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Abstract

Several methods exist for stroke rehabilitation. One method is the practice of motor imagery. The
effect of this approach is improved by neurofeedback. This is done by using
electroencephalographic (EEG) signals in a brain computer interface (BCI) setup. The BCI
system should give the patient neurofeedback according to his sensorimotor rhythm.

Our goal was to find a way to model the two states associated with the sensorimotor rhythm:
synchronized (rest) and desynchronized (active). For this purpose we have investigated four band
power features: broad-band (8 - 30 Hz), a-band (8 - 13 Hz), B-band (13 - 30 Hz), and user-
defined band and two classification methods: linear discriminant analysis (LDA) and support
vector machines (SVM). Furthermore, we have employed a spatial filtering method, namely
common spatial patterns (CSP), to see if classification outcomes could be improved. Since the
eventual aim is to build a system that can be used at home, we examined several electrode
configurations in order to find out the minimum number of electrodes needed to control the
system. We extracted the features for different periods (8, 6, 4, and 2 seconds) to see what the
influence on all of the above parameters was.

Results show that the highest performances were obtained on average for the broad-band feature,
but the other features display good performances as well. We found that the highest classifier
performances were obtained for the combination of CSP and SVM, with the general remark that
SVM outperforms LDA. The minimum number of electrodes that was needed to ensure reliable
control of the system was two. The investigated trial lengths seem not to influence all of the
above parameters, good performances being found for all of them.

We consider that CSP is not suited for stroke data because it tends to focus on irrelevant aspects
of the data. We deliberate that five channels is the minimum number of channels that can be used
in an online system. We have also argued that the results are not influenced by trial length
because the features are weakly stationary.
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1. Introduction

The human body is always active, even as we sleep. In order to assure the normality we know as
everyday life unconscious activities take place, such as heart beating and regulation of body
temperature. We also sense and move around in the external environment, which requires both
voluntary and involuntary movements. Daily life also implies taking decisions, going through
emotions, exchanging words with fellow humans, etc. The nervous system, the core of which is
the brain, mitigates all of these actions.

The brain is divided into three main parts: the cerebrum, the cerebellum, and the brain stem. The
cerebellum is responsible for regulating and coordinating movement, posture, and balance. The
brain stem is associated with ensuring basic vital functions such as heart beating, blood pressure
and breathing. The cerebrum itself may be subdivided into four parts called lobes: the frontal
lobe, the parietal lobe, the temporal lobe, and the occipital lobe. Each lobe is “in charge” of
certain functions. Broadly speaking, the frontal lobe deals with planning, movement, problem
solving, etc. The parietal lobe is associated with movement, orientation, recognition and
perception of stimuli. The temporal lobe is involved in memory, speech, and processing auditory
stimuli. The occipital lobe mainly deals with visual processing.

Figure 1.1 Lateral view of the surface anatomy of the brain, showing the brain stem, cerebellum and the four lobes of the
cerebrum. Taken from [2].

Unfortunately, the brain is also prone to many neurological impairments that lead to some form
of physical and/or mental problem. An affection of the brain may be categorized according to the



dysfunction that it causes: loss of memory — amnesia, impairment of language — aphasia,
inability to recognize shapes, persons, etc. — agnosia, some form of speech disorder — dysarthria,
and the loss of the ability to carry out learned movements - apraxia [1].

1.1. Stroke

One of the most common affections of the brain is stroke (or cerebrovascular accident - CVA)
and it may be the cause responsible for any of the aforementioned dysfunctions [2]. CVA is
caused by a sudden limitation of the flow of blood to a part of the brain. The bottleneck happens
either due to ischemia (80-90% of all cases) or to hemorrhage (10-20% of all cases). Ischemic
stroke can be either thrombotic or embolic. Thrombotic CVA is the result of a blood clot in a
vein or artery of the brain; embolic CVA happens due to an embolus that adheres to the wall of
an artery thus blocking the blood flow.

Depending on the quantity of tissue affected and the location of the stroke the symptoms can be:
right side - paralysis on the left side of the body, vision problems, etc., left side - paralysis on the
right side of the body, speech/language problems, etc. [1,2]. In this study we will focus on
movement impairments caused by stroke. This means that stroke has occurred somewhere in the
motor cortex.

Stroke proves to be a heavy burden on the affected and on society [3,4,5]. Heavily affected
stroke survivors cannot be integrated fast and easily back into daily life and need the help of
others to lead a close-to-normal life. This, also negatively impacts the wellbeing of stroke
caregivers (both professionals and family) who often end up being predisposed to depression
[4,5,6]. This again leads to aggravating the psychological status of the stroke patient.

The issue that arises is what to do in order to accelerate the reintegration into daily life of stroke
patients? Given that the tissue area affected by stroke is no longer functional, it would be
desirable that adjacent areas take over its activity. In other words, induce plasticity thus restoring
normal activity. The usual way of achieving this is by stroke rehabilitation methods.

1.1.1. Stroke rehabilitation

Most common post-stroke rehabilitation protocols imply that the patient comes to the hospital for
regular training sessions. A normal session implies diverse physical exercises: from active
movement, when the patient tries to complete a task by himself using his affected side, to passive
movement where a caregiver helps the patient perform the movement.



There are also alternatives to the usual rehabilitation procedures. One such procedure is via
biofeedback: a process during which subjects are given information about subconscious
physiological processes. This information is then used by the subject to learn to control the
process. For example, in one 12-week study by Crow et al. [7] the electromyogram (EMG)
activity is used to relay biofeedback. Crow uses a voltmeter, connected to the EMG electrodes,
for visual feedback and a speaker, connected to the same system, for sending click sounds as
audio feedback. Forty subjects were recruited and divided in two groups — experimental group
and control group. For the experimental group the voltmeter was placed within visual range and
the auditory feedback was turned on. The electrodes were positioned on a target muscle selected
according to the subject. Electrodes were also placed on the subjects from the control group, as a
placebo, but they did not receive any visual or audio feedback. The exact tasks that the subjects
had to perform are not reported in the article. The outcome of the experiment was assessed using
the Action Research Arm test and the Fugl-Meyer assessment. Results show greater
improvement in the experimental group than in the control group. The authors conclude that this
method of biofeedback “has more potential as a component of physiotherapy then some previous
studies”.

