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Abstract 

Constant misinterpretation of the p-value and the absence of an assessment of the underlying 

assumptions of statistical models have led to alarmingly low replicability in, among others, the 

fields of psychology and ecology. A suggestion by Zuur, Ieno and Elphick (2010) was that any 

student who had a standard statistical education could make inferences about the underlying 

assumptions with the help of good visualizations. In this research we have focused on the 

assumptions of normality of residuals and homogeneity of variance. An experiment was 

conducted where participants were asked to assess normality and homogeneity of variance with 

the help of 100 histograms or 100 conditional boxplots, respectively. The participants received 

feedback after each trial. The sample consisted of 33 Dutch and German students between the 

age of 19 and 32, who had their statistical education at the University of Twente. The results did 

not meet the expectations. The objective measures which the participants should have extracted 

from the visualizations did not influence the participants’ response and there was great variation 

in how the individual stimuli influenced the response. Also, the feedback did not elicit a learning 

effect. These findings are discussed with respect to the design of the stimuli, the experiment and 

the education of the participants. It is concluded that it is unlikely that both plots did not convey 

any meaningful information and an advice for fine-tuning the experiment is given. The 

possibility that the current practice in education caused the low performance is proposed together 

with possible alternatives. 

Keywords: Visualizations, Graphical Perception, Expertise, Statistics, Visual Exploratory 

Data Analysis 
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Experimental evaluation of students’ performance in judging statistical visualizations 

Zuur, Ieno and Elphick (2010) noticed that almost half of their ecology students 

frequently forgot to check the underlying assumptions of the statistical models they used in their 

analyses. According to the researchers not every one of these violations has a severe effect on the 

respective conclusion, yet sometimes they lead to type I and type II errors, thus, rejection of a 

true null hypothesis or non-rejection of a false null hypothesis. This means that statistically 

significant differences are overlooked or, the other way around, perceived to exist where they do 

not. This problem dates not exclusive to the field of ecology. As Leys and Schumann (2010) have 

shown, psychologists often fail to check the assumptions of the model they use whereby they 

endanger the validity of their inferences (Sawilowsky, 1990). One can imagine that such errors 

may lead to false recommendations regarding the choice for appropriate ecological or 

psychological interventions, which may carry severe consequences in some cases. 

To address this problem, Zuur et al. (2010) proposed more frequent use of graphs and 

plots for data exploration, or exploratory data analysis (EDA). EDA is a method primarily 

disseminated by John W. Tukey (1977). EDA was intended to be applied to check the data at 

hand and get a feeling for what they mean before making probabilistic inferences. It can also be 

used to visualize data effectively and make meaningful inferences without the need for statistical 

significance, even when the dataset is small (Zuur et al., 2010). On top of that it becomes 

necessary to delve deeper into the data, which allows for better understanding of the observations 

(Tufte, 2007). This may make researchers more aware of what kind of data they gathered, what 

the meaning behind their data is and refrains from reducing rich data to a single, abstract value 

like the p-value in contemporary NHST-analyses for assumptions. 
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The visualization of data holds many advantages, such as the possibility to present a 

whole dataset to the reader or the display of peculiar or expected differences in the data. It 

enables authors to let their findings strike the eye and be relatively easy to comprehend 

(Cleveland, 1984b). Contemporary researchers suggested conditional boxplots for checking for 

homoscedasticity and histograms for  the normality of the observations (Cleveland, 1984a). 

A combination of the research done by Cleveland and McGill, which will be explained 

later, and the overview provided by Zuur et al. (2010) led to the hypothesis that students with a 

standard education in statistics can, without further instruction, infer about normality and 

homogeneity of variance by looking at visualizations. 
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Background 

The main cause for incorrect application of NHST-procedures is the negation of the 

underlying assumptions. Cohen (1990, 1994) stated that often times, psychologists wanted to 

force an NHST-model on a research question or hypothesis even though they were not fit for 

their data, which they failed to see because they did not check the underlying assumptions of the 

employed model. 

Of course, NHST has its correct applications and interpretations, the main problem is that 

it is often not checked whether it is applicable to the data at hand, rendering psychologists unable 

to connect their question with a suitable method. They would rather look for results in the 

outcomes of an Null Hypothesis Significance Testing (NHST)-analysis they were not supposed 

to apply and try many different tests until one of them fits (Cohen, 1990; Wilkinson, 1999). This 

also led to a pool of non-replicable research with badly reported results (Ioannidis, 2005). 

In 1999, a committee was put together consisting of the most renowned experts on 

statistics by the American Psychological Association. Even though the initial goal of the Task 

Force on Statistical Significance (TFSI) was to discuss the current role of, and alternatives for, 

NHST, a report was published beforehand which also discussed a great deal of aspects relevant 

to all contemporary data-analysis practices (Wilkinson, 1999). Already in 1999 all experts agreed 

that, to assure the underlying assumptions of the chosen method were met, it was best not to rely 

on NHST procedures and rather trust your own eyes, thus, employ graphical analysis of 

assumptions. They stated that “graphical inspection of data offers an excellent possibility for 

detecting serious compromises to data integrity.” (Wilkinson, 1999, p. 597) In this article the 

author also gives a practical example of why that is. 
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A popular method amongst social scientists is the analysis of variance (ANOVA) (Aiken 

et al., 1990). ANOVA is a statistical method with which we can analyze measurements with 

respect to different types of effects. Also, we are able to estimate the magnitude of said effects 

(Scheffé, 1959). It needs to be assessed beforehand, though, if the ANOVA is applicable for the 

present data. A multitude of assumptions needs to be assessed to check for the applicability. 

These assumptions are namely the homogeneity of variance and normality of residuals. Also the 

data have to be checked for outliers, to prevent what Zuur et al. called “rubbish in, rubbish out” 

(2010, p. 1), but we decided to leave outliers out of this study and concentrate on the other two 

concepts. 

These assumptions are necessary to be able to make sure that the robustness of the 

ANOVA is not stressed too much. Normality means in this context that a dependent variable is 

normally distributed for each group in the respective study. The ANOVA is quite robust to 

violations of normality. Homogeneity of variance, or homoscedasticity, is a state that shows that 

the variance of the outcome variable is the same in every experimental group. Taken together, we 

can make sure that we can compare the examined groups because every group has the same 

differences and similarities in itself as every other group. 

NHST-procedures for assessing normality and homogeneity of variance were proposed 

by D’Agostino (1971) and Levene (1960). Whilst NHST has proven very robust for statistical 

tests for models, Wilkinson (Wilkinson, 1999) and the TFSI concluded that there were three 

detriments in using a test for assumptions. The tests are “[…] impractically sensitive […]; […] 

[they] fail to detect distributional irregularities in the residuals” and will, with bigger sample 

sizes, “[…] reject innocuous assumptions.” (Wilkinson, 1999, p. 598) 
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Another problem of the current practice is that there is almost no attention on Exploratory 

Data Analysis and Initial Data Analysis (Chatfield, 1985; Hartwig & Dearing, 1979). These two 

procedures have proven valuable for “[…] getting a ‘feel’ for them [the data]” (Chatfield, 1985, 

p. 214) and gather enough information to be able to conduct a more sophisticated analysis with 

mathematical tools. 

It can be argued that there is no better instrument for interpreting, for example, the skew 

of a histogram or the information depicted by boxplots, than the human eye and brain 

(Wilkinson, 2012; Zuur et al., 2010). This is supported by findings by Morgan, Watts and McKee 

(1983), who found that visual acuity is better for static images, which graphs ultimately are, than 

dynamic images. Also, as stated by Gestalt-psychologists, the perceptual system will always 

organize visual information as simple as possible, when the condition, in this study the design of 

the visualization, allows for that (Palmer, 2003). 

According to Cleveland and McGill (1984), ten perceptual tasks are done by humans to 

encode statistical graphics. Humans attend to the relative position on aligned and non-aligned 

scales, distinguish length, direction and angle of lines, can judge the area or volume of, for 

example, a circle or a box and can also derive information from judging curvature and shading of 

an object in a graph. All these elements help the readers “[…] extract the values of real variables 

represented on most graphs” (Cleveland & McGill, 1984, p. 532). This happens in a matter of 

one second in which the readers also judge the strength and connection of the results based on 

position, length and area of the graphical elements and combine it with their background 

knowledge of statistical analyses (Cleveland, McGill, & McGill, 1988). Usually, three inferences 

are made from data visualizations. These are, namely, comparative estimation, discrimination 
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and measurement. This means, they take a look at differences, similarities and extract real values 

by reading the scales, respectively (Cleveland et al., 1988). 

When looking at the way humans derive information from visualizations, as according to 

Cleveland and McGill (1984), we hypothesized that there must be a degree of curvature or angle 

of lines, from which on out humans cannot infer normality from histograms anymore. We also 

hypothesized that there is a cut-off for area and length which render humans unable to infer 

homogeneity of variance from conditional boxplots. These properties are represented by the 

objective measures of skew (v) and sample size (N) and scale, group size and σ, respectively. 

Thus, what is needed to successfully infer meaning from statistical visualizations is the 

capacity to recognize patterns and match them to past experiences, or objective measures. This 

was referred to by Curby and Gauthier (2010) as perceptual expertise. According to their review, 

everyone possesses a certain degree of perceptual expertise in one or more fields. Therefore, 

students of psychology should per se possess perceptual expertise in interpreting statistical 

visualizations. There exist several theories to explain the phenomenon of expertise, the two most 

popular being the chunk-theory by Chase and Simon (1973), which has been generated from 

empirical evidence, and the template theory by Gobet and Simon (1996), which was found to 

better explain the empirical evidence (Gobet, 1998). Even though these researches have been 

carried out on chess players, their findings are valid for other fields as well, because the 

exploration of the cognitive aspects of chess have proven to have great external validity (Gobet, 

1998). 

