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GRAPHICAL EXPLORATION OF STATISTICAL ASSUMPTIONS 

Abstract 

In statistical inference, failure to control for violations of statistical assumptions increases the 

risk of committing a type I (rejecting a true null hypothesis) or type II error (failure to reject an 

untrue null hypothesis). Graphical exploration of statistical assumptions is advocated. The 

objective of the current study was to confirm the usefulness and superiority of statistical graphics 

in data exploration. A complete within-subject design was employed, exposing participants to 

100 simulated dot-histograms and 100 box-jitter plots. Participants' ability to visually detect 

violations of the normality assumption and homoscedasticity was assessed. Results revealed that 

participants were not able to validly detect violations of statistical assumptions. Exploratory data 

analysis and a general linear mixed-model in form of a logistic regression further uncovered that 

participants did not inform their choices by objective criteria. However, our results are 

ambiguous. Participants varied in their baseline tendency to reject stimuli and in how much they 

were influenced by objective criteria. Stimuli varied in which kind of response they provoked, 

even after objective criteria were taken into account. We conclude that the scientific community 

is not ready for a methodological shift from conventional statistical techniques to graphical data 

exploration. A temporary joint usage of statistical tests and graphics is advocated while further 

research investigates whether  our results can be replicated with subjects of higher statistical 

proficiency. Drastic changes to the psychological curriculum and empirical research into the 

effectiveness of competing statistical graphics shall prepare the community for the supersession 

of conventional statistical techniques.  
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In their protocol for data exploration, Zuur, Ieno, and Elphick (2010) firmly point out the 

importance of data exploration prior to conducting statistical analyses. The authors note that their 

students in ecology frequently neglect to examine data with regard to the underlying assumptions 

of the statistical techniques employed. While some violations of statistical assumptions may have 

little effect on statistical outcomes, others can distort results dramatically, leading to wrong 

conclusions and poor recommendations. In statistical inference, violations of statistical 

assumptions can, among other things, increase type I (rejecting a true null hypothesis) and type 

II errors (failure to reject an untrue null hypothesis). As the authors put it: "All statistical 

techniques have in common the problem of 'rubbish in, rubbish out'." (p.3). 

 Multiple authors advocate the use of statistical graphics in data exploration (Behrens & 

Yu, 2003; Chatfield, 1985; Gelman, Pasarica, & Dodhia, 2002; Gelman, 2011; Kline, 2008; 

Marmolejo-ramos & Valle, 2009; Nolan & Perrett, 2015; Zuur et al., 2010). As Tufte (2007) 

stated: "(…) of all methods for analyzing and communicating statistical information, well-

designed graphics are usually the simplest and at the same time the most powerful." (p.9). 

According to Cleveland (1984), the natural pattern recognition abilities of the human brain lie at 

the heart of efficient graphical communication. However, in the literature on the use and design 

of statistical graphics (e.g. Marmolejo-ramos & Valle, 2009; Tukey, 1977; Zuur et al., 2010) we 

could find no empirical evidence that well-designed graphics indeed enable humans to arrive at 

valid inferences about scientific data. Therefore, the objective of the current study is to confirm 

the promised merits of statistical graphics for data exploration. We test in how far humans are 

indeed able to detect violations of statistical assumptions by means of graphical perception. 

Theoretical Background 

Statistical Assumptions in Analysis of Variance 

It has been established that the field of ecology is no exception when it comes to statistical 

problems. According to Leys & Schumann (2010), experimental social psychologists tend to 

apply Analysis of Variance (ANOVA) to study associations between factors, even when 

underlying assumptions are not met. This severely compromises the validity of their outcomes. 
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Howell (2012) designates that ANOVA "has long enjoyed the status of being the most used 

(some would say abused) statistical technique in psychological research." (p.320). ANOVA is a 

variant on regression and as such, its logic is rooted in regression (Field, Miles, & Field, 2012). 

Basically, ANOVA tests how well a certain model fits the observed data. In basic experimental 

research, the effect of some predictor variable is examined on an outcome variable. To this end, 

multiple experimental conditions are devised in which participants are manipulated to the extent 

that they differ in the amount of the predictor variable, but ideally, in no other regard. ANOVA 

is then applied to test whether group means in the outcome variable significantly differ from 

each other. ANOVA produces a F-statistic or F-ratio which is the ratio of the explained to the 

unexplained variation in the outcome variable. Variation refers to differences between observed 

values and predicted values of the outcome variable. Values are predicted on the basis of the 

model at hand. The F-ratio is calculated using the following formula: 

𝐹 =  
𝑀𝑆𝑀

𝑀𝑆𝑅
 (1) 

Where 𝑀𝑆𝑀 is the average amount of variation explained by the model, and 𝑀𝑆𝑅 the average 

amount of unsystematic variation which cannot be accounted for by the model. As the 

mathematical calculation of the F-statistic lies beyond the scope of this paper see for example 

Field et al. (2012) for a more detailed description. When the F-value exceeds a critical value, one 

may conclude that the examined predictor variable indeed affects the outcome variable in some 

way. Otherwise, it would be highly unlikely to get the obtained F-value. 

 ANOVA is a parametric test based on the normal distribution and as such, it comes with 

a number of statistical assumptions, ensuring the reliability of the F-statistic (Field et al., 2012). 

A first requirement is that the dependent variable has to be measured on an interval scale at 

minimum (Leys & Schumann, 2010). Secondly, individual observations should be independent. 

Thirdly, residuals have to be normally distributed. In ANOVA, the assumption of normality boils 

down to the requirement that the outcome variable within groups has to be normally distributed 

(Field et al., 2012; Grace-Martin, 2012). A final statistical assumption of ANOVA is 

homogeneity of variance or homoscedasticity. This assumption holds that at each level of the 

predictor variable, the variance of the outcome variable is the same. When one collects groups 
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of data it means that group variances have to be sufficiently similar across groups (Field et al., 

2012). 

 Whenever one or more of these assumptions is violated, the chance of committing a type 

I or type II error increases (Leys & Schumann, 2010; Zuur et al., 2010). Given ANOVA's 

omnipresence in psychological research, ensuring the efficient and reliable screening of data for 

violations of its assumptions is of crucial importance. For normality, the Shapiro-Wilk test 

(Shapiro & Wilk, 1965) is a conventional statistical technique for testing whether a distribution 

significantly deviates from normal (Field et al., 2012). Alternatively, the assumption of normality 

can be checked graphically using histograms (Field et al., 2012; Zuur et al., 2010). For checking 

homoscedasticity, Levene's test (Levene, 1960) is a conventional statistical technique (Field et 

al., 2012; Marmolejo-ramos & Valle, 2009). Again, the assumption of homoscedasticity can be 

examined visually. Zuur et al. (2010) advise and demonstrate the use of boxplots for this purpose. 

At this point it should be pointed out that there is a great deal of unclarity among researchers 

about how one should best control for violations of statistical assumptions (Field et al., 2012; 

Zuur et al., 2010). Some researchers even debate whether parametric tests should be replaced by 

nonparametric techniques to avoid the trouble of violating underlying assumptions (Johnson, 

2009; Läärä, 2009). 

Statistical Graphics in Data Exploration 

Multiple authors advocate the use of statistical graphics in data exploration (Behrens & Yu, 2003; 

Chatfield, 1985; Gelman et al., 2002; Gelman, 2011; Kline, 2008; Marmolejo-ramos & Valle, 

2009; Nolan & Perrett, 2015; Zuur et al., 2010). At the same time, Behrens and Yu (2003) note 

that graphical data exploration is rarely performed as a current conventional research practice in 

psychology. Kline (2008) states that blind reliance on test statistics discourages researchers from 

actually looking at their data, which is a crucial first step in any data analysis (Kline, 2008; 

Wilkinson, 1999). Marmolejo-ramos and Valle (2009) demonstrate how a combination of 

graphical methods and formal statistical tests outperforms the application of the very same 

statistical tests in isolation in preventing type II errors. The authors explore and analyze simulated 

data sets using conventional approaches, i.e. homogeneity of variance and normality tests, 
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graphical techniques proposed by Exploratory Data Analysis (EDA; Tukey, 1977), and data 

transformations. Specifically, the authors created two data sets that provoke committing a type 

II error. The observed means of the two data sets (group A and group B) are indistinguishable 

from each other by a parametric test while actually being different. Both data sets were drawn 

from a normal distribution, however, in one of them (group B), two normal observations were 

replaced with two outliers. In a first step, the authors applied the Lilliefors (Kolmogorov-

Smirnov) normality test (Lilliefors, 1967) to examine whether the given samples were drawn 

from a normally distributed population. The test indicated no problem regarding normality. To 

check whether the variances of the two groups were homogenous, the Levene's test (Levene, 

1960) was applied. Again, no problem was detected by a conventionally used preliminary test. 

In accordance with a provided research scenario, an independent-samples t-test was conducted 

to examine whether there was a statistically significant difference between the two group means. 

Unfortunately, the test detected no significant difference between means when in actuality, the 

data sets were created with different means. At this stage, a researcher who blindly relies on the 

outcomes of the applied statistical techniques would commit a type II error by wrongly rejecting 

the hypothesis that group means are different. In a second step, however, the authors estimated 

group densities using a kernel (Silverman, 1986; Wilcox, 2004). The kernel density plots 

revealed that the two groups had similar variances, but different distributions, possibly caused 

by outliers. Outliers are observations with less than 5% frequency (Cowles & Davis, 1982), and 

it is common practice to use a two standard deviations cut-off to determine them. A second test 

of normality was administered to re-examine sample distributions and to confirm what was made 

evident by the density plots. The Shapiro-Wilk test of normality is said to be more sensitive than 

the Lilliefors test (Field, 2009). And indeed, the test indicated that group B significantly departed 

from being normally distributed. Further investigation through application of outlier z tests 

(Shiffler, 1988) confirmed that there were two outliers present in group B. In a last step, the two 

outliers were removed and another two-tailed t-test was run. This time, the difference in means 

was correctly detected by the test. The simulation study of Marmolejo-ramos and Valle (2009) 

makes two important points. Firstly, the reliability of preliminary tests should be double-
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checked, even more so if visual representations cast doubt on the reliability of the test. And 

secondly, graphical methods can spot problematic features of data that may not be detectable by 

means of conventional tests. The authors make a case for the joint application of statistical and 

graphical techniques in data exploration. 

 Exploratory Data Analysis. The pioneering work of John W. Tukey (1977) is closely 

related to the origins of statistical graphics and today's use of visual displays in data exploration. 

Tukey advocates exploratory data analysis (EDA) as a first step, as "numerical detective work 

(…) or graphical detective work" (p.1). This detective work precedes any kind of confirmatory 

data analysis (i.e. hypothesis testing), providing it with indications. According to Turkey, 

without these indications, confirmatory data analysis has nothing to consider. EDA promotes a 

very different philosophy of analyzing data. Instead of imposing a model on the data, as in 

confirmatory data analysis, EDA allows the data itself to reveal its structure. Tukey (1977) 

developed several statistical graphics on which data exploration, as proposed by Zuur et al. 

(2010), heavily draws. Inspired by Tukey (1977), Hartwig and Dearing (1979) further elaborate 

EDA techniques. The authors are convinced that knowing as much as possible about one's data 

by employing EDA will result in sounder data analyses compared to when EDA is omitted. To 

them, the exploratory perspective is a state of mind that includes both, skepticism towards 

summarizing statistics, and openness to unexpected patterns in the data. Hartwig and Dearing 

(1979) firmly hold that visual analysis should precede statistical analysis. 

 Merits of graphical communication. Statistical graphics greatly profit from the merits 

of graphical communication. The enormously powerful pattern recognition abilities of the human 

brain underlie the efficiency of graphical communication. Thanks to pattern recognition, graphs 

are capable of efficiently communicating vast amounts of quantitative data. At the same time, 

they make trends and other salient features pop out (Cleveland, 1984). Indeed, as Gelman et al. 

(2002) and Tukey (1990) recognize, the main interest in scientific research lies in comparison, 

not in absolute numbers. And graphs continue to outperform other modes of presentation, tables 

in particular, in this regard (Feliciano, Powers, & Kearl, 1963; Meyer, Shamo, & Gopher, 1999; 

Washburne, 1927). However, even though graphical communication has numerous merits for 
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the exploration and analysis of scientific data, there is much lack of clarity and empirical 

evidence concerning what graphics should be employed in which instances. Evermore graphics 

are being developed. At the same time, authors rather advocate their own preferences when it 

comes to the use of statistical graphics than support their choices with sound scientific test (e.g. 

Haughton & Haughton, 2011; Hintze & Nelson, 1998; C. Johnson, 2004; Marmolejo-ramos & 

Valle, 2009; Zuur et al., 2010).  

 Cleveland and McGill (1984) long recognized that graphical design is largely a matter 

of general agreement rather than sound empirical test. The authors react to this circumstance by 

initializing a scientific foundation for graphical design. Specifically, Cleveland and McGill 

provide guidelines on how to design graphs based on ten elementary perceptual tasks. According 

to the authors, the viewer performs certain perceptual tasks while decoding graphical 

information. Among these tasks are: position on a common scale, length, area, volume, shading, 

and direction. For example, the authors explain that viewers of a bar chart extract the values of 

the data by judging position on a common scale, in this case, the y-axis, combined with 

judgments of area and length. Cleveland and McGill (1984) advocate that graphical designers 

should take into account a ranking of the proposed elementary tasks according to the accuracy 

with which viewers perform these tasks. According to the authors, graphs that use elementary 

tasks as high in the hierarchy as possible will facilitate pattern detection and extraction of 

quantitative information. By re-designing commonly used statistical graphics in a way that 

converts low-hierarchy elementary tasks inherent in the graphics to high-hierarchy elementary 

tasks the authors demonstrate the effectiveness of their findings. The research of Cleveland and 

McGill (1984) aims at optimizing graphical design for efficient communication of statistical 

information, using human graphical perception, and thus, human ability as a starting point. Their 

research can be understood as one element of many in an emerging movement in the scientific 

community away from the focus on statistical tests as the dominating approach to scientific data. 

