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Abstract

During this seven month project the work of Aditya Bandopadhyay and Suman Chakraborty on streaming

potentials in viscoelastic fluids is investigated. In their work it is suggested that if the viscoelastic

properties match with the electrical an theoretical conversion efficiency of .% is possible.

The theory of streaming potential and viscoelasticity is treated extensively in this report and remarks

are given to points which are disputable. Also the mathematical description of the system is simplified

and complex integrals are linearised and solved. One major change in the theory is the definition of the

input power which is used to calculate the conversion efficiency. Also an external load is added to the

system in order to give predictions on how well the system would work as an energy supply.

The change of the definition of the input power results in a theoretical conversion efficiency of %

and the conversion efficiency at the load will be maximum % at  kHz using the proposed system of

Bandopadhyay.
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1 Introduction

At the beginning of the th century, the existence of a streaming potentials was already known [1].

Streaming potentials and currents are created by a flow of a liquid carrying charges at the solid-liquid

interface. Nowadays research is being done for various applications of this electrokinetic phenomenon. It

is suggested that, for example, earthquakes can be predicted by measuring streaming potential in the

earth’s crust [2, 3, 4], seismoelectrictricity is also used for the characterization of oil wells [5]. Streaming

current is suggested in micro-/ nanochannels as an energy conversion mechanism as well, both constant

pressure [6, 7] and pulsating pressure [8, 9] methods are proposed.

The purpose of this project is to verify a in 2012 by Bandopadhyay and Chakraborty proposed method

of streaming energy in combination with viscoelastic fluids and a sinusoidal pressure gradient [10]. The

main difference between their work and my work is the point of view. Their research is based on a

theoretical point of view, whereas this work takes the practical approach and searches for the boundaries

of this phenomenon.

Through first explaining electrodynamics and fluid properties, the extra value of combining the three

main concepts (Streaming energy, viscoelastic fluids and the alternating pressure gradient) will become

clear at the end of this chapter.

1.1 Electrodynamics
At the interface of a solid and a liquid, the solid will get a surface charge due to interfacial reactions with

the liquid (e.g. the dissociation of H+ molecules in water at a glass surface (SiOH � SiO− +H+)[11],

which will be assumed throughout this introduction). The channel wall will become negatively charged

and, because of conservation of charge, the liquid near the interface becomes slightly positive. This is

depicted in the transition from figure 1.1.1a to figure 1.1.1b, where the layer of negative charge at the wall

interface is called the ‘Surface charge’. Because of electrostatic forces, the surplus of positively charged

ions will be attracted to the channel wall, so the bulk becomes neutral. The layer of charges adhered to

the wall is called the ‘Stern layer.’ Because of the screening of the wall by the positive ions and thermal

fluctuations (diffusion), not all surplus positive ions are in the Stern layer. This intricate play of attractive

and repelling forces results in the so-called ’electrical double layer,’ or EDL in short [1, 12, 13] and is

schematically shown in 1.1.1c. The thickness of the electrical double layer is characterized by the so

called ‘Debye length (λ [m]),’ named after the Dutch physicist and physical chemist Peter Debye and is in

1
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general in the order of nanometers.

Glass Bulk

(a) Neutral channel. At first
instance, both the bulk and the

glass have no net charge.

Glass Bulk

(b) Charged surface. The H+

molecules dissociate to the bulk,
making the surface slightly

negatively charged and the bulk
liquid slightly positively charged.

Stern layer

Di�usion -layerGlass Bulk

Debye length λ

(c) Electrical double layer. The
electrostatic forces will attract the
surplus of positive ions (H+) into
the Stern layer, but diffusion and

other repelling forces will
counteract this attraction. These

two layers combined are the
electrical double layer.

Stern layer

+
P
-

Di�usion-layerGlass Bulk

(d) Streaming current. For
simplicity, only the net charge is

depicted in this figure. If an
external pressure (P) is applied
over the channel, the liquid will
start to flow and transport a net

flow of positive ions: the
streaming current (Is).

Stern layer

+
P
-

Di�usion-layerGlass Bulk

(e) Streaming potential and
conduction current. The ion flow
will result in a charge gradient over

the channel length, creating an
electric field (Es): the streaming

potential. Which in turn causes a
current in the opposite direction:

the conduction current (Ic).

Is

Rc Rl

IlIc
-
VS
+

(f) Electrical model Streaming
potential modelled as an electrical

circuit, with current source Is,
voltage Vs, conduction current and

resistance Ic and Rc and load
current and resistance Il and Rl

Figure 1.1.1: A schematical explanation of the streaming potential energy conversion phenomenon.

If an external pressure is applied along the channel, the positive and negative ions in the liquid will

follow the flow, but the extra positive ions in the stern layer and the negative ions at the interface remain

static. The surplus of positive ions in the double layer will cause a net charge transport, which is also

known as an electrical current (streaming current (Is)), see figure 1.1.1d. Also, if an excess of positive

ions flows in one direction they will accumulate at one end and induce a potential difference, or, in other

words, a voltage (streaming potential (Vs), figure 1.1.1e)[14]. The streaming current and potential can be

used to power a sensor, light or any other device (Rl , figure 1.1.1f).
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Figure 1.1.2: An overstated example of the electro viscous effect, with the excess of ions in the electrical
double layer ψ, the pressure driven flow Updf , the electro osmotic flow Ueof and the resulting flow
Utot [15].

However, several secondary effects lower the efficiency of this system, the two main problems are:

the conduction current and the finite thickness of the double layer. Since a streaming potential is present

over the length of the channel, the ions in the liquid will move due to the electrical forces causes by the

streaming potential. This movement of ions results in a current in the opposite direction of the streaming

current and is called the conduction current (Ic). This effect can also be modelled in the system by means

of a current trough a resistor (Rc), as is depicted in figure 1.1.1f.

Also, the fluid at the centre of the channel does not contribute to the net charge displacement which

means that this displacement energy is lost. The loss is even worsened since the centre of the channel

does conduct current and hence increases the conduction current and subsequently the conduction

current loss.

A third, secondary, problem is called the electro viscous effect. This effect is comparable to an electro

osmotic flow, or EOF, and depicted in figure 1.1.2. A pressure applied from top to bottom will result in a

pressure driven flow (Updf ), which will induce a streaming potential. Due to this streaming potential, the

surplus of charges in the double layer (ψ) will start to move in opposite direction of the applied pressure.

Viscous friction will drag along other molecules, resulting in an electro osmotic flow (Ueof ). The effective

flow Utot will therefore be lower than the flow if no streaming potential was present.

Various options are investigated in order to overcome these losses. One solution is to increase

the surface/ volume ratio. This can be achieved by decreasing the channel width and/ or height (e.g.

nano-channels). A higher surface/ volume ratio results in a higher ratio of contributing fluid transport

over useless fluid transport [6, 7]. However, the increase of surface/ volume ratio results in a higher
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surface friction and thus higher friction loss (a maximum theoretical conversion efficiency of % in no

slip conditions, up to % if slip is allowed[16]). In order to decrease this surface friction, researchers

proposed to modifying the surface with large ions to increase the slip length, resulting in a maximum

theoretical conversion efficiency of > %[16]. A downside of this approach is that it is a quite intricate

procedure to accomplish this.

Recently, a theoretical paper claimed that it is possible to get an conversion efficiency of almost %

if viscoelastic fluids are used inside nano-channels using an alternating pressure gradient [10]. This

theory will be used throughout this thesis and experiments will be developed to investigate the claims.

1.2 Fluid dynamics
Normally in fluid dynamics, it is assumed that liquids behave Newtonian, that is that the viscosity is

constant in any circumstance. Viscosity is the proportionality factor between sheer rate and sheer stress,

defined through the equation F = ηA(dv/dx), where F is the tangential force required to move a planar

surface of area A at velocity v relative to a parallel surface separated from the first by a distance x[17].

In other words: it is, for example, hard to move a spoon through a cup of honey (which has relative

high viscosity), compared to move the same spoon through a cup of water (with relative low viscosity).

Therefore the flow in a microchannel of a liquid having high viscosity will be lower than the flow of a low

viscosity liquid.

However, Non-Newtonian fluids exists as well, these fluids have a viscosity depending on for example

the shear rate. In that case they are called viscoelastic. Multiple viscoelastic liquids exist, commonly

known viscoelastic liquids are polymer melts and crude oil.

Lots of cosmetic products (e.g. shampoo and hair gel) are viscoelastic as well, these properties are

caused by micelles, which will also be used during the experiments. Micelles are generally clustered

groups of amphiphilic (‘loves both’) molecules: molecules which have a hydrophilic (‘water-loving’) head

group and lipophilic (‘fat-loving’) tail. When these molecules are passed into water the tails will cluster

together, forming either spherical, lamellar (flat) or wormlike (tube) micelles. If the concentration of

additive is increased, the micelles will form interconnections and form a highly viscous gel, see figure

1.2.1. At the transition from wormlike to interconnected micelles the fluid behaves like a polymer melt,

but its ‘polymers’ can break-up and combine and are therefore called ‘living polymers’.

A model which describes the mechanical behaviour of the micelle solution for low frequencies is the

Maxwell model [19, 20], which consists of a spring and a dashpot (as is depicted in figure 1.2.2). In

figure 1.2.3 the response of a viscoelastic material is shown. If a strain is applied, the material will have

a high stress and relax gradually. The frequency response of a Maxwell material is shown in figure 1.2.4
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Figure 1.2.1: Three different kinds of micelles: spherical, lamellar and wormlike. With an high concentra-
tion, the wormlike micelles entangle and behave like ‘living polymers’. From: [18]

Figure 1.2.2: The Maxwell model can be represented by a purely viscous damper and a purely elastic
spring connected in series, picture from: Wikipedia.

it can be seen that at higher frequencies, the material becomes less viscous and more and more elastic.

Also, the loss increases in the beginning, but gradually becomes less. According to Bandopadhyay and

Chakraborty [10], the use of Maxwell fluids will greatly increase the energy conversion from the hydraulic

domain to the electric domain.

1.3 Research goals
The goals of this project are 1) to understand the mechanism behind the giant augmentations of the

streaming energy; 2) to model physics causing the streaming energy; 3) to design an experiment with

which the claimed augmentations can be investigated; 4) to build an experimental set up to measure the

mechanical input and electrical output power; and 5) to perform the experiments.

To achieve this, the theory of Bandopadhyay and Chakraborty [10, 21] is first analysed in chapter 2

and discussed in chapter 3. In chapter 4 a method is proposed to measure the output energy. Which is

followed by the results of the theoretical work in chapter 5, since no measurements are conducted. The

conclusions derived from the results are presented in chapter 6. A list of used abbreviations, definitions

and symbols can be found in appendix A.

http://upload.wikimedia.org/wikipedia/commons/d/db/Maxwell_diagram.svg
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Figure 1.2.3: a) Applied strain and b) induced stress as functions of time for a viscoelastic material,
picture from: Wikipedia.

Figure 1.2.4: Relaxational spectrum for Maxwell material, picture from: Wikipedia.

http://upload.wikimedia.org/wikipedia/commons/6/68/StressRelaxation.svg
http://upload.wikimedia.org/wikipedia/en/0/0a/Maxwell_relax_spectra.PNG


2 Bandopadhyay’s and Chakraborty’s theor-

etical work

The first part of this chapter will be about the work Bandopadhyay and Chakraborty did, but in a less

confined matter than their paper [10], with some more details found in an preceding paper [21].

