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Summary

The aim of this project is to optimize software design of Embedded Control Software (ECS) us-
ing the Production Cell demonstration setup in combination with the CSP-based design frame-
work TERRA/LUNA (2015).

It is carrying on the proof-of-concept work of Bezemer (2013) and Hoogendijk (2013) as well
as provide improved concepts and implementations that are supposed to overcome the limit-
ations of previous design approaches.

The chosen ECS target (Production Cell Setup) represents the trend of growing needs for more
design flexibility and distributed cyber-physical platforms. Additionally, an emphasis is put on
energy-efficient software as it is a growing demand in this industrial area.

ECS design frameworks like TERRA/LUNA try to incorporate those trends and requirements
by supporting the model-driven design (MDD) idea and leaving the actual implementation
(i.e. code generation) to automated routines. This enables the designer not only to get fast
test results from model simulations but also to explore more design-space combinations or to
detect design flaws at an early stage.

The first part of this project consists of an analysis of the existing work resulting in a selection of
optimization criteria. Special attention is given to real-time reliability and design correctness
(i.e. by taking full advantage of formal model checking techniques). But also software debug-
ability (incl. adaptability for performance measure), execution efficiency and performance-
adjustments (i.e ability to adopt/optimize generated software) of the ECS are evaluated regard-
ing their relevance to the optimization goal.

The results are incorporated into the requirement analysis and used for the design-space ex-
ploration in order to decide upon the hardware and software resource allocation. At the end of
the first part a design proposal is given how to create an optimized ECS. The to-be proposed
approach should incorporate the ideas of the GAC concept with the Way-of-Working of the
TERRA/LUNA framework.

The second part of the project is committed to the practical implementation of the design.
The goal could be achieved to provide a tool-native ECS design template for a model-driven
software project that is applicable to different kinds of mechanical plants – not only the given
Production Cell Setup. The template reflects the (in the first part) identified optimization po-
tentials of previous studies while maintaining most of the recommended Way-of-Working prin-
ciples. Although not as generic as Hoogendijk (2013)’s approach, it still enables future engin-
eers to create easily customized embedded control software that should meet all typical ECS
requirements.

Finally an evaluation is given of the project itself as well as the utilized design framework and
Way-of-Working. This comprises general ideas of improvement and further recommenda-
tions on how to increase functional scope, especially regarding reliability verification issues
like formal model checking and real-time execution.

Robotics and Mechatronics Frank Trillhose
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"A smart machine will first consider which is more worth its while:
to perform the given task or, instead, to figure some way out of it."

– Stanisław Lem (The Futurological Congress, 1971)
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Abbreviations

Abbr. Explanation Comment
{...}s Plural form of the given [abbreviation] e.g. "bufs" (for buffers)
5C Separation of concern principle in CPS Klotzbucher, et al (2013) define 5

functional concerns to be addressed
separately

BUF Buffer e.g. "COM_buf"
COM Communication e.g. "COM port"
CPS Cyber-Physical System a.k.a. "Embedded System"
CSP Communicating Sequential Processes Formal modeling language
CTRL Control e.g. "sys_ctrl"
CTXT Context e.g. "CTXT sws"
DSE Design Space Exploration Engineering technique
DSP Digital Signal Processor Dedicated to massively parallelized

tasks
ECS Embedded Control Software SW that is supposed to control a CPS
FDR Failures-Divergence Refinement Formal model checking tool
FoM Figure of Merit Quantity used to characterize the per-

formance of a device
FSM Finite State Machine SW modeling technique
GAC Generic Architecture Component SW design modeling pattern
HRT Hard Real-Time (see definition of RT systems on page

4)
HW HardWare
IO-SEQ Read Write Sequence Principle Design pattern: sequential data pro-

cessing, i.e. receive data first, process
data and pass it onto the next entity

MDD Model-Driven Design or Development System designer guideline1

MoSCoW Requirement Prioritization Categorized prioritization through
’Must’, ’Should’, ’Could’ and ’Won’t’

PCS Production Cell (Setup) Simplified demonstration setup
PCS_CU PCS Computer Unit HW on which the ECS is running
PCU Production Cell Unit A sub-CPS within the PCS
PoV Point of View
RaM Robotics and Mechatronics UT research group
RT Real-Time (see definition of RT systems on page

4)
RTOS RT Operating System e.g. QNX Neutrino
SDK Software Development Kit set of software development tools
SRT Soft Real-Time see definition
SW SoftWare
sw switch e.g. "context_sw"
sys system e.g. "sysCtrl"
var variable e.g. "varCtrlValue"
WCET Worst-Case Execution Time FoM for Real-time systems
WoW Way-of-Working Embedded Systems design guide
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2 Controlling The Production Cell Using TERRA-LUNA

1 Introduction

1.1 Cyber-Physical Systems

There are two distinct trends in the digital signal processing field that have characterized the
last decades significantly. The first trend is the increasing integration level of computer hard-
ware (i.e. more features and computational performance is concentrated on decreasing area)
which can be seen easily by the fulfillment of Moorse’s prediction (i.e. Moorse’s Law) of 1965.
The second trend is the increasing demand for establishing computer-based assistance sys-
tems in process automation. Due to those trends, computer systems became so small that they
could be fit easily into the environment that they are supposed to control. This is also when
the term Embedded Systems became established. At the beginning embedded computer sys-
tems where developed solely with the focus on the specific hardware target, making them very
unique and difficult to adopt to other targets. Today, those systems have to be very generic
and cope with multi-purpose environments, including features like process monitoring and
reporting, communication with other distributed units, complex safety measures, etc.

Later on, the term Embedded Systems has been converted into Cyber-Physical Systems (CPS).
It emphasizes even more the equal distribution of physical (i.e. mechanical) parts as well as, cy-
ber (i.e software) engineering parts (Marwedel, 2011). Moreover, the physical part, determined
by the inexorable passage of time and the intrinsic concurrency of all running processes, has
to be managed by the cyber part with its discrete nature and limited capabilities to handle par-
allel tasks. Furthermore, developing CPSs includes also modeling those physical systems and
applying suitable control algorithms. This is then reflected in the development of Embedded
Control Software (ECS) which is the main focuses of this study.

With regard to industrial applications of CPS-targeted ECS, several general requirements have
to be met. As for most applications rapid and cost-effective design (incl. the automated process
of designing as well as design re-usability) is top-most crucial. Closely followed by the demand
for dependability, reflected by distinct safety and reliability realization measures which again
require proper follow-up evaluation1. Due to the increasing complexity of ECS, standardization
of design gains equal importance but also becomes a challenge itself (UBM Tech, 2014). A typ-
ical example that represents not only the entire range of ECS development but also a paradigm
of standardization is the automotive sector. Here several (crucial) car components are getting
developed by different vendors using different soft and hardware techniques but have to be
entirely compliant and highly dependable when implemented. So far however, this still results
in a comparatively high amount of performance loss - "Overdesign is currently the only path to
safe and successful system certification and deployment." (Baheti and Gill, 2011)

Thus managing the complexity better would also have positive effects on the design efficiency
and dependability. One approach to manage the complexity is Klotzbucher, et al (2013)’s
5C(concerns) principle. Here the idea is to split distinctive fields of concerns such that they
can be approached separately but still interact with each other. The principle will be picked up,
explained and discussed again in the following chapters in more detail.

Since developing ECS is a central point of this M.Sc. project. The following 2 chapters will
discuss the CPS at hand and ECS development more closely.

1.1.1 Project Context - The Production Cell Setup

The application case for this project is a mechanical demo setup called Production Cell Setup
(short ’PCS’ or simply ’the plant’) that simulates in a simple fashion different steps of a typical

1or in other words proof of dependability
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CHAPTER 1. INTRODUCTION 3

production line. There are 6 Production Cell Units (PCUs) available at this moment which are
meant to simulate production item transportation as well as physical transformation by using
different combinations of sensors, belts and actuators. The Feeder unit, for instance, makes
sure that the to-be manufactured item gets fed to the Molding unit. Here, two item detectors
will sense the arrival and the departure of every item passed by while two other detectors are
signaling the start and the end of the performed production step2. The chosen ECS control
target (see also figure 1.1) represents hereby the trend towards more design flexibility as well
as the need for high-performance control accuracy and energy-efficient distributed hardware
platforms.
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Figure 1.1: Schematic of the Production Cell Setup

1.1.2 ESC Development For The PCS

There have been several attempts to control the PCS whereas the emphasis was always on dif-
ferent requirement sets (thus only considering a limited number of demands) as can be seen in
the Literature Study in chapter 2.2 (see also Appendix A.6).

After van den Berg (2006) created the PCS, the main focus of implementing an ECS shifted from
a CPU-based solution to a FPGA which can deal with concurrency much better. Despite the fact
that there has been always an emphasis on taking advantage of the chosen design automation
tool chain which connects tools and design steps seamlessly, many details still had to be ad-
ded manually to meet all requirements. This was mainly due to focusing more on hardware
performance validation than on software architecture improvements. Consequently, certain
software development practices became underrepresented (such as design abstraction, mod-
ularity or software verification) and did only partially comply with demands connected to ECS
development and design quality. Due to increasing complexity of modern ECSs it is becoming
crucial to follow consistent Way-of-Working (WoW) guidelines to reduce development cycles
and to minimize the risk of design failures.

2which is equivalent with the respective actuator movement
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4 Controlling The Production Cell Using TERRA-LUNA

A selected set of approaches which focused on improving the ECS of van den Berg (2006) will be
discussed in detail in chapter 2.2. Many of them put also emphasis on a model-driven design
and therefore used an ECS design tool called gCSP which enabled the designer to check the
created CSP models and verify their correctness formally (i.e. to achieve proof of dependab-
ility). However, development of gCSP was put to hold, mainly for reasons of falling behind in
offering sufficient multi-threading capabilities and due to some software development incon-
sistencies. Thus, it was decided to invest in a major overhaul of the tool. Consequently, i.e re-
placing gCSP, a new ECS design framework was created to overcome the inherent drawbacks of
its predecessor while still carrying on the fundamental ideas. The new framework now consists
of a separate, graphical CSP model editor, called TERRA (Twente Embedded Real-time Robotic
Application) and a code base framework library for hard real-time3] applications running on
multi-core platforms, called LUNA (LUNA Universal Networking Architecture). Both tools are
connected by TERRA’s model-to-code translator that builds on LUNA’s CSP component library.

Hoogendijk (2013) conducted the first attempt to create an QNX-targeted ECS for van den Berg
(2006)’s PCS using TERRA/LUNA. This approach especially focused on an aspect that all earlier
studies took less into account: the re-usability and adaptability of the resulting ECS to differ-
ent use-case scenarios or hardware targets. To provide a practical means which would support
the intended Way-of-Working Hoogendijk (2013) created an universal architecture template
called Generic Architecture Component (GAC) that can be easily re-used and provides enough
universality to serve any purpose regarding ECS design. Although seemingly offering a sophist-
icated architecture solution, an execution performance deficiency was identified but could not
be eliminated at the time. In regard to that, Bezemer (2013) recommends to "further evaluate
the way of working, by using it to implement different control applications to steer all kinds of
different cyber-physical systems." However, this is still limited to a very small range of CPS op-
tions due to the fact that the design tool at hand is still under development and does currently
only fully support a limited set of computational platform and real-time OS combinations (see
also Appendix A.8).

1.2 Problem Statement and Solution Demands

This project has an explicitly practical goal. It is not about proving or applying a specific the-
ory, but instead it is about taking a given system and showing underutilized design potential as
well as principal work flow limits. Moreover, under defined circumstances, potential execution
performance optimization points have to be detected and exploited while putting the WoW
guideline (developed at the RaM group) to the test. As a result, it is intended to provide con-
structive feedback about how the recommended tool chain can be applied more effectively to
aid better throughout software development. The subsequent challenge will be about finding
the right balance between using MDD-based measures to maintain dependable ECS develop-
ment and breaking out of the standardized tool chain by performing manual alteration (e.g. to
the source code) to gain performance. Hence there are two aspects of the aimed implementa-
tion:

• functional completeness
This means making it work with focus on the best solution no matter the effort.

• economical efficiency
This depicts the fact that making it work in a realistic industrial environment means to
deal with resource limitation. In other words, even though there might be a applicable
solution it is still considered not feasible to realizes in time.

3 Definition, Laplante (2004): "A [hard] real-time system is a system that must satisfy explicit (bounded)
response-time constraints or risk [causes] severe consequences, including failure."

Frank Trillhose University of Twente



CHAPTER 1. INTRODUCTION 5

The latter demand is adopted from a market-driven point-of-view, thus reflecting the practical
focus of this project. UBM Tech (2014) states that while software product development cycle
duration are kept steady (i.e. increase only very slowly) in practice, the complexity of the de-
veloped software increases much more significantly which makes it necessary to counteract
with proper automated refinement cycles, including high design re-usability4 as well as pro-
cedures like source code generation and unit testing. However, the main focus of this project
lies more on the technological functionality, since, so far and under the determined conditions,
a working ECS could not have been achieved, yet.

The previous approaches will be analyzed in depth and will make, to a certain degree, a starting
point for different aspects of this project. Especially the ideas of the latest attempt to run van
den Berg (2006)’s PCS with an ECS created by Hoogendijk (2013) using TERRA/LUNA will be
carried on.

1.3 Report Outline

This assignment carries on the proof-of-concept work of Hoogendijk (2013) and Bezemer
(2013) as well as provide improved software design concepts and implementations that are
supposed to overcome the limitation of Hoogendijk (2013)’s design approach.

Background information and a summery of previous works regarding ECS development for the
PCS are given in the following chapter 2. A discussion of demands5 that are made by the outside
world and which define the overall goal for this assignment is presented in chapter 3. As a result
of the in this chapter included requirements analysis, the selected demands are translated into
consequent and more explicit requirements to form a design proposal. Practical realization,
the derived implementation steps will be discussed in chapter 4. Finalizing this report, conclu-
sions of the achieved results, including recommendation and improvement options as well as
a discussion of options how to carry on this project is presented in chapter 5.

4which can be e.g. achieved with generic software components or structures that have been proven to be reliable
5a fuzzy or very specific requirement from a stakeholder PoV with all sorts of priorities and expressed in general

terms like "it has to be fast and efficient"
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6 Controlling The Production Cell Using TERRA-LUNA

2 Related Works

2.1 General Background with regard to Software Development for CPSs

The topic of the chapter is placed in the context of Cyber-Physical Systems as object for ap-
plication of Embedded Control Software (ECS) design. This environment as well as respective
software design basics and trends in this area are shortly reviewed in this chapter.

2.1.1 Cyber-Physical Systems (CPS)

Definition: "Cyber-Physical Systems are integrations of computation and physical processes"
(Lee, 2007).

The term Cyber-Physical systems is created to emphasize on the actual nature of systems that
are linked or even known as Embedded Systems. The latter term is rather non-specific while the
former is meant to refer to systems which consist of a mechanical or simply physical part and
a signal processing (thus cyber) part which again involves computational hardware executing
specific control programs. The physical part consists of all elements (incl. power electronics)
forming a machine or robot in which the cyber part can be embedded in. Designing a CPS from
scratch often means to cover a large design space where a variety of multi-disciplinary factors
have to be taken into account. Deciding on the priority of every factor will also predetermine
the route as well as the development time that it will take from an idea to a working solution
(Groothuis and Broenink, 2006).