Pattern Recognition and Expertise 

As stated above, the merits of graphical communication are grounded in human pattern 

recognition (Cleveland, 1984). Pattern recognition has been identified as a major contributor to 
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expert performance in multiple disciplines (Chase & Simon, 1973; Klein & Hoffman, 1992; 

Loveday, Wiggins, & Festa, 2013; Regehr, Cline, Norman, & Brooks, 1994; Waters, 

Underwood, & Findlay, 1997). For instance, Loveday et al. (2013) were able to distinguish 

between competent non-expert diagnostic practitioners and expert diagnosticians by assessing 

pattern recognition performance during domain-relevant tasks in two settings, medicine and 

power control. According to the authors, competent non-experts make use of prior cases and 

heuristics, while true experts utilize reliable and efficient cognitive shortcuts. The authors define 

pattern recognition as "the non-conscious recognition of problem-states based on patterns of 

features that prime appropriate scripts in memory" (p.1). Highly specified and automated feature-

outcome associations ("cue associations") in memory reduce processing load for experts without 

sacrificing depth of processing, and enable them to arrive at rapid and accurate diagnoses. The 

authors concluded that rather than years of experience, pattern recognition based assessments 

should be used to identify experts within samples of experienced diagnosticians. Expertise is 

pattern recognition. 

 Expertise research in chess (Chase & Simon, 1973; de Groot, 1965, 1966) illustrates 

how pattern recognition arises. In contrast to popular belief prior to de Groot's (1966) work, the 

distinguishing feature between expert and novice players is not thinking ahead. Neither experts 

nor novices think ahead more than a few moves. What expert chess players can do better is 

temporarily memorizing chessboard positions (Lesgold, 1983). De Groot (1965; 1966) and 

Chase and Simon (1973) demonstrated that chess experts have the same short-term memory 

constraints (Miller, 1956) as non-experts. Experts could recall as many positions as chess novices 

when trying to recall randomly scrambled chessboards following brief exposure. The superiority 

of master chess players derives from their ability to encode positions into larger perceptual 

chunks, each chunk consisting of familiar piece configurations. Chase and Simon (1973) 

identified the patterns by which pieces are bound in chunks: proximity, attack over small 

distances, mutual defense, common color, and type. Chunking strategies have been found to be 

similar for players of different skill levels. Despite being restricted by the same memory 

constraints as novices, master chess players could recall more and larger chunks when briefly 
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exposed to meaningful positions. Chase and Simon (1973) concluded that experts organize 

chunks hierarchically, enabling them to infer sub chunks from recalled chunks, increasing the 

total number of chunks recalled. Furthermore, the authors postulate that master chess players can 

"see" the right move solely on the basis of immediate perceptual processing, whereas less 

experienced players need to undergo slow and conscious reasoning. 

 Expertise research has shown that pattern recognition contributes to the superior 

performance of experts across multiple disciplines. As stated by Cleveland (1984), the human 

brain naturally possesses powerful pattern recognition abilities. For instance, Ehman et al. (2007) 

describe biomedical researchers as drawing on humans' natural way of making sense of the 

world. Biomedical researchers interpret complex multidimensional data by means of biomedical 

imaging, which facilitates rapid and accurate interpretation of information. Likewise, the 

analysis of scientific data is likely to profit with regard to accuracy and efficiency from 

integrating this powerful ability more extensively into formal analysis procedures. 

 In sum, data exploration and the examination of underlying statistical assumptions has 

been established to be a vital first step in any statistical analysis. Several authors (Gelman et al., 

2002; Hartwig & Dearing, 1979; Kline, 2008; Marmolejo-ramos & Valle, 2009; Zuur et al., 

2010) favor the use of visual displays in conducting data exploration. This preference is based 

on the premise that, provided with visual displays, human beings make better inferences 

concerning violations of statistical assumptions than statistical tests do. This assumption, 

however, has not been thoroughly examined yet. Are humans really able to detect violations of 

underlying assumptions by means of graphical perception? And, are they better at it than 

statistical tests? Research in pattern recognition and expertise draws a hopeful picture of efficient 

and accurate visual analysis. However, the reviewed expertise research also stresses the 

importance of specific domain knowledge underlying expert performance (Lesgold, 1983; 

Loveday et al., 2013). The current study draws on the faith advocators of graphical data 

exploration put in humans' visual detection abilities. We test these abilities experimentally in 

comparison to the performance of statistical techniques. The underlying statistical assumptions 

featured in this study are important assumptions of widely used parametric techniques, such as 
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ANOVA. Specifically, the current study examines subjects' ability to validly detect deviations 

from normality and homoscedasticity by means of graphical perception. 

Method 

Participants 

In total, 33 subjects participated in the current study. 17 participants were male and 16 were 

female. Their age ranged from 19 to 32 (M = 22.78, SD = 2.768 ). Nine participants were Dutch, 

and 24 participants were German. As for inclusion and exclusion criteria, anyone who either 

followed or had completed their statistical education for psychologists at the University of 

Twente (UT), Enschede, The Netherlands could participate. This was necessary to ensure that 

participants possessed the required statistical knowledge to complete the experiment. 

Participants had to be 18 years old or older. Participants of the specific target population were 

recruited in three different forms. First, researchers approached their own acquaintances and 

fellow students directly. Second, participants signed-up for the experiment via the university-

intern cloud-based subject management software. At the UT, psychology and communication 

science students are required to earn 15 subject hour credits within the first two years of their 

undergraduate studies. These credits are earned by participating in the research of fellow 

students. And finally, flyers were distributed and placed in the Cubicus, the behavioral sciences 

building of the UT. Potential participants could react to the flyers by either making an 

appointment with the researchers directly or by signing up via the online subject management 

software. Regardless of the specific form of sampling, potential participants received a short 

briefing about the goal and nature of the experiment on the basis of which they could decide 

whether to participate or not. The briefing included deceptive elements concerning the goal of 

the study. Participants were told that in order to improve the statistical training for psychologists, 

the UT intends to implement a serious game aimed at enhancing students' attitude towards 

statistics. Potential participants were made believe that by participating in the experiment, they 

would help with the development of this game. We chose to make use of participant deception 

to make the nature of our research more appealing to potential participants. After the experiment, 
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participants were informed that they had been deceived concerning the goal of the experiment 

and our true intentions were revealed. The current research received ethical approval by the 

Ethics Committee for Behavioral and Management Sciences at the University of Twente 

(Request Nr: 16073). 

Materials 

Statistical game - Game Mechanics 

The software was programmed by the conducting researchers in Python 2.7. In order for the 

program to run on a computer, Python 2.7 (or a newer version) and the PyGame module are 

needed. The researchers used their own laptops to test subjects. One laptop had a resolution of 

1366x768 pixels, the other a resolution of 1920x1080 pixels. Both laptops had a 15.6" screen. 

The program window itself had a resolution of 1024x700 pixels, regardless of the laptop used. 

Thus, the program window turned out to be much smaller on the second laptop. It was assumed 

that the difference in screen resolution did not have any serious confounding effects. However, 

in future research differences in screen resolution should be avoided or at least controlled 

statistically. Participants used the laptop's keyboard to interact with the software. When the 

program started up, a welcome screen appeared. When the return key was pressed, participants 

were prompted to fill in their participant ID and a number of demographic data, including gender, 

age, nationality, and study year. Apart from that, participants could optionally fill in their last 

known statistics grade. Afterwards, the rules of the statistical game were printed to the screen. 

The program included the following game mechanics: For each correct answer the participant 

received one point, for each incorrect answer, a point was lost. After a streak of five consecutive 

correct answers, two points were received for each following correct answer. After at least 15 

consecutively correct answers, three points were granted per correct answer. If an incorrect 

answer was given, the score mechanics were reset to one point per correct answer. The program 

consisted of two rounds. Round one (normality) tested participants' ability to detect violations of 

the normality assumption. Round two (homogeneity of variance) tested participants' ability to 

detect violations of homoscedasticity. At the end of each round, a fictive leaderboard was printed 

to the screen. After the normality part, the participant's score was reset to zero. Both rounds 
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consisted of 100 experimental trials plus five practice trials which did not add to the participant's 

score. During the trials, participants were shown two plots on the screen, a stimulus plot and an 

"ideal". Depending on the construct being tested, participants were asked to react to a respective 

yes/no question that was printed to the screen by either pressing the <y> or <n> key on the 

keyboard. For normality, the question was "Are these scores normally distributed? (Y/N)", and 

for homoscedasticity, "Are the variances homogenous? (Y/N)". Answers were recorded in the 

form of numerical values. "0" marked a "correct" answer and "1" an "incorrect" answer. 

Instantly, the program provided feedback by printing "Correct!" or respectively, "Incorrect!" to 

the screen. Within the computer program, correctness was determined by the outcome of specific 

statistical tests. For normality, the Shapiro-Wilk test of normality (Shapiro & Wilk, 1965) was 

applied to the 100 normality samples, with an alpha level of .05. For homoscedasticity, Levene's 

test (Levene, 1960) at alpha level .05 served as an objective criterion. Thus, for example, if the 

Shapiro-Wilk test detected deviation from normal for a certain stimulus, and for the same 

stimulus the participant replied "Yes" to the question "Are these scores normally distributed?", 

then "1" was recorded. Participants' replies were recoded as preparation for further data analyses. 

Using Boolean algebra, their raw answers (rejecting or accepting a stimulus) could be recovered 

from the recorded 0-1 responses. Taking the respective test's judgment concerning the stimulus 

as a starting point (accepting or rejecting normality, that is homoscedasticity), and comparing 

whether the participant's answer agreed with the test's judgment (recorded as "0" if the participant 

agreed with the test and as "1" if the participant and the test disagreed), it could be determined 

whether the participant rejected or accepted normality or respectively, homoscedasticity. The 

recoding was performed for each participant and each stimulus. The trial number of each judging 

event was also recorded. Both rounds of the experiment were introduced by an introductory 

screen which asked participants to either read instruction 1 for normality or instruction 2 for 

homoscedasticity respectively. All participants completed the two construct rounds in the same 

order. The instructions were provided on two separate pieces of paper which remained covered 

until participants were prompted to read them. Instruction 1 and 2 contained fictive research 

scenarios in order to make the plotted data more tangible for participants. We anticipated that 
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providing participants with plausible research scenarios would help to minimize bias from 

confusion. Instruction 1 and 2 are included in Appendix A. Upon completion of the program, a 

.csv file was automatically saved for later analysis purposes. The file contained the following 

information per participant: participant ID, gender, age, nationality, study year, last known 

statistics grade (if applicable) and per trial, stimulus ID and whether the given answer was correct 

or not. 

Statistical Game - Stimuli 

Stimuli plots were generated on the basis of 200 simulated data sets. Our supervisor took over 

the task of simulating the data sets in R (R Core Team, 2015). Specifically, for normality, data 

sets were simulated by drawing from the Ex-Gaussian distribution. 100 samples were generated 

with fixed μ = 10 and varied in the extent to which they were affected by the Gaussian component 

(σ) in relation to the exponential component (λ). λ produced skewness. σ varied between 1 and 

4, λ between 0.25 and 1, and sample size between 20 and 200. The Ex-Gaussian distribution was 

chosen for simulation purposes as common psychological measures, such as response times, best 

fit the Ex-Gaussian distribution and thus, the chosen distribution is omnipresent in psychological 

research. For homogeneity of variance, 100 samples were created drawing from a linear model, 

featuring three groups with fixed means (μ), respectively 1, 3, and 4. Sample size varied between 

20 and 80, but was balanced across groups. Residuals were normally distributed. A scale 

parameter (ϕ) was applied to the standard deviation, letting it vary with the mean: 𝜎𝑖 =  𝜎 +

 𝜇𝑖ϕ. This accurately reflects the typical empirical relation between sample mean and variance. 

ϕ varied between 0 and 1.5 and σ between 2 and 6. In effect, more pronounced heteroscedasticity 

emerged with increasing ϕ. The simulation parameters of the 100 normality and the 100 

homoscedasticity samples are included in Appendix B. 

On the basis of the 200 simulated data sets, 200 stimuli plots were created for the purpose 

of the study at hand. Our choice of plots was on the one hand inspired by the suggestions of Zuur 

et al. (2010) and on the other hand, by the kinds of plots our subjects were used to on the basis 

of their education at the psychology department of the University of Twente. However, we 

modified the suggested statistical graphics so that they additionally communicated sample size 



17 

GRAPHICAL EXPLORATION OF STATISTICAL ASSUMPTIONS 

in the normality plots and group size in the homoscedasticity plots. For normality, 100 dot-

histograms were generated using R. On the x-axis "total score" was displayed with values 

between 10 and 50. Each dot in the graph represented a data point. This way an impression of 

sample size was included in the dot-histogram. The "ideal" accompanying each stimulus dot-

histogram in the game was chosen out of the pool of available dot-histograms. The dot-histogram 

that visually came closest to being normally distributed, was chosen. A normal density curve 

was added to the "ideal" using R to facilitate recognition of a normal distribution in the plots. 

