
Comittee

dr. Angelika Mader

dr. ir. Dennis Reidsma

ir. Hans Scholten

Till Schäfers MSc

User Experience in
Smart Environments

June 28 2016

Tobias Uebbing BSc

Written by

Design and Prototyping

MSc Thesis





Abstract

Home automation has been a popular interest and desire of the broad
public for decades. Recently those visions slowly have started to become a
reality with so called “Smart Home” devices. Nevertheless, the market adoption
of these devices does not meet the sales expectations of the manufacturers.
Market surveys have shown that missing interoperability, intelligence and un-
pleasant User Experiences (UX) are potential causes. In-depth insights into the
UX of such Smart Environments are scarce, since appropriate tools for the cre-
ation of rapid prototypes are missing. Therefore, UX designer and researcher
have to invest high efforts into the creation of merely stable prototypes. This
repeatedly leads to shortened user evaluations with unsatisfying results.

For this reason, specifications for and descriptions of components for a tool
kit that supports, what we call, functional Experience Prototyping (functional
ExP) were defined in the course of this project. According to our definition,
functional ExP aims on creating functional prototypes that mediate the UX of
an intended final product. It does not aim for technical finesse, superb scala-
bility or stability. The generation of the tool specifications required two inputs:
The desired UX that the toolkit needs to able to generate and its potential
impact on the common design and development process. Smart Environments
have a broad application space and since UX is highly application-dependent
the scope of this work was narrowed to a subdomain called Intelligent Living
Environments (ILEs). General UX dimension were found based on the work
of predecessors and an UX outline for ILEs including the user’s intention and
context of use as well as system characteristics was established. Principles
on the integration of user-centered agile design and development methods as
well as lean and continuous development were gathered and merged. The
resulting optimized method incorporates functional ExP and supports Contin-
uous Interdisciplinary Prototyping (CIP). A prototyping environment that can be
assembled of functional Experience - , Technical Prototypes and completely im-
plemented components. This supports continuous development and provides
an integrated testing environment for designers and engineers throughout the
whole process. Based on the defined UX outline and optimized design and
development method specifications for a functional ExP were derived. Sub-
sequently these specifications were translated into actual toolkit components.
As a final proof of concept some of these components were implemented and
used to build use case prototypes. This final step proved that the specifications
and component descriptions are a suitable foundation for the realization of a
functional ExP toolkit for ILEs.

I



Acknowledgements

My deepest gratitude goes to to all people that supported and accompanied
me during the execution of this graduation project as well as my whole master
studies.

I would like to thanks my supervisors Angelika Mader, Dennis Reidsma and
Hans Scholten for the feedback and guidance throughout this project. I am in
particular grateful for the excellent advice and academic as well as emotional
support by my daily supervisor Angelika Mader. She was not only attend to
keep me focused and motivated, but also that I take care of myself during
times of intense research and conception. Without our weekly reflective talks
I would not have reached the results laying now in front of you.

In the same manner I would like to thank my wonderful boyfriend who
supported me at least as much and always made me feel like all the effort
will lead to a valuable piece of work. Additionally, this document became visu-
ally so appealing thanks to his noble graphical contribution. I also would like
to thank my family for their steady support nevertheless which struggles oc-
curred and for the sometimes undesired but needed distraction and relaxation.

Overall, I am thankful for my precious study years at the University of
Twente that were enriched by my teachers, fellow students and friends. It
would not have been the same without all of you.

At last I would like to thank the Deutsche Telekom AG and especially
Matthias Böhmer, who helped me to develop the initial idea for this work, and
Till Schäfers as my external supervisor throughout the project. Furthermore
I would like to thank Thomas Kubitza from the University of Stuttgart for the
cooperation, help and provided means. My appreciation also goes to the
companies Nedap N.V. and eFocus for the possibility to interview them.

II



Contents

1 Introduction 1
1.1 Intelligent Living Environments . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background & Problem Motivation 6
2.1 Technical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Applications on the Market . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 User Experience Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Experience Prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Functional Experience Prototyping . . . . . . . . . . . . . . . . . . . . . 27

3 Desired UX 29
3.1 User Experience Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 UX outline for ILEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 User’s Internal State . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Context of Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 System Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 ILE Use Case Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Design & Development Method 46
4.1 Current Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 An Optimized Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 A Functional Experience Prototyping Toolkit 61
5.1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 A Tool Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Discussion & Conclusion 79

7 Future Work 81

Bibliography LXXXII

Acronyms LXXXVII

A List of Identifiers XCII

B Evaluation Documentation XCIV

III



IV



List of Figures

1.1 Search interests over time. . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Examples of Intelligent Applications. . . . . . . . . . . . . . . . . . . . . 2
1.3 Allocation of fields associated with Smart Environment and inter-

relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Intelligent Living Environments (ILEs) . . . . . . . . . . . . . . . . . . . 5

2.1 Identified IoT characteristics and derived technical challenges. . . 7
2.3 IoT architectures: (a) three-layer (b) service-oriented (c) five-layer 7
2.2 Technical elements of IoT as defined by Al-Fuqaha et al. [1] . . . . 8
2.4 Overview of standards relevant for IoT. . . . . . . . . . . . . . . . . . . 8
2.5 Overview of a selection of available development hardware. . . . 10
2.6 Overview of a selection of available development software. . . . . 12
2.7 Illustration of Technical Prototyping . . . . . . . . . . . . . . . . . . . . 13
2.8 Multiple IoT Application Domain Spectra. . . . . . . . . . . . . . . . . . 14
2.9 Overview of collected application examples. . . . . . . . . . . . . . . 16
2.10 Continued: Overview of collected application examples. . . . . . . 17
2.11 Illustration of Experience Prototyping . . . . . . . . . . . . . . . . . . . 20
2.12 Overview of different types of prototyping activities. . . . . . . . . . 28

3.1 The different scopes of User Experience (UX) design. . . . . . . . . 30
3.2 The three dimensions of UX. . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 General Intentions of Use for Intelligent Living Environments (ILE)s. 34
3.4 Overview of possible components of an ILE categorized into inputs,

intelligence and outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 “Where did I leave ... my glasses?” . . . . . . . . . . . . . . . . . . . . . 42
3.6 Remembrall in the Harry Potter Movie. . . . . . . . . . . . . . . . . . . 43
3.7 Ario Smart Lighting system over a day. . . . . . . . . . . . . . . . . . . 43

4.1 The Agile Manifesto as defined by Beck et al. [7] . . . . . . . . . . . 47
4.2 One sprint in Scrum based on figure by Jongerius [29] . . . . . . . 48
4.3 Illustration of optimized design methods for ILEs incorporating

functional Experience Prototyping (functional ExP). . . . . . . . . . . 52
4.4 Presence of expertise within the team. . . . . . . . . . . . . . . . . . . 53
4.5 Evolution of the prototype through out the design & development

process including functional ExP, technical and final components. 55

5.1 Overview over all components of the functional ExP toolkit. . . . . 67
5.2 Hardware of the meSch kit. . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Device pool overview in the front end of the meSchHub . . . . . . 75
5.4 Grapical User Interface (GUI) generated with Node-RED. . . . . . . 76

V



5.5 Screenshot of the several Application Program Interface (API) nodes
connected to MQTT topics in Node-RED. . . . . . . . . . . . . . . . . . 77

VI



Chapter 1

Introduction

Figure 1.1: Search interests over time.
Source: Google Trends

The Internet of Things (IoT) is a term with continuously rising interest within
research and industry since it was first coined in 1999 by Kevin Ashton [4].
The number of devices connected to the IoT is expected to reach 212 billion
by the end of 2020 [17] and the annual global economic impact is estimated
to be between $2.7 and $6.2 trillion by 2025 [43]. For this reason, leading
Information Technology (IT) companies are making efforts to enter the IoT mar-
ket. IBM, Google and Amazon are offering cloud services such as machine
learning and IoT middleware for businesses. New hard- and software for IoT
is constantly released for the development community by companies such as
Samsung, Apple and others. Many of the big companies also offer end con-
sumer products. Most popular application area in this market segment is the
so called Smart Home. home automation has been a common interest for
a while even before IoT was a well-known term as illustrated in figure 1.1.
Current applications as for example smart thermostats and lighting systems
can be either controlled via rules set by the user or manually from a remote
location. But the adaption of these technologies by end consumers is still
restrained and below expectations of manufacturers [12] [26].

The field has been mostly approached from an internet- and things-oriented
perspective in the past [5, 44]. Extraction of meaning and semantic op-
erability between systems has been mostly neglected as preparatory stud-
ies for this work have shown [5, 41, 44]. Intelligent products like the Nest

1



Learning Thermostat1, the Ario Smart Lighting2 system and Sense by Silklab3,

(a) Nest Thermostat

(b) Ario - Smart Lighting

(c) Sense by Silklab
Source: Nest, Ario, Silklabs

Figure 1.2: Examples of Intelligent Ap-
plications.

a Smart Home hub, are al-
ready available on the market (see
figure 1.2). They sense for
example the presence of users
and adapt their or the behav-
ior of the environment accord-
ingly. Nevertheless, those sys-
tem are still isolated and keep
gathered insights to themselves for
now.

Connecting these systems shall
lead to higher comfort, efficiency,
security and empower users to
manage their everyday life. But
even if the technical challenges
are solved still work is necessary
to ensure a pleasant UX within
these interconnected Smart Environ-
ments. However, first it needs
to be clarified whether and how
the UX of Smart Environments dif-
fers from the UX of stand-alone
applications. UX design and re-
search for Smart Environments and
Context-Aware Applications and sim-
ilar require high effort in terms of
prototyping and user testing [55].
Questionable is to which extent de-
sign methods for stand-alone ap-
plications are suitable for UX de-
sign within such Smart Environ-
ments.

This work investigates how work of designers and researcher focusing on
UX within Smart Environments can be facilitated. The focus will be sharp-
ened to the area of ILEs on reasons explained within section 1.1. Chapter 2
provides a knowledge base in technical aspects, current applications on the
market and UX research. Furthermore the chapter introduces the term Experi-
ence Prototyping (ExP). Concluded is the chapter by summarizing the problem
motivation and formulating a problem statement. Before the problem can be
tackled chapter 3 defines the desired UX of ILEs. This generic outline includes
three UX dimension aspects. Chapter 4 presents current common design &
development methods and proposes a method that is optimized for the appli-

1https://nest.com/thermostat/meet-nest-thermostat/
2http://www.arioliving.com/
3http://www.silklabs.com/

2



cation of functional ExP. In chapter 5 we derive tool specifications from prior
gathered knowledge and translate those to actual components of a software
toolkit. Furthermore this chapter describes how an initial set of tool compo-
nents is implemented. Finalized is the chapter by a proof of concept of the
toolkit executed by the implementation of real world ILE use cases to validate
the applicability of the tools. Afterwards, the findings and outcomes of this
work are discussed and conclusions are drawn in chapter 6. Concluded is this
work with a prospect on future efforts to continue the work on facilitating the
design and prototyping of UX within ILEs and Smart Environments in chapter 7.

This work is a graduation project from the Master studies in Human Media
Interaction at the University of Twente, Netherlands. It is carried out for the
Products & Innovation department of the telecommunication provider Deutsche
Telekom AG situated in Germany.

Final outcomes of this project are:

1. Generic outlines for the UX of ILEs.

2. A proposal for an improved design and development method for ILEs
evaluated by experts.

3. Specification for a tool framework that supports this process and their
translation to specific software components.

4. A collection of use cases inspired by previously defined UX outlines as
well as current existing application in the market.

5. Implementation of an initial set of these tools and a proof of concept in
form of an implementation of use cases using the toolkit.

1.1 Intelligent Living Environments

There are many names for the same phenomenon existing that highlight
different aspects: Internet of Things, Physcial Computing, Smart Environments,
Ambient Intelligence (AmI) or Ubiquitious Computing (UbiComp). UbiComp, first
introduced by Mark Weiser [56], is the paradigm to embed technology into
the background of everyday life [20] and claims to be the field of origin of
related terms. Kuniavsky [35] claims this area of fields never had a structure
and implies every attempt to structure it would lead to different results. While
working on this project and reading about all different terms it became clear
all fields are related to some degree and also share intersections. Figure 1.3
shows our vision on the allocation of the terms and their relation to each
other. The outer circle contains the three approaches to the field as defined
by Atzori et al. [5]: Internet-, things- and semantic-oriented approach. Aligned
with these approaches on the next inner circle five main research fields were
identified:

3



• Ubiquitious Computing (UbiComp) - embedding technology into everyday
life

• Physcial Computing - connecting computing to the physical world by
sensors and actuators

• Cloud Computing - granting access to cloud services for computing and
communication in-between systems indirectly and asynchronously

• Big Data - managing, storing and handling the significant high amount of
data that is expected to be produced

• Artificial Intelligence (AI) - extracting meaning from data and act on it
intelligently

In the center of figure 1.3 the multidisciplinary fields were allocated in between
their corresponding main fields. Most popular term right now is the Internet
of Things (IoT). However, in our point of view IoT does not incorporate the ex-
traction of semantic meaning and resulting intelligence. The terms that match
our perception of the general phenomenon most are Smart Environments and
AmI, where AmI forms more of an enabling base for Smart Environments.

For this reason, the focus of this work was laid on Smart Environments.
Preparatory studies have shown that Smart Environments includes and in-
tersects with many application domains such as smart cities, environmental
monitoring, smart home, agriculture, markets and industry. It is evident that
the UX of an application or service unfortunately depends highly on the user,
his Intention of Use, Context of Use and application specific aspects [10, 22, 38].
The attempt to work on the UX of something as broad and general as Ubi-
Comp or Smart Environment would potentially exceed the scope of this project.
Consequentially, the focus is narrowed on an application domain that we call
Intelligent Living Environments (ILEs). ILEs include all aspects that are incorpo-
rated in a common everyday private live of a person. Therefore ILEs include
terms such as Smart Home and Ambient Assisted Living (AAL) but also extents
to private transportation and contact points with external services such as
businesses. Figure 1.4 illustrates our point of view on the scope of ILEs.

At last in this introduction two minor remarks concerning the reading of
this work. First, even though the terms (ILE, IoT, UbiComp, etc.) are so closely
related we preserved the original word choice when citing work of predeces-
sors. Treating them as different aspects of the same phenomenon potentially
facilitates the reading process of this work. Second, a lot of different terms
and aspects are defined and used throughout this work. For this reason, we
introduced identifiers such as [EX.1] to uniquely mark them. A complete List
of Identifiers is available in appendix A.

The following chapter provides background information on the state of the
art in applications, technical and UX prototyping and design methods as well
as in UX research.

4



Figure 1.3: Allocation of fields associated with Smart Environment and interre-
lations.

Figure 1.4: Intelligent Living Environments (ILEs)

5



Chapter 2

Background & Problem Motivation

This chapter forms a knowledge foundation for the further course. Addition-
ally it provides the motivation for and specifies the problem tackled in this
work in more detail. At first technical background knowledge relevant for the
field concerning system characteristics, standards and hard- and software is
given. Afterwards, existing applications in the market are briefly presented
and examined with focus on matching the demands of the end consumers.
Followed by a summary on the state of the art within User Experience (UX)
research of Ubiquitious Computing (UbiComp) environments. The subsequent
section introduces the method of Experience Prototyping and elaborates on
supporting prototyping methods and their suitability for the design of Intelli-
gent Living Environments (ILE)s. The first part of this chapter summarizes the
results of our preparatory studies for this work on the subject of advances in
applications and development for Internet of Things (IoT) and related fields.