2.1 Electrical double layer
The electrical double layer (schematically shown in figure 2.1.2) can can also be expressed in a mathe-

matical form, using the Poisson equation (2.1.1) as a starting point:

∇ψ(y) = −ρe(y)/ε [V/m] (2.1.1)

where y [m] is the coordinate direction normal to the confining boundaries (distance from the wall),

ψ [V] the potential distribution, ρe is the charge density distribution and ε [F/m] the dielectric constant of

the medium.

The charge density distribution is given by:

ρe(y) = e(z
+n+(y) + z−n−(y)) [C/m] (2.1.2)

in which e [C] is the elementary charge, z± [−] and n± [1/m] are the valence and the ionic number

densities of the charge species respectively. If the EDL is non-overlapping, the ionic advection from wall

to wall is negligible compared to the ionic diffusion and the ions are idealized as point charges, the ionic

number densities are expressed by the Boltzmann distribution:

n±(y) = ne
−z±eψ(y)/kBT [1/m] (2.1.3)

where n [1/m] is the bulk ionic concentration, kB [J/K] Boltzmann’s constant and T [K] the temperature.

If (2.1.2) and (2.1.3) are substituted in (2.1.1) and a z : z electrolyte is assumed, this leads to:

dψ(y)
dy

=
zen
ε

sinh
(
zeψ(y)
kBT

)
[V/m] (2.1.4)

7
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x y

2HL

Figure 2.1.1: The definitions of the channel

Or, in dimensionless form:

dψ̄(ȳ)
dȳ

=

λ̄ζ̄

sinh(ζ̄ψ̄(ȳ)) [−] (2.1.5)

with dimensionless parameters ψ̄(ȳ) = ψ(y)/ζ [−] (with ζ [V] the ζ-potential, being the electric potential at

the surface relative to the potential in the bulk medium at a long distance and is also called electrokinetic

potential [17]), ζ̄ = zeζ/kBT [−], ȳ = y/H [−] (H [m] being the half-height of the channel) and λ̄ =

λ/H [−], λ [m] being the Debye length (a measure for the length scale of the EDL), defined as λ =√
εkBT /zen [m] = ./

√
I(M) [nm], with I the ionic strength in molar (mol/L). If (2.1.5) is subjected

to the following boundary conditions: at ȳ = ⇒ ψ̄(ȳ) =  and at ȳ = ⇒ dψ̄(ȳ)/dȳ =  the EDL potential

is described as:

ψ̄(ȳ) =

ζ̄
atanh

(
tanh

(
ζ̄


)
e−ȳ/λ̄

)
for  ≤ ȳ ≤  [−] (2.1.6)

Throughout the report the boundary condition  ≤ ȳ ≤  will be taken into account. If the zeta potential is

sufficently low (|ζ| < mV, |ζ̄| < ), (2.1.6) can be simplified into:

ψ̄(ȳ) =
cosh

(
(− ȳ)/λ̄

)
cosh

(
/λ̄

) [−] (2.1.7)

Another simplification can be done, which will be discussed in section 3.1.1.
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Figure 2.1.2: (a) Physical picture of the Stern model of the electrical double layer, with κ− the Debye
length. (b) One of the possible potential distributions of the Stern model, the potential at the shear plane
is called the ‘ζ(zeta) -potential’. This model assumes that in the Stern layer the potential varies linearly.
[22]

2.2 Flow profile
Having the electrical double layer represented mathematically, the fluid behaviour can be described.

Fluid dynamics is based on the Navier-Stokes equation[22]:

ρ

(
∂v
∂t

+ v · ∇v
)
= −∇p+∇ ·T + ρg + f [N/m] (2.2.1)

where ρ [kg/m3] is the fluid density, v [m/s] is the velocity vector, p [Pa] the pressure, T [N/m2] the stress

tensor, g the gravitational forces and f [N/m3] are the other body forces. Since the fluid is assumed to

be incompressible ∇v =  [/s]⇒ v · ∇v =  [m/s2], the stress in the channel is only caused by the viscous

stress, so T = τ (τ being the stress tensor). Gravitational forces are negligible in microchannels and

the other body forces are generated only by the induced electric potential (which is explained in section

2.3.1) and the net ionic charge density (ρe): f = ρe(y)E. Using these details, (2.2.1) becomes:

ρ
∂v
∂t

= −∇p+∇ · τ + ρeE [N/m] (2.2.2)

τ is modelled as a linearised Maxwell fluid which is reliable for low Reynolds numbers (Re < ×−,

which is explained in section 3.3) and low (./s) shear rates [23]. The stress tensor of a linearised

Maxwell fluid is modelled as[24]

τ = η∇v − tm
∂τ
∂t

[N/m] (2.2.3)
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Where η [Pa s] is the viscosity and tm [s] the relaxation time of the liquid, these two parameters

characterize the linearised Maxwell fluid. The velocity and pressure only changes in x-direction, so the

velocity profile is:

v =< vx(y, t),, >= vx(y, t) = u(y, t) [m/s] (2.2.4)

and the pressure gradient becomes:

∇p(x(t), y(t), z(t)) =
∂p(x, t)
∂x

[Pa/m] (2.2.5)

The electric field E exists only in x-direction, therefore:

E =< Ex(t),, >= Ex(t) = Es(t) [V/m] (2.2.6)

The change in stress (i.e. ∇∂τ
∂t

[N/(m s)]) is caused by three phenomena: the acceleration of the

flow (ρ∂
u(y,t)
∂t [N/(m s)]), the change in pressure over time and x ( ∂

∂t
∂p(x,t)
∂x

[N/(m s)]) as well as the

change of Es over time (−ρe(y)
dEs(t)
dt [N/(m s)]). If these assumptions are inserted into (2.2.3) and then

into (2.2.2), it becomes:

ρ
∂u(y, t)
∂t

= −
∂p(x, t)
∂x

+∇ ·
(
η∇u(y, t)− tm

∂τ
∂t

)
+ ρe(y)Es(t)

= −
∂p(x, t)
∂x

+ η∇u(y, t)− tm∇
∂τ
∂t

+ ρe(y)Es(t)

= −
∂p(x, t)
∂x

+ η∇u(y, t)− tm
(
ρ
∂u(y, t)
∂t

+
∂
∂t

∂p(x, t)
∂x

− ρe(y)
dEs(t)
dt

)
+ ρe(y)Es(t) [N/m]

(2.2.7)

u(y, t) [m/s] only changes in the y direction, thus ∇u(y, t) = ∂u(y,t)
∂y [1/(s m)]. ψ(y) [V] changes only in

y direction also, so (2.1.1) becomes ρe(y) = −ε
dψ(y)
dy [C/m]. Both are inserted into (2.2.7), all terms

with u(y, t) [m/s] are shifted to the left hand side of the equation and the equation is devided by η [Pa s],

which results in:

∂u(y, t)
∂y

−
ρ

η

(
∂u(y, t)
∂t

+ tm
∂u(y, t)
∂t

)
=


η

∂p(x, t)
∂x

(
+ tm

∂
∂t

)
+
ε
η

dψ(y)
dy

(
Es(t) + tm

dEs(t)
dt

)
[1/(m s)]

(2.2.8)
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Then the Fourier transform of this equation is taken and ω = −ω:

∂U (y,ω)
∂y

+U (y,ω)
ρ

η

(
iω+ tmω

) =

η

∂P (x,ω)
∂x

(− iωtm) +
εẼs(ω)
η

dψ(y)
dy

(− iωtm) [1/(m s)]
(2.2.9)

Where U (y,ω) = F {u(y, t)}, P (x,ω) = F {p(x, t)} and Ẽs(ω) = F {Es(t)}. This equation is made non-

dimensional using the following normalizations: U ∗(ȳ,ω) = U (ȳH,ω)η
∂P (x,ω)
∂x

H
[−], Ēs(ω) =

Ẽs(ω)εζ
∂P (x,ω)
∂x

H
[−],

ω∗ = ωtm [−], ω̄ = iω∗ +ω∗

[−], β = ρ(ω∗


+iω∗)

ηtm
[1/m] and ∂ψ̄

∂ȳ [−] is given by (2.1.5). Therefore

(2.2.9) becomes:

∂U ∗(ȳ,ω)
∂ȳ

+U ∗(ȳ,ω)βH = (− iω∗) + Ēs(ω)
sinh(ψ̄ζ̄)
λ̄ζ̄

(− iω∗) [−] (2.2.10)

Where βH/ω̄ = ρH
ηtm

is defined as α, which is the inverse of the dimensionless Deborah number (De),

indicating how viscoelastic a material behaves [25] . Using the two standard boundary conditions: zero

flow at the wall interface (ȳ = ⇒U ∗ = ) and symmetry (ȳ = ⇒ ∂U∗
∂ȳ

= ) U ∗ can be solved to:

U ∗(ȳ,ω) =
(
− iω∗

αω̄

)− cos
(√
αω̄(− ȳ)

)
cos

(√
αω̄

) 
+ Ēs(ω)

− iω∗

ζ̄λ̄
√
αω̄

−cos(√αω̄ȳ)
ȳ∫


sinh
(
ψ̄(ȳ)ζ̄

)
sin

(√
αω̄ȳ

)
dȳ

+sin
(√
αω̄ȳ

) ȳ∫


sinh
(
ψ̄(ȳ)ζ̄

)
cos

(√
αω̄ȳ

)
dȳ

+sin
(√
αω̄ȳ

)
tan

(√
αω̄

) ∫


sinh
(
ψ̄(ȳ)ζ̄

)
sin

(√
αω̄ȳ

)
dȳ

+sin
(√
αω̄ȳ

) ∫


sinh
(
ψ̄(ȳ)ζ̄

)
cos

(√
αω̄ȳ

)
dȳ

 [−]

(2.2.11)

Using the Debye-Hückel linearisation (see section 3.1), this equation can be simplified into:

U ∗(ȳ,ω) =
(
− iω∗

αω̄

)− cos
(√
αω̄(− ȳ)

)
cos

(√
αω̄

) 
+ Ēs(ω)

− iω∗

+αω̄λ̄

cosh
(
(− ȳ)/λ̄

)
cosh

(
/λ̄

) −
cos

(√
αω̄(− ȳ)

)
cos

(√
αω̄

)  [−]

(2.2.12)
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Equation (2.2.12) can be split into two parts, a Poiseuille flow for viscoelastic fluids (first part, U ∗p(ȳ,ω∗))

which flows because of a pressure difference and a flow (second part, Ēs(ω∗)U ∗E(ȳ,ω
∗)) which flows

because of an electrical potential (note that cosh((−ȳ)/λ̄)
cosh(/λ̄)

= ψ̄(ȳ) [V] and refer to figure 1.1.2). This flow

results an a higher apparent viscosity and is therefore called the electro-viscous effect. Adding the two

results in a more convenient description of the total flow:

U ∗(ȳ,ω∗) =U ∗p(ȳ,ω
∗) + Ēs(ω

∗)U ∗E(ȳ,ω
∗) [−] (2.2.13)

2.3 Electro-hydro-dynamic energy conversion efficiencies
The conversion efficiency (ηef f [−]) is defined as the electrical (output) power (Pelec =< Ic(ω)Es(ω) >t

[W/m]), with Ic [A/m] the conduction current density and Es [V/m] the streaming potential, over the

hydrodynamic (input) power (Phydr =<
dP (x,ω)
dx Q(ω) >t [W/m]), with dP

dx [Pa/m] the pressure gradient

over the length of the channel and Q [m/s] the flow density.