We included "ideals" in the experiment to facilitate decision making for participants, and to 

ensure the validity of our measurements. By providing an "ideal", participants' task was reduced 

to comparing two simultaneously presented graphs. They did not need to produce and maintain 

a mental image of an "ideal" against which our stimuli could be compared. Thereby, we could 

compensate for potential lack of sufficient statistical background knowledge. For 

homoscedasticity, 100 box-jitter plots were generated using R. Each plot consisted of three box-

jitters, each representing one group. Group labels (Risky, Safer, Extremely cautious) were 

displayed on the x-axis. Each dot in the graph represented a data point. The "ideal" homogeneity 

plot was chosen out of the pool of available box-jitter plots. All stimuli plots and both ideals had 

a resolution of 420x300 pixels. During all trials, the stimulus was shown to the right of the ideal 

with its center at a length of 450 pixels and at a height of 50 pixels. The ideal's center was at a 

length of 250 pixels and at a height of 50 pixels in all cases respectively. Example stimuli for 

normality and homoscedasticity, as well as the ideal for normality and the homoscedasticity ideal 

are included in Appendix C. The complete R code used to simulate data, generate plots, and 

analyze results is included in Appendix D. 

Design 

The current study employed a complete within-subject experimental design. Manipulation 

occurred by exposing participants first to 100 dot-histograms and afterwards, to 100 box-jitter 

plots of 200 simulated data sets by means of a computer program. Presentation order of 

individual stimulus plots was randomized across participants. The accuracy and extent to which 

participants' judgments were informed by rational criteria was examined. 
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Procedure 

All participants received the same briefing concerning the nature and purpose of the experiment. 

During data collection, it was not feasible to conduct the experiment at exactly the same place in 

all cases. However, all locations fulfilled the following requirements: isolation from other 

people, quietness, and a laptop to run the program. Locations included study places in the library 

of the UT, the laboratory of the behavioral sciences on campus of the UT, and the private homes 

of the conducting researchers. An appointment was made between researcher and participant. 

The conducting researcher was responsible for arranging a suitable experimental location. Upon 

arrival of the participant, he or she was greeted by the researcher and led to the experimental 

location. The participant sat down in front of the laptop with three pieces of paper lying on the 

table, two of them being covered. The experimenter asked the participant to read the provided 

research summary, that is, the cover story, and afterwards, whether the participant still had 

questions about the experiment. The provided cover story is included in Appendix E. When all 

questions of the participant were clarified, the participant signed the informed consent form. The 

program was opened and the experimenter filled in the participant’s ID. The researcher informed 

the participant that he or she should let the researcher know in case of any problems with the 

software. The participant was then left alone in the room to complete the program. 

 Upon completion of the program, the experimenter rejoined the participant. It was first 

checked whether the participant’s data was successfully saved by the program. The participant 

was then debriefed. Debriefing included revealing the true purpose of the experiment and 

clarifying participant questions about the experiment and program, if applicable. Finally, the 

participant was seen off. 

Data Analysis 

Data analysis was performed in two steps. First, during visual exploratory data analysis, the 

statistical outcomes (accept or reject normality/homogeneity of variance) of the respectively 

administered statistical test, and participants’ judgements were compared with regard to the 

extent to which they were informed by objective criteria. For the normality data sets for the 

objective criteria were: sample size and the amount of skewness in the sample. For the 
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homoscedasticity data sets the objective criteria were: the amount of scale, relative to σ, and 

sample size. In a second step, a generalized linear mixed-model in the form of a logistic 

regression was built to further examine the influence of the above mentioned objective criteria 

on participants' judgement. Skew and sample size, that is scale and group size, were used to 

predict how likely a participant rejected normality or respectively, heteroscedasticity. We 

considered examining the interaction of skew, sample size and trial. That way we could have 

examined whether participants adjusted their usage of skew and sample size depending on the 

progress of the experiment, that is, whether participants' performance improved. Including trail 

number in the normality model led to model saturation. However, the interaction between scale, 

group size and trial number could be studied in an early version of the homoscedasticity model. 

Effects were minuscule which is why we pruned both models and trial number was ultimately 

removed as a predictor. 

Results 

Normality 

EDA. Figure 1 and Figure 2 show the relation between the response (accept or reject normality) 

on the one hand, and sample size and skew on the other hand for both, the Shapiro-Wilk test of 

normality and the participants of the current study. As shown in Figure 1, for the Shapiro-Wilk 

test a clear pattern emerges. With increasing skew, the test correctly rejects normality. Sample 

size appears to be of little influence on the test's judgment. 
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Figure 1. Association between statistical outcome (normal or non-norm p<.05), sample size (N) and skew in the 

sample for the Shapiro-Wilk test of normality. 

Figure 2 shows the reject normality responses of each participant in relation to sample size and 

skew in the sample. The response pattern of participants is less clear than the test's outcome 

pattern, and shows great variation across participants. Apparently, participants had difficulties 

judging normality. Some participants even rejected samples with zero skew (see for example 

participant 19 and 21), others accepted samples with more than 1.0 skew (see for example 

participants 3, 14, and 15). However, the same pattern as found in Figure 1 is slightly visible in 

some participants, most clearly in participants 1 and 29, suggesting that at least to some extent, 

these participants made use of objective criteria.
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Figure 2. Association between reject normality response (TRUE or FALSE), sample size (N) and skew in the sample for each participant. 
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Logistic regression model. Table 1a shows fixed effects of skew in the sample, sample size (N), 

and the interaction effect of skew and sample size on the probability that participants reject 

normality. Values in Table 1a are on the logit scale. 

Table 1a 

Fixed effects of skew, sample size, trial number and the skew * sample size 

interaction on participants’ judgments 

Parameter Point 

Estimate 

Lower * Upper* 

Intercept -.098 -.934 .661 

Skew .488 -.580 1.650 

Sample size -.007 -.012 .000 

Skew*Sample 

size 

.006 -.002 .014 

*95% credibility limits 
 

To obtain interpretable probabilities, the logit values first have to be transformed into linear 

predictors (η𝑖) using the following formula: 

η𝑖 =  𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥1𝑖𝑥2𝑖 + ε𝑖   (2) 

Where η𝑖 is the linear predictor of values 𝑥1𝑖 and 𝑥2𝑖. 𝑥1𝑖 can be any value for skew between 0 

and 1, and 𝑥2𝑖 can be any specific sample size. 𝛽0 is the intercept value. The intercept in our 

model represents the situation that skew is 0 and N = 0. A more useful baseline rate for rejection 

rate would be at skew = 0 and the smallest sample size N = 10. 𝛽1, 𝛽2, and 𝛽3 are the regression 

coefficients for respectively, skew, sample size and the interaction effect of skew and sample 

size. 𝛽0, 𝛽1, 𝛽2, and 𝛽3 are the logit values as shown in Table 1a. ε𝑖 represents unknown random 

error. Once η𝑖 is obtained, it is transformed into a probability 𝜇𝑖 using the following formula: 

𝜇𝑖 =  
𝑒η𝑖

(1+𝑒𝑛𝑖)
 (3) 

Where 𝜇𝑖 is the predicted probability that participants reject normality given η𝑖. 𝜇𝑖 can be used 

as a measure of impact by comparing how different values for skew and sample size affect the 

probability that participants reject normality. For example, the baseline probability that 

participants reject normality with skew = 0 and a sample size of N = 0 is calculated as follows: 

1. Calculation of the linear predictor η𝑖 

η𝑖 =  −0.098 − 0.488 ∗ 0 − 0.007 ∗ 0 + 0.006 ∗ 0 ∗ 0 = -0.098  (4) 

2. Calculation of the probability 𝜇𝑖 
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𝜇𝑖 =  
𝑒−0.098

(1+𝑒−0.098)
= 0.48  (5) 

The baseline probability that participants reject normality is thus 0.48, almost chance level, 

which is logical as there is nothing to judge in the plot if N = 0. However, this can only be 

concluded with high uncertainty, 95% CI [-.934, .661]. Likewise, the adjusted baseline 

probability that participants reject normality when skew = 0 and N = 10 is 0.46, still close to 

chance level. Respectively, when skew = 1 and N = 10 the probability that participants reject 

normality is 0.59. Ideally, the probability that participants reject normality increases drastically 

with increasing skew. However, according to our model, participants tend to judge at chance 

level in both cases, when there is little skew in the sample, and when the sample is extremely 

skewed.  The fact that the probabilities for the most extreme values for skew (0 and 1) are both 

fairly close to chance level shows that participants did not make proper use of the objective 

criterion. However, it has to be noted that there is considerable uncertainty concerning the impact 

of skew, 95% CI [-.580, 1.650]. As earlier revealed by visual data exploration, sample size is of 

little influence on participants judgments according to our model. Increasing sample size to N = 

50 and keeping skew constant at skew = 0 yields a probability of 0.39 that participants reject 

normality, compared to a probability of 0.46 when skew is 0 and N = 10. This can be concluded 

with fair certainty, 95% CI [-.012, .000]. Moreover, there is only a miniscule interaction effect 

between skew and sample size. Disregarding the interaction effect when skew = 1 and N = 10 

yields a probability of 0.58, compared to a probability of 0.59 when the interaction is taken into 

account. This can be concluded with fair certainty, 95% CI [-0.002, 0.014]. It makes sense that 

there is only a small interaction between skew and sample size if participants were neither able 

to make use of skew nor of sample size during their judgments. 

 Table 1b shows random effects of skew, sample size, the interaction between skew and 

sample size, and stimulus. Random effects show how much variation across units exist in the 

data set for a particular effect (Table 1a). Relevant units are the participant and stimuli. For 

instance, the large coefficient for participant intercept confirms what was earlier seen in the 

visual EDA: participants differ greatly in their base rejection rate. This means that some 

participants were more inclined to reject our stimuli than others to begin with. However, the 95% 
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CI [.355, 1.074] renders the estimate value of .680 considerably uncertain. The great coefficient 

for skew (.780) indicates that participants differed largely in how much their responses were 

influenced by skew in the sample. Being strongly influenced by skew is desirable, under the 

condition that skew is correctly interpreted. The large 95% CI [.188, 1.362] renders the estimate 

value of .780 considerably uncertain, though. The great coefficient for stimulus (.891) means 

that, even when skew and sample size are taken into account, stimuli still systematically differed 

in which response they provoked (rejecting or accepting normality). Apparently, they have 

additional unknown characteristics that either promote rejecting or accepting normality. The 

95% CI [.737, 1.074] shows that the estimate value of .891 is considerably uncertain. Participants 

did not differ remarkably in how much they were influenced by sample size and the interaction 

between skew and sample size. 

Table 1b 

Random effects of skew, sample size, the skew*sample size interaction, and 

stimulus 

Parameter Point 

Estimate 

Lower * Upper* 

Participant 

Intercept 

.680 .355 1.074 

Skew .780 .188 1.362 

Sample size .002 .000 .006 

Skew*Sample 

size 

.004 .000 .009 

Stimulus 

Intercept 

.891 .737 1.074 

*95% credibility limits 

Homoscedasticity 

EDA. Figure 3 and Figure 4 show the relation between the statistical outcome (accept or reject 

heteroscedasticity) on the one hand, and group size and amount of scale on the other hand for 

both, Levene's test and the participants of the current study. As shown in Figure 3, for the Levene 

test, a clear pattern emerges. With increasing scale, the test correctly accepts heteroscedasticity. 

Sample size has apparently little influence on the test's judgment. 
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Figure 3. Association between statistical outcome (heterosced p<.05 or homosced), group size (N_grp) and amount 

of scale in the sample for Levene's test. 

Concerning participants' responses (accept or reject heteroscedasticity), Figure 4 shows their 

reject heteroscedasticity responses in relation to sample size and amount of scale in the sample. 

There is no clear pattern in participants' judgements and large variation across participants. This 

variation refers to, for instance, a general tendency to accept or reject heteroscedasticity. For 

example, participants 22 and 27 seem to have a much higher general tendency to accept 

heteroscedasticity compared to the rest of the participants. Participants apparently had 

difficulties judging homoscedasticity. As for most participants responses are almost randomly 

scattered, regardless of the amount of scale in the sample or group size, it becomes evident that 

they made little use of objective criteria to support their judgements. There is one exception, 

though. Of all participants, the response pattern of participant four appears to be most informed 

by objective criteria.
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Figure 4. Association between reject heteroscedasticity response (TRUE or FALSE), group size (N_grp) and amount of scale in the sample for each participant. 
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Logistic regression model. Table 2a shows fixed effects of scale, group size, and the interaction 

effect of scale and group size on the probability that participants reject heteroscedasticity. Values 

in Table 2a are on the logit scale. They are transformed in the same manner as values in Table 

1a by first obtaining a linear predictor (η𝑖), and afterwards a measure of the probability that 

participants reject heteroscedasticity (𝜇𝑖). See Equation 2 and 3 for a detailed description of how 

η𝑖 and 𝜇𝑖 are obtained. In Equation 2, the scale parameter replaces the skew parameter, group 

size replaces sample size, and the scale*group size interaction is included instead of the 

skew*sample size interaction. Also, unlike skew, scale varies between 0 and 1.5. 