2.1 Technical Background

Information Technology (IT) experienced significant advances in the last decade.
Computing power steadily increased dramatically while the size of components
and their cost decreased with the same factor. Shifting Mark Weiser’s [56]
vision more and more into reality. The introduction of wireless technologies
such RFID, NFC, WiFi and BLE made UbiComp systems such as Wireless Sensor
Networks (WSN) and IoT possible. In the following information on the charac-
teristics of IoT and related systems, important standards, hard- and software,
and prototyping tools are explained.

System Characteristics

Miorandi et al. [44] defines the three main system-level characteristics within
IoT so that ’anything’ communicates, ’anything’ is identified and ’anything’ in-
teracts. From these main more specific characteristics can be derived. The 8
characteristics and resulting technical challenges as identified by predecessors
[1, 41, 44, 50] are listed in figure 2.1. The characteristics and challenges can
be projected on ILEs due to the close relations between Smart Environment
and IoT. For more details please consult the preparatory study for this work.

IoT applications are built-up from various technical components. Al-Fuqaha
et al. [1] composed an extensive survey on the technical advancement within

6



Figure 2.1: Identified IoT characteristics and derived technical challenges.

the field. They discuss architecture, building blocks, common standards, chal-
lenges and some application use-cases. The technical building blocks of IoT
identified by them are shown in figure . When designing and developing IoT,
the challenges identified previously such as scalability, heterogeneity and inter-
operability should be taken into consideration [41].

Figure 2.3: IoT architectures: (a) three-
layer (b) service-oriented (c) five-layer

According to Al-Fuqaha et al. [1] a flex-
ible layered architecture is therefore a
critical necessity to connect a theoret-
ical infinite amount of heterogenous
objects. However, “the ever increas-
ing number of proposed architectures
has not yet converged to a reference
model” [1]. Figure 2.3 illustrates three
different generic approaches: a basic
three-layer architecture [31, 59, 60],
a service-oriented architecture (SoA)
[1, 41, 44] and a five-layered architec-
ture [31, 59, 60]. In the further course
of this subsection the five-layered ar-
chitecture will be used as reference
to position different standards and technologies.

7



Figure 2.2: Technical elements of IoT as defined by Al-Fuqaha et al. [1]

Standards

Figure 2.4: Overview of standards rele-
vant for IoT.

Standardization is a key success fac-
tor for IoT to solve the challenge of
heterogeneity [41, 57]. In the fol-
lowing common standards for differ-
ent component and architectural lay-
ers are briefly introduced.

For identification & communi-
cation Infrastructure Protocols are
needed to ensure interoperability
within the Objects and Object Ab-
straction Layer. Protocols for identifi-
cation are divided into identifying enti-
ties by an identifier such as EPC as im-
plemented within RFID and address-
ing them by IPv4 and IPv6. 6LoW-
PAN provides a compressions mech-
anism for IPv6 to make IPv6 address-
ing possible on low power wireless
networks. Most communication stan-
dards are well-known such as WiFi,
BLE, RFID and NFC. Other standards
as e.g. LoRaWAN and LiFi are cur-
rently emerging.

Application Protocols are jointly
used by hosts in a network to com-

8



municate to each other. Standards that are currently commonly used in IoT
and similar systems are CoAP and MQTT. CoAP is based on REST on top of
HTTP. UDP is the underlying transfer protocol and for identification URIs are
used. CoAP incorporates mechanism that fix unreliability of message delivery
within UDP. MQTT is built on top of TCP as transfer protocol. It implements a
publish/subscribe pattern that allows one-to-one, one-to-many, and many-to-
many relations. An MQTT implementation consists out of three components:
publishers, subscribers, and one broker. Clients can be subscriber as well as
publisher. A new emerging communication protocol is Weave but it is still in
development and in invite-only Beta phase.

(Semantic) Interoperability “[T]here is a need for interoperation of underly-
ing technologies” [1] due to the amount of different communication standards
available and general heterogeneity present. The standard IEEE 1905.1 was
introduced to converge technological heterogeneity. Other standardization ef-
forts also support these endeavors. Unfortunately semantic interoperability has
been mostly neglected. Though there are formal standards for the structure
of information like JSON, EXI(XML), RDF and OWL there are no overarching
agreements to make them applicable within IoT devices and services.

Figure 2.4 provides an extended overview of standards important for IoT and
similar systems.

Hard- & Software

The hard- and software market for the development of IoT and similar appli-
cation is fast emerging. In this section current new releases are presented.

Hardware -wise the two main segments are micro-controller boards and
single-board computer. Most well-known micro-controller prototyping platform
is Arduino1, respectively Genuino in Europe since 2015. For this reason, many
other platforms are compatible with Arduino hardware and the associated
Integrated Development Environment (IDE). Many new micro-controller boards
have connectivity modules included such as for WiFi, BLE or LoRaWAN. Single-
board computers became popular with introduction of the Raspberry Pi2. The
low-budget computer was primarily meant to enable access to computation
and the internet in education and developing countries. The newest version
3 Model B also includes a module for WiFi and BLE connectivity. Competitors
such as the UDOO Neo3, aimed on IoT development, also already incorporates
sensors on-board. Figure 2.5 provides an more extensive overview on current
available hardware.

1

2

3

9



Fi
gu

re
2.
5:

O
ve

rv
ie
w

of
a
se

le
ct
io
n

of
av

ai
la
bl
e
de

ve
lo
pm

en
t
ha

rd
w
ar
e.

10



Software and Services for IoT development are available in various forms.
This paragraph will shortly introduce relevant operating systems (OS)s, mid-
dleware and cloud services. For single-board computers different operating
systems are available. Two new OSs are Windows 10 IoT Core4 and Brillo5 by
Google. Brillo claims to provide essential functionalities for IoT devices such as
over-the-air updates. middleware compensates for asynchronism and ensures
reliability of delivery within a system. It can either run within a local network
or remotely on a server as cloud service. Example for middleware that can
run on a local scope are Node-RED6, Eclipse SmartHome7 or the meSchup
server developed during the meSch project [34]. Other middleware is offered
in form of a cloud service like AWS IoT8 or IBM Watson IoT9. Other big IT
companies that offer cloud services including computing, storage and machine
learning capabilities are Google10 and Microsoft11. Figure 2.6 provides an more
extensive overview on current available software and services.

4

5

6

7

8

9

10

11

11



Fi
gu

re
2.
6:

O
ve

rv
ie
w

of
a
se

le
ct
io
n

of
av

ai
la
bl
e
de

ve
lo
pm

en
t
so

ft
w
ar
e.

12



Technical Prototyping

Figure 2.7: Illustration of Technical Prototyping

We understand Technical Protoyping as following:

Technical Prototyping is the prototypical implementation of a system
towards a technical realization and deployment of a concept. This
activity can have different fidelity levels as aim from exploration and
feasibility studies to final implementation.

The advancements in available off-the-shelf development hard- and software
facilitates faster and more cost effective prototyping of IoT applications. New
development platforms and boards released also simplify prototyping activities
significantly. This is also facilitated by accessories for hardware platforms like
Arduino in form of easily attachable and accessible shields. Many other
platform also offer Arduino compatibility in hard- and software as well as
IDE due to its popularity. Other development platforms such as offered by
Particle or Google Brillo promise a easy transition and thus scalability from
prototyping over development to deployment.

13



Fi
gu

re
2.
8:

M
ul
ti
pl
e
Io
T
Ap

pl
ic
at
io
n

D
om

ai
n

Sp
ec

tr
a.

14



2.2 Applications on the Market

One result of the preparatory study was to define an updated application do-
main spectrum based on similar spectra defined by predecessors (see figure
2.8) [1, 5, 41, 44, 57]. The proposed spectrum with 8 different domains is
shown in the bottom of figure 2.8. The domains were defined with existing
and potential future applications in mind.

Second step was the collection of current application examples. Figure 2.9
shows an overview of the applications collected. As elaborated in section 1.1
this work concentrates on ILEs which mostly incorporate the domains of Smart
Environments, Personal & Social, Education and Health & Fitness (see also
figure 1.4). For this reason, most examples collected within the preparatory
study fall under these domains.
Typical current end consumer products are retro-fit Smart Home solutions for
controlling heating, lighting and the power supply of devices, and monitoring
energy consumption. Smart Home hubs such as Smart Things or
Homey by Athom are often a part of such ecosystems. They com-
municate to devices using various communication standards, provide internet
access to those and execute conditional rules which emulate the smart be-
havior of the environment. More intelligent products like the Nest Thermostat

that adapt to presence, preference and daily routine of the user by
themselves are available, too. Other products like the Cognitoys use
cloud services to access speech recognition and synthesis capabilities as well as
knowledge sources. Connected environments are also used to make museum
exhibitions more interactive. The meSch project funded by the Euro-
pean Union is aiming to facilitate the use of such technologies within museums.

The critical aspects identified within this collection include missing interop-
erability of products and the lack of (sensor) infrastructure in buildings and
environments. Improvements within these aspects would potentially lead to
higher consumer interest in IoT products. End consumer indicated in a survey
that missing interoperability is a major critic point of Smart Home products
[25]. For this survey Icontrol interviewed 1600 north american consumers in
spring 2015 on the topic of Smart Home adoption. The results show that the
current products are not meeting actual desires of end consumers.
In many current systems the user can either remote control functionalities
via the internet and/or predefine rules and preferences that are triggered
by specified sensor inputs or events. 60% of the participants of the survey
indicated that they would rather prefer devices that use sensors, data and
analytics to act on their own. Next best scenario from the consumer’s point of
view is the interaction via voice-control or text messages (chat bots). Both of
these characteristics are already available in some products. The before men-
tioned Nest Learning Thermostat and the Ario Smart Lighting system
learn about their user and adapt accordingly. Amazon’s Alexa and Siri

make it possible to control devices using speech input. The problem
with those systems is that they often operate only on their own isolated plat-
form. It necessary that those system can communicate and understand each

15



Figure 2.9: Overview of collected application examples.
16



Figure 2.10: Continued: Overview of collected application examples.

other to create intelligent environments. Therefore (semantic) interoperability
is key to enable the sharing and exchange of data.
The survey by iControl Networks [25] also identified another key success factor
for the adoption of Smart Home systems. Surveyed consumers agreed that
the UX and especially the ease-of use is more important than technical innova-
tion. Väänänen-Vainio-Mattila et al. [55] agree that the consideration of the UX
in the design and development process of intelligent environments from the
very beginning is crucial for their success. As identified within our preparatory
study it is nescessary for the future that systems recognize and understand
their users and act appropriately on their own. However, it does need to be
ensured that the user also feels comfortable being surrounded by systems
that autonomously adapt their behavior and manipulate the environment.

The following section will introduce the term of User Experience (UX) in
more detail and will elaborate on the state of the art in research on UX for
IoT, UbiComp and other related fields.

17



2.3 User Experience Research

So as seen in the previous section IoT and related fields are maturing in
terms of technology and started to enter the market [55]. Human Computer
Interaction (HCI) and UX research has been a point of interest for many
scholars within the field [54, 55]. “UX as a field seeks to offer a systematic
approach to design and analysis of the user’s holistic experiences with the
technology” [55]. Don Norman stated in 2000 that he created the term UX
because he thought the term human interface and usability were to narrow
and he wanted to cover all aspects of a person’s experience with a system
[23]. Since the acceptance of a system “depends on how the user experiences
them in real context”, well-executed UX Design has become a quality attribute
and important success factor of any technology [55].
However, the concept of UX is still unclear and vague for many researcher
and designers [15] and many different definitions exist12. The definitions by
Alben [2] and Kuniavsky [35] match our understanding of UX closest:

“All the aspects of how people use an interactive product: the way it
feels in their hands, how well they understand how it works, how they
feel about it while they’re using it, how well it serves their purposes,
and how well it fits into the entire context in which they are using it.”
- Alben [2]

“The user experience is the totality of end-users’ perceptions as they
interact with a product or service. These perceptions include effectiveness
(how good is the result?), efficiency (how fast or cheap is it?), emotional
satisfaction (how good does it feel?), and the quality of the relationship
with the entity that created the product or service (what expectations
does it create for subsequent interactions?).” - Kuniavsky [35]

UXs are “based on instrumental (pragmatic) as well as non-instrumental (he-
donic) system qualities” [22, 55]. Considering pragmatic system qualities such
as usability is crucial [48] but UX goes beyond these aspects [55]. The terms
usability and UX are often used interchangeably [15, 55]. But according to
Hellweger and Wang [23] UX “should not be equaled to usability or user inter-
face simply.” In the opinion of experts within the field usability alone can only
achieve a limited level of UX [15]. We agree on this opinion and claim that
usability is only one but essential part of UX. By understanding subjective and
emotional experiences more meaningful and explicit targets for an application
design can be facilitated [55].

Unfortunately most research in related fields is technology-oriented [1, 48]
and literature related to HCI and UX has only a minor share [48, 55]. Väänänen-
Vainio-Mattila et al. [55] and Queirós et al. [48] executed an extensive system-
atic literature review on UX research in UbiComp and Ambient Assisted Living
(AAL).
Queirós et al. [48] analyzed 1048 articles in total. Only approximately 10%

12

18



(111) were related to direct user interaction and 29% were related to context-
awareness within AAL. They found that “the [research] focus is still on the
technology rather than on the person.” Many research projects concentrate
on “how technology can be used in the AAL context instead of looking at the
users’ needs and proposing ways to solve them” [48].
Väänänen-Vainio-Mattila et al. [55] collected initially 1016 article from various
well-known databases. Only 75 (7%) papers were considered as relevant in the
further course after applying filtering and selection criteria and content analy-
sis. Field studies were the most often used approach for user studies among
those papers. For evaluation purposes qualitative data gathering, more specific
interviews, has been a prominent approach amongst the studies. Interesting
findings of many studies about usage practices and design choice preferences
enable insights into system use and needs for redesign purposes. Neverthe-
less, such findings provide no insights into actual subjective experiences. Many
qualitative studies apparently did not attempt to dive deep into experience
aspects. Thus, systematic, in-depth analysis of subjective and emotional experi-
ences is scarce within these works. “Only 4 of the 75 papers were at a level of
description of the subjective user experiences that foster deep understanding
of how the [UbiComp] systems are experienced” [55]. According to them UX
studies “need to take a broad spectrum of human experiences into account” to
provide guidance for design and experiments for UbiComp and similar systems
due to the novel and versatile technology involved [55]. The trend of demon-
strating complex and multitude UbiComp systems became evident such as the
Georgia Tech Aware Home [32]. Many studies included aspects to take the
technology out from laboratory conditions into the real-world. Unfortunately
“it is evident that the development of prototype devices and applications was
conducted very much from the technical viewpoint” [55]. For this reason, the
“central outcome of the field studies was very much to verify that the technol-
ogy concept actually worked in the real world settings, rather than that it was
valid for the actual end users and targeted contexts of use” [55]. The cause
for the limited amount of research with focus on subjective, details aspects of
UX amongst UbiComp studies is potentially caused by the strong technological
and engineering background from which the UbiComp field originated.

