
1

Intelligent heating of a room

07-01-2016

Bart Wijlens
S1317733

2

Introduction
The heating of rooms on the UT is not done efficiently. The temperature is controlled by a central

thermostat, if you want to change the temperature in an individual room you have to control the

radiator manually. All the rooms are heated constantly because the thermostat is centralized, also

when another temperature is needed or when nobody is present. The goal of this project is to make

the heating of a room smarter. The research focuses primarily on the design of an algorithm that can

predict how much time it will costs to heat the room . The results of this algorithm can be used to

make the heating of the room smarter and more efficient. Examples for implementation are,

changing properties of the room to make the heating more efficient, predict when to start and stop

heating, change heating schedule to the weather forecast and more. This report shows the research

done to make this self learning system work. The report is divided in three different parts:

Making the thermodynamic model

To test the self learning system a model of a room is needed. This part explains how a

thermodynamic model of a room is designed. This model is later on implemented in Matlab.

Design self learning system in Matlab

The self learning system is designed and tested on the thermodynamic model in this part. All of this is

done in Matlab.

Design self learning system in Python

Here the explanation and implementation of the self learning system in python/jython and openHAB

is showed.

3

Inhoud
Introduction ... 2

Work plan .. 4

Making Thermodynamic model .. 5

Theory .. 5

Implementation ... 7

Resulting circuit ... 10

Making the State Space model .. 12

Adding Variables to state space .. 14

Implementation in Matlab .. 15

Design self learning System ... 15

First Version ... 15

Second version .. 16

Final Version .. 17

Matlab Implementation .. 20

Test Simulation State Space in Matlab .. 21

Working with OpenHAB .. 24

Write Self learning system in Python/Jython .. 24

Test full system .. 25

Improvements ... 25

Filter results to get the most common value .. 25

Subtract measurements to get better results ... 25

Implement x and y offsets ... 26

Discussion .. 27

Conclusion ... 28

Appendix .. 29

Appendix 1: Calculation state space .. 29

Appendix 2: Calculate Values for components ... 32

Appendix 3: Matlab Scripts ... 35

Appendix 4: Python / Jython scripts .. 54

Sources .. 70

4

Work plan
The research consists of three steps. The design of a thermodynamic model of the room is the first

step. Later on, this model will be used to test the self learning system. The second step is the design

and implementation of the self learning system together with the thermodynamic model in Matlab.

As a start an easy implementation is the first challenge, afterwards when there is time left, the self

learning system will be made more complex. The whole system is first simulated in Matlab to test if it

works correctly. Why choosing Matlab for this test? Matlab is relatively easy to use and has a lot of

build in functionality to make simulations easier. When the system works correctly the last step has

to be taken namely, implementation in openHAB. openHAB is primarily used to get the sensor

information of the room and to act as interface. The self learning system and control of the room

temperature are made in python/jython.

5

Making Thermodynamic model

Theory

Introduction

Making a thermodynamic model of a room is useful to analyse the heating. Where heat is "lost"

(sink) and where heat is "produced" (source). For this project a simple model will be sufficient

because it will only implement the most important sinks and sources. This model can be used to test

the self learning system.

Used Method

There are a lot of different methods to make a thermodynamic model, one even more complex than

the other. A simplified approach has been chosen in which the room is modelled as an electric circuit.

This means that temperature is seen as voltage (effort) and heat flow as current(flow). Why choosing

a simplified approach? First reason is to limit the time which is needed to make the model. To

develop a complex model which is understandable as well as effective is time consuming. And

besides, there is a higher risk of making errors. The second reason is that a complex model will not

add that much to the results of this research. It would merely be a waste of time. Before starting

with the thermodynamic model the equivalents for different electrical components are defined.

Radiator

The radiator can be seen as a current or voltage source depending on whether a thermostat is

applied or not. When the temperature of the radiator is controlled it will give a constant

temperature, so a constant effort. A source with a constant effort is a voltage source. Therefore a

radiator with a thermostat is a Voltage Source. When the radiator has no temperature control, the

temperature fully depends on the hot water flow. In this case it is modelled as a current source.

Walls and Windows

Walls and windows can store and loose heat, but also have a certain resistance when they transport

heat from one room to another. The resistance of a wall, when heat is transported, can be modelled

as a resistor. The formula is given below:

Resistor

Figure 1 Fout! Verwijzingsbron niet

gevonden.illustrates the situation, the white

rectangles represent two different rooms with two different temperatures, the striped part

represents a wall with resistance R12.

The walls and windows can also store and loose heat. This is the same property as that of an

electrical capacity, that is why this is modelled as an capacitor. The formula is given below:

Figure 1:Model Thermodynamic Resistor

6

Capacitor

The situation shown in Figure 2 the white rectangle is a room with temperature theta and capacity

C1(Capacity of the air). The Striped part represents a wall.

With this method every radiator is modelled as a source and all the walls are modelled as a

combination of resistors and capacitors.

Walls

Each wall in the room has a resistance and a capacity. To make it easier to understand it is modelled

as in Figure 3.

Figure 3: Model wall

This picture shows that the wall consists of two resistors in series with a capacitor connected in the

middle, the equivalent circuit is given in Figure 4.

Figure 2: Model Thermodynamic Capacitor

Figure 4:Themodynamic model wall

7

Radiators

The room is heated by two radiators with a thermostat so they can be modelled as a voltage source.

The two sources are modelled as one whose value is the average of the two.

The doorway is difficult to model. It can be seen as a wall with a very low resistance (almost 0) and a

capacity equal to the capacity of air. It can also be modelled as a voltage source, because it has a

constant temperature controlled by the thermostat of the university. The temperature will be more

or less constant because of the capacitance of the entire building including the air.

There is chosen to model the doorway as a Voltage source and it is added to the other two.

Therefore in the model the room is heated by one source whose value is the average of the three

separate sources.

With the individual parts of the room explained the thermodynamic model can be made.

Implementation

Introduction

The room that is going to be modelled is given in Figure 5. The orientations do not have to represent

the real orientation of the room.

Figure 5: 3D Model Room

East Wall

The East wall: this wall consists of 2 radiators(white), glass(blue) and concrete(gray)(see Figure 6).

The two types of surfaces should be modelled as two different walls. The two radiators are modelled

as a voltage source with in series a resistance. This resistor has two reasons, first it represents the

small resistance for transferring heat from the radiator to the air. The second reason is that it offers

the possibility to make a bond graph later on, a voltage source without an internal resistance is not

8

realistic. It is assumed that the radiator has an unlimited heat flow.

Figure 6: Drawing east wall

The circuit is given below

The actual values of the resistors and capacitors are calculated in the end.

West Wall

The second wall is the wall on the other side of the room. A drawing of this wall is given in Figure 7.

9

Figure 7: Drawing wall west

This wall consits of several windows(blue) placed in a metal wall dark gray) with one door (white). A

concrete pillar can be found in the middle(ligth gray). The doorway has been described before so it is

unnecessary to discuss it any further. The circuit is indentical to the east wall only in this case there is

no source and the concrete is replaced by metal now.

North and West Wall

The North and West wall are the same, so they share the same circuit. A drawing of the walls is given

in Figure 8.

Figure 8: Drawing north/west wall

10

The circuit for this wall is

This is the standard circuit for a wall.

Floor and Roof

The floor and roof both consist of concrete. The dimensions can be found in Figure 9.

Figure 9: Drawing roof/floor

The thermodynamic representation is the same as for a wall.

Resulting circuit

When all the circuits are put together it results in the following schematic.

11

12

Making the State Space model

To simulate the circuit above in matlab it needs to be converted to a state space diagram, the

convertion is done in two steps. First the circuit is rewritten to a bond graph, this bond graph is then

converted to a state space. The conversion can also be done directly but doing it this way , the

chance of making errrors is smaller.

Bond graphs are a different way of displaying efforts and flows. It consists of nodes and bonds.

Nodes are points where the efforts(voltage) or the flows(current) are the same. The nodes are

displayed with zeroes for equal effort, and ones for equal flows. The bonds are the lines that connect

the different nodes, the direction the bond points, is the direction in which the power is positive.

To make a Bond graph and calculate the state space for the full circuit would take a lot of time and it

is unnecessary. The circuit determined above shows that the same parts can be found multiple times.

The circuit consist of: 1 source + room, 2 walls to outdoor and 6 walls to other rooms.

 In Figure 10 the different parts are shown. The parts that occur multiple times all share the same

voltage so they can all be placed after each other. The final bond graph consists of one or more of

the three different parts shown below.

Figure 10: Bondgraph with different parts

The bond graph in Figure 10 is used to make the state space. The influence of the different parts of

the Bond Graph can be determined from this state space. This information is used for the

determination of the full state space see(Appendix 1: Calculation state space). The matrix on the

next page is the final state space diagram.

Source + Room

wall to outdoor

wall to other room

13

The state space is known but without component values it is not very useful. The components are

calculated in Appendix 2: Calculate Values for components. Keep in mind that the results give only an

indication of the of real values. The table below shows the calculated values.

Capacitor Value Resistor Value

Croom 146257.65 Rrad(Wall East Glass) Very low resistance

C1(Wall East Glass) 73237,22 R1(Wall East Glass) 0.058

C2(Wall East Wall) Insulated, low capacity R2(Wall East Wall) Insulated, High
Resistance

C3(Wall West Metal) Insulated, low capacity R3(Wall West Metal) Insulated, High
Resistance

C4(Wall West Glass) 28871 R4(Wall West Glass) 0.00029

C5(Wall North Plaster) 525800 R5(Wall North Plaster) 0.00214

C6(Wall South Plaster) 525800 R6(Wall South Plaster) 0.00214

C7(Roof Concrete) 6778560 R7(Roof Concrete) 0.0274

C8(Floor Concrete) 6778560 R8(Floor Concrete) 0.0274

14

Adding Variables to state space

The room has different properties that can be on or off. These properties will have an influence on

the state space made of the room. For this project only a few of these properties are taken into

account. In this report these properties will be referred to as states.

