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Abstract 
Two-dimensional calculations on biplanes 

in transonic flow are presented. The effect of 

stagger was investigated on biplanes with equal 

chord length and angle of attack, with the gap 

equal to the chord length. 

A finite volume method was used to solve 

the Euler equations on a quadtree Cartesian 

grid. A multi-level approach to solution-based 

grid refinement is presented to refine the grid at 

shockwaves. The airfoils under study are the 

symmetric NACA0012 and the supercritical 

RAE2822. For these airfoils the flow was 

calculated for the free stream Mach numbers 

𝑀∞ = 0.4, 0.5, 0.6, 0.7, 0.8 and angle of attack 

𝛼 = 0°, 2°, 4°, 6°, 8°.  

It was observed that the flow chokes when 

the airfoils are positioned such that a duct is 

formed by the overlapping surfaces. The duct 

then has a geometry similar to a convergent-

divergent nozzle. The transition from 

subcritical flow to supercritical flow, i.e. 

choked flow, occurs at subcritical flow 

conditions of the single airfoil. At higher free 

stream velocity the choked flow changed into to 

another flow pattern for positive staggered 

configurations only. The new flow pattern is 

characterised by an upward angled oblique 

shockwave at the trailing edge of the upper 

airfoil followed by a detached normal 

shockwave. The normal shock connects to the 

upper surface of the lower airfoil. 

In case of choked flow the lift and drag are 

affected in two distinct ways. Firstly, the early 

transition to supercritical flow increases the 

drag in comparison with the single airfoil and 

other biplane configurations. Secondly, the 

lifting capabilities of both airfoils is decreased 

because the flow in the duct is almost 

symmetrical with respect to the upper and lower 

walls of the duct. The transition from choked 

flow to a detached normal shock is not observed 

in the drag polar. 

 

Nomenclature 
𝐴  nondimensional throat cross 

section 

𝐶𝑑  drag coefficient 

𝐶𝑙  lift coefficient 

𝐶𝑚  quarter chord moment coefficient  

𝐶𝑝  pressure coefficient 

𝑐   chord length (reference length) 

𝐹  functional 𝐶𝑙, 𝐶𝑑, 𝐶𝑚 

𝐻  nondimensional height of a 

refinement box 

ℎ  nondimensional cell size 

𝑖, 𝑗, 𝑛  ghost cell node number 

𝐿1, 𝐿2, 𝐿∞  L-1, L-2, L-infinity norm 

𝐿𝑚𝑎𝑥  convergence threshold for 𝐿1, 𝐿2 

𝑀  Mach number 

𝑁  total number of cells 

𝑝  pressure, order of accuracy 

𝑅  symmetry line of flow expansion 

𝑇  total number of iterations 

𝑡  airfoil thickness, iteration number 

𝑢  velocity in 𝑥 direction 

𝑣  velocity in 𝑦 direction 

𝑥  direction from leading edge to 

trailing edge of main-wing 

𝑥0  nondimensional stagger 

𝑦  direction from lower to upper 

surface of main-wing 

𝑦0  nondimensional gap 

𝑊  nondimensional width of a 

refinement box 

𝛼  angle of attack 

𝜔  wall cell size ratio 

𝜌  density 

#𝑎𝑖𝑟𝑓𝑜𝑖𝑙  number of data points of airfoil 

%𝑚𝑎𝑥  convergence threshold for 

percentage change in functionals 

  

Superscript 
𝑓, 𝑚, 𝑐  fine, medium, coarse grids 

∗  ℎ𝑤 → 0 grid 

  

Subscript 
𝑏, 𝑤  refinement box and wall cells 

𝐷𝐷  drag divergence 

∞  free stream condition 

1. Introduction 
The truss-braced wing configuration 

(TBW) is a conceptual aircraft with the main-

wing positioned on top of the fuselage. 

Additional members connect the main-wing to 

the bottom of the fuselage to stiffen the wing 

pattern. These members are referred to as the 

trusses and reduce the bending moment in the 

wing, thus allowing for a reduced thickness-

over-chord ratio 𝑡/𝑐. This translates to a 

reduction in main-wing chord and spar 

thickness, and therefore a reduced chord 

Reynolds number. The reduced wing thickness 

results in decreased wave drag as elaborated by 

Meadows et al. (1). 
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The SUGAR program is a NASA contract 

awarded to Boeing for research into subsonic 

commercial aircraft technology to meet the 

agency’s future environmental and efficiency 

goals in the 2030-2050 time frame. Through a 

partnership with General Electric, Georgia’s 

Tech Aerospace System Design Laboratory, 

Virginia Tech and NextGen Aeronautics, 

Boeing currently is studying two concept 

aircraft: the SUGAR Volt, run by hybrid electric 

propulsion, and the SUGAR Freeze, powered 

by liquefied natural gas. The SUGAR program 

has identified potential fuel savings for the 

TBW, which, according to Boeing (2), could 

produce a 5 percent to 10 percent improvement 

in fuel consumption over the conventional 

cantilever wing configurations of today. 

Airbus is has patented (3) a TWB concept 

with forward swept trusses creating a lambda-

box wing configuration. This configuration has 

a vertical wing between the main-wing and the 

truss such that stagger and gap is maintained at 

the connection.  

Recent aerodynamic analysis of the TBW 

aircraft using a conceptual vortex-lattice 

aerodynamic tool VORLAX coupled with the 

aerodynamic superposition method was 

presented by Ting et al. (4). Based on the 

underlying linear potential flow theory, the 

principle of aerodynamic superposition is 

leveraged to deal with a complex shape such as 

the TBW. The aerodynamic superposition 

showed good agreement with CFD results 

computed by FUN3D and USM3D. Because the 

vortex-lattice method is based in potential flow 

theory, it is an inviscid code that can only 

compute inviscid drag due to lift, and cannot 

predict viscous or wave drag. 

In the work of Hwang et al. (5) a locally 

implicit total variation diminishing scheme is 

used to solve the two-dimensional Euler 

equations. An unstructured triangular grid was 

generated around a biplane. It was found that 

although the flow condition is subcritical for the 

single airfoil, the biplane configuration 

developed a shockwave between the two 

airfoils. 

This report presents a study on the 

aerodynamic interaction of the main-wing and 

truss in transonic flow. By solving the two-

dimensional Euler equations the inviscid drag 

due to lift and the wave drag is calculated for 

various configurations of the main-wing and 

truss. Two airfoils are investigated: the 

symmetric NACA0012 and the supercritical 

RAE2822 airfoil. For both airfoils the effect of 

stagger is investigated, and for the RAE2822 

airfoil the effect of the gap with zero-stagger is 

also investigated. Even at the low accuracy flow 

transitions are observed when increasing the 

free stream Mach number from 𝑀∞ = 0.4 to 

𝑀∞ = 0.8. This allows for a rough 

understanding of the effects that must be dealt 

with in the design of the TBW in transonic flow. 