According to the template theory, experts not only divide the information into chunks to 

fit more information into the limited span of the short-term memory but also rely on learned 

structures which are retrieved from the long-term memory. There can be an overwhelming 
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amount of information contained in a visualization of data and journals frequently use 

visualizations, which should offer sufficient opportunity for young psychologists to have 

practiced the interpretation of data visualizations (Cleveland, 1984b). If, however, the initial 

performance is insufficient, there should at least be a learning effect through the repetition of the 

task, which is one way to reach expertise according to the theory of deliberate practice (Ericsson 

& Charness, 1994). 

Giving feedback can greatly enhance the learning effect of a task when it is given 

immediately after the task is completed. Fyfe and Rittle-Johnson (2016) conducted a study in 

which they let school children perform mathematical operations on a computer. The computer 

had given either immediate or summarizing feedback or none at all. The immediate feedback had 

proven the most efficient one. Already one day later, the children who had little prior knowledge 

had greatly improved their performance when they were given immediate feedback the day 

before. 

In summary, it appears that graphical methods have loads of advantages for assessing the 

assumptions for an ANOVA or linear regression, when compared to NHST-procedures like the 

D’Agostino-test for normality or the Levene-test for homogeneity of variance. The use of these 

tests is highly controversial for the testing of assumptions and the development in research on 

statistical methods clearly advocates and praises the use of graphics (Bowers, 2005; Gelman, 

Pasarica, & Dodhia, 2002; Gelman, 2011; Wilkinson, 1999). Having a look at the most 

prominent literature on statistical graphs, it appears that conditional boxplots are suited best for 

assessing homogeneity of variance and histograms are preferred for assessing the normality 

(Cleveland, 1984a; Zuur et al., 2010). 
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Histograms feature all elements necessary for the assessment of normality. There is a 

scale on the y-axis that helps extract real values and the horizontal alignment of the 

measurements makes it possible to align the scale with the high points of the bars. The high 

points then form a curve of some sort. This curve is straightforwardly comparable to the optimal 

bell from the Gaussian normal distribution and thereby an inference can be made of the data at 

hand. To also judge the sample size, which greatly influences to what degree the data can be 

normally distributed; the bars can be transformed into dot-bars wherein every dot depicts, for 

example, ten participants. 

Boxplots feature all elements necessary for the assessment of homogeneity of variance. 

There also is a scale on the y-axis to extract real values and several groups can be depicted on 

one panel. The judgment of the variance can then be made by comparison of the several 

boxplots. The variance of a group can be assessed by looking at the area the boxplot fills, the 

interquartile ranges and the respective whiskers, the length and end-points of the whiskers and 

the area that the black median-bar fills. To make an inference about the homogeneity of variance 

in the shown sample, the last task is to compare each boxplot and look for differences and 

similarities. 

The following method has been applied to test if psychology students outperform NHST-

procedures for assessing underlying assumptions by judging histograms and conditional boxplots 

on the aforementioned criteria. 
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Method 

Participants 

Thirty-three people (17 male) participated in the study. All of them were students of 

Psychology at the University of Twente and were sampled by directly approaching people we 

knew from our study or the years above and below us, by making use of the SONA-systems 

subject pool or by reacting on flyers which were distributed in the building of the faculty of 

behavioral sciences. Nine of them were of Dutch origin, 24 of German origin. Their ages ranged 

from 19 to 32 years with a mean of 23 (M = 22.781, one missing value). All participants gave 

informed consent. This study has received ethical approval by the Ethics Committee for 

Behavioral and Management Sciences at the University of Twente (Request No.: 16073). 

Materials 

For the conduction of the experiment, a computer and two sheets of paper were neces-

sary. The computer needed Python 2.7 and the PyGame-module for the experiment to run on it. 

The experiment was programmed by the researchers. The used laptops had a screen resolution of 

1366x768 pixels or 1920x1080 pixels on a 15.6” screen. Datasets were simulated with R Version 

3.3.0 (Murdoch, 2016) to create the necessary stimuli. 

The first one-hundred datasets were created by drawing from the Ex-Gaussian 

distribution, a type of exponential distribution, which is prominently used to explain the shape of 

reaction time distributions. The 100 histogram-stimuli created differed in how much they were 

affected by the Gaussian component (large sigma (σ), little skew) in relation to the exponential 

component (small lambda (λ)). To get a clearer picture, consult the table with the parameters of 

these 100 datasets in Table 1. An example stimulus can be seen in Figure 7. 



STUDENTS’ PERFORMANCE JUDGING STATISTICAL VISUALIZATIONS 14 

The second one-hundred datasets were created by drawing samples from a linear model 

with three groups with fixed means. Sample size was different for each dataset but in even steps. 

Residuals were set to be normally distributed, yet the standard deviation varies with the mean. A 

table with the parameters of these 100 datasets can be found in Table 2. An example of the 

boxplot-stimuli is shown in Figure 8. 

Additionally, to support our cover story, see below under “procedure”, the program kept 

track of scores. A correct answer was rewarded with one extra point, and, after a streak of five 

correct answers this bonus was set to two points per correct answer. A streak of fifteen resulted in 

getting three points per correct answer. 

The two sheets of paper contained some information on the studies behind the plots as to 

give participants something to relate to, and instructions on how to answer during the 

experiment. The content of the instructional sheets can be found in Appendix 1. 

Procedure 

Instruction 

The participants were told they were going to play a game to prevent frustration. After 

conduction of the experiment the participants were disclosed about the true nature of the study. A 

cover story was invented as to create motivation and thereby prevent frustration when doing the 

task. They had been told at recruiting that the study at hand was about game-based learning and 

that the effect of the statistical game was to be researched. For the experiment it was sought to 

choose a quiet place. These were found in the library or the laboratory for behavioral sciences on 

campus grounds, or at home when neither of the aforementioned locations was available. 

On arrival each participant was greeted and explained the task verbally. A sheet about the 

procedure of the experiment was not handed out. Participants were told that the ideal displayed 
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on the left of the screen was only for giving them an idea and not for one-to-one comparison. The 

two instruction sheets were laid aside a laptop where the experiment could be run. No 

instructions were given during the experiment as it was assumed that the knowledge of the 

constructs was still available, at least unconsciously. 

Experiment 

The laptop ran the program. At first, the researcher had to type in information on the 

participant number, age, gender, nationality, year in the study of psychology and, optionally, the 

participants were allowed to enter their last known grade in statistics. The participants sat in front 

of the laptop and were first presented with the rules for the game, as mentioned above. Then they 

were asked to read the first instruction sheet (Appendix 1).  

One half of the datasets was simulated to come from a questionnaire with several 5-point-

Likert-scale questions. The other one contained information on people who rated their own 

driving style (“Risky”, “Safer” and “Extremely cautious”) and then gave information on how 

close they approach someone before decelerating or passing in meter. From the first dataset, 100 

dot-histograms have been made, showing the total score on the questionnaire on the x-axis and 

the frequency of these scores on the y-axis. The second dataset has been used to create 100 

boxplots with jittered raw data. The jitters display data points. The x-axis featured the three 

groups and the y-axis depicted how close they approach another car on a scale from 0 to 100 

meters. 

Following that they were asked to do five practice trials where they were asked to gauge 

whether the histogram showed a normally distributed sample. This was followed by 100 histo-

grams after another to be evaluated. As a help, all participants were simultaneously shown an 
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ideal histogram chosen by the outcomes of a D’Agostino test for normality. The ideal can be 

found in Figure 9. 

The participants were shown a leaderboard with fictional scores where they always were 

placed in the middle, again, to prevent frustration. They were asked to read the second 

instruction sheet. Five practice trials had to be done then where the participants were asked to 

gauge whether the boxplots depicted a homogenous variance in the sample. One-hundred 

boxplots had to be evaluated in the actual experiment. An ideal conditional boxplot was 

provided, which was chosen by looking at the outcomes of a Levene’s test of homogeneity of 

variance. This ideal can be found in Figure 10. After completion, another fictional leaderboard 

was shown. 

Debriefing 

The participants finished the experiment after the second leaderboard had been shown. 

They were thanked for their participation and were disclosed the true nature of the study, namely 

the pure measurement of how people evaluate these plots. If the participants were signed up for 

the study via SONA-systems, they received their points, otherwise no rewards were offered. 

Design 

This study employed a within-subject experimental design. Manipulation happened by 

showing the participants 100 different stimuli for the assumption of normality and 100 different 

stimuli for the assumption of homogeneity of variance. It was recorded what participants 

considered a histogram showing a sample from a normal distribution and what they considered a 

boxplot showing homogeneity of variance. After each stimulus the participants received 

immediate feedback. This feedback was computed by comparing the judgment of the participant 
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with the significance (Yes / No) of the D’Agostino test for normality and, respectively, the 

significance of the Levene test for homogeneity of variance. 

Data Analysis 

An initial exploratory data analysis was conducted before a model was constructed. Bar 

charts were made per participant to compare correct and incorrect responses and see if the ratio is 

above guessing level, followed by scatterplots which show the rejection or acceptance of an 

assumption in relation to the objective measures of the skew and sample size and the amount of 

scale relative to σ, per simulated dataset, respectively. The same graphic has been made for the 

results of the Shapiro-Wilk-test for normality and the Levene-test for homogeneity of variance. A 

line-plot for the performance in relation to the number of completed trials was used to assess 

whether an improvement took place in the course of the experiment. 