UbiComp introduces paradigmatic changes such as implicit interactions,
context-awareness, proactivity and engagement which may lead to new types
of user experiences. Väänänen-Vainio-Mattila et al. [55] judge this potential of
new experiences as worthwhile to be explored. Consequential they argue that
a more fine-grained and thorough understanding of the types of experiences
and how those are enabled by different technology features and design solu-
tions is needed. For achieving this, qualitative, open-ended methods need to
be applied in form of long-term studies with real target users within the actual
context of use. In this way ecological validity and transferability of UX findings
to similar system will be increased [55]. Unfortunately many UbiComp system
in studies are still in rather immature stage. Technical challenges during imple-
mentation decrease time resources for user studies and lead to unavoidable
usability problems during their execution. Thus, study outcomes are influenced
negatively, even though the intended focus of the study was UX [55]. Queirós

19



et al. [48] furthermore points out that different technologies emerged from
different research groups, lacking necessary interoperability. They therefore ar-
gue that efforts should be invested in the integration of existing technologies
and interoperability.

The subsequent section introduces common methods for prototyping expe-
riences for user studies and industrial design processes. Furthermore those
methods will be elaborated towards their suitability for prototyping ILEs and
similar systems.

2.4 Experience Prototyping

Figure 2.11: Illustration of Experience Prototyping

Prototyping is a key activity within the design of interactive systems and
claims to be a key element of innovation in industry [10, 40, 42, 52]. Among
others, Experience Prototyping (ExP) became a common practice since the term
was first defined by Buchenau and Suri [10] from IDEO13 in 2000. According
to them “[ExP] ... enables design team members, users and clients to gain
first-hand appreciation of existing or future conditions through active engage-
ment with prototypes.” They emphasize that an “Experience Prototype is any
kind of representation, in any medium, that is designed to understand, explore
or communicate what it might be like to engage with the product, space or
system” in question (see figure 2.11). Prototypes in general allow “designers
to demonstrate, evaluate or test an evolving design with minimal efforts” [54].
They can fulfill different functions [24], have different fidelity levels [33, 54],
target different audiences and can be used as tool in participatory design [10].
Buchenau and Suri [10] considered preferably methods with active participation

13

20



to generate relevant subjective experiences instead of mediating a predefined
one. They found that ExP contributes to a design process in three main ways:

1. Exploration and evaluation of ideas, generation of requirements and
making design choices especially in an early design phase. Low-tech
methods and basic materials are especially suitable.

2. Communicate ideas to different audiences such as fellow designers, tech-
nical developers, clients or end users. The fidelity level should be chosen
appropriately to the design and development stage.

3. Help to foster an understanding about the essential factors of an ex-
isting application and it’s context. For achieving this more high fidelity
prototypes are necessary.

As Buchenau and Suri [10] predicted, ExP established as a well-supported
tradition within design practice over the last decade. The fidelity level of
Experience Prototypes thus needs to raise to acquire more detailed and so-
phisticated insights if e.g. the deployment of a product is approaching [10, 55].
Unfortunately efforts with respect to time, work force and expenses are high
for the creation of high fidelity prototypes [53, 54]. For this reason, low-fidelity
ExP methods are way more common in the fast iterative design processes
in industry. In the following some of these methods will be presented and
exploited with regard to their applicability within a design process of an ILE.

Collages & Visualizations - Collages [50] are tools for the
creation of semi-realistic mockups that help non-experts imagine unfamiliar
devices already in an early design stage. Those documents should situate the
physical objects in context. Trade-offs are often necessary for an effective
early concept communication. On the one hand, the documents need to
convey the full complexity of the concept. On the other hand, they should
function as initiator for concept discussion.
Product/Service Visualizations [50] should be a single page mockup of key
forms, relationships, and interactions. The visualization can be rough and
imperfect. It can consist of a montage of photographs of existing sites with
rendering of the concepts. In case that images are insufficient annotations
can be added to provide additional information and remarks. The visualization
should be specific and concrete so that it conveys problems, possibilities and
relationships. In this way it should foster a discussion.
These two low-fidelity methods are used in an initial stage to discuss ideas
and concepts and to discover potential problems. They are certainly also
suitable for the design and development of ILEs in an early stage. Since ILEs
consist of many components potentially multiple visualization are needed to
foster discussion to an appropriate extent.

Wireframing & Paper Prototyping - A wireframe [53] de-
fines the layout of a (part of a) Grapical User Interface (GUI) for e.g. a website,
smartphone app or screen on another device. Hence, it functions to visualize
and clarify structural aspects, terminology and navigation to a limited extent

21



due to its static nature. It can be created with pen and paper or on a white-
board supported by special stencils or digitally. For digital creation standard
graphics software such as Adobe Illustrator14, Sketch15 and OmniGraffle16, or
specialized software such as Balsamiq17, Adobe XD18 and Mockflow19 can be
used. It’s creation should be fast and results can be rough and low in fidelity.
Paper Prototyping [35, 53, 54] is the next evolutional prototyping level. It is
commonly used for the same application types as wireframing. In difference to
wireframing it allows additionally the evaluation of dynamic interaction aspects
such as navigation and workflow, page layout and functionalities [53]. In a
user test developers or researchers “play the role of ’computer’, manipulating
the pieces of paper to simulate how the interface would behave” [53]. No
explanations on how the interface is supposed to work is provided but only
functionalities of the user interface are simulated [53]. In this way realistic
interactions can be achieved [54]. All available materials such as paper, plas-
tics or fabric can be used and crafted to a low-fidelity prototype [35]. It does
not need straight lines or typed text, images or icons, color, and consistent
sizing of components [53]. Therefore it is fine if it is rough or a bit messy
[35, 53]. The integration of existing graphics, screen shots, photos or previously
generated wireframes is nevertheless desirable [35, 53]. If the prototype incor-
porates content, then it “[needs] to [be] appropriate, detailed and meaningful
to the application to preserve the fantasy” [35]. Snyder [53] elaborated on this:
“If your user are accountants and you’re testing a financial application, the
number better make sense.” As a rule-of-thumb the creation of the prototype
should not take up more than one day [35]. Benefits of paper prototyping
are that changes are easy and quickly realizable and no technological efforts
are necessary. For this reason, “application designers, usability specialists and
even the users themselves can create prototypes individually” [54]. However,
a paper prototype does not deliver insights into technical feasibility, response
times, layouts that require scrolling and design choices like color and fonts.
Paper Prototypes and Wirframes are certainly not sufficient to precisely cap-
ture the interactivity of UbiComp environments [54] due to their visual nature.
They are mainly used to prototype GUIs and other visual interfaces. However,
Kuniavsky [35] points out that paper can also be used for scale models of
scenery or objects. The two methods are certainly suitable for testing of ILE
components such as the GUI a smartphone app.

Physical Modeling 20 as used in Industrial and Product Design is
very important for the IoT, Smart Environments and ILEs. Since ’things’ get
connected functionalities and become avatars for digital data and representa-
tions, ergonomics and aesthetics of them contribute to the general UX of ILEs.
First mock-ups in full-scale or scaled-dimensions can be used for explorations

14

15

16

17

18

19

20

22



and early user feedback. Non-functional aesthetic models carved from e.g. sty-
rofoam, wood or clay or 3D-printed from plastics can be used in user testings
for more precise and detailed feedback on aesthetics and ergonomics. Scale-
models of environments and objects within are useful to illustrate proportions
and relations.
It is evident that Physical Modeling on its own is not suitable for ExP. Never-
theless, we wanted to include it in this list based on the importance of the
physicalness of objects in ILEs.

GUI Prototyping is the final prototyping evolution from Wireframing
and Paper Prototyping. Software like Axure, Framer or Adobe XD offer the
possibility to create high-fidelity prototypes that are semi-functional and offer
a polished look. GUI prototypes enable the evaluation of layout, structure,
content and the graphical and Interaction Design (IxD) in detail.
They are similar to they predecessors certainly not suitable to provide the
experience of an ILE. However, due to their high fidelity they can potentially
be used as one component of a high-fidelity prototype of an ILE.

Written Scenarios & Storyboards - A scenario [35, 54] “tells
a short story about people, situations, and how products introduced into that
situation change people’s experience” [35]. The goal is by describing the details
of the five aspects people, time, space, objects and circumstances/context to
create a detailed story of a specific UX [35]. One concept or product can
be subject of multiple scenarios. It is even advisable to create at least one
scenario of everyday usage and another describing the situation of an edge
case [35]. Scenarios enable designers to understand the everyday practices
of their users [54], share understanding amongst them and mediate concepts
experiences to clients and end consumers [35].
Storyboards [35, 50, 54] are an evolution of scenarios and complement each
other. They visualize scenarios in sequences and transitions by graphic commu-
nication using images of people, objects, and environments but also diagrams,
maps and symbols [50]. Equivalent to scenarios a concept “can have multiple
storyboards describing possible experiences and interaction” [35]. They help
imagine the various scales of a multi-scale interaction [35], its context and the
cooperation of components [50]. Furthermore during the creation the designer
needs to work through how the systems potentially fits together. The fidelity
of graphics can additionally communicate the state of development of a com-
ponent [50].
These two complimentary methods are especially viable in an early stage of
concept generation [50, 54] also for ILEs. They also make it possible to draw
visions of far futures and uncommon uses and interactions. Scenarios leave
space for imagination of the user and therefore requires active involvement.
Storyboards, on the one hand, limit this involvement by providing more restric-
tion and, on the other hand, make the scenario more detailed and graspable by
adding visual information. However, this limitations make it sometimes difficult
to retrieve valuable user feedback [54].

23



Enactment of Scenarios with designers, developers and end con-
sumers and potentially props make it possible to better envision dynamic
relations and context of a concept. Furthermore it involves the actors actively
so that they can experience the concept more subjectively.
However, due to the complexity and continuous changing context [54] within
ILEs a lot of influencing factors are left to the actors’ imagination. Additionally
the experience of an ILE can potentially only be enacted component-wise. This
makes this method certainly suitable for early but not later stages in the
development process of ILEs.

Rapid Video Prototyping [35, 50] is not the creation of high-quality
future visions as released on a regular released by Microsoft and other IT
companies. This methods uses consumer-grade video hard- and software to
create rapid video prototype using highly limited time, financial and workforce
resources. These communicate and demonstrate concepts in action, and en-
able the quick exploration of ideas while ignoring technical details. Earlier
prototyping results such as paper prototypes, scale and physical models, or
scenarios in form of enactment can be incorporated. The video can also be
realized by stop-motion animation with e.g. LEGO.
Rapid video prototyping has the advantage over live enactment that the ex-
perience can be enhanced by post editing and it can be used for mediating
the idea to a bigger audience. However, since the audience is not active in-
volved and the experience is predefined their feedback is potentially not as
valuable since they did not have a subjective experience. Therefore it only
seems suitable for UX design of ILEs to a limited extent or in early stages.

Wizard of Oz [50, 54][35, p. 228] is in general a test setup in which
a person (the Wizard) observes the input of a system (e.g., user’s actions) and
simulates the system’s responses in real time” [54]. This enables the simulation
of complex and native interactions such as speech input or gesture control or
the interaction with an intelligent system.
It is necessary to implement and test a second interface for the wizard. The
effectiveness of the prototype depends on the wizard’s level of task under-
standing and skill to control the interface [54]. Unfortunately “the complex
and multimodality interactions make the high-fidelity implementations [of ILEs]
very difficult and also make in situ testing challenging” since human perception
is limited. But the Wizard of Oz technique can be used to simulate complex
components in a high-fidelity Experience Prototype of an ILE that would require
high efforts to be implemented.

Functional Component Prototyping is used to make the experi-
ence of specific functionalities or functional components available. It is basically
a form of Technical Protoyping, as described in chapter 2.1, using easy-to-use
prototyping platforms such as Arduino. The tools can be used for the creation
of complete high-fidelity prototypes of a product but due to the high efforts
necessary in most cases only components are implemented. Prototyping a
whole ILE would require even higher efforts that are most likely not affordable
and realizable in a fast iterative design process. In comparison to a functional

24



prototype of a stand-alone product in an ILE furthermore the technical and
semantic communication of components needs to be implemented. Incorpo-
rating, even only a rule-based, intelligence increases the required efforts even
more. Therefore, the creation of a complete functional prototype of an ILE for
UX design and research purposes seems unadvisable with conventional tools
for technical prototyping.

The previous elaboration on common ExP methods in industry and research
as shown that they are not suitable for providing the UX of an ILE in its whole.
Low-fidelity methods like collages, visualization, scenarios and its various deriva-
tives are suitable for ideation and concept generation in an early stage. Other
methods like wireframing, paper and GUI prototypes and physical modeling can
be used to design and develop the individual UX of components within an ILE.
High-fidelity component prototypes in form of sophisticated physical models,
GUIs or functional components can potentially be used for the creation of a
high-fidelity Experience Prototype of an ILE.

As Buchenau and Suri [10] already indicated it is challenging “to provide
an early, low-fidelity improvisation prototype of sufficiently robust nature that
they can have an experience in a naturalistic context without supervision.” The
heterogenous and dynamic context of ILEs make it difficult to generate and
predict scenarios and problems. The prediction of users’ behaviour within this
context is difficult as well [54] since UX is highly subjective [10]. Therefore it
is necessary as Väänänen-Vainio-Mattila et al. [55] proposes that user studies
are “conducted with real target users, in the real contexts of use and in long-
term use” to increase the validity of UX findings. Current prototyping methods
and tools are unfortunately not supporting the implementation of prototypes
that are suitable for such user studies. Even though researchers have been
working on rapid prototyping tools for systems similar to ILEs they are stil in
an ealry stage [54].

25



2.5 Problem Statement

This section describes in more detail the problems faced within this work and
their origin.

As shown previously current products and services are not meeting the
desire of end consumers (see chapter 2.2). They would prefer more intelligent
cooperative systems that are more easy-to-use over current products [25].
This is caused on the one hand by missing efforts of the industry on semantic
interoperability (see chapter 2.1). On the other hand UX design for ILEs is
lagging behind the UX knowledge on stand-alone applications from our point
of view. We see this confirmed by the findings of Väänänen-Vainio-Mattila
et al. [55] (see chapter 2.3). Their literature overview illustrates that in-depth
UX research for UbiComp systems is scarce. The origin of the field from a
technical and engineering background is one reason. Another reason is that
technical challenges during implementation of systems for user studies and
their execution decrease the time span to gather and the quality of results
[53, 55]. They find that long-term user studies in real context with real users
are necessary to increase the validity of UX findings. Therefore the creation of
suitable and stable Experience Prototypes is needed. We evaluated common
prototyping methods in UX design towards their suitability (see chapter 2.4).
Due to the heterogeneity, complexity and dynamics within ILEs, their context
of use and new ways of interaction [54] none of the common prototyping
methods are suitable to capture the experience of an ILE in its whole with
reasonable efforts. Additionally Buchenau and Suri [10] claim that “solutions,
and probably even imagination, are inspired and limited by the prototyping
tools we have at our disposal.”