The structure of this report is as follows. In 

Section 2 the numerical methods of the flow 

solver are discussed, together with a solution-

based grid refinement method to refine the grid 

at the shockwaves. Higher order estimates of the 

functionals are used to determine the cell size in 

the study. In Section 3 the drag divergence 

Mach number is investigated for both single 

airfoils and biplane configurations for variable 

stagger and gap. The results are discussed in 

Section 4 and the conclusions given in Section 

5. In Appendix I and II to drag polar plots of the 

biplane configurations are given for the 

NACA0012 and RAE2822 airfoils respectively. 

The flow fields of all the calculations are not 

found in this report, since they include over 900 

cases. 

 

2. Methods 

Biplane configurations and flow 

conditions 
Two different airfoils are investigated, both 

in subcritical and supercritical conditions. The 

first airfoil is the symmetric NACA0012, which 

has been adjusted with a sharp trailing edge. 

The second airfoil is the supercritical RAE2822 

airfoil. 

Consider the biplane configuration shown 

in Figure 1. Following the TBW description, the 

upper and lower airfoils are the main-wing and 

truss respectively. The stagger 𝑥0 is defined as 

the nondimensional distance between the 

leading edges of the main-wing and truss. 

Positive stagger indicates that the truss is 

located behind the main-wing with respect to 

the flow direction. The nondimensional gap 𝑦0 

is the vertical distance between the leading 

edges of the main-wing and truss. A negative 

gap indicates that the truss is positioned below 

the main-wing. In this study the main-wing and 

truss are placed parallel in the flow and both 

have chord length 𝑐. Both the stagger and gap 

are made dimensionless with the chord length. 
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The biplane configurations and flow conditions 

under consideration for the NACA0012 biplane 

are as follows: 

 

𝑥0 = ±10, ±2, 0  

𝑦0 = −1  

𝑐/𝑐 = 1  

𝑀∞ = 0.4, 0.5, 0.6, 0.7, 0.8  

𝛼 = 0°, 2°, 4°, 6°, 8°  
 

The RAE2822 biplane is investigated in 

two steps. First, the stagger is varied with 

smaller increments since the NACA0012 

biplane showed no interaction for |𝑥0| ≥ 2: 

 

𝑥0 =  ±1, ±0.5, ±0.25, 0  

𝑦0 = −1  

𝑐/𝑐 = 1  

𝑀∞ = 0.4, 0.5, 0.6, 0.7, 0.8  

𝛼 = 0°, 2°, 4°, 6°, 8°  
 

Second, the effect of the gap is investigated at 

zero stagger: 

 

𝑥0 = 0  

𝑦0 = −1.5, −1, −0.75, −0.5, −0.25  

𝑐/𝑐 = 1  

𝑀∞ = 0.4, 0.5, 0.6, 0.8  

𝛼 = 0°, 2°, 4°  
 

With this set the transition from subsonic to 

transonic flow can be investigated for various 

biplane configurations. These include cross-

sections of the TBW designs presented by Nam 

et al. (6), Chakrabotry et al. (7) and the lambda-

box wing presented by Airbus (3). 

 

Numerical methods of the flow solver 
A cell-centered finite volume method is 

used to solve the two-dimensional Euler 

equations on a Cartesian quadtree structured 

grid with immersed boundary method (8). The 

MUSCL scheme with third order accuracy (9) 

is used for the spatial discretization and the 

numerical flux is evaluated using the SLAU 

scheme (10) together with the Van Albada flux 

limiter. The LU-SGS implicit method is used 

for solving the time integration system with 

local time stepping. 

 

Grid generation 
The grid is generated around the airfoils by 

the solver. In the quadtree grid all cells are 

squares with variable size ℎ which is made 

dimensionless with the chord length 𝑐. The 

smallest cells are placed at the surface of the 

airfoils. These cells are called wall cells and 

have size ℎ𝑤. The other cells are called fluid 

cells and have a variable size depending on the 

location in the grid. The cell size in the quadtree 

grid in this study grows as follows. At least one 

adjacent wall and fluid cell are required before 

the third cell is allowed to double in size. 

Subsequently at least three adjacent fluid cells 

are required before a fourth fluid cell is allowed 

to double in size. At the interface of two small 

cells and one large cell a hanging node is found. 

This is the node that the two smaller cells share, 

but is not shared with the larger cell. The total 

number of cells is denoted with 𝑁. Rectangular 

grid refinement boxes with width 𝑊 and height 

H can be specified in which the cell size is kept 

equal or lower to ℎ𝑏. As an example Figure 2 

shows the grid generated around a unit circle 

with a square refinement box centered at the 

leading edge of the circle. The refinement box 

has a height and width 𝐻 = 𝑊 = 1 and both the 

wall cell size and refinement box cell size is 

ℎ𝑤 = ℎ𝑏 = 0.01. The result is that the cells at 

the surface of the circle and in the refinement 

box are equally small, and that the cell size of 

the other cells is proportional with the distance 

away from the body and refinement box. 

The flow solver and grid generator is 

developed by the Rinoie and Imamura 

Laboratory of the Department of Aeronautics 

and Astronautics at the University of Tokyo. 

The solver supports the Navier-Stokes 

 

 

 

 
 

 

 

 

               

 

 

 

            
 

 
Figure 1. Dimensionless coordinate system of the 

biplane configurations used in the present study.  

𝑦-axis 

𝑐/𝑐 
 

 

    𝑥-axis 

                                        main-wing 

 

𝑦0  
 

 

 
                                       truss        

  𝑥0  

 
                      𝑐/𝑐 



4 

 

equations and a turbulence model. A bug in the 

grid generator was repaired, which always 

activated the turbulence model. The fix reduced 

the computational time to generate the grid 

significantly. The solver performs 𝑇 number of 

iterations specified beforehand by the user. 

After every iteration 𝑡 the solver stores the 

aerodynamic coefficients 𝐶𝑑 , 𝐶𝐿 and 𝐶𝑚 of the 

airfoils, together with the 𝐿1, 𝐿2 and 𝐿∞ norms 

of the residuals. After finishing the 𝑇 iterations 

the calculated cell variables 𝜌, 𝑢, 𝑣, 𝑝, 𝐶𝑝, 𝑀∞ 

are stored. These signify the density, velocity in 

𝑥- and 𝑦-direction, pressure, dimensionless 

pressure coefficient and Mach number 

respectively at the cell centre. 