Another procedure that has been shown to improve rehabilitation outcomes is mental practice (or
motor imagery; from here on referred to as MI). Moreover, Ml can be used in the case where a
stroke patient cannot move his hand at all. MI is defined as “the process of imaging and
rehearsing the performance of a skill with no related overt actions” [8]. In a series of experiments
conducted by Page et al. [9, 10, 11, 12] the integration of Ml in a stroke rehabilitation protocol is
researched. In one of these studies [12] 32 subjects underwent a protocol designed to compare
between two groups: one that only did physical practice and relaxation, and one that combined
physical practice with MI; the study lasted six weeks. The mean age of the subjects was 58.69
(SD 12.89) and the time since stroke was between 12 and 174 months. For the motor task, the
subjects were asked to reach for and grasp an object (week 1 and 2), turn the pages of a book
(week 3 and 4) and try to write with a pen (week 5 and 6). The MI group also performed mental
practice of the motor task. Action Research Arm test and Fugl-Meyer assessment were used to
evaluate the subject’s evolution. The results of this study are shown in Table 1.1. They show that
at the end of the study the MI group could perform the motor task better than the other group,
presenting significant improvements. It is also concluded that “a traditional rehabilitation
program that includes mental practice of tasks practiced during therapy increases outcomes
significantly”.



Table 1.1: Action Research Arm and Fugl-Meyer results after six weeks of therapy protocol. Results show that the group
which also performed MI has considerably better scores. (P =0.0001 Wilcoxon test comparing the 2 groups for FM, and
P<0.0001 for ARA; taken from [12])

Action Research Arm Fugl-Meyer
Pre Mean Post Mean  Mean Change Pre Mean Post Mean  Mean Change
(SD) (SD) (SD) (SD) (SD) (SD)
Physical Practice Only 17.25 17.69 35.75 36.75
Group (14.29) (13.75) +0.44 (2.03) (9.51) (10.74) +1.0(3.68)
Physical Practice + Ml 18.00 25.81 33.03 39.75
Group (10.99) (11.29) +7.81(0.3) (9.37) (6.86) +6.72 (3.68)

A different study conducted by Crosbie et al. [13] was done on ten stroke subjects and showed
the positive outcome of MI. Improvements were measured using the Upper Limb Motricity
Index method. The mean age of the subjects was 63.9 (SD 10.94) and the time since stroke was
between 10 days and 176 day. None of them could perform physical actions with the most
affected arm without assistance. The task consisted of imagining reaching for a cup placed on the
table, bringing the cup to the mouth and putting it back on the table. Sessions lasted between 25
and 45 minutes and were carried out for a period of two weeks for each subject. According to the
Upper Limb Motricity Index, 8 out of 10 subjects showed improvements at the end of the 14
days of training. No control group was present in this study. Results indicate that, even without
physical practice, MI may lead to an improvement of the stroke subjects’ condition.

Dijkerman et al. [14] fortifies the assumption that M1 may be used for stroke rehabilitation. The
methods that were used to assess the outcome of this study were the Barthel Index (Bl), Hospital
Anxiety and Depression Scale (HADS), Modified Functional Limitations Profile (FLP),
Recovery Locus of Control Scale (RLOC) and Test of Everyday Attention (TOEA). In this study
the mean age of the subjects was 69 (SD = 9) and they had suffered a stroke between 12 months
and 48 months earlier. The 20 subjects participating in the study were split into three groups:
motor imagery (10 subjects), visual imagery (5 subjects) and no imagery (5 subjects). The last
two groups were considered as a control group.

All three groups started the protocol with a common motor task called in this study the “training
task” (real movement). The task consists of sequentially moving a row of 10 independent 2 cm®
blocks set up in a line to another line situated 25 cm away from the initial one. After the motor
task the MI group performed mentally the same task. The visual imagery group rehearsed
imagining a set of pictures that were presented after the motor task. The images that were shown
to the visual imagery group were static; i.e. did not contain movement. Results are summarized
in Table 1.2. This study advocated that “there was a greater improvement on the training task
(motor task) in the motor imagery group as compared with the control group”.



Table 1.2: Results before and after four weeks of training reveal that the improvements shown by the M1 group are
higher than the ones of the control group. The higher the values the better. These suggest that Ml is a valid approach to
maximize the results of a stroke rehabilitation protocol. Taken from [14]

BI HADS FLP RLOC TOEA

Pre Post Pre Post Pre Post Pre Post Pre Post

Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean

(SD) (SD) (SD) (SD) (SD) (SD) (SD) (SD) (SD) (SD)
Control 95.56 95.56 53.44 57.25 13.89 13.78 35.44 35.33 12.89 14.22
Group (9.84) (9.84) (11.80) (8.40) (7.85) (6.80) (2.74) (3.32) (3.41) (2.86)
Ml 95.56 96.11 52.76 50.02 17 16.22 36.67 35.78 12.44 13.56
Group (6.36) (6.51) (14.95) (13.75) (5.27) (3.90) (5.39) (4.27) (14.75) (3.71)

The three aforementioned studies show that MI improves rehabilitation outcomes but some
issues remain. First, there is no reliable measure of the mental implication of the stroke patient.
Second, the patient himself does not know how well he is performing the MI task. A possible
solution for these problems is to combine the method of biofeedback with MI. As this type of
biofeedback uses brain signals it is called neurofeedback.