ηef f (ω) =
Pelec
Phydr

=
< Ic(ω)Es(ω) >t

<
dP (x,ω)
dx Q(ω) >t

[−] (2.3.1)

In the following sections, the streaming potential and the other electrical effects will be discussed.

2.3.1 Streaming potential

As a recap from the introduction: if a pressure gradient is applied over the channel, the mobile charge

will, due to viscous drag, move with the fluid. This results in a net moving charge and thus a current.

Furthermore there will be a charge gradient along the channel imposing a potential over the length of the

channel. These two phenomena are called the streaming current and streaming potential respectively.

Since the flow profile is dependent on the streaming potential, which in turn is dependent on the flow

profile, equation (2.2.12) must be closed. This is done by using Kirchhoff’s law: the sum of all currents is

zero, therefore:

A(Is + Ic + IDu) =  [A] (2.3.2)

With A [m] the area of the channel cross section, Is [A/m] the streaming current density, Ic [A/m] the

bulk conduction current density and IDu [A/m] the surface conduction current density.
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2.3.2 Streaming current density

The net charge contributes to the streaming current, so the streaming current density is defined as the

integral over the height of the channel of the concentration difference (ze(n+(y)−n−(y)) [C/m]) times

the flow profile (U (y,ω) [m/s]):

Is(ω) =

H∫


ze(n+(y)−n−(y))U (y,ω)dy [A/m] (2.3.3)

Using the Boltzmann distribution (2.1.3) and the already discussed parameters:

n+(y)−n−(y) = n sinh
(
zψ(y)
VT

)
[1/m] (2.3.4)

plugging this in (2.3.3) results in:

Is(ω) = zen

H∫


sinh
(
z
VT

ψ(y)
)
U (y,ω)dy [A/m] (2.3.5)

Where VT = kBT /e ≈ mV is the thermal voltage, kB Boltzmann’s constant and T the temperature.

(2.3.5) can not be solved analytically and will be made dimensionless in section B.1 for further use.

2.3.3 Bulk conduction current density

The conduction current consists of two parts: the bulk conduction current, which is called conduction

current from now on and is caused by the conductivity of the bulk electrolyte. The other part is the surface

conduction current (or ‘Stern-layer conduction’), which is caused by the conductance along the liquid/wall

interface.

For the conduction current the total concentration (ze(n+(y) + n−(y)) [C/m]) contributes and is

multiplied by an ionic unit flow zeEs(ω)
f [m/s] and integrated to get the current density:

Ic(ω) =

H∫


zeEs(ω)
f

(n+(y) +n−(y))dy [A/m] (2.3.6)

with f [kg/s] the ionic friction coefficient, which cannot be found in literature, but is defined by Bandopad-

hyay as:

f =
nze

σb
[kg/s] (2.3.7)
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where σb [S/m] is the conductivity of the bulk electrolyte and using Boltzmann’s distribution:

n+(y) +n−(y) = n cosh
(
zψ(y)
VT

)
[1/m] (2.3.8)

Ultimately, (2.3.6) becomes:

Ic(ω) = Es(ω)σb

H∫


cosh
(
z
VT

ψ(y)
)
dy [A/m] (2.3.9)

Which will be solved in (3.1.11).

2.3.4 Stern-layer conduction current density

The Stern-layer conduction current density is defined using the Duhkin number, which relates the bulk

conductance to the Stern-layer conductance (σst [S]) as Du = σst
Hσb

. This gives:

IDu(ω) = Es(ω)σbDu = Es(ω)σst/H [A/m] (2.3.10)

2.3.5 Streaming potential, continued

All currents are known and can be plugged into equation (2.3.2) and is divided by the cross sectional

area (A [m]), resulting in:

zen

H∫


sinh
(
z
VT

ψ(y)
)
U (y,ω)dy +Es(ω)σb

H∫


cosh
(
z
VT

ψ(y)
)
dy +Es(ω)σbDu =  [A/m] (2.3.11)

Using the known normalization parameters and J =
σbηλ



εζ [−], equation (2.3.11) is simplified into (see

appendix B.1 for more details):

ι(ω
∗) + Ēsι(ω

∗) + JιĒs + JDuĒs =  [−] (2.3.12)

where ι(ω∗) =
∫

U ∗p(ȳ,ω∗)

sinh(ζ̄ψ̄(ȳ))
ζ̄

dȳ, ι(ω∗) =
∫

U ∗E(ȳ,ω

∗) sinh(ζ̄ψ̄(ȳ))
ζ̄

dȳ and ι =
∫

cosh(ζ̄ψ̄(ȳ))dȳ, to

obtain the streaming potential, (2.3.12) is rearranged to:

Ēs(ω
∗) =

−ι(ω∗)
ι(ω∗) + J(ι +Du)

[−] (2.3.13)
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2.4 Volumetric flow density
Now the last unknown parameter for the conversion efficiency, the volumetric flow density Q [m/s], or

flow density, has to be described and it is defined as the integral of the flow profile over the height of the

channel:

Q(ω) =

H∫


U (y,ω)dy/H [m/s] (2.4.1)

But, since all parameters are dimensionless, also a dimensionless flow density is defined:

Q∗(ω) =

∫


U ∗(ȳ,ω)dȳ =
Q(ω)η

∂P (x,ω)
∂x

H
[−] (2.4.2)

This integral will be solved in (3.1.6).

2.5 Conversion efficiency from normalized parameters
The definition of the conversion energy is the electrical output power over the mechanical/ hydraulic input

power and is given in: (2.3.1). The conversion efficiency is rewritten into a form with only normalized

numbers in (3.1.13):

ηef f (ω) =
Pelec
Phydr

=
< Ic(ω)Es(ω) >t

<
dP (x,ω)
dx Q(ω) >t

=
JĒs (ω)ι
Q∗(ω)λ̄

[−] (2.5.1)

all parameters are already described above. This equation is used to plot figure 2.5.1a. The figure is

identical to the one Bandopadhyay and Chakraborty produced, so the derivation of the equations is

correct. In order to compress the plot even more the normalized frequency (ω∗) is multiplied by
√
α in

figure 2.5.1b to shift all peaks to one point. It can be seen that the conversion efficiency is over%,

which is far more than the efficiencies mentioned in other papers[6, 8, 9, 16]. It must be noted that not al

electrical energy can be harvested, since there always will be a loss in the energy transfer.
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3 My comments on the work of Bandopad-

hyay and Chakraborty

In this and the following chapters some key discussion points regarding the work done by Bandopadhyay

and Chakraborty are discussed. First, the unsolved integrals from Bandopadhyay’s theory will be

solved by applying the Debye-Hückel linearisation to the double layer potential. Then the relation

between the non-dimensinal and dimensional parameters is given. Followed by some remarks on the

Reynolds number, the J parameter and the Dukhin number. Next the optimal frequency is estimated and

viscoelastic fluids are discussed. This is followed by a discussion what the influence of all parameters is

onto the system and it will be shown that most parameters are really entangled and it is hard to make a

compromise. In the last three sections a load resistance will be added, the flowprofile is investigated and

the efficiency is redefined.

3.1 Integration and linearisation
During the derivation of the model presented by Bandopadhyay and Chakraborty, lots of integrals were

presented and not yet solved. Using the linearisation of the electrical double layer they can be solved

analytically and simplified drastically. This will be done in this section for first the electrical double layer

potential; then the cosine terms in the flow profile are investigated; followed by the determination of

the flow density; and finally the integrals of the streaming potential are solved and then simplified even

further.

Since the theory presented by Bandopadhyay is only valid with no double layer overlap: λ̄ < / and

the boundary condition of a low ζ-potential |ζ| < mV or |ζ̄| < , these assumptions will also be made

during this analysis. The terms which become negligible because of these assumptions are marked in

red and denoted by a �.

17
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3.1.1 Electrical double layer potential

Bandopadhyay and Chakraborty[21] model the double layer potential mathematically by the following

relation (2.1.6):

ψ̄(ȳ) =

ζ̄
atanh

(
tanh

(
ζ̄


)
e
(−ȳ
λ̄

))
for  ≤ ȳ ≤  [−] (3.1.1)

and later they suggest that it if low ζ-potentials (ζ < mV) are assumed (3.1.1) can be simplified into

(2.1.7):

ψ̄(ȳ) =
cosh

(
(− ȳ)/λ̄

)
cosh

(
/λ̄

) [−] (3.1.2)

another simpler and widespread used model for the EDL potential is to take a first order Taylor expansion

around zero of tanh and atanh: tanh(x) ≈ atanh(x) ≈ x+O(x)�, which is accurate enough since ζ̄/ ≤

. and results in the Debye-Hückel linearization [22]:

ψ̄(ȳ) = e−ȳ/λ̄ [−] (3.1.3)

Now, the normalized double layer potential can be integrated over the height (dȳ) of the channel:

∫


ψ̄dȳ =

∫


e−ȳ/λ̄ dȳ = λ̄
(
−e−/λ̄�

)
≈ λ̄ [−] (3.1.4)

Since /λ̄ > ⇒ e−/λ̄ < .×−, the exponential term will be neglected.

3.1.2 Cosine term

The cosine terms in the flow profile equation (2.2.12) can be solved analytically as well, since ω̄ is always

multiplied by α,
√
αω̄ is substituted by Ω, the integration of the cosine terms then result in:

∫


cos
(√
αω̄(− ȳ)

)
cos(
√
αω̄)

dȳ =

∫


cos(Ω(− ȳ))
cos(Ω)

dȳ = tanc(Ω) [−] (3.1.5)

Where tanc is the defined by analogy with the sinc function1: tanc(x) =

  if x = 
tan(x)
x if n , 

which can

not be simplified any further.

1Wolfram

http://mathworld.wolfram.com/TancFunction.html
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3.1.3 Volumetric flow density

The simplified integrals (3.1.4) and (3.1.5) are used to evaluate the normalized flow density (2.4.2) and

results in:

Q∗(ω) =

∫


(
− iω∗

αω̄

)− cos
(√
αω̄(− ȳ)

)
cos

(√
αω̄

) 
+ Ēs(ω)

− iω∗

+αω̄λ̄

e−ȳ/λ̄−cos
(√
αω̄(− ȳ)

)
cos

(√
αω̄

) dȳ
=

(
− iω∗

Ω

)
(− tanc(Ω)) + Ēs(ω)

− iω∗

+Ωλ̄�

(
λ̄− tanc(Ω)

)
[−]

(3.1.6)

Since the resonance frequency is always around /
√
α, Ω will always be in the order of . λ̄ will always

be smaller than . and therefore the term Ωλ̄ <<  and thus will be neglected.

3.1.4 Streaming potential

In the streaming potential description (2.3.13) three integrals are present: ι, ι and ι, describing

the streaming (ι and ι) and conduction (ι) current. The first two can not be solved analytically and

will therefore be linearised (so, ψ̄(ȳ) = eȳ/λ̄ is assumed). ι is represents the current caused by the

movement of the liquid and therefore creates part of the streaming current:

ι(ω
∗) =
− iω∗

Ω

∫


(
−

cos(Ω(− ȳ)
cos(Ω)

)
ψ̄(ȳ)dȳ

=
λ̄(− iω∗)

Ω

cos(Ω)
(
Ωλ̄−e−/λ̄ �−Ωλ̄ e−/λ̄�

)
− λ̄Ωsin(Ω)+e−/λ̄�

cos(Ω)(+Ωλ̄�)
[−]

(3.1.7)

In the numerator of (3.1.7) some terms can be neglected: Ωλ e−/λ̄ << e−/λ̄ <<Ωλ and therefore

only the former (Ωλ̄) term is taken into account. The exponential term is also negligible: e−/λ̄ <<

cos(Ω)Ωλ̄ − λ̄Ωsin(Ω) and will be discarded. Regarding the denominator the same arguments as for

(3.1.6) hold and the Ωλ̄ term will be neglected as well.