The following properties (states) are taken into account:

The Shutters

The windows in the room have shutters, when these are closed the resistance value of the windows

will increase.

Incoming Sunlight

Incoming sunlight will cause the room to heat up faster so it is implemented in the heating-source of

the room. It will increase the heating temperature of the source by a certain amount of degrees. In

order to simplify the model, this amount is constant. In real life it will constantly chance as a result of

different circumstances like the time of day, season, intensity of sunlight etcetera.

Door to entry

The door will act as a variable resistance between the room and the entry. When the door is open

the resistance value will be low, when it is closed the value will be high.

People in room

People in the room will act as a heating source. The value so this source is equal to their body

temperature, 37 degrees Celcius. The source is nonexistent when nobody is present.

15

Implementation in Matlab

Design self learning System

The design of the self learning system has gone through several stages, three to be precise. A

redesign of the system is made whenever a problem occurs. What is the reason these problems

could arise? Most of the problems are caused by design mistakes, certain situations have been

overlooked which provided wrong results. These different designs will be discussed shortly and at the

end a final design can be found. The goal of the system is to predict the time which is needed to heat

the room for its different states. These states are unknown to the system, it only gets the

measurement results of the sensors placed in the room.

 First Version

Working Principle

The system takes measurements with a certain interval. Each measurement consists of all the states

of the room and its temperatures. When the next measurement is done, the heating speed

(derivative of the temperature over time) for the previous measurement is determined. The next

step is comparing the measurement to the previous measurements. First the system determines how

the states of the room have changed in between the measurements; next it calculates the heating

speed difference between the measurements. Afterwards it tries to relate the state differences to

the difference in heating speed. The influence of each state is saved. When the influences of all the

states are known to the system it can predict how much time it will cost to heat the room. See block

diagram for the working of the system

16

Problem

The main problem of this system is, it does not cover the room very well. The first problem is caused

by the states. Some of the states depend on other states. For example, the influence of the incoming

sunlight which depends on the state of the shutters. The sunlight will influence the temperature

differently depending on whether the shutters are open or closed. The system is not designed to

handle this problem. A possible fix would be to set the relation between the states by hand. This is

not implemented because it would interfere with the previous set goal; the states must be unknown.

The second problem is that the influencing temperature compared to the room temperature is not

taken into account. When the difference between those two is larger the influence will increase. This

is something that is not incorporated in the system and therefore yielded incorrect results.

Taken to next version

Although the system did not work properly, it had some ideas build in that could be used for a next

design. The idea of states showed to be useful for representing influences on the room. Also the way

measurements are saved and the heating speed is used in the next version.

Second version

Working Principle

The second and third system have a lot in common. For that reason the explanation is not very

detailed. Unlike the first system which focussed on the change of states, this system is build around

linearly approaching the influences of the temperatures. It tries to find a linear relation between the

heating speed and the temperature difference between the room and the influencing temperature.

Each of these approaches is done for a certain set of states(properties of the room with a Boolean

value), in order to get rid of the dependency problem that showed up in the previous version. The

system makes a linear approach by determining a slope-, offset- and exponent value. A full

explanation of how the second system works is given in the next section because the second and

third system have a lot in common.

Problem

Because of a wrong approach of the problem, calculation mistakes were made. To explain the

problems, it is assumed that the measured signal consists of a combination of three influencing

temperatures.

The problems start with the calculation of the offsets. The offset is determined by searching for a

measurement which has a heating speed of zero. OffsetX is equal to dTX is assumed by the system.

This approach is not always valid however, for a heating speed of zero the offsets does not

necessarily have to be equal to dT. Which means that some of the results will be correct and others

might be wrong.

The next mistake is the calculation of the slope. The system makes the following calculation

17

The only way this calculation gives a correct result is when the influence of two of the three

temperatures is zero.

Taken to next version

The full system is used for the final version, only the part for the linear approach is replaced.

Final Version

Working Principle

The final version is build around the same principles as the previous one, linear approximation. The

system tries to approximate the influence of temperatures on the room with a linear relation. Keep

in mind that the implementation is simplified. In the section "improvements" some ideas can be

found to improve the system. Due to time- and technical problems these have not been

implemented.

Working of system

The system works with two types of variables. The first type are states. States are properties of the

room with a Boolean value, which means that they can be turned on or off. For example: a door or a

window that is open or closed. Temperatures are the second type of variable. Temperatures are

normal variables that represent the temperatures in the room. All the temperatures are relative to

the outdoor temperature. Below, a list of temperatures and states of the room is given.

The room used for testing has the following states:

 Door room open

 Shutter window closed

 People in room

 Incoming sunlight

The temperatures that will influence the room temperature are

 Entry Temperature

 Outdoor Temperature

 Radiator temperature

The system works as follows. First it measures all the temperatures and states of the room, next the

heating speed for the previous measurement is determined. The heating speed is the difference

between the current room temperature and the room temperature for the previous measurement

divided by the time difference and it is given in Celcius/s. Determination of the linear relation

between the temperatures and the corresponding heating speed is the next step. The temperatures

are given relative to the room temperatures. The results of this approximation are stored in a matrix.

It is important to realise that the system doesn’t know what the states are and what kind of influence

they will have, it must approximate the influence of these states by itself.

18

Linear Approximation

The measured heating speed of the room is approximated by a sum of linear relations. Each of these

relations represents the influence of one temperature on the total heating speed.

For which dT is given by:

It is assumed that the linear approximation doesn’t have offsets on the x -or y- axis. When the system

is "fully covered" this is an accurate approximation. "Fully covered" means that there are no

unknown influences on the room. To be more specific, there are no unknown heat sources and no

unknown changes to resistance or capacitance values. If unknown influences are present the result

will get an offset in the x and/or y direction. The offsets are not implemented because they could not

be determined (see section Improvements)

The linear approximation algorithm tries to approach the influences of each of the individual

temperatures linearly.

The linear approximation works in four steps. It starts with sorting out all the measurements with the

same set of states, to ensure that only the measurements with the same set of states are used for

calculation. Secondly, the system filters all the measurements for which only one dT is unequal to

zero. With these measurements the slope “a” can be calculated.

Side note
The results can be improved by subtracting measurements from each other in such a way that only

one of the dTs is unequal to zero. This is not implemented because of the technical difficulty (See

improvements).

The third step; an approximation of the slope is done by calculating the slope for all the

measurements for which only one dT is unequal to zero and then taking the average. It is repeated

for different values of b(exponent), resulting in a list of slopes for different b’s. The fourth and last

step is the determination of the exponent and is done by comparing the measurement points with all

the different slopes. Best representation is the slope that agrees most with the measurements. This

process is repeated for all the different state combinations.

Side note
Because of the chosen simplification the system needs some time before it has data to calculate the

slopes with.

Implementing results

With the influence of temperatures known the second part of the self learning system can be used.

Keeping the room at temperature is the responsibility of this part. This means heating the room in

19

the morning when people arrive and stop heating in the evening when the people have left. With the

influences of the temperatures on the room and the states of the room, the system can approximate

the best way to heat the room. It can determine for which set of states it will heat most efficient and

what is the most effective temperature for the radiator.

20

Matlab Implementation

Make the simulation of State Space

To simulate the room in matlab, a script is created. The simulation works as follows.

First the script ‘StartSimulation.m’ is ran. It will initialise all start variables for the simulation. After

that the script ‘SimulateModel.m’ will be called. This script makes a simulation of the change of

states that occur over time, next it will run ‘RunSimulationRoom.m’ every minute.

"RunSimulationRoom.m" simulates the room temperature for one minute implementing all the

factors that will influence this temperature. It consists of the state space calculated before. As initial

values for the states variables, the value of the states of the previous measurement are used. All the

matlab scripts can be found in the appendix.

Implement Self Learning System

The matlab implementation consists of a few different scripts. To start with ‘SaveMeasurement.m’

‘SimulateModel.m’ will call this script every minute. The ‘SaveMeasurement.m’ script saves the

current values for the states and temperatures in an array and it also calculates the heating speed for

the previous measurement. The array is 1000 entries long which means that 1000 measurements can

be done. After the measurement is saved the script ‘ProcessMeasurement.m’ is called. It will analyse

all the measurements and determines the linear relation. For full explanation of the code, see the

matlab files in the appendix.

21

Test Simulation State Space in Matlab

Test Self Learning system Matlab(Influence Entry)

The self learning system is tested in two different ways. The first tests will be done by only varying

one temperature and see if the system calculates the right values for the heating speed. Next all the

temperatures will vary, it is checked how well the system approaches the heating speeds in this case.

In some cases a state value is given, this is the sum of all the different influencing states.