Brain signals may be acquired with various methods, but the only methods that have the
temporal resolution necessary to transmit fast feedback are magnetoencephalography (MEG,
usually not used in studies because of the high cost of the equipment) and
electroencephalography (EEG). Since the affected area is the motor cortex, neurofeedback
should target this area; this suggests that what is read by either MEG or EEG should be the
sensorimotor rhythm. This rhythm, also called the pu rhythm, represents a synchronized activity
usually between 8 and 12 Hz. The rhythm is known to desynchronize when movement,
passive movement or M1 is employed [15]. In order to relay neurofeedback some processing of
the acquired signals needs to be done via a computer. The neurofeedback loop that involves the
subject, the MEG/EEG, the computer and the feedback itself may be called a brain computer
interface.

1.2. Brain Computer Interface

Many definitions of Brain Computer Interface (BCI) exist. A broad definition might be that the
BClI is a system that decodes the user’s intent, via his brain signals, to perform a task. Millan et
al. [16] split the field of BCI into four categories: Communication and Control, Motor
Substitution, Entertainment, and Motor Recovery. Most paradigms used in all of the four
categories are based on extracting a certain type of information from the electric activity of the
brain.



BCls that fall into the first class of Communication and Control are based on a paradigm that
enable, for example, amyotrophic lateral sclerosis (ALS) patients to type using a virtual
keyboard or browse the internet. BCls in the Motor Substitution category usually make use of a
similar paradigm aimed at controlling a wheelchair or a telepresence robot. The main purpose of
Entertainment BCls is to offer the user a more immersive game experience. Because this
category deals with healthy people it makes use of all common paradigms such as steady state
visually evoked potentials (SSVEP), event related desynchronization (ERD), etc. Lastly, the
Motor Recovery group of BCI focuses on the rehabilitation of stroke patients. It is based on
improving the patient’s sensorimotor rhythm and boost plasticity with the aid of MI and
feedback. In order to go into the finer details of BCI it is useful to first gain insight on the most
common method used for acquiring neural signals — electroencephalography.

1.2.1. Electroencephalography (EEG)

Electroencephalography (EEG) is a noninvasive method that measures the electric activity of the
brain. Hans Berger did the first human EEG recording in 1924 [17]. He believed that the EEG
waves are directly related to the ongoing cognitive processes. Brainwaves are separated into five
categories based on their frequencies:

e Delta 6 (0.5-4 Hz)

e Theta 0 (4-8 Hz)

e Alpha a (8-13 Hz)

e Beta 3 (13-30 Hz)

e Gamma vy (30-100+ Hz)

Different brainwaves can be associated to different activities. For example, 6 and 0 activity is
specific to infants and sleeping adults. An increase in o activity can be read in an awake person

with his eyes closed. This rise in o activity can be easier seen in the frequency domain over the
occipital region. Figure 1.2 shows such an example.

EEG has the advantage of having a high temporal resolution and it is relatively cheap compared
to the other functional measurements. On the other hand, the two main disadvantages that EEG
holds are poor spatial resolution and its sensitivity to artefacts. The latter are commonly
distinguished as technical artefacts or patient related artefacts.

Technical artefacts are usually avoidable with proper experimental design and equipment
maintenance. Such artefacts are mainly due to broken wire contacts, gel drying up, gel bridging
and not keeping a low electrode/skin impedance (usually it is good to keep this impedance under
5 KQ). The most common technical artefact is the 50/60 Hz power line hum-noise, due to

10



capacitive coupling. Fortunately, most frequencies that are investigated with EEG are below 50
Hz and this component may be easily removed by filtering the data. Nevertheless, it is desirable
to acquire EEG data as far as possible from power lines.

The two most common patient related artefacts are muscle activity (EMG) and eye blinking.
During the EEG recording, the subject might raise an eyebrow, swallow, frown or clench his jaw,
etc. All of these lead to EMG contamination of the signal. The blinking artefact is due to the
difference in potential between the retina and the cornea that makes the eye behave like a dipole.
When one blinks, the eyeball moves upward, resulting in a different projection of the field on the
recording electrodes and this can be clearly seen in the raw EEG. Figure 1.3 shows an example
of EEG activity with EMG artefacts due to clenching of the jaw and an example of the blinking
artefact. With proper subject instruction, the occurrence of the above artefacts may be kept to a
minimum.

As one may note both Figure 1.2 and Figure 1.3 contain two noisy channels, Fz and Cz. This is
an artefact that has occurred due to either faulty wiring on the cap or problems with the amplifier
itself. Such a case is to be avoided.
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Figure 1.2: Raw EEG -EEG - The top figure represents EEG acquired with a 16-electrode cap, sampled at 256 Hz from a
subject with his eyes closed. The a activity cannot be distinguished with the naked eye from the raw data. EEG in the
frequency domain - The figure on the bottom shows the frequency domain of the above EEG, for several electrodes. We
observe that for four of the electrodes a peak occurs at 12-13 Hz. The two biggest correspond to the O1 (red) and O2
(light blue) electrodes which are placed at the occipital area.



|‘ W

‘l
e 1’ u\ .

it ““

Fa -
3
c4 'ﬂ
Fplk
o2 |

l\l""‘ﬁ

«WW\

aaaaaaaaaaaaaaaaaaaaaaaa

e |” i m
i # i l‘ | "

i .'M‘l il

it %'Hf'}‘” il i
!\ rw‘l‘h" ﬁu”fx“sl‘*

I
\*I" \M ” IW
T ‘m i

M,

; MWMUW i
|J~*’! W A RT
#N

J *‘\ﬂ'
kw 75

i

|

éi

4!