A generalized linear mixed-effects model (logistic regression) was employed to find out 

if the objective measures predicted the participants’ answers, or, practically speaking, if the 

participants used the objective measures to make their judgment. An Intercept for the stimuli was 

computed to check for effects of the stimuli themselves, without the objective criteria. The 

learning effect was deducted from an interaction effect. The values taken into consideration were 

fixed and random effects as well as 95% confidence intervals which were computed to 

probabilities (µ) of rejection of either assumption or to linear predictors (η), respectively. 

If our assumptions were right, the probability to reject the assumption becomes bigger as 

skew and sample size or scale and group size increase. 



STUDENTS’ PERFORMANCE JUDGING STATISTICAL VISUALIZATIONS 18 

Results 

First we will explore the data visually and then we will report the results of the logistic 

regression. We start with the results on normality and continue with the results on homogeneity 

of variance in each of the two parts. 

Exploratory Data Analysis 

Normality 

In Figure 1 the significance of the Shapiro-Wilk test for normality was plotted on a graph 

in which the x-axis represents the skew in the sample and the y-axis represents the sample size. 

We can see very clearly that with increasing skew the probability to reject normality increases. 

The cut-off lies at a skew of about 0.5 (v = 0.5), the sample size plays only a small roll in 

predicting the response of the test. 

 

Figure 1 - Significances of the Shapiro-Wilk test for normality in the simulated datasets 
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In Figure 2 we can see the same graph with the responses of our participants. 

In general, the responses of our participants gave an unclear picture of what influenced 

their decision for rejection or acceptance. There was no common pattern in how the participants 

responded. For example, the proportion of rejection and acceptance differed considerably 

between the participants 2 and 21 on the one, and participants 14 and 33 on the other hand, to 

name some extreme cases. At times, samples with a skew of 0 were rejected and sometimes 

samples with a skew of more than 1 were accepted. It became apparent that the participants did 

not base their judgments on objective measures. 

 

Figure 2 - The responses of our participants on normality 
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Homogeneity of Variance 

In Figure 3 we can see the significances (Yes / No) of the Levene test for homogeneity of 

variance with respect to the sample size on the y-axis and the scale on the x-axis. The size of the 

dots represents the value of σ. 

It can be observed that the sample size plays a more significant role than it did for 

normality. Most of the accepted assumptions lie within an area of a sample size of more than 50, 

but in the area of smaller sample sizes the significance of the scale and σ can be observed. A σ 

 

Figure 3 – Significances of the Levene test for homogeneity of variance on the simulated datasets 

 



STUDENTS’ PERFORMANCE JUDGING STATISTICAL VISUALIZATIONS 21 

smaller than 3 and a scale of at least 0.5 facilitate the acceptance of the assumption (σ < 3, s ≥ 

0.5). From a scale value of 0.6 upwards the test generally accepts the assumption for small and 

average values of σ (σ ≤ 3, s > 0.6). When σ becomes bigger the value of scale needs to be bigger 

than 0.75 to let the test accept the assumption (σ > 3, s ≥ 0.75). All in all, each measure appears 

to play a significant role in influencing the response of the test. If the scale is small, but sample 

size big and σ small, the test more easily accepts the assumption. The same applies for a big 

scale even though the sample size is small and σ is big. Σ, though, appears to have the smallest 

influence as even a small value fails to influence the decision of the test for very small sample 

sizes and small scales. 

 

Figure 4 - Responses of our participants on homogeneity of variance 
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Here again, the participants’ responses are widespread. Big and small scales alike were 

sometimes accepted and sometimes rejected; even very small sample sizes with small scales and 

large σ were accepted by most of the participants. The differences become most apparent when 

we compare, for example, participants 1 and 7, who tended to reject big sample sizes with small 

scales and participants 2 and 13 who did it vice versa. Altogether, none of the patterns matched 

the pattern of the Levene test. It became clear that we could not find any system of judgment or a 

criterion on which the participants’ based their judgments. 

Logistic Regression 

Normality 

In Table 1 we can see the fixed effects for skew and sample size and the interaction effect 

of them on the participants’ judgments of the histograms. In the case of the intercept, where the 

objective measures do not have any influence and the probability to reject should be 50%, the 

probability to reject was logist(-0.098) = 48% (β0 (v = 0, n = 0) = 0.475). The credibility interval 

for the intercept also includes much smaller and much larger values, so we cannot say so with 

sufficient certainty (µ = 0.475, 95% CI [-0.934, 0.661]). To calculate the linear predictor we 

constructed the following regression term from the estimates. By means of this term the 

probability to reject the assumption for different values of skew and sample size can be 

computed. 

 η = -0.098 + 0.488 * x1 + (-0.007) * x2 + 0.006 * x1 * x2 

µ = e
η 

/ (1 + e
η
) = logist(η) 

With a sample size of x2 = 10 and a skew x1 = 0 the probability to reject the assumption is 

logist(-0.168) = 46%, but we cannot say so with great certainty (µ = 0.678, 95% CI [0.082, 1.7]). 

For example, if there is a skew x1 = 0 at a sample size of x2 = 50 then η = -0.350. By retransform-
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ing to the probability scale we have a probability of logist(0.350) = 41% that a participant rejects 

with these values (µ (v = 0, n = 50) = 0.413). With considerable skew x1 = 0.5 and a more 

advantageous sample size x2 = 100, the probability that the assumption will be rejected is 44% (µ 

(v = 0.5, n = 100) = 0.436). For a skew x1 = 1, the probability becomes 57%, a very marginal 

change in probability of rejection for a severe change in skewness (µ (v = 1, n = 100) = 0.571). 

The credibility intervals for the interaction effect and sample size immediately show that we can 

be sufficiently certain of this information (95% CI [-0.012, 0.000] for Sample Size, 95% CI [-

0.002, 0.014] for the interaction]). We cannot be certain about the effect of skew though (95% CI 

[-0.580, 1.650]). At least the direction of the effect of skew is reasonable. 

Table 1 

Fixed effects of skew, sample size and their interaction on participants’ judgments of the 

histograms 

Parameter Center Lower * Upper * 

Intercept -0.098 -0.934 0.661 

Skew 0.488 -0.580 1.650 

Sample size -0.007 -0.012 0.000 

Sample Size * Skew 0.006 -0.002 0.014 

*95% credibility limits 

 

Table 2 shows the random effects for skew, sample size, number of completed trials and 

an intercept for the individual stimuli. The participants differed a lot in their initial skill level 

with a standard deviation of 0.680 (95% CI [0.355, 1.074]). The large effect of skew shows that 

the participants differ largely in how much their response has been influenced by that objective 

measure. We can conclude this with sufficient certainty (95% CI [0.355, 1.074]). The participants 

did not differ at all regarding the influence that sample size or the interaction of sample size and 

skew had on their response, which is very certain (95% CI [0.000, 0.006], [0.000, 0.009]). There 

also certainly is an effect of our individual stimuli on the response of our participants (CI 95% 
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[0.737, 1.074]). Thus, our stimuli feature properties other than the objective criteria that 

influence the response. 

Table 2 

Random effects of skew, sample size and completed number of trials on participants’ judg-

ments of the histograms 

Parameter Center Lower * Upper * 

Intercept 0.680 0.355 1.074 

Skew 0.780 0.188 1.362 

Sample size 0.002 0.000 0.006 

Skew*Sample size 0.004 0.000 0.009 

Stimulus Intercept 0.891 0.737 1.074 

*95% credibility limits 

Initially, a more complex model was computed which included effect sizes for stimuli 

and the number of completed trials. This caused the model to be barely computable. After 

pruning the model by isolation of the two variables, we could observe that the number of 

completed trials had no effect whatsoever. Hence we scrapped it from the model and only 

included the effect sizes for stimuli. This result suggests that there was no learning effect elicited 

by our feedback. 

Homogeneity of Variance 

Table 3 depicts the fixed effects for scale, group size and the interaction effect of scale 

and group size on the participants’ judgments of the conditional boxplots. The same procedure 

used in the step before has been applied again but this time the assumption to be rejected or 

accepted was homogeneity of variance. The following regression term was set up for the 

computation of the linear predictor; there were no interaction effects of number of completed 

trials with neither scale, group size or scale and group size combined (95% CIs [-0.015, 0.026], 

[0.000, 0.000], [0.000, 0.000]) and no effect of the number of completed trials (95% CI [-0.023, 

0.006]). 

η = 0.828 + 0.56 * x1 + (-0.031)* x2 + 0.014 * x1 * x2 
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µ = e
η 

/ (1 + e
η
) = logist(η) 

If the scale is x1 = 0 at a group size x2 = 0 then the probability to reject the assumption 

that the data is homoscedastic is logist(0.828) = 70% (β0 (s = 0, N = 0) = 0.695). That is 

considerably above the expected value of 50%. If the scale is x1 = 0 at a group size x2 = 10 then 

the linear predictor η = 0.518 and the probability to reject the assumption that the data is 

homoscedastic is logist(0.518) = 63% (µ (s = 0, N = 10) = 0.626). With a scale x1 = 0.75 at a 

group size x2 = 40 the probability is logist(0.428) = 61% (µ (s = 0.75, N = 40) = 0.605). Even 

with considerably high values for scale x1 = 1.5 and a big group size x2 = 80, the probability does 

only differ from the guessing level by 14% and also in the wrong direction with logist(0.868) = 

70% (µ (s = 1.5, N = 80) = 0.704). Scale probably has a positive effect but, as with skew, the 

credibility interval runs very broad (CI 95% [-0.945, 2.165]). We can be quite certain of small 

effects of group size and an interaction effect of scale and group size (for N 95% CI [-0.053, -

0.010], for the interaction effect scale * N 95% CI [-0.018, 0.04]). 