Table 2a 

Fixed effects of scale, group size and the scale * group size interaction on 

participants’ judgments 

Parameter Point 

Estimate 

Lower * Upper* 

Intercept .828 -.293 1.918 

Scale .560 -.945 2.165 

Group size -.031 -.053 -.010 

Scale*Group 

Size 

.014 -.018 .040 

*95% credibility limits 
 

Again, the intercept in our model represents the situation that scale is 0 and N_grp = 0. The 

baseline probability that participants reject heteroscedasticity is therefore 0.70. This is not logical 

as there is nothing to judge if N_grp = 0. Seemingly, our participants had a general tendency to 

reject our stimulus plots. A more useful baseline for rejection rate would be at scale = 0 and the 

smallest group size set to N_grp = 10. The suggested baseline probability that participants reject 

heteroscedasticity is 0.63, quite close to chance level. When scale is increased to 1.5 and group 

size is kept constant at N_grp = 10, the probability that participants reject heteroscedasticity is 

0.83, according to our model. Again, this is worrisome. Participants apparently judge close to 

chance level when scale is low and reject heteroscedasticity when scale is high, which is ill-

founded. Participants were not able to make good use of the objective criterion of scale. It has to 

be noted, though,  that there is considerable uncertainty concerning the impact of the predictor 

scale, 95% CI [-.945, 2.165]. In fact, there is so much uncertainty that it is difficult to arrive at 

clear general conclusions. According to our model, group size is of medium influence on 
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participants' judgments. The probability that participants reject heteroscedasticity is 0.33 for 

scale = 0 and N_grp = 50, compared to a probability of 0.63 when scale = 0 and N_grp = 10. 

Participants apparently tend to accept heteroscedasticity with larger group sizes, independently 

of amount of scale. However, this can only be concluded with fair uncertainty, 95% CI [-.053, -

.010]. Our model shows that there is only a weak interaction between scale and group size. For 

example, the probability that participants reject heteroscedasticity when scale = 1.5 and N_grp 

= 10 is 0.80 when disregarding the interaction effect between scale and group size, compared to 

a probability of 0.83 when the interaction is taken into account. This can be concluded with fair 

certainty, 95% CI [-.018, .040]. It makes sense that there is only a small interaction between 

scale and group size if participants were not able to make use of scale during their judgments. 

 Table 2b shows random effects of scale, group size, the scale*group size interaction, and 

stimulus. Random effects show how much variation across units exist in the data set for a 

particular effect (Table 2a). Relevant units are the participant and stimuli. According to our 

model, there is great variation between participants' tendency to reject heteroscedasticity. This 

is represented by the relatively large estimate value of .666. However, this can only be concluded 

with considerable uncertainty, 95% CI [.123, 1.178] The large value for scale (.746) means that 

participants differed greatly in how much they were influenced by scale. The large 95% CI [.127, 

1.266], renders this conclusion quite uncertain, though. The considerable value of .672 for 

stimulus shows that, similar to the stimuli employed for normality, stimuli for homogeneity of 

variance differed in what response they provoked after taking scale and group size into account. 

There is less variation compared to the stimuli employed for normality, though. Still, this means 

that the stimuli for homoscedasticity have unknown characteristics that trigger a certain response 

(accept or reject heteroscedasticity). The 95% CI [.549, .831] sheds fair uncertainty on the 

estimate value of .672. Participants differed little in how much they were influenced by group 

size and the interaction of scale and group size. 
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Table 2b 

Random effects of scale, group size, the scale*groups size interaction, and 

stimulus 

Parameter Point 

Estimate 

Lower * Upper* 

Participant 

intercept 

.666 .123 1.178 

Scale .746 .127 1.266 

Group size .015 .006 .025 

Scale*Group 

size 

.006 .000 .019 

Stimulus 

intercept 

.672 .549 .831 

*95% credibility limits 

 

Further Data Exploration 

As mentioned above, our stimuli apparently had unanticipated characteristics that made them 

differ systematically in which response (accepting or rejecting normality, respectively 

heteroscedasticity) they provoked, even when the respective intended objective criteria were 

taken into account. Our results suggest that objective criteria were largely ignored by our 

participants, but the stimuli intercept random effects indicate that stimuli still differed 

systematically in how often they were rejected. Apparently, the answers of our participants were 

not completely random. Rather, instead of making decisions informed by objective criteria, 

participants appear to have made use of other, unknown "rules" to judge the stimulus plots. 

Presumably, participants fell back into heuristic decision making. In our further data exploration 

we try to identify these heuristics by comparing plots of high and low rejection rates. To that 

end, random effects on stimulus-level were extracted. They show how much a plot differs from 

the average rejection rate. Figure 5 shows the random effect intercepts and 95% CIs for normality 

stimuli, ordered by point estimate. Even though the estimates are quite uncertain, considerable 

variance is visible: stimuli vary in how often they were rejected. The precise stimulus random 

intercepts and 95% CIs for normality stimuli are included in Appendix F. 
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Figure 5. Normality stimuli random intercepts and 95% CIs, ordered by point estimate. 

To examine properties that are related to high rejection rate every fifth normality stimulus plot 

ordered by rejection rate is shown in Figure 6. 

 

Figure 6. Every fifth normality stimulus plot ordered by rejection rate. At the top-left corner the stimulus with the 

highest rejection rate is displayed. 
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Apparently, there are no consistent properties that triggered a reject response. For instance, the 

first plot has strikingly few data points plus a visible gap between core observations and a few 

"outlier observations" on the right side. However, if these were heuristics our participants made 

use of, the fourth plot in the fourth row should have been rejected more often than our ranking 

reveals. Likewise, the second plot shows an extreme slope with a strikingly high peak. However, 

if this was a property by which our participants consistently judged the plots, the third plot in the 

third row should have been rejected more often. Ruggedness does not seem to be a property that 

is generally associated with a reject response. It seems as if participants judged each plot 

individually and neither made use of objective criteria nor consistent heuristics in the course. 

 Concerning the homoscedasticity plots, Figure 7 shows the random effect intercepts and 

95% CIs for homogeneity of variance stimuli, ordered by point estimate. 

 

Figure 7. Homoscedasticity stimuli random intercepts and 95% CIs, ordered by point estimate. 

Again, although estimates are uncertain, considerable variance is visible: stimuli systematically 

vary in how often they were rejected. The precise stimulus random intercepts and 95% CIs for 

homoscedasticity stimuli are included in Appendix F. As with the normality stimulus plots, every 

fifth box-jitter plot, ordered by rejection rate, is shown in Figure 8 to examine the heuristics 

employed by our participants.
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Figure 8. Every fifth homogeneity of variance stimulus plot ordered by rejection rate. At the top-left corner the stimulus with the highest rejection rate is displayed.
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. 

As with the normality plots, there are seemingly no consistent properties that led to a reject 

response. The equality of box length across groups, the location of the median line within the 

box, or the number of outliers may have served as cues. However, our ranking does not reveal a 

consistent reject pattern for these properties. The first plot of the third row and the second plot 

of the first row should both have been rejected more often, whereas the second plot of the last 

row should have been placed higher in the reject heteroscedasticity ranking if outliers, the 

position of the median, and equality of box length were consistent heuristics employed by our 

participants. Even a sophisticated combination of the above mentioned properties cannot account 

for the obtained rejection ranking. 

Discussion 

The current study questioned the faith advocators of graphical data exploration put in humans' 

visual detection abilities by testing these abilities experimentally. Specifically, the current study 

exposed participants to 100 dot-histograms and 100 box-jitter plots of 200 simulated data sets 

by means of a computer program. Participants indicated whether they accepted or rejected 

normality, respectively homoscedasticity, for each stimulus plot. Our participants were 

apparently not able to reliably and validly detect violations of the normality assumption and 

homoscedasticity visually. Furthermore, our participants did not make judgments informed by 

rational objective criteria. Skew and sample size served as objective criteria for the normality 

data sets, and scale and group size for the homoscedasticity data sets. Instead, our participants 

appeared to judge in a rather random and ill-founded fashion. Also, great variation between 

participants was revealed regarding their baseline rejection rate and in how much they were 

influenced by objective criteria, which makes drawing general conclusions difficult. However, 

this also leaves a spark of hope that under the general picture of poor performance some 

competent individuals are covered. The current study provides strong reason for concern 

regarding the question whether professionals can cope without statistical tests when examining 

statistical assumptions as suggested by Zuur et al. (2010). The question arises why the 

participants of the current study, all being students of the psychology department of the 
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University of Twente and thus, assumed to have had substantial experience with statistics, had 

so much difficulty making visual judgements on whether statistical assumptions were violated. 

Limitations 

One possible explanation lies in the formulation of the questions we asked the participants. In 

particular, for the normality data sets we asked "Are these scores normally distributed? (Y/N)". 

A better formulation may have been "Is this distribution asymmetrically skewed? (Y/N)" or "Are 

these scores randomly generated from a normal distribution? (Y/N)". The normality assumption 

refers to residuals and not to raw scores, as suggested by the question we asked. However, there 

were no questions and no remarks on the part of our participants concerning what exactly should 

be normally distributed. This suggests that the ambiguity we left our participants with remained 

unnoticed. Some other limitations mentioned were initial unclarity as to which of the two plots 

presented during trials was the ideal and which was the stimulus plot. Furthermore, it was 

criticized that the normal density curve in the ideal for normality was cut off at the y-axis 

intercept, which does not accurately represent a normal density curve. All mentioned limitations 

of the current study potentially confused participants, thereby distorting their response pattern. 

However, our results suggest that regardless of the above mentioned limitations, our participants 

performed poorly. 

Choice of Statistical Graphics 

Another possible explanation for why our participants had so much difficulty judging the plots 

lies in the choice of the administered plots. Indeed, random effects revealed that the stimulus 

plots for both, normality and homoscedasticity, differed greatly from each other in the kind of 

response they provoked. Our stimulus plots apparently had unknown characteristics that 

provoked a certain response, even after the respective objective criteria had been taken into 

account.  However, when we examined random effects on individual stimulus level, that is, how 

much a stimulus differed from the average rejection rate, there were no clear properties visible 

that might be associated with a reject response. The results suggest that our participants did not 

only fail to inform their decisions by objective criteria, but also, that they did not even make use 
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of consistent heuristics. However, it has to be mentioned that the performed analyses do not 

allow any conclusion on whether individual participants did make use of consistent heuristics. 

The consistent use of heuristics by individual participants may have been lost in averaging 

rejection rates over participants. Thus, in future research it would be more productive to examine 

judgement heuristics on the level of the individual participant to obtain an understanding of how 

participants judge stimuli plots. This is in accordance with what Molenaar and Campbell (2009) 

call a necessary "Kuhnian paradigm shift" (p.1) from interindividual to intraindividual variation 

analyses whenever person-specific psychological processes, such as information processing and 

perception, are the subject of interest. 

 As mentioned above, our plots turned out to have some shortcomings. The question 

arises what kind of plots are optimal for visually testing for violations of statistical assumptions 

in general, and for the assumptions of normality and homogeneity of variance in particular. As 

mentioned above, there is little clarity in the relevant scientific literature when it comes to the 

question of how statistical graphics should best be designed and administered. As Johnson (2004) 

notes, the visualization community still relies too much on ad hoc techniques and rules of thumb. 

In the current study, the suggestions of Zuur et al. (2010) were chosen as a guidance. Our results 

question the appropriateness of the suggested graphics. However, there are plenty of alternatives. 

For instance, the violin plot is a useful graphical technique that has received considerable 

attention in recent years (Hintze & Nelson, 1998; Marmolejo-ramos & Valle, 2009). The core 

feature of the violin plot is that it shows the same information about the center, spread, 

asymmetry, and outliers of a variable as a boxplot, and additionally, a smoothed histogram, a 

density estimate, also providing information about the shape in a single plot. An example of a 

violin plot is included in Appendix G. The single plot structure facilitates comparison of the 

distributions of several variables (Hintze & Nelson, 1998). However, according to Haughton and 

Haughton (2011), violin plots reduce the impact of an otherwise well-designed box plot and lack 

the ease of interpreting a horizontal kernel density. Another frequently used technique for 

checking the normality assumption is the Q-Q plot (quantile-quantile plot). Essentially, when a 

Q-Q plot is used to check for normality, observed values are plotted against the expected values 
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the scores should have if the data was normally distributed. If the data is indeed normally 

distributed then the observed scores will have the same distribution as the predicted scores and 

the Q-Q plot shows a straight diagonal. Deviations from the diagonal indicate deviation from 

normal (Field & Field, 2012). For instance, Figure 9 shows the normal Q-Q plot of one of the 

simulated normality samples of the current study, S01_1. 

 

Figure 9. Normal Q-Q plot of one of the simulated normality samples of the current study (S01_1). Observed values 

of Total Score are on the x-axis and expected values of Total Score given normality on the y-axis. 

Although Q-Q plots give a clearer picture of whether a certain set of data is normally distributed 

or not, they are conceptually and graphically less intuitive. Indeed, the important point is that 

whatever graphical technique is to be preferred should be decided from the viewer's point of 

view. Statistical graphics are only useful if the viewer is able to extract the relevant information 

with ease. Thus, the viewer and her/his visual and theoretical capacities have to be taken into 

account (Chen, 2005; Johnson, 2004). The research of Cleveland and McGill (1984) on 

elementary perceptual tasks is a good starting point, but provides little practical value when it 

comes to selecting one technique out of the many available and commonly used techniques. 
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Empirical support for the usefulness of existing graphical techniques is desirable Johnson (2004). 

In the context of evaluating competing graphics, Tukey 1990) proposed a method to examine 

which of two or more graphics best shows a "phenomenon". A phenomenon is a potentially 

interesting thing that can be described non-numerically. There are three phases in Tukey's 

suggested experimental design. In phase one, each participant receives information about a fair 

amount of likely phenomena and what they look like in each style of presentation, thus, in each 

graphical technique being tested. In the second phase, participants are briefly exposed to a data 

visualization using one style of presentation applied to one set of data. Participants are asked 

whether a certain phenomenon was present in the visualization. Presence and nonpresence, as 

well as the different phenomena should be balanced and randomized across trials. It should be 

recorded whether the participant gave a correct or incorrect answer. Finally, in phase three, the 

data of phase two is analyzed. The time of graphic display for 90% right should be determined 

for each presentation style. Then, time is to be compared across data sets and style. The graphical 

technique in which 90% right is seen most rapidly is to be preferred. Tukey encourages 

modification and extension of his suggested experimental design. 