l\

18

time [ 1

o
i , o ‘;.--._
4o A
b )
LRGN
| i r“'[l " i \I !
i : N |y !
‘ tl n I "
i I
il
y !
4 il
)
o7

£

Figure 1.3:EEG with EMG artefacts - When clenc
ise (top). EEG with blinking artefact - Blinking can be seen

EEG thus resulting in no
polarity of the signal (bottom). Both sets of data

hing one’s jaw the EMG generated has higher amplitude than the
inthe EEG as a

were recorded using a 16-electrode cap and sampled at 256 Hz.

swift change in the



1.2.2. BCI terminology

So by the definition used in the beginning we now get to the ingredients that make up a BCI.
First, we need to acquire the user’s brain signals - this will be referred to as Signal Acquisition.
Of course, recordings should be as free from noise and artefacts as possible. This requires careful
experimental design plus additional filtering of the data. This and other manipulations may be
called Preprocessing. Thirdly, the intent of the user might not be clearly seen from the
preprocessed time series, similar to the eyes closed example provided earlier. As such, Feature
Extraction is performed to obtain information relevant to decoding the user’s intent. Features
may fall into different classes, for example, amplitude ranges. The Feature Classification part of
a BCI gives out signals that are translated via another part into the necessary commands to
perform a task. The last three parts can be seen as the components of a bigger block that we will
generically call the Signal Processing block.

The output of the Signal Processing block passes through an Application Interface, which
translates it into commands and controls for a device, for example a monitor that shows
performance information to the patient. This way the user gets feedback so he can learn to
modulate his brain patterns to perform the desired action better. Figure 1.4 shows a general
layout for the above-described BCI.

In this study, we focus on the fourth category of BCI - Motor Recovery; aspects of which will be
discussed in more detail in subsequent sections. Before moving on, it is useful to define some
terminology that is commonly used in the BCI community.

Firstly, a trial (or epoch) is defined as the period during which the subject performs one task, for
example movement or relaxation task. A predefined number of trials make out a run. The
number of trials that are present in a run are defined in the experimental protocol. It may be the
case that several runs are recorded on the same occasion. In this case, the total number of runs
recorded on one occasion is called a session; if only one run is recorded then run is synonymous
to session.



Brain Computer Interface

Signal Praocessing
) Feature Classification
Proprocessing Extraction (Detection)
1 1
Signal Application
Acquistion Interface
.

Feedback

Figure 1.4: General structure of a BCI. Adapted from [47].

1.3. BCI in Motor Recovery, focusing on signal processing, feature
extraction, feedback and decision/classification aspects

BCI in Motor Recovery is aimed at aiding the rehabilitation of stroke patients. It is desired that,
by the use of the BCI system, plasticity be induced in the affected brain area, so that normal
modulation returns [18, 19, 20]. By return of modulation, it is meant that normal event related
potentials are produced: the imagination or execution of a movement causes a decrease of EEG
amplitudes/ power in certain frequency bands. This is called event related desynchronization
(ERD) of the synchronized activity in the p rhythm (8-12 Hz) and/or in the § thythm (13-30 Hz)
that occurs on the contralateral side of the sensorimotor cortex [21, 22, 23, 24]. ERD is defined
as:

ERD [%] = “=+ 100 (1.1)
where A is the power over the frequency band of interest during an movement or Ml (active
trial). R is the power, in the same frequency band, over a time period of relaxation before the
beginning of movement or MI (rest trial). ERD is usually present on the contralateral side;
Figure 1.5 shows the topoplot for performing right motor imagery and the ERD time curve for
electrode FC3.



\ Right Motor Imagery

Figure 1.5: Left - topoplot of power distribution during right motor imagery. Activity is present on the contralateral side
and concentrated around FC3 electrode (shaded in green). Right - Time curve for FC3; the shaded part represents an
ERD. The horizontal bar between 3 and 4.25 seconds represents the cue to start MI. Adapted from [24].

An example will clarify the ERD phenomenon in more detail. For example, the stroke subject in
a BCI loop is asked to perform MI of the affected hand. The signal is acquired and then passed
through the Signal Processing block. If the patient performed MI correctly then it is expected
that he will elicit an ERD. This in turn can be translated by the Application Interface into a
positive feedback, i.e. an encouraging text appears on the screen. In this way the subject knows
he performed MI “’correctly’’ and needs to keep doing the same thing. If in turn, the system
outputs a negative feedback then the subject knows he has to try again, or use a different
approach (imagine another movement, for example). In this case, the goal for the system is to
detect and grade, classify the strength of the ERD and give feedback. This is expected to
cause the desired plasticity for speeding up motor recovery.

1.3.1. Approaches to building a BCI for rehabilitation

Literature on BCI and stroke rehabilitation is rather scarce in comparison to the extensive
number of articles dealing with MI and healthy subjects. Nevertheless, some studies on the topic
exist. In a study by Daly et al. [25], a 43-year old woman who was 10 months after stroke
underwent a BCI + FES (functional electric stimulation) protocol. At the beginning of the study,
the subject could not voluntarily move her index finger. The FES device was placed so that,
when active, it extended the index finger. The FES parameters were pulse width of 255 us,
frequency of 83.3 Hz and the amplitude of the signal was set to a comfort level for the subject.
FES was activated with a control signal provided by the BCI. The EEG signal was recorded



using a 58-electrode cap, with a sampling frequency of 250 Hz. Next, the signal was
preprocessed with a bandpass filter (0.1-60 Hz).

Power vectors between 5 and 30 Hz were computed for each channel. Each component in the
power vector represented the power estimated over a 3 Hz bin. The estimation method was the
maximum entropy method. The feature extracted was the frequency band that had the highest
explained variance between attempted movement and attempted relaxation over the CP3
electrode. A successful attempt meant to lower the power under a certain threshold for
movement and raise it above for relaxation. A threshold was computed for each condition
(movement/relaxation) as the feature average on three previously acquired trials. This average
was updated at the end of each trial.