 

A multi-level approach to solution-

based grid refinement 
In the following subsections the grid 

refinement method is presented. In the first 

subsection the shockwaves in transonic flow 

around airfoils are analysed, followed by a 

discussion on the necessity to refine the grid at 

shockwaves in quadtree grids. In the next 

subsection, a shock detection method is 

presented which is developed for quadtree 

grids. The shock detection method flags cell 

interfaces on which refinement boxes are 

placed. A multi-level approach to the grid 

refinement method is presented at the last 

subsections 

 

Shockwaves in transonic flow 
A shockwave is a flow phenomenon 

through which supersonic flow is decelerated 

such that the tangential velocity component 

remains constant across the shock. In this study 

shockwaves are classified according to two 

distinct features: the orientation with respect to 

the flow direction and the exit velocity 

respectively. Based on the orientation, shocks 

are classified as either normal or oblique 

shocks. Normal shocks are orientated 

perpendicular to the flow direction and thus the 

tangential velocity component is zero. Oblique 

shocks are inclined to the flow direction and 

thus the tangential component is not zero. The 

second classification is based on the exit 

velocity behind the shock, and classifies shocks 

as either strong or weak. A strong shock 

decelerates the flow from supersonic to 

subsonic velocity. A weak shock decelerates 

supersonic flow but the exit velocity remains 

supersonic. A normal shock is always a strong 

shock, while an oblique shock can be either a 

strong or weak shock. 

In transonic flow around airfoils a normal 

shock is seen at the back-side of the supersonic 

regions. An oblique shock on the other hand is 

not seen transonic flow around airfoils, but is 

often associated with supersonic flow around 

sharp bodies, or supersonic flow in a curved 

duct. The shock detection method thus must be 

able to detect normal or strong shockwaves, 

which are found at the back-side of the 

supersonic region. 

 

Uncertainty in the quadtree grid 
Consider a sufficiently accurate solution on 

a grid around a slender body in transonic flow 

at small angle of attack. At every cell it is then 

assumed that the velocity in 𝑥-direction is much 

larger than the velocity in 𝑦-direction: 

 

 𝑢 ≫ 𝑣 (1) 

 

Therefore the flow can locally be considered as 

one-dimensional flow. In this grid consider two 

cells, adjacent in 𝑥-direction, with supersonic 

and subsonic velocity respectively. The flow 

then decelerates from supersonic to subsonic 

velocity somewhere between these cell centres 

through a normal shock, which is forced on the 

cell interface. The cell size in the default 

quadtree grid is proportional with the square of 

the distance away from the body, and thus the 

determination of the shockwave at remote cells 

is not accurate. This shows the necessity to 

refine the grid at those remote locations of 

uncertainty. 

 

Figure 2. Quadtree grid around a unit circle with a 

square refinement box centered at the leading edge of 

the circle with 𝐻 = 𝑊 = 1 and ℎ𝑤 = ℎ𝑏 = 0.01. 
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Solution-based grid refinement 
The flow solver does not support grid 

refinement during a calculation, and thus a 

solution-based grid refinement method is used. 

The grid refinement method was adapted from 

De Zeeuw et al. (11). In their solution-based 

grid refinement method cells are selected for 

grid refinement, and also coarsening, based on 

the velocity percentage difference between two 

adjacent cells. In the present study cell 

interfaces on which a strong shockwave is 

detected are selected for grid refinement. 

 

Shock detection 
Strong shocks are in the present method 

detected based on the cell Mach numbers of the 

solution. This method can be considered an 

image analysis method, as described by 

Kanamori (12). 

An algorithm is developed to trace the back-

side of the supersonic regions. The algorithm 

works as follows. The cells with Mach number 

larger than 1 are selected and split into ghost 

cells with length ℎ𝑤. This removes the hanging 

nodes and makes all cells equally sized. The 

ghost cell node coordinates are stored in a list 

which is ordered on the value of the 𝑦-

coordinate, and subsequently on the value of the 

𝑥-coordinate of the nodes. The result is that the 

first node in the list has the smallest 𝑥- and 𝑦-

coordinates. The second node has the same 𝑦-

coordinate, but has the second smallest 𝑥-

coordinate. The next node has again the same 𝑦-

coordinate and the next smallest 𝑥-coordinate 

until all the nodes with the lowest 𝑦-coordinate 

are numbered. The numbering is continued with 

the node with second smallest 𝑦-coordinate and 

the smallest 𝑥-coordinate etc. This numbering is 

illustrated in Figure 3. The numbering starts on 

the left node of the lowest row with node 

numbers 1,2,3, … until the last node of the first 

row has number 𝑗. The numbering is continued 

from left to right on the row above with 𝑗 +
1, 𝑗 + 2, … until the last node on the second row 

has number 𝑖. This numbering is continued until 

the last node has both the largest 𝑦- and 𝑥-

coordinate. The nodes are swept from the first 

to the second last and a shock is detected if 

either: 

 

 𝑥𝑛+1 − 𝑥𝑛 > ℎ𝑤  ∧ 𝑦𝑛+1 = 𝑦𝑛 (2) 

 

or 

 𝑦𝑛+1 > 𝑦𝑛 (3) 

 

where 𝑥𝑛 and 𝑦𝑛 signify the 𝑥- and 𝑦-coordinate 

of the node number 𝑛. When sweeping through 

the nodes these two criteria signify respectively 

1) the back-side of a supersonic region while 

another supersonic region still exist on the same 

𝑦-coordinate and 2) the back-side of the last 

supersonic region at that 𝑦-coordinate. When a 

shock is detected the corresponding node is 

selected for refinement. The result is that all the 

cell interfaces at which a strong shock occurs 

are described by their selected ghost node 

coordinates. 

 

 

 

Figure 3. Ghost cell numbering to detect the back-side of the supersonic area. The blue lines indicate the boundary of supersonic 

cells, the black dots indicate the nodes of the ghost cells and the node number is shown below the corresponding node. 
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Refinement method 
After the shock detection a new grid is 

generated with square refinement boxes 

centered at the coordinates of the flagged nodes. 

The flagged nodes are an inaccurate 

determination of the shockwave, hence the grid 

refinement, and therefore multiple grid 

refinement iterations are inherently required. In 

this study the refinement boxes have a length 

4ℎ𝑤 and the maximum cell size in the box is  

ℎ𝑏 = ℎ𝑤. This refines the cells at the 

shockwave up to the wall cell size in a single 

refinement iteration. It is also possible to refine 

the cell size in the refinement boxes through 

multiple steps, for example by choosing ℎ𝑏 to 

be 4ℎ𝑤 , 2ℎ𝑤 and ℎ𝑤 for every step respectively. 

The latter method could be faster in fine grids, 

but was not used. 

 

Multi-level approach 
A different method to decrease the 

computational time was developed using two 

properties of the solver. Firstly, the 

computational time required to generate the 

quadtree grid is negligible to the computational 

time required for solving the flow. Secondly, 

the computational time required for solving the 

flow is proportional to the square of the total 

number of cells. Calculations on coarse grids 

are therefore a very cheap way to obtain the 

initial predictions of the shockwave. The grid 

refinement is then applied to a medium grid. 

The solution on the medium grid is refined 

again and the new grid refinement is applied to 

a fine grid and so on. The flow solution of a 

higher level is thus essentially used for grid 

refinement on a lower level. This multi-level 

approach to solution-based grid refinement 

showed a significant reduction in computational 

time. 