Criticism of Psychological Education 

Apart from the need to quantify the effectiveness of competing graphical techniques in future 

research, Nolan and Perrett (2015) advocate the early incorporation of statistical graphics into 

the undergraduate statistical curriculum. According to the authors, creating informative 

statistical graphics can be rewarding for students at all levels of proficiency as it emphasizes 

statistical thinking over calculations. Also, the creative expression of statistical findings may 

help to overcome the difficulties inherent in learning computational thinking. Nolan and Perrett 

(2015) developed several assignments that exemplify possibilities for incorporating graphics into 

curricula in a pedagogically meaningful way. Among these assignments are: deconstructing and 

reconstructing plots, converting tables into graphics and copying expert graphs. Indeed, the 

above mentioned considerations on the limitations of the current study and the choice of 

statistical graphics are based on the premise that the participants of the current study are 

sufficiently proficient in statistics. However, the experimenters expressed their doubt about 
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participants' competence. During debriefing of the experiment, experimenters frequently 

received basic statistical questions. For instance, participants asked what was meant by 

"homogeneity of variance", a term that should be well known to any student in the psychology 

department. Also, participants reported that they experienced judging our stimuli plots to be 

extremely difficult. Indeed, as mentioned earlier, the reviewed expertise research (Lesgold, 

1983; Loveday et al., 2013) stressed the importance of domain knowledge for expert 

performance. A lack of relevant domain knowledge will prevent subjects from performing well 

on pattern recognition tasks as featured in our experimental setup. To rule out the possibility that 

our results simply reflect incompetence on behalf of our participants, future research should 

include professional statisticians and researchers in the subject pool. Generally speaking, the 

quality and competence of the methodological and statistical education of psychology 

departments and psychological researchers in practice have received much criticism in recent 

years (e.g. Aiken et al., 1990; Hoekstra, Morey, Rouder, & Wagenmakers, 2014). Aiken et al. 

(1990) conducted a detailed survey to assess the extent to which advances in statistics, 

measurement, and methodology had been implemented into the doctoral training of all PhD 

programs in psychology offered in the United States and Canada. They revealed that the 

methodological curriculum had advanced little in the previous 20 years,  despite major advances 

in statistics, methodology, and measurement. Aiken et al. (1990) describe three major costs of 

not being familiar with advances in the field. A first cost is failure to utilize designs that optimize 

the tests of theory. A second cost is failure to gather relevant data that would be most suitable 

for answering a research question at hand. And thirdly, another cost is failure to draw correct 

conclusions due to the misanalysis of data. The authors stress that serious errors will increasingly 

flaw the psychological literature if researchers do not become better educated in methodology. 

Aiken et al. (1990) plead for the reformation of the methodological curriculum to prevent the 

current situation from further deteriorating. After all, today's students are tomorrow's 

researchers. Specifically, the authors' considerations include the retraining of faculty members, 

a stronger undergraduate preparation in mathematics and statistics, and the individual tailoring 

of statistical, methodological, and measurement skills to the needs of students in their specific 
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substantive areas. A second major criticism of the methodological and statistical education in the 

field of psychology is formulated by Hoekstra et al. (2014). The authors examined the 

interpretations of confidence intervals (CIs) of first-year, and graduate psychology students, and 

researchers in the field of psychology. Specifically, participants were given six particular 

statements involving different interpretations of a single CI, and asked to rate each statement as 

either true or false. Though all six statements were false, both, researchers and psychology 

students endorsed on average more than three statements, exposing their lack of understanding 

of CIs. Remarkably, neither self-declared experience with statistics nor having undergone 

substantial statistical training protected researchers and students alike from endorsing false 

statements. Hoekstra et al. (2014) stress the lack of understanding of CIs among psychological 

professionals and the apparent difficulty of the concept, especially since CIs are among the main 

tools by which psychologists draw inferences from data. In sum, the reviewed critique of the 

methodological and statistical education in the field of psychology is two-folded. Aiken et al. 

(1990) revealed a reluctance among American and Canadian psychology departments to 

incorporate advances in methodology, statistics, and measurement into their doctoral trainings, 

whereas Hoekstra et al. (2014) exposed considerable drawbacks in the statistical competence of 

both, psychology students and researchers in practice. This is worrisome. 

Implications and Future Research 

Zuur et al. (2010) advocated the use of statistical graphics in data exploration. Our research 

objective was to confirm that practitioners of research statistics are actually able to detect 

violations of statistical assumptions visually. Unfortunately, on the basis of the obtained results 

we have to conclude "No, they cannot detect violations of statistical assumptions visually.". So, 

what does this insight leave us with? Apparently, there is need for more research into the 

following subjects: First of all, as earlier advocated by Tukey (1990) and Johnson (2004), the 

effectiveness of competing statistical graphics needs to be established empirically once for all. 

We suggest using Tukey's (1990) method as a starting point to this end. One could, for instance, 

select a number of graphics suitable for checking normality, such as Q-Q plots, kernel densities 

(Marmolejo-ramos & Valle, 2009) and histograms, and examine experimentally what graphic 
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yields the most correct detections of violations in the shortest amount of time. Secondly, the 

apparent lack of basic statistical competence of our participants and the criticism on the 

curriculum of psychology departments in general, indicates that students should be taught 

methodology and statistics differently. This is crucial if the field of psychology does not wish to 

end up with a bunch of poorly educated researchers in the near future. Research should dig into 

how to teach students methodology and statistics properly. Nolan and Perrett (2015) provide 

suggestions regarding the incorporation of statistical graphics into the curriculum, teaching them 

the proper use of them and promoting statistical thinking. Another option would be to dig deeper 

into what constitutes good feedback in an experimental setup comparable to the one employed 

in the current study. Our feedback was not directed at learning how to judge our stimulus plots 

correctly. Feedback directed at insight instead of a short comment on whether a given reply was 

correct or not may promote learning and would yield valuable insights into how students can be 

taught how to correctly interpret statistical graphics. Given the great merits visualization holds 

for data exploration and data analysis this appears to be a promising course of action. In the 

meantime, one could settle for a joint usage of graphical and statistical techniques as advocated 

by some (Behrens & Yu, 2003; Marmolejo-ramos & Valle, 2009). After all, contrary to common 

criticism of null hypothesis testing techniques (e.g. Läärä, 2009), the statistical tests employed 

in the current study displayed considerable robustness against fluctuations in sample size. 

Conventional tests may still hold (temporary) merits for assumption checking. Once there are 

sufficient researchers who received proper education in (the application and interpretation of) 

statistical graphics, the scientific community may finally be ready for a methodological shift 

from statistical techniques to the use of statistical graphics as the main tool for data exploration. 

Fact is, we are not ready for it yet. 

Conclusion 

In conclusion, the results of the current study provide reason for serious concern regarding the 

abolishment of confirmatory statistical techniques for examining violations of statistical 

assumptions as advocated by Zuur et al. (2010). We plead for a stronger concern for actively 

tackling visualization problems (Chen, 2005; C. Johnson, 2004), partly through the reformation 
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of the current psychological curriculum (Nolan & Perrett, 2015). Furthermore, the improvement 

of psychological training in methodology, statistics, and measurement emerged as an important 

end in itself since the participants of the current study, all being students of the psychology 

department of the University of Twente, displayed devastating competence in statistics. Taking 

current drawbacks in the design and application of statistical graphics, the competence of 

students and researchers in psychology, and the advantages of both, statistical techniques and 

visual EDA, into account, we advocate a temporary joint usage of confirmatory and graphical 

exploratory techniques in psychological research. In addition, psychological curricula have to 

undergo a reformation and should incorporate and emphasize statistical graphics early in their 

training. If no measures are being taken the quality and reproducibility of psychological research 

will further deteriorate in the near future.  
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Appendix A 

Instruction 1 

 

As part of a nationwide online-survey on student satisfaction with the services provided by their 

higher educational institutions, students were asked to evaluate the library of their institution. 

This was done by means of a 10 item questionnaire. Example items included “The last time I 

asked for help, the librarians working at the library were able to answer my questions 

competently.”, and “The last online catalogus reservation I made was processed in due time.” 

For each item, the participants replied by marking their preference on a 5-point-Likert-scale (1 

= completely unsatisfactory, 2 = partly unsatisfactory, 3 = neutral, 4 = partly satisfactory  5 

=  completely satisfactory). The obtained answers of the participants yielded one total score per 

participant on the scale. 

 

The obtained data was read into an spss file. 

‘Higher educational institution’ was added as a grouping variable to distinguish samples. Each 

sample represents the students of one specific educational institution. 

 

As part of data exploration prior to conducting statistical analyses on the data, you take a look at 

how total scores are distributed in the samples. The following graphs show the distribution of 

participant total scores. Each graph shows a specific sample, thus the total scores of the students 

of a specific educational institution on the questionnaire. 

 

 

We would like you to answer the following question per graph presented: 

 

Are the total scores normally distributed? 
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Press <y> on the keyboard for “yes”. 

Press <n> on the keyboard for “no”. 

 

For your convenience, each sample graph will be accompanied by a graph of an ideal normal 

distribution. You may refer to this “ideal” as a means for comparison. 

 

Also, there is no need to think long before answering. Your intuitive answer will usually be the 

best one. 

 

There will be 5 practice trials. Upon completion of the practice trials, your score will be reset to 

0 and the actual game begins. 

 

 

Press <ENTER> to start the practice trials 

 

Instruction 2 

 

A questionnaire has been sent to a randomized sample of car drivers. They were asked, among 

other questions, how they would rate their own driving style (risky, safer, extremely cautious). 

They were also asked how close they pull up to cars that braked when driving on a highway 

before stopping or steering around (numerical in meters). 

 

The data has been transformed into a data file for SPSS. Per group of drivers (risky, safer, 

extremely cautious) it has been examined more closely how far they stay away from other drivers 

when braking on a highway. 

Imagine you want to check with an Analysis of Variance-method if there is an effect of self-

reported driving style on the space they keep between themselves and other drivers. 
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In this case, you need to check whether the data fulfills the assumption of homogeneity of 

variance. You will do that with the help of the following box-jitter plots. The dots in the graphs 

represent data points. The following 100 graphs are possible representations of the 

aforementioned data. 

 

 

We would like you to answer the following question per graph presented: 

 

Are the variances homogenous? 

 

Press <y> on the keyboard for “yes”. 

Press <n> on the keyboard for “no”. 

 

For your convenience, each sample graph will be accompanied by a graph of ideal homogeneity 

of variance. You may refer to this “ideal” as a means for comparison. 

 

Also, there is no need to think long before answering. Your intuitive answer will usually be the 

best one. 

 

 

There will be 5 practice trials. Upon completion of the practice trials, the actual game will 

continue (i.e. during the trials your score will be frozen). 

 

 

Press <ENTER> to start the 5 practice trials. 
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Appendix B 

Table 3 

Simulation parameters of the 100 samples in the normality data set (S01) 

Stimulus N Mu (μ) Sigma (σ) Lambda (λ) Skew sample Skew population 

S01_1 185 10 2,878736 0,273571 0,812284 0,969772 

S01_2 189 10 1,651473 0,391952 1,343313 1,183202 

S01_3 72 10 1,649702 0,281231 0,966427 1,492908 

S01_4 169 10 2,166835 0,429482 0,842331 0,784597 

S01_5 136 10 3,827367 0,678592 0,280207 0,092779 

S01_6 113 10 3,887824 0,429743 0,202992 0,270908 

S01_7 153 10 3,219566 0,2562 1,446748 0,918159 

S01_8 44 10 3,199738 0,407537 0,066133 0,450688 

S01_9 138 10 2,607284 0,56903 0,278418 0,349199 

S01_10 147 10 1,006819 0,562091 1,316279 1,318365 

S01_11 102 10 2,826812 0,3808 0,240919 0,630561 

S01_12 149 10 3,510405 0,339026 0,501082 0,532454 

S01_13 188 10 3,254568 0,497696 0,262385 0,289935 

S01_14 66 10 2,358195 0,845416 -0,12656 0,180254 

S01_15 103 10 2,60737 0,424821 0,522726 0,601828 

S01_16 189 10 2,61213 0,284393 0,841175 1,034553 

S01_17 196 10 1,004143 0,367119 1,688208 1,652047 

S01_18 41 10 2,066998 0,485425 -0,4094 0,703539 

S01_19 105 10 2,836399 0,378461 0,848321 0,633383 

S01_20 121 10 3,486826 0,271875 0,373522 0,764462 

S01_21 183 10 2,070166 0,404863 0,687506 0,900351 

S01_22 45 10 2,231905 0,660111 0,412704 0,354252 

S01_23 198 10 2,720428 0,380359 0,437793 0,67121 

S01_24 190 10 2,769035 0,25744 0,61302 1,079829 

S01_25 35 10 3,158972 0,515185 -0,50501 0,286972 

S01_26 113 10 2,184919 0,288888 1,214952 1,209422 

S01_27 90 10 3,757612 0,520518 0,269276 0,188672 

S01_28 183 10 3,887711 0,642525 0,240861 0,10267 

S01_29 100 10 1,700571 0,873332 0,354775 0,348453 

S01_30 170 10 3,173493 0,575698 0,059535 0,221371 

S01_31 153 10 3,710904 0,487016 0,429385 0,226968 

S01_32 166 10 2,810422 0,677017 0,134388 0,201385 

S01_33 90 10 2,894522 0,522932 0,229631 0,334979 

S01_34 143 10 3,812158 0,949988 0,350959 0,037713 

S01_35 21 10 3,551448 0,250648 0,800552 0,833452 

S01_36 170 10 2,739463 0,292982 0,540507 0,948643 

S01_37 21 10 3,464212 0,793813 -0,19143 0,079828 

S01_38 57 10 1,341156 0,277024 1,227312 1,647388 

S01_39 183 10 3,293523 0,37541 0,179793 0,497365 

S01_40 130 10 2,87084 0,44167 0,529859 0,474937 

S01_41 88 10 1,44534 0,831317 0,371203 0,523554 
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S01_42 98 10 1,240793 0,372535 1,399658 1,495829 