The first task was to attempt real movement of the index finger or relax the finger according to a
specific cue on a screen. The second part consisted of attempting MI of the index finger or
relaxation. One trial for movement (active trial) is as follows: a red rectangle appeared on the top
of the screen cueing the patient to try to extend the index finger (or perform MI of the same
action). If the subject achieved and maintained a signal below the previously identified threshold,
then she would be provided with a visual feedback (rectangle changes color from red to green)
and FES was triggered. Similarly, for relaxation (rest trial), but in the case of a successful trial
no FES was applied. Figure 1.6 shows a schematic of the paradigm. In the case of real
movement, the subject achieved performances between 82% and 100% and in the case of
imaginary movement, the performances ranged from 59% to 97%. For relaxation, the
performances were between 65% and 83%. Results show that after three weeks of BCI+FES
therapy the subject was able to execute 26 degrees of isolated voluntary movement of the index
finger as compared to O degrees at the beginning of the study. One strong point that shown in this
study is that improvement is possible using a BCl+ FES paradigm. Another important conclusion
is that control of the BCI set up can be achieved by using only one electrode.
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Figure 1.6: BCI+FES paradigm -- The figure on the top represents the task for movement(real or M1) . If the subject
achieved and maintained a signal below the threshold, then she would be provided with a visual feedback (rectangle on
the top changes color from red to green) and FES was triggered. Otherwise, the screen would turn black. Similarly in the
bottom figure, task of relaxation, if the signal could be maintained above the threshold then the rectangle on the bottom
would change color. Taken from [25]

In another study, Prasad et al. [26] assessed the feasibility of using solely BCI in upper limb
recovery for stroke subjects. Five subjects with ages between 47 and 71 (mean 58.6, SD 8.98),
with 15 to 48 months after stroke participated in the study. The paradigm used was the basket
paradigm: a ball falls at a constant speed from the top towards the bottom of the screen. At the
bottom, there are two “baskets”, represented by rectangles. One of them changes its color into
green, signaling the fact that it is the target “basket”. The subject has to move the ball using real
or imagined movement of the left or right hand towards and “into” the target “basket. Figure 1.7
shows a representation for one trial. A trial lasted between 8 and 10 seconds followed by a period

between 1 and 3 seconds of rest.

EEG signals were sampled at 500 Hz with a 10-20 system cap using two bipolar channels. The
corresponding electrodes were placed 2.5 cm anterior and posterior to the locations of C3 and
C4. The signal was then bandpass filtered (0.5 - 30 Hz) and a notch filter was applied on 50 Hz.
The proposed features in this study are the powers over the two bipolar channels around C3 and
C4 locations for a and B bands. They were estimated from an autoregressive (AR) model with
the autocorrelation method. Features were extracted each second and fed into a type-2 fuzzy
classifier. The magnitude and sign of the classifiers’ output were used as a control signal for the
ball’s movement to either left or right. It is not stated how often the ball’s position is updated
according to the control signal. Performances overall subjects for Ml ranged from 60 to 75%.
The protocol implied 40 trials of real movement followed by 40 trials of imagined movement;
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left and right trials being presented in a random order. This was repeated for four runs each
session.

Motricity Index (Mcl), Action Research Arm Test (ARAT) and Grip Strength (GS) were the
methods used to assess improvement of the subjects. Only two subjects showed improvement in
Mcl. Out of 5 subjects only 3 could complete the ARAT test and all shoved improvements of
4.0, 6.0 and 10.0 respectively. All 5 subjects showed better dynamometer GS throughout the
study. At the end of the study the mean change was 4.4 (20%) when compared to the mean score
(22.2) recorded at baseline. The paper concludes that “...BCI supported MI practice is a feasible
rehabilitation protocol combining both PP (physical practice) and Ml practice of rehabilitation
tasks”.

It is worth noting that, in Daly’s study, the subject started with very high performances from the
first session, 97% for real movement and 83% for MI. These values are unusually high for a
naive BCI subject. The obtained performances over time these, do not indicate any clear trend
that may be attributed to plasticity. It is also not clear as how the thresholds were initially
computed; i.e. what was the threshold for the first three trials? Furthermore, it is not mentioned
whether the threshold given by the last three trials of a session was the initial value for the next
session. A clearer and simpler method is desirable.

The power estimation methods used in both studies is known to depend on the order of the
autoregressive model (AR). Estimating the optimal order of an AR model depends on the chosen
model error criterion (not given in any of these studies), the length of the data used (not given in
[25]), and sampling frequency. As such, it might be more favorable to choose a non-parametric
method. The methodology would be easier to reproduce and verify by other parties. As
previously mentioned, the performance obtained in [25] is overoptimistic and might not extend
to other users. The performances obtained in [26] are more realistic. One has to wonder as well
what is the optimum number of channels that provides the best classification. In addition, is there
a minimum/maximum number of electrodes for which the performance is stable? A natural
question that follows is if the information provided by a high number of electrodes can be used
somehow to improve the signal-to-noise ratio.



— 0
(@] )

Ball displayed at the

top of the screen 1
baap

Iy B — 2
e a3

s i o

®
= — 4

1

@

5

5 -

: 5

Z
2 |6

o

t O
|. TARGET BASKET | | MON.TARGET BASKET | e 2

L

fime in [s]

Figure 1.7: The Basket Paradigm - the trial starts with the ball on the top of the screen. After the audio cue, one of the
“baskets” on the bottom turns green signaling that it is now the target “basket”. At the meantime, the ball starts falling.
Now the subject is supposed to perform M1 with the hand that is on the same side as the target basket. The user’s aim is

to get the ball into the basket by actively modulating their EEG. Taken from [26].