2.1.2 DSE aspect of CPS Development

The exploration of possible architectural options concerning hardware and software solution
alike is called Design Space Exploration (DSE). In addition to that the DSE performed here will
also include parts of the adopted WoW, i.e. it will be discussed at which point certain tools or
concepts are applied that could aid the designer developing an ECS for a CPS. While creating a
CPS, performing a good DSE is crucial but can cost a lot of design time. Thus, it is important
to perform target-oriented stepwise refinement. Here, the designer has to evaluate after every
step the probability of success of each partial solution and find design obstacles as early as
possible. This limits the risk of going into the wrong direction and having to start all over again
or spending too much time exploring too many options. However, it is still useful to always
work out more than one working solution for a final implementation as this will also deliver
significant insight into subsequent DSE issues. Even more, with a thoroughly performed DSE,
it is possible to make faster and more profound decisions for similarly set follow-up projects.
Hence, due to its importance, it is suggested to apply tools or methods that specifically support
the DSE step-wise or even iterative processes. Those processes include the handling of design
refinement scenarios such as hardware-in-the-loop or co-simulation.
As part of the DSE a thorough Feasibility Study is performed in section 3.2.

2.1.3 ECS Design and Development

ECS development includes many different procedures and tools to support the design and im-
plementation process. According to (Zwikker and Gunsing, 2015), the most well-known are
Plan-Do-Check-Act (PDCA), the V-model, Agile, Spiral Design and Unified Modeling Language
(UML) as way of documentation. There are several more design methodologies available and
most of them have a distinctive scope of application. Zwikker and Gunsing (2015) also state
that due to their different methodical strengths it is sometimes beneficial to combine several of
them for certain phases of the development process. Although generally different, many meth-
odologies try to incorporate common work steps like requirement analysis, conceptual design,

Frank Trillhose University of Twente
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implementation as well as design verification and validation. Furthermore, it is possible to
emphasize on different phases like following a Model-driven, Test-driven or Use-case-driven
conception which will be briefly explained in the following sections down below. In regard to
ECS and in contrast to hardware-driven development, software-driven projects are more flex-
ible and can be maintained evolutionary, i.e. from simple to complex, most often in a cyclic
way.

  Cyber-Physical System

ECS Software
Architecture

(G)UI, Supervisory,
Sequence, Safety

Control Laws
(Loop Control, CT) Plant Dynamics

Time Triggered &
Discrete Event Software

Plant Dynamics
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Target
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3a
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Software DesignElectronics Design
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Mechanics DesignController Design

Simulation Time
Real-Time

Figure 2.1: Steps of the way of working to design ECS software for CPSs (Bezemer, 2013)

ECS Trends

Accelerated by the rise of the Internet-of-Things (IoT) and accompanied by a general hardware
convergence1, embedded systems have become an omnipresent technology. Typical emer-
ging sectors in the consumer segment are: home appliances, mobile media devices and auto-
motive electronics; whereas the industrial segment (here, using the term Cyber-physical Sys-
tem is most appropriate) focuses more on: assembly line robots, process control, diagnostic
devices and infrastructure-level communication electronics. Summarizing the strong trends in
the field of embedded or cyber-physical systems development it can be seen that:

In respect to computational hardware, 8- and 16-bit CPUs play recently only a small role and
will become eventually more or less obsolete especially in an industrial environment where
handling exceedingly complex processes and complying with exacting technological require-
ments call for advanced hardware resources. In the same time, microcontrollers are getting
gradually replaced by 32- or even 64-bit multi- and even many-core general purpose pro-
cessors. Here, parallel computing is a natural consequence of the ambition to deal with con-
current processes of the external environment more easily and thus addressing the nature of
most of the occurring control problems more appropriately. Those problems can and will also
be handled by transforming suitable applications into ubiquitous and respectively into distrib-
uted systems. This involves consequently the severity of a proper communication between all
computational sub-systems. Whereas the consumer segment is going to implement as much
as possible wirelessly, the industrial sector still prefers to resort to wired solutions for reasons
of dependability and performance. However, due to ease of deployment it is likely that wireless
systems will become established despite the drawbacks here, too.

In respect to software development, trends can be identified towards much more complex (in
consumer segment often referred to as "smart") designs, which include enhanced on-line op-
timization algorithms and control process learning capabilities.

1 in other words and similar to the System-On-Chip (SoC) trend, merging physically mechanical hardware with
electronics hardware into one closed unit
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8 Controlling The Production Cell Using TERRA-LUNA

Even more, with fast increasing availability of affordable hardware performance the need for
code optimization on bit level decreases significantly. At the same time there is a growing de-
mand for rapid prototyping complex but flexible and easily verifiable cyber-physical systems.
This extends the workload while development cycles continue to decrease including meeting
of deadlines better as shown by UBM Tech (2014). The survey shows also that more than 50%
of the interviewed developer worked on an upgrade or improvement to an earlier or existing
project and even 80% stated to re-use old in-house produced project code for their current
projects.

Those tendencies suggest to make use of highly automatized code generation as is already
available in system design suites like Mathworks (2016) Matlab/Simulink, NI LabVIEW (2016),
20-sim (2015), Scicos (2016) and other similar ones. Here, testing and verification becomes an
ever growing part of development. Automatized code generation and powerful hardware cre-
ate opportunities to focus on different implementation aspects separately as proposed by the
(Bezemer, 2013)’s WoW in combination with the 5C principle (see also section 2.2.3).

Especially the software development trends will be picked up again and incorporate in this
project using dedicated design development tools and guides provided by RAM - a Twente uni-
versity research group.

Model-Driven Development and the TERRA/LUNA framework

Model Driven Development (MDD)2 was introduced as a systematic and fast - thus cost-
effective - software development methodology to enable system modeling and validation inde-
pendent of a target platform. Instead of producing code manually developers may use domain
models3 to spend more time on design analysis and validation than on actual implementa-
tion (i.e. code generation). Furthermore, the models can be used as a language for collabora-
tion between developers of different disciplines making it easier to distribute design tasks and
working simultaneously. A major benefit of MDD is accomplished via model transformations
which can be used to verify system dependability using formal model checking techniques or it
can be used to provide automatically generated, platform-specific code and thus increasing the
design portability. By using means of MDD not only up-to-date documentation is immediately
provided but also higher design quality can be achieved due to less error-prone development
cycles and the enforcement of separation of concerns and skills. However, like all methodolo-
gies MDD is not suitable to solve all aspects of software development. Some of the risks when
MDD is used solely are evoked by the fact that a desirable design flexibility has to be put into
the design on purpose and does not come automatically. A more practical risk comes from
the fact that the design will be also always limited by the applied tool thus the importance of
determining requirements in accordance of what the used MDD tool is capable of (Den Haan,
2009). Consequently, it is desirable to combine MDD with other methodologies to benefit from
several independent strong points.

Test-Driven Design

Test-driven Design (TDD) is a software development technique that aims for improving soft-
ware testing. Tests or test scenarios are created by the software developer based on beforehand-
gathered use-case experience. The tests are carried out beginning with individual modules or
functions. Once they passed, all subsystems and finally the entire software as a whole are being
tested. The difference to normal software testing is, however, the focus on the design require-
ments before any code is written. This way TDD specifically encourages simpler or minimal-
istic designs, similar to the "keep it simple, stupid" (KISS) principle which only implements the

2also stands for Model-Driven Design and is synonym for all MD* methodologies like MDA or MDE)
3 In software engineering a domain model is a conceptual (object) model "of the domain that incorporates both

behavior and data". Fowler (2003)
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CHAPTER 2. RELATED WORKS 9

minimum scope of operations4 (Beck, 2003). Apart from the benefits it is also relevant to take
risks into account that come along with TDD such as the significantly increased design phase
which means that actual test results are later achieved as they would have been during normal
development. It is also worth considering that certain compromises have to be determined
with respect on the increasing system complexity that the test environment adds.

Use-Case-Driven Design

In software development functional requirements can be specified with the help of Use Cases5.
They are used as primary artifacts for deriving architectural abstractions (Aksit, 2001) and
provide essential insight as well as assistance in making profound design decisions (Prosman,
2001). Being one of the key activities in requirements analysis, Use Case analysis is a systematic
method to determine what users should be able to accomplish when using the to-be-developed
software Lethbridge and Laganiere (2005). Applying this principle to parts of a or the entire soft-
ware architecture is called an Use-case-driven Design (UCDD) approach. A typical start would
be to create Use Cases with the fact in mind that most systems are built to interact with external
operators or actors, e.g. a common user (Lee and Xue, 1999). All Use Cases and their interac-
tions can be combined in an Use Case model and therefore represent all specified functions of
the system under development. Subsequently the model can be seen as system requirements
documentation or even as a contract between the customer and the developers (Aksit, 2001).
In addition, UCDD helps managing the complexity of a to-be created system due to the atten-
tion being always focused on one specific conceptional problem which again can be helpful to
create better test cases. Lorenz (1993) also states that due to the key aspects of UCDD designers
are encouraged to envision (system) outcomes before attempting to specify them, and thereby
helps to develop more effective requirements that will also take otherwise-unconsidered scen-
arios into account. However, similar to the techniques introduced above, there are certain risks
or even drawbacks associated with UCDD. Jerome (2000) criticizes UCDD for its lack of captur-
ing all fault events or unintended outcomes. Even more, Lee and Xue (1999) argue that UCDD
is not suitable documenting interactions between requirements since every requirement is
handled separately. Consequently, when it comes to non-functional requirements like useful-
ness and usability involving user motivations, experiences or intention, UCDD will not provide
enough expressiveness nor is there a systematic guide how to handle such matters (Prosman,
2001).

2.2 Review

In the following chapter, the analysis of previous studies is presented. Hereby, the project focus
of those approaches as well as their strengths or deficiencies is elaborated regarding the chosen
WoW and achieved software quality.

The conclusions drawn at the end of this chapter are the starting point of the subsequent
chapter 3. They are used to work out the design details of the current approach which should
aid adjusting the adopted WoW as well as give ideas on how to achieve exact improvements for
the final hard or software implementation.

The summarized reviews are thus the basis for specific optimizations techniques and a list of
selected criteria which will be used to guide this new design approach. Furthermore, the set
of criteria can be used to evaluate achieved software quality in more detail at the end of the
assignment.

The studies have been reviewed w.r.t. the following points:

4 i.e. as a consequence a software component that is difficult to test can be considered a component with design
errors.

5 here the definition of Jacobson, Booch and Rumbaugh (1999) is adopted: Use Case - "a sequence of actions that
the system provides for actors"
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• What was the goal or the focus of the study?

• Which domains and requirement specifications have been applied?

• What have been the results and which criteria have been used to evaluate them?

• Which specific software evaluation or performance measuring methods can be adopted?

• Which WoW or design method has been chosen (incl. difference to (Bezemer, 2013))?

• Which tool or toolchain has been used?

• What are the achieved qualitative (e.g. RT guarantee, dependability, deadlock-freedom,
adjust-ability, debug-ability, testability, etc.) and quantitative (like, efficiency, perform-
ance, sample time, WECT, etc) results, esp. w.r.t. the ECS?

• What is the degree of multi-core or parallelism exploitation?

• What conclusions or recommendations draws the study?

2.2.1 van Zuijlen (2008) - Development of CSP-to-Handel-C-based ECS for FPGAs

After gCSP has been proven by Jovanovic (2006) and Maljaars (2006) to work as a CSP design
tool for CPU based hardware, van Zuijlen (2008) managed to implement an ECS on a FPGA
using Handel-C-to-HDL code translation.

The study could show that by utilizing a FPGA it was possible to achieve a much higher level
of parallel data processing and thus resulting in a significant performance efficiency gain com-
pared to its preceding studies. It was chosen to keep the software architecture simple (including
a flat structural hierarchy) and subdivide the core ECS design for every PCU only into 3 com-
ponents:

• Control (i.e. execution of control algorithm),

• Safety (i.e. error detection) and

• Command (i.e. motion profile and user input).

Due to the lack of proper support in Handel-C, implementing algorithms using floating point
precision would require a disproportionate amount of logic cells. Hence it was chosen to trans-
late all algorithms to integer precision by re-designing all controller models. Since the final
implementation was mostly done manually, the development wasn’t benefiting much from the
automatic code generation capabilities of the design framework. In contrast to the increased
programming effort, the logic cell utilization could be reduced to an absolute minimum. Fur-
thermore, the study did not show how using CSP models contributed in the ECS evaluation
process (e.g. w.r.t. formal model checking). This would have been especially interesting in
regard to the low level of design concern separation, i.e. no explicit Finite State Machines or
separate communication components, and how this affected the software quality or work flow
in general. Mainly directed at the design framework gCSP, (van Zuijlen, 2008) recommends to
improve the handling of ECS safety handling as well as usability and code generation capabil-
ities (i.e. Handel-C code generation only supports a sub-set of CSP).

2.2.2 Sassen (2009) - Floating-point Improvements to the Handel-C Approach

Based on the work of (van Zuijlen, 2008) (Sassen, 2009) continued the approach to utilize a
FPGA using Handel-C. But in contrast to (van Zuijlen, 2008), the focus of this study was more
on safety and control precision efficiency while reducing the design effort at the same time. The
increased precision range could be achieved by implementing only a single Safety block whose
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functionality is shared by all PCUs which left more hardware resources to spend on executing
Floating Point operations6. Here, the same principle is adopted for the now more precise but
also slower (due to time splitting) control algorithm. Hence, except for the introduced Finite
State Machines that runs for every PCU separately, the software architecture was chosen to
form a rather centralized structure. This resulted in an increased but better FPGA hardware
utilization. However it also increased the risk of single point of failure. Apart from that the per-
formance efficiency of applying Fixed Point algorithms was evaluated as well but deemed to be
not superior to the Integer approach of (van Zuijlen, 2008). Since this and (van Zuijlen, 2008)’s
approach required the code compilation features of an external proprietary tool (Xilinx Core-
gen) that is no longer supported by the design framework, the result are not only irreproducible
and thus difficult to compare but consequently alternative ways of implementation are neces-
sary. Like (van Zuijlen, 2008), (Sassen, 2009) directs his conclusion at the design framework
gCSP and recommends to improve code generation capabilities towards hardware description
languages due to lacking support of Handel-C within in developer community.

2.2.3 Hoogendijk (2013) - Proposal for a CSP-based GAC Template

With focus on using the software architecture design tool TERRA, Hoogendijk (2013) provided
a sophisticated Generic Architecture Component design proposal called GAC which covers
6 important general design concerns. Those concerns comprise Klotzbucher, et al (2013)’s
5Cs: Composition, Communication, Computation, Configuration and Coordination as well
as Safety. Hereby, the last 5 components are implemented as actual, separated model com-
ponents. Hoogendijk (2013)’s approach is supposed to yield shorter design phases due to the
presence of all relevant general functionality. This leaves the option to focus more on an elab-
orate implementation of specific detail functions, e.g. the control algorithm, error detection
or state handling. Although it can be followed that the generic architecture covers many use
cases and applications, it was also found that in combination with the TERRA/LUNA frame-
work performance shortcomings (due to significantly increased computational redundancy)
arise7. When applying the GAC template (in the way it is proposed by Hoogendijk (2013)) to
low-performance hardware, like the PC/104, which is accompanying the PCS, an efficient op-
erational mode is difficult to maintain. Hence only 5 of the 6 PCU could be controlled sim-
ultaneously. Additionally and for the same reason, it was chosen to implement manually the
FSM (here called GAC life-cycle) on code level instead of on CSP model level like the GAC en-
courages to do. Consequently the options to determine the dependability of the ECS by formal
model checking techniques was reduced. A way how one could add FSMs correctly to a CSP ar-
chitecture design was already provided byRan (2012) who created an UML-Statemachines-to-
TERRA-CSP-model transformer. Hoogendijk (2013) recommends to improve the integration of
the GAC into the TERRA/LUNA framework, including graphical object and code generation op-
timization like the introduction of multi-data-type channel buses. Furthermore it is necessary
to improve the support for design debug-ability (like the real-time logger options) or testability
of the interaction of design parts with different real-time levels.