 Door room open(value 1)

 Shutter window closed(value 2)

 People in room(value 4)

 Incoming sunlight(value 8)

So state 3 means 1 + 2, in this case the door is open and the shutters are closed. The results of the

measurements are given below

First Tests

The left graph shows the room temperature over time. The right graph shows the heating speed

influence of the entry temperature. The results of the self learning system show the following

relation to the heating speed of the entry temperature:

The values are compared to the linear part of the graph, the results are given below:

 Self Learning System From Graph Error

Slope(State = 0) 0.0081 0.0083 2.5 %

The error values are calculated by dividing the value from the graph by the value from the self

learning system. Keep in mind that the value from the graph is determined by hand, so it includes a

reading error. This experiment is repeated with a few different temperatures of the entry

temperature

22

Second Test

 Self Learning System From Graph Error

Slope(State = 0) 0.0081 0.0083 2.5 %

Third Test

 Self Learning System From Graph Error

Slope(State = 0) 0.0081 0.0083 2.5 %

23

Last Test

 Self Learning System From Graph Error

Slope(state = 2) 0,0081 0.0083 2.5 %

Slope(state = 3) 0,0140 0.015 7.1 %

24

Slope(state = 6) 0,0403(Root Function) 0.01(Linear function) n.v.t

Slope(state = 11) 0,0102 0.0105 2.9 %

Slope(state = 15) 0,018 0.018 0 %

Discussion results

The system works very well when only one temperature is changed (with errors about 3%). The

results show that the slopes for state 0 and state 2 are the same, this is correct since the shutter has

no effect on the influence of the entry. The slopes for state 2 and state 3 are different, this is also

correct because the door does change the influence of the entry temperature. The problems occurs

when an offset to the room heating is introduced. For these measurements the offset is caused by

people in the room(state 6). The measurements show that the result is a straight line with an offset,

the system thinks the line should go through (0,0) resulting in wrong determination of the relation.

The people act as an extra heating source causing the room to heat up or cool down. This additional

source is not covered by one of the three influencing temperatures, so the system cannot adapt.

Introducing an offset to the linear approximation will partly solve this problem. Unfortunately the

shift depends on the temperature of the room. A possible solution for this problem can be found in

the section improvements. The results of state 11 and state 15 should also have an offset, but this

does not show because the result is based on only one measurement.

Test Self Learning system Matlab(Influence all Temperatures)

In the second set of tests the behaviour of the system is tested in case a number of temperatures

change. This test is much harder to make because it must have points where two of the three

temperatures are 0. No simulation has been found with more than one changing temperature that

differs from the previous tests. So there are no test results with more than one changing

temperature. In the section improvements a test can be found with more than one temperature

changing, this is done with an improved system however.

Working with OpenHAB

Write Self learning system in Python/Jython
The system made in matlab is converted to python, the simulation part is removed in this process.

After the conversion the system is tested with the simulation results of the thermodynamic model as

an input. If the results of the system in python are the same as the results of the system in matlab it

works correctly.

Next is looked at the implementation in openhab. The self learning system is controlled by openhab.

Every time a “state” or “temperature”(except room temperature itself) changes the self learning

system is triggered. Another part of the openHAB implementation is using the measured data. This

part works as follows. First a calculation is made how much time it will cost to heat the room to a

certain goal temperature. This prediction is checked to find out if it is realistic. If not, the default

value of 30 minutes is used. After the system has determined the time needed to heat the room, it

calculates when it should start in order to reach the goal temperature in time. When the system

heats the room the radiator is set to 25 degrees, for cooling down it is set to 14 degrees. The goal

time is guiding, which means when the goal time is reached the radiator is set to the goal

temperature no matter if the goal temperature is reached or not. See block diagram below.

25

Test full system
The full system has not been tested. The simulations show that improvements to the system are

necessary before a real life implementation can be realised. Some of the improvements are build in

matlab but there was not enough time to implement them in openHAB.

Improvements

Filter results to get the most common value

A filter can be added to filter out the measurements that result in incorrect slopes . The filter will

select the results with the most measurement points within a certain error range (see picture below)

and it will remove results that do not match with other measurements. In this way wrong results will

have less to no influence of the final result.

Subtract measurements to get better results

Working principle

Only using the results for which the dT is zero, makes doing a linear approach, very time consuming.

It is not very common that two of the three temperatures are equal to the room temperature. To

increase the number of measurement points with two of the three dT are zero, the measurements

are subtracted from each other.

Measurement 1

Measurement 2

26

Subtracted

If two of the tree subtractions result in zero, the slope can be determined. Multiple measurements

can be used to get to this result. The most difficult part is determining which measurements must be

subtracted from each other.

Where is this implemented in the current system?

The system will start with the determination of the exponent values by using measurements which

have two dTs of zero. When no measurements with this property are found the default value of

1(normal line) is used. During the next step the system will use the explained improvement to

determine the slopes (a values).

Small test

The improvement described above has been build in Matlab, the code can be found in the

GetCorrectedMeas.m. To test the improvement a small simulation is made. The results for the

influence of the radiator are given below

 Self Learning System Previous measurement Error

Slope(Normal system) ??? 0.0081 ???

Slope(Improved system) 0.0081 0.0081 0 %

The results are promising. The normal system cannot make a linear approach for any of the three

influencing temperatures. The improved version can determine the influence of the radiator. More

tests have to be done to see how well the system works but the results are promising.

Implement x and y offsets

In the beginning, x and y offsets were implemented, but this caused so many errors that they were

removed later on. To take care of influences that are not covered by the measurements the offsets

are useful. However, a good way has not been found to implement this into the system. The

implementation of offsets makes the determination of slopes harder.

27

Side node:

After some tests a possible solution has been found. The unknown influences will all result in an

offset in the room temperature. This is why the offset will be the same for all three temperatures.

When the three dTs are all equal to each other and the heating speed is zero, the offset is equal to

dT. This can be proven with the following equation

When dT is bigger than zero it means that the heating speed must also be bigger than zero.

When dT is smaller than zero, the heating speed must be smaller than zero. The only solution for

this equation is then dT = offset.

The offset depends on the temperature difference between the room and the source that is causing

the offset. This problem can be solved by approaching the offset linear in the same way as has been

done for the influencing temperatures. To do the linear approach, the value of the temperature

causing the offset has to be known. This value can be determined by searching for a measurement

which has an offset of zero. An offset of zero means that the room temperature is equal to the

temperature of the source that causes the offset.

Discussion
The tests done with matlab are showing promising results for a real life implementation, however

there is one complication. The real life implementation cannot be tested before the improvements

have been added. At this moment the only measurement values used are the ones for which two of

the three temperatures are zero. This is a scenario that almost never happens. The “Subtract

measurements from each other to get better results” improvement would greatly increase the

number of measurements that can be used. If this is not applied, it will take a very long time before

some results can be determined. A second problem showed up during the simulations. For influences

on the room that are no heating source the system works fine, it determines the slope very well. but

when an influence has the properties of a heating source the problems start to occur. If the heating

source would add a standard amount of degrees this problem could be solved with a simple offset.

Unfortunately this is a scenario that almost never happens, most of the time the heating source

averages out with the other heating sources in the room. In the section improvements a possible

solution for this problem has been given. Since the improvement is not applied the only solution for

now is to implement heating sources as temperatures and influences on resistance values or

capacitance values as states.

28

Conclusion
The main structure of the system stands for this moment, although it still needs a lot of improvement

before it is fully functional. For influences on the room that are no heating source it works fine and

determines the slope very well with small errors about 3%. Influences that have properties of a

heating source should, at this moment, be implemented as temperature not as state. Some

improvements to the system could be added but these are not/not well tested.

29

Appendix

Appendix 1: Calculation state space

From this bond graph the state space equations are determined

30

31

The resulting state space is

In the same way the other states can be added

32

Appendix 2: Calculate Values for components

Rrad

Low Resistance, value is guessed at 0.01, will be determined with simulation

Croom

Material: air at 20˚C

33

Wall East

Insulated Glass(C1 and R1)

Consists of two glass plates of 3 mm thick with an argon layer of 1.4 mm thick in between

C1

R1

Isolated Wall(C2 and R2)

The outside wall is around 15 cm thick. Consists of two layers with in between an isolation layer

C2

34

http://www.firebid.umd.edu/material-database.php

This is an approximation, an Isolated wall has a high resistance and low capacity.

http://www.firebid.umd.edu/material-database.php

35

Appendix 3: Matlab Scripts

StartSimulation.m

%**
% Initialize simulation, this script starts the simulation
%**
 clear;

%**
% Variables for storing measurement
%**
 Measurements = zeros(1000,9);
 MeasurementPointer = 0;

%**
% Set Room temperature
%**
 RoomTemp = 10;

%**
% Set temperatures of the walls
%**
 WallEntryTemp = RoomTemp;
 WallOutdoorTemp = RoomTemp;

%**
% Initialize variables, are overwritten by SimulateModel.m
%**
 HeatingSpeed = 0;
 RadiatorTemp = 0;
 EntryTemp = 0;
 OutdoorTemp = 0;
 DoorOpen = false;
 ShutterOpen = false;
 PeopleInRoom = false;
 IncomingSunlight = false;

%**
% Set Measurment interval in seconds
%**
 LengthMeasurement = 60;

%**
% Number of States that influence the Room
%**
 NumberOfStates = 4;

%**
% Matrix will store the influece of each different state combination
%**
 RelationMatrix = zeros(16,9);

%**
% Start with simulation of the model
%**
run('SimulateModel.m');

36

RunSimulationRoom.m
%**
% Simulate State Space
%**

%**
% Set Simulation time variable
%**
 t = 0:0.1:LengthMeasurement;

%**
% Set Values Capacitors
%**
 Croom = 146257.65;
 C1 = 73237.22;
 C2 = 0.0001;
 C3 = 28871;
 C4 = 525800;
 C5 = 525800;
 C6 = 6778560;
 C7 = 6778560;
 C8 = 0.0001;

