our model performance is a theoretical approximation and 

susceptible to stronger performance than reality. Whether or not our model is really valid 

depends on the accuracy of our distribution fits for surgical procedures. In reality, online 

operational events such as no-show and late starts influence performance even further. Such 

events are occluded in our models.  

We note that it is difficult to determine the optimal distribution fit for surgical procedure. We 

have the option of 2 parameter, 3 parameter and the method proposed by Stepaniak et al. 

[36] to describe surgical procedure duration. Often, we have to make due with a relative small 

number of observations. While 3-parameters may describe the procedure best, the log-

normal power-sum approximation method requires us to use a 2-parameter distribution. 

Without, we cannot implement the portfolio effect. Furthermore, we cannot be 100% certain 

as to the accuracy of the approximation. 

Our model selects the minimal amount of ORDs to balance a chosen whisker of demand. It will 

be interesting to see how demand will be influenced by the new SPTS. If surgeons are allocated 

more ORDs, their availability for clinical consults will lower. As a result, it is likely that the 

demand input will be affected by a decrease in clinical consults. This might result in over-

allocation of surgical procedure types in the SPTS. While there are currently enough patients 

on the waiting list, we expect that it is necessary to closely monitor the waiting lists in the 

initial period to find a proper balance between demand and production.  

6.3 Recommendations and future research 
In this section, we propose recommendations and suggestions for future research. In 

subsection 6.3.1, we discuss recommendations based on our research. In subsection 6.3.3, we 

present some recommendations related to the implementation of our solution approach. In 

subsection 6.3.3, we propose some future research avenues.  

6.3.1 General recommendations 

In this subsection, we propose some general recommendations related to core problems we 

discussed in subsection 2.5.4 . 

Performance measurement & data registration 

Currently, there is a lack of OR performance measurement. Indicators such as utilization, 

starting time, overtime and surgical duration estimation accuracy are insufficiently defined 
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and measured. We recommend for management to decide on a set of performance indicators 

to implement in a dashboard in the new hospital system which Haga recently acquired.  

Additionally, poor data registration makes it difficult to accurately measure these indicators. 

A range of timestamps is described subsection 2.1.3 is to measure these performance 

indicators, but most of these timestamps are rarely used. Is seems that registration of these 

timestamps is currently too optional of a choice for OR personnel. We recommend that these 

timestamps are incorporated in a more mandatory way in the OR process. 

Strategic capacity dimensioning 

At strategic level, the case-mix and production goals are determined in order to estimate the 

yearly required capacity during weekdays for specialties. Currently, the required utilized 

capacity is determined by the sum of the surgical procedure products of production and 

average surgical duration. This capacity is then increased by 15% to compensate for idle time. 

This increase of 15% accounts for an expected utilization of 87%, which for most specialties is 

optimistic at best. We recommend to set different and realistic utilization targets for each 

specialty, rather than one fixed utilization. Utilization targets should be determined based on 

the case-mix for each specialty and the willingness to risk overtime. Apart from utilization 

targets, an estimation should also be made for the proportion of surgical procedures that is 

performed during weekends. These should not be included in the general capacity estimates 

for weekdays. 

Capacity re-allocation 

Whenever specialties are not able to perform surgery at a specific date, they are required to 

timely contact the OR project manager to “return” that ORDs to prevent an idle OR or staff. 

Reasons to return an ORD could be an event which surgeons want to attend (such as a medical 

congress). Another reason to return an ORD could be a lack of demand, which means that an 

OR cannot be fully scheduled with patients. In the current organizational structure, the 

responsibility for timely returning ORDs lies fully with the specialties. Unfortunately, there 

seem to be frequent occurrences where ORDs are not timely returned which resulted in a 

waste of OR resources. We recommend an organizational intervention that puts ORDs 

utilization more exposed on the agenda at both specialties and the OR project manager. An 

example of such an intervention could be a monthly meeting between the OR project manager 

and specialty chiefs of surgery, aimed specifically at production forecasts for the next month, 

in which specialties can either return or request ORDs accordingly. 

OR starting times 

We recorded a number of late starts of the OR department in subsection 2.4.2. These are 

caused by a variety of reasons, of which we will discuss two.  

The first reason is that both OR personnel and surgeons are accustomed to waiting for each 

other. Surgeons may purposefully arrive if they do not expect the OR room to be ready. In 

turn, this reduces the need for OR personnel to prepare the OR early, since they are 

accustomed to waiting on surgeons. A clear structure of responsibilities seems to be lacking 

at OR personnel, which also simulates late preparation of ORs. We propose the appoint team 
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leaders for each OR room, who should ensure timely preparations and increase accountability 

for both OR personnel and surgeons. 