2.2.4 Bezemer (2013) - Introduction to specific Way of Working and correspondent Tool
Suite for CPS Development

Bezemer (2013) describes in his work the Way-of-Working which he proposes as best practice
to reduce design complexity by separation of concerns (see also preliminary studies of Beze-
mer, Groothuis and Broenink (2011)) like the 5C principle. Based on a MDD methodology the
goal is to achieve a first-time-right8 software deployment for a mechatronic system. Maintain-
ing the designer’s point of view it is supposed to decrease design time by giving advice how to

6which were added to the Handel-C semantics as part of the study
7 as is e.g. caused by approach-inherent doubled Safety blocks
8 i.e. deploying the final software on the hardware target for the first time without major issues
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structure the software development as well as its architecture yielding a high level of project
re-usability and lower risk of design faults. Furthermore tools and (co-)simulation techniques
are proposed which are able to use created models interchangeably. Besides software patterns
and real-time layer categorization guidelines, the WoW also suggests to makes use of a specific
tool framework that supports the WoW best. In regard to the introduced WoW, Bezemer (2013)
emphasis on improvements towards three topics. At first, it is necessary to enable designers
keeping better track (i.e. introducing an WoW native model management environment) of dif-
ferent component implementations. Furthermore, it was found that designing graphically is
still not optimal even more when too much detail is implemented on model level. Automatic
model optimization features could assist the design in keeping the model abstract and simple
while (hardware) implementation details or (execution performance) adjustments are added
automatically when code is generated. Finally, in order to extend the design verification scope,
fully developed (co-)simulation capabilities need to be available for the CSP models as well.
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3 Design Space Exploration

The goal of the Design Space Exploration is to achieve a sound project specification which de-
termines all system objectives as well as the way how they can be implemented.

3.1 Requirement Analysis

Given the time restrictions and the fact that this project has to choose for a main focus, not
every step of best practice software development can be executed in depth. Consequently, the
actual problem solving requirements, not only result directly from the project’s motivation (ex-
pressed in use cases), but will also be comparatively more limited, i.e. adopted towards the
requirements for this Master thesis rather than they would appear under realistic conditions.
Even more, it might be that requirements are set using educated guesses where they normally
would have been deducted from more advanced analysis and background studies. After in-
troducing requirements and performing a project-based DSE, the set of requirements will be
once more analyzed with regard to the scope of the project - i.e. what might be feasible within
time. The result of the process of setting up the project’s specifications will be presented in the
(proposed) design section 3.3.

Starting with the general question in mind what the end user needs to get accomplished to meet
their needs, it is crucial to translate vaguely formulated demands into precise requirements, at
first. The better the set of requirements is specified, the easier it is to validate if the final solu-
tion will suffice. This is a rather iterative process which is also known as requirements engineer-
ing. It covers test and feasibility studies as well as simulations and best-practice analysis. Broy
(1997) breaks this process into the following sub-phases whereas the first three points belong
to the analysis phase and the remaining to "design, implementation, integration, and tests"
phases:

• domain analysis and domain modeling

• requirements capture

• requirements validation

• requirements tracing

• requirements verification

Based on the outcome of a system analysis phase (which was carried-out before), the require-
ments engineering establishes a general understanding which leads to a increasing detailed
modeling of the application domain. The work process can be concluded when all stakehold-
ers agree to a certain set of requirements.

Going into more detail and starting with the general software structure, several kinds of re-
quirements have to be complied with, as mentioned in the requirements section. The main
reasons (from a designer point of view) for establishing a sophisticated software architecture is
the demand for easily executable testing, debugging, documentation and maintenance. Thus
most requirements are related to how the software is supposed to be created and come from
stakeholders like the software designer or the programmer. As a matter of course, the way the
architecture is set up, is also influenced by what the purpose of the software is and the anticip-
ated performance (i.e. giving the expected result within a certain time limit). All stakeholders
are sorted by priority. This will determine at which point during the development phase for-
mulated requirements are realized and also to which extend.
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With regard to business environments, a particular stakeholder has the overall highest priority
rank and that is the investor. His biggest concern is profit which again is linked to costs and
the "time-to-market" factor. This issue is often reduced to "time is money". In other words it
is crucial that the developed product is as fast as possible finished and can be sold to meet the
market’s current demands. One way of accomplishing this goal, regarding ECS development, is
to provide a generic architecture platform that enables the software designer to take advantage
of a predefined structure. This structure could be applied directly or adapted easily for different
purposes.

3.1.1 Domain Analysis

The following chapter aims to provide a quick overview of the standard software quality as-
surance technique, called Domain Analysis which is supposed to identify objects, operations,
and relationships of the matter at hand. This makes it easier to understand the project’s back-
ground which again is needed to break down the main issue into smaller problems and make
well-informed decisions. (Lethbridge and Laganiere, 2005)

The following selection shows identified, more specific (system) stakeholders with their corres-
ponding domain:

• User Usability, availibility, safety

• System Architect System abstraction (incl. module/component interaction)

• System Modeler Modeling (transformation) and formal checking (dependability)

• System Designer (Co-)Design (incl. design standards, patterns and APIs)
Functionality, such as FSM or fault tollerance (safety)
Efficiency and exploitation of parallism

• Software QA Quality Assurance (i.e. models, pattern and code quality)

• System QA (Co-)Simulations and tests (of reliability or efficiency)

• Project QA Project documentation and maintainability/reuseability

• Applications Engineer Requirement engineering (incl. domain analysis)

• Software Engineer Code generation and scheduling (parallism and efficiency)

• Specialists

– Security Security principles

– Control Engineering Hard real-time compliance and control algorithms

– Hardware Engineer PCS hardware and hardware interfaces

Hereby, the selection is based on a preparatory criteria elaboration which determines the fo-
cuses of the current project (see also Appendix A.2). Further typical stakeholders like finances
or management have been excluded due to lower priority.

3.1.2 Requirements

The project specification is derived from a heterogeneous set of general as well as specific re-
quirements which again has been resulted from the problem description and demand analysis.
In regard to the current ECS project the main demands have been determined to essentially
concern technological functionality. Consequently, most requirements will be specified from

Frank Trillhose University of Twente



CHAPTER 3. DESIGN SPACE EXPLORATION 15

a system designer point-of-view and might be expressed in engineering quantities like "opera-
tion X has to terminate within a certain amount of time (i.e. cycle period or sampling rate)" -
which stands here for the requirement of performance or hardware-dependent efficiency (R1).

Continuing Bezemer (2013) and Hoogendijk (2013)’s WoW approach and since the latest ECS
project provides only reduced functionality (see also section 2.2.3), the requirement analysis is
partially based on those studies, adopted and extended to create an ECS that runs all necessary
operations within a guaranteed real-time period limit. However, the demand for functionality
does not only include executing the program once, but repetitively executing it an unlimited
amount of times. This demand can be reflected by the requirement of dependability or re-
liability (R2) which can be functionally expressed with explicit fault tolerating error handling
operations1 (R2f). Special emphasis is set on the contradictory nature of the first two require-
ments: A fast execution time usually requires a reduction of software complexity, while reliabil-
ity measures (especially regarding fault tolerance) increase the ECS complexity. Since meeting
the performance requirement is of top priority, the aim is to establish satisfying compromises
to keep reliability as high as possible.

Additionally relevant is the economical demand. It aims at a high return on investment, mean-
ing that the invested development should pay off by being able to re-use the currently produced
ECS for future projects. Therefore the requirement "software re-usability" which can be can be
also connected to ease of maintainability (R3) is introduced to this project with increased pri-
ority.

Those three key demands (see also Appendix A.2) can be then translated into functional re-
quirements like:

• real-time guaranteed execution (performance)

• fault tolerance (reliability)

• structural modularity (re-usability)

The process of translation is performed when carrying out a Feasibility Study which will be
done in more detail in the following section. Here, each relevant non-functional requirement
is assigned to a set of available functional requirements which would satisfy determined needs.
Conclusions regarding what is found feasible is presented in the design section (including
derived software specifications) where the identified best solutions or feasible compromises
are discussed. Regarding this project, it is also worth noting, that the suggested solutions
should always meet the requirements in combination with the given ECS design framework
TERRA/LUNA (and its closely related software development environment tool chain) as a use-
case-based proof-of-concept.

Table 3.1 (further down below) lists the key requirements and assigns them a priority according
to the MoSCoW method (Clegg and Barker, 1994).

3.2 Feasibility Study

The process of designing software is influenced by several constraints or limitations. Still, de-
pendent on the degree of freedom there may be a considerable number of appropriate design
implementations - each with different benefits and drawbacks. Analyzing combinatorial al-
ternatives and selecting optimal (architectural) configurations is called Design Space Explor-
ation (Popvici, Rousseau, Jerraya and Wolf, 2004). After formulating and exploring different

1in other words, due to the fact that identifying every possible operational error or system failure is hard to main-
tain, it is equally important to focus on preparing the system for unidentified issues and enable it to continue or
finish the current operation as much as possible rather than failing completely and changing its state into uncon-
trollable
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# Requirements Prioritization
R1 Efficiency optimization to fit targeted HW Must
R1f1 Less context switches Should
R1f2 Load distribution on several hw platforms Could/Won’t
R2 Dependability/Reliability measures Must
R1f1 Proper fault tolerance / error handling Must
R1f2 FSM-based execution coordination Should
R1f3 Reliability has to be verified Must
R3 Design for re-usability/maintainability Must
R3f1 MDD: TERRA/LUNA has to be used Must
R3f2 Platform independence Should
R3f3 Towards generic/scalability Should
R3f4 Design for testability Should

Table 3.1: Requirement Analysis (MoSCoW principle)

approaches and system variations, decisions regarding the hardware and software architecture
have to be made. Those decisions represent the final system specification within the feasibility
phase. They will not only provide general functionality but also determine the overall perform-
ance level of the system. This concerns typical aspects like execution time, power consump-
tion or even development expenses. Hence, it is also crucial to provide design options that
can be adopted in different ways or adjusted to change, for instance, the system’s efficiency
according to its implementation priorities. With respect to subsequent or previous projects,
creating benchmark tests aid to help to evaluate the achievements and expose the quantit-
ative differences to other approaches. Previous studies, regarding ECS development for the
PCS, however, offered generally only little measurements or performance data that could help
comparing results2. Apart from existing software performance-related figures like cycle time
and deadlock-freedom or hardware utilization, further benchmarks like real-time guarantee,
WCET, ECS memory footprint, exploitation of parallelism or modularity should be considered
to be used as well. Especially in regard to the WoW, development figures like degree of project
maintainability, re-usability or work-flow integration provide essential insight into achieved
software quality level.
The following sub-sections will give a summery of the DSE process executed for this project and
state feasible implementations or potential optimization points next to ways of their efficiency
evaluation.

3.2.1 Hardware

Initially, it seem there is a wide range of signal processing hardware options due to the fact that
there is no requirement about which hardware architecture the ECS has to run on. Even more,
by definition, the ECS design framework TERRA/LUNA does not compel any specific hardware
platform (e.g. ARM / x86 based CPUS or FPGA). Consequently, the software architecture can
and should be designed independent of the eventually targeted hardware (Bezemer, 2013).

However from a demonstration point of view, although very limited in signal processing re-
sources the currently used HW option (referred to as PC/104) has shown to work best con-
trolling the PCS with the FPGA-based implementations. This is due to the fact that it features
several control aspects that benefit significantly from being handled simultaneously as shown
by van Zuijlen (2008). Consequently utilizing a FPGA would be a plausible consideration. On

2which is also due to there diverse nature of implementation
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the other hand, the stacked hardware showed also very significant limitations3 using the FPGA
when it comes to more complex ECS implementations as demonstrated by Sassen (2009).

Moreover, although older tool chains (including gCSP) provided partial integration of special-
ized hardware into the WoW design flow, the TERRA/LUNA-framework-based tool chain sup-
port is still very limited (see also Appendix A.8). So far, the new framework is only capable of
generating exhaustive source code mainly for ARM or x86 architectures4 5.

This is why the in-house developed RaMstix platform (housing a ARM/based Gumstix board) is
considered an hardware alternative next to the PC/104. Benefits would be slightly more clock
cycles per time which could translate in faster processing6 and thus increasing the chance to
meet the RT time requirements better. Another important factor is the easily accessible expert
knowledge which would reduce the implementation time. Similar, those advantages, but to
a lower extend, would be also true for an Arduino or Rasperry PI based board. However, by
default, such boards are often limited in the way they provide interfaces to other hardware.
Thus considerably high effort is assumed to fix this drawback as well as finding working BSPs
and writing drivers. For this reason, only the two ARM-based versions of the Gumstix/RaMstix
board have been included in the DSE next to the x86-based PC/104 system that was already
used mainly for controlling the PCS.

Whereas as Groothuis and Broenink (2006) concluded that there are enough resources left on
the given FPGA (AnyIO board) to do all the necessary operations within 1 ms, seemed Hoo-
gendijk (2013) to have exposed the (CPU) hardware’s limitations7. As a consequence it is also
considered to distribute to computational load over multiple hardware boards. However, this
raises the issue of handling hard real-time communication between independent boards. One
way of solving this and avoiding to develop a dedicated hardware link and communication pro-
tocol, is by defining the communication as soft real-time8. Here, the idea is to send frequently
data via Ethernet using TCP/IP (see also Appendix A.7), including verifiable or error-correcting-
coded process data. This data might come from sensors or other control relevant instances and
is essentially a positive status streaming9.

The drawback of having the communication defined this way and sending constantly all in-
formation (even those which have not changed) would be the increased process load. Addi-
tionally, if any error (e.g. wrong sensor data or a message was not received in time) is detected,
the entire setup had to be stopped due to the fact that the actual error cannot be identified with
absolute certainty. Consequently, this wouldn’t make it an error-free but still a fault-tolerant
design.

3.2.2 Operating Systems and SDKs

Although there exist simple, often micro-controller or FPGA-based systems for which it is not
essential, but most embedded setups need the support of an operating system due to the ap-
plication complexity. Hereby, the OS takes over tasks like scheduling, synchronization, context
switching as well as I/O and memory operations. Since many embedded systems serve as real-
time (RT) systems (UBM Tech, 2014), the utilized OS must be real-time compliant making it a

3 with respect to floating point calculations and enhanced safety handling
4 i.e. this highly depends on the applied compiler which currently either gcc or a special version of it
5 no support for HDL code generation at all, yet
6 since x86 and ARM differ widely w.r.t. the instruction set it is difficult to make a sophisticated evaluation of their

potentials solely based on the clock cycles and without knowledge about the ECS
7 though, he was additionally separating functional concerns and while adding abstraction also implicitly adding

more software complexity to the application design
8 i.e. something similar to Xenomai’s RTnet approach
9 In other words sending the confirmation that everything is operational and no errors have been occurred.
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RTOS (Marwedel, 2011)10. The RTOS needs to be capable of limiting the task execution time
jitters deterministically (i.e. in a predictable or reproducible thus reliable way) to an extend
such that task deadlines cannot be missed (hard real-time requirement).