For this reason, this work attempts to ...

Facilitate time- and cost-efficient functional Experi-
ence Prototyping (functional ExP) of ILEs for UX research, de-
sign and development.

26



Following questions need to clarified to approach this problem statement:

• - What is the desired UX of ILEs?

– - What are the dimensions of UX?
– - To which extent can an UX outline for ILEs be defined?

• - What is a typical design and development process in UX research
and industry?

– - Does this process needs to be adapted when incorporating
functional ExP?

• - What are the specifications for a tool that supports a design and
development process that incorporates functional ExP?

– - How to map the identified specifications to functional tool
components?

2.6 Functional Experience Prototyping

We understand functional ExP as following:

Functional Experience Prototyping is the prototypical implementation
of a User Experience (UX) that is equivalent to the UX of the intended
final product. The prototype will most likely not contribute to the
technical realization of the final product but is not restricted in this
aspect.

Functional Experience Prototyping enables thus the fast and easy creation
of high-fidelity Experience Prototypes of a concept. The resulting prototype
provides similar UX and functionality in comparison with the intended final
implementation. Nevertheless, the technical details, efficiency, scalability, etc.
of the implementation are beside the point. Except if the UX of the proto-
type would differ from the intended final implementation in such a way that
findings of user studies carried out using the prototype would become invalid.
Therefore, the technical implementation of the prototype will most likely not
contribute to the final deployed implementation. However, we don’t want to
limit the term functional Experience Prototyping (functional ExP) here, since
innovations in development tools are steady and could lead to a fusion of
functional ExP and Technical Protoyping to some extent.

Figure 2.12 illustrates the differences between functional ExP and other
types of prototyping and an final implementation of an application.

27



Figure 2.12: Overview of different types of prototyping activities.

28



Chapter 3

Desired UX

The desired UX of ILEs needs to be known so that it can be realized within
a functional Experience Prototype. For this reason, this section aims to define
an outline for desired UXs of ILEs.

First it needs to be clarified which dimensions are influencing UXs and
therefore need to be included in a generic UX outline. Afterwards, the resulting
UX outline of ILEs is presented by elaborating on the selected dimensions.
However, before diving into UX dimensions and outlines two important aspects
of designing UXs need to be mentioned. Next to the external factors it is
important to define the type of UX that the designer is aiming for and the
scope of the UX considered within the design. The next paragraphs will give
more details about these two aspects.

Types of UX - The field of psychology defines three different types of moti-
vation: utilitarian, hedonic and eudaimonic [47, 51]. We borrow these terms to
define three different non-exclusive types of UX:

• Utiliterian experiences aim for the pure fulfillment of the user need
or Intention of Use without considering other dimensions such as the
emotional state of the user or the Context of Use. This would correspond
to a pure functional application that uses the most common and easy-
to-implement way of interaction with the user e.g. keyboard and mouse
or nowadays touch screens.

• Hedonic experiences aim for fun and enjoyment to improve well-being.
Next to the fulfillment of the user need other aspects such as usability
as well as aesthetics are considered in the design process. Making the
experience not only intuitive by for example using body gestures but also
enjoyable by e.g. funny ways of feedback.

• Eudaimonic experiences try to add to or support the meaningfulness of a
system. Eudaimonic well-being concerns aspects such as self-acceptance,
personal growth, purpose of life and more. An experience can support
this by considering e.g. the emotional state and emotions of a user
during the use of a system.

Important to mention is that these types of UX need to be differentiated from
the Intention of Use of a system. A system that aims on fulfilling a hedonic need
such as a game can implement a pragmatic/utilitarian experience. However,

29



Figure 3.1: The different scopes of UX design.

aiming additional for a hedonic experience would most likely improve the
fulfillment of the hedonic user need. In our opinion a hedonic or eudaimonic
experience is always based on the fulfillment of the user need thus a utilitarian
experience.

Scope of UX Design - It is important, especially with the background of ILEs,
to define the scope of the UX that is intended to be designed in the very begin-
ning. The following list provides more detail about different experience scopes.

• Brand Experience [38] includes the interaction with a whole company,
all its products and services. A positive or negative brand image can
influence the user experience. A image of a high valued brand can
outweigh minor design flaws. A negative image can even prevent the
whole experience to happen at all. In the same way as an experience
with every service or product influences the brand experience. The brand
experience forms the initial expectations towards a product.

• Environment Experience is the experience of the interplay of differ-
ent products and services potentially from various manufacturers. They
pursue shared objectives such as the satisfaction of user needs. All com-
ponents have their own individual user experience. However, it needs

30



to be insured that they form one monolithic Common Operating Picture
(COP) [20].

• Service Experience [38] is the experience of one service that involves
multiple components. All components contribute to the achievement
of one objective. The experience within a service is distributed onto
all components that come into contact with the user. An environment
experiences could be assembled out of multiple service experiences.
However, the interplay within a environment experience is potentially
way more dynamic.

• Product Experience [38] is the experience with one specific artefact.
A product experience can be part of service, brand, or environment
experiences.

Figure 3.1 illustrates the relations between those different UX design scopes.

3.1 User Experience Dimensions

The term User Experience (UX) has been already introduce in section 2.3. This
section elaborates on the dimensions that influence and built-up a UX from a
more general perspective. The identified dimensions will be used to form an
outline for desired UXs of ILEs in the further course of this chapter.

An “experience is a very dynamic, complex and subjective phenomenon”
[10]. Experiences, even of simple artifacts, live in a complex dynamic context
of people, places and objects [10]. According to Law et al. [38] experts
in the field agree that “contextual factors are important influencers of UX.”
Hassenzahl and Tractinsky [22] define three dimensions of UX:

1. user’s internal state (predispositions, expectations, needs, motivation,
mood, etc.)

2. characteristics of the designed system (e.g. complexity, purpose, usability,
functionality, etc.)

3. context within the interaction occurs (e.g. organizational/social setting,
meaningfulness of the activity, voluntariness of use, etc.)

Hellweger and Wang [23] propose a conceptual UX framework based on this
three dimensions that include following aspects: Product properties, context,
usability, cognition, purpose, (user) need. Derived from the definitions of
predecessors [22, 23, 38] we defined our own UX dimensions as shown in
figure 3.2. In the following a short elaboration on the various aspects is given:

• User’s Internal State

– Expectations, mood, emotions, meaningfulness of activity, prior
knowledge are important factors that influence the user experience.
However, those are highly subjective and depend on the context that
the user is currently in.

31



– Intentions of Use summarize the user needs and motivations to use
a specific application. The objective or user need that the intended
application should fulfill is the most fundamental aspect of an UX
[18].

• Context of Use includes temporal, social, physical, technological and
task-specific aspects of the context that the system is used in.

• System Characteristics such as functionality, usability and complexity
influence the perceived user experience of the system. The purpose of
the system should meet the Intention of Use if a positive user experience
is desired.

In the subsequent section the gathered insights on UX from this section will
be used to draw a generic outline for UXs of ILEs.

Figure 3.2: The three dimensions of UX.

3.2 UX outline for ILEs

This section defines an outline for UXs in ILEs by elaborating on appropriate
dimensions of UX. The previous section introduced these dimensions. Due to
the subjective nature of some of the aspects concerning the user dimension
those can not be generalized and therefore not considered in this outline.
However, the subsequent section provide details concerning UXs of ILEs with
respect to the Intention and Context of Use, specific aspects of UX and IxD
that originate from system characteristics as well as typical components that
can be assembled to ILEs.

Before diving into the different dimension of the UX outline the scope of
the UX in question should be clarified. As introduced in the beginning of this

32



chapter the UX of an ILE is an environment experience. Such an experience
is not just the sum of the individual UXs of the separate components. The
environment experience incorporates additionally factors such the interplay of
explicit and implicit interaction with assembled products and services. Figure
3.1 illustrates this constellation.

3.2.1 User's Internal State

It is evident that many aspects of the internal state of a user are highly subjec-
tive and vary in between each individual. Aspects such as user’s expectations,
emotions, moods, meaningfulness of an interaction and prior knowledge are
therefore highly dynamic factors as an result of interplay between the user’s
personality and the current Context of Use. Therefore, user evaluations, as this
work attempts to enable, are necessary to consider theses aspects within a de-
sign and development process of an application. Nevertheless, one part of the
user’s internal state can be more generalized for ILEs as shown in the following.

The need that the user intents to satisfy by using an ILE application is
the foundation of every UX. An unfulfilled user need has potentially such a
negative influence on other UX dimensions, in our opinion, so that the intended
designed UX is not experienceable. Subsequently, we attempt to summarize
the Intentions of Use for ILEs. The overall goal of ILEs is an increase in life
quality of its user in terms of comfort, health, environmental impact and
more. Considering the collection of application example presented in section
2.2 and customer surveys [25] we derived more specific Intentions of Use as
listed below. Figure 3.3 provides an overview of these as well.

• - Efficiency of resources and activities of the user. ILEs can facilitate
a more efficient use of resources such as energy (e.g. smart thermostats

), water, food or shared goods (e.g. car-sharing). This leads to
higher cost efficiency as well. They can furthermore improve efficiency
of time efforts and logistics within user activities to achieve e.g. a better
work-life balance.

• - Empowerment - ILEs can empower user to e.g. live on their own
longer than without the system. They can improve safety by monitoring
user activities, take care of chores that user can not execute anymore
themselves caused by e.g. their age, and connect users to remote living
relatives in every day life ( ). This concept is also known as AAL.
Other forms of empowerment are for example improved educational
possibilities by e.g. interactive toys (e.g. Cognitoys ).

• - Comfort - Taking over chores in every day life can also increase
comfort of the users. This increase can also be achieved in new ways
of intelligent activity support such as lighting systems (e.g. ) that
automatically adapt to the user activities such as reading a book. ILEs
can furthermore enhance and support the experience of entertainment.

33



Figure 3.3: General Intentions of Use for ILEs.

• - Security & Safety of users and their property can be enhanced
by the advanced surveillance and monitoring capabilities of ILEs. For
example user can be recognized and by this access can be granted
without the need of a physical object like a key (Smart Locks ).
Continuous monitoring of user and infrastructures such as building can
furthermore increase safety e.g. against accidents.

• - Maintenance - The continuous monitoring of infrastructures and
devices can also simplify and improve maintenance. In comparison to
fixed maintenance schedules systems to an ILE can indicate when main-
tenance is really necessary. Smart devices can additionally also order
replacement parts themselves (e.g. ))

In our opinion it is important to mention that user needs as well as purposes
of ILE applications can intersect with multiple of the generic Intentions of Use
introduced above. For example increased safety by continuous monitoring also

34



empowers user to live longer on their own. Intentions are of course highly
dependent on the user e.g.: Some users may perceive daily cooking as a chore
and would prefer if an ILE application would take over this task. Other users
may perceive this task as delightful and would like to take care of it as long as
and whenever possible themselves. This should be considered when designing
and developing an ILE application.

3.2.2 Context of Use

As elaborated previously the Context of Use is a major factor for the user
experience of ILEs. One general concept that needs to be considered in ILEs
is that the user constantly carries his micro environment with him in form
of e.g. personal devices. In optimal case this micro environment should inte-
grate seamlessly with the surrounding macro environment. Furthermore it is
important to consider all contextual dimensions as identified by predecessors
[38]:

• - Temporal context can influence the way a system reacts to a user.
Supporting the user after getting out of bed in the morning is most likely
desired by the user. However, same supporting actions can be highly
inappropriate when getting out of bed in the middle of the night or after
nap in the afternoon.

• - Social context creates challenges for the behavior of a system.
The behavior of a system like setting the preferred air temperature within
a room should consider all persons present. It is still a matter how to
solve such conflicts. Additionally, some behavior of a system that is
desirable, when the user is on his own, is potentially not desirable when
other people are around.

• - Physical context is a mayor factor that needs to be considered
within ILEs. ILE applications should consider the physical context of its
users as well as devices. This enables so called implicit interactions with
an application. This term will be discussed in more detail in section
3.2.3.2.

• - Technology infrastructure surrounding the user and other devices
should be incorporated if worthwhile. For example the playback of a
video should happen on the most appropriate screen available in the
surrounding of the user instead of e.g. a smartphone display. Information
from additional devices could be requested to increase confidence of e.g.
the recognition of user identities or activities. The consideration of the
technological context is the foundation that enables the integration of
the micro and macro environment of the user.

• - Task context is important as well. An subtask performed by the
user can have different meaning and impact for an ILE depending in the
main task executed. Boiling water with an electric kettle after getting out
a cup implies another main task than getting out a pot and set it on the

35



stove previously. By recognizing that the user intents to prepare some
tea the electric kettle could adjust the final water temperature according
to the chosen sort of tea. In this way an improved result such as better
taste cloud be achieved during the infusion of the tea.

Same as for the Intentions of Use the Context of Use is always a mix of all
aspects. All factors are interrelated and can hardly be seen in an isolated
manner.

3.2.3 System Characteristics

The third UX dimension that was derived and set within this work are the
characteristics of the system in question. These are certainly dependent on
the actual application and can hardly be generalized. However, we identified
general characteristics of IoT systems within a preparatory study. These
characteristics were previously presented in the technical background section
2.1. In the further course of this subsection first the impact of the system
characteristics on the UX and IxD of ILEs will be discussed. Afterwards, the
composition of ILEs will be analyzed with a set of abstract components for
ILEs as a result.

3.2.3.1 User Experience Aspects

In course of this study it was already shown that the UX of stand-alone ap-
plication (product/service experience) differs from the UX or ILEs (environment
experience). In the following important UX aspects for ILEs are listed. These
were partially derived from the system characteristics defined in chapter 2.1
and gathered from work of predecessors.

• - UX is distributed and dynamic - ILEs have dynamic N-to-N
relations (→ ). The interaction with one ILE application can happen
over multiple interfaces by one or multiple users, the functionality can be
distributed and new components can dynamically be added to the system.
Furthermore, the Context of Use can change dynamically → . [50,
p. 7] [21, p. 112]

• - UX depends more on the Context of Use in comparison to UX
of stand-alone products. The Context of Use within ILEs is highly dynamic
and diverse (→ ). [50, p. 11] [35, p. 25] [54]

• - UX can be discontinued - Since ILEs are asynchronous, not all
devices are always online due to e.g. energy management → .
Additionally, considering , user can stop the interaction flow on one
device and continue on another that offers the same functionalities →

. [50, p. 8] [21, p. 112]

• - Responses & feedback can be delayed or lost - ILEs can
experience latencies and loss of messages since the networks and the
internet are not 100% reliable → .

36



• - UX can be unexpected and surprising - Taking into
account it is evident that data can be manipulated and actions can be
triggered over multiple interfaces either by another human, by rules or
by intelligent agents. Rules can potentially have been set by another
person or the user himself. The user may also forget about rules that
he had set himself in the past.

• - UX can be shared amongst people - An ILE is most likely
a shared space in which multiple people live or at least are sometimes
present. Therefore major parts of the UX of an ILE will be shared amongst
those.

3.2.3.2 Interaction Design Aspects

The system characteristics and their influence on the UX have also an impact on
how interaction should be designed for ILEs. Two different kinds of interactions
are present within ILEs: Explicit and implicit interactions [54]. Subsequently,
first a list of aspects that are important to consider when designing interaction
within ILEs in general is presented. Afterwards, the terms explicit and implicit
interaction will be explained in more detail and specific design aspects for
those types of interaction will be pointed out.