The second reason for late starts is caused by the fact that all ORs start at the same time in 

the morning. This results in large peak burdens on both the holding and anesthesiologists. 

With one anesthesiologist per two ORs, the odds are likely that ORs will be waiting on an 

anesthesiologist in the morning periods. We therefore propose to divide the starting period 

for ORs over two specific times with at least 15 minutes difference.  

6.3.2 Implementation recommendation 

As mentioned in section 6.2, we expect that the initial period requires close monitoring to 

determine a proper balance between production and elective demand. To reduce the current 

waiting list, we advise to run the initial two months with an SPTS based on the fourth whisker 

and evaluate after that. After the two initial months, we advise to use the capacity re-

allocation meeting recommended in subsection 6.3.1 to estimate the number of variable add-

on ORDs required for the next month. The model comes with an excel tool that determines 

the number of add-on ORDs based the size of the waiting list.  

The SPTS comes with a list of procedures that might be assigned at each specific date and OR. 

Available elective procedures may be scheduled on a first come, first served base. Semi-urgent 

shots should be kept open for semi-urgent patients. If semi-urgent slots are not filled two days 

in advance, we advise to schedule an elective patient in the available slot. For each sub-

specialty, the added excel tool comes with a list of potential elective procedures that fit in the 

duration in a semi-urgent slot. The model can be scheduled with available surgical procedures 

for an entire month such that patients can be notified of their procedure date well in advance. 

The schedule can be sent to the OR department weekly, after which semi-urgent patients can 

be scheduled online.   

6.3.3 Future research 

In this subsection, we present suggestions for future research into extensions of our solution 

approach.  

Extension to other specialties 

We have presented an approach to manage demand and duration uncertainty for elective and 

semi-urgent patients at general surgery. It would be interesting to see if the model can be 

extended to incorporate multiple specialties. Other specialties might even have a more 

suitable case-mix for clustering surgical procedures than general surgery has. Additionally, we 

would then schedule in a larger number of daily ORs. This increase would make it interesting 

to see if we could then research if emergency patients could be incorporated inside the SPTS 

without the need of dedicated flex rooms, and whether this offers benefits in performance. 

Outpatients and clinical consults 

In our solution approach, we focused only on inpatient surgical procedures. It would also be 

interesting if this model could offer performance benefits if applied to outpatient procedures. 

similarly, it would be interesting to see if the model could be applied to clinical consults 
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between patients and consults. Clinical consults can have similar challenges in terms of 

demand and duration uncertainty, and it would be interesting to see if our model would result 

in performance improvements. 

Bed occupation 

In our model, pooling of surgical procedures is rewarded with reductions in the total required 

amount of slack. It is unknown how this pooling might affect bed occupation at the recovery, 

PACU and general wards. It would be interesting to measure the effects of our model on these 

wards. Even more interesting would be to incorporate bed leveling in our model. This would 

have to be closely incorporated with guaranteeing access times for semi-urgent patients.  

Accurate estimation of surgical procedure duration 

It would be interesting to see if we could combine our historical observed duration with the 

current practice of surgeons estimating surgical duration. Rather than having a single 

distribution for surgical procedures, we could determine whether it is feasible to develop 

multiple categories of duration per procedure.  A surgeon could estimate a category for each 

patient when requesting a surgical procedure. It would be interesting to see if the resulting 

procedure types are more accurate and economically efficient than the current set.  
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Appendix C - Clustering 
In this section, we discuss clustering as an identification method for elective patient groups 

and we will argument our selection of choices. Literature about clustering is very extensive, 

but we recommend Dilts et al. for a comprehensive review on  available options on application 

of clustering in a medical oriented environment [47].   

What to cluster? 

We want to cluster similar surgical procedures in terms of some variable together as surgical 

procedure types. If surgical procedure A and B are similar, we cluster them together and pool 

their demand. This way, we pool the demand uncertainty of both procedures. We create 

clusters for each sub-specialty. 

Variables 

One of the key factors in clustering performance is the choice of variables. We would like to 

restrict our variables to those that measure our domains of interest. Variables could be 

urgency, average demand, surgeon and expected duration. Variables are all standardized to 

ensure that some variables will not dominate the clustering decision. We decided to cluster 

on expected duration and standard deviation to create homogenous aggregated groups which 

can be scheduled as a dummy surgery instead of individual surgical procedures. Expected 

duration is a suitable variable for obvious reasons, and using standard deviation will improve 

benefits from the portfolio effect.  