Benefiting from the reduced development time on one hand, choosing the right OS will also
reduce the designer’s flexibility in the way how the embedded application can be configured
(e.g. limited portability) and reduce the overall system performance (due to more load on the
CPU). To counteract this effect some RTOS like QNX or FreeRTOS are based on micro-kernels
which limit the OS support to a minimum.

For the DSE the following operating systems have been checked for suitability, considered
factors like availability, resource load, hardware and framework support11:

OS availability kernel type hardware support
FreeRTOS available microkernel n/a
Linux + RTAI available twin kernel n/a
Linux + Xenomai available twin kernel n/a
Linux + PREEMPT_RT available monolithic n/a
QNX available microkernel PC104 / RaMstix(partially)
Windows Embedded licensed hybrid n/a
Keil RTX available n/a n/a
VxWorks licensed monolithic RaMstix(partially)

In the course of selecting the right OS, properties like the types of supported scheduler (pree-
mptive, cooperative, etc) as well as the algorithm used for the tasks management (FIFO, round
robin, priority-based, etc.) would be important, too. Being apply to deploy different task sched-
ules enables the software designer to optimize on the cycle period. However, currently LUNA
only supports FIFO preemption which all of the OS offer.

Many of the vendors or institutions which provide those operating systems also provide sup-
porting SDKs. Here, further aspects have been added to the DSE like how BSPs (if available)
could be deployed and if or to what level built-in profiling tools were provided.

As stated by Hoogendijk (2013), so far only implementations for QNX12 exist and are known to
work (incl. tool chain availability). Although other options might work as well13, in regard to
project time limitations having a working option at hand becomes a predetermining factor.

3.2.3 Software Architecture

The architecture of the ESC is the domain with the greatest potential of optimization. Hoo-
gendijk (2013) chose to create an ESC using his developed Generic Architecture Components
(GAC) design template. This structural component is meant to be very general and thus use-
case independent. It represents the opposite approach of creating a highly customized spe-
cific architecture for a very particular application. The major benefit of the Generic Architec-
ture Components lies in the re-usability. A created universal architecture can be the starting
point to many use-cases and the modularity of the structure and standardized design patterns
make functional refinements easier. With respect to the hard real-time requirement (and in-
directly to the performance efficiency), the GAC approach has the disadvantage of creating too

10 here the definition of Takada (2001) is adopted: RTOS - "[..] is an operating system that supports the construc-
tion of real-time systems"

11 Here hardware support has to be at least in form of Board Support Packages (BSPs)
12 Initially QNX seemed to support the idea of using channels to link processes which is why it was identified

to work best with TERRA/LUNA Wilterdink (2011). Later however this was found to be not true thus reducing the
appeal to use it Bezemer (2013)

13 Bezemer (2013) states that there exists at least partially native support for Linux + Xenomai targets by TER-
RA/LUNA
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hierarchically expanded structures and might introduce significant performance loss. This be-
comes especially evident when analyzing the GAC template with focus on functional redund-
ancy (i.e. components, which are necessary to achieve generality and universality, but which
also introduce unnecessary duplications when used more than once). Individual designed ar-
chitectures could avoid these redundant or even irrelevant components, however, on the cost
of design re-usability. Regarding software composition, the modularity of the structure and the
use of standardized design patterns support the reliability of the GAC architecture. Not only are
standardized modules less prone to manually inserted errors or inconsistencies, but they also
support unit testing, making it easier to prove reliability on the level of individual components.
This is best shown by the separation of safety and coordination measures which is included in
each component of the architecture. However, it is to argue whether reliability actually would
or would not diminish if the repeated elements (like error detection component) were to be
reduced. Compared to Hoogendijk (2013), van Zuijlen (2008) approach was less generic and
comprised only 3 components for each PCU (i.e. a Controller, Safety and a Command Block,
see also Fig. 3.1). However, the component could be used to represent each of the PCS’s PCUs
without adjustments to its structure - yielding high efficiency. It also has to be analyzed how
both approaches can be brought together, combining both beneficial sides.
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Figure 3.1: ECS structure attempts: GAC (left), optimized GAC (middle) and FPGA (right)

Since it was found that the Safety feature is always dependent on the specific implementation
of an (control) algorithm or function it always has to be adjusted accordingly to meet the exact
characteristics. This is why a separation of concerns is not always entirely feasible or necessary
(w.r.t to functional redundancy) on every design level. Hence, this concern was reduced to be
only present at the interface to the hardware on the top design level where it matters the most.
Furthermore it was found that there is no need for the Configuration concern since there is
only one simple set of configuration during the initialization.

The new and modified GAC now only implements only the Communication, Coordination and
Computation components which generally should reduce the computational load compared
to Hoogendijk (2013)’s approach.

FSM For reasons of stability, fault tolerance, debug-ability and documentation, it is preferred
to implement explicit FSMs into the software design. Hoogendijk (2013) recommends to em-
bed the respective FSM algorithms into a separate area of the software architecture, i.e. using
the proposed TERRA/CSP-based GAC approach on software model level. In addition to that,
Meijer (2013) describes the integration of typical FSM constructs into the software architec-
ture using TERRA. An alternative to implementing a FSM on model level would be to provide
respective source code manually. Both options have different benefits and drawbacks. Using
Meijer (2013) approach would follow the standardized WoW which would yield source code
that is automatically generated. While this would fit exactly into the recommended tool chain,
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it would also result in a significantly increased overhead which is caused by how LUNA gener-
ates code from CSP models. The alternative, however, would break out of the automated and
thus safe tool chain but yielding more performance while facing increased effort to be spent on
testing and debugging.

3.2.4 Performance Efficiency Optimization

As stated above, this project has a strong emphasis on the practical aspect of developing an
ECS. This is due to the rigorous limits set by the project specification which again is based
on the expected (small form factor and low performance) computer hardware. Consequently,
different optimization techniques will be presented that are meant to reflect explicitly the hard-
ware nature by either removing or simplifying several parts of what would be or has been
previously implemented in a ECS (that was controlling the PCS). In addition to that, Rutgers
(2014) claims that "in practical solutions, streamlining programming by abstractions is only vi-
able when these abstractions still allow performance optimizations or cost analysis, which can
achieve an equivalent performance as hand-written or hand-optimized code". In accordance
to this, the WoW as well as the MDD-based tool chain around TERRA/LUNA will also be ana-
lyzed and checked in regard to if the framework meets the set requirements and which specific
performance improvements are actually supported by it.

3.2.5 Software Generation

In one of the latest studies, Hoogendijk (2013) was building the ESC architecture using TERRA.
Here, next to the built-in code generation features, 20sim has been used to create code for spe-
cific tasks (i.e. tasks that included the control algorithm and motion profile set point creation),
as well. Within TERRA, a specific 20sim block component provides a link between the CSP (ar-
chitecture) model and the externally generated source code. The entire code is then compiled
using links to the LUNA components library. However elements, like the FSM have been added
manually into the program code for efficiency reasons. So far, there is no further alternative way
available besides the combination of these 3 software generation methods. Consequently and
in order to determine the best compromise between ECS performance14 and software design
abstraction15, each method (incl. the manual code manipulation) will be evaluated regarding
its project requirements. For instance, with respect to a single core CPU, 20sim does allow to
create more efficient code and algorithms than TERRA/LUNA. This is mainly due to generating
only one thread which will handle all 20sim operations. However, being represented only as
one component block in the architecture model, this code is not formally verifiable. The same
is true for manual adoption to the code which would offer even more potential for optimizing
the programs performance. All code adaptations however might result in a setback regarding
reliability. Not only is there a risk for introducing accidentally errors and inconsistencies very
high, but also is the option for reliability checking limited to plain code review. Consequently,
it is crucial to achieve a balance between all methods according to their impact on the final
design.

At this moment automatically generated code for certain functional topics is not yet covered
fully by the MDD tools. Consequently they need to be programmed manually. Those topics are
motion profile generation and the implementation of the FSM as is explained down below.

MotionProfile Currently, for most of the created ECSs that are based on motion profiles gen-
erated by 20sim, each set point is calculated with every new cycle (i.e. at runtime). This pro-
duces an avoidable high computational load on the hardware. Since the expected values can
be considered as fixed, i.e. if value X1 assigned to time step Y1 then X2 will be the next value for

14 in other words, achieving real-time compliance
15 i.e. verifiability of reliability

Frank Trillhose University of Twente



CHAPTER 3. DESIGN SPACE EXPLORATION 21

time step Y2, an alternative implementation could use simple LUTs (Look-Up-Tables). So far,
20sim is not able to generate LUTs. This is why they will be generated during the initialization
phase of the to-be created ECS using a simple sine-function-based algorithm. Consequently,
this approach will allocate much more memory than a runtime solution.

Although this is a work step outside the standardized tool chain, the risk of introducing errors
by doing it manually is considered quite low and correctness verification is straightforward (i.e.
checking LUT for wrong values).

FSM From a designer’s point of view crucial functional components like FSMs should be im-
plemented on an abstract, architecture model level. However, at this point and with respect to
the TERRA/LUNA framework, it is not only found that "representing a state-machine in pure
CSP results in in-efficient code" (Meijer, 2013) but is also still difficult to debug due to a lack
of proper simulation and verification capabilities (Ran, 2015). As a temporary solution, tools
like UPPAAL (2015) which provide also the option to specify formal queries to check created
Timed Automata could be used. However, with regard to UPPAAL, there is no built-in option
to generate source code from the created models which means that they have to be ported
manually into the ECS. A brief research showed that there are (ongoing) projects which try to
provide a third-party tool that is capable of adding this feature to the UPPAAL framework (see
also Appendix A.10). However, they have been found to not completely meet the project’s re-
quirements (i.e. not matching intended target language, not being matured enough or just not
accessible)

3.2.6 Tool Chain and WoW

The established tool chain reflects the ideas of the WoW created by Bezemer, Groothuis and
Broenink (2011). However, although the core set of tools is already an elaborate choice, it can
be relevant to search for alternative or additional tools that provide different or more benefits
to the final result than the currently used one do.

Benchmarking and Profiling Next to the considered reliability checking tool UPPAAL, one
further crucial tool chain feature is the profiling of the to-be developed ECS. Profiling does not
only help to verify if functional requirements have been met but also supports the designer
during the development with identifying performance deficiencies and to compare quantitat-
ively with previous approaches. Especially the latter point would improve the necessary16 doc-
umentation of the ECS development evolution and help to interpret and classify (previously)
achieved results better.

3.3 Design Concept

Concluding the DSE, the following sections briefly outline the main design decisions and op-
timization hypotheses of the project.

Several conceptual design steps and topics have been highlighted. One of the major concern
right at the beginning (when modeling the ECS) was finding the best compromise between
structural completeness (that supports all desirable features of high quality software) and ex-
ecution performance. In other words, it is preferred (by the system designer) to realize and
model as much as possible within the top abstraction layer such that the evaluation (e.g. by per-
forming CSP model checking) considers as much as possible. But so far this has been known to
be a constant source of process overhead which degrades the execution efficiency and thus has
to be compensated (Bezemer, 2013; Hoogendijk, 2013; Maljaars, 2006). Due to the fact, that the
aimed hardware and software development tools are rather limited in their performance ad-
justment capabilities, additional measures have to be taken. To solve the problem at hand, the

16i.e. as a mean and knowledge base of future DSEs
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following attempts could be conducted to improve the current status such that the deficiencies
can be overcome entirely. In accordance to the prepared ECS criteria list (see also Appendix
A.2) the following ECS-related and potential optimization topics have been identified:

3.3.1 Computation and Communication Hardware

On this note, it would be also possible to resume the work of van Zuijlen (2008) or Sassen (2009)
which implemented the ECS on a FPGA. This would yield high performance and efficiency.
However, currently the TERRA/LUNA framework and linked ECS tool chain do not support dir-
ectly the FPGA as a deployment target. In other words, the currently given low-performance
(hardware) target platform and design tools tend to limit the quality of abstraction options sig-
nificantly. This condition requires to optimize selectively, i.e. for instance by replacing abstract
constructs with specific implementations that reflect the tool’s or hardware’s capabilities. Ul-
timately, this leads to an inevitable loss of design generality and reduction of model checking
coverage.

The PC/104 provides a sufficiently sized hardware interface to the PCS. At the moment three
separate connectors are used to connect to all sensors, encoders and H-bridges using at least 72
general purpose I/O ports via the extension board (Figure 36, van den Berg, 2006). Due to this
parallel I/O interface between the Anything I/O board and the computer unit other alternatives
to the computer unit would have to provide the same physical interface capabilities.

Hence, it was analyzed how much effort it would take to establish the same status that the
PC/104 provides on different platforms. A potential hardware target option would be the RaM-
stix board. It offers small hardware performance improvements. But it does not provide such a
wide parallel port interface like the PC/104 does. The lack of a suitable parallel I/O interfaces
makes it necessary to establish a serial data bus link which again has to be compliant with real-
time requirements. This only leaves a distributed computation option, including an Ethernet
connection as the most likely to implement communication link. Finally, the expected amount
of effort to provide a working AnyIO Linkdriver or BSP, like the existing one for the PC/104, is
not feasible within the project’s time scope. Hence, a RaMstix-based unit option seems not
feasible at the moment and thus had to be excluded from further implementation attempts.

Building a distributed system would solve several problems related to limited hardware per-
formance. A specific solution to handle real-time communication adequately was explained
in the DSE section. Here, a constant "heart-beat" signal or data object is passed every cycle if
everything is in operational mode. However, besides the drawbacks of increased process load
and reduced error handling, this distributed processing scenario is not yet fully supported by
LUNA nor TERRA.

Subsequently, it seems apparent to utilize only a single PC/104 stack and consequently run the
ECS on one CPU which makes multi-threading less crucial to exploit. The benefit is that devel-
opment time can be reduced by adopting a known-to-work platform which provides tested
interfaces to the PCS. However, due to the limited computation capabilities of the PC/104
CPU and memory components, a small (memory footprint) single-thread application would
be preferred over a largely complex multi-threaded program. This (goal) again, is in contrast to
achieving a high level of re-usability, adaptability and similar related requirements which are
meant to support the designer but are likely to yield less computational efficiency. As a con-
sequence of the conflict of interest and to provide a back-up solution, time has been spent ana-
lyzing the distributed option for the PC/104 stacks. However, currently LUNA does not provide
the full support to setup a Ethernet-based network between several stacks.
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3.3.2 Operating System and SDK support

Two generally feasible RTOS options have been identified that would run on the selected hard-
ware and support the intended software (development). The first one is using the commercial
QNX RTOS, Neutrino. Its micro-kernel aims specifically at low performance RT applications
on embedded systems whereas at the same time supporting many small form factor hardware
(i.e. with custom BSPs). The second options is to use an open-source Linux-based OS in com-
bination with RT compatibility-adding enhancements like Xenomai, RTAI or the PREEMPT_RT
patch. With respect to supporting SDK tools, only the Xenomai project offers additional simple
profiling script similar to QNX’s Momentics profiling suite.