1.3.2. Improving classification outcomes in BCI

Commonly there are three techniques that are used in BCI for building spatial filters that in
principle boost classification performance: Principal Component Analysis (PCA), Independent
Component Analysis (ICA) and Common Spatial Patterns (CSP). All three methods have in
common the fact that they operate on the variance of the signals in some aspect in order to
remove redundancy and noise [28].

PCA transforms the data using single value decomposition and condenses as much variance as
possible into the first extracted components. PCA constructs a spatial filter that forces a
maximum amount of variance to be present in the first transformed waveforms. Unfortunately,
PCA works on the assumption that the scalp maps are orthogonal. Another downfall of PCA is
that useful information for the investigated phenomena might be encoded in the components that
will not be taken into account.

ICA separates the EEG data into statistically independent components by using higher order
statistics (kurtosis). In other words, ICA is an optimization algorithm that extracts the direction
with the least-Gaussian probability density function (PDF), removes the data explained by this
variable from the signal, and then iterates. Basically, ICA “rotates” the subspace with the linear
mixtures in which the variance of the two axes (mixtures) is equal and the correlation matrix 0,to
the original space. PCA and ICA are both unsupervised learning methods meaning that they do
not take into account from what class (in the case of EEG - conditions, for example eyes
open/closed, or EEG during M1 or during rest) the data comes from.
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CSP is closely related to PCA but it takes into account EEG signals coming from two different
conditions (active state/rest state). After applying CSP, we obtain spatial filters that will
maximize the variance for one condition and minimize the variance for the other condition.
Given the problem at hand, CSP is a better choice because CSP outperforms ICA in terms of
classification performance and because CSP will consider the fact that data will be from two
different conditions [28, 29].

A recent study by Ortner et al. [30] propose two paradigms that use CSP on healthy subjects. The
algorithm behind CSP will be explained in detail in subsequent sections. This study involves
assessment of the proposed algorithm on three healthy users (mean = 28, SD = 1.73). Data was
sampled at 256 Hz with 63 channels for two of the subjects and 27 channels for the remaining
subject. The data was bandpass filtered (Butterworth, 5™ order) between 8 and 30 Hz. After the
CSP was applied 4 band powers were chosen corresponding to the first and last 2 newly obtained
time series. Band power was computed with the variance method. These four were chosen as
features after being normalized and log-transformed.

Linear Discriminant Analysis (LDA) was then used to classify the data. The output of the
classifier was used as a control signal for the Application Interface. One trial lasted a maximum
8 seconds and started with an audio beep at second 2. Then at second 3 a visual cue appeared,
either instructing the user to perform left or right MI. Cue disappeared at 4.25seconds, also
accompanied by a beep. The feedback phase started from here and lasted until the end of the
trial. A random interval between 0.5 and 1.5 seconds was kept between trials. One session was
comprised out of seven runs and each run had 20 trials for left and 20 trials for right.

The approach to build a reliable CSP and LDA was start by recording trials with no feedback.
Then, the data from this run was used to build up an initial CSP and LDA. These were used
through runs 2 to 5, in which the user was provided with feedback. Then using this four runs
new CSP and LDA were built and used for the last two runs of the session. This strategy and the
structure of a trial are shown in Figure 1.8. The Application Interface could either be comprised
of a bar feedback or of virtual reality (VR) feedback. In the case of the bar feedback a bar
beginning in the middle of the screen would expand to the left or right depending on the LDA
score. In the VR case, the hand movement of a first-person avatar served as feedback. It is not
stated what was the time window for feature extraction neither how often the output of the
classifier was updated.

Performances were tested on the merged data of runs 6 and 7. The mean performances for the 3.5
to 8 seconds period are given in Table 1.3. For the first two subjects, the performance for 27
channels was computed by discarding channels out of the original 63. This study does not
involve stroke patients but it gives an idea on how to achieve good performances needed for
feedback. What is not clear in neither of these two studies [26, 30] is what happens, in terms of
feedback, if the person tries relaxation, i.e. does not perform Ml of any of the hands.
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Table 1.3: Performances for the merged data of the sixth and seventh run. The values represent the mean performance
obtained in the interval 3.5 — 8 of a trial over all trials. Taken from [30]

Bar Feedback VR Feedback
Subject 27 Channels 64 Channels 27 Channels 64 Channels
S1 87.20% 87.25% 85.20% 80.20%
S2 79.20% 80.10% 75% 80.80%
S3 75% - 78.20% -
mean 80.47% 83.68% 79.47% 80.50%

Summarizing, in Daly’s study, classification is done by using one threshold for each condition,
active/relaxation. Because we are dealing with two conditions, movement and relaxation, only
one threshold would suffice. Prasad’s study reports only one threshold but uses an unstable
(high variance) classifier [31]. The established condition for discriminating between two
conditions will be from now on called a separating hyperplane. Stable classifiers such as Linear
Discriminant Analysis or Support Vector Machines that are commonly used in the field of BCI
should be investigated. Furthermore, these two studies use parametric methods to extract relevant
features. These estimation methods are unstable [27]; as such, a non-parametric method is a
more viable approach.

In addition, none of the studies studied the influence that the number of channels might have on
classification performance. To this end, several sets of electrode configurations and
performances obtained should be investigated. The performances obtained using these sets
should also be compared to a chosen standard, like the performances obtained after applying
CSP.