Table 3 

Fixed effects of scale, group size and the scale * group size interaction on 

participants’ judgments 

Parameter Center Lower * Upper * 

Intercept 0.828 -0.293 1.918 

Scale 0.560 -0.945 2.165 

Group size -0.031 -0.053 -0.010 

Trial -0.008 -0.023 0.006 

Scale*Group size 0.014 -0.018 0.040 

Scale*Trial 0.004 -0.015 0.026 

Sigma*Trial 0.000 0.000 0.000 

Scale*Group 

size*Trial 

0.000 0.000 0.000 

*95% credibility limits 

 

Table 4 shows the random effects for scale, group size, and number of completed trials, 

an interaction effect of scale and group size and an intercept for the individual stimuli. Interac-
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tion effects of number of completed trials with scale, group size and scale and group size com-

bined are sufficiently certain to be non-existent (95% CI [0.000, 0.016], [0.000, 0.000], [0.000, 

0.000]). The participants differ systematically in their individual skill level with a standard 

deviation of 0.666, which can be said sufficiently certain (95% CI [0.123, 1.178]). There is 

variation in how much the participants were influenced by scale, with a standard deviation of 

0.746. Even considering the lower credibility limit the variation stays reasonable (95% CI 

[0.127, 1.266]). The participants did not differ in how much they were influenced by group size, 

which is very certain (95% CI [0.006, 0.025]). As with the histograms there was something to the 

individual stimuli aside from the objective criteria that influenced the response. This is indicated 

by the high standard deviation of 0.672. This also is sufficiently certain (95% CI [0.549, 0.831]). 

None of the participants were influenced by their number of completed trials, which is very 

certain (95% CI [0.000, 0.016]). All in all, there was a lot of variation in the sample, which is 

positive, but the variation in how frequently the stimuli were rejected raises concerns. 

Table 4 

Random effects of scale, group size, trial and stimulus on participants’ judg-

ments 

Parameter Center Lower * Upper * 

Intercept 0.666 0.123 1.178 

Scale 0.746 0.127 1.266 

Group size 0.015 0.006 0.025 

Trial 0.004 0.000 0.016 

Scale*Group size 0.006 0.000 0.019 

Scale*Trial 0.003 0.000 0.016 

Group size*Trial 0.000 0.000 0.000 

Scale*Group 

size*Trial 

0.000 0.000 0.000 

Stimulus intercept 0.672 0.549 0.831 

*95% credibility limits 
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Further exploration of data 

There was a high random effect on the stimulus-level. That means that our participants’ 

responses are not random, but supported by other criteria than the objective criteria. This effect 

was observed in both conditions. We compared plots with low and with high rejection rate to see 

if the substitute criteria strike the eye. For a graphic with the credibility limits and center for the 

stimuli see Figures 11 and 12 in the Appendix. In Figures 13 and 14 in the Appendix we can see 

every fifth histogram and every fifth conditional boxplot ordered by frequency of rejection, 

respectively. There is no pattern in what salient features of the histograms influence the response. 

There are graphs that look very similar of which the one was the fifteenth most rejected and the 

other one 35
th

 most rejected. The same counts for the conditional boxplots, when we compare, 

for example, the most often rejected graph with the graph that is on rank 90 or the ones on ranks 

75 and 40. Thus, there are no salient features which influenced our participants’ performance. 
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Discussion 

Current practices in statistics focus strongly on Null Hypothesis Significance Testing 

(NHST) which led to psychologists and ecologists alike blindly applying tests to their data until 

they have some reasonable result. Zuur et al. (2010) proposed the alternative that good statistical 

visualizations could substitute traditional NHST-procedures, at least for testing the assumptions 

for linear models like the analysis of variance (ANOVA) or linear regression. We have assumed 

that psychology students should have no problems when inferring the objective measures from 

the visualizations. The EDA has shown that some participants have performed averagely, but still 

their performance was as good as guessed on group level and their answer was almost not influ-

enced by the objective criteria of skew or scale and not at all affected by sample or group size. 

Also, there was no learning effect to be found for either of the constructs in the more complex 

model we used in the beginning. Even though the EDA showed some individuals performing 

averagely, all in all these are devastating results. Obviously, our participants were not able to 

infer from our plots sufficiently and there was variation in how strong each individual participant 

has been influenced by the objective measures, which indicates a heterogenic sample. We cannot 

confirm the proposition of Zuur et al. (2010) in so far that students with statistical training can, 

without further instruction, easily infer from plots. The results suggested that there were 

underlying factors for both the histogram and boxplot stimuli. There could be several reasons to 

these results. 

Firstly, this could be an instructional question. The problem could lie within the current 

focus in statistical education and research, as some participants even reported that they did not 

know what variance or normal distributions were. Normally these should have been excluded 

from the sample, but we kept them in this case because we wanted to see how well students per-
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formed with what they had learned in their program. The fact that they did not have this 

knowledge was surprising to us. Secondly, there could have been an issue with the experiment. 

Perhaps we asked wrongly, gave misleading feedback or simply expected too much from our 

participants. Lastly, our design could be flawed. There could be something wrong with the 

stimuli or the way they were presented. Maybe the stimuli failed to convey the information they 

were supposed to. 

The question arises why they would ask for further instruction on rather fundamental 

concepts of statistics. To explore this issue in more detail would exceed the limitations of this 

paper, but the fact that some participants reported not knowing what a normal distribution or a 

variance was points to shortcomings in basic statistical knowledge. Even though data visualiza-

tion has played a part in statistics for a long time, the focus for the past decades lay on teaching 

when to apply what kind of methodology (Washburne, 1927; Wilkinson, 1999). In a review of 

the book “Applied Statistics for the Behavioral Sciences” (Hinkle & Wiersma, 2003) the author 

states that the education of statistics did not provide students with the means to judge what 

procedure would be applicable and why, but to go see what gives reasonable results, or bluntly 

put, the shotgun method (Witz, 1990). Even 24 years after Witz reviewed the book by Hinkle and 

Wiersma, the discussion on a paradigm shift in the statistics for behavioral sciences is still going 

strong (Cumming, 2014). Of course, what is considered common practice corresponds with what 

is being taught. That supported a certain degree of stagnation. At the very least we can 

disconfirm our assumption that students of psychology are on expert level in judging statistical 

visualizations, which is strengthened furthermore by the fact that we had a very heterogenic sam-

ple. A university-wide study could easily provide closure on this matter. 
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The evidence for underlying factors in the stimuli that influence the participants’ 

responses is there. Not only did the participants obviously fail to extract the real values from our 

plots but there also was variation in the way different participants rated the same stimulus, which 

leaves behind some hope that at least some people are able to successfully infer from the 

visualizations. An exploration of the most and least rejected stimuli did not bear fruit, as there 

were no common criteria distinguishing a stimulus that was rejected often from one that was 

rejected less often. On the one hand, this could have been caused by there being a loss of detail 

when the visualizations were put into the program or the wrong choice of stimuli. On the other 

hand it is highly unlikely that the visualizations for both constructs have been flawed in such a 

way that they completely fail to convey any meaningful information. 

The choice for stimuli was influenced by the research of Zuur et al. (2010), followed by 

thorough literature research to confirm, which led to the conclusion that dot-charts would pose 

more useful than plain histograms and that boxplots are, indeed, a fitting choice to convey 

information about the relations between groups (Cleveland et al., 1988; Cleveland, 1984a). It 

was important to use the graphics that Zuur et al. proposed because they were responsible for the 

forthcoming of the current study (Zuur et al., 2010). The great advantage of dotplots and jitters 

on the boxplots was that they rendered us able to convey the sample size to the participants. 

Also, it could be argued that the form of dot- and boxplots makes it easy to infer from them 

(Cleveland & McGill, 1984, 1986). 

Of course, there are other means to convey this information than histograms and box-

plots. An alternative for the use of boxplots and histograms alike to compare the variance or the 

normality, respectively, can be a single or multiple beanplot(s) (Kampstra, 2008). It differs in 

such a way that it does not work with the median but with the average to create its form. Several 
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beanplots can be put in the context of a coordinate system to compare groups. Every line 

represents a data point. This carries the advantage that, when compared to the jitters used in our 

 

Figure 5 - Comparison of dot-, box- and beanplots for the same data 
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study, the eye can scan the data points in one straight line instead of having to jump between 

dots. Also the area to be judged is bigger and thereby more salient. A direct comparison of 

histograms, box- and beanplots can be seen in Figure 5. 

The golden standard for assessing normality is the quantile-quantile-plot (q-q-plot) (Kratz 

& Resnick, 1996). On a q-q-plot one can directly compare the normal distribution with the data 

that was put in. As the data points get closer to the bisection it gets likelier that the data came 

from a normal distribution. Visually, this bears many advantages but it may be a bit harder to 

understand what one is looking at without further instruction. 

Thus, there is no unity in the field of statistical visualizations on what graphs to use, 

which leaves us with but one possibility: to learn from this lesson and also try other means of 

visualization in further research on this topic. This leads us to the question whether the 

experiment may have been flawed. 

During every trial the participants were asked if the displayed data was normally 

distributed or if the variance in the displayed data showed homogenous variance. Of course, 

there are other ways to ask and maybe that would have changed the outcome of the experiment. 

We wanted to see if our participants used objective measures when inferring from the 

visualizations. Instead of asking to infer a judgment from the visualization we could have asked 

more precisely to assess the skew in the displayed data or to compare the minima and maxima of 

the boxplots. 