Generally, there are even more RTOSs available, but the two mentioned above have been the
easiest to access, and have been proven to work with the given prospective hardware 17. Fur-
thermore, an important aspect to consider regarding performance is how the OS will schedule
or manage multi-threaded software applications. LUNA is capable of assigning CSP models to
both UThreads or OSThreads (see also figure 3.2) (Bezemer, 2013).

Here, whereas exact definitions and ways of implementation might vary, Wilterdink (2011)
defines UThreads (i.e. user threads as opposed to OS or kernel threads) as execution entit-
ies which share all resources (memory allocation, data objects, etc) which have been assigned
by the OS to a single process 18. However UThreads are handled by the user space (i.e. specific
thread libraries) in contrast to OS threads which are handled directly by the OS. This definition
is also similar to how the POSIX standard describes the separation of processes and threads
(McCracken, 2002). According to Wilterdink (2011) (see also his table 5.4) Linux (esp. in com-
bination with Xenomai) and QNX Neutrino differ in the way POSIX is implemented and thus
also will differ in performance for application generated with TERRA/LUNA.

However, comparing those two, one can find a major difference in the way the thread man-
agement is set up using a QNX or Linux-based OS. Wilterdink (2011) demonstrates by using a
simple test program19 that "UThreads can potentially switch 7 times faster than OS threads on
a uniprocessor Linux machine"20, still 11% of the CPU load is already generated by scheduling
the software’s tasks alone21.
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Figure 3.2: Mapping a (graphical) TERRA CSP model (left) onto OS threads (right) step-by-step (1..5)
(adopted from Bezemer (2013))

Consequently, choosing a Linux-based OS would require much more hardware resources than
currently available. In addition to that and similar to the RaMstix situation, using a Linux-based

17 i.e. at least at some point in time
18 which can be seen as a thread container
19 whose purpose and work load is to perform thread context switches
20i.e. "overhead costs for UThread scheduling are not included in this measurement"
21 test setup: PC/104, 600MHz, 1kHz sampling rate
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OS would require providing custom drivers22 for the computer hardware indented to use in the
end. However the expected amount of effort to provide these is considered not feasible within
the project’s time scope.

This is why preference is given to the QNX Neutrino RTOS.

3.3.3 Software Architecture

Providing a sound software architecture concept is an important part of software development.
The more effort is spent on this topic the more it will reduce the chance of introducing errors
when implementing the design (i.e. creating the source code).

It is claimed that the proposed GAC implementation can be improved towards more efficient
execution but on the account of generality and future customizability. It is even more argued
that the high level of customizability of the current GAC implementation is not necessary to
maintain, especially with respect to the introduced, semantic redundancy in combination with
the aimed use-case23.

With respect the current approach, three different major concerns have been chosen to focus
on when creating a software architecture of an ECS. In other words, by forming the final soft-
ware structure, those concerns represent distinctive levels of integration in contrast to crucial
areas like Safety. First, the general (top level design) structure, this determines how the ECS
part will be placed into the overall design and what needs to be added aside to make it a com-
plete application. Next to the ECS core functionality, this includes topics like a GUI, APIs or
hardware I/O (see also figure 4.1). The second concern is about integration of a mature com-
munication between all the implemented components (being part of the 5C and can be seen
as data flow management). This determines how components can cooperate with each other
and share information (see also figure 4.2). The last concern is about the detailed (lower level)
features or the components which will represent the ECS and perform the major operations.
This is also the level where the remaining concerns of the 5C principle (as introduced above)
should be applied when suitable (see also figure 4.3).

The following potential points of optimization with regard to the software architecture have
been identified:

• "Copy and Paste" feature of the GAC

One fundamental aspects of the GAC is its generic nature which allows to "copy and
multiply" an implemented GAC such that it can serve as another processing unit. This
way there’s a significant development time reduction as well as a lower chance of intro-
ducing systematic failures. This idea has been adopted to the new ECS design as well as,
i.e. especially the structure of the PCU components will be kept identically.

• flattening and thinning out design levels yielding less functional redundancy and thus less
overhead

Initially, the GAC is particularly meant to be used in a nested way. Hence, for instance,
the Coordination component is set up as GAC as well and consequently consists of the
same 6 main components which were mentioned above. As a result, this introduces a
high level of redundancy. In many cases, where safety is the most important require-
ment, redundancy is highly intended. However in case of the PCS where computation

22 which should offer access to the AnyIO board and periodic timer
23General use case: A system designer using the ECS template will only specify parameter within the software

components rather than their structural relations (as they are fixed being the GAC)
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resources are very limited, it presents an unused performance potential. In regard to
that, the redundancy feature has been removed from the GAC. As a consequence there is
only one Safety layer that is directly put at the hardware I/O interface of the software, i.e.
where bit information is read from or written to the processor ports which are connected
to the plant. The motivation behind this approach is the assumption that a computation
error only presents a serious danger (to the plant hardware or its environment) if the
error is not filtered out before the hardware I/O interface or entirely unaltered passed
to actuators. The benefit of such a less detailed safety handling is the reduced com-
putational overhead (during normal operational state). On the other hand, having less
redundancy means errors cannot be caught at a very early stage any more which again
reduces the time to take proper counter measures. Hence error handling has to be de-
signed in a broader sense (e.g. "if any error then do the one most secure counteraction").
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Figure 3.3: Model structure optimization - current (left) implementation hierarchy and functionality
distribution compared to previous study of Hoogendijk (2013) (right)
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– Realization: Final implementation consists of 3 layers (Hoogendijk (2013) used 5)

* top layer (PAR arrangement)

· ECS Core Application 24

· Hardware Interface 25

* mid layer (PAR arrangement) - represents the PCUs and their relationship

· InterPCU COM Link 26

· FSM MotionProfile 27

· Control 28

* bottom layer (SEQ arrangement)

· IO SEQ structure 29

• Serialization of tasks

A crucial part of designing software architecture is to manage how tasks or processes
will be scheduled. Since hardware resources are limited and often various kinds of data
have to be processed simultaneously, the order in which contributing processes are
executed becomes essential. This becomes even more a core issue when those con-
current processes are dependent from each other in the way that they share or pass
on data. Often this data has to be processed in a certain order including feedback to
preceding processes. This is where it is easy to introduce data flow deadlocks. Here, the
TERRA/LUNA tool chain assists the designer by fixing the order of execution by using
channels to forward data. After creating a first version of the software architecture or
when adapting a previous design, it is possible to analyze the path the data takes for
additional performance optimization.

The GAC template, as specified by Hoogendijk (2013), basically handles different kinds
of data mostly in series, although all processes are set up completely in parallel (see also
figure 3.4). The advantage of an entirely parallel construct is that only inter-task data-
dependencies will determine which of the concurrent tasks is to be executed. However,
if there are many tasks without dependencies, this can result in an increased (CPU) work
load caused by many issued context switches which the OS scheduler then has to work
off. Due to the fact that the potential HW target30 will be most likely a single-core pro-
cessor31 it might be beneficial to explicitly align certain concerns of the GAC in a series of
consecutive tasks. This approach could be seen as cooperative scheduling in which task
gets finished before it yields to the next task. Another step could be reducing the architec-
tural overhead even more and merge several components into one component. In other
words, if processes or tasks turn out to provide no feedback to their predecessors or any
different component they can be merged to one process which just performs all the oper-
ations on the data at once. This way additional context switching load can be reduced by
using less reader and writer processes. Furthermore, it is even possible to move certain
parts of the structural design to code level and gain more performance while reducing
abstraction and the ability to verify the software architecture formally.

24Consists of the actual composition of all PCUs
25Handles the conversion and data distribution
26Handles communication between PCUs
27Handles coordination of a PCU
28Handles core computations of a PCU
29Execution sequence: Reader, code block, Writer
30 i.e. for this project
31 in other words, reduced capability of handling task concurrency
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Figure 3.4: General Data Flow through Hoogendijk (2013) GAC implementation (here: Feeder Belt)

• ChannelMerge and data object grouping

Similar to the point mentioned above and after thorough analysis of the data flow,
different data objects can be merged to one single multi-data-type object (hence, the
generic type of that object could be then e.g. a struct type). This kind of object struc-
turing is not yet supported by TERRA and can only be achieved by manually altering the
generated source code. In order to estimate the potential work load reduction of merging
channels several tests32 have been performed (see also Appendix A.3.3).

• Using a single multi-data-type communication link between PCUs

Basically, a GAC has no specific inter-GAC communication protocol. Every data object
has its own data link (a.k.a channel) which connects the same type of sub-components
and data types. E.g. the Coordination components have type-dedicated channels which
let them exchange only status data as well as the ErrorDetection components can only
exchange specific error occurrences. Generally, this represents a good separation of
concerns and makes token-based Data Flow analysis straightforward33 but also intro-
duces a large number of reader and writer processes which contribute to a higher context
switching load (thus computational overhead). In order to reduce that load a single (soft-
real) time communication link (called InterLink) between the respective PCUs has been
implemented which passes several types of information from different data sources.

3.3.4 Special Algorithms

There are two kinds of algorithms which have to be taken care of. One generic algorithm has
to be developed which handles the controlling of the actuator. The second algorithm concerns
the monitoring and state handling of the entire ECS. In contrast to the control algorithm the
intended FSMs have to be created and checked from the ground up.

Control algorithm Within the intended tool chain the creation and implementing of the con-
trol algorithm is supposed to be handled by 20sim34). One PID control algorithm was designed
by Maljaars (2006) and has been proven to work generally efficient by succeeding studies. This
PID controller would also be sufficient for the current application 35, i.e. no optimization po-
tential has been identified that would improve the execution performance nor the design ab-

32 i.e. a simple Producer/Consumer program running on multi-cores as well as single-core hardware and with sev-
eral combinations of amounts of channels or Writer/Reader process pairs has been compared w.r.t timing, memory
allocation and thread count to the same program but with the respective merged channels implementation

33 i.e. one token represents only one kind of data
34 other MDD supporting and TERRA/LUNA compatible tools are generally also possible, however are not yet

available
35 provided that the controller coefficients have been adjusted according to the achieved sample rate
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straction level. However due to the current combination of TERRA/LUNA and the given QNX
compiler certain C++ arithmetical functions that 20sim uses cause runtime errors. The actual
source of the issue could not be eliminated completely within the time scope of this project.
Alternatively, a simpler (thus easier to verify) and suitable control function has to be added
manually to the source code. Since the general speed of the PCS can be adjusted seamlessly
and the setup provides enough steering room for maneuvering a feed-forward controller can
be used. Naturally this also involves lower steering accuracy and limits the maximal speed an
actuator can be controlled, but does not pose an issue for the setup operability, in general.

FSM As Ran (2012) states and in order to reduced the communication overhead and the re-
lated context switching all FSM should be implemented manually. Due to its importance for
the ECS the consistency of the FSM has to be checked formally. However, this can only be done
externally from the established tool chain, as is discussed in the respective section 3.3.6 down
below.

Even though for more advanced applications it would be preferable (esp. for debugging and
monitoring) to cover many different states a PCU could be in, it is aimed to implement only
as few states as necessary (e.g. init, run/turn/move left, run/turn/move right, stop) in order to
keep calculation load and state complexity low.

Feeder:
PCU

Molder:
PCU

Extractor:
PCU

Feeder Reeled Out
Token passed to Molder Molder Drawn In

Token passed to Extractor

Extractor Drawn In
Token passed to MolderMolder Reeled Out

Token passed to Feeder

Figure 3.5: Sequence Diagram for the token passing scenario

3.3.5 Code Generation and Manipulation

Several implementation details have been chosen to be realized manually on code level due
to missing integration support of the design framework or in order to gain more performance
efficiency.

Motion Profile Generation Previous studies have been using functions provided by 20sim’s
code generator. Those functions use extended set of math functions which are called every
control cycle. However, it is argued that in order to reduce the regular process load the motion
profile generation can be reduced to a single trigonometric function which is only called once
during the initialization phase. Furthermore, up until now acceleration and deceleration have
been calculated independently but can be simplified to only one calculation 36 and followed
by mirroring the calculated values. All results will be stored in a LUT and read according to the
current status of the to-be controlled actuator. Apart from that, it was also found that when
compiling 20sim code additions would cause compile errors which seem to be originated in an
unsupported version of the math library37.

ChannelMerge Several options have been evaluated how to optimize the utilization of
Reader, Writer and Channel instances. It is found that reducing the communication overhead

36 see also Figure 4.7, phase 1 where the sin function is only calculated for 0 to pi/2 and then mirrored to phase 3;
phase 2 is a fixed value

37 i.e. _Sinx error is given when compiling with linked 20sim code
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and the related context switching can improve the ECS execution efficiency. One way to do this
would be to perform post-code-generation operations on the source code files. An example is
given in the Appendix A.11 which groups data objects similar to the principle of a multiplexer.
However, that would include substantial changes to the software architecture and might render
the design model difficult to verify as it evolves into quite a divergent functional representation
compared to the code.

Due this fact, including the general lack of the framework support for this kind of optimiza-
tion, a simpler way has been chosen to give a proof-of-concept of this concept. Information
exchanged between the PCUs are reduced to boolean type and merged into one multi-bit data
object by design. The information is passed in a ring topology using only one channel respect-
ively (see also figure 4.2).

The decision for using this topology was made due to a two-way or duplex ring network intro-
ducing race conditions. Furthermore a centralized network would represent a central point of
failure and decrease performance as well as the level of scalability (i.e. due to decentralized
design it would be easier to distribute the ECS load on several devices).

Controller Previous studies showed in detail that the (loop) control algorithm developed by
Maljaars (2006) is working fast and stable. The algorithm can be realized using 20sim’s code
generation feature or by manually implementing a C++ code based function. However, in order
to achieve a maximum of performance efficiency the controller has been reduced to a simple
feed-forward controller.

3.3.6 Tool Chain and WoW

As starting point the WoW proposed by (Bezemer, 2013) is adopted for most parts. This
design methodology focuses on Model-Driven Design (MDD) in combination with model
(co-)simulation and iteratively executed stepwise refinement and is best supported by model-
based tools like the TERRA/LUNA framework, 20sim or FDR3 (2016).

In regard to the stepwise refinement, the V-model has been chosen to be applied to this project
including the focus on model-driven, test-driven and use-case-driven approaches 38. This is
done in accordance to Zwikker and Gunsing (2015) who state "the V-model is a much-used
and well-structured method" when developing CPS-like systems (i.e. which involve carrying
out mechanical and electronic hardware concepts alongside software design). A reason for this
is its flexible "development of decomposed system elements" and its immediate support for
documentation39.

The V-model, named after it is shape, can be divided in 3 work phases: Development, Realiza-
tion and Testing. A system designer would initially stepped through the procedure from left to
right. Each steps allows to iterate over a certain sub-set of steps. The goal is to finish a project
with a positive validation of the final (software) product.

38 which is also the order of priority
39 but which is also seen as a potential risk by Zwikker and Gunsing (2015)

Robotics and Mechatronics Frank Trillhose



30 Controlling The Production Cell Using TERRA-LUNA

User
Requirements

System
Requirements

Concept
Design

Detailed
Design

Realisation

Subsystem
Testing

Integration
Testing

System
Testing

User
Testing

Validation

Verification

TestingDevelopment

Realisation

en
gi

ne
er

s 
 

su
bs

ys
te

m

us
er

s

sy
st

em

Figure 3.6: V-model with iteration loops between subsequent phases (Zwikker and Gunsing, 2015)

In accordance with the requirements the following tool chain is proposed to be used to achieve
a reproducible as well as easily adjustable and verifiable ECS program.