The cosh term in (2.2.12) is caused by the double layer potential, so it will be replaced by (3.1.3), the

linearized double layer potential. ι is an integral which takes account for the flow in opposite direction of

the pressure gradient and the implications to the streaming potential. The simplification arguments of
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(3.1.7) are applied to (3.1.8) as well:

ι(ω
∗) =

− iω∗

+Ωλ̄

∫


(
ψ(ȳ)−

cos(Ω(− ȳ)
cos(Ω)

)
ψ̄(ȳ)dȳ

=−λ (− iω∗)
cos(Ω)

(

+

 e
−/λ̄ �+Ω

λ̄ e−/λ̄ �−Ω
λ̄�

)
+Ωλsin(Ω)−e−/λ̄�

cos(Ω) (+Ωλ�)
[−]

(3.1.8)

Disregarding these terms results in the following simplifications for ι and ι:

ι(ω
∗) ≈λ̄ (− iω∗)

(
λ̄ − λ̄ tanc(Ω)

)
=λ̄ (− iω∗)

(
λ̄ − λ̄ tanc

(√
αω∗ (i +ω∗)

))
[−]

(3.1.9)

ι(ω
∗) ≈− λ̄ (− iω∗)

(

+ λ̄Ω tan(Ω)

)
=− λ̄ (− iω∗)

(

+ λ̄

√
αω∗ (i +ω∗) tan

(√
αω∗ (i +ω∗)

))
[−]

(3.1.10)

The third integral, ι, describing the conduction current is defined as:

ι =

∫


cosh(ζ̄ψ̄(ȳ))dȳ

=λ̄
(
Chi

(
ζ̄
)
−Chi

(
ζ̄ e−/λ̄

))
[−]

(3.1.11)

Where Chi is the hyperbolic cosine integral function Chi(x) = γ + ln(x) +
x∫


cosh(t)−
t dt, where γ is the

Euler-Mascheroni constant (≈ .)2. The first order Taylor approximation of (3.1.11) around x =  for

large a is: Chi(x)−Chi(ax) ≈ − ln(a) 3. Since |ζ̄| <  and λ̄ < .⇒ e−/λ̄ < ×−, the following can be

assumed: ι ≈ −λ̄ ln(e−/λ̄) = λ̄/λ̄ = .

The streaming potential can now be described as a closed function of Ω or ω∗, only depending on J,

2NIST
3WolframAlpha

http://dlmf.nist.gov/6.2
http://www.wolframalpha.com/input/?i=Chi%28x%29-Chi%28x*a%29
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Du, λ̄ and α:

Ēs(ω
∗) =

ι(ω∗)
ι(ω∗) + J(ι +Du)

≈−
λ̄ (− iω∗)

(
λ̄ − λ̄ tanc(Ω)

)
λ̄ (− iω∗)

(

 + λ̄Ω tan(Ω)

)
+ J(+Du)

=−
λ̄ (− iω∗)

(
λ̄ − λ̄ tanc

(√
αω∗ (i +ω∗)

))
λ̄ (− iω∗)

(

 + λ̄

√
αω∗ (i +ω∗) tan

(√
αω∗ (i +ω∗)

))
+ J(+Du)

[−]

(3.1.12)

Where J the ratio of streaming versus conduction current and Du the Duhkin number describing the

surface conduction.

3.1.5 Efficiency from normalized parameters

The efficiency has be defined in 2.3.1 as ηef f =
Pelec
Phydr

= <Ic(ω)Es(ω)>t

<
dP (x,ω)
dx Q(ω)>t

using the known normalization

relations from page 11 all terms are made non dimensional:

ηef f (ω) =
Es(ω)Ic(ω)
dP (x,ω)
dx Q(ω)

=
Ēs
dP (x,ω)
dx H

εζ

σbĒs
dP (x,ω)
dx Hι

εζ


dP (x,ω)
dx

η

H
dP (x,ω)
dx Q∗(ω)

=
Hσbηι
εζ

Ēs (ω)
Q∗(ω)

=
Jι

λ̄
Ēs (ω)
Q∗(ω)

≈ J

λ̄
Ēs (ω)
Q∗(ω)

[−]

(3.1.13)

This relation can be used easier, since it uses dimensionless numbers and can therefore be used in

a vast range of systems. However, it is advisable to convert the dimensionless numbers back to real

numbers, so one knows in what order of magnitude the results are.

3.2 Actual parameter values
In order to make all the integrals which are calculated make sense, it is necessary to convert them back

into real world parameters and units. First, the streaming potential is revered using the relations on page
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11:

Es(ω
∗) = Ēs(ω

∗)
∂p(x,ω∗)
∂x

H

εζ
[V/m] (3.2.1)

The streaming current density is a function of the normalized streaming potential (Ēs(ω∗)), ι(ω∗) and

ι(ω∗). It is transformed back to amperes by dividing it by the normalization constant (Cnorm = J εζ
dp
dxH



σb

,

for more information: (B.1.3)) used in section B.1:

Is(ω
∗) =

ι(ω∗) + Ēs(ω∗)ι(ω∗)
Cnorm

[A/m] (3.2.2)

ι is found to be approximately  and therefore Ic becomes relatively easy and intuitively, namely: a

conductance times a electrical field:

Ic(ω
∗) =

JĒs(ω∗)ι
Cnorm

≈ σbEs(ω∗) [A/m] (3.2.3)

Also, the Dukhin current density has a sensible relation, since the Dukhin number is defined as a

factor of the conduction current it also appears as a fraction of the conduction current in the equations:

IDu(ω
∗) =

JĒsDu
Cnorm

= σbEs(ω
∗)Du ≈ Ic(ω∗)Du [A/m] (3.2.4)

The non dimensional flow profile can be scaled back to the actual flow profile using the following

relationship:

U (y,ω∗) =U ∗(y/H,ω∗)
∂P (x,ω∗)

∂x
H

η
[m/s] (3.2.5)

Subsequently the actual volumetric flow density can be found by multiplying Q∗(ω∗) by the same

factor as U ∗(ȳ,ω∗):

Q̄(ω∗) =Q∗(ω∗)
∂P (x,ω∗)

∂x
H

η
[m/s] (3.2.6)
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3.3 Reynolds number
In the The Reynolds number is a dimensionless number which indicates the ratio of inertial forces over

viscous forces and points out whether a flow will behave laminar or turbulent. It is defined as[17]:

Re =
ρumeanL

η
[−] (3.3.1)

where ρ [kg/m] is the density, umean [m/s] the mean velocity of the fluid, L [m] a characteristic length and

η [Pa s] the dynamic viscosity. For two parallel plates the characteritic length is H , with H [m] the half

height of the channel. The mean velocity is equal to the volumetric flow density umean(ω∗) =Q(ω∗) [m/s].

The dynamic viscosity is η, but since a viscoelastic fluid is used, the viscosity is frequency dependent.

Using the Maxwell model this results in the frequency dependent viscosity: η(ω∗) = η 
+ω∗ [26].

During the derivation of the equations of Bandopadhyay, a low Reynolds number is assumed, so a

laminar flow can be assumed. This will be checked in the results.

3.4 Non constant J
In Bandopadhyays work, it is assumed that the factor J (the ratio of streaming current and conduction

current) is constant with changing α and ω∗. However, α is dependent on the zero shear viscosity

η (α = ρH
ηtm ), J is also dependent on the viscosity (J = −σbηλ



εζ ) so it can change if α changes.

Bandopadhyay based his five α’s on two zero shear viscosities (η =×− and ×− Pa s) and

three time constants (tm =×−, ×− and ×− s). These α’s are calculated in table 3.4.1,

assuming H = ×−m and ρ = × kg/m3. Also, J is calculated, assuming the conductivity

of blood σb = .S/m [27], λ = ×−m, ε =  × .×−F/m and ζ = mV, resulting in

J = ×η. It can be seen that the factor J is more than a factor of ten higher than assumed in

Bandopadhyay’s paper.

Table 3.4.1: Comparisson of J and α, with Bandopadyay’s parameters, except for the first three rows
(marked with a *), which are added for comparison

tm/s η/Pa s α/− J/−

×−* ×−  −.×
×−* ×− ×− −.×
×−* ×− ×− −.×
×− ×− ×− −.×
×− ×− ×− −.×
×− ×− ×− −.×
×− ×− ×− −.×
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Since the viscosity changes with frequency, J could also change with frequency. The factor is defined

as a ratio between the a reference conduction current and a reference streaming current. In Newtonian

fluids these currents will also change with frequency, having a cut off frequency of η
Hρ in capillaries [9].

However, this is not further investigated.

3.5 Dukhin number
Until now, the Dukhin number is not taken into account in all calculations (as it was set to ). The

Dukhin number is a dimensionless number indicating the ratio between surface conduction and bulk

conduction and is defined as Du = σs/σbH , where σs [S] is the surface conductivity [28, 29]. According

to several sources [28, 14, 30] the specific surface conductance of a glass-water interface is ×− S

to ×− S meaning that in order to neglect the surface conductance (say, Du < .):

Hmin >
σs

Dumaxσb
= ×−/σb [m] (3.5.1)

3.6 Estimation of the optimal frequency

The efficiency is calculated from the dimensionless parameters using (3.1.13): J
λ̄

Ēs (ω)
Q∗(ω) and since J and

λ̄ are system parameters, the optimal frequency of the system occurs at either a high Ēs (high output

power) or a low Q∗ (low input power). If the real part of the denominator of Ēs is zero, Ēs will be highest.

Recalling 3.1.12, the denominator is given by: λ̄ (− iω∗)
(

 + λ̄Ω tan(Ω)

)
+ J(+Du) and the real part

will be zero if:

Ω tan(Ω) =
−J(+Du)−  λ̄

λ̄
[−] (3.6.1)

In the case of Bandopadyhyays assumptions (λ̄ = /, J = − and Du = ), this would result in

Ω tan(Ω) =  and is shown graphically in figure 3.6.1a, generally λ̄ will be smaller and both J and Du

higher than these assumptions, therefore this number (995) will only become higher. Since tan(x) has

asymptotes at x = k− π, it can be assumed that at <(Ω) ≈ k− π, with k = ,,, ... the streaming

potential will be highest. But, the simplifications made in the previous sections assumed that Ω was in

the order of  and therefore k =  will be taken as the frequency for the highest streaming potential.

The lowest flow will occur if the real part of the numerator of (3.1.6) is (almost) zero. This will be the
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case if

− tanc(Ω) = Ēs(Ω)(Ωλ̄−Ω tan(Ω)) [−] (3.6.2)

. This cannot be solved analytically, so it is plotted in figure 3.6.1b. It can be seen that despite the fact

that the streaming potential has its first maximum around π/, the first minimum for the flow is near π/.

Which can explain why there are double peaks after the first single efficiency spikes in figure 2.5.1a. A

problem with a high efficiency because of a very low flow is that, although the efficiency is high, due to

the low input power the output power will also be very low. So these peaks will not be used in further

analysis.
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− tanc(Ω) = Ēs(Ω)(Ωλ̄−Ω tan(Ω)), with

λ̄ = /,J = − and Du = 

Figure 3.6.1: Graphical representation of x tan(x) and − tanc(x)

3.7 Viscoelastic fluids
During this project viscoelastic fluids are concerned. Lots of viscoelastic fluids exist, the fluids which

will be used in this project need to have three main properties: a low conductivity (so it needs to be

non-ionic) to get a large Debye length; also, it needs to have a long relaxation time, which will result in

low resonance frequencies and low alpha’s; but, a low viscosity so it will easily flow into the channel and

the resonance frequency will be low as well. Therefore nonionic ‘living polymer’ solutions will be used,

which can be tuned by changing the concentration of the surfactants and additives [18, 31, 32].