A way of facilitating the process of inference could also be to give an introduction to the 

participants before conducting the experiment. Thereby their statistical knowledge, which they 

once had learned, could have been enabled. That also could have elicited an effect of the given 

feedback on the performance of the participants. According to a review by Dochy, Segers and 
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Buehl (1999), activating prior knowledge is generally helpful in awakening interest and 

facilitating information processing, provided the assessment method was not flawed. Many of 

our participants asked, before or sometimes during the experiments, to receive further instruction 

which we denied to them due to our design decisions. 

A shift in education could include laying the focus on Generalized Linear Models 

(GLMs) with reporting effect sizes, confidence intervals and probabilities rather than visualiza-

tion or hypothesis testing, if the visualizations really did not convey anything meaningful 

(Cumming, 2014; Hoekstra, Johnson, & Kiers, 2012; Zuur et al., 2010). With GLMs there is no 

need for the data to be normally distributed and size of variance becomes a factor, not a criterion. 

Here, one considers upfront what kind of distribution and what variance structures one can 

expect in the data and then choose for the right procedures. We would need to teach students how 

to identify the kind of exponential distribution in their data, how to interpret the variances of 

their measurements and choose for the right link function, for example the logit-function for 

logistical regression as applied in the current study. 

If our participants were experts, they would have possessed perceptual expertise as de-

scribed by Curby and Gauthier (Curby & Gauthier, 2010) and would have been able to compare 

their picture of an ideal histogram or conditional boxplot with the visualization at hand, 

according to the template theory of expert memory (Gobet & Simon, 1996). What did happen 

was not far from pure guessing, which would explain why the objective measures had so little 

influence on the participants’ response. The evidence strongly suggests that the participants did 

not possess sufficient knowledge and expertise to successfully infer from plots. Even the big 

variation of answers on one particular stimulus adds to this evidence. If there was no knowledge 
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of what values were important to make an inference or if pure guessing took place, of course the 

answers on particular stimuli differ as well. 

For future research on this topic one could alter the graphics and questions in a control 

group study to the proposed alternatives to be able to assess whether the problem lay in the 

design. Also one could control for the power of prior instruction to performing the task. Perhaps 

then a learning effect could be elicited. It could also prove helpful to pull a sample from proven 

experts in the field to assess the power of the visualizations, as to secure that participants have 

sufficient knowledge to infer from the graphics. 

All in all we can conclude that this definitely was a pilot study from which many valuable 

lessons could be learned. The NHST procedures were quite predictable, whilst on the contrary 

the responses of our participants were not in the least. Obviously, we are nowhere near the 

outperformance of these procedures. What remains to do is to search for new graphics, test other 

ones in the same context and vice versa, or focus more on GLMs when teaching statistics. 
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Appendices 

Appendix 1 

Instruction 1 

As part of a nationwide online-survey on student satisfaction with the services provided 

by their higher educational institutions, students were asked to evaluate the library of their 

institution. This was done by means of a 10 item questionnaire. Example items included “The 

last time I asked for help, the librarians working at the library were able to answer my questions 

competently.”, and “The last online catalogus reservation I made was processed in due time.” For 

each item, the participants replied by marking their preference on a 5-point-Likert-scale (1 = 

completely unsatisfactory, 2 = partly unsatisfactory, 3 = neutral, 4 = partly satisfactory,  5 

=  completely satisfactory). The obtained answers of the participants yielded one total score per 

participant on the scale. 

The obtained data was read into an spss file. 

‘Higher educational institution’ was added as a grouping variable to distinguish samples. 

Each sample represents the students of one specific educational institution. 

As part of data exploration prior to conducting statistical analyses on the data, you take a 

look at how total scores are distributed in the samples. The following graphs show the distribu-
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tion of participant total scores. Each graph shows a specific sample, thus the total scores of the 

students of a specific educational institution on the questionnaire. 

We would like you to answer the following question per graph presented: 

 

Are the total scores normally distributed? 

 

Press <y> on the keyboard for “yes”. 

Press <n> on the keyboard for “no”. 

For your convenience, each sample graph will be accompanied by a graph of an ideal 

normal distribution. You may refer to this “ideal” as a means for comparison. 

Also, there is no need to think long before answering. Your intuitive answer will usually 

be the best one. 

There will be 5 practice trials. Upon completion of the practice trials, your score will be 

reset to 0 and the actual game begins. 

Press <ENTER> to start the practice trials. 
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Appendix 2 

Instruction 2 

A questionnaire has been sent to a randomized sample of car drivers. They were asked, 

among other questions, how they would rate their own driving style (risky, safer, extremely cau-

tious). They were also asked how close they pull up to cars that braked when driving on a high-

way before stopping or steering around (numerical in meters). 

The data has been transformed into a data file for SPSS. Per group of drivers (risky, safer, 

extremely cautious) it has been examined more closely how far they stay away from other driv-

ers when braking on a highway. 

Imagine you want to check with an Analysis of Variance-method if there is an effect of 

self-reported driving style on the space they keep between themselves and other drivers. 

In this case, you need to check whether the data fulfills the assumption of homogeneity of 

variance. You will do that with the help of the following box-jitter plots. The dots in the graphs 

represent data points. The following 100 graphs are possible representations of the aforemen-

tioned data. 

We would like you to answer the following question per graph presented: 

 

Are the variances homogenous? 

 

Press <y> on the keyboard for “yes”. 

Press <n> on the keyboard for “no”. 
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For your convenience, each sample graph will be accompanied by a graph of ideal 

homogeneity of variance. You may refer to this “ideal” as a means for comparison. 

Also, there is no need to think long before answering. Your intuitive answer will usually 

be the best one. 

There will be 5 practice trials. Upon completion of the practice trials, the actual game 

will continue (i.e. during the trials your score will be frozen). 

Press <ENTER> to start the 5 practice trials. 

Appendix 3 

R Syntax 

```{r purpose, eval = T, echo = F} 
purp.book = T 
purp.tutorial = F 
purp.debg = F 
purp.gather = T 
purp.mcmc = F #| purp.gather 
purp.future = F 
``` 
 
```{r libraries} 
library(plyr) 
library(pipeR) 
library(dplyr) 
library(tidyr) 
library(pipeR) 
library(readr) 
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library(haven) 
library(stringr) 
library(ggplot2) 
library(openxlsx) 
library(emg) 
library(knitr) 
library(moments) 
library(car) 
library(gridExtra) 
library(lme4) 
library(MCMCglmm) 
library(brms) 
library(rstanarm) 
library(bayr) 
 
rstan_options(auto_write = TRUE) 
options(mc.cores = 3) 
 
opts_knit$set(cache = T) 
``` 
```{r profile, eval = T, echo = F, message = F} 
## The following is  for running the script through knitr 
# source("~/.cran/MYLIBDIR.R") 
thisdir <- getwd() 
# datadir <- paste0(thisdir,"/Daan/") 
# figdir = paste0(thisdir, "/figures/") 
 
## chunk control 
 
opts_chunk$set(eval = purp.book, 
               echo = purp.tutorial, 
               message = purp.debg, 
               cache = !(purp.gather | purp.mcmc)) 
 
options(digits=3) 
 
opts_template$set(  
  fig.full = list(fig.width = 8, fig.height = 12, anchor = 'Figure'), 
  fig.large = list(fig.width = 8, fig.height = 8, anchor = 'Figure'),  
  fig.small = list(fig.width = 4, fig.height = 4, anchor = 'Figure'), 
  fig.wide = list(fig.width = 8, fig.height = 4, anchor = 'Figure'), 
  fig.slide = list(fig.width = 8, fig.height = 4, dpi = 96), 
  fig.half = list(fig.width = 4, fig.height = 4, dpi = 96), 
  functionality = list(eval = purp.book, echo = purp.debg), 
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  invisible = list(eval = purp.book, echo = purp.debg), 
  sim = list(eval = purp.book, echo = purp.tutorial), 
  mcmc = list(eval = purp.mcmc, echo = purp.book, message=purp.debg), 
  gather = list(eval = purp.gather, echo = purp.gather) 
) 
 
## ggplot 
theme_set(theme_minimal()) 
 
``` 
# Simulation of stimuli for normality assessment 
Data sets are created by drawing from the ex-gaussian distribution. The 
below example shows the distribution with $\mu = 100, \sigma = 2, 
\lambda = 1/20$. 
```{r} 
data_frame(x = seq(0,200,1)) %>%  
 mutate(total_score = demg(x, 100, 2, 1/20)) %>%  
 ggplot(aes(x = x, y = total_score)) + 
 geom_line() 
``` 
## Simulation 
For the first part of the experiment, 100 stimuli are drawn that vary in how 
much they are effected by the Gaussian component (large $\sigma$, little 
skew) in relation to the exponential component (small $\lambda$).  
 
```{r simulation_normal} 
set.seed(42) 
n_Stim = 100 
 
S01 <- 
 data_frame(Stimulus = str_c("S01_",1:n_Stim),  
       dist = "exgauss", 
       N   = round(runif(n_Stim, 20, 200),0), 
       mu  = 10, 
       sigma  = runif(n_Stim, 1, 4), 
       lambda = 1/runif(n_Stim, 1, 4)) 
 
# list of data frames 
 
D01 <- 
 S01 %>%  
 alply(.margins = 1, 
 .fun = function(s) data_frame(Stimulus = s$Stimulus,  
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total_score = remg(s$N, s$mu, s$sigma, s$lambda))) 
 
# all values < 50 
 
ldply(D01) %>%  
  filter(total_score > 50) %>%  
  print() 
 
``` 
The following table shows the parameters of the `r n_Stim` data sets, the 
plot shows the generated data sets (the stimuli). The parameters of the 
simulated data sets were chosen as : 
 