 

Solution and refinement convergence 
After the solver finishes the 𝑇 iterations the 

solution is evaluated. The 𝐿1 and 𝐿2 norms of 

the residuals are a measure of the overall quality 

of the solution on the grid. If the norms are 

machine zero the solution cannot be improved 

any further. This accuracy however requires a 

very large computational time. It was found that 

a threshold of 𝐿𝑚𝑎𝑥 = 10−8 for the 𝐿1 and 𝐿2 

norms resulted in a convergence of the 

functionals 𝐶𝑑 , 𝐶𝐿 and 𝐶𝑚 within 0.01 

percentage change. If the norms were higher 

than the threshold an additional 𝑇 iterations 

were performed. Some calculations showed an 

early convergence of the 𝐿1 and 𝐿2 norms. This 

was identified by comparing the 𝐿1 and 𝐿2 

norms of the last iteration with an earlier 

iteration. It was found that in some cases of this 

early convergence, a shockwave was frozen on 

an inaccurate cell interface of a fine and larger 

cell. The norms of the residuals therefore 

convergence to a relative high value. The 

freezing of the shockwave is probably related 

with the time integration scheme in 

combination with the transition from a fine cell 

to a larger cell. 

To determine if the grid refinement is 

placed at the correct location the functionals 

𝐶𝑑 , 𝐶𝐿 and 𝐶𝑚 of the last two computations are 

compared. If the percentage change of all the 

functionals of the last computation is lower than  

%𝑚𝑎𝑥 the grid refinement is sufficiently 

accurate and it is sent to the next level. It was 

found that if %𝑚𝑎𝑥 ≤ 0.01 the grid refinement 

was successfully placed at the shockwave. 

The solution and grid refinement evaluation 

is automated such that for every flow condition 

and biplane configuration the final solution is 

calculated without human intervention. 

 

Higher order estimates of functionals 
The multi-level approach calculates 

solutions on multiple levels, which are used for 

a higher order prediction of the aerodynamic 

coefficients. Following the work of Xing et al. 

(13) the limiting value 𝐹∗ of the functionals 

𝐶𝑑 , 𝐶𝐿 and 𝐶𝑚 can be estimated as ℎ𝑤 →  0: 

 

 
𝐹∗ = 𝐹𝑓 +

𝐹𝑓 − 𝐹𝑚

𝜔𝑝 − 1
 (4) 

 

 
𝜔 =

ℎ𝑤
𝑚

ℎ𝑤
𝑓

=
ℎ𝑤

𝑐

ℎ𝑤
𝑚 (5) 

 

  
𝑝 = ln (

𝐹𝑐 − 𝐹𝑚

𝐹𝑚 − 𝐹𝑓) / ln(𝜔) (6) 

 

Here the superscript 𝑓, 𝑚, 𝑐 denote the fine, 

medium and coarse grid, 𝜔 the ratio between the 

wall cell size of the grids and 𝑝 the order of 

accuracy. Note that in equation (4) 𝜔𝑝 signifies  

𝜔 raised to the power 𝑝. This extrapolation is 

called the 3-point Richardson extrapolation.  

The effect of the functional errors on the 

estimate of order of accuracy is neglected as 

elaborated by Vassberg (14). The family of 
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grids is arguably not suitable for Richardson 

extrapolation due to the uncontrollable grid 

refinement but any effects on the order of 

accuracy are also neglected. 

 

Test cases and wall cell size 
The higher order estimate is used to 

determine the wall cell size for the biplane 

calculations. In addition the higher order 

estimates were used to validate the solver and 

grid refinement method. 

Starting with a wall cell size of ℎ𝑤 = 0.01 

calculations on a single NACA0012 airfoil were 

conducted. The wall cell size was halved 

between every grid level until ℎ𝑤 =
0.0003125. This created a family of grids 

consisting of 6 levels with 𝜔 = 2. Nonlifting 

and lifting test cases at both subcritical and 

supercritical flow were investigated. The choice 

of this set of flow conditions allowed the ability 

to investigate: 1) drag with and without lifting 

effects, 2) drag with and without shock effects. 

The matrix of flow conditions under 

consideration is provided in Table 1. 

In Figure 4 the drag coefficients of the 

supercritical lifting case are shown as function 

of the wall cell size. The Richardson 

extrapolation is also shown, with a ±2.5% 

margin. For this case the asymptotic range is not 

reached, but the last extrapolated value for 𝐶𝑑 is 

within 2.5% of the second last. Therefore the 

limited value of 𝐶𝑑
∗ as ℎ𝑤 → 0 is expected to be 

within a ±2.5% margin of the last 

extrapolation. The results of the other test cases 

showed similar results, with at least the last two 

extrapolations within a ±2.5% margin. From 

these results it was concluded that solutions 

with a wall cell size of ℎ𝑤 = 0.00125 are 

within 33% accuracy. The Richardson 

extrapolation of the functionals is not used in 

the results of the biplane and single airfoil 

calculations because based on these findings the 

extrapolated functionals are inaccurate at this 

wall cell size. The solutions of the medium and 

 

 

Figure 4. Convergence of calculated drag coefficient and 3-point Richardson Extrapolation on NACA0012 airfoil. 

𝑀, 𝛼 Nonlifting Lifting 

Subcritical 
𝑀∞ = 0.5 

𝛼 = 0° 

𝑀∞ = 0.5 

𝛼 = 1.25° 

Supercritical 
𝑀∞ = 0.8 

𝛼 = 0° 

𝑀∞ = 0.8 

𝛼 = 1.25° 
 

Table 1. Matrix of flow conditions used for the test cases. 
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coarse grid are not in the asymptotic range 

because the wall cell size is too large. 

 

3. Results 

Single NACA0012 
The initial calculations on the NACA0012 

airfoil showed a rapid increase in drag between 

𝑀∞ = 0.6 and 𝑀∞ = 0.7 at constant lift. 

Additional calculations with Mach number 

increments of ∆𝑀∞ = 0.2 were performed to 

locate the Mach drag divergence number more 

accurately. The drag at constant lift is shown in 

Figure 5. From the drag polar plots, the drag 

coefficient is interpolated for lift coefficient of 

𝐶𝑙 = 0.5 at every Mach number. A linear 

interpolation is used, which introduces small 

errors in the plot. The results show for 

subcritical flow condition a drag coefficient of 

approximately 𝐶𝑑 ≈ 0.006. From 𝑀∞ = 0.62 

the drag rises, with increasing slope. The drag 

coefficient at 𝑀∞ = 0.7 and 𝑀∞ = 0.8 is 𝐶𝑑 ≈
0.015 and 𝐶𝑑 ≈ 0.044 respectively. At 𝑀∞ =
0.7 the drag almost tripled compared to 𝑀∞ =

0.6, while at 𝑀∞ = 0.8 the drag almost tripled 

again. 

Two definitions of the drag divergence 

Mach number 𝑀𝐷𝐷 are found in the book 

Airplane Aerodynamics and Performance (15): 

the Boeing and Douglas definition respectively. 