3.8 Scaling problem
The conversion efficiency can be optimized in several ways: from a mechanical and manufacturing point

of view it would be optimal to work in low frequency ranges and large channels (easy to manufacture)



26 CHAPTER 3. MY COMMENTS ON THE WORK OF BANDOPADHYAY AND CHAKRABORTY

with liquids which have a low viscosity (so it is easy to (re)fill the device). But, for a high efficiency a low

α is needed and also λ̄ must not be too small. Therefore the height of the channel should be as low as

possible. Also the J parameter should be as small as possible, requiring a high conductivity (high salt

concentration) and a low Debye-length (low salt concentration) which results in an undesirable small λ̄.

Table 3.8.1: Dependencies of different parameters

Parameter α λ̄ J ωr Du range

Relation ρH
ηtm

√
εkBT

Hzen
−σbηλ



εζ
π
√
η

H
√
ρtm

σs
σbH

Optimum →  →∞ →  →  → 
H� →  →  →∞ →∞ nm−∞m
λ� →∞ →  .nm−nm
η →∞ →  →  ×−Pa s−Pa s[17, 31]
tm∝ η� →∞ →∞ << ms−s
σb ∝ n� →  → &→∞ →∞ .×−S/m[33]−S/m
ρ� →  →∞ ≈ × kg/m[17]
ε ∝ εr →∞ →∞ (εr =)F/m−F/m[17]
|ζ| →∞ mV−mV[11]

In table 3.8.1 the dependencies of all parameters are shown, the range in which they can be tuned

is also given. Conflicting parameters are shown in red and denoted with a diamond (�), whereas

non-conflicting are marked green.

Starting with the non conflicting parameters: the ζ-potential has to be as high as possible. However,

the proposed models only hold for low ζ-potentials so it could make the system working less effective

as well. Secondly, the permittivity, εr , should be as high as possible. However, water already has a

permittivity of F/m so the permittivity can only be increased by a factor of two. The relaxation time of

the liquid should also be as high as possible, resulting in a low operating frequency and a low inverse

Deborah number (α). A downside is that the relaxation time is related to the viscosity: one can imagine

that if it takes a long time for a liquid to relax it will be very viscous as well.

For the red parameters it is easiest to start with ρ, since it can not change very much it can not be

optimized. The maximum height H is given by λ, since the Debye length cannot be larger than µm

in water (ultra pure water has a pH of 7, so the concentration of ions is at least ×−mol/L, thus

λmax = .√
×−

≈ µm). However, additives are needed to make water viscoelastic, so the Debye

length will always be smaller than µm.

Then, the conductivity is an even harder nut to crack: in order to get a large Debye length, the salt

concentration should be as low as possible and thus the conductivity. Also for a low J a low conductivity

is preferred, but also a small Debye length. A very low conductivity will in the end be counteracted by the

surface conduction, so a minimum height is needed as well. Since a large normalized Debye length is
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preferred in general, the conductivity has be as low as possible (.×−S/m in water).

As a low α is needed to get a high efficiency, the viscosity should be high, however a high viscosity

results in a high driving frequency which is not very convenient using a high viscosity liquid. The J

parameter should be as low as possible and therefore the viscosity needs to be as low as possible

as well. In contrast to α and ωr , the J parameter is dependent on the frequency dependent since the

streaming potential and thus the conduction current will increase with higher viscosities see section B.1.

3.9 Addition of a load resistance
The work of Bandopadhyay and Chakraborty [10] is focussed on the conversion of hydrodynamic energy

into electrical energy. Whereas this thesis is aimed to use the hydrodynamic energy to power an external

device. In order to do that, an external load has to be added into the equations. This external load will

not affect the velocity profile substantially, but it will effect the electrical potential, which will become lower

due to the decrease of electrical resistance between both ports of the device. Also, the analysed current

will be the current through the load in stead of the conduction current (which therefore becomes a loss

factor). Kirchoff’s current law in (B.1.1) is expanded to:

A(Is + Ic + IDu + Il ) =  [A] (3.9.1)

where Il = Es/ρl is the current density trough the load (which area and length is defined equal to that of

the device, so ρl = RloadL/A), with the load resistivity ρl [Ω/m]. Following the procedure in section B.1 it

follows that:

Ēs =
−ι

ι + J(ι +Du + ι)
[−] (3.9.2)

where ι = 
σbρL

[−] is the non-dimensional current density trough the load and Il =
σbĒsι
Cnorm

A/m.

The efficiency is then defined as the current trough the load times the streaming potential over the

hydraulic input power:

ηload =
Ẽ(ω∗)Il (ω

∗)
dP
dxQ(ω∗)

=
JιĒ


s (ω
∗)

λ̄Q∗(ω∗)
[−] (3.9.3)

Jacobi’s law (1840) states that the maximum power transfer is achieved if the resistance of the source

is equal to the resistance of the load. This case if Rc = Rl and is depicted in figure 3.9.1. Until 1880 it

was thought that this was also the maximum power transfer efficiency. However, Edison then found that
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the maximum power transfer efficiency is achieved (in the case of a current source) if the load resistor is

much higher than the source resistor, for more information, see appendix C.
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Figure 3.9.1: Jacobi’s law (in blue) and the power efficiency (in green).

Therefore a trade-off has to be made in order to get either a high power or a high efficiency. So the

resistivity of the load resistor should be lower or at most equal to the resistivity of the channel.

3.10 Flowprofile
In figure 3.10.1 the flowprofile in the channel is given for different α’s, the double layer potential (ψ̄) is

plotted as well in order to show the effect of the flow velocity at different ȳ’s since the streaming current is

caused by the integral of the double layer times the flow velocity. A alternating pressure is applied from

top to bottom. The profiles are normalized such that the maximum flow is one.

In figure 3.10.1a a very low frequency is modelled (ω∗
√
α = ×−) and the profile has the same

shape for all α’s, so only the first is shown. It can be seen that the out of phase part (I) of the flow

is almost zero and the main part of the flow is caused by the in phase (R) pressure driven part U ∗p in

(2.2.13). The electro-viscous part U ∗E is close to zero as well.

The figures 3.10.1b to 3.10.1f are created at the frequency where the highest conversion energy is

available for that α so ω∗ ≈ π/
√
α. It can be seen that each α behaves differently.

A relatively high α (figure 3.10.1b, α = ) results in a relative increase of the out of phase part,

the electro-viscous effect is still negligible. If α is decreased to ×− (figure 3.10.1c) the out of
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phase parts begin to increase and the electro viscous effect (green) starts to play a significant role in

counteracting the pressure driven flow (blue) resulting in a lower net flow (red). One can observe that the

profile of the electro viscous effect is not as it is in Newtonian liquids with a constant pressure gradient,

in that case it would be a flat plug profile with smooth edges at the channel walls, as in figure 1.1.2.

In the next plot, figure 3.10.1d, it can be seen that the out of phase parts begin to increase, but almost

cancel out each other. An other peculiar phenomenon is that the electro viscous effect is getting most

significant for the total flow. And it is in an unexpected direction (it should counter-act the pressure driven

flow).

In the final two plots, figures 3.10.1e and 3.10.1f the out of phase flow decreases, but the in phase

flow even becomes negative at the edges and positive in the middle (relative to the applied pressure).

This will have a extensive influence on the calculation of the input power, which will be explained in the

next section.

3.11 Definition of the input power
The input power is poorly defined: it is defined as the integral of the flow profile, which indeed rep-

resents a flow. However, as became clear in figures 3.10.1e and 3.10.1f the flow profile can be both

negative and positive at the same time at different locations. And since the phase information will be

lost in the calculation of the efficiency anyway, the volumetric flow density should be calculated as:

Q̄∗
∫

|U ∗(ȳ,ω∗)|dȳ.
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(d) The flowprofile at the maximum conversion
efficency for α = ×−
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(e) The flowprofile at the maximum conversion
efficency for α = ×−
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Figure 3.10.1: Flowprofiles at the different frequencies with changing α, with the parameters λ̄ = /,
Du =  and J = −



4 Method

During all theoretical work a setup is constructed as well. The ultimate design is taken as a starting

point and gradually adapted into a more feasible design for a eight month project. Unfortunately no

experiments were conducted.

4.1 Ultimate setup
The ultimate setup would have the following properties:

No loss between pump and device

No noise (from the pump) into the device

No loss from current pick up

Frequency range Hz-MHz

Pressure actuated

Easy to change parameters

4.2 Realized design
Although the optimal design is not feasible to realize in seven months, a simpler setup is realized. The

setup consists of a small disposable microfluidic pump, a . cm capillary and two platinum electrodes

and is depicted in figure 4.5.1a.

4.2.1 Pump

The used pump is a BARTELS MIKROTECHNIK MP5, this pump consists of a channel which has a chamber

with a piezoelectric actuator on top of it, connected by a small hole. The channel normally has valves for

an unidirectional flow, but they are removed. A schematic overview of the working principle is given in

figure 4.2.1.

4.2.2 Electronics

The pump needs to be driven by a voltage source capable of driving frequencies between  and Hz

and voltages between  and V. These signals will be created by a voltage source which will be

connected to the jack plug attached to the pump.
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1.

2.

3.

4.

Figure 4.2.1: Working principle of the micropump 1. The piezoelectric material expands, so the
pumping chamber becomes larger and liquid will flow in. 2. At the maximum volume, the potential
over the piezoelectric material will decrease and the chamber will shrink. 3. The liquid flows back. 4.
The chamber is emptied and the voltage will increase. One cycle is finished. Picture is adapted from
www.bartels-mikrotechnik.de

The generated streaming current will be collected capacitively by two platinum wires. In order to do

that, the frequency needs to be higher than the cut-off frequency fco, which is dependent on the electrical

resistance of the liquid in the capillary (Rcap) and the double layer capacitance of the platinum wires

(Cdl ).

fco =


πRcapCdl
= . [µHz] (4.2.1)

4.2.3 Parameters

The parameters of the setup and for the experiments are listed in table 4.2.1

4.3 Analysis
To make an analysis, MilliQ water (Newtonian liquid) experiments are compared with water with added

sucrose palmitate (P  in [31]) and Brij™ L4 (CEO[31]) experiments.

4.4 Chemicals
In table 4.4.1, the used chemicals are listed.

http://www.bartels-mikrotechnik.de/images/stories/components/mp_pump%20principle%20(web)-160.jpg
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Table 4.2.1: Summary of the device parameters

Parameter Symbol Equation Value

Capillary radius r µm
Capillary length L . cm

Capillary volume Vcap V = πrL .µL=.mm

Pumping volume (V to V) Vpump .µL to .µL=.mm

to .mm

Total volume Vtot µL=mm

Dead volume Vdead Vtot −Vpump µL to µL=mm to
mm

Electrode radius relec .mm
Electrode length Lelec mm
Surface charge σq .F/m

Liquid conductivity σb .µS/cm=µS/m

Electrical resistance capillary Rcap
L

σbπr
 .GΩ

Double layer capacitance Cdl σqLelecπrelec .µF

Compressibility (Air; water) K ×− and .×− 1/Pa
Viscosity (Air; water and VE) η .,  and mPa s
Relaxation time (Water and VE) tm ×− and . s

Table 4.4.1: Used chemicals during the experiments including their concentration and supplier.