$\mu = 10$ 
$\sigma ~ uniform(1,4)$ 
$\lambda ~ uniform(1/4, 1)$ 
$N ~ uniform(20, 200)$ 
 
```{r simulation_normal_results} 
kable(S01) 
# plot(P01) 
``` 
 
## Objective criteria 
 
Participants have to judge the data sets for normality. In the simpliest case 
this is just a yes/no answer. The responses will then be compared to 
objective criteria, possibly: 
 
1. the amount of skewness in the population (as represented by the "true" 
parameters) 
2. the amount of skewness in the sample 
3. result of a test for skew with Agostino test ($p < .05$) 
4. result of a test for normality with shapiro test ($p < .05$) 
 
```{r criteria_normal} 
 
emg_skew <-  
  function(mu, sigma, lambda) 2/(sigma^3 * lambda^3) * (1 + 
(1/(sigma^2 * lambda^2)))^(-3/2) ## Wikipedia 
 
C01 <-  
  ldply(D01, function(d) skewness(d$total_score)) %>% ## sample 
skewness 
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  rename(skew_Sample = V1) %>%  
  mutate(skew_Pop = emg_skew(mu, sigma, lambda)) %>%  ## population 
skewness 
  full_join(select(ldply(D01,function(d) 
agostino.test(d$total_score)$p.value),  
                   Stimulus, agostino.p = V1)) %>%  
  full_join(select(ldply(D01,function(d) shapiro.test(d$total_score)$p.value),  
                   Stimulus, shapiro.p = V1)) %>%  
  mutate(agostino.nhst = ifelse(agostino.p < .05, "skew p<.05", "no skew"), 
         shapiro.nhst = ifelse(shapiro.p < .05, "non-norm p<.05", 
"normal")) %>%  
  as_data_frame() 
 
C01 %>%  
  ggplot(aes(x = skew_Pop, y = skew_Sample, size = N))+ 
  geom_point(aes(color = agostino.nhst, shape = shapiro.nhst)) + 
  geom_smooth(se = F, method = "lm") 
## population skewness 
 
head(C01) %>% kable() 
 
C01 %>%  
  mutate(agostino.rejected = agostino.p < .05, 
         shapiro.rejected = shapiro.p < .05) %>%  
  summarize(mean(shapiro.rejected), 
            mean(agostino.rejected)) 
 
``` 
 
## Example Stimuli 
 
```{r sim_normal_create_plots} 
 
# list of plots 
 
P01 <-  
  llply(D01[1:n_Stim],  
        .fun = function(d) 
          ggplot(d, aes(x = total_score)) + 
          geom_dotplot(binwidth = 1) + 
          xlim(1,50) + 
          ylab("") 
  ) 
marrangeGrob(P01[1:4], ncol = 2, nrow = 2) 
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`` 
# Simulation of stimuli for homogeneity of variance assessment 
Data sets are created by drawing from the a linear model with three groups 
with fixed means. Sample size varies, but the data is balanced. Residuals are 
normally distributed, but  a scale parameter is applied to the standard 
deviation, letting it vary with the mean to a certain extent. The means 
($\mu$) of the three groups were fixed as $[1, 3, 4]$ Sample size, standard 
deviation of the first group and the scale parameter $\phi$ are varied across 
simulated data sets as follows: 
 
The parameters of the simulated data sets were chosen as : 
 
$\N_{grp} = uniform(20, 80)$ 
$\sigma ~ uniform(2,6)$ 
$\phi ~ uniform(0, 1.5)$ 
$\sigma_i = \sigma + \mu_i\phi$ 
 
In effect, when $\phi$ get larger, the variance in the groups more stringly 
increases with the mean, leading to more pronounced heteroscedasticity. 
 
## Simulation 
```{r simulation_homo} 
set.seed(42) 
n_Stim = 100 
 
## simulation parameters 
 
S02 <- 
  data_frame(Stimulus = str_c("S02_",1:n_Stim), 
             N_grp   = round(runif(n_Stim, 20, 80),0), 
             sigma  = runif(n_Stim, 2, 6), 
             scale = runif(n_Stim, 0, 1.5)) 
 
## function to create one data frame 
 
F02 <-  
  function(P, mu = c(1,3,4)) { 
  expand.grid(Condition = as.factor(c("1 - Risky",  
                            "2 - Safer",  
                            "3 - Extremely cautious")), 
              Part = 1:P$N_grp) %>% 
    full_join(data_frame(Condition = as.factor(c("1 - Risky",  
                                       "2 - Safer",  
                                       "3 - Extremely cautious")), 
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                         mu = mu), 
              by = "Condition") %>%  
    mutate(sigma = P$sigma + P$scale * mu, 
           Y = rnorm(P$N_grp * 3, mu * 20, sigma)) 
            
} 
# create data frames 
D02 <- 
 S02 %>%  
 alply(.margins = 1, 
    .fun = F02) 
``` 
The following table shows the parameters of the `r n_Stim` data sets, the 
plot shows the generated data sets (the stimuli). 
```{r sim_results_homo} 
kable(S02) 
# plot(P02) 
``` 
 
Below are a few example plots: 
 
```{r sim_homo_create_plots} 
# list of plots 
 
P02 <-  
  llply(D02[1:n_Stim],  
        .fun = function(d) 
          ggplot(d, aes(x = Condition, y = Y)) + 
          geom_boxplot() + 
          geom_jitter(width = .4, alpha = .2) 
  ) 
 
# examples 
 
marrangeGrob(P02[1:8], nrow = 4, ncol = 2) 
``` 
## Objective criteria 
Participants have to judge the data sets for homogeneity of variance. The 
responses will then be compared to objective criteria: 
 
1. the amount of scale, relative to $\sigma$ 
2. result of the levene test ($p < .05$) 
```{r criteria_homo} 
fn.levene <- function(d) leveneTest(Y ~ Condition,  
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                                    data = d)$`Pr(>F)`[1] 
# levene tests 
 
C02 <-  
  ldply(D02,fn.levene) %>%  
  rename(levene.p = V1) %>%  
  mutate(levene.nhst = ifelse(levene.p < .05, "heterosced p<.05", 
"homosced")) %>%  
  as_data_frame() 
C02 %>%  
  ggplot(aes(x = scale, y = N_grp))+ 
  geom_point(aes(color = levene.nhst)) 
 
head(C02) %>% kable() 
 
C02 %>%  
  mutate(levene.rejected = levene.p <= .05) %>%  
  summarize(mean(levene.rejected)) 
 
``` 
```{r save_stimuli, message=FALSE, warning=FALSE, include=FALSE, eval 
= F} 
for (i in 1:n_Stim) { 
  ggsave(plot = P01[[i]],  
         filename = paste0("S01_", i, ".png"), 
         path = "stimuli") 
} 
for (i in 1:n_Stim) { 
  ggsave(plot = P02[[i]], 
         filename = paste0("S02_", i, ".png"), 
         path = "stimuli") 
} 
```{r save_data, message=FALSE, warning=FALSE, include=FALSE, eval = 
T} 
write.xlsx(D01, file = "S01.xlsx") 
write.xlsx(C01, file = "Simuli_normal.xlsx") 
write.xlsx(D02, file = "S02.xlsx") 
write.xlsx(C02, file = "Simuli_homo.xlsx") 
 
#save.image(file = "VEDA1.Rda") 
``` 
Loading the data, the response variable is re-created. TRUE means: is 
normally distributed/has constant variance. 
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```{r load_data, opts.label = "gather"} 
#load("VEDA1.Rda") 
 
read_raw <- function(filename) { 
    read_csv(filename) %>% 
    select(2:8) %>%  
    mutate(obs = row_number()) %>%  
    mutate(TaskID = str_sub(StimID, 3,3)) %>%  
    mutate(trial = obs %% (100 + 1)) 
  } 
VEDA1_raw <- 
  dir(pattern = "pp.*csv", recursive = T) %>>%  
  ldply(read_raw) %>%  
  as_data_frame() %>% 
  rename(Part = participantID) %>% 
  mutate(Task = ifelse(TaskID == "1", "Normality", "Constant Var"), 
         grade = as.numeric(Grade), 
         Stimulus = StimID, 
         correct = Correctness) %>%  
  select(-Grade, -TaskID) 
 
VEDA1_Normal <-  
  VEDA1_raw %>%  
  filter(Task == "Normality") %>%  
  left_join(C01) %>%  
  mutate(reject.test = agostino.p < .05, 
         correct = as.logical(correct), 
         reject.part = (reject.test == correct)) 
 
VEDA1_ConstV <-  
  VEDA1_raw %>%  
  filter(Task == "Constant Var") %>%  
  left_join(C02) %>%  
  mutate(reject.test = (levene.p < .05), 
         correct = as.logical(correct), 
         reject.part = (reject.test == correct)) 
 
#write_sav(VEDA1, "VEDA1.sav") 
write_sav(VEDA1_Normal, "VEDA1_Normal.sav") 
write_sav(VEDA1_ConstV, "VEDA1_ConstV.sav") 
 
#save.image(file = "VEDA1.Rda") 
``` 
## Results on Normality 
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The following two plots show the association of the response (accept or 
reject normality) for the Shapiro test and the participants. We see an rather 
clear profile for the test: with increasing skew in the sample. The second  
plot shows the responses of participants, which generally is less clear cut 
and shows arge variation of the pattern across participants. It is immediatly 
clear that participants have severe difficulties in judging normality. 
 