According to the Boeing definition the drag 

divergence Mach number is “that free stream 

Mach number for which the drag due to 

compressibility first reaches 20 drag counts 

(∆𝐶𝑑 = 0.0020) above the incompressible 

level”. According to the Douglas definition the 

drag divergence Mach number is “that free 

stream Mach number for which the slope of the 

dragrise, 𝜕𝐶𝑑/𝜕𝑀, first eaches the value of 

0.10”. Since the Douglas definition requires a 

continuous formulation of the drag as function 

of the Mach number it is not used. Following 

the Boeing definition the drag divergence Mach 

number for the NACA0012 airfoil is estimated 

0.62 < 𝑀𝐷𝐷 < 0.64 at 𝐶𝑙 = 0.5. 

 

Single RAE2822 
The results on the RAE2822 airfoil are also 

shown in Figure 5.  Similar to the NACA0012 

 

Figure 5. Drag coefficient the NACA0012 and RAE2822 airfoil at constant lift coefficient against Mach number. 
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airfoil additional calculations were performed 

to identify the drag divergence Mach number of 

the RAE2822 airfoil more accurately. These 

additional calculations are at Mach number 

𝑀∞ = 0.72, 0.74, 0.76, 0.78.  

At 0.4 ≤ 𝑀∞ ≤ 0.7 the drag is 

approximately 𝐶𝑑 ≈ 0.004, which is two-thirds 

of the drag found for the NACA0012 airfoil. 

The drag rises for 𝑀∞ ≥ 0.72 and shows a 

small bump at 𝑀∞ = 0.72. This bump is not 

due to the linear interpolation of the drag in the 

drag polar. Following the Boeing definition the 

drag divergence Mach number is estimated at 

0.72 < 𝑀𝐷𝐷 < 0.74 for 𝐶𝑙 = 0.5. 

 

NACA0012 Biplane 
The drag polar of the NACA0012 biplane 

configurations at different Mach number are 

shown in Appendix I at Figure 12-Figure 16 on 

pages 1-1. For 0.4 ≤ 𝑀∞ ≤ 0.6 the drag polar 

of the different biplane configurations show no 

large differences for 0° ≤ 𝛼 ≤ 4°. These are 

subcritical flow conditions. Note that for 

subcritical flow the drag polar is a quadratic 

curve, making the differences smaller than as 

they would appear in these linear interpolated 

figures. For 6° ≤ 𝛼 ≤ 8° the biplane 

configuration with 𝑥0 = 0 shows significantly 

lower lift than the other configurations. In 

addition, the shockwave on the upper part of the 

two airfoils is in this configuration much larger. 

At 𝑀∞ = 0.7 and 𝑀∞ = 0.8 the drag polar 

for 𝑥0 = 0 is different than the other 

configurations. In Figure 6 the flow field for this 

biplane configuration shows choked flow, 

which is observed for 𝛼 ≥ 0°. The flow velocity 

at the lower surface of the main-wing is 

increased and the lift of the main-wing 

decreases. In addition the drag increases as the 

shockwave length is increased. 

Differences in the results between positive 

and negative stagger is small. At 𝑀∞ = 0.4 

negative stagger shows slightly higher lift per 

drag than positive stagger for 𝐶𝑙 ≥ 1.5. This is 

opposite to the results at 0.7 ≤ 𝑀∞ ≤ 0.8, 

where the positive stagger showed slightly 

higher lift per drag for 𝐶𝑙 ≥ 2. 

Based on these results additional 

calculations were performed on the NACA0012 

biplane. In Figure 17-Figure 19 on page 1-1 the 

drag polar plots are shown for 𝑥0 =
±2, ±1, ±0.5, +0 with 𝑀∞ = 0.6, 0.7, 0.8 for 

𝛼 = 0°, 2°, 4°. Interestingly no significant 

difference is observed between 𝑥0 = ±1 and 

𝑥0 = ±2 at all Mach numbers, besides a change 

in effective angle of attack. That is, positive and 

negative staggered configurations seems to 

follow the same drag polar curve, but at 

different angles of attack. 

At 𝑀∞ = 0.7 the results for 𝑥0 = 0.5 shows 

increased drag at 𝛼 = 4°. The flow field showed 

an increased shockwave on the main-wing 

compared to results with 𝑥0 = −0.5. Both the 

shockwave on the upper and lower surface of 

the main-wing are located very close to the 

trailing edge. 

 

Figure 6. The flow field of the 𝑥0 = 0 NACA0012 biplane 

configuration at 𝑀∞ = 0.7 and 𝛼 = 2° shows choked flow 

between the main-wing and truss. 

 

Figure 7. The flow field of the 𝑥0 = 0.5 NACA0012 biplane 

configuration at 𝑀∞ = 0.8 and 𝛼 = 4° shows an oblique and 

a detached shockwave at the trailing edge of the main-wing.  
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At 𝑀∞ = 0.8 the drag polar for 𝑥0 = ±0.5 

seems similar, but they show a shift in effective 

angle of attack since the results for 𝑥0 = −0.5 

at 𝛼 = 4° are almost equal to the results for 

𝑥0 = 0.5 at 𝛼 = 2°. The flow field of the 𝑥0 =
0.5 configuration shows an interesting flow 

pattern at 𝛼 = 4° at 𝑀∞ = 0.8 as is shown in 

Figure 7. The normal shock at the upper surface 

of the truss is connected to the normal shock 

originally found at the upper surface of the 

main-wing, but is now detached behind the 

trailing edge. In addition, an oblique shock is 

observed from the main-wing trailing edge 

towards the connected normal shock. This 

oblique shock is not refined by the presented 

grid refinement method, and introduces an error 

in this calculation of the aerodynamic 

coefficients. 

 

The drag coefficients at constant lift are 

shown in Figure 8. Note that the combined drag 

and lift coefficients are shown from both the 

airfoils in the biplane configuration, which are 

nondimensionalised with 𝑐. Therefore these 

results must be compared with the single airfoil 

drag coefficient multiplied with 2. At 

subcritical flow conditions the drag is 

approximately 𝐶𝑑 ≈ 0.015, which is 2.5 times 

larger than the drag of the single NACA0012 

airfoil. The biplane configurations with 𝑥0 =
±2, ±10 show small differences in drag. At all 

Mach numbers the magnitude of the differences 

is equal, and is caused by the linear 

interpolation. The drag for the 𝑥0 = 0 

configuration however shows significant 

increase in drag for 𝑀∞ ≥ 0.7. The drag 

coefficient for zero stagger is almost 2.5 times 

larger than the drag of the 𝑥0 = ±2, ±10 

biplane at both 𝑀∞ = 0.7 and 𝑀∞ = 0.8.  

 

RAE2822 Biplane 
For the RAE2822 biplane the stagger was 

varied with 𝑥0 =  ±1, ±0.5, ±0.25, 0 and the 

gap was varied with 𝑦0 = −1.5, −1, −0.75,
−0.5, −0.25 in two separate studies. The drag 

polar plots for variable stagger are shown at 

Appendix II  in Figure 20-Figure 24 on pages 1-

1. At 0.4 ≤ 𝑀∞ ≤ 0.6 the differences are small, 

and again a shift in effective angle of attack is 

seen. At 𝑀 = 0.6 and 𝛼 = 8° the differences 

 

Figure 8. Drag coefficient the NACA0012 biplane at constant lift coefficient against Mach number. 
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become larger and flow separation at upper 

surface of the leading airfoil is observed. 