FSM

Software
Architecture

Model
Checking

Control
Algorithms

Source Code
Generation

Performance
Profiling

Source Code
Optimization

QNX 
Momentics

Code 
Adjustments

LUNA

20sim

FDR3

TERRA

UPPAAL

Figure 3.7: ECS tool chain chart

FSM and UPPAAL Normally UPPAAL (see top of figure 3.7)
and FDR represent similar purposes, i.e. model checking fea-
tures. However due to the fact that there is no native FSM
development support in TERRA yet (like selecting guards,
events or invariant conditions), it was chosen for the ease of
designing to use UPPAAL over FDR. This comes at the cost of
loosing model incompatibility between TERRA (CSP) and UP-
PAAL (Timed Automata)40. Nevertheless, implementing any
FSM on model level has to be excluded from the tool chain
due to lowered performance as a result of communication
overhead introduced by how the CPP LUNA plugin is gener-
ating code from CSP models. As a temporary solution the UP-
PAAL models will be manually implemented on source code
level.

Dependency Validation and CSP Model Verification In or-
der to formally check the integrity of the ECS design, the cre-
ated CSP models will be analyzed with the tool FDR3. The
results can be used to determine if the application is life and
deadlock-free.

Benchmarking and Profiling As Fraleigh and Shulman
(2004) state, the fundamental goal when designing (real-
time) embedded system software is to make sure that the final product meets the user’s de-
mands. This is why every requirement or specification has to be checked upon its conform-
ance. In addition to validating functionality, determining performance in order to compare
with alternative solutions can be crucial as well. This is called benchmarking. To improve the
software execution, performance bottlenecks have to be identified by profiling communica-
tion and computation during early design phases. Typical ways to determine this is to use
(system) profilers like the software analysis framework Valgrind, Google’s CPU profiler or QNX
Momentics profiler suite. Here, performing a dynamic program analysis, profilers measure
essentially where and how long a CPU would spend time executing parts (or threads) of an

40The study of Ouaknine and Worrell (2002) indicates that automated translation from UPPAAL to TERRA models
could be implemented with a manageable amount of effort. Besides both models are being stored in XML format it
is understood that Closed Timed Automata can be translated directly into Timed CSP.
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application. System profilers fall into two categories: those that report actual or exact meas-
urements and those that report statistical data. Both methods provide important information
and the decision about which type to use will depend on the purpose of the analysis.

Here, the following figures will be used to draw conclusions about the (performance) efficiency:

• Since it is argued that most performance can be gained from reducing the number of
processing overhead like context switches, the number of running or created threads is
good indicator41

• Execution time spent and sample time verification 42

• Using the file size of the ECS program gives information about the complexity of the ECS
(here, less would be better to meet real-time requirements more assured)

3.3.7 Behavioral Correctness Checking

In order to work correctly the control software needs to be guaranteed to operate even during
hard-real time conditions. The requirement "real-time guarantee" is always connected with a
specific time scope that represents the ECS execution cycle period or sample time. Previous
studies accomplished sample cycles of 1ms. This figure was generally accepted by all other
studies without further verification. Since the PCS represents a rather slow process due to the
high inertia of the actors and the demo metal block objects it is estimated that larger sample
times are still applicable in accordance to the motion profiles and less accurate movements.
This consideration provides which will become necessary when finding feasible solutions in
the design space exploration.

3.4 DSE Conclusions

Due to the design framework supporting different HW and OS options only very limited or
not at all, the completed DSE does not provide as much design flexibility as is needed to meet
all requirements completely. The main issue is that software produced with TERRA/LUNA (in
combination with the AnyIO drivers) only works sufficiently on a PC/104 system with QNX. Al-
though in general the OS can be considered a good choice, the computer hardware, it is running
on, does not provide the enough signal processing resources.

Hence, the realization of the introduced system specifications is entirely determined by the
capabilities of the design framework. However, so far MDD abstraction and execution effi-
ciency are not yet fully compatible and cannot be realized to the same extend at the same time.

This can only be compensated if the most complex and resource demanding functions of the
ECS, i.e. control algorithm and FSM handling, are implemented on code level (at the expense
of design abstraction) to increase the execution efficiency.

Since those functions are also the most crucial ones in regard to reliability, additional formal
checking measures are necessary.

Apart from that Hoogendijk (2013)’s initial GAC structure offers also potential to be further ad-
justed according to the remaining requirements. While aiming still for a generic design tem-
plate, an optimized GAC can be achieved by reducing several areas of hierarchical complexity,
functional redundancy and inefficient data separation.

41 Whereas in a Linux for every running processes there is status file generated that provides information about
Non/voluntary context switches (see also Appendix A.13), there seems to be no similar method like this for QNX, this
is why the LUNA debugging feature is enabled to count started processes.

42e.g. with QNX Momentics profiling tool System Profiler as presented in Appendix A.15 or FDR3’s CSPM profiling
feature that provides the number of times a function was called (see also Appendix A.1)
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4 Implementation

This chapter deals with the realization (i.e. specific implementation and validation) of the pro-
posed ECS design concept, separated by model (i.e. abstract software architecture) and code
level. Several implementation details are picked up and examined more closely according to
the adopted MDD and (co-)simulation-based WoW (see also figure 2.1). Hereby, the following
concerns have been used to reflect the steps taken during the development process:

1. General software structure/architecture design

2. Algorithm design (complex algorithms/control algorithms)

3. (a) (Model) Simulation and verification of the parts of the design concepts

(b) Hardware/Software in the loop simulation

4. Realization (deployment)

As described above in chapter 3.3.6, the development process was carried out by going through
the steps of the V-model, i.e. for every issue or concern, regarding a subsystem, a respective
subset of requirements has been extracted to create a detailed design of a sub-solution. Here,
the produced documentation of the chosen design concept in form of models or other ways
of design specification is used to generate hardware-specific source code. In parallel to the
realization of each subsystem and in order to determine to which level requirements have been
met, several kinds of validation tests have been performed ranging from single unit testing to
testing the complete system as a whole (i.e including the new subsystem).

4.1 Software Architecture

4.1.1 ECS Model Design Implementation

The final control software for the Production Cell Setup was designed in reference to Hoo-
gendijk (2013)’s generic design pattern (GAC). The now adjusted implementation comprises
however significant structural reductions or rearrangements. The main tool for developing the
software architecture of the ECS remained the TERRA model editor. For reasons of perform-
ance, the Top Level architecture design is kept as simple as possible - only consisting of two
process blocks, as shown in figure 4.1 down below. It is also the only entity that the recursion
attribute is assigned to which again is requiring every (sub-) part of it to be essential (i.e. any
functional redundancy is to be avoided otherwise the computational load would increase un-
necessarily). The first implemented operational block, called modelECS, contains the core
functions of the complete ECS programs which will be discussed in more detail further down
below. The second block, called HWInterface, abstracts away the FPGA hardware register
access details from the actual PCS control implementation as a result of separation of con-
cerns. In addition to that it also serves as One-to-any channel workaround 1(see also Figure
A.1). This feature is not yet implemented in TERRA/LUNA and could have reduced the number
of writer processes in the current ECS program noticeably (similar to the ChannelMerge optim-
ization, see also Appendix A.3.3 for context switching test results). Furthermore, this process
block is also meant to handle data conversion but currently serves only as bit value interpreter
in this function for specific output data. Optionally, a third UI process block could be added in
combination with an external host PC running a GUI. However, there is no adequate commu-
nication bus available yet that would connect the control2 and the user PC3.

1 i.e. a channel that can be connected to one writer and several readers
2 running the ECS
3 running the GUI application
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Figure 4.1: Top Design Level showing ECS block (top) and the Hardware Interface (bottom)

Every functional entity is supposed to execute exactly once per cycle, thus, the repetition
property is solely reserved for the top level. This is done in order to avoid structural redundancy
and to follow TERRA/LUNA WoW preferences. It can also be followed that less fragmented soft-
ware structures (i.e. reduced utilization of parallel and repetition attributes) will consequently
result in less fragmented task scheduling as well as reducing the number of task activation
checks and context switches per cycle, yielding more performance especially on single core
CPUs. Apart from that, every cycle start is triggered by the timer process 4 which was chosen to
be implemented in the modelECS block (see also figure 4.2 on the left). This way, the ECS pro-
cess is always called first and the Hardware Interface follows according to the channel relations
as it is less resource demanding and of lower priority.

The lower architecture level of the modelECS block consists of 6 PCU group blocks. Each
group block is identical with the others and consists of a controller block PCU_*_Ctrl, a mo-
tion profile block PCU_*_MP and a inter-PCU communication block PCU_*_InterLink. As
indicated in the DSE chapter (see also section 3.3.3), particular attention was paid when creat-
ing a software structure (see also section that would not only fit the demands of the PCUs but
also every other mechanical unit based on what was proposed as feasible design 3.2.3). This
includes also the capability of communicating amongst the PCUs to pass information about
the status of a unit or a critical situation. The communication between the PCUs is buffered to
show that information passed are not time critical which imposes less constraints on the com-
munication bus (see InterLink components in figure 4.2). The chosen structural composition
would also allow to distribute the ECS program such that every PCU group block could run on a
separate computer hardware. This would make it more fault tolerant with respect to hardware
failures while being able to minimize computational resources at the same time.

4 i.e. a writer process writing to a special Periodic Timer Port
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Figure 4.2: ECS Design Level showing all 6 PCU objects

The lowest architecture level for each of the three functional blocks (as can be seen in figure
4.3) completes not only the intentionally flat overall architecture but solely consists of Readers,
Writers and Code process blocks. Here the IO SEQ structure (i.e. an execution sequence starting
with Reader processes, followed by a code block and terminated by a set of Writer processes)
has been applied to the model composition to enforce a preferred data flow.
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Figure 4.3: Bottom Design Level of InterLink (top), MotionProfiler (middle) and Controller (bottom)

Regarding the overall ECS architecture, there are several elements which have been not im-
plemented in a detached way or have been omitted completely compared to the proposed GAC
component (see also figure 3.1 and 3.3 in chapter 3). The main reason to do so is in regard
to functional insignificance of those blocks as result of the current ECS specifications. Hoo-
gendijk (2013) recommends to separate the Configuration concern structurally from the other
concerns. The current ECS implementation, however, only requires configuration during the
initialization phase which is why all relevant assignments have been realized in the respective
constructor sections of the Computation-like blocks, reducing structural redundancy and the
overall computational payload.

4.1.2 Testing / Experiments / Measurement

UnitTest_SEQ

code_UnitTest_Init
C++

code_UnitTest_Eval
C++

varPWM1

varSetPt_v

→
→

→

Test Pattern Data

Feedback Data

V

Figure 4.4: Example of Unit Testing on model level

A thorough verification of the model as well
as functional correctness has been performed
assisted by formal model checking tool FDR3.
However, only parts of the final model could
be proven to be consistent. When checking
the complete model the tool FDR3 crashes
5. This test has been repeated with different,
mostly simpler versions of the ECS which still
causes crashing the tool. The same behavior
occurs also for Hoogendijk (2013) implement-
ation. So far the precise cause could not be

5 i.e. it gets stuck in an infinite loop that eventually consumes the complete main memory of the development
PC and thus crashes the entire OS when not terminated before.
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identified. It seems though, that the problem is linked to the usage of serial relations between
blocks6. At this point it can only be assumed that a certain construct of relations triggers a state
space explosion that the tool can not handle or catch as a fault. Further tests also indicated
that it does not seem to be linked directly to the application of buffered channels, alternative
constructs or the number of process blocks in general.

In addition to the formal checking a test-bench-like setup, using the TERRA model editor to
simulate a variety of test scenarios (see also figure 4.4), has been created and applied to the
ECS model.

With regard to communication overhead a significant reduction of potential context switches
could be achieved while still maintaining a high level of software abstraction and performance
quality.

CSP model Writer Processes Readers total
modelECS 43 49 54
HWInterface 38 2 27
modelArch - 2 -

sum 81 53 81 215 (current approach)
SyncProdCell 351 175 351 877 (Hoogendijk, 2013)

Table 4.1: Comparison of the number of introduced CSP processes for different approaches

4.1.3 Evaluation

To this point, a complete formal check of an ECS could not yet be performed7. It is recommen-
ded to spend more time on the investigation of what exactly causes the failing of the tool and
if it can be prevented from a modeling point-of-view without changing structural dependen-
cies completely. This seems crucial, otherwise FDR3 has to be excluded from the standardized
tool chain as formal model checker and replaced with an alternative. Furthermore, it has been
shown that using the test-bench like setup on model level is very time consuming. Especially
when performing unit tests on components which are parts of a larger composition this can
turn into a laborious task. The issue is mainly that every port or Writer/Reader pair needs to be
connected properly even when not meaningful to the test. A feature known from textual pro-
gramming languages, called "commenting out", but which is also available in graphical model
editors like Mathworks (2016) Matlab/Simulink8, could decrease significantly the amount of
time spent on preparing the entire ECS to test only a single part of it. Another tool-inherent
difficulty is how to deal with the ring initialization which describes a situation of circular de-
pendent units9 (like it is shown in figure 4.2). Here, all PCU units depend on the fact that the
preceding unit, which they’re linked to, gets initialized first. However, there is no actual start
in a ring-dependency-like structure. The issue is caused when all components make use of the
IO-SEQ principle10. There are many ways how to solve this. The easiest way is to not make
use of the IO-SEQ principle or alter it for a specific part of the ECS. However that is not always
possible or preferred. It would mean for instance for the current ECS design that a PCU com-
ponent cannot be kept generic as it has to be altered completely to work in a ring composition.

6 if they get replaced by parallel relations FDR will not crash and proves the ECS to be deadlock free which is
expected when every relation is parallel

7as it keeps allocating memory when it is tried to analyze CSP models of the ECS (see also bug reports)
8 Here, a system designer can hide (i.e. it becomes greyed out) a model from simulation.
9 in other words, channels need to be ready to execute during initialization although not enabled by the Writer

process
10 A typical way in processing data sequentially, i.e. data is first received by a CSP Reader process, then processed

and finally passed onto the next entity by a CSP Writer process
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This is why a solution was chosen that can be kept generic, i.e. easily duplicated without altera-
tions. IO-SEQ Readers can be adjusted such that they will be placed in an Alternative construct
which catches the first execution of the ECS and replaces the Reader with a dummy process
that does not depend on another Writer process to be executed first. However this is more of a
workaround than a real solution to the issue. First, it presents an unnecessary addition to the
architecture which does not contribute to the actual purpose of the ECS and second, it might
cover design or implementation flaws as FDR3 is for instance not capable of detecting certain
lifelocks due to the fact that the Alternative property has to be handled on code level11. As a
prospective feature of TERRA it might be useful to enhance Writer and Reader processes such
that they have an initialization property that allows to get passed when executed the first time.
Another solution could be to be able to give channels an initialization value12 that they can
pass to the respective Readers when checked for the first time.

4.2 Source Code Additions and Adjustments

Several concerns are implemented on code level to reduce the communication overhead
between the Computation and the Coordination units.