Interaction within ILEs ...

• - ... should (at least partially) be available when discon-
nected. So that even if devices or services are shortly or completely
disconnected part of the interaction still remains available → .

• - ... should be robust against discontinuity in interaction. An
ILE should be able to cope with situation where interaction is interrupted
and potentially picked up on a later point in time → .

• - ... should be robust against other associated devices
being disconnected. Not all devices within an ILE are always online
due to e.g. energy management → . In such cases interaction flow
that require those devices need to be robust against this fact.

• - ... should be robust against conflicts between user inter-
ests. ILE are spaces that are most likely shared amongst multiple people.
Therefore the interest of one user (e.g. preferred room temperature) can
be in conflict with the interest of other users → . An ILE needs
strategies how to cope with such conflicts preferably autonomously. De-
pending on the type of interest averaging, merging or assigning priorities
could resolve the conflict. Asking the users to resolve the conflict them-
selves could also be an option in a social context where the users know
each other.

• - ... should be always transparent for the user. The state
of an interaction should always be clear to the user e.g. by incorporating

37



more feedback as in “sending request”, “request arrived”, “request exe-
cuted” [50] → . Additionally the user should have insights about all
implicit interaction happening by e.g. providing an overview about those.

Explicit Interaction are executed by the user with direct intention to manip-
ulate the system. Explicit interaction are well-known to user nowadays in form
of interactions with e.g. keyboard and mouse, touch screens or speech inter-
faces. In the following some aspects that were derived from general system
characteristics and UX aspects stated earlier are listed.
Explicit interaction within ILEs ...

• - ... should consider the Context of Use. The interaction
should be adapted to the context of use → . Controlling an ILE via
speech at home seems desirable to a user. But in public many people
dislike using speech input, same is true for synthesized speech output. A
graphical user interface (GUI) may in that context be more suitable. Con-
tinuing this thought, the GUI should automatically adapt between in home
and outside context, offering primarily the more important functionalities
for the Context of Use.

• - ... should be meaningful within the Context of Use. The
interaction type should be chosen considering the context. For example if
the user is in a room and wants to lower the window blinds. Controlling
them by point and speech control (→ “lower”) is a way more meaningful
interaction in this context than using a smart phone app to do the same.
Furthermore, devices that evolved from traditional devices (e.g. smart
thermostats) should offer similar functionalities and interaction possibili-
ties as their traditional equivalents. For example some smart thermostats
on the market lack direct interaction possibilities and need to be mainly
controlled via a smart phone app.

• - ... should be as modular as possible. It is a sensitive
matter how to divide and distribute the interaction considering
& . This needs to be done in such a way that one module still
offers a suitable amount of functionality by itself → .

• - should not be (physically) exhausting for the user.
Interaction types that require physical movement or holding of poses
should be limited and not stress or exhaust the user except stimulating
physical exercise is intended.

Implicit Interactions are executed by the user unconsciously through his
every day behavior such as change in location or activity and are interpreted by
a system to react in an appropriate way. Implicit interactions are used within
context-aware applications or systems such as ILEs but also stand-alone appli-
cations. Context-aware applications are still a minority but steadily gain more
interest.

Implicit interaction within ILEs ...

38



• - ... should consider the entire Context of Use. Implicit
interaction is by its nature based on the context surrounding the user
and the system → . Nevertheless, all contextual dimension as
defined in section 3.2.2 need to be considered to interpret the Context
of Use appropriately.

• - ... should provide a feeling of being in control to
the user. The user should have control over the intelligence, inputs,
outputs and his data. Even if it is not the case that the user is in
complete control, the system should still provide the feeling that he
is. Microsoft attempts to provide control over his data used by their
Intelligent Personal Assistant (IPA) Cortana with Cortana’s Notebook1: A
written transcript of all information collected on the user. Providing
control over results of implicit interactions could be implemented by
granting veto rights for those to the user → .

• - ... should not disturb or distract. The user’s every day
behavior should not be influenced unintentionally. Excluded are intended
actions e.g. reminders or behavior adapting applications.

• - ... should not take the user too much by surprise
Outcomes initiated by implicit interaction can be unexpected for the user
caused by the complexity of and intelligence within an ILE → . The
system therefore should be transparent (→ ) and autonomous
actions with major impacts should be announced or approved by the
user.

1

39



Fi
gu

re
3.
4:

O
ve

rv
ie
w

of
po

ss
ib
le

co
m
po

ne
nt
s
of

an
IL
E
ca

te
go

ri
ze

d
in
to

in
pu

ts
,
in
te
lli
ge

nc
e
an

d
ou

tp
ut
s.

40



3.2.3.3 Components of ILEs

As last part of the UX outline and the system characteristic dimension we
define a set of abstract components from which an ILE can be composed of.
The components chosen for an ILE form the base of the UX and are there-
fore essential for our UX outline. Figure 3.4 shows an overview of the set
of collected components. This overview concentrates mainly on components
involved with implicit interactions, since this type of interaction sets ILEs
apart from most current applications. The three main component categories
are inputs, intelligence and outputs.
On the one hand inputs can originate from the environment. That can be the
current room or space the user is in, connected things within this environment
or remote services and devices. Inputs are on the other hand related to the
user: his identity, intentions and plans, activity, emotional and health state,
and location. Intelligence observes and logs all those inputs. Aspects such
as the intention, activity and emotion of the user need to be recognized by
an ILE. Based on all this collected and categorized data an ILE should learn
how to react in the future and what the habits and preferences of the user
are. An ILE can derive rules itself based on this learned insights but also a
user can enter rules for the system himself manually. Those rules will then
in the future trigger outputs in form of appropriate actions and feedback
for the user. Feedback can be either visual implemented by e.g. simple light
changes or GUIs, tactile implemented by e.g. Tangible User Interface (TUI)s,
Kinetic User Interface (KUI)s or wearable devices, or audio. Of course different
compositions incorporating all three feedback channels are also possible. The
execution of actions can also represent a kind of feedback, if executed in the
presence of the user. Actions can be performed by the environment/room
itself, things within this environment or by remote devices or services.
As mentioned previously this overview concentrates more on implicit inter-
action. Nevertheless, explicit interactions are existing within ILEs as well.
Very common methods here are GUIs on touch-enabled devices and speech
interaction with IPAs as implemented in Amazon Echo and Alexa (see
figure 2.9 p.16).

41



3.3 ILE Use Case Examples

In this section six use case examples of ILE applications developed during the
course of this work are contained. They draw new application scenarios that
have not been observed by us, at least in the extent defined here. On the
one hand these use case examples provide insights on how we imagine future
ILE applications and their UX. On the other hand they function as another
input for the specifications of a tool that supports functional ExP defined in
the further course of this work.

The Extended Memory - ``Where did I leave ...?''

Figure 3.5: “Where did I leave ... my
glasses?”

Source: Search For Happiness

Functionality - The ILE gives hints
to allocate lost objects within the
home of a user.

Description - The user can interface
the service via an explicit interaction
with e.g. his IPA by asking „Where did
I leave my glasses?“, „... book?“, or „...
key?“. The feedback can be given in
various different ways. The IPA could
reply with „You left your glasses in the
living room (somewhere near the TV)“.
Additionally or alternatively the object
itself could light up, ring or vibrate.

Required Technology - An imple-
mentation of this service would re-
quire a location tracking service most
likely based on BLE to realize the ba-
sic functionality. For the input a voice interface or a GUI are potential options.
Feedback can be generated by the same voice interface, as part of an IPA, or
by specialized connected hardware attached to the object in question.

Context-aware Reminders

Functionality - The ILE reminds the user in a unobtrusive ambient manner
about various issues important to the user based on context-awareness.

Description - The ILE tracks the user activity and his context. Addition-
ally it has access to his calendar and other data feeds. Based on these
inputs the ILE learns about the daily routine of the user and his activ-
ities. This enables the ILE to remind the user to perform actions criti-
cal to his safety and health such as turning of the oven after cooking,
brushing his teeth and taking medication. Less critical issues such as wa-
tering the plants, call back relatives, or to not to forget an umbrella can

42



be a treated matters as well. Furthermore more conventional reminders
on appointments or scheduled tasks can be incorporated. Such an ap-
plication is especially interesting for elderly people in the context of AAL.

Figure 3.6: Remembrall in the Harry
Potter Movie.

Source: Warner Bros. Enterntainment Inc.

Important for this target group is that
the application does not take a pater-
nal role. Patronizing behavior is of-
ten experienced as unpleasant and is
not endorsed by elderly people. Re-
minders could be mediated in rough
categories like different colors within
the environment such as the “Remem-
brall” (see figure 3.6). However, the
reminder should be displayed on the
most suitable medium closest to the
user. Additional information on the
reminder could be provided via an
companion app or the IPA.

Required Technology - For the realization of the basic functionalities activity
recognition, sensor infrastructure, internal and external data feeds and ma-
chine learning are required. Explicit inputs are not present in this example.
Reminders are triggered indirectly by the user and his activities and sensor and
data inputs processed by Artificial Intelligence (AI). More rudimental triggers are
scheduled appointments and tasks. Output can be connected ambient screens
in form of Smart Home hardware, specialized hardware or displays in form
of interactive artworks. For displaying the reminder in the right place user
identification and localization are necessary as well.

Context-aware Lighting System

Figure 3.7: Ario Smart Lighting system
over a day.

Source: Ario

Functionality - The ILE automati-
cally adapts the lighting conditions in-
side to be appropriate with respect
to time of the day, lighting conditions
outside, and the activity and schedule
of the user similar to the Ario Smart
Lighting System (see figure 3.7)

Description - The ILE automatically
turns on the light when the evening
approaches or the lighting conditions
outside are dark. It also adapts
the lighting to the activities of the
user such as dimming the light when

watching a movie or optimizing the light conditions for reading. It could also
take over functionalities as offered products such as the Philips Wake Up Light
by simulating a sunrise to ease getting out of bed. Since the ILE could be
connected to a sleep sensor such as SleepSense (see figure 2.9 p.16)

43



this could even happen in the most appropriate sleep phase of the user. The
opposite functionality to dim down the light to prepare the body in the evening
to go to sleep could be implemented as well.

Required Technology - An implementation of this system would require ac-
tivity recognition, sensor infrastructure, external data feeds, machine learning
capabilities and a connected lighting infrastructure. This system would in every
day use mainly be based on implicit interaction. However, explicit interaction
possibilities should be provided as well so that the system can learn the user
preferences. They are additionally useful if the system is mistaken or the user
has exceptional demands. In this way the user is furthermore always in control
of the system.

Context-aware Interfaces

Functionality - Interfaces that simplify interaction by adapting to the Context
of Use.

Description - An interface e.g. a GUI adapts it appearance and offered
functionality to the Context of Use. Incorporated in this context is time,
location, environment, the user and his activity and identity as well as social
and technological factors. For example a coffee machine GUI could offer
directly the preferred choice of a user depending on the day time instead and
his preferences and habits instead of requiring him to enter type, strength,
added sugar and milk himself. Another example is a Smart Home app that
offers different functionalities when the user is at home in comparison to on
the go.

Required Technology - For realizing such an interface user identification,
localization, activity recognition and external data feeds are necessary. Fur-
thermore machine learning is required to learn about preferences and habits
of the user. Depending on the kind of interface additional technical component
are needed.

Context-aware Objects

Functionality - Objects that change their behavior and/or functionality de-
pending on the Context of Use.

Description - An object like a speaker for the playback of music could
automatically change the playlist that is played depending on the context.
It could play “Sue’s Italian Cooking” playlist when located in the kitchen and
“Chill-out Lounge” in the living room. This behavior is most likely undesirable
when music is currently playing and the device is carried from one to another
location. But it could be desirable when activated in a new context after being
turned off. The identity of the user activating the speaker could be used in
a similar way. The physical context could also be used by a digital picture

44



frame to change the collection of pictures shown. Augmenting those objects
with virtual interface as realized by the MIT OpenHybrid Project2 would merge
context-aware objects with context-aware interface.

Required Technology - An implementation of such object would require a
localization service, user identification and activity recognition for the basic
functionality. Furthermore the technical component for the actual object such
as the music speaker are necessary.

Ambient Information Displays

Functionality - Display of digital information in an ambient manner.

Description - A dynamic art piece could be an implementation for such an
application. A landscape painting could transform according to day time and
the weather forecast. A family portrait could inform about the presence and
activities of all family members. The art piece could also be a kinetic sculpture.

Required Technology - For an implementation of such a system the access
to the information that should be displayed is necessary. In case of the
landscape painting that would be a data feed from the weather forecast. For
the family portrait location and activity tracking of all family members would
be required. Of course also the technical components for the realization of
the dynamic art piece need to be considered.

2

45



Chapter 4

Design & Development Method

This chapter elaborates on current common design and development methods
used in industry and research. Furthermore the impact on and the adap-
tions necessary to a method for ILEs by incorporating functional ExP will be
discussed.

4.1 Current Methods

Development methods based on Agile thinking are nowadays in many cases
preferred over e.g. the waterfall model [37]. The concept of agile development
originated from the software development community in the late 1980s.
The term agile was established with the publication of the Manifesto for Agile
Software Development in 2001 [7] (see figure 4.1). Over the last years “the inte-
gration of user experience design and Agile methods has caught the attention
of Agile researchers and practitioners alike” [23]. Jongerius [29, p. 18] state
that they first discovered the suitability of an Agile approach implemented in a
Scrum method for UX design in 2008. But before diving into the incorporation
of UX and User-centered Design (UCD) with such methods, a brief introduction
to Agile, Lean and Scrum is given subsequently.

Agile Development Model creates an environment in which requirements
and solution evolve through collaboration between self-organizing, multidisci-
plinary teams in fast iterative cycles. In the earlier mentioned manifesto for
Agile development [7] four main values were defined. First, it is important to
value individuals and interaction over processes and tools. This can be realized
by ensuring an appropriate level of motivation by means of a good work-life bal-
ance, enabling self-organizing teams and employees, and fostering interaction
by means of e.g. co-location and Pair Programming. Second valued aspect is
the delivery of working software rather than a comprehensive documentation.
This does not mean that documentation is obsolete. It forms an important part
of ensuring that objectives are met. However, the level of documentation needs
to be appropriate and the medium used for documentation should match the
dynamic nature of the Agile process. Third, end user or client collaboration
over the whole project time span is crucial, since requirements can not be
fully captured from the very beginning. The concept with its requirements and
specifications need to be continuously adapted to match the desired objective
in the end. Fourth and last, the project team needs to continuously adapt to

46



Figure 4.1: The Agile Manifesto as defined by Beck et al. [7]

changes in short, flexible and iterative loops instead of sticking to a predefined
plan and initially predicted milestones. Figure 4.1 give a overview of these 4
values and additional 12 supporting principles for Agile development from the
manifesto [7].

Lean Development Model is based on the lean manufacturing method.
Poppendieck and Poppendieck [46] adapted those principles for software
development. They define seven principles for development as:

1. Eliminate waste - everything that does not add value for the customer
should be omitted.

2. Amplify learning - to increase necessary knowledge about the faced de-
sired objective in short iterative cycles in cooperation with the customer
instead of generating intensive predictive documents.