Data preparation 

We assume all surgical procedure duration to be 3 parameter log-normal distributed [35,13]. 

However, as also explained in Appendix B, we will approximate the power sum of 2-parameter 

log-normal distributed variables in a later stage of the solution approach. We therefore 

“transform” our 3-parameter distribution into a 3-parameter distribution. For a normal 2 

parameter log-normal distribution, the lower bound of the distribution function nears zero 

and the x-axis. The third parameter in a 3 parameter distribution, or threshold, determines 

the shift from zero compared with a 2-parameter log-normal distribution. A 3-parameter log-

normal distribution with the third parameter equaling zero is essentially a 2-parameter 

distribution. We therefore can remove the third parameter by finding the smallest observed 

duration in the underlying dataset of our distribution, and by subtracting that from each 

observation.  

Clustering algorithm 

Clustering algorithms can be categorized in either Hierarchical or Partitioning algorithms. 

Partitioning algorithms iteratively attempt to form a fixed amount of K clusters from K chosen 

starting points. K-mean clustering is the most common partitioning algorithm. It starts with K- 

chosen centroids and iteratively adds or switches data points to clusters to minimize the sum 

of squared distances from data point to cluster centroid. Hierarchical algorithms may work 

either agglomerative or divisive. Agglomerative is a bottom-up approach where each 

observation starts as an individual clusters, which iteratively merges into new clusters until 1 

large cluster is left. Divisive is a top-down approach that starts with 1 large cluster, which 
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iteratively partitions until resulting clusters cannot be further partitioned. An advantage of 

hierarchical algorithms is that a suitable number of clusters does not has to be determined 

prior to clustering, and can be determined through a dendogram. A disadvantage is the lack 

of continuous cluster optimization since each observation can only be partitioned from, or 

merged with a cluster once, whereas partitioning algorithms continuously try to improve their 

clusters. Partitioning algorithms tend to perform poorly with non-convex data distributions. 

We will use both agglomerative and k-means algorithms, the reasoning behind this decision 

will be explained later when discussing the number of clusters.  

Measure of distance  

An important factor for clustering performance is how to “determine” distances between 

observations. Euclidian distance is commonly used when using multiple variables and is our 

preferred method. Other methods such as Manhattan distance are mostly suitable for very 

specific situations which do not apply for our data-set. 

Method of linkage 

Another important factor for clustering performance is how to quantify dissimilarities 

between clusters, the so-method of linkage. We will shortly describe 5 methods of dissimilarity 

quantification, namely single-, complete-, average-, centroid- and Ward’s linkage. In single 

linkage, the minimum of all the possible differences between two clusters is determined and 

used when updating the matrix of dissimilarities. In complete linkage, the maximum 

dissimilarity is used in the matrix. Since the remaining dissimilarities within the cluster are less 

than the level which is used to update the dissimilarity matrix, complete linkage usually leads 

to more homogenous clusters compared single linkage. Average linkage is a compromise 

between these 2 quantification methods where for each observation in the first cluster, the 

average dissimilarity compared to all the points in the second cluster is used to update the 

matrix. In centroid linkage, the distance between the centroids of the two clusters are used as 

dissimilarity. Ward’s linkage determines the sum of squared deviations between all the points 

in a cluster and its centroid. It compares the change in dissimilarity when merging clusters and 

creating 1 new centroid, compared to the unmerged situation with 2 centroids. We use Ward’s 

linkage since the more homogenous our clusters are in terms of standard deviation, the 

stronger the portfolio effect will be. Ward’s linkage tends to result in very homogenous 

clusters compared to other methods of linkage [1]. 

Number of clusters 

With each new cluster, the variance within a cluster increases. The number of clusters is a 

trade-off between having a suitable number of clusters for later use and inter-cluster variance. 

Agglomerative clustering will result in one large final cluster. To obtain a preferred and usable 

number of clusters, we have to determine where to “stop” the agglomerative process. One 

method is simply through visual observation. The clustering process is depicted Figure C.0.1 

in a dendogram, where each linkage is graphed against new cluster variance.  Also common is 

the elbow method, which aims on the percentage of total variance, which is ratio of inter 

cluster and total variance, against the number of clusters. In the elbow method, one tries to 

identify the number of clusters where percentage of total variance “jumps”, which looks a bit 
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like a bend (or elbow) when graphed. Many other methods of determining the “right” set of 

clusters exist.  