The main shortcoming in [25] and especially in [26] is that there is no healthy control group to
build parameters. Since the main objective is to make stroke patients to regain normal
modulation, it is natural to develop a BCI system that has at least some of its parameters tuned
on normal subjects. With all these in mind, we proceed to define the objective of the present
work.
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Figure 1.8: Structure of a session— (left) The first CSP and LDA (WV1) are build up from the first no-feedback run. Next,
they are used in runs 2 through 5. The second CSP and LDA are build up on these merged runs and used in the last two
runs. Trial structure — (right) at second 2 a beep is given to capture the attention of the user. A visual cue starting at
second 3 announces the user about the imagery to perform. At second 4.25, the cue ends and the feedback stage begins.
Taken from [30].

1.4. Objective and Research Questions

The main objective is to devise a system that can distinguish between resting state and an active
state (real movement or MI). As formula (1.1) indicates, the ERD is a ratio given by two
consecutive trials, relaxation and M1 or execution so we cannot use it to build up such a system.
We want our system to classify every newly acquired trial (single trial classification). In other
words, we are going to compute a power threshold that will allow us to label new trials.

To this end, we investigate what feature, between broad (8-30 Hz), o (8-13 Hz), B (13-30 Hz)
and user defined band power, will provide better discrimination between the two classes. We are
going to test the first three features to see if we will obtain similar performances as the user
defined band. If performances are close to each other it will mean that, in an online setting the
specific user defined band does not need to be computed in order to relay appropriate feedback.

Given the fact that the eventual aim is single trial classification, we examine two classification
methods that will automatically detect the user’s condition (relaxing or active) based on previous
labeled trials. The investigated classifiers are Linear Discriminant Analysis (LDA) and Support
Vector Machines (SVM). We have chosen these two classifiers because they are stable, meaning
that their decision is dependent on the input data and not on initialization parameters, and
because they have a good ability of generalizing the data. Another question we want to answer is
how many trials the classifier needs in order to achieve reasonable performance. The answer to
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this question will help to keep the time from when the system is set up to the time it can be used
at a minimum.

We would also like to see the minimum number of electrodes required for the system to work
properly. We will test out different numbers of electrodes. In addition, we will compare the
performances, obtained by using the power over all channels to the performances obtained after
applying CSP. This will tell us if the introduction of CSP into the online pipeline is worth the
extra computational time that it implies. We will also see what is the minimum number of
electrodes needed to give adequate feedback. This information will help reduce the time needed
to set up the system.

Another question we want to answer is what is the minimum duration of a trial that can be used
while still maintaining high performance? We will test if the results found for using the full trials
(1 trial = 8 seconds) are similar when taking only 75%, 50%, and 25% of trial length.

All of these questions will be answered by doing offline analysis on EEG data coming from
healthy subjects and stroke subjects. The data from healthy subjects will serve to find out the
parameters for LDA, SVM and CSP. The other questions will be answered by using stroke data.
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2. Subjects and Methods

2.1. Subjects

Data was recorded from ten acute hemispheric stroke subjects, 5 females and 5 males (mean age
= 64.9, SD = 13.14, nine left handed) with conditions ranging from mild to severe when the
study started (T0). Sessions were recorded at 2 weeks (T0), 1 month (T1), 2 months (T2) and 4
months (T3) after stroke. There were 2 withdrawals after TO and one withdrawal after T2; these
subjects were not included in the study. We have also excluded subject S10 from the study
because sufficient trials could not be recorded during the sessions; also, the first session of S09
was not analyzed for the same reason. The stroke subjects were recruited from the stroke unit of
the Medisch Spectrum Twente (MST) hospital within 7 — 14 days after stroke onset. The local
ethical committee of the MST approved the study. Magnetic resonance or computed tomography
imaging was performed in every stroke patient to confirm the diagnosis and detect the infarct
location (see Figure 2.1). Table 2.1 shows the demographics, the clinical condition at TO and the
results of a Fugl-Meyer test for all sessions, of the stroke subjects.

Table 2.1:Demographics, clinical condition at TO, side of the lesion and Fugl-Meyer tests for all stroke subjects

Affected  Site/type of TO T1 T2 T3 Clinical
Subjects Sex/Age hand lesion Condition at
up-FM up-FM  up-FM up-FM T0

S01 F/58 Left R- subcor 54 66 66 66 Mild
S03 F/51 Left R- subcor 50 58 62 64 Mild
S04 M/68 Right L-subcor 48 60 66 66 Moderate
S08 M/58 Left R- subcor 52 64 66 66 Mild
S05 M/84 Left R- subcor 4 - - - Severe
S02 F/56 Left R-Cor 65 65 66 66 Mild
S06 F/81 Left R-Cor 49 58 63 65 Moderate
S09 F/62 Left R-Cor 24 49 57 64 Severe
S10 F/49 Left R-Cor 4 4 7 - Severe
S07 F/82 Left R-cor 41 - - - Moderate

Data was also recorded from 11 healthy subjects were also recruited, 9 females and 2 males. All
participants signed a consent form and received a small gift at the end of the experiment.

Data from 5 healthy subjects were acquired by the author (all male). The mean age of the healthy
group is 47 with SD = 5.85, out of whom fifteen were right handed. The healthy group will
henceforth be called the control group.. The data from the stroke subjects and eleven of the
healthy subjects were already available at the beginning of this project.
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Figure 2.1: T1-weighted MRI (S01-S05 and S07-S09) or CT (S06 and S10) images at the level of maximum infarct volume
for each stroke subject.S01, S03, S04 S05 and S08 show subcortical infarcts; other scans show cortical infarcts.

2.2. Methods

2.2.1. Paradigm

The protocol used to acquire the data from the 5 healthy subjects, mentioned earlier, will be
described in the this section’. The subject signed a consent form and was instructed on the tasks
that had to be performed. One session was comprised of four runs, one run in which the subjects
had to perform real movement and relaxation and one run with Ml and relaxation, and again real
movement followed by MI. During the session, the subject was seated in a comfortable armchair
placed 1 meter away from a 21-inch LCD monitor.