For 𝑀∞ ≥ 0.7 the differences in the drag 

polar of the configurations are larger. At 𝑀∞ =
0.7 and 0 ≤ 𝐶𝐿 ≤ 1.5 two groups of 

configurations can be identified with an almost 

equal drag polar. The first group consists of the 

𝑥0 = 0  and  𝑥0 = −0.25 configurations. The 

results in this group are for 0° ≤ 𝛼 ≤ 2°, and 

show choked flow in all these four 

configurations. The second group consist of the 

other configurations. They do not develop 

choked flow and have significantly lower drag. 

For higher lift coefficients the 𝑥0 = 0.25 

configuration shows a more rapid increase in 

drag as the angle of attack increases. The flow 

is not choked, but the shockwave on the truss is 

developed earlier. In addition, the shockwave 

on the main-wing is larger than in the other 

configurations. 

At 𝑀∞ = 0.8 the drag polar of 𝑥0 = 0 and 

𝑥0 = −0.25 are again similar, but in contrast to 

𝑀∞ = 0.7 this similarity is observed for all 

investigated angle of attack. A shift in effective 

angle of attack for staggered configurations is 

again observed, showing a lower lift and drag 

for negative staggered configurations and vice 

versa, when compared to the zero stagger 

configuration. The flow field of the positive 

staggered configurations show an oblique 

shockwave at this velocity, similar to the 

NACA0012 biplane shown in Figure 7. One 

exception without an oblique shockwave is 

found: at 𝛼 = 2° and 𝑥0 = 0.25 the flow is still 

choked. 

 

In Figure 9 the drag coefficients at constant 

lift are shown for the investigated staggered 

configurations. At 0.4 ≤ 𝑀∞ ≤ 0.6 the drag is 

𝐶𝑑 ≈ 0.01, which is 2.5 times larger than the 

drag for a single RAE2822 airfoil. This is 

consisted with the difference in drag at 

subcritical flow conditions for the NACA0012 

biplane and single airfoil. At 𝑀∞ = 0.7 the drag 

increases for the 𝑥0 = 0 and 𝑥0 = −0.25 

configuration to 𝐶𝑑 ≈ 0.04. 

At 𝑀∞ = 0.8 the biplanes can be divided 

into four different groups. First the drag is 

highest for the 𝑥0 = 0 and 𝑥0 = −0.25 

configurations with 𝐶𝑑 ≈ 0.18. At 𝐶𝑑 ≈ 0.15 

and 𝐶𝑑 ≈ 0.13 the biplanes with 𝑥0 = −0.5 and 

𝑥0 = 0.25 respectively form a second group. 

The third group consist of the 𝑥0 = −1 and 

𝑥0 = 0.5 configurations with a drag of 𝐶𝑑 ≈

0.6. The fourth group consist of the 𝑥0 = 1 

configuration only with 𝐶𝑑 ≈ 0.05. The angle 

of attack required to generate 𝐶𝑙 = 1.0 is lower 

than 𝛼 < 1° for all configurations. The flow 

field show a small oblique shock for the positive 

staggered configurations and thus the calculated 

drag at 𝐶𝑙 = 1.0 is sufficiently accurate. For 

larger angle of attack the oblique shock 

becomes larger, decreasing the accuracy of 

those calculations. 

 

The drag polar plots with variable gap are 

shown at Appendix II  in Figure 25-Figure 29 

on pages 1-1. When the flow is not choked, a 

decrease in lift is observed for increasing gap at 

all investigated angles of attack. At 𝑀∞ = 0.6 

the biplane with 𝑦0 = −0.5 show increased 

drag and decreased lift, when compared with the 

𝑦0 ≤ −0.5 configurations. At 𝑀∞ = 0.7 and 

𝑀∞ = 0.8 the drag increases linear with 

decreasing gap, while the lift decreases linear 

with decreasing gap.   

 

The drag coefficient at constant lift for the 

gap study are shown in Figure 10. At 0.4 ≤
𝑀∞ ≤ 0.5 the drag is 𝐶𝑑 ≈ 0.01. For the 𝑦0 =
−0.5 the drag is slightly higher but the flow is 

still subcritical. The drag at 𝑀∞ = 0.6 for 𝑦0 =
−0.5 increases to 𝐶𝑑 ≈ 0.06 while the other 

configurations do not show an increased drag. 

At 𝑀∞ = 0.7 the configurations with 𝑦0 =
−1.00 and 𝑦0 = −0.75 have a drag of 𝐶𝑑 ≈
0.04 and 𝐶𝑑 ≈ 0.08 respectively. The drag for 

𝑦0 = −0.5 has increased approximately 

linearly with the Mach number to 𝐶𝑑 ≈ 0.11. At 

𝑀∞ = 0.8 the drag of all configurations has 

increased. The drag for 𝑦0 = −0.5 is 𝐶𝑑 ≈
0.23. The drag decreases linearly with ∆𝐶𝑑 ≈
0.02 for every increment of the gap to 𝐶𝑑 ≈
0.14 at 𝑦0 = −1.5. The flow fields shows an 

increased Mach number between the main-wing 

and truss as the gap decreases, while the 

shockwave on the upper surface of the main-

wing remains equal.  
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Figure 9. Drag coefficient the RAE2822 biplane at constant lift coefficient against Mach number for variable stagger. 

 

Figure 10. Drag coefficient the RAE2822 biplane at constant lift coefficient against Mach number for variable gap. 
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4. Discussion 

Verification of flow solver 
First the results of the test cases are 

compared with the results of other inviscid flow 

solvers presented by Vassberg (14). In Table 2 

the 3-point Richardson extrapolation 

aerodynamic coefficients of the present method 

are shown, together with the percentage and 

absolute deviation from the mean of the other 

solvers. The shown results are the 3-point 

Richardson extrapolation with ℎ𝑤
𝑐 = 1.25𝐸 −

3, ℎ𝑤
𝑚 = 6.25𝐸 − 4 and ℎ𝑤

𝑓
= 3.125𝐸 − 4.  

For the subcritical cases the theoretical drag 

in inviscid flow is zero. The calculated drag 

shows an absolute difference of less than 2 drag 

counts. The absolute difference for the lift- and 

moment-coefficient are lower than 0.002 and 

0.0006 respectively. The percentage difference 

of the lift-coefficient is smaller than the moment 

coefficient at −1.01% and −22.8%. The drag 

at subcritical flow was calculated relatively 

poor with the present solver, as the percentage 

deviation is large. The results for the biplane 

and single airfoil calculations using a wall cell 

size of ℎ𝑤 = 0.001 therefore show relative 

large drag at subcritical conditions. 