 

Figure C.0.1: Dendogram of agglomerative clustering process. Surgical procedures are portrayed on the x-axis, inter-cluster 
distance on the y-axis. Horizontal lines refer to merged clusters, vertical lines to the distance between those clusters. (Source: 
R) 

Validation 

Often, cluster results are checked through some other variable. In our case, we would like to 

determine if cluster variance for individual surgeons is not too large compared to cluster 

mean.  

Software 

We will use R to model our patient group identification which is a popular programming 

language used by statisticians and data miners. There are many suitable languages and 

software available, but we favor R due to its free availability and extensive features.  We use 

Minitab to identify distributions that may describe procedure type duration.  

Fitting a distribution to describe duration 

We now have generated clusters that contain a collection surgical procedures. However, we 

steed need to determine the duration distribution for these clusters. Recall that for each 

surgical procedure, we subtracted the minimum observed value of duration from the 

complete dataset to transform from a 3 parameter to a 2 parameter lognormal distribution. 

We combine the complete adjusted dataset and perform a goodness-of-fit test for both a 

Gaussian and 2 parameter log-normal distribution. We determine the best fit by checking for 

the highest probability value and through visual inspection of the cumulative distribution 

plots. These plots are visualized in Figure C.0.2. 

We can convert 3-paramteric lognormal variables to 2-paramater lognormal variables using 

the method described by Stepaniak et al. [36]. We can transform our procedure durations to 

a 2-parameter log-normal distribution prior to clustering. Since the 3-parameter log-normal 
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distribution is simply the usual 2-parameter distribution with a location shift, we propose a 

method to drop the threshold parameter. Let 𝑋 be a random variable with a 3-parameter 

distribution with 𝜇, 𝜎 and 𝛾, then: 

 𝑌 =  𝑋 − 𝛾  (C.1) 

Where 𝑌 is log-normal distributed with 2 parameters. For each surgical procedure, we 

therefore find the smallest observed value of surgical duration in the dataset and assume that 

to be threshold parameter 𝛾. We subtract 𝛾 from all individual observations in the dataset and 

refit the adjusted dataset as a 2-parameter log-normal variable. We can also ensure that we 

will include 𝛾 in any later calculations with the 2-parameter log-normal variables. 

 

 

Figure C.0.2: Cumulative distribution plot of a 3-parameter log-normal distributed variable and Gaussian distributed variable, 
in which the variable seems to have a snuf fit for 3-parameter log-normal distribution.  (Source: Minitab). 

If the goodness-of-fit out for the log-normal outperforms the Guassian fit, we can determine 

the cluster to be log-normal distributed with a threshold comprised of the average of all 

observed minimum values. However, if the Gaussian fit outperforms the log-normal fit, we 

cannot directly determine it to be Gaussian. We then perform another goodness-of-fit on the 

unadjusted dataset of that cluster. If this then turns out to be log-normal again, we determine 

it to be 2 parameter log-normal with threshold 0. If the Gaussian has the highest probability 

of fit, we assume it to be Gaussian distributed.  
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Appendix D – Cluster results 

 

Table D.1: Cluster results. Surgical procedure type, distribution type, parameters and demand per whisker. 

  