47



3. Decide as late as possible - based on certain facts as a results of learn-
ing instead of uncertain assumptions and prediction. Nevertheless, the
development process should offer capacity to react to changes.

4. Deliver as fast as possible - so that feedback can be gathered and can
be incorporated within the next iteration. A just-in-time ideology can be
implemented using tools such as user stories (scenarios) to improve time
effort estimation and daily stand-up meetings to foster evaluation and
planning of current tasks and interaction between team members.

5. Empower the team - following the guideline “find good people and let them
do their own job” management tasks should be encouraging progress,
catching errors, and removing impediments and not focus on micro-
managing. The developer team needs to be motivated and directed
to work towards higher but achievable purposes.

6. Build integrity in - The system needs to deliver a complete, coherent and
seamless experience to the customer. This can be achieved by continuous
direct customer input and feedback throughout the development process.

7. See the whole - a system is more than the sum of its parts. The interaction
between the components needs to be well-defined.

Lean development is closely related to agile development. For this reason,
many actual defined development methods implement aspects of both models.

Figure 4.2: One sprint in Scrum based on figure by Jongerius [29]

Scrum is such a method, that implements aspects of Agile and Lean devel-
opment. During Scrum the stakeholder are divided into different scrum roles
within a project [29]. The product owner is a representative on the behalf
of the client or customer. He defines the so called user stories and product
back logs. The Scrum master handles the daily operation, makes sure that

48



things such as daily stand-ups are held and is responsible to motivate the
team and facilitate the development. The Scrum team is a interdisciplinary
team of designers and developers including the product owner, scrum master
and other stakeholders. Stakeholders can be any party interested or involved
in the project.
Development projects based on Scrum are divided into so called sprints, many
iterative development cycles. Figure 4.2 shows an over such a sprint and other
important aspects. In the beginning product backlogs, the specifications for
the final intended product are defined. Those are split up into more graspable
user stories (scenarios). A selection of user stories is made and realized within
a sprint within an average duration of two to three weeks. In the end of the
sprint outcomes are presented, demonstrated and evaluated. The gathered
insights and feedback form the input for the next sprint.
On daily scope so called daily Scrums in form of brief stand-up meetings are
typical. The meetings are meant for individual reflection on previous set goals,
progress and new tasks to tackle, information exchange on the progress of
the overall team as well as fostering collaboration and pointing out necessary
cooperation. There is plenty of more in-depth literature on scrum methods
available such as by Jongerius [29].

Other Method Implementations that incorporate Agile and/or Lean aspects
were developed as well. Kanban enables the management of knowledge with
a emphasis on just-in-tim delivery with visual means. An hybrid-method called
Scrumban is more suited for maintenance projects or projects with many un-
expected tasks due to its flexibility in comparison to the fixed sprint duration in
Scrum. Another incremental iterative development method even more focused
on the inexpensive creation of high quality source code is called Extreme Pro-
gramming. In the further course of this work we will however focus on Scrum
as underlying design and development method due to its current popularity.

Incorporating UX Design and ExP

The perception of UX in agile literature often implies the separation of UX de-
signers and the developer team [23]. This idea mainly originated from external
management rather than from within development teams. A different approach
is to add UX designers as team members or to assign a second product owner
to ensure that UX aspects are considered during development [23]. Teams
should be assembled out of interdisciplinary professionals with different skills
and background [48]. Furthermore all stakeholders should be actively involved
in all stages of product development. It is important that all involved parties
have a common vision on the intended product to ensure efficient work within
the design and development team [10]. ExP is powerful technique that medi-
ates experiences and make them sharable within the design team to create a
common point-of view. Furthermore, it preserves the subjective dimensions of
an experience by active participation of the design team or test user.
UX design nowdays also often “consists of interactive cycles of design, proto-
typing and validation” [48]. Prototyping support has been an important factor
in the design and evaluation of applications [54]. For this reason, several re-

49



searchers have been working on rapid prototyping tool support for functuonal
[UbiComp] prototypes[54]. Tang et al. [54] define following characteristics of
current prototyping procedures for UbiComp applications:

1. Construct prototypes rapidly - since it is inadvisable to spent extensive
amount of time on prototyping especially in early design phases.

2. Remove inessential elements - to identify the most important open-design
issues and enable better design decision by omitting distracting aspects.

3. Construct prototypes for a particular purpose - since it is potentially
“difficult or impossible to create a prototype served in the whole design
process” [54].

UbiComp prototypes constructed in this way fulfill according to Tang et al. [54]
three different purposes. First, they enable to capture the user’s intent for an
interaction. Second, to demonstrate the behavior of context-aware applications
and third, to test the UX of an system as well as potentially also its technical
feasibility. Main purpose of an prototype therefore to gather worthwhile user
feedback.

This leads back to the problem motivation of this work as formulated in
chapter 2. In-depth research on UX of UbiComp systems is lacking due to
technical challenges while prototyping and execution of user studies [55]. Fur-
thermore, user studies need to be executed in real-life context with the real
user on long-term to achieve worthwhile results. For example, a main aspect
of UX in UbiComp system is learnability, since many system target end users
that are novices in use of such technologies. However, learnability can only be
evaluated over a extensive period of time. Unfortunately current prototyping
tools do not enable the creation of prototypes supporting such studies [54]
(also see section 2.4). User-centric design methods ensure the applicability of
the final product by the end user in the real Context of Use by continuous
close interaction between end user and designer [48].

Another important aspect within a design and development process is the
data-gathering method used within user evaluations. As mentioned previously
qualitative methods are the most prominent approach in user tests and studies
[55]. In the following a short introduction of the most common methods as
found by [55] and others is given.

Questionaires can be executed on paper or digitally. They need
to take place shortly after the actual user test or more specific the interaction
with the prototype. They can aim for quantitive, qualitative as well as a mix of
quantitive and qualitative data. They are easy to distribute and standardize
but only offer a limited level of details and insights when compared to e.g.
interviews.

Interviews [35] can take place in one-on-one or group settings.
Level of formality can vary also depending whether a structured, semi-structured

50



or open approach is chosen. Records are most often written transcripts and
audio and video recordings. Evaluation efforts of those records can be signifi-
cantly high depending on the desired level of details and insights.

System logging is commonly the gathering of pure quantitative
data. The data volume can be high and therefore difficult to be handle
manually by an UX expert. In most cases the data needs to be further
processed, analyzed and interpreted by an UX expert to extract meaning and
derive insights.

Observation is either done in direct presence of the user, hidden
behind a “magic mirror”, or by live video feed or video recording. The observer
transcripts data live and additionally can analyze recording in more detail after
the actual evaluation. The gathered information needs to be analyzed and
interpreted as well.

Diaries and probes [35, p. 209] are long-term studies mainly
executed by the participants themselves. They are asked to document e.g.
their activities, emotions, impressions, usability and many more aspects in
e.g. a diary. Additional a probe can be provided as research material such
as prototypes. Close on-going contact between researcher and participants
is crucial to ensure correct execution and fast fix of issues such as defect
prototypes.

Experience sampling and day reconstruction method [16, 30]
are variations of a diary study. In comparison to the general concept of diary
studies experience sampling specifies and discretizes the point in time for
documentation. The day reconstruction method does include the overall day
as context to e.g. analyze time-budget management.

Community forums & blogs [11] - Offering digital platforms where
user can give feedback and ask for help with problems has been a popular
approach in industry. For example the music streaming platform Spotify has
such a community forum1 where customers can report bugs, ask for help or
propose new features. Employees react to those inquiries e.g. when it comes
to the likelihood that a proposed new feature gets implemented in the near
future. In this way user feedback can be incorporated during for example an
open beta test or after the first release of an application for continuous further
development and improvement.

UX experts in industry prefer more informal, significantly shorter but more
frequent evaluations in comparison with research [11]. This difference is
evident by the nature of the evaluation purpose of the two approaches. UX
studies in industry attempt to validate design-choices prior realization efforts
and final implementation. UX studies in research attempt to validate scientific
findings that are a potential base for future studies and system designs.

1https://community.spotify.com/

51



Fi
gu

re
4.
3:

Ill
us

tr
at
io
n

of
op

ti
m
iz
ed

de
si
gn

m
et
ho

ds
fo
r
IL
Es

in
co

rp
or

at
in
g
fu
nc

ti
on

al
Ex

P.

52



4.2 An Optimized Method

Figure 4.4: Presence of expertise within the team.

This section discusses the impact on and the adaption to a design and
development method for ILEs caused by incorporating functional ExP.

Figure 4.3 shows an illustration of an optimized design and development
method. The main model is based on the Scrum method that implements
Agile as well as Lean development principles. We considered furthermore
principles for user-centered agile software development as defined by Brhel
et al. [9]. The identified 5 principles were incorporated in our design and
development method in following manners:

• Separate product discovery and product creation - An
initial zero cycle is used for an clarification of the objective to tackle,
ideation, concept generation and validation phase. Only if the initial
concept has been validated the development team can enter the creation
phase. Otherwise it needs to return to conception or even ideation.

• Iterative and incremental design and development - The
creation phase is structured by iterative incremental cycles consisting each
out of design, prototyping and testing. However, our design process at-
tempts to incorporate the concept of Continous Development as proposed
by Kuusinen [36]. Instead of delivering results at the end of a sprint with
a fixed duration in Continous Development results get delivered whenever
ready. For this reason, sprints of UX and technical development tasks
can have different duration and can be asynchronous. This is caused by
e.g. the fact that new UX insights can lead to adaption in the design and
therefore lead to necessary changes in the technical development.

• Parallel interwoven creation tracks - A close, smooth and
seamless cooperation between team members is desired within this de-
sign and development method. The team should be interdisciplinary in
accordance with the Scrum method. UX expertise should be integrated
within the team [36]. In our opinion they should be a fluent gradient of
expertise between UX and technical development knowledge (see figure
4.4). For this reason, we also prefer to talk about UX and development

53



task instead of teams. Of course, some team members will be exclusively
UX designer and some only developers. However, other team members
will have expertise in both fields creating a new type of expert called UX
developer. This relation can be translated to combinations of any fields
of expertise necessary for the development of ILEs. UX and technical
development are only a promoted example here.

• Continuous stakeholder involvement - The end user is
involved already in the end of the conception phase and throughout the
whole creation phase. Enabling long-term user studies is one of the
main objectives of this work. Running such studies will most likely lead
to more valuable insights about the UX of the system in question. A
robust functional prototype that provides the same UX as the intended
final system is the enabling tool for this method.

• Artifact-mediated communication - Main objective of this
work is to facilitate the time- and cost-efficient functional ExP of ILEs for
UX research, design & development. The resulting functional Experience
Prototype can be used to mediate the UX of a system to co-workes,
stakeholders and end users and forms the Central Design Record (CDR)
[9].

The Prototype

In the following some details on the evolution of the prototype throughout
the scope of a project as illustrated in figure 4.5 and the bottom of figure
4.3 is given. Low-fidelity Experience Prototypes that can only capture the UX
partially are initially created for ideation and conception purposes. Afterwards,
previously formulated user scenarios get implemented as functional ExP for the
validation of the initial concept. If the concept is validated the functional ExP
gets extended to provide the full UX of the intended final system. This enables
the start of long-term user studies in an early stage of the creation phase and
provides a common understanding of the system to all team members. The
functional ExP is built-up from flexible components. Functional Experience Pro-
totype, technical prototype and even final implemented components can fast
be interchanged at any point in time throughout the project. In this way the
system can grow steadily towards the final implementation in agreement with
the Lean principles of eliminating waste and only implementing the minimum
necessary. We call this approach Continuous Interdisciplinary Prototyping (CIP).
Additionally, the prototype environment provides an improved test setting for
the technical development in comparison to current practices.

The cooperation between design and technical field is in this manner
supported as well. A rough development flow would progress as following:
The flow starts with UX tasks, functional ExP and user studies. Gathered UX
insights provide indications which components should be realized as technical
prototype next. The technical prototypes are implemented and are tested in
the context of the functional Experience Prototype. If successful, they

54



Fi
gu

re
4.
5:

Ev
ol
ut
io
n
of

th
e
pr

ot
ot
yp

e
th
ro

ug
h
ou

t
th
e
de

si
gn

&
de

ve
lo
pm

en
t
pr

oc
es

s
in
cl
ud

in
g
fu
nc

ti
on

al
Ex

P,
te
ch

ni
ca

l
an

d
fin

al
co

m
po

ne
nt
s.

55



enter the stage of development towards a full implemented component. This
component can be tested in its various fidelity stages within the functional Ex-
perience Prototype as well. Finally it can be deployed within the environment
and tested on long-term.

The subsequent section will show an evaluation of the proposed optimized
method by professionals in industry.

Evaluation

In this section the evaluation and validation of the applicability of the proposed
optimized method is described. First the chosen evaluation method is pre-
sented followed by a summary of the execution as well as a short conclusion.

4.2.0.1 Method

The evaluation is carried out in form of interviews with industry experts. They
shall preferably have either an expertise in UX/User Interface (UI) design or in
the technical development of UbiComp systems. Unfortunately the availability
of professionals with expertise within UX design and research for UbiComp
systems is limited. Therefore it is potentially necessary to also consider experts
with a general expertise in those fields. The interview or discussion will have
an informal setting and will be semi-structured. In this way it is ensured on
the one hand that we will receive the minimum required information for the
evaluation and on the other hand provide opportunity to discuss concepts
and aspects in more detail. The interviews were recorded for transcription
purposes. In the following the fixed question set in chronological order is
listed. The full predefined structure of the interview is available in appendix
B.

1. Do you have any question on the concept of functional ExP?

2. What is the typical design and development method used within your
organizsation?

3. What is your opinion on this design and development method for ILEs
optimized for functional ExP?

4. Do you think it is realistic and applicable in a real world setting?

5. What points or aspects would your identify as critical or challenging (in
a real world setting)?

6. Do you have any other feedback or remarks on the design and develop-
ment process using fExP?

7. Do you have any other feedback or remarks on this graduation project?

8. Any other question or topic you would like to discuss?

56



4.2.0.2 Interviews

Several companies were contacted by us about their interest in an cooperation
for an evaluation. Fortunately two companies, eFocus based in Utrecht and
Nedap located in Groenlo, responded positively. Subsequently, brief summaries
of the two interviews carried out are given.

eFocus - received us on May 11
from 15.30 to 17.00 hrs. The in-
terviewee was the Creative Director
Floris Ketel, who has an degree in
IxD. Furthermore the IxD lead Pieter-
jan Oomen joined halfway through the interview. In general they were really
enthusiastic about the concept of functional ExP and the implied adaption to
the design and development process. Their answer to the our questions are
summarized below.

1. Do you have any question on the concept of functional ExP?
No

2. What is the typical design and development method used within your organizsation?
eFocus uses in general an agile method (Scrum) with sprints with an
duration of two weeks in average. A multidisciplinary team defines user
stories (product backlogs) in the beginning of project and plans the
outcome of each sprint over the whole course of the project. They
also have focus session on a regular basis to evaluate past and plan
the upcoming sprint. They hardly ever user a waterfall based method
anymore. Sometime especially if another company is involved in a project
a partial waterfall based approached is chosen.