Before starting the actual session, a calibration run was performed in order to choose the optimal
baseline movie (movie that was presented during the resting task). There were three such
baseline movies: a static grid, two balls moving, and flowers. The one that induced the most
suppressive rhythm for the subject was selected and used throughout the rest of the session. In
order to select the proper baseline movie the subject was asked to perform real movement of his
dominant hand during the active movie (the subject was only presented with active movies of his
dominant hand) and relax when one of the baseline movies was presented. For a detailed
explanation of how the baseline movie was selected please refer to Appendix A. After the
baseline movie was chosen, the actual session began.

! The same protocol was also used for the data that was made available at the beginning of this project
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One run consisted of 32 trials — 16 rest and 8 left/8 right. A total of 32 active trials and 32 rest
trials were acquired per session for both real and imaginary movement. We shall describe a
sequence of four trials to explain the flow of one run better (see Figure 2.2). In the first trial a
~10-second movie, referred to as baseline movie, was presented. During this movie, the subject
was asked to relax and not perform any kind of motor action. The baseline movie was followed
by an active movie of ~10 seconds. There was no pause between movies. The active movie
consisted of five repetitions of an either right or left hand opening and closing. During an active
movie, the subject was asked to imitate/imagine the movement in synchrony with the action
presented on the screen. A baseline movie followed; after the baseline again an active movie and
so on. The succession of left/right active movies was done randomly. This paradigm was used
for both the stroke group and the control group. In this study, we will only use the data that was
acquired during M.

About 10
sec
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Figure 2.2: Experimental paradigm used for data acquisition. The succession of active movies is presented randomly.

2.2.2. Signal acquisition

Data was recorded using a 10-20 system, Wave Guard 64 electrode cap produced by ANT with
Ag/AgCI electrodes and active shielding on the electrode wires in order to reduce the capacitive
coupling with the power lines. An electrode placed on the tip of the nose served as ground, and
the left mastoid was used as a common reference. Four electrodes were discarded because the
connections to the amplifier were broken (P7, P8, TP7, and TP8). The amplifier used was a
TMSI system with the sampling frequency of the amplifier set at 5000 Hz, and hardware filter
cut-off frequency of 1350 Hz. In the second stage of the amplifier common mode rejection is
performed in order to minimize the influence of the power line hum [32]. The recording software
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used was ASA-Lab developed by ANT. Electrode impedance was kept under 5 kQ throughout
the whole experiment. Recordings were performed in a shielded room.

For analysis we discarded 16 electrodes( Fpl, Fpz, Fp2, F7, F3, Fz, F4, F8, AF7, AF3, AF4,
AF8, F5, F1, F2, F6) from the frontal region in order to avoid EMG and blinking contamination
of the data. Upon visual inspection it was noticed that in most subjects the FC3 electrode showed
abnormal behaviour so it was also discarded.This left a total of 43 channels availabe. We believe
that the abnormal behaviour was probably due to faulty wiring in the cap. All of the parts that
will follow have been implemented using MATLAB version 7.14 64-bit on a PC with 6 GB
RAM and a core i5 M430 CPU at 2.27 GHz.

2.2.3. Preprocessing

The raw data was band pass filtered (8-30 Hz, Butterworth 6™ order). Next the signal was
downsampled to 500 Hz. The signal was common average referrenced in order to get a better
signal to noise ratio. The following procedure was to make baseline and active trials the same
length. By discarding ~1 second from the beginning and the end of a trial we obtained 8 second
trials. Our decision considered the absence of breaks between trials. Here we also separate the 64
trials that we get in one sessions in two sets —left/relaxation and right/relaxation. The sets were
built by taking an active trial and the relaxation trial that occurred before. Out of the 8 second
trials we also computed trials of 6, 4, and 2 seconds. The new trial lengths were computed by
taking the first seconds from an 8 second trial. No artefact rejection was performed in order to
keep the analysis as close as possible to an online situation.

2.2.4. Feature extraction

Four power features are extracted from the preprocessed data — broadband, a, B and user
defined band. We already can extract the broadband power feature but for o,  and user band we
obtain three new datasets by filtering the broadband one. The power was computed by taking the
variance of the signal in the selected band for each channel. The power vector was computed as:

! -
08 & ——YnzoSm — o Ms (2.1)
where s, is the m™ sample of the signal s.

In the case of the user band a divide et impera search algorihm was employed. The degree of
ERD was taken as the objective criterion for this search; C3 (right movement) and C4 (left
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movement) electrodes were chosen because of their physiological relevance. At the beginning of
the analysis, the ERD for broad, a and f bands were compared to see which is highest. In case
the broadband is the highest then the algorithm stops and takes the user band as broadband. If the
ERD for B-band is higher than the one for a-band, the interval is split in two (13-21 Hz and 21-
30 Hz) and the ERD is computed and compared for this two intervals. If, for example, the ERD
is higher for the 13-21 Hz band then this interval is again split in two (13-17 Hz and 17-21 Hz)
and ERD is computed. The algorithm can continue until the bandwidth is as small as 2 Hz;
similarly for a-band. The user band will be defined as the frequency interval thatwas found to
have the highest ERD.Figure 2.3 shows a diagram of how the algorithm works. This algorithm is
only used to compute the user specific frequency and will not be used in future steps, such as
classification.

In other words what we do by computing the band power is extracting relevant information from
the time series. We now have feature vectors that will be used to describe relaxation and
movement of one hand (real or MI) conditions/states. From here on these two conditions/states
will be referred to as classes. Also the space that is described by the power over a number of
channels will be called feature space. In this space one trial will be represented by a n-
dimensional point, the coordinates for which are given by the feature vector. In our case n
represents the number of channels used, and the components in the feature vector are the bands’
power over the channels.
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if l