```{r eda_norm} 
#load("VEDA1.Rda") 
 
C01 %>%  
  ggplot(aes(x = skew_Sample, y = N, col = shapiro.nhst)) + 
  geom_point() 
 
VEDA1_Normal %>%  
  ggplot(aes(x = skew_Sample, y = N, col = reject.part)) + 
  geom_point(alpha = .5) + 
  facet_wrap(~Part) 
``` 
We estimate a model for participant in dependence of sample skew and 
sample size. 
```{r load_mcmc, eval = !purp.mcmc} 
load("VEDA1_mcmc.Rda") 
 
``` 
```{r mcmc:Norm, opts.label = "mcmc"} 
#load("VEDA1.Rda") 
rstan_options(auto_write = TRUE) 
options(mc.cores = 3) 
logit <- function(x) log(x/(1-x)) 
 
# M1_Norm <-  
#   VEDA1_Normal %>%  
#   mutate(min_sample = 20) %>%  
#   brm(reject.part ~ skew_Sample + N + ((1 + skew_Sample + N) | Part), 
#       family = bernoulli, 
#       iter = 4000, 
#       #prior = set_prior("normal(1,0.00001)", class ="sd", group = 
"Stimulus", coef = "Intercept"), 
#       data = ., 
#       chains = 1) 
#  
# #save.image(file = "VEDA1.Rda") 



STUDENTS’ PERFORMANCE JUDGING STATISTICAL VISUALIZATIONS 53 

 
M2_Norm <-  
  VEDA1_Normal %>%  
  mutate(min_sample = 20, 
         skew_Sample = abs(skew_Sample)) %>%  
  brm(reject.part ~  skew_Sample * N + ((1 + skew_Sample  * N)|Part ) + 
(1|Stimulus), 
      family = bernoulli, 
      iter = 4000, 
      #prior = set_prior("normal(1,0.00001)", class ="sd", group = 
"Stimulus", coef = "Intercept"), 
      data = ., 
      chains = 1) 
 
#save.image(file = "VEDA1.Rda") 
#  
# M3_Norm <-  
#   VEDA1_Normal %>%  
#   mutate(min_sample = 20) %>%  
#   brm(reject.part ~  skew_Sample * N * trial + ((1 + skew_Sample  * N * 
trial)||Part ) + (1|Stimulus), 
#       family = bernoulli, 
#       iter = 4000, 
#       #prior = set_prior("normal(1,0.00001)", class ="sd", group = 
"Stimulus", coef = "Intercept"), 
#       data = ., 
#       chains = 1) 
#  
# #save.image(file = "VEDA1.Rda") 
``` 
Fixed effects 
 
```{r tab:Norm_fixef} 
#load("VEDA1.Rda") 
 
M2_Norm %>% fixef() %>% kable() 
``` 
Random effects 
 
```{r tab:Norm_grpef} 
M2_Norm %>%  grpef() %>% kable() 
``` 
## Results on Heteroscedasticity 
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The following two plots show the association of the response (accept or 
reject heteroscedasticity) for the Levene test and the participants.  
```{r eda_constV} 
#load("VEDA1.Rda") 
 
C02 %>%  
  distinct() %>%  
  ggplot(aes(x = scale, y = N_grp, col = levene.nhst)) + 
  geom_point() 
 
VEDA1_ConstV %>%  
  ggplot(aes(x = scale, y = N_grp, col = reject.part)) + 
  geom_point(alpha = .5) + 
  facet_wrap(~Part) 
``` 
We estimate a model for participant in dependence of sample scale and 
sigma. 
 
```{r mcmc:ConstV, opts.label = "mcmc"} 
rstan_options(auto_write = TRUE) 
options(mc.cores = 3) 
 
# M1_ConstV <-  
#   VEDA1_ConstV %>%  
#   brm(reject.part ~ scale  * sigma + (1|Stimulus), 
#            family = bernoulli, 
#            data = ., 
#       chains = 3) 
# #save.image(file = "VEDA1.Rda") 
 
M3_ConstV <-  
  VEDA1_ConstV %>%  
  brm(reject.part ~ scale  * N_grp * trial + (1 + scale  * N_grp * trial|Part) 
+ (1|Stimulus), 
           family = bernoulli, 
           data = ., 
      chains = 1, 
      iter = 4000) 
#save.image(file = "VEDA1.Rda") 
 
 
``` 
 
Fixed effects 
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```{r tab:ConstV_fixef} 
M3_ConstV %>% fixef() %>% kable() 
``` 
 
Random effects  
```{r tab:ConstV_grpef} 
M3_ConstV %>% grpef() %>% kable() 
``` 
 
## Further exploration of data 
 
We have observed in both experiments that objective criteria (skew, scale, 
sample size) are being ignored by many participants. But the responses are 
not just random. The Stimuli intercept random effects show that stimuli 
systematically vary in how frequently they get rejected. Hence, there must 
be other criteria students use to judge the distributions. Maybe, participants 
had no clue about the objective criteria and used "fallback" heuristics, such 
as the ruggedness of the distribution. Maybe, we can identify these 
heuristics by comparing plots of low and high rejection rates. For that 
purpose, we extract the stimulus-level random effects. They represent by 
how much a plot differs from the average rejection rate. 
 
### Normality 
 
We start with the normality stimuli. The table below shows the Stimulus 
random intercepts. 
 
```{r extract_stim_RE_Norm} 
#load("VEDA1.Rda") 
 
T_StimRE_Norm <-  
  ranef(M2_Norm) %>%  
  filter(str_detect(parameter, "Stimulus")) %>%  
  mutate(parameter = str_replace(parameter, "Stimulus\\[S01_", ""), 
         parameter = str_replace(parameter, ",Intercept\\]", ""), 
         order = min_rank(center)) %>%  
  rename(Stimulus = parameter) %>%  
  arrange(order) 
 
kable(T_StimRE_Norm) 
``` 
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The following plot shows the centers and 95% CIs for stimuli, ordered by 
center.  
Although, the estimates are rather uncertain, there is considerable variance: 
stimuli vary by how frequently they are rejected. 
 
```{r fig:caterpillar_Norm} 
T_StimRE_Norm %>%  
  ggplot(aes(x = order, y = center, ymin = lower, ymax = upper)) + 
  geom_point() + 
  geom_errorbar() 
 
``` 
Now let's see, whether we can identify properties that are associated with 
high rejection: 
We print every fifth stimulus, ordered by rejection rate 
 
```{r fig:Norm_ordered, opts.label = "fig.large"} 
 
P01[T_StimRE_Norm$Stimulus][seq.int(1, 100, 5)] %>>%  
grid.arrange(grobs = ., nrow = 5, ncol = 4) 
 
``` 
### Constant variance 
 
Now the constant variance stimuli. The table below shows the Stimulus 
random intercepts. 
 
```{r extract_stim_RE_ConstV} 
T_StimRE_ConstV <-  
  ranef(M3_ConstV) %>%  
  filter(str_detect(parameter, "Stimulus")) %>%  
  mutate(parameter = str_replace(parameter, "Stimulus\\[S02_", ""), 
         parameter = str_replace(parameter, ",Intercept\\]", ""), 
         order = min_rank(center)) %>%  
  rename(Stimulus = parameter) %>%  
  arrange(order) 
kable(T_StimRE_ConstV) 
``` 
 
The following plot shows the centers and 95% CIs for stimuli, ordered by 
center.  
Although, the estimates are rather uncertain, there is considerable variance: 
stimuli vary by how frequently they are rejected. 
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```{r fig:caterpillar_ConstV} 
T_StimRE_ConstV %>%  
  ggplot(aes(x = order, y = center, ymin = lower, ymax = upper)) + 
  geom_point() + 
  geom_errorbar() 
 
``` 
Now let's see, whether we can identify properties that are associated with 
high rejection: 
We print every fifth stimulus, ordered by rejection rate 
 