Chemical Solvent Concentration Supplier

Water (HO) âĂć âĂć âĂć
Brij™ L4 (Polyoxyethylene (4) lauryl ether) âĂć âĂć Sigma Aldrich
Sucrose Palmitate (CHO) âĂć âĂć Carbosynth

4.5 Filling of the device
Finding a method to fill the device was quite a challenge. The device can be filled with the use of a vacuum

and capillary forces. MEDIMATE B.V. had offered to help to fill the device, however the vacuum pump

was broken during the filling and at the time it was fixed no time was left to perform the measurements.

The device is inserted into a vacuum vessel, which is connected to a vacuum pump and evacuated.

At the top a liquid containing vessel is connected by a tap, which will be opened when the bottom vessel

and the measurement setup are evacuated, as is depicted in figure 4.5.1b. The liquid will enter the

device by capillary forces and, if the vacuum is removed, by an extra pressure difference of ≈ bar.

4.5.1 Evacuation time

The system consists of two hydraulic resistances: the capillary and the pump. Since the capillary radius

is a lot smaller than the pump thickness (r << t), its hydraulic resistance is most significant. And is given
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← Pump
← Electrode 2

← Capillary

Vessel 
↓

Connector →

↑
Electrode 1

(a) The device

Vacuu
m →

← Valve

← Liquid

← Device

← Air inlet

(b) The filling set up of the device

Figure 4.5.1: Two photogragraphs of the device and the filling setup

by the Hagen-Poiseuille equation[24]:

RH =
ηL
πr

[kg/(s m)] (4.5.1)

Where η is the viscosity, L the length of the capillary and r the radius of the capillary. For air, water and

VE this results in RH = .×, .× and .× Pa s/m.

During evacuation the pressure over the capillary becomes smaller and thus the evacuation of the

device slows down (∆P = Pe−t/τevac [Pa]). This is characterized by the hydraulic resistance and the

hydrodynamic capacitance: CH and is given by:

CH = KV [m/Pa] (4.5.2)

where K [1/Pa] is the compressibility of the fluid and V [m] the volume of the container. The evacuation

is of air, so CH = ×−m/Pa, this results in a characteristic ’RC time,’ τevac = RHCH of . s in air.

So, for an reduction of air to .% it takes t = −τevac ln(∆P /P) = −. ln(.) = .s.
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4.5.2 Filling time

At first, since no pressure difference is present, the capillary will be filled by capillary action. Capillary

action is caused by the decrease of surface energy. This force is transferred to pressure:

Fsurf ace = Cσs cosφ = πrσs cosφ [N] (4.5.3)

Psurf ace =
Fsurf ace

A
=
πrσs cosφ

πr
=
σs cosφ

r
[Pa] (4.5.4)

Where σst [N/m] is the surface tension, φ [◦] the contact angle and R [m] the radius of the capillary. So

Psurf ace =
××− cos()
×−

= .kPa = mbar, which is negligible compared to the bar atmospheric

pressure. To estimate the time it takes for the chip to fill, the hydraulic resistance of the capillary is

calculated for water, while the hydraulic capacitance of air is assumed. This lead to a filling time of  s.

4.6 Expected experimental results
Using the parameters chapter 4 and an η = .Pa s and a tm = ×− s a plot is made of the

expectations and shown in figure 4.6.1 and 4.6.1. It can be seen that the efficiency is below .%

which is quite low. The expected load current is around nA and the voltage kV at a frequency of

ωr ≈ π
tm
√
α
= krad/s = kHz and an input power of ×

−×
e− = .W, which will not be

feasible with the constructed device.

G/Pa tm/ s η/ Pa s α/− ω/−
.× .×− . .×− .×
.× .×− .× .×− .×
.× .×− .× .×− .×
.× .×− .× .×− .×
.× .×− . .×− .×
.× .×−* .×−* .×− .×*
.× .×− .×− .×− .×

Table 4.6.1: Measured relaxation times and viscosities by [31], α and ω are calculated with H = µm
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5 Results

In the previous chapters a difference between my and Bandopadhyay’s viewpoint became clear. In this

chapter these differences will be discussed.

5.1 Electrical double layer simplification
To validate the simplified models, a numerical parameter sweep is done to compare the simple models

(3.1.2) (ψ) and (3.1.3) (ψ) to the more extensive model proposed by Bandopadhyay (3.1.1) (ψ), the

results are shown in table 5.1.1 and it can clearly be seen that ψ̄ outperforms ψ̄ in estimating ψ̄, the

results are also included graphically in figure 5.1.1.

Table 5.1.1: Potential parameter sweep, with n = ,  ≤ ȳ ≤  and εjk =

n∑
i=
|ψk(ȳi )−ψj (ȳi )|

n∑
i=
|ψj (ȳi )|

× %

ζ̄ λ̄ ε/% ε/%

− . . .
− . . .
− .  
− . . .
− . . .
− .  
−  . .
−  . .
−  . .

5.2 Reynolds number
The Reynolds number is calculated for the default parameters Bandopadhyay uses and is plotted in

figure 5.2.1. It can be seen that the Reynolds number is far below 2300, so as expected an increase of

mean velocity or height will need to be dramatically in order to create a turbulent flow.
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5.3 Efficiency
This thesis is all about energy conversion efficiency, which will be discussed in this final results section.

First the simplifications made in the theory will be compared to Bandopadhyay’s results, then the effects

of the change of input power definition will be discussed and finally a load resistance will be added.

5.3.1 Simplification

The conversion efficiency of both the original model and the in section 3.1 proposed simplifications is

shown in figure 5.3.1. It can be seen that the simplifications work well around the first resonance peak.

However, in the second region they are less accurate for the lower α’s, which makes sense since the

neglected Ω and thus the Ω terms become larger with increasing frequency and therefore are not

negligible any more compared to . From now on only the first resonance peak is taken into consideration

during the comparison.

0.5 0.6 0.7 0.8 0.9 1 2 3 4
0

0.2

0.4

0.6

0.8

1
Conversion efficiency with(out) simplifications

Frequency /2ω*α1/2π-1

η co
nv

 /-

 

 
α=1e+00
α=1e-02
α=1e-04
α=1e-06
α=1e-08

Figure 5.3.1: Comparison of the simplified conversion efficiency (solid lines) and Bandopadhyay’s
conversion efficiency (dashed lines) for different α’s. Other parameters are: λ̄ = /, J = −, Du = .

5.3.2 Comparison between Bandopadhyay’s and my theory

Some assumptions of Bandopadhyay need to have some extra nuances, which will be discussed in

this section. First, the Dukhin number is checked, then the factor J is investigated and finally the

consequences of the new definition of the input power is discussed.
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Dukhin number

In (3.5.1) the minimum height of the channel to neglect the surface conduction current was defined as

Hmin > ×−/σb m, as the conductivity for Bandopadhyay’s application is .S m[27] the minimum

height has to be Hmin = nm, which is slightly bigger than the height he uses (nm) so the Dukhin

number roughly negligible. However, red blood cells are responsible for the viscoelasticity of the blood[34]

but are too big (≈  µm to µm[35]) to fit inside the channel, let alone to behave viscoelastic. So in

order to make the proposed device work with blood, the dimensions should be reconsidered.

New input power definition

In figure 5.3.2 the calculated conversion efficiency is shown using the absolute flow as input power. As

was expected, the efficiency has dropped using the new definition for input power. Except for the peak

with the low α.
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Figure 5.3.2: The resulting graphs after changing the definition of input power (solid) and the simplified
conversion efficiency defined by Bandopadhyay. λ̄ = /, J = −, Du = 

Dependency of J on the viscosity and the frequency

The estimated efficiencies of α and J proposed in table 3.4.1 are shown in figure 5.3.3. As can be seen

in all cases, if α =  the conversion efficiency is not noticeable.

Figure 5.3.3a shows comparable peaks as Bandopadhyay’s theory, however the resonance frequency

has shifted more towards tm
√
α/π and the peaks become narrower. Which both can be explained by

the increase in J and therefore an increase in the frequency where the real part of the numerator of

(3.6.1) becomes higher.
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The frequency dependent J factor introduces an extra shift in resonance frequency and widens the

peaks. It seems that an α of ×− would be optimal, however this would mean a resonance frequency

of ωr ≈ π
tm
√
α
= Mrad/s→ fr = .MHz. Which is, in my opinion, not feasible.

In figure 5.3.3c and 5.3.3d the input power is defined as the integral of the absolute value of the flow

profile times the pressure. It can be seen that the maximum efficiency is roughly cut in half and the

resonance peaks now have become minima.
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Figure 5.3.3: Four graphs showing the impact of the new definitions of J and the new definition of the
input power. λ̄ = / and Du = .
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5.3.3 Load resistance

A load resistor sweep is made in five different conditions: J = −, J = J with(out) an absolute flow,

J = J(ω∗) with(out) an absolute flow. It is expected that the load efficiency is half the conversion

efficiency if the load resistivity is equal to the internal resistivity of the channel. In figure 5.3.4 plots

are made of both the conversion efficiency (independent of the load resistance, dashed line) and the

load efficiency as function of the load resistivity (ρload = RloadA/m [Ωm]) normalized by the channel

resistivity (ρchannel = /σb [Ωm]). As well as the frequency at which the highest efficiency is expected.

In figure 5.3.4a it can be seen that if Bandopadhyay’s model is used, two plots (red and cyan) are

obscured since another plot with the same value of α is present. Also, the maximum load efficiency is

near the maximum of the conversion efficiency. In figure 5.3.4b the frequency shifts towards a higher

plateau at the point that the resistivity of the load is equal to the resistivity of the channel. This plateau is

equal to the frequency at which an unloaded device works. Which is as expected, since a a high load

resistance will not influence the device as it behaves as an open terminal.
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Figure 5.3.4: The efficiency and optimum frequency as a function of ρload /ρchannel with parameters
λ̄ = / and Du = 
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Figure 5.3.4c on the next row has different J parameters as is explained in section 3.4. The only

system that does not change, compared to figure 5.3.4a is the red line, since it still has J = −, all other

lines have decreased a lot. The normalized frequency for maximum efficiency has become closer to 1,

as can be seen in figure 5.3.4d. Which is in agreement with figure 5.3.3a.

The results of changing the definition of input power with constant J’s are plotted in figure 5.3.4e. It

can be seen that the load efficiency has decreased, as is expected. The frequencies in 5.3.4f deviate

more from the normalized frequency if J decreases.

In figure 5.3.3g and 5.3.3i the bell shaped plots have changed appearance. Probably this is due to

the extra frequency dependence introduced by the frequency dependent J. This can also be seen in the

frequency plots in figures 5.3.3h and 5.3.3j.

For now it is difficult to say what system is correct, but I would say the system with constant J and

absolute flow (figure 5.3.4e). The maximum achievable conversion efficiency using Bandopadhyay’s

parameters is % (purple), since the red line is not considered by Bandopadhyay. This would lead to an

operating frequency of ωr ≈ π
tm
√
α
= .Mrad/s = kHz.



6 Conclusions

In this chapter the goals of this project are compared to the results which are obtained.

6.1 Findings
The goal of this project was to see if the predictions Bandopadhyay made are feasible and to understand

and verify his theories. The theories are re-investigated and the results appeared to be overestimated,

due to assumptions which could be to simplistic. Not only because the theory only holds for the conversion

from hydraulic to electric power and not for the harvesting of power, but also because of the fact that the

predictions were overestimated, because of a poorly defined input power.