Procedure type DistributionMu Sigma Treshold 0 1 2 3 4

General 1 LogNormal 4.55573 0.28643 0 8 19 22 26 36

General 2 LogNormal 4.28906 0.27811 0 4 12 15 20 24

General 3 LogNormal 4.74463 0.63025 0 0 1 1 3 6

General 4 LogNormal 4.12528 0.41726 0 2 11 14 17 24

General 5 LogNormal 4.83671 0.36164 0 0 0 1 3 5

General 6 LogNormal 4.66472 0.34462 0 0 0 1 1 2

General 7 LogNormal 4.162 0.39707 0 1 4 5 6 10

Abdominal 1 LogNormal 3.83954 0.40323 0 1 6 8 11 17

Abdominal 2 Normal 166.2252 63.14174 0 1 7 9 12 19

Abdominal 3 Normal 200.7 78.83713 0 0 1 1 1 4

Abdominal 4 LogNormal 4.07025 0.2726 0 0 1 2 4 8

Abdominal 5 LogNormal 5.40591 0.24142 0 0 2 3 4 6

Abdominal 6 LogNormal 5.27873 0.4525 0 0 0 1 2 4

Abdominal 7 LogNormal 4.75474 0.37461 0 0 0 0 1 4

Abdominal 8 Normal 289.8333 100.6586 0 0 0 0 1 2

Pulmonology 1 LogNormal 4.71764 0.35721 0 0 2 2 4 9

Pulmonology 2 LogNormal 5.31996 0.5027 0 0 0 1 1 5

Pulmonology 3 LogNormal 5.31779 0.24207 0 0 1 2 4 8

Pulmonology 4 LogNormal 4.70821 0.36263 0 0 0 0 1 5

Oncology 1 LogNormal 4.57293 0.3813 0 1 10 13 14 24

Oncology 2 LogNormal 3.9583 0.2224 0 0 0 0 1 3

Oncology 3 LogNormal 4.79211 0.3557 0 0 2 3 11 18

Oncology 4 LogNormal 4.9768 0.23485 0 0 1 2 3 4

Oncology 5 LogNormal 4.80815 0.32881 0 1 9 17 23 29

Oncology 6 LogNormal 5.33483 0.24832 0 0 1 2 3 9

Oncology 7 LogNormal 4.16278 0.29117 0 0 0 0 1 3

Traumatology 1 LogNormal 4.21005 0.49814 0 0 3 5 6 15

Traumatology 2 LogNormal 3.83625 0.25478 0 0 0 1 1 3

Traumatology 3 LogNormal 4.09643 0.45312 0 0 1 2 3 5

Traumatology 4 LogNormal 3.97516 0.49342 0 0 1 1 2 3

Traumatology 5 LogNormal 4.62648 0.33806 0 0 0 1 2 5

Traumatology 6 LogNormal 4.54054 0.31791 0 0 0 1 2 4

Traumatology 7 LogNormal 3.879 0.36364 0 0 0 1 1 3

Traumatology 8 LogNormal 4.26134 0.24501 0 0 0 0 0 2

Cardiology 1 LogNormal 4.35265 0.27077 0 0 0 0 1 3

Cardiology 2 LogNormal 5.4231 0.20968 0 0 3 3 5 8

Cardiology 3 LogNormal 4.59599 0.411 0 1 3 4 6 9

Cardiology 4 LogNormal 4.23718 0.27541 1 0 3 4 6 14

Cardiology 5 LogNormal 4.23718 0.27541 2 0 1 2 3 8

Cardiology 6 LogNormal 4.96492 0.37628 3 0 2 3 4 9

Cardiology 7 LogNormal 5.57401 0.23193 4 0 0 2 2 5

Cardiology 8 LogNormal 4.40464 0.29898 5 0 0 1 2 3

Cardiology 9 LogNormal 5.63692 0.41641 6 0 0 0 0 1

Semi-urgent General LogNormal 4.39933 0.48343 5.7101 13 13 13 13 13

Semi-urgent Abdominal LogNormal 4.86044 0.39863 12.28005 5 5 5 5 5

Semi-urgent Cardiology LogNormal 4.29778 0.83816 24.76976 9 9 9 9 9

Semi-urgent Traumatology LogNormal 4.25795 0.50672 2.03805 17 17 17 17 17

Changeover LogNormal 2.1 0.3 0 0 0 0 0 0

Whiskers
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Appendix E – Portfolio effect 
In this appendix, we discuss the implementation of the portfolio effect for cases with Gaussian 

and log-normal distributed variables. 

Let the function 𝑓(𝑉) describe the joint probability distribution function of the sum of all 

surgical procedure types scheduled in an ORD. We can describe the probability that total 

schedule duration in any ORD exceeds capacity 𝑑𝑟 as probabilistic constraint: 

 𝑃[𝑓(𝑍𝑤𝑡𝑗𝑖) ≤ 𝑑𝑟]  ≥  𝛼     ∀ 𝑤, 𝑡, 𝑗 (E.1) 

However, probabilistic constraints are non-linear and therefore infeasible for a commercial 

linear program solver. We propose linearization of probabilistic constraints by determinisation 

of the stochastic variables. We will describe a different method for Gaussian and log-normal 

variables. 