4.2.1 Implementation

sensor[7] &&
sensor[6] &&
!BlockAtPos[6]
RO_DropPos=true,
RO_RestPos=false

BlockAtPos[7] &&
RO_Magnet=false

!sensor[7]

RO_DropPos=false
RO_PickUpPos=true,
RO_busy=false

Go_event?
RO_busy=false,
RO_PickUpPos=false,
RO_Magnet=false

!sensor[6]
RO_Magnet=true,
RO_busy=false

RO_PickUpPos=false
RO_RestPos=true,

Start

PickUpPos_MagOff

PickUpPos_MagOn

RestPos_MagOn
DropPos_MagOn

DropPos_MagOff

Figure 4.5: FSM example model using UPPAAL (Ro-
tator PCU)

Finite State Machine One of the concerns
involve the FSM structures that have been
developed, simulated as well as verified using
UPPAAL. Two different kinds of FSMs have
been implemented in the respective Motion
Profile units of each PCU. One type FSM
handles the state management of the PCU
covering universal states like ’Initialization’
or ’Homing’ as well as specific states that de-
scribe a certain movement or rest position
(as can be seen exemplary for the Rotator
unit in figure 4.5). Another FSM (represent-
ing the communication between the PCUs)
is handling the token that is passed between
the 3 PCUs ’Feeder’, ’Molder’ and ’Extractor’.
Appendix A.16 shows the complete simula-
tion of all created models of the PCS.

ChannelMerge As indicated in the feasibility section it was not possible due to various issues
to introduce a complete design optimization step to the workflow that guarantees structural
coherence of the model as well as functional coherence of the produced source code and yet
is still easily maintainable (i.e. altogether, resembling an automated post-design optimization
routine).

However, to be still able to evaluate the performance gain, the principle idea of merging chan-
nels has been implemented in the InterLink components of the design. Here, only one data
object is passed which holds different kind of information from different contributers. In this
way the number of applied channels could be reduced while keeping source code and model
functionally identical. The figure below shows how specific information (like the status of ac-

11 e.g. there’s a counter which should but never gets iterated on code level, thus the program ends up in a lifelock
due to the value 0 of the counter being a valid value to proceed i.e. idle wait. Such design flaws cannot not be
checked by FDR3.

12 similar to dataflow analysis where one can pre-set egdes between certain nodes with initial tokens
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tuators or progression of the FEMOEX safety token13 passing) has been grouped and stored
within one 32-bit data object.
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Figure 4.6: InterLink shared data object bit representation chart

Motion Profile and Homing As proposed, the handling of the Motion Profiles is implemented
such that (prior to the transition into operational mode) all relevant set points are generated
and stored in a LUT. To reduce allocated memory size of the LUTs, only phase 1 of the complete
motion profile (see also figure 4.7) is generated. The remaining phases are either represented as
fixed numbers (i.e. no additional LUT entry) or read in reverse order (in other words mirroring
phase 1 to get phase 3)14.

In addition to using the motion profiles in operational mode to let the actuators move the demo
metal blocks, all actuators will be steered to a safe homing position during the initialization
phase, i.e. when the ECS programs starts for the first time.

Offset

position

Phase 1:
speed = minSpeed + MP(p.position)

Phase 3:
speed = maxSpeed – MP(p.position)

Phase 4:
speed = minSpeed

Phase 0:
speed = minSpeed

Phase 2:
speed = maxSpeed

partial position (LUT index)
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Figure 4.7: Diagram of how Motion Profiles are composed

4.2.2 Testing / Experiments / Measurement

With regard to evaluating the created program several techniques and tools have been used:

• FDR3 Determining deadlock freedom of CSP design

• LUNA Determining number of active threads and CSP process debugging

• QNX Momentics Timing and performance evaluation

• UPPAAL FSM simulation and verification

13 a token that is passed between the three PCUs: Feeder (FE), Molder (MO), Extractor (EX); to enforce a specific
execution sequence. The tokens indicates which PCU is enabled to act.

14 The LUT array is consequently read in the following way
Phase 1: 0 .. 0 ; Phase 2: 0 .. Max ; Phase 3: Max .. Max ; Phase 3: Max .. 0 ; Phase 4: 0 .. 0.
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With respect to the last point, every individual FSM as well as their interaction with each other
has been verified. Assisted by the model checking tool UPPAAL, a FSM can be simulated as
well as formally tested using property expressions like "E<> deadlock" (here, it is verified
wether "eventually for all paths there is a deadlock" which should and did return Property is not
satisfied) for the created model.

4.2.3 Conclusions

Overall, a significant execution load reduction, especially compared to Hoogendijk (2013)’s ap-
proach, could be achieved.

In addition to reducing the number of activated threads to a quarter, the sampling time (or
cycle period) could be lowered from 10ms to 2ms, occupying the CPU now to approx. 66% on
average. However, to this point the given tool chain does not yet support the validation of hard
real-time guarantees (i.e. determining an accurate WCET) or obtain a sufficiently large time
sample which would allow to draw conclusions on the accuracy of the cycle period. As a result
this has to be compensated by taking particularly large execution time tolerances (also known
as "time jitter") into account. Lastly, the program size could be reduced by more than a half
of the original size of Hoogendijk (2013)’s approach which becomes crucial when taking into
account that the entire program is kept in memory and frequently read.
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5 Conclusions And Recommendations

5.1 Summary

Up to this point, several previous approaches providing a comprehensive solution to the cyber-
physical applications have been discussed. For most of them it was possible to use supporting
design tools like gCSP. However, all of them put emphasis on different requirements like safety,
efficiency or real-time reliability while giving them even varying priorities. This is where the
present project takes up previous accomplishments.

The achieved results show that it was feasible to create a consistent, working ECS solution using
the current TERRA/LUNA design framework. The DSE, performed at the beginning of the pro-
ject, however revealed that the currently necessary combination of HW and design framework
can be identified as the main limiting factors on how the system specifications can be realized.
As consequence, increased execution efficiency can only be achieved at the expense of (model)
design abstraction. A complete separation of concerns (i.e. 5C) was therefore not possible to
be realized exclusively as system models, i.e. highest abstraction level. Instead a wide range of
manual low-level as well as high-level optimization options have been proposed and applied
during the process of software development where possible. Respectively for the model (i.e.
abstract software architecture) and code level, an optimized GAC could be achieved by redu-
cing several areas of hierarchical complexity, functional redundancy and inefficient data sep-
aration. Hereby, the created generic design template represents the best compromise between
necessary abstraction and performance optimization.

Finally, the result of this project can be used to further influence the on-going development of
the TERRA/LUNA framework and how it can be used efficiently.

5.2 Requirement Evaluation

Further emphasis of the project was set on providing comparable results which would enable
prospective designers to elaborate better on achievable system implementation quality in pro-
spective projects. Therefore, a general set of requirements, derived from a specific use case,
has been determined and prioritized using the MoSCoW method. All key requirements which
were also set to be a Must have been achieved except for the Dependability/Reliability meas-
ures requirement (R2). Here, the sub-item Verification (R2f3) was only partially realized as will
be discussed in more detail down below.

5.2.1 Performance and Efficiency (R1)

With regard to performance and as show by Hoogendijk (2013), source code created with TER-
RA/LUNA is still likely to produce software that puts a rather high load on computing resources
in comparison to manually written programs. Yet, an efficiency improvement was achieved by
several optimization techniques that yielded also an significant reduction in Context Switch-
ing (Should requirement R1f1). Now, executing more PCS control tasks within lesser time than
initially would have been possible. This led to a sampling rate of 2ms which is the best result
for programs created with the TERRA/LUNA ECS development framework, so far. Compared
to previous studies which again used completely different tools or target hardware, however, it
is still twice the time as achieved then.

Several optimization techniques have been proposed and shown to effectively aid in general
performance gain. However, it was also shown that the way they have been applied is still to
be improved in order to meet other requirements like project re-usability or maintainability
(which is picked up again by the Re-usability and Maintainability (R3) section down below)
better.
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It was also examined to what degree it is possible to distribute the ECS processing load over
several (independently working) hardware platforms (Could/Won’t requirement R1f2). Using
an Ethernet network and a non-hard-Real-Time (error) communication protocol the selec-
ted hardware would have been able to achieve this. Yet, it was found that the given design
framework is not yet capable of integrating this feature into the software generation seamlessly.
Hence, it was not further pursued to be implemented.

5.2.2 Dependability and Reliability (R2)

One of the most important requirements to satisfy is the aspect of dependability when it comes
to industrial data processing. This is why several methods have been used to ensure a high level
of dependability (which was a Must requirement) for the developed ECS.

Next to taking precautionary measures by adding fault tolerant characteristics or error detect-
ing services to the ECS, even more effort was spent on determining the level of operational
reliability.

Since TERRA/LUNA enables the designer to create graphical models that are translated into
CSP, one is also able to use consecutive tools like FDR3 to check and verify the architectural
design at hand.

Due to being still under heavy development itself and some CSP-related translation issues, the
final model in this project, created with TERRA/LUNA, could not be checked as a whole. In-
stead only distinctive sub-parts have been checked alongside general unit testing. Particularly
crucial parts like FSM algorithms (Should requirement R2f2) which were not realized on model
level have been checked (Must requirement R2f3) using out-of-line tools like UPPAAL 1.

5.2.3 Re-usability and Maintainability (R3)

Using the TERRA/LUNA framework (Must requirement R3f1), a heterogeneous model2 was
achieved that combined a high level of abstraction, including enough universality to serve as
template for different control applications (Should requirement R3f3). However, consisting of
several sub-models, the one that represents a general PCU had to be reduced to abstract only
its core functions: communication, coordination and control. Other concerns like safety mat-
ters or the actual implementation of FSMs were realized only on the lowest (i.e. code) level.
While the latter is done to achieve a performance increase, it results inevitably in a reduction
of project re-usability and maintainability.

Regarding platform independence (Must requirement R3f1) only the created models achieved
to be entirely independent from the targeted platform. Still, code generation was only possible
for QNX-based systems due to the current limitations of TERRA/LUNA and the provided plat-
form drivers. The modularity of the design is part of the testibility requirement (Should, R3f4)
and meant to support especially unit testing. However setting up respective tests was found
to take too much effort when done manually. Here the issue mainly originates in creating and
(re-)naming great numbers of new data objects and data links (channels).

5.3 Recommendations and Potential Improvements

Throughout the project several points have been identified that need further improvements or
general consideration but which were not within this project’s scope.

1 which are not part of the seamlessly linked model translation tool chain and are likely to introduce a risk of
translation errors

2 a single model containing multiple hierarchically grouped sub-models
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5.3.1 GAC

In regard to separation of concerns, it has been found that actual modeling of functional com-
ponents like (system) configuration can result in avoidable overhead. Especially when ex-
ecuted every cycle 3 alongside the remaining operational payload (like controller or sensor
handling), this can take over most of the hardware resources the more complex a system gets.
This is why a reduced alternative design template is being proposed that focuses more on con-
trol and safety rather than covering the whole separation of concerns ( i.e. including the mod-
eling of very specific implementation details) on the most abstract level. In this regard, there
are examples of crucial operations like FSM-related tasks which also contribute significantly to
the communication overhead but cannot be excluded from being executed every cycle. Here,
based on the necessity for performance gain and in exchange for the level of abstraction, main-
tainability and verifiability, a range of low-level optimization proposals have been given and
evaluated on their effectiveness and justification for application.

Generally, however, the concept of having GACs is understood to aid significantly in the course
of software development despite the downsides of needing more hardware resources. It is also
found that the demand for earlier and more dependable prototypes out-weight the decreasing
hardware cost factor.

5.3.2 Hardware

Due to several limiting factors (like lack of drivers or BSPs and hardware interfaces) it was not
possible to test different computational hardware platforms in depth other than the PC/104
stack. In correspondence with what is said above in the GAC section, the typical hardware tar-
get for ECS developed with TERRA/LUNA should be generally considered at least in the range
of modern Mini-ITX platforms. Since CSP models are meant to run concurrently, they can be-
nefit more from those multi-core platforms which offer not only more hardware resources but
are able to execute tasks in parallel. Thus more complex RTOS systems can be used while still
providing developers with enough performance margin to experiment (i.e. function integration
without the need for immediate optimization). Another option with more potential to exploit
parallel computing, addresses the current embedded systems trend called "Internet of Things"
(or short "IoT") even better. Here, instead of one single hardware platform several very small
units are used to distribute the ECS’s diversity of functions and can be easily scaled to the soft-
ware’s hardware resource demands. This is why development towards more support of rather
smaller platforms like the RaMstix is also recommended, including the focus on implementing
universal communication links like USB, Ethernet or even wireless solutions.

5.3.3 WoW and Tool Chain

Dependability verification is a crucial part of ECS development, this is why it was also a focus
of this project. So far, this had not been the main focus of the framework. Consequently, this
work showed that there are still work flow obstacles to overcome with regard to formal model
checking4 or specific software adjustments like performance optimization (incl. model optim-
ization as well as code optimization). In addition to functional checking (i.e. like formal model
checking and simulations), being able to check temporal accuracy (e.g. time jitter evaluation)
is needed as well. This is why it is recommended to expand the tool chain such that it meets the
requirement for more options to profile or benchmark and to enable the designer to do more
system behavior property checking. Another aspect which should be considered to become a
part of the WoW philosophy is the design for optimization which should be also reflect in the
proposed tool chain. The idea is to, in a first step, create a model-driven design that represents

3 but not contributing to the system’s activity
4 e.g. created mCSP is not fully compatible with the format FDR3 expects
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the designers non-functional requirements 5 and then in a second step leaves the option to
meet functional requirements 6 using additional optimization techniques or tools. An example
how this is not yet fully addressed, is in regard to one of the most important figures when it
comes to RT property evaluation. The WCET that is used to give a hard RT guarantee should be
easier to determine than it is at the moment to give the designer a better understanding of the
status of his current implementation. Giving a guarantee involves knowledge about the hard-
ware the software is running on as well as a sufficient amount of explicit statistical performance
data. Especially the latter is difficult to acquire and thus also difficult to integrate into the auto-
mated work flow. Nonetheless, it is recommended to put more emphasis on this issue as it is a
crucial part of developing real-time systems.

5.3.4 TERRA/LUNA Design Framework

Since this project also aims to evaluate the current status of main design tool TERRA/LUNA
with respect to usability and software generation quality, several aspects have been picked up
and are elaborated in more detail (for complete list of favored improvements or a report of
encountered bugs see Appendix A.12).

Stepwise Refinement Generally, it was found that making repeatedly alteration to the (model)
design introduces a constant high amount of repetitive manual work and thus has to be im-
proved. Testing, validation and performance optimization or model simplification (e.g. like
ChannelMerge) have to become more significant features of the framework as it is a crucial part
of the WoW and the very idea of what the frameworks tries to accomplish. In fact, after every
design refinement step it should be possible to perform not only correctness verification but
also seamlessly and automated profiling and optimization tasks. The TERRA editor specifically
could assist in model refinement better by providing automated (re-)naming of variables and
process blocks7 as well as introducing the option to ’disable’ parts of the main model8. Next to
stability improvements regarding Copy & Paste and the mentioned CSP model translation com-
patibility with FDR3, model simulation and automated test-bench creation could be features
of the TERRA editor, too.

Design Analysis Usually a new software design is created by starting with a high-level rep-
resentation of the various functional components comprising the system in mind. Following
that and for optimization purposes, often the system under development has to be profiled to
identify the functions which consume the most processing resources and/or time.(Maxfield,
2008) In regard to this project, the latter step was performed using several tools like QNX Mo-
mentics or simple code analysis. However, in order to achieve a better understanding of the
created software design, it is recommended to add more support towards code analysis9 and
simple profiling like determining the number of components (which is linked to thread count)
or how often certain channels are used.