In the supercritical cases the theoretical 

drag is not zero. The calculated drag for the 

lifting and nonlifting case deviates 13 and 16 

drag counts respectively. The percentage 

deviation of the drag in the non-lifting case is 

almost 20%, while all the aerodynamic 

coefficients of the lifting case are almost within 

5% deviation. The lift is calculated within 0.01 

absolute deviation and the drag within 0.0017 

absolute deviation for both subcritical and 

supercritical cases. The observed differences in 

drag for variable stagger and gap are much 

larger, therefore the presented results in Figure 

8, Figure 9 and Figure 10 are sufficiently 

accurate to observe flow transition from 

subcritical to supercritical flow. 

The drag coefficient for 𝐶𝑙 = 1.0 of the 

single NACA0012 and RAE2822 airfoil for 

subcritical cases was not zero, but 𝐶𝑑 ≈ 0.006 

and 𝐶𝑑 ≈ 0.004 respectively. This difference is 

possibly caused by the different number of data 

points that was used to describe the airfoils, as 

the ratios are almost equal: 

 

 𝐶𝑑,𝑅𝐴𝐸2822

𝐶𝑑,𝑁𝐴𝐶𝐴0012
≈

0.004

0.006
= 0.67 (7) 

 

 

𝑀∞ = 0.5 𝛼 = 0°  𝛼 = 1.25° 
CFD method 𝐶𝑑 𝐶𝑙 𝐶𝑑 𝐶𝑚 

FLO82 +0.000000045 +0.180345850 +0.000000050 −0.002268812 
OVERFLOW v2.1t −0.000004058 +0.179777193 +0.000010030 −0.002262569 
CFL3Dv6 −0.000000192 +0.179783519 +0.000012221 −0.002270588 
CFL3Dv6+Vortex – +0.180351940 −0.000000134 −0.002277380 
Mean −0.000001051 +0.180064626 +0.000005542 −0.002269837 

     

Present method +0.000037826 +0.178248743 +0.000166499 −0.001752313 

Percentage deviation −3699.049% −1.008462% 2904.31% −22.8001% 
Absolute deviation 0.000038877 0.0018159 0.000160957 0.000517524 

 

𝑀∞ = 0.8 𝛼 = 0°  𝛼 = 1.25° 
CFD method 𝐶𝑑 𝐶𝑙 𝐶𝑑 𝐶𝑚 

FLO82 +0.008342298 +0.356208937 +0.022684938 −0.038774022 
OVERFLOW v2.1t +0.008342171 +0.351662793 +0.022453440 −0.037946129 
CFL3Dv6 +0.008341516 +0.348226045 +0.022501430 −0.037353559 
CFL3Dv6+Vortex – +0.351596613 +0.022674853 −0.037838046 
Mean +0.008341995 +0.351923597 +0.022578665 −0.037977939 

     

Present method +0.009981671 +0.34369431 +0.023838316 −0.036268632 
Percentage deviation 19.65568% −2.338373% 5.578944% −4.500789% 
Absolute deviation 0.001639676 0.0082293 0.001259651 0.001709307 

     
Table 2. The 3-point Richardson Extrapolation with ℎ𝑤

𝑐 = 1.25𝐸 − 3, ℎ𝑤
𝑚 = 6.25𝐸 − 4 and ℎ𝑤

𝑓
= 3.125𝐸 − 4 compared with the 

presented results by Vassberg (14) at both sub- and supercritical, and lifting- and nonlifting flow conditions. 
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#𝑅𝐴𝐸2822

#𝑁𝐴𝐶𝐴0012
=

12,802

20,001
= 0.64 (8) 

 

where #𝑎𝑖𝑟𝑓𝑜𝑖𝑙 indicates the number of data 

points used for the description of the airfoil. The 

reason why the number of data points only 

effects the drag at subcritical velocities is 

unknown. 

 

The effect of stagger and gap 
Three different flow patterns are observed 

for both the NACA0012 and RAE2822 

biplanes, depending on the position of the 

airfoils and flow conditions. For |𝑥0| ≥ 1 the 

generated lift of the airfoils influences the 

effective angle of attack of the individual 

airfoils as different shockwaves are observed. 

The resulting differences in the drag polar for 

these configurations are not negligible, but are 

small compared to the observed differences for 

the |𝑥0| < 1 configurations. Therefore they are 

not further considered in this study. 

For the |𝑥0| < 1 configurations the 

transition towards from subcritical flow to 

supercritical flow is observed prior to the same 

transition of the single airfoils. This is consisted 

with results presented by Hwang et al. (16). The 

flow chokes between the two airfoils, as a two-

dimensional duct is formed by overlapping 

sections of the inner surfaces of the airfoils. 

Two effects are observed in the drag polar of the 

NACA0012 biplane when the flow is choked. 

First the drag rises significantly at 𝛼 = 0°, 2°, 

because a shockwave is formed within the duct. 

Second the lift decreases at 𝛼 = 4°, 6°, 8° 

because the flow expansion over the upper 

surface of the truss is limited by the main-wing 

and the flow expansion over the lower surface 

of the main-wing is increased. The duct thus 

lowers the lift of both the main-wing and truss. 

For the RAE2822 biplane the drag increases and 

the lift decreases simultaneously for 𝛼 ≥ 0°, 

because lift is generated in all these 

configurations. For the RAE2822 biplane the 

|𝑥0| = 0.25 configurations were also 

investigated. Interestingly choked flow at 

𝑀∞ = 0.7 is observed only for the 𝑥0 = 0 and 

the 𝑥0 = −0.25, and not for the 𝑥0 = 0.25, 

configurations at 𝛼 = 0°. To understand this the 

flow field of a single RAE2822 airfoil at 𝑀∞ =
0.7 and 𝛼 = 0° is shown in Figure 11. This flow 

condition is still subcritical for the RAE2822 

single airfoil. An almost symmetric expansion 

on the upper surface and non-symmetric 

expansion on the lower surface is observed, 

with a symmetry line 𝑅(𝑥) at 𝑅𝑢𝑝𝑝𝑒𝑟 ≈ 0.46 

and 𝑅𝑙𝑜𝑤𝑒𝑟 ≈ 0.35 on the upper and lower 

surface of the airfoil respectively. The non-

symmetric expansion on the lower surface is 

inclined towards the leading edge because of the 

highly cambered aft section of the supercritical 

airfoil. 

According to Anderson (17) the linearized 

small perturbation potential equation is valid for 

small angles of attack, slender bodies and 

𝑀(𝑥, 𝑦) ≤ 0.8. Here 𝑀(𝑥, 𝑦) signifies the local 

Mach number at position (𝑥, 𝑦). The linearized 

small perturbation potential equation can be 

recast into the Laplace equation through a 

simple coordinate transformation in the 𝑥-

direction, and thus solutions can be superposed. 