Gaussian distributed variables 

We introduce a Gaussian distributed random variable for surgical procedure type duration 

𝑓(𝑉) ~ 𝑁(𝜇, 𝜎2) with parameters mean 𝜇 and sigma variance 𝜎2. If we want to reserve 

capacity when scheduling such a procedure, we have to reserve time up to some prediction 

bound. We may decide on reserving the expected duration 𝜇 and some safety margin of the 

variance 𝜎2, which we denote as slack. We introduce the safety factor 𝛼 which denotes the 

probability of exceeding prediction bound 𝑋. We would like to determine our prediction 

bound such that the probability of exceeding it is 𝛼, which can be decided by management. In 

standard form, we can write this as: 

 
Φ (

𝑋 − 𝜇

𝜎
)  ≥ 𝑎  

 

(E.2) 

Which we can also write as: 

 𝜇 +  Φ−1(1 − 𝛼) ∗ √𝜎2  ≤  𝑋 
 

(E.3) 

In which Φ−1(1 − 𝛼) refers to the corresponding value from the standard normal table. When 

planning multiple surgical procedures in an ORD with capacity 𝑑𝑟, the total required duration 

is determined by the sum of individual expected durations and slack. To reduce the size of 

summated slack, we would like to employ the portfolio effect by pooling variance of multiple 

scheduled procedures. The portfolio effect relies on the mathematical rule that the sum of 

multiple Gaussian distributed independent variables 𝑖 is in turn a Gaussian joint-distributed 

variable [23], with mean 𝜇𝑠𝑢𝑚 =  ∑ 𝜇𝑖
𝐼
𝑖=1  and variance 𝜎𝑆𝑢𝑚 =  ∑ 𝜎𝑖

2𝐼
𝑖=1 . Using this rule, we 

can rewrite constraint (E.3) for an instance with multiple procedures 𝑖 in standard form as: 

 

∑(𝑍𝑤𝑡𝑗𝑖 ∗ 𝜇𝑖

𝐼

𝑖=1

) + Φ−1(1 − 𝛼) ∗ √∑ 𝑍𝑤𝑡𝑗𝑖 ∗ 𝜎𝑖
2

𝐼

𝑖=1

 ≤  𝑑𝑟      ∀ 𝑤, 𝑡, 

(E.4) 
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Note however that total duration is determined by a square root function, which is non-linear. 

We therefore propose a linear approximation of the square root function as demonstrated by 

Bosch et al. [34] and described in the AIMMS commercial solver manual by Bisschop et al. [45]. 

Bosch et al. shows that the square root function can be approximated as a set of linear 

functions. Each linear function approximates some part of the square root function within an 

interval. The intervals are in turn determined by a set 𝑁 = {0,1, … , 𝑚) breakpoints. Within 

each interval [𝑥𝑛, 𝑥𝑛+1] the linear function is a tangent line of the square root function and 

described by: 

 ℎ𝑛(𝑥) =  𝑎𝑛 + 𝑏𝑛 ∗ 𝑥 
 

(E.5) 

In which 𝑏𝑛 is the first derivative of the square root function and 𝑎𝑛 the result of equalizing 

the square root function against the linear approximation.  

 

𝑏𝑛 =
𝑑√𝑡𝑛

𝑑𝑥
=  

1

2
∗ √

1

𝑡𝑛
 

(E.6) 

 
√𝑡𝑛 =   𝑎𝑛 + 𝑏𝑛 ∗ 𝑡𝑛      →      𝑎𝑛 =

1

2
∗ √𝑡𝑛 

(E.7) 

And thus: 

 

ℎ𝑛(𝑥) =  𝑎𝑛 + 𝑏𝑛 ∗ 𝑥 =  
1

2
∗ √𝑡𝑛 +  

𝑥

2
∗ √

1

𝑡𝑛
  

(E.8) 

We define 𝑦𝑛 to be function value of the linear approximation at breakpoint 𝑛, so that 

ℎ𝑛(𝑥𝑛) =  𝑦𝑛. For any linear line, any point between two breakpoints can be described as a 

weighted sum of those breakpoints. We apply this principle and introduce non-negative 

weights 𝑝𝑛 and the conditions ∑ 𝑝𝑛
𝑁
𝑛=1 = 1, and the condition that two adjacent breakpoint 

weights are non-zero. We can then rewrite constraint (E.3) as: 

 
∑(𝑍𝑤𝑡𝑗𝑖 ∗ 𝜇𝑖

𝐼

𝑖=1

) + ∑(𝑝𝑛 ∗ 𝑦𝑛

𝑁

𝑛=1

)  ≤ 𝑑𝑟       ∀ 𝑤, 𝑡, 𝑗 

(E.9) 

With additional constraints: 

 
∑(𝑝𝑛 ∗ 𝑥𝑛) = ∑(𝑍𝑤𝑡𝑗𝑖 ∗  𝜎𝑖

2

𝐼

𝑖=1

) 