%**
% Set Values resistors
%**
 Rrad = .001;
 R1 = 0.058 / 2 + (1 - ShutterOpen) * 0.058;
 R2 = 100;
 R3 = 0.00029 / 2 + (1 - DoorOpen) * 0.003;
 R4 = 0.00214 / 2;
 R5 = 0.00214 / 2;
 R6 = 0.0274 / 2;
 R7 = 0.0274 / 2;
 R8 = 100;

%**
% Set Values Sources
%**
 Se = ((RadiatorTemp - OutdoorTemp) + DoorOpen * (EntryTemp -

OutdoorTemp) + PeopleInRoom * (35.5 - OutdoorTemp) + IncomingSunlight * (25

- OutdoorTemp)) / (1 + DoorOpen + PeopleInRoom + IncomingSunlight);
 Se3 = EntryTemp - OutdoorTemp;
 Se4 = EntryTemp - OutdoorTemp;
 Se5 = EntryTemp - OutdoorTemp;
 Se6 = EntryTemp - OutdoorTemp;
 Se7 = EntryTemp - OutdoorTemp;
 Se8 = EntryTemp - OutdoorTemp;

%**
% Make A Matrix
%**
 A = zeros(9,9);
 A(1,1) = -(1/Croom) * ((1/Rrad) +

(1/R1)+(1/R2)+(1/R3)+(1/R4)+(1/R5)+(1/R6)+(1/R7)+(1/R8));
 A(1,2) = 1/(R1 * Croom);
 A(1,3) = 1/(R2 * Croom);
 A(1,4) = 1/(R3 * Croom);
 A(1,5) = 1/(R4 * Croom);
 A(1,6) = 1/(R5 * Croom);

37

 A(1,7) = 1/(R6 * Croom);
 A(1,8) = 1/(R7 * Croom);
 A(1,9) = 1/(R8 * Croom);

 A(2,1) = 1/(R1 * C1);
 A(2,2) = -2/(R1 * C1);

 A(3,1) = 1/(R2 * C2);
 A(3,3) = -2/(R2 * C2);

 A(4,1) = 1/(R3 * C3);
 A(4,4) = -2/(R3 * C3);

 A(5,1) = 1/(R4 * C4);
 A(5,5) = -2/(R4 * C4);

 A(6,1) = 1/(R5 * C5);
 A(6,6) = -2/(R5 * C5);

 A(7,1) = 1/(R6 * C6);
 A(7,7) = -2/(R6 * C6);

 A(8,1) = 1/(R7 * C7);
 A(8,8) = -2/(R7 * C7);

 A(9,1) = 1/(R8 * C8);
 A(9,9) = -2/(R8 * C8);

%**
% Make B Matrix
%**
 B = zeros(9,7);
 B(1,1) = 1/(Rrad * Croom);
 B(4,2) = 1/(R3 * C3);
 B(5,3) = 1/(R4 * C4);
 B(6,4) = 1/(R5 * C5);
 B(7,5) = 1/(R6 * C6);
 B(8,6) = 1/(R7 * C7);
 B(9,7) = 1/(R8 * C8);

%**
% Make C Matrix
%**
 C = zeros(1,9);
 C(1,1) = 1;

%**
% Make D Matrix
%**
 D = 0;

%**
% Set initial values for the states, are the state values at the end of
% the previous simulation
%**
 x0 = [RoomTemp - OutdoorTemp,WallOutdoorTemp -

OutdoorTemp,WallOutdoorTemp - OutdoorTemp,WallEntryTemp -

OutdoorTemp,WallEntryTemp - OutdoorTemp,WallEntryTemp -

38

OutdoorTemp,WallEntryTemp - OutdoorTemp,WallEntryTemp -

OutdoorTemp,WallEntryTemp - OutdoorTemp];

%**
% Set input array for simulation
%**
 u = zeros(length(t),7);
 u(1:length(t),1) = Se;
 u(1:length(t),2) = Se3;
 u(1:length(t),3) = Se4;
 u(1:length(t),4) = Se5;
 u(1:length(t),5) = Se6;
 u(1:length(t),6) = Se7;
 u(1:length(t),7) = Se8;

%**
% Create and Simulate State space for Room Temperature
%**
 sys = ss(A,B,C,D);
 y = lsim(sys,u,t,x0);

%**
% Create and Simulate State space for Wall outdoor temperature
%**
 Cmat2 = zeros(1,9);
 Cmat2(1,2) = 1;

 sys = ss(A,B,Cmat2,D);
 y2 = lsim(sys,u,t,x0);

%**
% Create and Simulate State space for wall Entry temperature
%**
 Cmat3 = zeros(1,9);
 Cmat3(1,4) = 1;

 sys = ss(A,B,Cmat3,D);
 y3 = lsim(sys,u,t,x0);

%**
% Assign output values of State Space to output variables
%**
 RoomTemp = y(length(t)) + OutdoorTemp;
 WallOutdoorTemp = y2(length(t)) + OutdoorTemp;
 WallEntryTemp = y3(length(t)) + OutdoorTemp;

39

FindHeatingTime.m
%***
% Determine Time needed for the set of the state
%***
 function y =

FindHeatingTime(Measurement,NumberOfStates,RelationMatrix,RoomGoalTemp)
 %***
 % Initialize variables
 %***
 tempvar = Type(Measurement,NumberOfStates) + 1;
 HeatingTime = 0;

 %***
 % Integrate temperature to get time needed to heat the room
 %***
 if (RelationMatrix(tempvar,4) ~= 3)
 for Temp = Measurement(5):0.001:RoomGoalTemp
 TotalHeatingSpeed = 0;
 TotalHeatingSpeed = TotalHeatingSpeed +

GetHeatingSpeedEntry(Measurement,RelationMatrix,tempvar,Temp);
 TotalHeatingSpeed = TotalHeatingSpeed +

GetHeatingSpeedRadiator(Measurement,RelationMatrix,tempvar,Temp);
 TotalHeatingSpeed = TotalHeatingSpeed +

GetHeatingSpeedOutdoor(Measurement,RelationMatrix,tempvar,Temp);
 HeatingTime = HeatingTime + ((RoomGoalTemp -

Temp)/TotalHeatingSpeed) * 0.001;
 end
 y = HeatingTime;
 else
 y = 60 * 30;
 end
 end

%***
% Determine the heating speed influence of Entry for a certain set of

state
%***
 function a =

GetHeatingSpeedEntry(Measurement,RelationMatrix,Type,RoomTemp)
 HeatingSpeed = 0;
 switch RelationMatrix(Type,1)
 case 1
 HeatingSpeed = HeatingSpeed + (Measurement(7) - RoomTemp -

RelationMatrix(Type,3)) * RelationMatrix(Type,2);
 case 2
 if (Measurement(7) - RoomTemp - RelationMatrix(Type,3) > 0)
 HeatingSpeed = HeatingSpeed + (Measurement(7) - RoomTemp -

RelationMatrix(Type,3))^2 * RelationMatrix(Type,2);
 else
 HeatingSpeed = HeatingSpeed + -(Measurement(7) - RoomTemp -

RelationMatrix(Type,3))^2 * RelationMatrix(Type,2);
 end
 case 0.5
 if (Measurement(7) - RoomTemp - RelationMatrix(Type,3) > 0)
 HeatingSpeed = HeatingSpeed + abs(Measurement(7) - RoomTemp

- RelationMatrix(Type,3))^.5 * RelationMatrix(Type,2);
 else
 HeatingSpeed = HeatingSpeed + -abs(Measurement(7) -

RoomTemp - RelationMatrix(Type,3))^.5 * RelationMatrix(Type,2);
 end
 end

40

 a = HeatingSpeed;
 end
%***
% Determine the heating speed influence of Radiator for a certain set of

state
%***
 function b =

GetHeatingSpeedRadiator(Measurement,RelationMatrix,Type,RoomTemp)
 HeatingSpeed = 0;
 switch RelationMatrix(Type,4)
 case 0
 HeatingSpeed = HeatingSpeed + (Measurement(6) - RoomTemp -

RelationMatrix(Type,6)) * RelationMatrix(Type,5);
 case 1
 if (Measurement(6) - RoomTemp - RelationMatrix(Type,6) > 0)
 HeatingSpeed = HeatingSpeed + (Measurement(6) - RoomTemp -

RelationMatrix(Type,6))^2 * RelationMatrix(Type,5);
 else
 HeatingSpeed = HeatingSpeed + -(Measurement(6) - RoomTemp -

RelationMatrix(Type,6))^2 * RelationMatrix(Type,5);
 end
 case 2
 if (Measurement(6) - RoomTemp - RelationMatrix(Type,6) > 0)
 HeatingSpeed = HeatingSpeed + abs(Measurement(6) - RoomTemp

- RelationMatrix(Type,6))^.5 * RelationMatrix(Type,5);
 else
 HeatingSpeed = HeatingSpeed + -abs(Measurement(6) -

RoomTemp - RelationMatrix(Type,6))^.5 * RelationMatrix(Type,5);
 end
 end
 b = HeatingSpeed;
 end
%***
% Determine the heating speed influence of Outdoor temperature for a

certain set of state
%***
 function c =

GetHeatingSpeedOutdoor(Measurement,RelationMatrix,Type,RoomTemp)
 HeatingSpeed = 0;
 switch RelationMatrix(Type,7)
 case 0
 HeatingSpeed = HeatingSpeed + (Measurement(8) - RoomTemp -