3. What is your opinion on this design and development method for ILEs optimized for
functional ExP?
They were enthusiastic about functional ExP and CIP. CIP is really in-
teresting since in this way seamless flow towards final implementation.
Functional ExP creates already in early stages a medium to communicate
the concept in a very easy understanding graspable way. An interesting
aspect they pointed out is what happens after the first final implementa-
tion is deployed. Nowadays most system are developed and released in
an continuous way. The concept of functional ExP and CIP sounds very
good on paper but it would be interesting to see them applied in a real
project.

4. Do you think it is realistic and applicable in a real world setting?
Yes, given that the toolkit for the support of functional ExP and the
design and development method is existing. Furthermore it should be
considered what happens when working on an improvement or addition
to an existing ecosystem and not a completely new product. When in-
frastructure is shared between the prototype and deployed services the
prototypical components should not be able to have a negative influence

57



on the deployed system. Another aspect is how insights gathered dur-
ing the development and user evaluation might change the aimed added
value for the end user. Learning about the added value of a whole [envi-
ronment] (ecosystem) is in some cases a step-wise process component by
component. Some IoT devices like the Nike+ sensor integrated in shoes
first generated a worthwhile added value in the further development of
the ecosystem. First an improved smart phone application made the data
collected by the sensor meaningful to the user.

5. What points or aspects would your identify as critical or challenging (in a real world
setting)?
The seamless replacement of technical prototypes by final implemented
components is potentially critical in their opinion based on experiences
with deploying software.

6. Do you have any other feedback or remarks on the design and development process
using fExP?
What is the focus of this design method? Does it consider the added
value created for the user?

• Our Reply: Yes, it is a UCD method that starts e.g. with the actual
user need and continuously involves the user and his feedback, also
on the fulfillment of his needs, within the design and development
process. Nevertheless, as you pointed out before, some applications
are the result of the assembly of IoT products and services that did
not have an particular added user value in mind. Therefore, starting
with defining added value like our proposed method does is not the
only way that should be considered. But certainly a UCD method is
most useful if the UX of a product is the main focus of an design
and development process.

7. Do you have any other feedback or remarks on this graduation project?
They are are highly interested in the outcome of this work and also in
the functional ExP toolkit and its availability. They will receive a digital
copy of this work to express our appreciation for their cooperation after
its finalization.

8. Any other question or topic you would like to discuss?
Additionally they are interested in cooperation with the University of
Twente (HMI, CreaTe) on internships and graduation projects.

58



Nedap - welcomed us on June 7
from 10.00 to 11.30 hrs. Three em-
ployees participated in our evaluation
session for our optimized design and
development method: Jan Hendrik Croockewit - founder of the healthcare unit,
now head of research and development, with an engineering degree in physics;
Wouter Kersteman - product developer in the area of security management;
and Matthijs Langenberg - software developer at the healthcare unit. The
outcome of the session is briefly summarized in the answers below.

1. Do you have any question on the concept of functional ExP?
No questions.

2. What is the typical design and development method used within your organizsation?
The methods differ a lot between units and teams. Nedap is a very
technological focused company with mostly business clients (business to
business (B2B)). Mr. Croockewit thinks that they in general prototype too
less and start right away with building products. Mr. Kersteman remarks
that the development of hardware is not as fast iterative as compared to
software. Most of the time they make prototypes but do not have enough
time to test it with the actual customer or user. Additionally it is also
difficult to determine who are the actual user of the product because
many parties are touching the product up until it is finally installed. Mr.
Langenberg is more involved with software development. In his team
they don’t create many prototypes but directly create software and start
alpha/beta testing with end users such as healthcare staff as soon as
possibile. For this reason, they integrate channels for user feedback
mechanism directly in their software. Within Nedap Agile methods are
used in general. Bigger teams use Scrum and smaller teams decide for
themselves. During conception they use a 1/10/100 days approach: What
should the product look like in 1,10 and 100 days? First feedback comes
from business clients and then potential end user get involved.

3. What is your opinion on this design and development method for ILEs optimized for
functional ExP?
They judge functional ExP as the right way to go for future UX research
and design, to spare on programming efforts and prevent throwing away
implemented components. The seamless shift from prototype to final
implementation seems very attractive to them. They furthermore judge
it as highly worthwhile to make the developers empathic or aware of the
desired UX of a product. But that has to be continuously done. They
agree that user testing should be started as early as possible within the
development process. Most likely as consequence the original objective
will change.

4. Do you think it is realistic and applicable in a real world setting?
No direct answer given.

59



5. What points or aspects would your identify as critical or challenging (in a real world
setting)?
It is important to know whether development is happening on an existing
product or completely new product. Development on existing products
needs to consider the expectations of the existing user base.

6. Do you have any other feedback or remarks on the design and development process
using fExP?
It is important to define and be aware what is tested during an evaluation
so that the outcomes can be measured against the expectations.

7. Do you have any other feedback or remarks on this graduation project?
No.

8. Any other question or topic you would like to discuss?
No.

The interviews magnified the need of an evaluation of the optimized method
during the development of a real product. But unfortunately this is not easily
realizable based on multiple reasons. Finding a cooperative development team
who is willing to use an unproven tool for the development of a real product
is difficult. Furthermore would the development cycle of such a product most
likely exceed the time scope of this work. Additionally the resources for the
development of an complete functional ExP tool kit are limited as well. Another
aspect that became clear during the evaluation is the development on existing
products and platforms needs to be more considered since nowadays many
products are developed continuously.
But nevertheless, functional ExP was perceived as a valuable method to im-
prove the UX of a product while in parallel minimize development efforts. The
CIP that enables a seamless transition from a prototypical to a final product
state caught significant interest amongst the interview partner. In general they
judge the optimized design method as feasible under the premise that the
functional ExP toolkit is available.

60



Chapter 5

A Functional Experience Prototyp-
ing Toolkit

This chapter lays the foundation for a toolkit that enables time- and cost-
efficient functional ExP of ILEs. In the first section of this chapter specifications
for such a toolkit are defined derived from various knowledge foundations
that were created previously in this work. In the subsequent section these
specifications are translated into actual tool components that form the formal
outline of the toolkit. Afterwards, the implementation of an initial set of tool
components is described. The selection for the initial set is derived from the
ILE use cases presented previously in section 3.3. Final part of this chapter is
a proof of concept of the toolkit in form of functional Experience Prototypes
of the selected use cases.

5.1 Specifications

A knowledge foundation has been generated by answering two essential ques-
tions previously in this work. First result is an UX outline that provides insights
into what kind of UX a functional ExP toolkit for ILEs needs to be able to
generate. Second, an optimized design and development process adds on how
the toolkit potentially will be used and which functionalities are necessary next
to the pure generation of a prototype. Based on the UX outlines for ILEs
in chapter 3.1, the optimized design and development method in chapter 4.2
and our own experience in prototyping and developing similar systems the
subsequent toolkit specification were defined. The origin of the separate spec-
ifications is indicated by identifiers used throughout this work. An overview of
these identifiers and references to the associated aspects and definitions is
available in appendix A.

61



A toolkit for functional ExP ...

Spec.1 ... must enable functional ExP of ILEs
Origin: [MainObj]
Related to:

Spec.1.1 ... must enable prototypical implementation of or connection to
all components especially related to implicit interaction defined
in figure 3.4.
+ Origin: → chapter 3.2.3.3
+ Related To:

Spec.1.1.1 ... must enable the implementation of (prototypical) In-
put/Output (I/O) hardware.

Spec.1.1.2 ... must enable the storage of different kinds of informa-
tion within an ILE relevant currently and in the past. Such
as:

• User information, activities, routines and habits

• Intentions of Use

• Context of Use

• Devices their status and capabilities

• Services

• Events and actions

+ Origin:
+ Related to:

Spec.1.1.3 ... must incorporate the creation of intelligent services
for following purposes:

• Recognition of user and their activity, Context of Use
with all its dimensions as defined in chapter 3.2.2.

• Learning of user routines, habits and preferences
incorporating the Context of Use.

• Prediction of user intentions and activities.

• Make recommendation on actions, choices and plan-
ning to the user concerning the Intentions of Use
categories defined in chapter 3.2.1.

+ Related to:
Spec.1.1.4 ... must enable the connection to external services such

as Application Program Interface (API)s for e.g. weather
forecasts, etc.

62



Spec.1.2 ... must enable current means for explicit interaction such as
Automatic Speech Recognition (ASR) and speech synthesis.
+ Origin: → chapter 3.2.3.3
+ Related To:

Spec.1.3 ... must enable communication between all components includ-
ing third-party components and remote services.
+ Origin: → chapter 3.2.3.3, → to support
CIP
+ Related To:

Spec.1.4 ... must enable interoperability between all components includ-
ing third-party components and remote services.
+ Origin: → chapter 3.2.3.3,
+ Related To:

Spec.1.4.1 ... must enable technical interoperability.
Spec.1.4.2 ... must enable semantic interoperability.
Spec.1.4.3 ... must be built upon standards also used for the devel-

opment and deployment of ILE applications.
+ Origin: → to support CIP
+ Related to:

Spec.1.5 ... must enable the simulation of devices and events.
+ Origin: → to support CIP
+ Related To:

Spec.1.5.1 ... must enable manual simulation. (e.g. Wizard-of-Oz GUI)
+ Related to:

Spec.1.5.2 ... should enable automatic simulation. (e.g. virtual devices)
+ Related to:

Spec.2 ... must enable time- and cost-efficient functional ExP.
Origin: [MainObj]
Related to:

Spec.2.1 ... should be at least significant more efficient than the proto-
typical technical implementation of the system in question.

Spec.2.1.1 except if the prototypical technical implementation is al-
ready considered time- and cost-efficient in the context
of functional ExP.

Spec.3 ... would make functional ExP accessible to technical non-experts.
Origin: → Design & Dev Team → Expertise
Related to:

Spec.3.1 ... must be easy to use for UX designer/researcher with (web)
development skills.

Spec.3.2 ... should be easy to use for UX designer/researcher with web
design skills.

Spec.3.2 ... would be easy to use for any UX designer/researcher within
HCI.

Spec.4 ... must provide a clear overview over the whole functional ExP.
Origin:
Related to:

63



Spec.4.1 ... must provide an overview over all components within the
functional ExP

Spec.4.2 ... must provide an overview over all rules learned by the
system and defined by an user.
+ Related To:

Spec.4.3 ... must provide an overview over all current events (e.g.
triggered rules, sensor values, user present, etc.).
+ Related To:

Spec.4.4 ... must provide an overview over all past events.
+ Related To:

Spec.5 ... must support Continous, Agile and Lean development principles.
Origin: especially
Related to:

Spec.5.1 ... must enable incorporating components with different level
of fidelity.
+ Origin: → to support CIP
+ Related To:

Spec.5.1.1 ... must enable support or connection to stand-alone
Experience Prototypes. (e.g. GUI prototypes)
+ Origin:
+ Related to:

Spec.5.1.2 ... must enable connection to Technical Prototypes.
+ Related to:

Spec.5.1.3 ... must enable connection to final, already existing and
third-party components.
+ Related to:

Spec.5.2 ... must enable the exchange of components with different
level of fidelity at any point of time.
+ Related To:

Spec.6 ... must support continuous long-term user evaluations.
Origin: especially

Spec.6.1 ... must enable continuous logging and storage of events within
the ILE.
+ Origin:
+ Related To:

Spec.6.2 ... should analyze and interpret logged data autonomously.
+ Origin:
+ Related To:

Spec.6.3 ... should offer simple distribution channels for digital ques-
tionnaires and diary studies.
+ Origin:

Spec.6.4 ... should offer simple communication channels to invite se-
lected participants to evaluation sessions.
+ Origin:

64



Spec.6.5 ... would facilitate user evaluation in form of hidden observa-
tion.
+ Origin:

Spec.6.5.1 ... would grant access to live video feeds from within the
functional ExP.

Spec.6.5.2 ... would grant access to video recordings from within
the functional ExP.

Spec.6.6 ... must protect the security and privacy of the participants.
+ Origin:

Spec.6.6.1 ... must only grant access to user data with permission
of the participant in question.
+ Related to:

Spec.6.6.2 ... must store user data in a secure place protected from
unauthorized access.
+ Related to:

Spec.7 ... must support testing of technical prototypes.
Origin: → to support CIP
Related to:

5.2 A Tool Framework

The specifications defined in the previous section are the essential input to
create a toolkit for functional ExP. Nevertheless, these specifications need to
be translated into actual tool components. This effort is documented in the
subsequent section.

Before we dive into the separate components it is necessary to point out
that some of the specifications can not directly be translated into one spe-
cific component. For example and are in sum basically the
main objective and therefore will be realized by the toolkit in its
whole. Same is true for , enhanced usability for non-tech-experts, and

, the support of common and appropriate development methods. How
these specification are implemented by the assemble of tool components will
be explained in the end of this section.

In the following a list of tool components divided into the categories proto-
type management, communication & data storage, I/O, and intelligence enabling
services is presented. The implemented specifications and dependencies as
well as a short description of the functionality of a component are stated in
detail. Figure 5.1 provides an overview over all tool components.

Prototype Management

Envisioned is a central GUI that incorporates the components 1 to 5 and 16
and therefore provides an complete overview as required in .

65



Component Management Unit

• Implements:

• Dependencies:

The Component Managment Unit displays all devices and services available.
This includes all input and output sources as well as processing units such
as the behavior engine in between. Furthermore the unit should
indicate the current status and fidelity level of all components. It should
offer the possibility to add new or remove existing components from the
prototypical environment. In this way an overview of the whole prototype is
available to the whole development team and hence forms a shared knowledge
base amongst the team members.

User Management Unit

• Implements:

• Dependencies:

The User Managment Unit must provide an overview over all registered user
and their data. Its functionalities include adding and removing users as well
as editing their data stored in .

Data Management Unit

• Implements:

• Dependencies:

The User Managment Unit grants access to all the data entered and gen-
erated within the prototype environment. It is the access to the virtual rep-
resentation of the prototype and the documentation of the events happening
within. It furthermore must provide the possibility to add, edit or remove data,
even though this potentially needs to exclude certain types of data critical for
the system.

Simulation Unit

• Implements:

• Dependencies:

The Simulation Unit is essential for rapid and CIP. One part of this unit is
a tool for the creation of Wizard-of-Oz GUIs. This tool dynamically generates
GUIs with buttons, sliders and other interface elements on demand. These
interfaces are used to simulate inputs, outputs and intelligence in early user
tests or for technical testing of prototype components. A second functionality
shall facilitate this as well by enabling the simulation of prototype components
that are absent or not yet ready. This could potentially be realized with limited
efforts by a secondary interface to the Behavior Engine ( ) that only
contains rules that represent a virtual device.

66



Fi
gu

re
5.
1:

O
ve

rv
ie
w

ov
er

al
l
co

m
po

ne
nt
s
of

th
e
fu
nc

ti
on

al
Ex

P
to
ol
ki
t.