𝑁

𝑛=1

 

(E.10) 

 
∑ 𝑝𝑛

𝑁

𝑛=1

= 1 

(0.11) 

More breakpoints results in a more accurate approximation of the square root function but 

also a larger computational burden. We would like to determine the minimal number of 

breakpoints that is required to approximate the square root function by some maximum error 

of difference. We define the error 𝛿𝑛 at breakpoint 𝑛 ∈ 𝑁. Knowing that the largest error 

between approximation and the squared root lies at the breakpoints, we can define: 

 𝛿0 =  ℎ1(𝑥0) −  √𝑥0 (E.12) 
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 𝛿𝑛 =  ℎ𝑛(𝑥𝑛) −  √𝑥𝑛 (E.13) 

 𝛿𝑚𝑎𝑥 = max (𝛿𝑛) (E.14) 

We can minimize 𝛿𝑚𝑎𝑥 by equalizing the breakpoints errors. Mathematically, we can notate 

this concept through the following set of equations: 

 ℎ𝑛(𝑥𝑛) = ℎ𝑛+1(𝑥𝑛) (E.15) 

 𝛿𝑛 =  𝛿𝑛+1 (E.16) 

 𝑥𝑛 <  𝑡𝑛+1 < 𝑥𝑛+1  (E.17) 

If the approximation errors at all breakpoints are equal, it follows that we can describe the 

maximum error in terms of the number of breakpoints 𝑚: 

 𝛿𝑚𝑎𝑥 =  𝛿𝑚 = ℎ𝑚(𝑥𝑚) −  √𝑥𝑚 (E.18) 

In which 𝛿𝑚𝑎𝑥 is determined by 𝑚 and the maximum value of the interval of. If we determine 

on a value of 𝑥𝑚, we can determine the minimal number of breakpoints required to 

approximate within a chosen maximum error.  

Log-normal distributed variables 

We introduce a log-normal distributed random variable for surgical procedure type duration 

𝑓(𝑉) =  ln (𝑍)  with 𝑍 ~ 𝑁(𝜇, 𝜎2) and parameters mean �̅� and variance 𝜎2. Again, we seek a 

prediction bound 𝑋 which we can use when scheduling a surgical procedure. For a single 

variable, the prediction bound is given by: 

 𝑒𝜇 ̅+ Φ−1(1−𝛼) ∗ √𝜎2
≤ 𝑋 

 

(E.19) 

Unfortunately, working with the (power) sum of log-normal distributed variables is far less 

convenient than with Gaussian variables. We cannot directly determine a prediction bound 

for the joint-distributed variable due to its open form. However, we can approximate the 

power sum of log-normal variables with the assumption that the sum of log-normal 

distributed variables is also log-normal distributed. Several methods to approximate this sum 

are described in literature, in varying levels of complexity. We will briefly compare the two 

most popular methods. 

The Fenton-Wilkinson method (which is also used by van Oostrum et al.) matches the first two 

moments of the power sum of log-normal variables to estimate a single lognormal variable 

[48]. The Schwartz-Yeh method involves  the exact computation of a 2 power sum log-normal 

joint- distributed variable, which can be extended to a larger sum of variables through a 

recursive approach [49]. A quantitative analysis by Pirinen et al. finds that the Fenton-

Wilkinson approach performs well in approximating the tail region (CDF(0.9-0.999)) of the 

approximated log-normal variable but poor in the body region (CDF(0-0.9)) [50]. The  

Schwartz-Yeh method performs well in the body-region, but less so in the tail region. Tail 

regions are of interest in areas such as signal processing, but our upper bounds for surgical 

procedure duration all lie in the body region. We therefore prefer the Schwartz-yeh method 

to approximate power sum log-normal distributions for surgical duration.  
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We propose an adaptation of the Schwartz-Yeh method presented by Ho et al. [46]. Ho et al. 

circumvents the computational burden of exact calculation and by using trapezoidal rule to 

approximate complicated integrals. Pirinen et al. finds strong performance in the body-region 

of the approximated sum of log-normal variables with this method. While summing log-

normal variables with non-identical parameters is possible, Pirinen et al. reports for that 

accurate approximation is limited to  sums of log-normal variables with identical parameters. 