Suppose that the solution for the RAE2822 

airfoil at the same flow conditions, i.e. 𝑀∞ =
0.7 and 𝛼 = 0°, is found for the linearized small 

perturbation potential equation and that it is 

equal to the solution the Euler equations from 

Figure 11. Define the Mach number 

perturbation 𝛿𝑀 as the local Mach number 

minus the free stream Mach number: 

 

 𝛿𝑀(𝑥, 𝑦) = 𝑀(𝑥, 𝑦) − 𝑀∞ (9) 

 

When superposing the Mach number 

perturbation of the two airfoils, the highest 

combined Mach number perturbation is 

 

Figure 11. The flow field of the RAE2822 single airfoil at 

𝑀∞ = 0.7 and 𝛼 = 0° shows a symmetric expansion over the 

upper surface, and a leading edge inclined expansion over the 

lower surface. 

𝑅𝑢𝑝𝑝𝑒𝑟 

 

 

 

 

 

𝑅𝑙𝑜𝑤𝑒𝑟  
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obtained when the symmetry lines of the 

expansions coincide: 

 

𝑥0(max 𝐶𝑑) = 𝑅𝑙𝑜𝑤𝑒𝑟 − 𝑅𝑢𝑝𝑝𝑒𝑟

≈ 0.35 − 0.46
= −0.11 

(10) 

 

This qualitative approximation matches with 

the obtained results, as it lies between the 

−0.25 < 𝑥0 < 0 configurations that showed 

the lowest drag divergence Mach number. 

For the 𝑥0 = 0.25 and 𝑥0 = 0.5 biplane 

configurations a detached shockwave at the 

trailing edge of the main-wing is observed at 

𝑀∞ = 0.8 for 𝛼 = 4° and 𝛼 ≥ 2° respectively. 

In the flow pattern an oblique shock originating 

from the trailing edge of the main-wing 

connects to midpoint of the detached 

shockwave. At these flow conditions the flow in 

the duct continuous to expand until it reaches 

the trailing edge of the main-wing. The flow 

over the upper surface of the main-wing also 

expands until it reaches the trailing edge. 

Supersonic velocity at the upper surface of the 

trailing edge is decelerated through an oblique 

shock to the flow exiting the duct. A normal 

shock decelerates the supersonic region to 

subsonic velocity. The drag polar does not 

clearly show the transition from choked flow 

towards this flow pattern, and thus differences 

in drag and lift between choked flow and the 

detached shockwave are small. 

 

The effect of gap was investigated for the 

RAE2822 biplane only. It was found that as the 

gap becomes smaller choked flow develops at 

lower free stream Mach number and the drag 

increases. The superpositioning method cannot 

be used be used to predict the gap at which the 

flow chokes. This is because of the following 

two reasons. Firstly, the linearized small 

perturbation potential equation is valid when the 

local Mach numbers in the flow are smaller than 

𝑀(𝑥, 𝑦) ≤ 0.8. Superposed solutions to this 

equation can therefore never be used to predict 

solutions with 𝑀(𝑥, 𝑦) ≥ 1. Secondly, the 

solution contains a non-physical space, i.e. the 

airfoil, where mirror-imaging must be applied 

when superposed, similar to the Milne-

Thomson circle theorem as elaborated by 

Batchelor (18). 

5. Conclusions 
The present multi-level approach to grid 

refinement combined with a strong-shock 

detection method was successfully used to 

investigate the effect of stagger on NACA0012 

and RAE2822 biplanes. The method was 

validated with the results of other inviscid 

solvers. 

It was observed that choked flow develops 

between two airfoils if they are positioned such 

that the overlapping surfaces forms a duct. The 

transition from subcritical to supercritical flow, 

i.e. choked flow, occurs at flow conditions 

which are subcritical for the single airfoil. The 

choked flow reduces the lifting capabilities of 

both the main-wing and truss and increases the 

drag. Similar flow patterns for the TBW 

configuration are expected in the regions where 

the main-wing and truss connect. The results of 

the present study suggest that choked flow can 

be avoided if the stagger is larger than the truss 

chord length. 

For increased Mach number the choked 

flow changed into to a new flow pattern, which 

is characterized by a detached normal shock and 

an oblique shock at the trailing edge of the 

main-wing. This flow pattern occurs when the 

flow through the duct and the flow over the 

upper surface of the main-wing reaches 

supersonic velocity at the trailing edge. The 

supersonic flow at the upper surface of the 

trailing edge than decelerates to the supersonic 

flow exiting the duct through an upward angled 

oblique shockwave. The detached normal shock 

connects to the truss upper surface. Changes in 

the drag polar due to the transition to the 

detached normal shock were small compared to 

the transition to choked flow. 

The superposition principle was 

successfully used to calculate a qualitative 

approximation of the stagger of the RAE2822 

biplane with the lowest drag divergence Mach 

number. 

In future work it is advised to investigate 

the aerodynamic interaction with smaller 

increments in both the Mach number and angle 

of attack. The angle of attack should be limited 

to 𝛼𝑚𝑎𝑥 = 6°, because the maximum lift-to-

drag ratio was found at 𝛼 ≈ 4° In addition, 

negative angles of attack should be included in 

the study to calculate the zero lift condition. The 

aerodynamic coefficients of the individual 

airfoils should be analysed to confirm the loss 
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of the lifting capabilities of the truss and main-

wing due to choked flow. 
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Appendix I. NACA0012 Biplane Drag Polar Plots 

 

Figure 12. Drag polar of NACA0012 biplane at Mach 0.4 

 

Figure 13. Drag polar of NACA0012 biplane at Mach 0.5 
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Figure 14. Drag polar of NACA0012 biplane at Mach 0.6 

 

Figure 15. Drag polar of NACA0012 biplane at Mach 0.7 
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Figure 16. Drag polar of NACA0012 biplane at Mach 0.8 
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Figure 17. Drag polar of NACA0012 biplane at Mach 0.6 with small stagger increments 

 

Figure 18. Drag polar of NACA0012 biplane at Mach 0.7 with small stagger increments 

 

𝑥0 = 0 
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Figure 19. Drag polar of NACA0012 biplane at Mach 0.8 with small stagger increments 
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Appendix II. RAE2822 Biplane Drag Polar Plots 

 

Figure 20. Drag polar of RAE2822 biplane at Mach 0.4 with variable stagger 

 

Figure 21. Drag polar of RAE2822 biplane at Mach 0.5 with variable stagger 
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Figure 22. Drag polar of RAE2822 biplane at Mach 0.6 with variable stagger 

 

Figure 23. Drag polar of RAE2822 biplane at Mach 0.7 with variable stagger 
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Figure 24. Drag polar of RAE2822 biplane at Mach 0.8 with variable stagger 
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Figure 25. Drag polar of RAE2822 biplane at Mach 0.4 with variable gap 

 

Figure 26. Drag polar of RAE2822 biplane at Mach 0.5 with variable gap 
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Figure 27. Drag polar of RAE2822 biplane at Mach 0.6 with variable gap 

 

Figure 28. Drag polar of RAE2822 biplane at Mach 0.7 with variable gap 
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Figure 29. Drag polar of RAE2822 biplane at Mach 0.8 with variable gap 

 