```{r fig:ConstV_ordered, opts.label = "fig.large"} 
P02[T_StimRE_ConstV$Stimulus][seq.int(1, 100, 5)] %>>%  
grid.arrange(grobs = ., nrow = 5, ncol = 4) 
``` 
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Tables 

Table 5 

Datasets for the creation of stimuli for the assessment of normality 

Simulation Distribution Sample size µ σ λ 

1 Exgaussian 185 10 2.878736 0.2735714 

2 Exgaussian 189 10 1.651473 0.3919519 

3 Exgaussian 72 10 1.649702 0.2812312 

4 Exgaussian 169 10 2.166835 0.4294815 

5 Exgaussian 136 10 3.827367 0.6785916 

6 Exgaussian 113 10 3.887824 0.4297427 

7 Exgaussian 153 10 3.219566 0.2562000 

8 Exgaussian 44 10 3.199738 0.4075372 

9 Exgaussian 138 10 2.607284 0.5690304 

10 Exgaussian 147 10 1.006819 0.5620914 

11 Exgaussian 102 10 2.826812 0.3808004 

12 Exgaussian 149 10 3.510405 0.3390259 

13 Exgaussian 188 10 3.254568 0.4976963 

14 Exgaussian 66 10 2.358195 0.8454163 

15 Exgaussian 103 10 2.607370 0.4248210 

16 Exgaussian 189 10 2.612130 0.2843927 

17 Exgaussian 196 10 1.004142 0.3671191 

18 Exgaussian 41 10 2.066998 0.4854248 

19 Exgaussian 105 10 2.836399 0.3784613 

20 Exgaussian 121 10 3.486826 0.2718754 

21 Exgaussian 183 10 2.070166 0.4048629 

22 Exgaussian 45 10 2.231905 0.6601112 

23 Exgaussian 198 10 2.720428 0.3803593 

24 Exgaussian 190 10 2.769035 0.2574398 

25 Exgaussian 35 10 3.158972 0.5151847 

26 Exgaussian 113 10 2.184919 0.2888885 

27 Exgaussian 90 10 3.757612 0.5205180 

28 Exgaussian 183 10 3.887711 0.6425246 

29 Exgaussian 100 10 1.700571 0.8733317 

30 Exgaussian 170 10 3.173493 0.5756978 

31 Exgaussian 153 10 3.710904 0.4870160 

32 Exgaussian 166 10 2.810422 0.6770173 

33 Exgaussian 90 10 2.894522 0.5229321 
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Table 5 

Datasets for the creation of stimuli for the assessment of normality 

Simulation Distribution Sample size µ σ λ 

34 Exgaussian 143 10 3.812158 0.9499879 

35 Exgaussian 21 10 3.551448 0.2506480 

36 Exgaussian 170 10 2.739463 0.2929819 

37 Exgaussian 21 10 3.464212 0.7938135 

38 Exgaussian 57 10 1.341156 0.2770237 

39 Exgaussian 183 10 3.293523 0.3754095 

40 Exgaussian 130 10 2.870840 0.4416697 

41 Exgaussian 88 10 1.445340 0.8313171 

42 Exgaussian 98 10 1.240793 0.3725347 

43 Exgaussian 27 10 2.392209 0.8249697 

44 Exgaussian 195 10 3.338105 0.6119293 

45 Exgaussian 98 10 3.200584 0.3775207 

46 Exgaussian 192 10 3.451691 0.4088400 

47 Exgaussian 180 10 1.510487 0.6764026 

48 Exgaussian 135 10 3.834161 0.6902564 

49 Exgaussian 195 10 1.880872 0.4003493 

50 Exgaussian 131 10 1.447216 0.2616640 

51 Exgaussian 80 10 3.158136 0.4993274 

52 Exgaussian 82 10 1.972258 0.6388540 

53 Exgaussian 92 10 3.336428 0.5527462 

54 Exgaussian 161 10 2.183323 0.3857679 

55 Exgaussian 27 10 3.035779 0.9395400 

56 Exgaussian 155 10 3.327475 0.2944397 

57 Exgaussian 142 10 1.563607 0.7513118 

58 Exgaussian 51 10 1.087257 0.3817676 

59 Exgaussian 67 10 1.407141 0.3685003 

60 Exgaussian 113 10 3.040493 0.3500353 

61 Exgaussian 142 10 3.804469 0.3180094 

62 Exgaussian 197 10 2.651482 0.7299794 

63 Exgaussian 157 10 2.805299 0.5172907 

64 Exgaussian 122 10 1.590984 0.2606055 

65 Exgaussian 173 10 2.605710 0.3999880 

66 Exgaussian 54 10 1.538667 0.7113936 

67 Exgaussian 69 10 2.355659 0.2771793 

68 Exgaussian 169 10 1.951160 0.6191380 
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Table 5 

Datasets for the creation of stimuli for the assessment of normality 

Simulation Distribution Sample size µ σ λ 

69 Exgaussian 145 10 1.348524 0.2648910 

70 Exgaussian 63 10 1.558307 0.2732046 

71 Exgaussian 28 10 3.189190 0.7097799 

72 Exgaussian 45 10 2.235616 0.2979695 

73 Exgaussian 59 10 2.242149 0.4237449 

74 Exgaussian 106 10 2.440930 0.7106173 

75 Exgaussian 56 10 2.282483 0.2735482 

76 Exgaussian 149 10 1.409471 0.4974776 

77 Exgaussian 21 10 3.474038 0.5107716 

78 Exgaussian 88 10 2.776913 0.4522128 

79 Exgaussian 113 10 3.383191 0.4103015 

80 Exgaussian 20 10 3.307097 0.4753517 

81 Exgaussian 125 10 3.754169 0.4171757 

82 Exgaussian 48 10 3.587889 0.8698099 

83 Exgaussian 85 10 1.950926 0.6401761 

84 Exgaussian 136 10 1.777782 0.2532942 

85 Exgaussian 160 10 3.226799 0.5038235 

86 Exgaussian 121 10 3.242083 0.6609433 

87 Exgaussian 62 10 3.753712 0.4057182 

88 Exgaussian 36 10 3.379574 0.9469139 

89 Exgaussian 35 10 1.399989 0.4954284 

90 Exgaussian 75 10 1.863249 0.9182820 

91 Exgaussian 140 10 1.584028 0.2776477 

92 Exgaussian 20 10 3.352328 0.3129770 

93 Exgaussian 58 10 1.386616 0.5139321 

94 Exgaussian 188 10 1.387268 0.4630997 

95 Exgaussian 187 10 1.216759 0.5006664 

96 Exgaussian 152 10 1.159388 0.7878148 

97 Exgaussian 80 10 2.595623 0.3057013 

98 Exgaussian 113 10 1.336925 0.3560106 

99 Exgaussian 154 10 3.229563 0.6962819 

100 Exgaussian 131 10 3.193946 0.9111182 
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Table 6 

Datasets for the creation of stimuli for the assessment of homogeneity of variance 

Simulation Sample Size σ Scale 

1 75 4.504981 1.3276765 

2 76 2.868631 0.7756666 

3 37 2.866269 1.2778965 

4 70 3.555780 0.6641944 

5 59 5.769823 0.2368202 

6 51 5.850432 0.6634870 

7 64 4.959421 1.4516005 

8 28 4.932984 0.7268819 

9 59 4.143045 0.3786877 

10 62 2.009092 0.3895350 

11 47 4.435750 0.8130239 

12 63 5.347206 0.9748138 

13 76 5.006090 0.5046287 

14 35 3.810926 0.0914246 

15 48 4.143160 0.6769663 

16 76 4.149507 1.2581326 

17 79 2.005523 0.8619560 

18 27 3.422664 0.5300256 

19 48 4.448532 0.8211391 

20 54 5.315768 1.3390779 

21 74 3.426888 0.7349859 

22 28 3.642540 0.2574482 

23 79 4.293904 0.8145465 

24 77 4.358713 1.4422015 

25 25 4.878629 0.4705257 

26 51 3.579892 1.2307718 

27 43 5.676816 0.4605816 

28 74 5.850281 0.2781804 

29 47 2.934094 0.0725202 

30 70 4.897990 0.3685112 

31 64 5.614538 0.5266604 

32 69 4.413896 0.2385336 

33 43 4.526029 0.4561470 

34 61 5.749543 0.0263225 
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Table 6 

Datasets for the creation of stimuli for the assessment of homogeneity of variance 

Simulation Sample Size σ Scale 

35 20 5.401931 1.4948290 

36 70 4.319284 1.2065900 

37 20 5.285616 0.1298709 

38 32 2.454874 1.3048999 

39 74 5.058031 0.8318788 

40 57 4.494454 0.6320676 

41 43 2.593786 0.1014552 

42 46 2.321058 0.8421569 

43 22 3.856278 0.1060828 

44 78 5.117473 0.3170879 

45 46 4.934112 0.8244306 

46 77 5.268922 0.7229722 

47 73 2.680650 0.2392048 

48 58 5.778881 0.2243685 

49 78 3.174495 0.7489093 

50 57 2.596288 1.4108473 

51 40 4.877514 0.5013470 

52 41 3.296344 0.2826515 

53 44 5.115238 0.4045743 

54 67 3.577764 0.7961161 

55 22 4.714372 0.0321753 

56 65 5.103300 1.1981405 

57 61 2.751476 0.1655027 

58 30 2.116343 0.8096974 

59 36 2.542855 0.8568508 

60 51 4.720657 0.9284273 

61 61 5.739292 1.0722805 

62 79 4.201976 0.1849509 

63 66 4.407065 0.4665744 

64 54 2.787978 1.4186087 

65 71 4.140946 0.7500376 

66 31 2.718223 0.2028457 

67 36 3.807546 1.3038867 

68 70 3.268213 0.3075744 
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Table 6 

Datasets for the creation of stimuli for the assessment of homogeneity of variance 

Simulation Sample Size σ Scale 

69 62 2.464699 1.3875688 

70 34 2.744409 1.3301304 

71 23 4.918920 0.2044437 

72 28 3.647488 1.1780242 

73 33 3.656199 0.6799551 

74 49 3.921241 0.2036136 

75 32 3.709978 1.3278316 

76 63 2.545961 0.5050703 

77 20 5.298718 0.4789112 

78 43 4.369217 0.6056742 

79 51 5.177588 0.7186160 

80 20 5.076130 0.5518527 

81 55 5.672226 0.6985359 

82 29 5.450519 0.0748382 

83 42 3.267901 0.2810351 

84 59 3.037042 1.4739891 

85 67 4.969066 0.4924111 

86 54 4.989445 0.2564946 

87 34 5.671616 0.7323823 

88 25 5.172765 0.0280311 

89 25 2.533319 0.5092276 

90 38 3.150999 0.0444951 

91 60 2.778705 1.3008430 

92 20 5.136438 1.0975614 

93 33 2.515489 0.4728912 

94 76 2.516357 0.5796810 

95 76 2.289012 0.4986690 

96 64 2.212518 0.1346670 

97 40 4.127498 1.1355834 

98 51 2.449233 0.9044527 

99 65 4.972751 0.2181000 

100 57 4.925262 0.0487762 
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Figures 

 

Figure 6 - Example stimulus for the assessment of normality 

 

Figure 7 - Example stimulus for the assessment of homogeneity of variance 
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Figure 8 - Stimulus used as the ideal for normality in the experiment 

 

Figure 9 - Stimulus used as the ideal for homogeneity of variance in the experiment 
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Figure 10 - 95% credibility limits and centers of the Stimulus intercept for the histograms 

 

Figure 11 - 95% credibility limits and centers of the Stimulus intercept for the conditional boxplots 
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Figure 12 - Every fifth histogram ordered by descending rejection rate 
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Figure 13 - Every fifth conditional boxplot ordered by descending rejection rate 