RelationMatrix(Type,9)) * RelationMatrix(Type,8);
 case 1
 if (Measurement(8) -RoomTemp - RelationMatrix(Type,9) > 0)
 HeatingSpeed = HeatingSpeed + (Measurement(8) - RoomTemp -

RelationMatrix(Type,9))^2 * RelationMatrix(Type,8);
 else
 HeatingSpeed = HeatingSpeed + -(Measurement(8) - RoomTemp -

RelationMatrix(Type,9))^2 * RelationMatrix(Type,8);
 end
 case 2
 if (Measurement(8) - RoomTemp - RelationMatrix(Type,9)> 0)
 HeatingSpeed = HeatingSpeed + abs(Measurement(8) - RoomTemp

- RelationMatrix(Type,9))^.5 * RelationMatrix(Type,8);
 else
 HeatingSpeed = HeatingSpeed + -abs(Measurement(8) -

RoomTemp - RelationMatrix(Type,9))^.5 * RelationMatrix(Type,8);
 end
 end
 c = HeatingSpeed;

41

 end

42

SaveMeasurement.m
%**
% Save measurement in matrix
%**
 disp('Save Measurement...');

%***
% Determine Heating Speed of Measurement
%***
 if (MeasurementPointer > 0)
 Measurements(MeasurementPointer,9) = (RoomTemp -

Measurements(MeasurementPointer,5))/LengthMeasurement;
 end

%***
% Set Pointer to correct location
%***
 if (MeasurementPointer >= 1000)
 circshift(Measurements,-1);
 else
 MeasurementPointer = MeasurementPointer + 1;
 end

%***
% Save measurement
%***
 Measurements(MeasurementPointer,1) = DoorOpen;
 Measurements(MeasurementPointer,2) = ShutterOpen;
 Measurements(MeasurementPointer,3) = PeopleInRoom;
 Measurements(MeasurementPointer,4) = IncomingSunlight;
 Measurements(MeasurementPointer,5) = RoomTemp;
 Measurements(MeasurementPointer,6) = RadiatorTemp;
 Measurements(MeasurementPointer,7) = EntryTemp;
 Measurements(MeasurementPointer,8) = OutdoorTemp;
 Measurements(MeasurementPointer,9) = 0;

%***
% Process Measurement
%***
 if(MeasurementPointer > 1)
 run('ProcessMeasurement.m');
 end
disp('Measurement saved');

Type.m
%**
% Determine which set of states the measurement has (from 0 - 15)
%**
 function y = Type(Measurement,NumberOfStates)
 tempvar = 0;
 for m = 1:1:NumberOfStates
 if (Measurement(m) == 1)
 tempvar = tempvar + 2^(m - 1);
 end
 y = tempvar;
 end
 end

43

GetRelation.m
function a =

GetRelation(Measurements,MeasurementPointer,NumberOfStates,StateMeasurement

)
%***
% Determine Properties when linear
%***
 EntryLinear =

GetPointsRelation(Measurements,MeasurementPointer,NumberOfStates,StateMeasu

rement,7,1);
 RadiatorLinear =

GetPointsRelation(Measurements,MeasurementPointer,NumberOfStates,StateMeasu

rement,6,1);
 OutdoorLinear =

GetPointsRelation(Measurements,MeasurementPointer,NumberOfStates,StateMeasu

rement,8,1);
%***
% Determine Properties when Exponential
%***
 EntryExponential =

GetPointsRelation(Measurements,MeasurementPointer,NumberOfStates,StateMeasu

rement,7,2);
 RadiatorExponential =

GetPointsRelation(Measurements,MeasurementPointer,NumberOfStates,StateMeasu

rement,6,2);
 OutdoorExponential =

GetPointsRelation(Measurements,MeasurementPointer,NumberOfStates,StateMeasu

rement,8,2);
%***
% Determine Properties when Root
%***
 EntryRoot =

GetPointsRelation(Measurements,MeasurementPointer,NumberOfStates,StateMeasu

rement,7,0.5);
 RadiatorRoot =

GetPointsRelation(Measurements,MeasurementPointer,NumberOfStates,StateMeasu

rement,6,0.5);
 OutdoorRoot =

GetPointsRelation(Measurements,MeasurementPointer,NumberOfStates,StateMeasu

rement,8,0.5);
%***
% Determine Which relation each component has
%***
 EntryRelation =

GetEntryRelation(EntryLinear,EntryExponential,EntryRoot);
 RadiatorRelation =

GetRadiatorRelation(RadiatorLinear,RadiatorExponential,RadiatorRoot);
 OutdoorRelation =

GetOutdoorRelation(OutdoorLinear,OutdoorExponential,OutdoorRoot);

%***
% Output Matrix
%***
 a = [EntryRelation,RadiatorRelation,OutdoorRelation];
end

function q =

GetPointsRelation(Measurements,MeasurementPointer,NumberOfStates,StateMeasu

rement,Temperature,RelationPower)
%***
% Set Variables

44

%***
 Total = 0;
 Average = 0;
 AveragePoints = 0;
 Items = 0;
 Points = 0;
 PointsMeas = 0;
 ItemsOffset = 0;
 total_measurements = 0;

%***
% Display debug
%***
 disp('------------------------------------');
 disp(StateMeasurement);
 disp(total_measurements);

%***
% Average of normalization of all the measurements
%***
 for k = 1:1:MeasurementPointer
 %***
 % Check state of measurement
 %***
 if (Type(Measurements(k,1:9),NumberOfStates) == StateMeasurement)

%***
 % Check if 2 of three dTs are 0

%***
 if (UsefullMeasurement(Measurements(k,1:9),Temperature) == 1)

%***
 % Check if signs of heating speed and dT are the same

%***
 if (Measurements(k,9) > 0.001)
 if ((Measurements(k,Temperature) - Measurements(k,5)) >

0)
 Total = Total + (Measurements(k,9) /

((abs(Measurements(k,Temperature) - Measurements(k,5)))^RelationPower));
 Items = Items + 1;
 end
 elseif (Measurements(k,9) < -0.001)
 if ((Measurements(k,Temperature) - Measurements(k,5)) <

0)
 Total = Total + (Measurements(k,9) / (-

((abs(Measurements(k,Temperature) - Measurements(k,5)))^RelationPower)));
 Items = Items + 1;
 end
 end
 end
 end
 end
 %***
 % if there were 1 or more usefull measurements the average slope is
 % calculated
 %***
 if (Items > 0)
 Average = Total / Items;

45

%***
 % Check how Close Measurement is to the Average

%***
 for l = 1:1:MeasurementPointer
 if (Type(Measurements(l,1:9),NumberOfStates) ==

StateMeasurement)
 if (UsefullMeasurement(Measurements(l,1:9),Temperature) ==

1)

%***
 % Check if signs correspond

%***
 if (Measurements(l,9) > 0.001)
 if ((Measurements(l,Temperature) -

Measurements(l,5)) > 0)
 PointCorrected = (Measurements(l,9) /

((abs(Measurements(l,Temperature) - Measurements(l,5)))^RelationPower));
 PointsMeas = (1 - abs((PointCorrected -

Average))) * 100;
 if (PointsMeas < 0)
 PointsMeas = 0;
 end
 Points = Points + PointsMeas;
 PointsMeas = 0;
 end
 elseif (Measurements(l,9) < -0.001)
 if ((Measurements(l,Temperature) -

Measurements(l,5)) < 0)
 PointCorrected = (Measurements(l,9) / (-

((abs(Measurements(l,Temperature) - Measurements(l,5)))^RelationPower)));
 PointsMeas = (1 - abs((PointCorrected -

Average))) * 100;
 if (PointsMeas < 0)
 PointsMeas = 0;
 end
 Points = Points + PointsMeas;
 PointsMeas = 0;
 end
 end
 end
 end
 end
 AveragePoints = Points / Items;

%***
 % Output Value

%***
 q = [AveragePoints,Average,0];
 else

%***
 % Output Value no Items available

%***
 q = [0,0,0];
 end
end

46

function k = GetEntryRelation(EntryLinear,EntryExponential,EntryRoot)
%***
% Initialize variables
%***
EntryRelation = 0;
EntryFactor = 0;

%***
% Test which of the entries has the highest number of points
%***
 if (EntryRoot(1) > EntryExponential(1))
 if (EntryRoot(1) > EntryLinear(1))
 EntryRelation = 0.5;
 EntryFactor = EntryRoot(2);
 EntryOffset = EntryRoot(3);
 else
 EntryRelation = 1;
 EntryFactor = EntryLinear(2);
 EntryOffset = EntryLinear(3);
 end
 else
 if (EntryExponential(1) > EntryLinear(1))
 EntryRelation = 2;
 EntryFactor = EntryExponential(2);
 EntryOffset = EntryExponential(3);
 else
 EntryRelation = 1;
 EntryFactor = EntryLinear(2);
 EntryOffset = EntryLinear(3);
 end
 end
k = [EntryRelation,EntryFactor,EntryOffset];
end
function l =

GetRadiatorRelation(RadiatorLinear,RadiatorExponential,RadiatorRoot)
RadiatorRelation = 0;
RadiatorFactor = 0;

 if (RadiatorRoot(1) > RadiatorExponential(1))
 if (RadiatorRoot(1) > RadiatorLinear(1))
 RadiatorRelation = 0.5;
 RadiatorFactor = RadiatorRoot(2);
 RadiatorOffset = RadiatorRoot(3);
 else
 RadiatorRelation = 1;
 RadiatorFactor = RadiatorLinear(2);
 RadiatorOffset = RadiatorLinear(3);
 end
 else
 if (RadiatorExponential(1) > RadiatorLinear(1))
 RadiatorRelation = 2;
 RadiatorFactor = RadiatorExponential(2);
 RadiatorOffset = RadiatorExponential(3);
 else
 RadiatorRelation = 1;
 RadiatorFactor = RadiatorLinear(2);
 RadiatorOffset = RadiatorLinear(3);
 end
 end
l = [RadiatorRelation,RadiatorFactor,RadiatorOffset];