During this project the complexity of not only the mathematics, but especially the physical meaning

became clear. After seven months of investigation; looking for similar papers and experiments; and

thinking of comparable systems it still is partly obscured. The models of Bandopadhyay are explored,

torn apart and put together again to find a more realistic model.

Because of the dependence of all parameters it is hard to create a framework which will provide a

short list of design rules. All changes in the parameters for Bandopadhyay’s model resulted in lower

conversion efficiencies, so I think the proposed system is the optimized version and can not be optimized

further.

The found conversion efficiency for the proposed system by Bandopadhyay is found to be %, the

maximum load efficiency for the same system is % at kHz. Which is in big contrast with the claimed

conversion efficiency of % and subsequently an load efficiency of %.

An experimental set up has been designed and constructed, however because of a deficient planning

and a broken pump no measurements were conducted. Probably the designed set up would not have

worked, since the frequencies needed for the available viscoelastic fluid are to high for the small pump.

Also, the viscosity of the liquid is probably to high for the small capillaries.

Therefore the theoretical paper which had to be converted into a practical paper is now analysed

thoroughly and the bright prospects are tampered.
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6.2 Limitations
Since the theoretical work is based on the Maxwell model, which is only valid for low shear rates, the

efficiencies might not be as high as expected since the model is not valid any more. Also, the theoretical

work is created for rectangular channels, whereas the device is made of a round capillary. This could

influence the calculations, but probably in a positive way since the surface/volume ratio is higher.

6.3 Future work
This project can be prolonged by trying to find the physical phenomena which take part in the system

and create a physical picture of it. This can be done by someone in the field of physics of fluids and has

more experience with viscoelasticity. The equations can be mastered with time, but a gut feeling about

what happens physically will take hands on experience on macro, micro and probably even nanoscale. 1

A Buckingham-π analysis can also give more insight in the subject and possibly reduce the complexity

and the number of parameters. However, since everything is already normalized I guess it is already be

done by Bandopadhyay.

1In order to get more insight in the flow profiles, one should look at Casanellas paper[36], which I found during my research but
did not understand, on the final day of my thesis I re-found it and I think it is very useful for understanding.
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A Abbreviations, Definitions and Symbols

A.1 Abbreviations
EDL Electrical Double Layer

EOF Electro Osmotic Flow

PDF Pressure Driven Flow

A.2 Definitions
Deborah number The Deborah number is inten-

ded to describe the extend to which the

response of a material to a deformation is

viscoelastic rather than purely viscous[25].

Debye length In the Debye-HÃijckel theory of

ionic solutions, the effective thickness of

the cloud of ions of opposite chargewhich

surrounds each given ion and shields the

Coulomb potentialproduced by that ion[17].

Reynolds number A dimensionless quantity used

in fluid mechanics, defined by Re = ρuL/η,

where ρ is density, u is velocity, L is length,

and η is viscosity[17].

ζ potential The electric potential at the surface of

a colloidal particle relative to the potential

in the bulk medium at a long distance. Also

called electrokinetic potential[17].

A.3 Dimensional symbols
Cnorm Normalization constant J εζ

dp
dxH



σb

[m/A]

e Electron charge [.×−C]

Es Streaming potential field [V/m]

ε permittivity of the fluid [F/m]

H Channel half height [m]

Ic Bulk conduction current density [A/m]

IDu Stern-layer conduction current density

[A/m]

Is Streaming current density[A/m]

λ Debye length [m]

kB Boltzman constant [.×− J/K]

n± Ionic number [1/m]

n Bulk ionic concentration [1/m]

ω Frequency [rad/s]

dp/dx Pulsating pressure gradient amplitude

[Pa/s]

ψ Electrical potential distribution within the

EDL [V]

Q Volumetric flow density [m/s]

u Velocity field [m/s]

U Fourier transformed velocity field [m/s]

ρe Volumetric charge density [C/m]

σb Bulk conductivity [S/m]

σst Stern-layer conductivity [S/m]

T Absolute temperature [K]

tm Relaxation time [s]

VT Thermal voltage kBT
e = mV

y Distance from the wall [m]

ζ Zeta potential [V]

z Valence [−]
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A.4 Non dimensional and di-

mensionless symbols

α Inverse Deborah number ρH


ηtm
[−]

Ēs Non-dimensional streaming potential [−]

J Reference current ratio [−]

λ̄ Non-dimensional Debye length λ
H [−]

ηef f Conversion efficiency [−]

ω∗ Non-dimensional frequency: ωtm[−]

U ∗ Non-dimensional velocity fieldU η
∂P /∂xH [−]

ψ̄ Non-dimensional electrical potential distri-

bution: ψ/ζ[−]

ȳ Non-dimensional distance from the wall
y
H [−]

ζ̄ Non-dimensional Zeta potential: zeζ
kBT

=

zζ
VT

[−]



B Derivation of equations

B.1 Calculation of the streaming potential
This section elaborates upon the calculation of the electrical field by Bandopadhyay and Chakraborty[10],

it starts with Kirchhoff’s current law:

A(Is + Ic + IDu) =  [A] (B.1.1)

The current relations (2.3.5), (2.3.9) and (2.3.10) are plugged into equation (B.1.1):

zen

H∫


sinh
(
z
VT

ψ(y)
)
U (y,ω)dy +Es(ω)σb

H∫


cosh
(
z
VT

ψ(y)
)
dy +Es(ω)σbDu =  [A/m] (B.1.2)

This equation is multiplied by the normalization constant:

Cnorm =
ηkBT

dpdxH
nζze

= J
εζ

dp
dxH




σb

[m/A] (B.1.3)

, with J [−] the fraction of reference streaming current (Ic,ref [A]) versus reference conduction current

(Is,ref [A]):

J =
Ic,ref
Is,ref

=
AzeEref n/f

−AzenUref ζ/kBT
=
zeUref ηnσb/nz

eεζ

−zenUref ζ/kBT
= −

σbηλ


εζ
[−] (B.1.4)

where Uref [m/s] is the reference velocity field, Eref =Uref η/εζ [V/m] the reference voltage field and

f = nez/σb [kg/s] the ionic friction factor , (B.1.2) then becomes:

H∫


U (y,ω)η
dp
dxH



kBT
ζze

sinh
(
z
VT

ψ(y)
)
dy + J

Es(ω)εζ
dp
dxH



H∫


cosh
(
z
VT

ψ(y)
)
dy + JDu

Es(ω)εζ
dp
dxH


=  [−] (B.1.5)

Using the known normalization parameters it is then nondimensionalized into:

∫


U ∗(ȳ,ω)
sinh(ζ̄ψ̄(ȳ))

ζ̄
dȳ + JĒs(ω)

∫


cosh(ζ̄ψ̄(ȳ))dȳ + JDuĒs(ω) =  [−] (B.1.6)
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U ∗(ȳ,ω) consists of two parts: one is independent of the streaming potential (the pressure driven

flow part, U ∗p(ȳ,ω)) and one part is dependent of the streaming potential (the electroviscous part,

U ∗Es (ȳ,ω) = Ēs(ω)U
∗∗
Es

(ȳ,ω)) [37]. Splitting these two parts results the following relation with four terms:

∫


U ∗p(ȳ,ω)
sinh(ζ̄ψ̄(ȳ))

ζ̄
dȳ + Ēs(ω)

∫


U ∗∗Es (ȳ,ω)
sinh(ζ̄ψ̄(ȳ))

ζ̄
dȳ+

JĒs(ω)

∫


cosh(ζ̄ψ̄(ȳ))dȳ + JDuĒs(ω) =  [−]

(B.1.7)

Which is simplified into:

ι + Ēsι + JιĒs + JDuĒs =  [−] (B.1.8)

where ι =
∫

U ∗p(ȳ,ω)

sinh(ζ̄ψ̄(ȳ))
ζ̄

dȳ, ι =
∫

U ∗∗Es (ȳ,ω)

sinh(ζ̄ψ̄(ȳ))
ζ̄

dȳ and ι =
∫

cosh(ζ̄ψ̄(ȳ))dȳ, to obtain the

streaming potential, it is rearranged to:

Ēs =
−ι

ι + J(ι +Du)
[−] (B.1.9)



C Jacobi’s law

C.1 Maximum power transfer
The current through the load is:

Il = Vs/Rl [A] (C.1.1)

and the voltage over the load is:

Vl = Is
RcRl
Rc +Rl

[V] (C.1.2)

The load power is can then be calculated as:

Pl = IlVs = V
/Rl = I


s

(
RcRl
Rl +Rc

)
/Rl =

Rc
Rc /Rl + Rc +Rl

[W] (C.1.3)

Which is maximum if Rl = Rc, so at that point the maximum power transfer is available.

C.2 Maximum power transfer efficiency
The maximum power transfer efficiency is defined as:

ηp =
Pl
Ptot

=
Pl

Pc + Pl
=

V s /Rl
V s /Rl +V


s /Rc

=
Rc

Rl +Rc
[−] (C.2.1)

which is maximum if Rl >> Rc.
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Rc Rl

IlIc
-
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+

Figure C.1.1: The electrical model of the system
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D Matlab functions
In this chapter the used MATLAB functions are presented.

D.1 Bandopadhyay model

1 f u n c t i o n [ I1 , I2 , I3 , EsBar ,Q, psi , sqrtAlphaOmega_ ]= BandopadhyayModelFreq (omega , alpha ,
lambdaBar , zeta , J , Du, dy )

% omega=omega*
3 % omega_=omegaBar

y =0: dy : 1 ;
5 omega_=1 i *omega+omega . ^ 2 ;

7 % s t a r t c a l c u l a t i o n s
ps i=cosh ( ( y−1) / ( lambdaBar ) ) / cosh ( 1 / lambdaBar ) ;

9 % ps i=exp(−y / lambdaBar ) ;
I1=zeros ( s ize (omega) ) ;

11 I2=zeros ( s ize (omega) ) ;
I3=zeros ( s ize (omega) ) ;

13 C1=(1−1 i *omega) . / ( alpha *omega_) ;
C2=(1−1 i *omega) . / ( 1 + alpha *omega_ * ( lambdaBar ) ^2) ;

15 sqrtAlphaOmega_= s q r t ( alpha *omega_) ;
cosSqrtAlphaOmega_=cos ( sqrtAlphaOmega_ ) ;

17 p a r f o r i =1: leng th ( y )
dI1=C1. * (1 − ( cos ( sqrtAlphaOmega_ *(1−y ( i ) ) ) ) . / cosSqrtAlphaOmega_ ) * ps i ( i ) ;

19 I1= I1+dI1 * dy ;
dI2=C2 . * ( ps i ( i ) −( cos ( sqrtAlphaOmega_ * ( y ( i ) −1) ) ) . / cosSqrtAlphaOmega_ ) * ps i ( i ) ;

21 I2= I2+dI2 * dy ;
dI3=cosh ( zeta * ps i ( i ) ) ;

23 I3= I3+dI3 * dy ;
end

25 EsBar=− I1 . / ( I2+J * ( I3+Du) ) ;

27 Q=zeros ( s ize (omega) ) ;
f o r i =1: leng th ( y )

29 dQpdf=C1. * (1 − ( cos ( sqrtAlphaOmega_ *(1−y ( i ) ) ) ) . / cosSqrtAlphaOmega_ ) ;
dQeof=EsBar . * C2 . * ( ps i ( i ) −( cos ( sqrtAlphaOmega_ * ( y ( i ) −1) ) ) . / cosSqrtAlphaOmega_ ) ;

31 dQ=dQpdf+dQeof ;
Q=Q+dQ* dy ;

33 end
end

D.2 Simplified Bandopadhyay model

f u n c t i o n [ I1 , I2 , I3 ,E,Q,Omega]= BandopadhyayModelFreqSimple (omega , alpha , lambdaBar , J , Du, I4 )
2 narginchk (4 ,6 )

i f narg in==4
4 Du=0;

end
6 i f narg in==5

I4 =0;
8 end

Omega= s q r t ( alpha * (1 i *omega+omega . ^ 2 ) ) ;
10 I1=lambdaBar *(1−1 i *omega) . * ( lambdaBar^2− lambdaBar . * tanc (Omega) ) ;

I2=−lambdaBar *(1−1 i *omega) . * ( 1 / 2 + lambdaBar *Omega . * tan (Omega) ) ;
12 I3 =1*ones ( s ize (omega) ) ;

E=− I1 . / ( I2+J . * ( I3+Du+ I4 ) ) ;
14 Q=(1−1 i *omega) . / Omega.^2 . * (1 − tanc (Omega) ) . . .