S01_43 27 10 2,392209 0,82497 -0,14576 0,184689 

S01_44 195 10 3,338104 0,611929 0,314249 0,170009 

S01_45 98 10 3,200584 0,377521 0,660245 0,518369 

S01_46 192 10 3,451691 0,40884 0,233128 0,38655 

S01_47 180 10 1,510487 0,676403 0,899819 0,684465 

S01_48 135 10 3,834161 0,690256 -0,34467 0,088318 

S01_49 195 10 1,880872 0,400349 0,96232 1,019575 

S01_50 131 10 1,447216 0,261664 1,064623 1,635805 

S01_51 80 10 3,158136 0,499327 0,39081 0,307184 

S01_52 82 10 1,972258 0,638854 0,736849 0,480501 

S01_53 92 10 3,336428 0,552746 0,117509 0,216617 

S01_54 161 10 2,183323 0,385768 1,019378 0,894883 

S01_55 27 10 3,035779 0,93954 0,073284 0,072435 

S01_56 155 10 3,327475 0,29444 0,555333 0,728923 

S01_57 142 10 1,563607 0,751312 0,049658 0,544691 

S01_58 51 10 1,087257 0,381768 0,779714 1,575712 

S01_59 67 10 1,407141 0,3685 0,873134 1,39927 

S01_60 113 10 3,040493 0,350035 0,663019 0,642152 

S01_61 142 10 3,804469 0,318009 0,096369 0,517171 

S01_62 197 10 2,651482 0,729979 0,329627 0,19342 

S01_63 157 10 2,805299 0,517291 0,300062 0,365392 

S01_64 122 10 1,590983 0,260606 1,010747 1,576483 

S01_65 173 10 2,60571 0,399988 0,158951 0,663694 

S01_66 54 10 1,538667 0,711394 1,266012 0,613685 

S01_67 69 10 2,355659 0,277179 0,718426 1,174085 

S01_68 169 10 1,95116 0,619138 0,440696 0,518559 

S01_69 145 10 1,348524 0,264891 1,902866 1,67031 

S01_70 63 10 1,558306 0,273205 1,092599 1,557817 

S01_71 28 10 3,18919 0,70978 -0,10807 0,131971 

S01_72 45 10 2,235616 0,297969 0,2543 1,152901 

S01_73 59 10 2,242149 0,423745 1,62735 0,762041 

S01_74 106 10 2,44093 0,710617 0,042004 0,249184 

S01_75 56 10 2,282483 0,273548 0,779311 1,220631 

S01_76 149 10 1,409471 0,497478 0,90978 1,097812 

S01_77 21 10 3,474038 0,510772 0,048707 0,236686 

S01_78 88 10 2,776913 0,452213 0,205641 0,48348 

S01_79 113 10 3,383191 0,410302 0,269616 0,399409 

S01_80 20 10 3,307097 0,475352 1,309295 0,309238 

S01_81 125 10 3,754169 0,417176 0,632713 0,311723 

S01_82 48 10 3,587889 0,86981 0,232471 0,056829 

S01_83 85 10 1,950926 0,640176 0,872332 0,488327 

S01_84 136 10 1,777782 0,253294 1,71185 1,516195 

S01_85 160 10 3,226799 0,503823 0,17042 0,287632 

S01_86 121 10 3,242083 0,660943 0,130993 0,151255 

S01_87 62 10 3,753712 0,405718 0,141111 0,330709 

S01_88 36 10 3,379574 0,946914 0,215358 0,053066 
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S01_89 35 10 1,399989 0,495428 0,561958 1,109597 

S01_90 75 10 1,863249 0,918282 0,620444 0,256956 

S01_91 140 10 1,584028 0,277648 1,377146 1,534041 

S01_92 20 10 3,352328 0,312977 0,799919 0,656819 

S01_93 58 10 1,386616 0,513932 0,558306 1,080186 

S01_94 188 10 1,387268 0,4631 1,503383 1,191076 

S01_95 187 10 1,216759 0,500666 1,107249 1,245719 

S01_96 152 10 1,159388 0,787815 1,037491 0,805073 

S01_97 80 10 2,595623 0,305701 0,295041 0,961393 

S01_98 113 10 1,336925 0,356011 1,402999 1,472343 

S01_99 154 10 3,229563 0,696282 -0,05781 0,13418 

S01_100 131 10 3,193946 0,911118 0,124385 0,068645 

 

Table 4 

Simulation parameters of the 100 samples in the homogeneity of variance data set (S02) 

Stimulus Group size Sigma Scale 

S02_1 75 4,504981 1,327677 

S02_2 76 2,868631 0,775667 

S02_3 37 2,866269 1,277896 

S02_4 70 3,55578 0,664194 

S02_5 59 5,769823 0,23682 

S02_6 51 5,850432 0,663487 

S02_7 64 4,959421 1,451601 

S02_8 28 4,932984 0,726882 

S02_9 59 4,143045 0,378688 

S02_10 62 2,009092 0,389535 

S02_11 47 4,43575 0,813024 

S02_12 63 5,347206 0,974814 

S02_13 76 5,00609 0,504629 

S02_14 35 3,810926 0,091425 

S02_15 48 4,14316 0,676966 

S02_16 76 4,149507 1,258133 

S02_17 79 2,005523 0,861956 

S02_18 27 3,422664 0,530026 

S02_19 48 4,448532 0,821139 

S02_20 54 5,315769 1,339078 

S02_21 74 3,426888 0,734986 

S02_22 28 3,642541 0,257448 

S02_23 79 4,293904 0,814546 

S02_24 77 4,358713 1,442202 

S02_25 25 4,878629 0,470526 

S02_26 51 3,579892 1,230772 

S02_27 43 5,676816 0,460582 

S02_28 74 5,850281 0,27818 

S02_29 47 2,934094 0,07252 

S02_30 70 4,89799 0,368511 

S02_31 64 5,614538 0,52666 
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S02_32 69 4,413896 0,238534 

S02_33 43 4,526029 0,456147 

S02_34 61 5,749543 0,026322 

S02_35 20 5,401931 1,494829 

S02_36 70 4,319284 1,20659 

S02_37 20 5,285616 0,129871 

S02_38 32 2,454874 1,3049 

S02_39 74 5,058031 0,831879 

S02_40 57 4,494454 0,632068 

S02_41 43 2,593786 0,101455 

S02_42 46 2,321058 0,842157 

S02_43 22 3,856278 0,106083 

S02_44 78 5,117473 0,317088 

S02_45 46 4,934112 0,824431 

S02_46 77 5,268922 0,722972 

S02_47 73 2,68065 0,239205 

S02_48 58 5,778881 0,224368 

S02_49 78 3,174495 0,748909 

S02_50 57 2,596288 1,410847 

S02_51 40 4,877514 0,501347 

S02_52 41 3,296344 0,282651 

S02_53 44 5,115238 0,404574 

S02_54 67 3,577764 0,796116 

S02_55 22 4,714371 0,032175 

S02_56 65 5,1033 1,19814 

S02_57 61 2,751476 0,165503 

S02_58 30 2,116343 0,809697 

S02_59 36 2,542855 0,856851 

S02_60 51 4,720657 0,928427 

S02_61 61 5,739292 1,072281 

S02_62 79 4,201976 0,184951 

S02_63 66 4,407065 0,466574 

S02_64 54 2,787978 1,418609 

S02_65 71 4,140946 0,750038 

S02_66 31 2,718223 0,202846 

S02_67 36 3,807546 1,303887 

S02_68 70 3,268213 0,307574 

S02_69 62 2,464699 1,387569 

S02_70 34 2,744409 1,33013 

S02_71 23 4,91892 0,204444 

S02_72 28 3,647488 1,178024 

S02_73 33 3,656199 0,679955 

S02_74 49 3,921241 0,203614 

S02_75 32 3,709978 1,327832 

S02_76 63 2,545961 0,50507 

S02_77 20 5,298718 0,478911 

S02_78 43 4,369217 0,605674 
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S02_79 51 5,177588 0,718616 

S02_80 20 5,07613 0,551853 

S02_81 55 5,672226 0,698536 

S02_82 29 5,450519 0,074838 

S02_83 42 3,267901 0,281035 

S02_84 59 3,037042 1,473989 

S02_85 67 4,969066 0,492411 

S02_86 54 4,989444 0,256495 

S02_87 34 5,671616 0,732382 

S02_88 25 5,172765 0,028031 

S02_89 25 2,533318 0,509228 

S02_90 38 3,150999 0,044495 

S02_91 60 2,778705 1,300843 

S02_92 20 5,136438 1,097561 

S02_93 33 2,515489 0,472891 

S02_94 76 2,516357 0,579681 

S02_95 76 2,289012 0,498669 

S02_96 64 2,212518 0,134667 

S02_97 40 4,127498 1,135583 

S02_98 51 2,449233 0,904453 

S02_99 65 4,972751 0,2181 

S02_100 57 4,925262 0,048776 
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Appendix C 

 

Figure 10. "Ideal" stimulus for the normality construct with inserted normal density curve 

 

 

Figure 11. "Ideal" stimulus for the homoscedasticity construct 
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Figure 12. Example stimuli for the normality construct
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Figure 13. Example stimuli for the homoscedasticity construct 
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Appendix D 

--- 

title: "Experimental evaluation of graphical exploratory data analysis" 

author: "Martin Schmettow" 

date: "`r format(Sys.time(), '%d %B, %Y')`" 

output: html_document 

--- 

```{r purpose, eval = T, echo = F} 

purp.book = T 

purp.tutorial = F 

purp.debg = F 

purp.gather = T 

purp.mcmc = F #| purp.gather 

purp.future = F 

``` 

```{r libraries} 

library(plyr) 

library(pipeR) 

library(dplyr) 

library(tidyr) 

library(pipeR) 

library(readr) 

library(haven) 

library(stringr) 

library(ggplot2) 

library(openxlsx) 

library(emg) 

library(knitr) 

library(moments) 

library(car) 

library(gridExtra) 

library(lme4) 

library(MCMCglmm) 

library(brms) 

library(rstanarm) 

library(bayr) 

rstan_options(auto_write = TRUE) 

options(mc.cores = 3) 

opts_knit$set(cache = T) 

``` 

```{r profile, eval = T, echo = F, message = F} 

## The following is  for running the script through knitr 

# source("~/.cran/MYLIBDIR.R") 

thisdir <- getwd() 

# datadir <- paste0(thisdir,"/Daan/") 

# figdir = paste0(thisdir, "/figures/") 

## chunk control 

opts_chunk$set(eval = purp.book, 

               echo = purp.tutorial, 

               message = purp.debg, 

               cache = !(purp.gather | purp.mcmc)) 

options(digits=3) 

opts_template$set(  

  fig.full = list(fig.width = 8, fig.height = 12, anchor = 'Figure'), 

  fig.large = list(fig.width = 8, fig.height = 8, anchor = 'Figure'),  

  fig.small = list(fig.width = 4, fig.height = 4, anchor = 'Figure'), 

  fig.wide = list(fig.width = 8, fig.height = 4, anchor = 'Figure'), 

  fig.slide = list(fig.width = 8, fig.height = 4, dpi = 96), 

  fig.half = list(fig.width = 4, fig.height = 4, dpi = 96), 

  functionality = list(eval = purp.book, echo = purp.debg), 
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  invisible = list(eval = purp.book, echo = purp.debg), 

  sim = list(eval = purp.book, echo = purp.tutorial), 

  mcmc = list(eval = purp.mcmc, echo = purp.book, message=purp.debg), 

  gather = list(eval = purp.gather, echo = purp.gather) 

) 

## ggplot 

theme_set(theme_minimal()) 

``` 

# Simulation of stimuli for normality assessment 

Data sets are created by drawing from the ex-gaussian distribution. The 

below example shows the distribution with $\mu = 100, \sigma = 2, \lambda = 

1/20$. 

```{r} 

data_frame(x = seq(0,200,1)) %>%  

    mutate(total_score = demg(x, 100, 2, 1/20)) %>%  

    ggplot(aes(x = x, y = total_score)) + 

    geom_line() 

``` 

## Simulation 

For the first part of the experiment, 100 stimuli are drawn that vary in how 

much they are effected by the Gaussian component (large $\sigma$, little 

skew) in relation to the exponential component (small $\lambda$).  

```{r simulation_normal} 

set.seed(42) 

n_Stim = 100 

S01 <- 

    data_frame(Stimulus = str_c("S01_",1:n_Stim),  

                         dist = "exgauss", 

                         N   = round(runif(n_Stim, 20, 200),0), 

                         mu  = 10, 

                         sigma  = runif(n_Stim, 1, 4), 

                         lambda = 1/runif(n_Stim, 1, 4)) 

# list of data frames 

D01 <- 

    S01 %>%  

    alply(.margins = 1, 

                .fun = function(s) data_frame(Stimulus = s$Stimulus,  

                                                                            

Obs = 1: s$N, 

                                                                            

total_score = remg(s$N, s$mu, s$sigma, s$lambda))) 

# all values < 50 

ldply(D01) %>%  

  filter(total_score > 50) %>%  

  print() 

``` 

The following table shows the parameters of the `r n_Stim` data sets, the 

plot shows the generated data sets (the stimuli). The parameters of the 

simulated data sets were chosen as : 