47

end
function m =

GetOutdoorRelation(OutdoorLinear,OutdoorExponential,OutdoorRoot)
OutdoorRelation = 0;
OutdoorFactor = 0;

 if (OutdoorRoot(1) > OutdoorExponential(1))
 if (OutdoorRoot(1) > OutdoorLinear(1))
 OutdoorRelation = 0.5;
 OutdoorFactor = OutdoorRoot(2);
 OutdoorOffset = OutdoorRoot(3);
 else
 OutdoorRelation = 1;
 OutdoorFactor = OutdoorLinear(2);
 OutdoorOffset = OutdoorLinear(3);
 end
 else
 if (OutdoorExponential(1) > OutdoorLinear(1))
 OutdoorRelation = 2;
 OutdoorFactor = OutdoorExponential(2);
 OutdoorOffset = OutdoorExponential(3);
 else
 OutdoorRelation = 1;
 OutdoorFactor = OutdoorLinear(2);
 OutdoorOffset = OutdoorLinear(3);
 end
 end
m = [OutdoorRelation,OutdoorFactor,OutdoorOffset];
end

48

UsefullMeasurement.m
%***
% Test if measurement has 2 or more dTs that equal 0
%***
function y = UsefullMeasurement(Measurement,temperature)
 RadiatorTempZero = 0;
 EntryTempZero = 0;
 OutdoorTempZero = 0;

 if (abs(Measurement(6) - Measurement(5)) <= 0.001)
 RadiatorTempZero = 1;
 end
 if (abs(Measurement(7) - Measurement(5)) <= 0.001)
 EntryTempZero = 1;
 end
 if (abs(Measurement(8) - Measurement(5)) <= 0.001)
 OutdoorTempZero = 1;
 end

 if (temperature == 6)
 if (EntryTempZero == 1 && OutdoorTempZero == 1)
 y = 1;
 else
 y = 0;
 end
 elseif (temperature == 7)
 if (RadiatorTempZero == 1 && OutdoorTempZero == 1)
 y = 1;
 else
 y = 0;
 end
 elseif (temperature == 8)
 if (RadiatorTempZero == 1 && EntryTempZero == 1)
 y = 1;
 else
 y = 0;
 end
 else
 y = 0;
 end
end

49

SimulateModel.m
%**
% Start with simulation of the model
%**

%**
% Number of timesteps that are simulated
%**
 NumberOfMinutes = 300;

%**
% Initialise Output Graphs
%**
 RoomTempGraph = zeros(NumberOfMinutes,1);
 RoomWallEntryTempGraph = zeros(NumberOfMinutes,1);
 RoomWallOutdoorTempGraph = zeros(NumberOfMinutes,1);

%**
% Initialise input graphs
%**
 EntryTempGraph = zeros(NumberOfMinutes,1);
 %EntryTempGraph(1:NumberOfMinutes) = 20;
 EntryTempGraph(1:NumberOfMinutes / 3) = 22;
 EntryTempGraph(NumberOfMinutes / 3:2 * NumberOfMinutes / 3) = 25;
 EntryTempGraph(2 * NumberOfMinutes / 3:NumberOfMinutes) = 20;
 OutdoorTempGraph = zeros(NumberOfMinutes,1);
 OutdoorTempGraph(1:NumberOfMinutes) = 20;
 OutdoorTempGraph(1:2 * NumberOfMinutes / 3) = 14;
 OutdoorTempGraph(2 * NumberOfMinutes / 3:NumberOfMinutes) = 16;
 PeopleInRoomGraph = zeros(NumberOfMinutes,1);
 %PeopleInRoomGraph(1:250) = 1;
 %PeopleInRoomGraph(200:250) = 1;
 IncomingSunlightGraph = zeros(NumberOfMinutes,1);
 %IncomingSunlightGraph(45:60) = 1;
 %IncomingSunlightGraph(150:200) = 1;
 ShutterOpenGraph = zeros(NumberOfMinutes,1);
 %ShutterOpenGraph(75:85) = 1;
 %ShutterOpenGraph(1:NumberOfMinutes) = 1;
 DoorOpenGraph = zeros(NumberOfMinutes,1);
 %DoorOpenGraph(1:200) = 1;
 %DoorOpenGraph(50:80) = 1;
 %DoorOpenGraph(200:250) = 1;
 RadiatorTempGraph = zeros(NumberOfMinutes,1);
 RadiatorTempGraph(1:NumberOfMinutes) = 20;
 RadiatorTempGraph(2 * NumberOfMinutes / 3:NumberOfMinutes) = 28;
 RadiatorTempGraph(1:2 * NumberOfMinutes / 3) = 24;
 HeatingSpeedGraph = zeros(NumberOfMinutes,1);

%**
% Simulate Model
%**
for i = 1:1:NumberOfMinutes - 1
 %**
 % Set all the states and temperatures
 %**
 WallEntryTemp = EntryTemp;
 WallOutdoorTemp = OutdoorTemp;
 run('RunSimulationRoom.m');
 RoomTempGraph(i) = RoomTemp;
 RoomWallEntryTempGraph(i) = WallEntryTemp;

50

 RoomWallOutdoorTempGraph(i) = WallOutdoorTemp;
 RadiatorTemp = RadiatorTempGraph(i + 1);
 EntryTemp = EntryTempGraph(i + 1);
 OutdoorTemp = OutdoorTempGraph(i + 1);
 DoorOpen = DoorOpenGraph(i + 1);
 ShutterOpen = ShutterOpenGraph(i + 1);
 PeopleInRoom = PeopleInRoomGraph(i + 1);
 IncomingSunlight = IncomingSunlightGraph(i + 1);
 run('SaveMeasurement');
end
%***
% Calculate the relation matrix
%***
 run('ProcessMeasurement.m')

%***
% <Improvement> to increase the number of usefull measurements
%***
 matrix =

GetCorrectedMeas(Measurements,MeasurementPointer,RelationMatrix,NumberOfSta

tes);

%**
% Plot the simulation
%**
 plot(RoomTempGraph); hold on;
 plot(EntryTempGraph); hold on;
 plot(OutdoorTempGraph); hold on;
 plot(RadiatorTempGraph); hold on;
 plot(DoorOpenGraph); hold on;
 plot(ShutterOpenGraph); hold on;
 plot(PeopleInRoomGraph); hold on;
 plot(IncomingSunlightGraph);
 %legend('Room Temp','Entry Temp')
 xlabel('Time(min)')
 ylabel('Temperature in celcius')
 title('Room temperature over time')
 legend('Room Temp','Entry Temp','Outdoor Temp','Radiator Temp','Door

Open','Shutter Open','People in Room','Incoming Sunlight')
 %legend('Room Temp','Entry Temp','Door Open','Shutter Open','People in

Room','Incoming Sunlight')
 %plot(Measurements(:,7) - Measurements(:,5),Measurements(:,9));

51

GetCorrectedMeas.m
%***
% Subtract measurements to get more useful results
%***
function a =

GetCorrectedMeas(Measurements,MeasurementPointer,RelationMatrix,NumberOfSta

tes)
%***
% Initialize variables
%***
 MatrixCorrectedMeas = zeros(1000,9);
 WritePosition = 1;
 Measurement = zeros(1,9);

%***
% Start Subtraction
%***
for l = 1:1:2^NumberOfStates
 StateMeasurement = l - 1;
 %***
 % Display Debug
 %***
 disp('--')
 disp(StateMeasurement)
 disp('--')

 %***
 % determine first measurement k1
 %***
 for k1 = 1:1:MeasurementPointer
 if (Type(Measurements(k1,1:9),NumberOfStates) == StateMeasurement)

%***
 % determine second measurement k2

%***
 for k2 = 1:1:MeasurementPointer
 if (Type(Measurements(k2,1:9),NumberOfStates) ==

StateMeasurement)
 if (k1 ~= k2)
 tempvar = 0;
 Measurement(1:5) = Measurements(k1,1:5);
 Measurement(6) = (Measurements(k1,6) -

Measurements(k1,5))^RelationMatrix(StateMeasurement + 1,1) -

(Measurements(k2,6) - Measurements(k2,5))^RelationMatrix(StateMeasurement +

1,1);
 Measurement(7) = (Measurements(k1,7) -

Measurements(k1,5))^RelationMatrix(StateMeasurement + 1,4) -

(Measurements(k2,7) - Measurements(k2,5))^RelationMatrix(StateMeasurement +

1,4);
 Measurement(8) = (Measurements(k1,8) -

Measurements(k1,5))^RelationMatrix(StateMeasurement + 1,7) -

(Measurements(k2,8) - Measurements(k2,5))^RelationMatrix(StateMeasurement +

1,7);
 Measurement(9) = (Measurements(k1,9) -

Measurements(k2,9));
 if (abs(Measurement(6)) < 0.001)
 tempvar = tempvar + 1;
 end
 if (abs(Measurement(7)) < 0.001)
 tempvar = tempvar + 1;

52

 end
 if (abs(Measurement(8)) < 0.001)
 tempvar = tempvar + 1;
 end
 if (tempvar >= 2)
 if (abs(Measurement(9)) > 0.0001)
 MatrixCorrectedMeas(WritePosition, 1:9) =