+E.*(1 −1 i *omega) . * ( lambdaBar− tanc (Omega) ) ;
16 end
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D.3 Bandopadhyay model with absolute flow

f u n c t i o n [ I1 , I2 , I3 , EsBar ,Q, psi ,Omega]= BandopadhyayModelFreqQabs (omega , alpha , lambdaBar , zeta
, J , Du, dy , I4 )

2 % omega=omega*
% omega_=omegaBar

4 narginchk (2 ,8 ) ;
i f nargin <3

6 lambdaBar =0 .1 ;
end

8 i f nargin <4
zeta=25e−3;

10 end
i f nargin <5

12 J=−10;
end

14 i f nargin <6
Du=0;

16 end
i f nargin <7

18 dy =0.001;
end

20 i f nargin <8
I4 =0;

22 end
y =0: dy : 1 ;

24 Omega= s q r t ( alpha * (1 i *omega+omega . ^ 2 ) ) ;

26 % s t a r t c a l c u l a t i o n s
ps i=cosh ( ( y−1) / ( lambdaBar ) ) / cosh ( 1 / lambdaBar ) ;

28 % ps i=exp(−y / lambdaBar ) ;
I1=zeros ( s ize (omega) ) ;

30 I2=zeros ( s ize (omega) ) ;
I3=zeros ( s ize (omega) ) ;

32 C1=(1−1 i *omega) . / ( Omega. ^ 2 ) ;
C2=(1−1 i *omega) . / ( 1 +Omega. ^ 2 * ( lambdaBar ) ^2) ;

34 cosOmega=cos (Omega) ;
p a r f o r i =1: leng th ( y )

36 dI1=C1. * (1 − ( cos (Omega*(1−y ( i ) ) ) ) . / cosOmega) * ps i ( i ) ;
I1= I1+dI1 * dy ;

38 dI2=C2 . * ( ps i ( i ) −( cos (Omega* ( y ( i ) −1) ) ) . / cosOmega) * ps i ( i ) ;
I2= I2+dI2 * dy ;

40 dI3=cosh ( zeta * ps i ( i ) ) ;
I3= I3+dI3 * dy ;

42 end
EsBar=− I1 . / ( I2+J . * ( I3+Du+ I4 ) ) ;

44
Qpdf=zeros ( s ize (omega) ) ;

46 Qeof=zeros ( s ize (omega) ) ;
f o r i =1: leng th ( y )

48 Updf=C1. * (1 − ( cos (Omega*(1−y ( i ) ) ) ) . / cosOmega) ;
Ueof=EsBar . * C2 . * ( ps i ( i ) −( cos (Omega* ( y ( i ) −1) ) ) . / cosOmega) ;

50 Qpdf=Qpdf+abs ( Updf ) * dy ;
Qeof=Qeof+abs ( Ueof ) * dy ;

52 end
Q=( Qpdf+Qeof ) ;

54 end
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D.4 Simplified Bandopadhyay model with absolute flow

f u n c t i o n [ I1 , I2 , I3 ,E,Q,Omega]= BandopadhyayModelFreqSimpleAbs (omega , alpha , lambdaBar , J , Du, I4
)

2 narginchk (4 ,6 )
i f narg in==4

4 Du=0;
end

6 i f narg in==5
I4 =0;

8 end
Omega= s q r t ( alpha * (1 i *omega+omega . ^ 2 ) ) ;

10 I1=lambdaBar *(1−1 i *omega) . * ( lambdaBar^2− lambdaBar . * tanc (Omega) ) ;
I2=−lambdaBar *(1−1 i *omega) . * ( 1 / 2 + lambdaBar *Omega . * tan (Omega) ) ;

12 I3 =1*ones ( s ize (omega) ) ;
E=− I1 . / ( I2+J . * ( I3+Du+ I4 ) ) ;

14 Q=abs ((1−1 i *omega) . / Omega.^2 . * (1 − tanc (Omega) ) ) . . .
+abs (E.*(1 −1 i *omega) . * ( lambdaBar− tanc (Omega) ) ) ;

16 end

D.5 Bandopadhyay model with an load resistance

f u n c t i o n [ i1 , i2 , i3 , EsBar ,Q, ps i ]= BandopadhyayModelFreqLoad (omega , alpha , lambdaBar , zeta , J , Du,
i4 , dy )

2 % omega=omega*
% omega_=omegaBar

4 y =0: dy : 1 ;
omega_=1 i *omega+omega . ^ 2 ;

6
% s t a r t c a l c u l a t i o n s

8 ps i=cosh ( ( y−1) / ( lambdaBar ) ) / cosh ( 1 / lambdaBar ) ;

10 i 1 =zeros ( s ize (omega) ) ;
i 2 =zeros ( s ize (omega) ) ;

12 i 3 =zeros ( s ize (omega) ) ;
C1=(1−1 i *omega) . / ( alpha *omega_) ;

14 C2=(1−1 i *omega) . / ( 1 + alpha *omega_ * ( lambdaBar ) ^2) ;
sqrtAlphaOmega_= s q r t ( alpha *omega_) ;

16 cosSqrtAlphaOmega_=cos ( sqrtAlphaOmega_ ) ;
p a r f o r i =1: leng th ( y )

18 dI1=C1. * (1 − ( cos ( sqrtAlphaOmega_ *(1−y ( i ) ) ) ) . / cosSqrtAlphaOmega_ ) * ps i ( i ) ;
i 1 = i 1 +dI1 * dy ;

20 dI2=C2 . * ( ps i ( i ) −( cos ( sqrtAlphaOmega_ * ( y ( i ) −1) ) ) . / cosSqrtAlphaOmega_ ) * ps i ( i ) ;
i 2 = i 2 +dI2 * dy ;

22 dI3=cosh ( zeta * ps i ( i ) ) ;
i 3 = i 3 +dI3 * dy ;

24 end
EsBar=− i 1 . / ( i 2 +J * ( i 3 +Du+ i 4 ) ) ;

26
Q=zeros ( s ize (omega) ) ;

28 p a r f o r i =1: leng th ( y )
dQ=C1. * (1 − ( cos ( sqrtAlphaOmega_ *(1−y ( i ) ) ) ) . / cosSqrtAlphaOmega_ ) + . . .

30 EsBar . * C2 . * ( ps i ( i ) −( cos ( sqrtAlphaOmega_ * ( y ( i ) −1) ) ) . / cosSqrtAlphaOmega_ ) ;
Q=Q+dQ* dy ;

32 end
end
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D.6 Flow profile using the Bandopadhyay model

1 f u n c t i o n [ I1 , I2 , I3 , EsBar , Updf , Ueof , ps i ]= BandopadhyayModelFlow (omega , alpha , lambdaBar , zeta , J
, Du, dy )

y =0: dy : 1 ;
3 %omega = omegaStar ;

omega_=1 i *omega+omega . ^ 2 ;%omega bar
5

% s t a r t c a l c u l a t i o n s
7 ps i=cosh ( ( y−1) / ( lambdaBar ) ) / cosh ( 1 / lambdaBar ) ;

9 I1=zeros ( s ize (omega) ) ;
I2=zeros ( s ize (omega) ) ;

11 I3=zeros ( s ize (omega) ) ;
C1=(1−1 i *omega) . / ( alpha *omega_) ;

13 C2=(1−1 i *omega) . / ( 1 + alpha *omega_ * ( lambdaBar ) ^2) ;
sqrtAlphaOmega_= s q r t ( alpha *omega_) ;

15 cosSqrtAlphaOmega_=cos ( sqrtAlphaOmega_ ) ;
f o r i =1: leng th ( y )

17 dI1=C1. * (1 − ( cos ( sqrtAlphaOmega_ *(1−y ( i ) ) ) ) . / cosSqrtAlphaOmega_ ) * ps i ( i ) ;
I1= I1+dI1 * dy ;

19 dI2=C2 . * ( ps i ( i ) −( cos ( sqrtAlphaOmega_ * ( y ( i ) −1) ) ) . / cosSqrtAlphaOmega_ ) * ps i ( i ) ;
I2= I2+dI2 * dy ;

21 dI3=cosh ( zeta * ps i ( i ) ) ;
I3= I3+dI3 * dy ;

23 end
EsBar=− I1 . / ( I2+J * ( I3+Du) ) ;

25
Updf=zeros ( leng th (omega) , leng th ( y ) ) ;

27 Ueof=Updf ;
f o r i =1: leng th (omega)

29 Updf ( i , : ) =C1( i ) *(1−cos ( sqrtAlphaOmega_ ( i ) *(1−y ) ) / cosSqrtAlphaOmega_ ( i ) ) ;
Ueof ( i , : ) =EsBar ( i ) *C2( i ) * ( ps i −cos ( sqrtAlphaOmega_ ( i ) * ( y−1) ) / cosSqrtAlphaOmega_ ( i ) ) ;

31 end
end

D.7 Flow profile using the simplified Bandopadhyay model

f u n c t i o n [ I1 , I2 , I3 , EsBar , Updf , Ueof , ps i ]= BandopadhyayModelSimpleFlow (omega , alpha , lambdaBar ,
J , Du, dy )

2 y =0: dy : 1 ;
%omega = omegaStar ;

4 omegaBar=1 i *omega+omega^2 ;%omega bar
Omega= s q r t ( alpha *omegaBar ) ;

6 % s t a r t c a l c u l a t i o n s
%ps i=cosh ( ( y−1) / ( lambdaBar ) ) / cosh ( 1 / lambdaBar ) ;

8 ps i=exp(−y / lambdaBar ) ;

10
I1=zeros ( s ize (omega) ) ;

12 I2=zeros ( s ize (omega) ) ;
I3=zeros ( s ize (omega) ) ;

14 C1=(1−1 i *omega) / ( Omega^2) ;
C2=(1−1 i *omega) / ( 1 + (Omega* lambdaBar ) ^2) ;

16 cosOmega=cos (Omega) ;
I1=sum(C1*(1 − ( cos (Omega*(1−y ) ) ) / cosOmega) . * ps i ) * dy ;

18 I2=sum(C2* ( psi −( cos (Omega* ( y−1) ) ) / cosOmega) . * ps i * dy ) ;
I3 =1;

20 EsBar=− I1 . / ( I2+J * ( I3+Du) ) ;

22 Updf=C1*(1−cos (Omega*(1−y ) ) / cosOmega) ;
Ueof=EsBar *C2* ( psi −cos (Omega* ( y−1) ) / cosOmega) ;

24 end
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