$\mu = 10$ 

$\sigma ~ uniform(1,4)$ 

$\lambda ~ uniform(1/4, 1)$ 

$N ~ uniform(20, 200)$ 

```{r simulation_normal_results} 

kable(S01) 

# plot(P01) 

``` 

## Objective criteria 

Participants have to judge the data sets for normality. In the simpliest 

case this is just a yes/no answer. The responses will then be compared to 

objective criteria, possibly: 

1. the amount of skewness in the population (as represented by the "true" 

parameters) 
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2. the amount of skewness in the sample 

3. result of a test for skew with Agostino test ($p < .05$) 

4. result of a test for normality with shapiro test ($p < .05$) 

```{r criteria_normal} 

emg_skew <-  

  function(mu, sigma, lambda) 2/(sigma^3 * lambda^3) * (1 + (1/(sigma^2 * 

lambda^2)))^(-3/2) ## Wikipedia 

C01 <-  

  ldply(D01, function(d) skewness(d$total_score)) %>% ## sample skewness 

  rename(skew_Sample = V1) %>%  

  mutate(skew_Pop = emg_skew(mu, sigma, lambda)) %>%  ## population skewness 

  full_join(select(ldply(D01,function(d) 

agostino.test(d$total_score)$p.value),  

                   Stimulus, agostino.p = V1)) %>%  

  full_join(select(ldply(D01,function(d) 

shapiro.test(d$total_score)$p.value),  

                   Stimulus, shapiro.p = V1)) %>%  

  mutate(agostino.nhst = ifelse(agostino.p < .05, "skew p<.05", "no skew"), 

         shapiro.nhst = ifelse(shapiro.p < .05, "non-norm p<.05", "normal")) 

%>%  

  as_data_frame() 

C01 %>%  

  ggplot(aes(x = skew_Pop, y = skew_Sample, size = N))+ 

  geom_point(aes(color = agostino.nhst, shape = shapiro.nhst)) + 

  geom_smooth(se = F, method = "lm") 

## population skewness 

head(C01) %>% kable() 

C01 %>%  

  mutate(agostino.rejected = agostino.p < .05, 

         shapiro.rejected = shapiro.p < .05) %>%  

  summarize(mean(shapiro.rejected), 

            mean(agostino.rejected)) 

``` 

## Example Stimuli 

```{r sim_normal_create_plots} 

# list of plots 

P01 <-  

  llply(D01[1:n_Stim],  

        .fun = function(d) 

          ggplot(d, aes(x = total_score)) + 

          geom_dotplot(binwidth = 1) + 

          xlim(1,50) + 

          ylab("") 

  ) 

marrangeGrob(P01[1:4], ncol = 2, nrow = 2) 

``` 

# Simulation of stimuli for homogeneity of variance assessment 

Data sets are created by drawing from the a linear model with three groups 

with fixed means. Sample size varies, but the data is balanced. Residuals 

are normally distributed, but  a scale parameter is applied to the standard 

deviation, letting it vary with the mean to a certain extent. The means 

($\mu$) of the three groups were fixed as $[1, 3, 4]$ Sample size, standard 

deviation of the first group and the scale parameter $\phi$ are varied 

across simulated data sets as follows: 

The parameters of the simulated data sets were chosen as : 

$\N_{grp} = uniform(20, 80)$ 

$\sigma ~ uniform(2,6)$ 

$\phi ~ uniform(0, 1.5)$ 

$\sigma_i = \sigma + \mu_i\phi$ 

In effect, when $\phi$ get larger, the variance in the groups more stringly 

increases with the mean, leading to more pronounced heteroscedasticity. 

## Simulation 

```{r simulation_homo} 
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set.seed(42) 

n_Stim = 100 

## simulation parameters 

S02 <- 

  data_frame(Stimulus = str_c("S02_",1:n_Stim), 

             N_grp   = round(runif(n_Stim, 20, 80),0), 

             sigma  = runif(n_Stim, 2, 6), 

             scale = runif(n_Stim, 0, 1.5)) 

## function to create one data frame 

F02 <-  

  function(P, mu = c(1,3,4)) { 

  expand.grid(Condition = as.factor(c("1 - Risky",  

                            "2 - Safer",  

                            "3 - Extremely cautious")), 

              Part = 1:P$N_grp) %>% 

    full_join(data_frame(Condition = as.factor(c("1 - Risky",  

                                       "2 - Safer",  

                                       "3 - Extremely cautious")), 

                         mu = mu), 

              by = "Condition") %>%  

    mutate(sigma = P$sigma + P$scale * mu, 

           Y = rnorm(P$N_grp * 3, mu * 20, sigma)) 

            

} 

# create data frames 

D02 <- 

    S02 %>%  

    alply(.margins = 1, 

                .fun = F02) 

``` 

The following table shows the parameters of the `r n_Stim` data sets, the 

plot shows the generated data sets (the stimuli). 

```{r sim_results_homo} 

kable(S02) 

# plot(P02) 

``` 

Below are a few example plots: 

```{r sim_homo_create_plots} 

# list of plots 

P02 <-  

  llply(D02[1:n_Stim],  

        .fun = function(d) 

          ggplot(d, aes(x = Condition, y = Y)) + 

          geom_boxplot() + 

          geom_jitter(width = .4, alpha = .2) 

  ) 

# examples 

marrangeGrob(P02[1:8], nrow = 4, ncol = 2) 

``` 

## Objective criteria 

Participants have to judge the data sets for homogeneity of variance. The 

responses will then be compared to objective criteria: 

1. the amount of scale, relative to $\sigma$ 

2. result of the levene test ($p < .05$) 

```{r criteria_homo} 

fn.levene <- function(d) leveneTest(Y ~ Condition,  

                                    data = d)$`Pr(>F)`[1] 

# levene tests 

C02 <-  

  ldply(D02,fn.levene) %>%  

  rename(levene.p = V1) %>%  

  mutate(levene.nhst = ifelse(levene.p < .05, "heterosced p<.05", 

"homosced")) %>%  
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  as_data_frame() 

                     

                      

C02 %>%  

  ggplot(aes(x = scale, y = N_grp))+ 

  geom_point(aes(color = levene.nhst)) 

head(C02) %>% kable() 

C02 %>%  

  mutate(levene.rejected = levene.p <= .05) %>%  

  summarize(mean(levene.rejected)) 

``` 

```{r save_stimuli, message=FALSE, warning=FALSE, include=FALSE, eval = F} 

for (i in 1:n_Stim) { 

  ggsave(plot = P01[[i]],  

         filename = paste0("S01_", i, ".png"), 

         path = "stimuli") 

} 

   

for (i in 1:n_Stim) { 

  ggsave(plot = P02[[i]], 

         filename = paste0("S02_", i, ".png"), 

         path = "stimuli") 

} 

``` 

```{r save_data, message=FALSE, warning=FALSE, include=FALSE, eval = T} 

write.xlsx(D01, file = "S01.xlsx") 

write.xlsx(C01, file = "Simuli_normal.xlsx") 

write.xlsx(D02, file = "S02.xlsx") 

write.xlsx(C02, file = "Simuli_homo.xlsx") 

#save.image(file = "VEDA1.Rda") 

``` 

Loading the data, the response variable is re-created. TRUE means: is 

normally distributed/has constant variance. 

```{r load_data, opts.label = "gather"} 

#load("VEDA1.Rda") 

read_raw <- function(filename) { 

    read_csv(filename) %>% 

    select(2:8) %>%  

    mutate(obs = row_number()) %>%  

    mutate(TaskID = str_sub(StimID, 3,3)) %>%  

    mutate(trial = obs %% (100 + 1)) 

  } 

VEDA1_raw <- 

  dir(pattern = "pp.*csv", recursive = T) %>>%  

  ldply(read_raw) %>%  

  as_data_frame() %>% 

  rename(Part = participantID) %>% 

  mutate(Task = ifelse(TaskID == "1", "Normality", "Constant Var"), 

         grade = as.numeric(Grade), 

         Stimulus = StimID, 

         correct = Correctness) %>%  

  select(-Grade, -TaskID) 

VEDA1_Normal <-  

  VEDA1_raw %>%  

  filter(Task == "Normality") %>%  

  left_join(C01) %>%  

  mutate(reject.test = agostino.p < .05, 

         correct = as.logical(correct), 

         reject.part = (reject.test == correct)) 

VEDA1_ConstV <-  

  VEDA1_raw %>%  

  filter(Task == "Constant Var") %>%  

  left_join(C02) %>%  
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  mutate(reject.test = (levene.p < .05), 

         correct = as.logical(correct), 

         reject.part = (reject.test == correct)) 

#write_sav(VEDA1, "VEDA1.sav") 

write_sav(VEDA1_Normal, "VEDA1_Normal.sav") 

write_sav(VEDA1_ConstV, "VEDA1_ConstV.sav") 

#save.image(file = "VEDA1.Rda") 

``` 

## Results on Normality 

The following two plots show the association of the response (accept or 

reject normality) for the Shapiro test and the participants. We see an 

rather clear profile for the test: with increasing skew in the sample. The 

second  plot shows the responses of participants, which generally is less 

clear cut and shows arge variation of the pattern across participants. It is 

immediatly clear that participants have severe difficulties in judging 

normality. 

```{r eda_norm} 

#load("VEDA1.Rda") 

C01 %>%  

  ggplot(aes(x = skew_Sample, y = N, col = shapiro.nhst)) + 

  geom_point() 

VEDA1_Normal %>%  

  ggplot(aes(x = skew_Sample, y = N, col = reject.part)) + 

  geom_point(alpha = .5) + 

  facet_wrap(~Part) 

``` 

We estimate a model for participant in dependence of sample skew and sample 

size. 

```{r load_mcmc, eval = !purp.mcmc} 

load("VEDA1_mcmc.Rda") 

``` 

```{r mcmc:Norm, opts.label = "mcmc"} 

#load("VEDA1.Rda") 

rstan_options(auto_write = TRUE) 

options(mc.cores = 3) 

logit <- function(x) log(x/(1-x)) 

# M1_Norm <-  

#   VEDA1_Normal %>%  

#   mutate(min_sample = 20) %>%  

#   brm(reject.part ~ skew_Sample + N + ((1 + skew_Sample + N) | Part), 

#       family = bernoulli, 

#       iter = 4000, 

#       #prior = set_prior("normal(1,0.00001)", class ="sd", group = 

"Stimulus", coef = "Intercept"), 

#       data = ., 

#       chains = 1) 

#  

# #save.image(file = "VEDA1.Rda") 

M2_Norm <-  

  VEDA1_Normal %>%  

  mutate(min_sample = 20, 

         skew_Sample = abs(skew_Sample)) %>%  

  brm(reject.part ~  skew_Sample * N + ((1 + skew_Sample  * N)|Part ) + 

(1|Stimulus), 

      family = bernoulli, 

      iter = 4000, 

      #prior = set_prior("normal(1,0.00001)", class ="sd", group = 

"Stimulus", coef = "Intercept"), 

      data = ., 

      chains = 1) 

#save.image(file = "VEDA1.Rda") 

#  

# M3_Norm <-  
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#   VEDA1_Normal %>%  

#   mutate(min_sample = 20) %>%  

#   brm(reject.part ~  skew_Sample * N * trial + ((1 + skew_Sample  * N * 

trial)||Part ) + (1|Stimulus), 

#       family = bernoulli, 

#       iter = 4000, 

#       #prior = set_prior("normal(1,0.00001)", class ="sd", group = 

"Stimulus", coef = "Intercept"), 

#       data = ., 

#       chains = 1) 

#  

# #save.image(file = "VEDA1.Rda") 

``` 

Fixed effects 

```{r tab:Norm_fixef} 

#load("VEDA1.Rda") 

M2_Norm %>% fixef() %>% kable() 

``` 

Random effects 

```{r tab:Norm_grpef} 

M2_Norm %>%  grpef() %>% kable() 

``` 

## Results on Heteroscedasticity 

The following two plots show the association of the response (accept or 

reject heteroscedasticity) for the Levene test and the participants.  

```{r eda_constV} 

#load("VEDA1.Rda") 

C02 %>%  

  distinct() %>%  

  ggplot(aes(x = scale, y = N_grp, col = levene.nhst)) + 

  geom_point() 

VEDA1_ConstV %>%  

  ggplot(aes(x = scale, y = N_grp, col = reject.part)) + 

  geom_point(alpha = .5) + 

  facet_wrap(~Part) 

``` 

We estimate a model for participant in dependence of sample scale and sigma. 

```{r mcmc:ConstV, opts.label = "mcmc"} 

rstan_options(auto_write = TRUE) 

options(mc.cores = 3) 

# M1_ConstV <-  

#   VEDA1_ConstV %>%  

#   brm(reject.part ~ scale  * sigma + (1|Stimulus), 

#            family = bernoulli, 

#            data = ., 

#       chains = 3) 

# #save.image(file = "VEDA1.Rda") 

M3_ConstV <-  

  VEDA1_ConstV %>%  

  brm(reject.part ~ scale  * N_grp * trial + (1 + scale  * N_grp * 

trial|Part) + (1|Stimulus), 

           family = bernoulli, 

           data = ., 

      chains = 1, 

      iter = 4000) 

#save.image(file = "VEDA1.Rda") 

``` 

Fixed effects 

```{r tab:ConstV_fixef} 

M3_ConstV %>% fixef() %>% kable() 

``` 

Random effects  

```{r tab:ConstV_grpef} 
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M3_ConstV %>% grpef() %>% kable() 

``` 

## Further exploration of data 

We have observed in both experiments that objective criteria (skew, scale, 

sample size) are being ignored by many participants. But the responses are 

not just random. The Stimuli intercept random effects show that stimuli 

systematically vary in how frequently they get rejected. Hence, there must 

be other criteria students use to judge the distributions. Maybe, 

participants had no clue about the objective criteria and used "fallback" 

heuristics, such as teh ruggedness of the distribution. Maybe, we can 

identify these heuristics by comparing plots of low and high rejection 

rates. For that purpose, we extract the stimulus-level random effects. They 

represent by how much a plot differs from the average rejection rate. 