The method can also be extend to correlating variables, though we assume all our variables 

to be independent. The expressions for calculating mean and standard deviation are 

presented in constraints (E.20-E.28): 

 𝑚𝑧 = 𝑚𝑦 + 𝐺1 (E.20) 

 𝜎𝑧
2 = 𝜎𝑦1

2 − 𝐺1
2 − 2𝜎𝑦1

2 ∗ (𝐼2 + 𝐼0) +  𝐺2 (E.21) 

 𝐺1 = 𝐸[ln(1 + 𝑒𝑤)] = 𝐴0 + 𝐼1 (E.22) 

 𝐺2 = 𝐸[𝑙𝑛2(1 + 𝑒𝑤)] = 𝐼3 + 2 ∗ 𝐼4 + 2 ∗ 𝜎𝑤
2 ∗ 𝐼0 + 𝑚𝑤 ∗ 𝐴0 (E.23) 

 𝐺3 = 𝐸[(𝑤 −  𝑚𝑤)] ∗ ln(1 +  𝑒𝑤) = 𝜎𝑤
2 ∗ (𝐼2 + 𝐼0) (E.24) 

 𝐼4 = 𝜎𝑤
2 ∗ [𝑓𝑤(0) ∗ ln(2) − 𝐼5] + 𝑚𝑤 ∗ 𝐼6 (E.25) 

 
𝐴0 = 𝑚𝑤 ∗ 𝐼0 +

𝜎𝑤

√2𝜋
∗ 𝑒

−𝑚𝑤
2

2∗𝜎𝑤
2⁄

  
(E.26) 

 
𝐼𝑖 = ∫ (ℎ𝑖(𝑣) ∗ 𝑣−1)

1

0

𝑑𝑣 
(E.27) 

Formulas for recursive approximation with 𝑖 variables. 

ℎ𝑖(𝑣) = 𝑖 = 0 
(√2𝜋)−1 ∗ 𝑒

−(ln(𝑣) +
𝑚𝑤

𝜎𝑤
⁄ )2

2  
𝑖 = 1 [𝑓𝑤(ln(𝑣)) + 𝑓𝑤(− ln(v)] ∗ ln (1 + v) 
𝑖 = 2 [𝑓𝑤(ln(𝑣)) + 𝑓𝑤(− ln(v)] ∗ (1 + v−1)−1 
𝑖 = 3 [𝑓𝑤(ln(𝑣)) + 𝑓𝑤(− ln(v)] ∗ ln2(1 + v) 
𝑖 = 4 −𝑓𝑤(− ln(𝑣)) ∗ ln(𝑣) ∗ ln (1 + 𝑣) 
𝑖 = 5 𝑓𝑤(− ln(𝑣)) ∗ (1 + v−1)−1 
𝑖 = 6 𝑓𝑤(− ln(𝑣)) ∗ ln (1 + 𝑣) 

  

𝑓𝑤(𝑤) =
𝑒

−
(𝑤−𝑚𝑤)2

2∗𝜎𝑤
2

√2 ∗ 𝜋 ∗ 𝜎𝑤
2

 

(E.28) 

To incorporate the portfolio effect in the power sum of log-normal variables, we implement 

an approximation presented by van Oostrum et al. [1]. We sum the prediction bounds 𝑋𝑖 of 

individual surgical procedure types and subtract time that corresponds with the portfolio 

effect. Portfolio time is determined by the difference between the prediction bound of 

individual variables and the power sum variable. Since we cannot implement a stochastic 

variable in a linear constraint, we use the deterministic values mean and variance, and 

implement a function with explicit joint log-normal distributed prediction bounds. 

Mathematically, we can then describe constraint (E.19) as: 
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∑ 𝑍𝑤𝑡𝑗𝑖 ∗ 𝜇𝑖

𝐼

𝑖=1

− 𝑔(𝑍𝑖𝑤𝑡𝑗)   ∀ 𝑤, 𝑡, 𝑗, 𝑖 

 

(E.29) 

Combining Gaussian and log-normal portfolio effects  

We can incorporate the linear approximations of Gaussian and log-normal distributed surgical 

procedure types fairly easily in a single ORD. Log-normal variables can be scheduled directly. 

If the remaining capacity of an ORD is scheduled with Gaussian distributed variables, we can 

assume that the this capacity is indeed described by a linearized approximation of the root 

function. This means first that slack and the portfolio effect are determined separately for log-

normal and Gaussian functions. Second, for log-normal distributed duration surgical 

procedure types we also calculate the portfolio effect per individual type. This choice is based 

on reported inaccurate approximation of non-identical joint distributions by Pirinen et al. 
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