Design Distribution Furthermore, TERRA/LUNA could assist in setting up distributed ECS
hardware units (i.e. like proposed above; ECS working on different HW targets communicat-
ing with each other) while integrating virtual environment like the KVM (ARM-emulation) or
VirtualBox (x86-emulation) better in the simulation setup. Here, a special type of channel that

5 like Modularity, Testability or even Safety
6 i.e. explicit implementation that target a certain sampling time, control algorithm or fault tolerance mechanism
7 this is especially useful when just creating a test system that is meant to be a proof of concept test rather than

an actual implementation
8 in analogy to ’out commenting’ written source code in common programming languages
9 i.e. adding automatically specification language code that helps not only measuring the time certain functions

take but also if they are executed correctly similar to the Java’s JML or C’s Frama-C
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represents an Ethernet link (i.e. buffered socket-based link) could be added to the standard
components of TERRA.

OS support Another aspect that needs more attention concerns the support of a wide vari-
ety of RTOS versions. So far, only one commercial, micro-kernel-based RTOS is fully suppor-
ted by the current framework. In accordance to Gupta (2002) who claims that "[for] com-
plex embedded systems, these kernels [incl. QNX] are inadequate as they are designed to be
fast rather than to be predictable in every aspect.", it is recommended to increase the sup-
port (and thus platform independence) for more open-source and freely available (hybrid)
RTOS solutions like GNU/Linux+Xenomai or GNU/Linux+PREEMPT_RT. Although it could be
claimed that the results might not result in high performance solution (compared to commer-
cial products), it would allow much more researcher to join and participate in the development
of TERRA/LUNA.

Code Generation Next to creating graphical models, code generation the other crucial core
functionality of TERRA/LUNA. Although, C++ serves as an adequate programming language
that is covered by many compilers and different processor architectures, it can be still beneficial
to extend to a wider selection of supported languages that the models can be translated into.
Supporting code translation to VHDL, Handel-C or Haskell might make it easier to deploy to
different system and benefit from their different languages characteristics in terms of efficiency,
safety or system analysis.

5.3.5 ECS

LinkDriver Generally, one of the reasons why elaborating on different computational hard-
ware targets was quite limited is the fact that the original QNX AnyIO LinkDriver source code
was not found. The only working driver was installed (as binaries) on one PC/104 stack and
was not extractable from the OS and thus also not portable to other (OS) systems like Linux.
Consequently, it is recommended to create new LinkDrivers, taking new hardware platforms
and Operating Systems into account as indicated above.

GUI One of the missing features of the ECS is yet a meaningful GUI that aids in evaluating
and debugging even more use case or fault scenarios. Typical control functions could include
changing speed or direction (e.g. rewinding the mechanical process to a certain point) up to the
point where the use can select certain operational modes like jogging or even repeat specific
movements or fault scenarios10. In anticipation of a simulation mode within TERRA11 syncing
the mechanical process to validate its accuracy might be interesting as well.

10 i.e. assuming fault scenarios can be stored as templates or pre-loaded within the (debug) system
11 this feature was still under development and not available for the current project
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A Appendices

A.1 FDR Profiling capabilities

Using the commands:

• options set cspm.profiling.active On

• load test.csp

• graph (show)

• profiling_data (show)

FDR can aid to pin point bottlenecks, i.e. model areas where most of CPU load is generated.

A.2 Project Criteria List And Corresponding Fields Of Scope Of Application

The following table lists all criteria which have been selected from a complete set of possible
software project key aspects.

ECS Criteria Area Of Application
Resource Efficiency (R1)

• Less context switches SW architecture (GAC) : simple FSM
SW architecture (GAC) : Channel bus
SW architecture (GAC) : data clustering

(multi → single core) SW architecture (GAC) : PAR → SEQ
no OS (e.g. process outsourcing → FPGA)

• Resource usage (distributivity) centralized → decentralized
HW: FPGA (incl. soft core), CPU,..

• Code generation Tool: LUNA / 20sim / VHDL? / ...
Reliability (R2)

• Safety Layer (HW protection) - Implementation SW architecture (GAC)
• State-oriented
• Event-handling

• Real-time - Implementation RT design Tool
• Concurrency
• Synchronization and Communication

• Testability / Debug-ability - Implementation SW architecture (GAC)
• Testability / Debug-ability - Check/Proof Formal Model Checking : CSP + FDR
• Simulation (domain specific model execution) Partially : 20sim

Re-usability Increase / Design Effort Reduction (R3) SW architecture (MDD / GAC)
SW architecture (domain separation / 5C)
Tool usage (WOW)
SW architecture (FSM)
SW architecture (design readability)
OS support increase

• Platform independence Multi-OS support / HW abstraction
• Scalability SW architecture

Accuracy / Precision of operations Data type / calculation cycle time
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A.3 Translation of non-functional into functional requirements

In order to validate if the demands can be satisfied with the achieved results several non-
functional requirements can be translated into functional requirements. Benchmark test can
then provide information about how much a certain goal is accomplished (see also thesis doc-
umentation file [MSc] [M] DSE Chart - Requirements Dependency Tree).

A.3.1 ECS qualities

• Reliability, Safety, Integratity -> Verificable via FDR3, 20sim, UPPAAL
(implies simulate-ability, testibility)

• Maintainability, Re-usability -> MDD (software modularity, structural hierarchy)

A.3.2 Functional determinism

• state space completeness -> FSM should cover all important states

• formal correctness -> no formal errors like deadlocks

• behavioral correctness -> operations should executed in the right way

A.3.3 Context Switching test for ChannelMerge optimization

In order to estimate the potential work load reduction for the ChannelMerge code optimiza-
tion several test have been run that covered combinations of multi/single-core deployment as
well as amount of channels on a Linux-based OS. Results have been compared with respect to
memory allocation, timing and thread count. They also indicate that there is a linear relation-
ship between the amount of reader/writer process pairs and the scheduled amount of context
switches. (see thesis documentation file [MSc] [M] Context Switching Test for complete test
results)

A.4 DSE Chart - Requirements

In the course of the Feasibility Study the main requirements have been picked up and analyzed
towards their dependencies and potential realization.
(see thesis documentation file [MSc] [M] DSE Chart - Requirements Dependency Tree)

A.5 DSE Chart - Implementation considerations

The specific domains (or areas of concern) that have been identified for optimization are: pro-
cessor hardware, operating system, software architecture and code generation. In all domains
the current realization is being compared against alternative options while evaluating them in
regard to the defined requirements as well as practical aspects. They’re all inherently interde-
pendent which makes it difficult to maintain an order of making decisions. On some level the
number of alternative options will determine the priority of the concern. However it is possible
that decisions made at some point in time have to be overruled later by a different decision.
This could be a consequence of an initially lower ranked concern that had be rated higher later
on due to eliminated cross-incompatible alternatives. Consequently, a recurrent way of evalu-
ating certain decisions is inevitable.

In the course of the Feasibility Study the main requirements have been picked up and analyzed
towards their dependencies and potential realization.
(see thesis documentation file [MSc] [M] DSE Chart - Implementation Tree)
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A.6 DSE Review - Database

Several approaches have been compared with each other regarding:
(see thesis documentation file [MSc] [M] DSE Review Database)

• design programming language and meta-languages

• hardware target (processor type) as well as OS target

• used tool (chain)

• implementation details (e.g. Motion Profiles and Loop Controller)

• benefits and drawbacks

A.7 DSE - Communication (Protocol) considerations

TCP UDP
Reliability + reliable (incl. error-checked) − unreliable
Overhead −− big header + smaller
Processing + ordered − no order
Application + streaming + datagrams
Packaging + equally long parts of packages − whole packages)

A.8 DSE - ARM hardware comparison

The following table summarizes the found (small form factor1) computer alternatives by giving
a short overview of the PROs and CONs:

1The property of complying with a small form factor is adopted from the fact that the cyber part of the system
is meant to be embedded into the physical part as it is common in an industrial environment. Still, it is a soft
requirement rather than a hard one.
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RaMstix Arduino Raspberry PI Beaglebone
Description: ARM ARM ARM ARM
PROs: - actively used and

applied in the re-
search group, thus
expert knowledge
available

- huge developer
community (po-
tential expert
knowledge)

- huge developer
community (po-
tential expert
knowledge)

- official QNX BSP
available for QNX
6.5.0 as well as
QNX 6.6.0

- provides almost
double the com-
putation power
(1 GHz over 600
MHz).2

- potentially eas-
ily extendible to
meet the interface
requirements to
the AnyIO FPGA
board

- provides some
more computation
power (900 MHz
over 600 MHz)

- Linux support

- Linux support
CONs: - does not really

provide signific-
antly more com-
putation power
(700 MHz over
600 MHz) than the
PC104.3

- less expert know-
ledge than PC104
and RaMstix

- does not really
provide signific-
antly more com-
putation power
(720 MHz over
600 MHz) than the
PC104

- less expert know-
ledge than PC104
and RaMstix

- no supported
QNX BSP4

- no native paral-
lel interfaces that
matches with the
AnyIO FPGA board

- less expert know-
ledge than PC104
and RaMstix

- no native paral-
lel interfaces that
matches with the
AnyIO board

- no native paral-
lel interfaces that
matches with the
AnyIO FPGA board

- no AnyIO driver
implementation
so far

- no native paral-
lel interfaces that
matches with the
AnyIO board

- no AnyIO driver
implementation
so far

- no AnyIO driver
implementation
so far

- no AnyIO driver
implementation
so far

In Question - QNX and Linux
support

- QNX and Linux
support

As a summarizing of the table above it can be seen that there are significant risks and drawbacks
of all options. Hereby, the closest favorable, but still not acceptable, alternative option is the
RaMstix platform. However, due to the lack of an already implemented interface to the PCS
(incl. the driver development part), it is unlikely that a requirement compliant platform could
be achieved in the aimed time frame.

Note: The table presented above already includes cross-dependencies to the software part of
the cyber implementation. In other words, the effect of certain design considerations which
will be discussed later, are already taken care off here.

A.9 DSE - Programming language conversion

Due to the lack of HDL conversion capabilities of the TERRA/LUNA framework, a short feasib-
ility check has been made concerning options to use external tools to convert:

• C/C++

• Haskell (CEAS group)
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• CSP models

• SystemC

.. to VHDL, Verilog or SystemVerilog in order to use FPGA deployment tools like Altera Quartus
or Xilinx’s SDK. More precisely, it was researched if a respective tool exists and if there has been
documentation about its conversion quality and reliability. The result of this check showed
that even though some conversation combinations do exist (like the Haskell-to-VHDL CλaSH
tool developed by the CAES group), none of them are meant for a productive environment, i.e.
reportedly they lack significantly efficiency and/or can only convert very specifics subsets of
the given input language and thus serve only academical purpose.

A.10 DSE - UPPAAL model code generation

Authors Target
Language

Availability Comment

Pajic, Lee, Sokolsky
and Mangharam
(2013)

Matlab/
Simulink
models

n/a Although code can be gen-
erated from Matlab/Sim-
ulink models it is not
considered a straightfor-
ward solution and might
introduce inconsistency

Kristensen, Mejlholm
and Pedersen (2005)

C available5 Even though C and C++ are
related language there are
still incompatibilities. Ad-
ditionally there seems to be
no experiences with the tool
from other research com-
munities

Opp, Caspar and
Hardt (2011)

C n/a Even though C and C++ are
related language there are
still incompatibilities. Ad-
ditionally there seems to be
no experiences with the tool
from other research com-
munities

Rensink and
Stoelinga

RT-Java n/a Project has not started yet6.

A.11 Optimizations - ChannelMerge script

So far, there exists only one kind of channel communication between TERRA CSP process
blocks, the one-to-one channel (see also figure A.1). It is possible, though, to add this feature
later manually on code level.
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A BChannel B DChannel

A

C

D BChannel
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B EChannel
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C

One2One Any2One One2Any Any2Any

Figure A.1: Overview of all different kinds of shared communication (i.e. types of CSP channels) (Broen-
ink, 2014)

The idea of ChannelMerge takes up the Any2Any option by combining several channels two
one channel and forwarding different data objects at once. A script that would realize the
channel and object merging operation on the source code should execute the following steps.
However, a drawback is the extensive range of preparations which have to be performed on the
software model in TERRA.

Preparations A generic struct data type (in addition to int, boolean, uint) has to be
added to the TERRA editor that indicates that data objects are classified to be grouped or
merged. The main reason to do this is the ease of parsing through the source code files.

Apart from that the system designer would have to specify a group object with that data type
for every group of objects and link it to a single, dedicated channel.

Additionally, the system designer would have to follow a specific data object naming conven-
tion that selects or marks each data object that belongs to a specific group.

• e.g. varName_cobjAB12 which would give:

– for ’AB’ max. 262 group identifiers

– for ’12’ max. 102 data object identifiers (per group)

All objects with the pattern ’AB’ would be then grouped into an object called
varName_cobjAB.

Script algorithm

• Start at lowest hierarchical (TERRA) level

• Parse Header file and count data objects per group

• Add struct with identified objects as members

• Remove remaining object entries which have been grouped

A.12 TERRA/LUNA framework - tool improvements

Being still under heavy development the tools which build up the TERRA/LUNA software
design framework showed occasionally malfunctioning or lack of enhanced functionality. (for
a complete list of detailed improvements or bug reports see thesis documentation file [MSc]
[TERRA] [LUNA] bug + improvement report)
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A.13 Performance Evaluation - Linux built-in profiling capabilities

• First, locking the process to a single processor to simulated the same environment as
PC104:
$ sudo nice -n -20 taskset 0x1 ./path/to/bin/modelname

• Then, get the PID of the respective process

• Finally search in the process’ status file for the context switches section:
$ ./path/to/bin/modelname & grep ctxt /proc/$!/status

• The result should look like this:
voluntary_ctxt_switches: 41
nonvoluntary_ctxt_switches: 16

A.14 Performance Evaluation - CSP model profiling preparations with FDR3

The formal model checker tool FDR3 offers simple performance profiling capabilities. In order
to identify performance difficulties, the FDR profiler can be applied on a CSPM script. Aiding
by spotting so called performance bottlenecks, the tool returns the number of times a function
was called to be extracted. The following preparations have to be made:

• :options set cspm.profiling.active On

• :load test.csp

• :graph (show)

• :profiling_data (show)

A.15 QNX Momentics profiler suite

QNX Momentics provides a range of different profiler.

At first the QNX softare project under consideration, has to be set up such that the Build Options
enable Profiling (for performance reason, preferably "Call Count Instrumentation").

Figure A.2: QNX Momentics project build preparations

The next step is to select a profiling tool (like the "Application Profiler or the System Profiler".
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Figure A.3: QNX Momentics profiling tool selection

After running and collecting data, the results can be analyzed by opening the respective Per-
spective (e.g. QNX system profiler perspective).

Figure A.4: QNX Momentics profiling data analysis

A.16 Complete PCS simulation using UPPAAL

In order to verify the correctness of the FSMs implemented in the PCU models a complete
model of the PCS was created, simulated and formally checked. (for the actual UPPAAL models
see thesis documentation file [MSc] [UPPAAL] PCS model.xml)

Frank Trillhose University of Twente



APPENDIX A. APPENDICES 53

Figure A.5: Complete simulation of PCS using UPPAAL
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