### Normality 

We start with the normality stimuli. The table below shows the Stimulus 

random intercepts. 

```{r extract_stim_RE_Norm} 

#load("VEDA1.Rda") 

T_StimRE_Norm <-  

  ranef(M2_Norm) %>%  

  filter(str_detect(parameter, "Stimulus")) %>%  

  mutate(parameter = str_replace(parameter, "Stimulus\\[S01_", ""), 

         parameter = str_replace(parameter, ",Intercept\\]", ""), 

         order = min_rank(center)) %>%  

  rename(Stimulus = parameter) %>%  

  arrange(order) 

kable(T_StimRE_Norm) 

``` 

The following plot shows the centers and 95% CIs for stimuli, ordered by 

center.  

Although, the estimates are rather uncertain, there is considerable 

variance: stimuli vary by how frequently they are rejected. 

```{r fig:caterpillar_Norm} 

T_StimRE_Norm %>%  

  ggplot(aes(x = order, y = center, ymin = lower, ymax = upper)) + 

  geom_point() + 

  geom_errorbar() 

``` 

Now let's see, whether we can identify properties that are associated with 

high rejection: 

We print every fifth stimulus, ordered by rejection rate 

```{r fig:ConstV_ordered, opts.label = "fig.large"} 

P02[T_StimRE_ConstV$Stimulus][seq.int(1, 100, 5)] %>>%  

grid.arrange(grobs = ., nrow = 5, ncol = 4) 

``` 
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Appendix E 

How to make learning statistics fun 

Recent research on the effects of game-based learning (Kebritchi, Hirumi, & Bai, 2010; Wouters 

et al., 2009) for learning performance has established that game-based learning does have 

benefits for the learner. However, results are ambivalent. Research could not confirm whether 

game-based learning results in higher cognitive gains than traditional learning methods. 

However, it has been shown to improve the learner’s attitude towards learning (Vogel et. al., 

2006). Attitude, in turn, has been established to have a major impact on one’s learning 

achievements. 

The statistics education of psychologists at the University of Twente has received major criticism 

in recent years. For example, students criticize the utility of statistical workshops given as part 

of their B1 and B2 statistical education. According to them, the workshops mainly teach the 

students “what buttons to press in SPSS” instead of thematizing the when? and why? of statistical 

analyses, often resulting in major frustration on the part of the students. 

We want to assess whether learning statistics in a game-based way can help to adjust students’ 

negative attitude towards learning statistics. In turn, an enhanced attitude towards statistics is 

expected to benefit students’ learning achievements. 

 

Sources: 

Kebritchi, M., Hirumi, A., & Bai, H. (2010). The effects of modern mathematics computer games 

on mathematics achievement and class motivation. Computers & education, 55(2), 427-443. 

Vogel, J. J., Vogel, D. S., Cannon-Bowers, J., Bowers, G. A., Muse, K., & Wright, M. (2006). 

Computer gaming and interactive simulations for learning: A meta-analysis. Journal of 

Educational Computing Research, 34(3), 229-243. 

Wouters, P., van der Spek, E. D., & van Oostendorp, H. (2009). Current practices in serious 

game research: A review from a learning outcomes perspective. Games-based learning 

advancements for multi-sensory human computer interfaces: Techniques and effective practices 

(pp. 232-250) 
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The experiment 

During the experiment, you are randomly assigned to one of two groups. One group gets to play 

a statistical game with lots of game elements, the other group will play a statistical game with 

just a few game elements. This way, we want to examine the degree of game elements needed to 

make the statistics learning experience more fun for the student. The whole game should take 

about 30-45min to complete. 

After completion of the game, you will be asked to give your opinion on the fun-factor of the 

statistical game and we will further examine your attitude towards learning statistics.  
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Appendix F 

Table 5 

Random intercepts and 95% CIs for normality stimuli, ordered by point estimate 

Stimulus Point Estimate Lower Upper Order 

35 -2.190 -3.183 -1.300 1 

92 -1.936 -3.015 -1.102 2 

33 -1.875 -2.973 -0.972 3 

54 -1.370 -2.154 -0.608 4 

89 -1.352 -2.236 -0.547 5 

96 -1.280 -2.206 -0.620 6 

14 -1.098 -2.016 -0.349 7 

93 -1.075 -1.891 -0.386 8 

15 -0.993 -1.745 -0.255 9 

13 -0.948 -1.916 -0.002 10 

40 -0.937 -1.712 -0.127 11 

7 -0.816 -1.707 -0.115 12 

23 -0.810 -1.625 0.054 13 

36 -0.803 -1.675 -0.071 14 

66 -0.703 -1.574 0.117 15 

67 -0.699 -1.498 -0.016 16 

61 -0.660 -1.560 0.181 17 

9 -0.636 -1.420 0.116 18 

82 -0.633 -1.332 0.230 19 

95 -0.615 -1.398 0.165 20 

22 -0.573 -1.303 0.142 21 

4 -0.572 -1.373 0.119 22 

53 -0.569 -1.416 0.196 23 

21 -0.560 -1.357 0.103 24 

79 -0.551 -1.384 0.151 25 

52 -0.551 -1.229 0.199 26 

65 -0.542 -1.448 0.290 27 

56 -0.516 -1.254 0.209 28 

72 -0.504 -1.247 0.295 29 

44 -0.428 -1.337 0.360 30 

26 -0.423 -1.235 0.295 31 

27 -0.408 -1.175 0.308 32 

19 -0.357 -1.052 0.368 33 

5 -0.343 -1.156 0.324 34 

91 -0.321 -1.057 0.480 35 

63 -0.314 -1.143 0.420 36 

2 -0.294 -1.091 0.646 37 

10 -0.278 -1.000 0.574 38 

55 -0.277 -1.022 0.639 39 

81 -0.270 -0.979 0.324 40 

48 -0.205 -0.882 0.477 41 
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83 -0.192 -0.883 0.509 42 

49 -0.166 -0.899 0.598 43 

29 -0.142 -0.763 0.543 44 

45 -0.115 -0.841 0.514 45 

38 -0.092 -0.905 0.719 46 

100 -0.088 -0.888 0.570 47 

97 -0.086 -0.862 0.521 48 

12 -0.059 -0.812 0.611 49 

90 -0.018 -0.660 0.731 50 

69 -0.005 -0.916 1.043 51 

59 0.017 -0.629 0.749 52 

57 0.027 -0.750 0.811 53 

94 0.056 -0.983 0.865 54 

86 0.113 -0.658 0.750 55 

25 0.123 -0.584 0.910 56 

28 0.138 -0.754 0.862 57 

60 0.178 -0.475 0.864 58 

41 0.180 -0.493 0.851 59 

6 0.187 -0.485 0.936 60 

24 0.203 -0.539 0.870 61 

88 0.213 -0.543 0.978 62 

11 0.240 -0.462 0.969 63 

32 0.298 -0.464 1.076 64 

77 0.319 -0.468 1.233 65 

87 0.337 -0.356 1.149 66 

68 0.420 -0.349 1.052 67 

8 0.452 -0.285 1.253 68 

17 0.466 -0.526 1.542 69 

76 0.494 -0.118 1.321 70 

99 0.516 -0.229 1.313 71 

37 0.547 -0.186 1.396 72 

3 0.604 -0.196 1.329 73 

34 0.616 -0.096 1.313 74 

85 0.618 -0.156 1.287 75 

80 0.644 -0.454 1.505 76 

31 0.651 -0.039 1.357 77 

51 0.660 0.006 1.406 78 

16 0.669 -0.049 1.451 79 

42 0.673 -0.099 1.571 80 

84 0.697 -0.303 1.679 81 

98 0.709 -0.125 1.613 82 

30 0.785 -0.028 1.505 83 

75 0.820 0.065 1.567 84 

47 0.843 0.152 1.700 85 

1 0.848 0.100 1.677 86 

62 0.860 0.134 1.601 87 

43 0.889 0.121 1.786 88 
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46 0.897 0.080 1.603 89 

39 0.931 0.151 1.650 90 

20 0.952 0.316 1.682 91 

64 0.984 0.218 1.790 92 

70 1.129 0.381 2.222 93 

74 1.216 0.537 2.014 94 

73 1.228 0.171 2.298 95 

78 1.236 0.494 2.033 96 

58 1.341 0.627 2.359 97 

50 1.443 0.597 2.470 98 

71 1.528 0.627 2.392 99 

18 1.571 0.795 2.543 100 

     

Table 6 

Random intercepts and 95% CIs for homoscedasticity stimuli, ordered by estimate value 

Stimulus Point Estimate Lower Upper Order 

52 -1.132 -2.064 -0.441 1 

13 -1.062 -2.018 -0.270 2 

93 -0.957 -1.658 -0.278 3 

73 -0.868 -1.577 -0.194 4 

66 -0.866 -1.668 -0.194 5 

83 -0.863 -1.653 -0.200 6 

69 -0.826 -1.533 -0.094 7 

15 -0.793 -1.546 -0.195 8 

42 -0.791 -1.471 -0.187 9 

86 -0.755 -1.603 -0.037 10 

53 -0.743 -1.463 -0.061 11 

40 -0.724 -1.436 -0.023 12 

72 -0.714 -1.423 0.048 13 

8 -0.711 -1.382 -0.054 14 

49 -0.699 -1.566 -0.072 15 

4 -0.696 -1.466 -0.038 16 

45 -0.678 -1.372 -0.025 17 

79 -0.650 -1.366 -0.043 18 

21 -0.647 -1.387 0.040 19 

26 -0.632 -1.341 0.005 20 

89 -0.631 -1.327 0.025 21 

57 -0.630 -1.506 0.152 22 

41 -0.620 -1.466 0.069 23 

11 -0.488 -1.148 0.176 24 

68 -0.479 -1.348 0.268 25 

12 -0.464 -1.136 0.195 26 

27 -0.441 -1.153 0.169 27 

81 -0.365 -1.079 0.274 28 

39 -0.359 -1.203 0.304 29 

71 -0.339 -0.997 0.401 30 

16 -0.326 -1.085 0.386 31 
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47 -0.313 -1.201 0.497 32 

61 -0.264 -0.902 0.364 33 

30 -0.232 -1.014 0.479 34 

70 -0.223 -0.902 0.552 35 

29 -0.213 -0.925 0.488 36 

24 -0.193 -1.010 0.562 37 

59 -0.180 -0.868 0.442 38 

38 -0.158 -0.957 0.605 39 

90 -0.156 -0.896 0.516 40 

36 -0.126 -0.791 0.591 41 

63 -0.107 -0.823 0.564 42 

77 -0.105 -0.780 0.621 43 

91 -0.074 -0.822 0.537 44 

75 -0.038 -0.817 0.700 45 

7 -0.024 -0.789 0.706 46 

2 -0.011 -0.699 0.657 47 

98 0.006 -0.621 0.653 48 

64 0.011 -0.676 0.816 49 

85 0.025 -0.622 0.730 50 

94 0.064 -0.731 0.716 51 

99 0.088 -0.643 0.770 52 

6 0.091 -0.607 0.680 53 

32 0.126 -0.668 0.832 54 

96 0.139 -0.593 0.938 55 

9 0.172 -0.471 0.869 56 

37 0.173 -0.611 0.839 57 

88 0.173 -0.492 0.955 58 

14 0.174 -0.467 0.897 59 

97 0.175 -0.527 0.896 60 

20 0.214 -0.455 0.990 61 

55 0.232 -0.496 0.979 62 

62 0.241 -0.579 1.053 63 

23 0.283 -0.476 0.941 64 

48 0.305 -0.390 0.968 65 

17 0.329 -0.361 0.997 66 

67 0.344 -0.398 1.194 67 

95 0.350 -0.333 1.006 68 

3 0.375 -0.417 1.162 69 

18 0.381 -0.224 1.093 70 

58 0.410 -0.243 1.166 71 

10 0.438 -0.238 1.057 72 

33 0.440 -0.151 1.169 73 

28 0.447 -0.337 1.142 74 

22 0.463 -0.218 1.182 75 

76 0.470 -0.172 1.180 76 

5 0.480 -0.237 1.156 77 

87 0.486 -0.176 1.148 78 
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74 0.491 -0.195 1.181 79 

35 0.493 -0.399 1.399 80 

50 0.502 -0.232 1.250 81 

92 0.512 -0.298 1.330 82 

44 0.573 -0.156 1.300 83 

25 0.634 0.005 1.394 84 

46 0.644 -0.008 1.320 85 

43 0.650 -0.105 1.389 86 

19 0.654 0.058 1.373 87 

60 0.699 0.037 1.470 88 

34 0.706 0.042 1.430 89 

1 0.733 -0.062 1.554 90 

100 0.740 0.028 1.407 91 

78 0.743 0.092 1.387 92 

56 0.763 0.037 1.569 93 

54 0.782 0.152 1.518 94 

82 0.812 0.165 1.615 95 

51 0.824 0.206 1.615 96 

31 0.831 0.180 1.501 97 

84 0.860 0.091 1.710 98 

80 0.893 0.137 1.674 99 

65 1.087 0.396 1.784 100 
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Appendix G 

 

Figure 14. The components of a violin plot in comparison to the components of a box plot. Adapted from Hintze and 

Nelson (1998). 