Measurement(1:9);
 WritePosition = WritePosition + 1;
 disp('New Measurement!!');
 end
 else

%***
 % If 2 measurements where not usefull try
 % three k3

%***
 for k3 = 1:1:MeasurementPointer
 if

(Type(Measurements(k3,1:9),NumberOfStates) == StateMeasurement)
 if (k2 ~= k3 && k1 ~= k3)
 tempvar = 0;
 Measurement(6) = Measurement(6)

- (Measurements(k3,6) - Measurements(k3,5))^RelationMatrix(StateMeasurement

+ 1,1);
 Measurement(7) = Measurement(7)

- (Measurements(k3,7) - Measurements(k3,5))^RelationMatrix(StateMeasurement

+ 1,4);
 Measurement(8) = Measurement(8)

- (Measurements(k3,8) - Measurements(k3,5))^RelationMatrix(StateMeasurement

+ 1,7);
 Measurement(9) = (Measurement(9) -

Measurements(k3,9));
 if (abs(Measurement(6)) < 0.001)
 tempvar = tempvar + 1;
 end
 if (abs(Measurement(7)) < 0.001)
 tempvar = tempvar + 1;
 end
 if (abs(Measurement(8)) < 0.001)
 tempvar = tempvar + 1;
 end
 if (tempvar >= 2)
 if (abs(Measurement(9)) >

0.0001)

MatrixCorrectedMeas(WritePosition,1:9) = Measurement(1:9);
 WritePosition =

WritePosition + 1;
 disp('New Measurement!!');
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end

53

 end
end
a = MatrixCorrectedMeas;
end

ProcessMeasurement.m
%***
% Fill in the Relation matrix
%***
 for l = 1:1:2^NumberOfStates
 RelationMatrix(l,1:9) = GetRelation(Measurements,MeasurementPointer -

1,NumberOfStates,l - 1);
 end

54

Appendix 4: Python / Jython scripts

import time

class SelfLearningSystem(Rule):

 def __init__(self):

 self.logger = oh.getLogger("TestLoger")

 self.room_temp = get_room_temperature()

 self.radiator_temp = get_radiator_temperature()

 self.entry_temp = get_entry_temperature()

 self.outdoor_temp = get_outdoor_temperature()

 self.door_open = get_door_open()

 self.shutter_open = get_shutter_open()

 self.people_in_room = get_people_in_room()

 self.incoming_sunlight = get_incoming_sunlight()

 self.number_of_states = 4

 self.goal_temp = get_goal_temperature()

 self.previous_goal_temp = get_goal_temperature()

 self.goal_time = get_goal_time()

 self.time_needed = 0;

 self.relation_matrix = [

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

]

55

 self.measurements = [

 [

 self.door_open, self.shutter_open, self.people_in_room, self.incoming_sunlight,

 self.room_temp, self.radiator_temp, self.entry_temp, self.outdoor_temp, 0

]

]

 self.state_room = [

 self.door_open, self.shutter_open, self.people_in_room, self.incoming_sunlight,

 self.room_temp, self.radiator_temp, self.entry_temp, self.outdoor_temp

]

 self.time_last_meas = time.clock()

 def save_measurement(self, length_measurement):

 # ***

 # Save the measurement in list

 # **

 # ***

 # Determine Heating Speed of Measurement

 # ***

 if len(self.measurements) >= 1:

 if length_measurement != 0:

 self.measurements[(len(self.measurements) - 1)][8] = (self.room_temp -

self.measurements[(len(self.measurements)) - 1][4]) / length_measurement

 else:

 self.measurements[(len(self.measurements) - 1)][8] = 0

 # ***

56

 # Set Pointer to correct location

 # ***

 if len(self.measurements) >= 1000:

 del self.measurements[0]

 # ***

 # Save measurement

 # ***

 measurement = [self.door_open, self.shutter_open, self.people_in_room,

self.incoming_sunlight, self.room_temp, self.radiator_temp, self.entry_temp, self.outdoor_temp, 0]

 self.measurements.append(measurement)

 def get_relation(self, target_state):

 # ***

 # Determine Properties when linear

 # ***

 entry_linear = self.get_points_relation(target_state, 6, 1)

 radiator_linear = self.get_points_relation(target_state, 5, 1)

 outdoor_linear = self.get_points_relation(target_state, 7, 1)

 # ***

 # Determine Properties when Exponential

 # ***

 entry_exponential = self.get_points_relation(target_state, 6, 2)

 radiator_exponential = self.get_points_relation(target_state, 5, 2)

 outdoor_exponential = self.get_points_relation(target_state, 7, 2)

 # ***

 # Determine Properties when Root

 # ***

57

 entry_root = self.get_points_relation(target_state, 6, 0.5)

 radiator_root = self.get_points_relation(target_state, 5, 0.5)

 outdoor_root = self.get_points_relation(target_state, 7, 0.5)

 # ***

 # Determine Which relation each component has

 # ***

 entry_relation = get_best_relation(entry_linear, entry_exponential, entry_root)

 radiator_relation = get_best_relation(radiator_linear, radiator_exponential, radiator_root)

 outdoor_relation = get_best_relation(outdoor_linear, outdoor_exponential, outdoor_root)

 # ***

 # Output Matrix

 # ***

 if (

 entry_linear + entry_exponential + entry_root != 0 and

 radiator_linear + radiator_exponential + radiator_root != 0 and

 outdoor_linear + outdoor_exponential + outdoor_root != 0

):

 return entry_relation + radiator_relation + outdoor_relation + [1]

 else:

 return entry_relation + radiator_relation + outdoor_relation + [0]

 def process_measurement(self):

 for state in range(0, 2**self.number_of_states):

 relation = self.get_relation(state)

 self.relation_matrix[state] = relation

 def get_points_relation(self, target_state, target_temperature, relation_power):

58

 # ***

 # Set Variables

 # ***

 total = 0

 average_points = 0

 offset = 0

 items_offset = 0

 items = 0

 points = 0

 points_meas = 0

 # ***

 # Calculate Offset value

 # ***

 for k in range(0, len(self.measurements) - 1):

 if self.get_state(self.measurements[k]) == target_state:

 if abs(self.measurements[k][8]) <= 0.0001:

 offset += self.measurements[k][target_temperature] - self.measurements[k + 1][4]

 items_offset += 1

 if items_offset > 0:

 offset_average = offset / items_offset

 else:

 offset_average = 0

 # ***

 # Average of normalization of all the measurements

 # ***

 for k in range(0, len(self.measurements)):

 if self.get_state(self.measurements[k]) == target_state:

59

 if abs(self.measurements[k][8]) > 0.0001:

 if (self.measurements[k][target_temperature] - self.measurements[k + 1][4] -

offset_average) > 0:

 temp_var = abs(self.measurements[k][target_temperature] -

 self.measurements[k + 1][4] - offset_average)

 total += self.measurements[k][8] / (temp_var ** relation_power)

 items += 1

 elif (self.measurements[k][target_temperature] - self.measurements[k + 1][4] -

offset_average) < 0:

 temp_var = abs(self.measurements[k][target_temperature] -

 self.measurements[k + 1][4] - offset_average)

 total += (self.measurements[k][8] / (-(temp_var ** relation_power)))

 items += 1

 if items > 0:

 average = total / items

 # ***

 # Check how Close Measurement is to the Average

 # ***

 for k in range(0, len(self.measurements)):

 if self.get_state(self.measurements[k]) == target_state:

 if abs(self.measurements[k][8]) > 0.0001:

 if (self.measurements[k][target_temperature] - self.measurements[k + 1][4] -

offset_average) != 0:

 temp_var = abs(self.measurements[k][target_temperature] -

 self.measurements[k + 1][4] - offset_average)

 point_corrected = (self.measurements[k][8]) / (temp_var ** relation_power)

 points_meas = (1 - abs((point_corrected - average) / 2)) * 100

 if points_meas < 0:

 points_meas = 0

60

 points += points_meas

 points_meas = 0

 average_points = points / items

 # ***

 # Output Value

 # ***

 return [average_points, average, offset_average]

 else:

 # ***

 # Output Value no Items available

 # ***

 return [0, 0, offset_average]

 def get_state(self, measurement):

 state = 0

 for m in range(0, self.number_of_states):

 if measurement[m] == 1:

 state += 2 ** m

 return state

 def find_heating_time(self, initial_values, room_goal_temp):

 heating_time = 0

 state = self.get_state(initial_values)

 if self.relation_matrix[state][9] == 1:

 for temp in [float(j) / 1000 for j in range(int(initial_values[4] * 1000), int(1000 *

room_goal_temp), 1)]:

 total_heating_speed = 0

 total_heating_speed += self.get_heating_speed(initial_values, temp, 0)

61

 total_heating_speed += self.get_heating_speed(initial_values, temp, 1)

 total_heating_speed += self.get_heating_speed(initial_values, temp, 2)

 if total_heating_speed != 0:

 heating_time += ((room_goal_temp - temp)/total_heating_speed) * 0.001

 else:

 heating_time = 0

 return heating_time

 else:

 return -1

 def get_heating_speed(self, measurement, current_temp, type):

 heating_speed = 0

 state = self.get_state(measurement)

 if type == 0:

 target_temp = 6

 elif type == 1:

 target_temp = 5

 else:

 target_temp = 7

 value = measurement[target_temp] - current_temp

 if self.relation_matrix[state][type * 3] == 0:

 heating_speed += (value - self.relation_matrix[state][type * 3 + 2]) * \

 self.relation_matrix[state][type * 3 + 1]

 elif self.relation_matrix[state][type * 3] == 1:

 if value - self.relation_matrix[state][type * 3 + 2] > 0:

 heating_speed += (value - self.relation_matrix[state][type * 3 + 2])**2 * \

 self.relation_matrix[state][type * 3 + 1]

62

 else:

 heating_speed -= (value - self.relation_matrix[state][type * 3 + 2])**2 * \

 self.relation_matrix[state][type * 3 + 1]

 else:

 if value - self.relation_matrix[state][type * 3 + 2] > 0:

 heating_speed += abs(value - self.relation_matrix[state][type * 3 + 2])**.5 * \

 self.relation_matrix[state][type * 3 + 1]

 else:

 heating_speed -= -abs(value - self.relation_matrix[state][type * 3 + 2])**.5 * \

 self.relation_matrix[state][type * 3 + 1]

 return heating_speed

 def getEventTrigger(self):

 return [

 ChangedEventTrigger("TEMP_ENTRY", None, None),

 ChangedEventTrigger("TEMP_RADIATOR", None, None),

 ChangedEventTrigger("TEMP_OUTDOOR", None, None),

 ChangedEventTrigger("DOOR_OPEN", None, None),

 ChangedEventTrigger("SHUTTER_OPEN", None, None),

 ChangedEventTrigger("INCOMING_SUNLIGHT", None, None),

 ChangedEventTrigger("PEOPLE_IN_ROOM", None, None),

 TimerTrigger("*/5 * * * * ?")

]

 def execute(self, event):

 if event.triggerType == TriggerType.TIMER:

 self.goal_temp = get_goal_temperature()

63

 self.goal_time = get_goal_time()

 time_difference = ((60 * 24) + (self.goal_time - (time.gmtime().tm_hour * 60 +

time.gmtime().tm_min + 60))) % (60 * 24)

 # When goal temperature is 0.5 degrees higher than current room temperature

 if self.goal_temp - get_room_temperature() > 0.5:

 self.state_room = [get_door_open(), get_shutter_open(), get_people_in_room(),

get_incoming_sunlight(), get_room_temperature(), 25, get_entry_temperature(),

get_outdoor_temperature()]

 self.time_needed = self.find_heating_time(self.state_room, self.goal_temp)

 # Check if the time needed is realistic

 if 30 <= self.time_needed <= 240:

 # Check if the system should already start with heating

 if time_difference <= self.time_needed / 60:

 # Starting is needed

 set_radiator_temperature(25)

 self.previous_goal_temp = self.goal_temp

 self.logger.info("Heating...")

 self.logger.info("Got:" + str(time_difference - self.time_needed / 60) + " Minutes")

 else:

 # Still got time for heating

 self.logger.info("Passive...")

 self.logger.info("Still got: " + str(time_difference - self.time_needed / 60) + "minutes")

 self.logger.info("Time Needed to heat from " + str(get_room_temperature()) + " to " +

str(self.goal_temp) + " is " + str(self.time_needed) + " seconds")

 set_radiator_temperature(self.previous_goal_temp)

 # If time needed is not realistic use default value of 30 minutes

 else:

 # Check if the system should already start with heating

 if time_difference < 30:

64

 # Starting is needed

 set_radiator_temperature(25)

 self.logger.info("Heating...")

 self.previous_goal_temp = self.goal_temp

 self.logger.info("Got:" + str(time_difference) + " Minutes")

 else:

 # Still got time for heating

 self.logger.info("Passive...")

 self.logger.info("Still Got:" + str(time_difference - 30) + " Minutes")

 set_radiator_temperature(self.previous_goal_temp)

 # When goal temperature is 0.5 degrees lower than current room temperature

 elif self.goal_temp - get_room_temperature() < -0.5:

 self.state_room = [get_door_open(), get_shutter_open(), get_people_in_room(),

get_incoming_sunlight(), get_room_temperature(), 14, get_entry_temperature(),

get_outdoor_temperature()]

 self.time_needed = abs(self.find_heating_time(self.state_room, self.goal_temp))

 if 30 <= self.time_needed <= 240:

 if time_difference <= self.time_needed / 60:

 set_radiator_temperature(14)

 self.logger.info("Cooling doing...")

 self.previous_goal_temp = self.goal_temp

 self.logger.info("Got:" + str(time_difference - self.time_needed / 60) + " Minutes")

 else:

 self.logger.info("Passive...")

 self.logger.info("Still got: " + str(time_difference - self.time_needed / 60) + "minutes")

 self.logger.info("Time Needed to cool down from " + str(get_room_temperature()) + "

to " + str(self.goal_temp) + " is " + str(self.time_needed) + " seconds")

 set_radiator_temperature(self.previous_goal_temp)

 else:

65

 if time_difference < 30:

 set_radiator_temperature(14)

 self.logger.info("Cooling Down...")

 self.previous_goal_temp = self.goal_temp

 self.logger.info("Got:" + str(time_difference) + "minutes")

 else:

 self.logger.info("Passive...")

 self.logger.info("Still Got:" + str(time_difference - 30) + "minutes")

 set_radiator_temperature(self.previous_goal_temp)

 # When goal temperature is reached

 else:

 self.logger.info("Passive...")

 self.logger.info("Goal Temperature is reached")

 self.logger.info("Room Temp: " + str(get_room_temperature()))

 self.logger.info("Goal Temp: " + str(self.goal_temp))

 set_radiator_temperature(self.goal_temp)

 #self.logger.info(str(self.time_needed))

 #self.logger.info(str(time.gmtime().tm_year))

 #self.logger.info(str(self.goal_time))

 else:

 self.logger.info("Event trigger {}", event)

 self.logger.info("Type of event is {} {}", event.triggerType, type(event.triggerType))

 self.logger.info("Is it a change? {}", event.triggerType == TriggerType.CHANGE)

 self.room_temp = get_room_temperature()

 self.entry_temp = get_entry_temperature()

 self.outdoor_temp = get_outdoor_temperature()

66

 self.radiator_temp = get_radiator_temperature()

 self.door_open = get_door_open()

 self.shutter_open = get_shutter_open()

 self.people_in_room = get_people_in_room()

 self.incoming_sunlight = get_incoming_sunlight()

 self.save_measurement(time.clock() - self.time_last_meas)

 self.process_measurement()

 self.time_last_meas = time.clock()

 self.logger.info(str(len(self.measurements)))

def getRules():

 return RuleSet([

 SelfLearningSystem()

])

def get_room_temperature():

 item = ItemRegistry.getItem("TEMPERATURE").state

 if str(item) != "Uninitialized":

 return float(str(item))

 else:

 return 0

def get_goal_temperature():

 item = ItemRegistry.getItem("TEMP_GOAL").state

67

 if str(item) != "Uninitialized":

 return float(str(item))

 else:

 return 0

def get_goal_time():

 time_min = 0

 item = ItemRegistry.getItem("TIME_GOAL_HOUR").state

 if str(item) != "Uninitialized":

 time_min = int(str(item)) * 60

 item = ItemRegistry.getItem("TIME_GOAL_MIN").state

 if str(item) != "Uninitialized":

 time_min += int(str(item))

 return time_min

def get_entry_temperature():

 item = ItemRegistry.getItem("TEMP_ENTRY").state

 if str(item) != "Uninitialized":

 return float(str(item))

 else:

 return 0

def get_radiator_temperature():

68

 item = ItemRegistry.getItem("TEMP_RADIATOR").state

 if str(item) != "Uninitialized":

 return float(str(item))

 else:

 return 0

def set_radiator_temperature(temperature):

 oh.postUpdate("TEMP_RADIATOR", str(temperature))

def get_outdoor_temperature():

 item = ItemRegistry.getItem("TEMP_OUTDOOR").state

 if str(item) != "Uninitialized":

 return float(str(item))

 else:

 return 0

def get_door_open():

 item = ItemRegistry.getItem("DOOR_OPEN").state

 if str(item) != "Uninitialized":

 if item == OnOffType.ON:

 return 1

 else:

 return 0

 else:

69

 return 0

def get_shutter_open():

 item = ItemRegistry.getItem("SHUTTER_OPEN").state

 if str(item) != "Uninitialized":

 if item == OnOffType.ON:

 return 1

 else:

 return 0

 else:

 return 0

def get_incoming_sunlight():

 item = ItemRegistry.getItem("INCOMING_SUNLIGHT").state

 if str(item) != "Uninitialized":

 if item == OnOffType.ON:

 return 1

 else:

 return 0

 else:

 return 0

def get_people_in_room():

 item = ItemRegistry.getItem("PEOPLE_IN_ROOM").state

70

 if str(item) != "Uninitialized":

 if item == OnOffType.ON:

 return 1

 else:

 return 0

 else:

 return 0

def get_best_relation(relation_1, relation_2, relation_3):

 if relation_1[0] > relation_2[0]:

 if relation_1[0] > relation_3[0]:

 return [relation_1[0], relation_1[1], relation_1[2]]

 else:

 return [relation_3[0], relation_3[1], relation_3[2]]

 elif relation_2[0] > relation_3[0]:

 return [relation_2[0], relation_2[1], relation_2[2]]

 else:

 return [relation_3[0], relation_3[1], relation_3[2]]

Sources
http://lpsa.swarthmore.edu/Systems/Thermal/SysThermalModel.html

https://github.com/openhab/openhab/wiki

http://lpsa.swarthmore.edu/Systems/Thermal/SysThermalModel.html
https://github.com/openhab/openhab/wiki