67



User Evaluation Unit

• Implements:

• Dependencies:

This unit must support continuous user evaluation throughout the whole
design and development process. In cooperation with it must grant
access to specified data logged throughout the use of the system. Addition-
ally it would be beneficial considering the intelligent capabilities of the toolkit
( ) if the data would at least partially be interpreted autonomously.
Furthermore it should provide the possibility to manage multiple user evalua-
tions and the corresponding participants based on the information in .
The User Evaluation Unit should include functionalities to easily distribute ques-
tionnaires, executed diary studies and send invitations for on-location sessions
such as interviews to participants.

Communication & Data Storage

The two components for data exchange and storage are closely related. They
need to be built on an agreed knowledge representation. An agreement on
schematics for storing and exchanging data on users, devices, services, etc.
is essential.

Data Exchange Service

• Implements:

• Dependencies: basically all components but especially

The Data Exchange Service is one of the most crucial components of the
toolkit. It connects all prototype components smoothly and ensures contin-
uous exchange of information and smooth interaction flows between them.
Important is that this service facilitates the seamless integration and dynamic
exchange of prototype components with different fidelity levels. Therefore it
must be build upon industry standards such as presented in chapter 2.1.

Data Storage Service

• Implements:

• Dependencies:

The Data Storage Service is available to all other components via . It
stores data about everything that is contained and happening within the pro-
totype environment. The data needs to be structured in predefined schemas
known to all components so that they can understand and use the data. The
stored data is accessible for users via , , , and

.

68



I/O

These components assemble the perception layer (see figure 2.3) of the system
that interacts with the end user.

Prototyping Hardware Interfaces

• Implements:

• Dependencies: , hardware and matching firmware and APIs

These interfaces must offer the possibility to easily add and configure
prototypical hardware components to the functional Experience Prototype.
The software configuration of the hardware as well as the establishment of
the connection to other prototype components needs to be easy and fast. An
overview of popular prototyping hardware used within research and industry
is available in figure 2.5 in chapter 2.1. At least a major share of these should
be supported as well as other prototyping platforms aimed on more novice
users such as littleBits1.

Deployed Hardware & Software Interfaces

• Implements:

• Dependencies: , hardware and matching APIs and Soft-
ware Development Kit (SDK)s

Next to interfaces to prototypical hardware the toolkit must support the
incorporation of existing deployed hard- and software solutions. This enables
amongst others the use of current means for explicit interaction. This unit
should include interfaces to hardware such as the Microsoft Kinect2, Leap Mo-
tion3 or Myo Wristband4. But also for multipurpose hardware like smartphones
or software solutions for e.g. ASR and speech synthesis, Instant Messaging Bots
(IM bot)s, and GUIs.

Functional GUI Prototyping Tool

• Implements:

• Dependencies: , GUI prototyping tools

A tool for functional GUI prototyping supports CIP. We understand functional
GUI prototyping as the extension of the functionalities of clickable and animated
GUI prototypes. They get connected to a remote backend that is connected to
other components and simulates the desired behavior and interaction. In this
way high fidelity GUI prototypes created with tools like Framer, Axure, UXPin
or Adobe XD can be integrated into a functional Experience Prototype from an
early stage as placeholder for the actual final application.

1

2

3

4

69



External System Access Service

• Implements:

• Dependencies: ,

Context-aware application and environment such as ILEs require next to
internal data also information from external sources such as weather forecasts,
calendar events, traffic information, etc. The External System Access Service
represents a central access point to such remote services to all components
within the ILE prototype.

Intelligence Enabling Services

The differences between a pure connected or smart application, in our opinion,
is that smart applications act on the gathered and provided data intelligently
to pursue potentially common objectives. Creating such applications and pro-
totypes of such requires high efforts. The components described subsequently
should simplify the fast and easy creation of prototypical context-aware intel-
ligent behavior.

User Identification Service

• Implements:

• Dependencies:

The User Identification Service uses data from various resources such as the
location of personal belongings as for instance a smart watch or phone or
facial recognition in security camera feeds to identify users. Each resource
associated to a user contributes to a confidence score representing the like-
lihood that the user is identified correctly. This information can be used by
applications for easy access or personalization of interaction but is also used
by for user localization.

Location Tracking Service

• Implements:

• Dependencies:

The Location Tracking Service determines the spacial position of mobile
objects and users by information gathered by immobile devices such as BLE
scanners, NFC reader and cameras. It determines the approximate position
of an object and sends it via to . Through the continuous
storage a location history of every object is generated and is available to all
other components for e.g. further analysis.

70



Context Tracking Service

• Implements:

• Dependencies:

The Location Tracking Service lays the foundation to keep track of the Context
of Use. After determining the physical context all other context informa-
tion can be determined (see chapter 3.2.2) such as surrounding people
and devices , day time , user activities ,
etc. The context information can than be used for simplifying interaction and
generate context-aware intelligent behavior ( ). On long-term this in-
formation can be used for future classification tasks as executed by ,

Activity & Pattern Recognition Service

• Implements:

• Dependencies:

Based on the current and past identified Context of Use activities of the user
and his daily routines can be recognized. However, the Context of Use and the
activity, habits and preferences ( ) of a user are interrelated and in-
fluence each other. Therefore, a recognized activity can increase the precision
of the recognized Context of Use and vice versa. Correct activity recognition
supports the generation of context-aware intelligent behavior ( ) and
identifying daily routines and habits potentially increases the prediction accu-
racy of future activities ( ).

Preference & Recommendation Service

• Implements:

• Dependencies:

Stored data from input devices and the associated Context of Use can also
be used to identify preferences of the user. This learned data can be used to
simplify interaction or make recommendations for similar choices or interests
in the future. For example an interface could directly offer the functionalities
a user prefers in the specific Context of Use he is in. Offering well-founded
recommendations to the user becomes significantly important with a steadily
increasing amount of choices available and independent self-determination of
the consumer.

Behavior Engine

• Implements:

• Dependencies:

71



By analyzing and learning on the data gathered by the Behavior
Engine should create new behavioral rules for an ILE to fulfill specific or more
general Intentions of Use (see chapter 3.2.1). The engine should furthermore
provide an overview of all rules generated or added by the user manually.
This overview should also indicate which rules have been triggered currently
or in the recent past. The tool component must include the possibility to
add, edit or remove rules by the user. How to represent the rules, especially
the ones learned by the system itself, has yet to be determined. Possible
manners for rule representations could be in IFTTT5, Google Blockly6, natural
language or in source code.

Overarching Specifications

Some of the tool specifications are implemented by a combination of multiple
tool components. An agile, continuous and lean development process ( )
is supported by the toolkit especially by means of the prototype management
components and data exchange service . The usability of
the toolkit even for non-developers is favored by the simple and ready-to-use
tool components for I/O and intelligence . However,
the actual implementation of the tool components and the corresponding
user interfaces are the main influence on the fulfillment of this specification
( ). The main objective ( ) to facilitate time- and cost-efficient
functional ExP ( ) is realized by tool components that enable
the rapid creation of an ILE prototype ( ) and providing appropriate
tools to manage and smoothly integrate the prototype into the design and
development process ( ).

5.3 Implementation

This section deals with our underlying thoughts and a proof of concept for
a future implementation of the functional ExP for ILEs. An implementation
of all toolkit components additionally to the generated knowledge foundation
and derived specifications would unfortunately exceed the scope of this work.
Subsequently, first some general implementation concepts and the potential
incorporation of existing platforms are elaborated. This elaboration is followed
by the description of a proof of concept implementation of the tool guided by
two of the use cases presented earlier in chapter 3.3.

In IoT and Smart Environments hard- and software are highly distributed
. Tasks get divided onto multiple devices to e.g. cope with limited com-

putation capabilities or increase efficiency. However, for rapid prototyping of
distributed systems a centralized approach is potentially more beneficial. Con-
solidating device management and configuration, communication and system
behavior in one place evidentially decreases complexity and required prototyp-
ing efforts. However this architecture is impractical for many real life contexts.

5

6

72



The complexity of many real life systems potentially exceeds the capabilities
of a centralized architecture. Therefore functional Experience Prototypes of an
ILE will most likely not end up being a final implementation.
Due to the high level of connectivity within IoT and Smart Environments web
technologies gained popularity for the implementation of such systems. In
agreement with this trend we choose for JavaScript and NodeJS7 as underly-
ing development stack. The advantage of NodeJS is its steadily growing open
source community and the consequential high amount of libraries for e.g. APIs
or devices available such as for the Myo Wristband.

Also other developers built upon the advantages of NodeJS as development
framework to create prototyping platforms for UbiComp and IoT applications.
The following subsection presents two of these platforms.

Building Upon Existing Platforms

Figure 5.2: Hardware of the meSch
kit.

Source: [34, 58]

In earlier works and an extensive prepara-
tory study we used and investigated cur-
rent developing technologies for IoT. This
also included two prototyping platforms
that partially already fulfill our specifica-
tions for a functional ExP toolkit. A logical
consequence is to build upon and inte-
grate these platforms within our imple-
mentation. Subsequently, a short intro-
duction to the two platforms, the meSch
kit and Node-RED, that are also based on
NodeJS is given.

meSch Project

The project on “Material encounters with
Digital Cultural Heritage” (meSch)8 is
funded by the European Union. Its ob-
jective is to enable curators to create in-
teractive tangible exhibits themselves. As
part of this project the meSch kit was
created (see figure 5.2) [34, 58].
It also follows a centralized architecture.
Central element of the kit is a server on a
Raspberry PI with WiFi and BLE connectiv-
ity called meschHub. After installing the
meSch client software on a device, it can
be managed and configured via an web
interface on the server ( ). Client

software is available for various hardware such as Raspberry Pi, Arduino, Intel
7

8

73



Edison and Android ( ). The server also includes a behavior
engine where rules can be defined in JavaScript snippets (partially ).
These snippets can get different execution priorities assigned and can be ar-
ranged in groups.
The editor for the creation of the rules was made with the end users, the
curators, in mind. For simplifying the programming activity two features were
conceptualized and implemented. First feature is an autocomplete functionality
that assists to find e.g. the desired sensor value of a device. Second feature
is something called live-programming. After finding the correct sensor with
the autocomplete functionality live values of the sensor can be requested and
even the minimal, maximal and average value are calculated. This feature also
allows to directly access the last triggered event and its value via a keyboard
shortcut. Their aim in usability for curators is comparable to our specification

.

Fortunately we were granted the opportunity to work with the platform that
is not yet open to the public for this work.

Node-RED

Node-RED “is a visual tool for wiring the Internet of Things.”9. It was initially
created in 2013 by IBM Emerging Technology lead by Nick O’Leary and Dave
Conway-Jones10. It provides a browser-based flow editor in which nodes that
represent software functionalities or connections to hardware and APIs can be
assembled to applications. Furthermore it provides an easy way to connect
to services via application protocols popular for IoT implementations such as
MQTT or UDP. The high amount of modules for NodeJS makes it easy to ex-
tend the available nodes with new APIs ( ). Some of the nodes for
Node-Red also implement components of our toolkit. For example the dynamic
UI builder contributed by Andrei Tatar11 would be an excellent Wizard-of-Oz
interface creator ( ). Node-RED allows additionally to easily build small
back-end applications that simulate simple behavior of devices.

Even though fortunately these platforms are already existing and offering
great opportunities they still lack components that are essential for our toolkit.
But both platforms have not been conceptualized for the the creation of an
prototype of an ILE. Tool components that provide a complete overview of the
prototype and components that enable context-aware and intelligent behavior
are missing. The next subsection presents the implementation of some of
these components necessary for the realization of specific use cases. How
the before mentioned platforms contributed to the realization of the tool
components is also mentioned in more detail.

9http://nodered.org/
10

11

74



Proof of Concept

In this section a proof of concept implementation of a limited set of tool
components is described. The set of tool components was chosen using two
of the use cases presented in chapter 3.3 as guideline. We chose for the use
cases and . In the subsequent subsections a short description
of the implementation of each of the components is given.

Figure 5.3: Device pool overview in the front end of the meSchHub

Component Overview Unit

The Component Overview Unit is essential to enable the assembly of all nec-
essary ILE components into functional ExP of the use cases. As described
before it offers the possibility to add and remove ILE components from the
environment. Therefore this tool component would be crucial for any use case
implementation.

The meSchHub already offers a similar overview in its web browser inter-
face. It shows two separate lists of all configured and unconfigured devices.
Unconfigured devices can be added to the prototype and configured devices
can be removed. As soon as the meSch client software is installed on a device
it appears in the list of unconfigured devices. Figure 5.3 shows a screenshot
of the meSchHub GUI.

75



Figure 5.4: GUI generated
with Node-RED.

Nevertheless, this GUI does not completely fulfill
our vision for this tool component. It lacks the
ability to display the fidelity level of the different
components, current events and the connection
between individual components.

Simulation Unit

This unit is not crucial for the chosen use cases.
However, since it is already implemented as con-
tribution to Node-RED we decided to include it in
this list. Figure 5.4 shows a screen shot of an
interface build with the library node-red-contrib-
ui12.

Data Exchange Service

In chapter 2.1 some popular IoT application pro-
tocols were introduced. Based on previous expe-
riences we chose for MQTT as application proto-
col to exchange data between tool and prototype
components. The publish/subscribe mechanics
are beneficial since they enable dynamic n-to-n
connections as well as the dynamic exchange of

components. Client subscribe to topics on a broker that receives messages
from other client that published to the corresponding topic. It is unimportant
for the subscribed client if the client that publishes to the topic gets replaced.
In this way a functional ExP component can be easily exchanged by a technical
prototype or simulated by a Wizard-of-Oz GUI that just sends a message on
button press. We chose for the open source Mosquitto13 MQTT broker and
installed it on the same Raspberry Pi as the meSchHub server, so that it has a
fixed Internet Protocol (IP) address within the local network. Client software is
available for multiple platforms and programming languages such as Arduino,
JavaScript, C++ and more.

Data Storage Service

For the Data Storage Service we chose for a MongoDB instance as database.
By means of a third party library for Node-RED we created rapidly a interface
to MQTT. In this way all components can request and store data easily by
publishing messages to two different MQTT topics. Important for this to work
is an agreed schematic to sent and store data. Our preliminary studies have
shown that semantic interoperability efforts are lagging behind but frameworks
like OWL or Google’s Weave protocol are existing (see chapter 2.1). In the
future efforts on semantic interoperability should be promoted, since it lays
the foundation for intelligent applications.

12

13

76



Figure 5.5: Screenshot of the several API nodes connected to MQTT topics in
Node-RED.

Prototyping Hardware Interfaces &

Deployed Hard- & Software Interfaces

The meSch platform already provides clients for Linux, Windows and Android
based systems which includes PC, Raspberry Pis, Intel Edison, Arduino and
their own BLE platform Blidgets14. Once the client is installed the hardware
can be configured with different modules such as touch or speech input, a
web display, a BLE scanner, or a interface for other hardware such as sensors.

External System Access Service

We rapidly implemented a MQTT interface to various APIs by means of Node-
RED. Figure 5.5 shows how easily installed nodes for weather forecasts, sunrise
and -set, Google Calendar, Maps, and Places and more can get connected to a
MQTT broker. Node-RED nodes are available for many services and hardware
such as the Pebble smart watch, Fitbit fitness wristband, or Nest Thermostat;
services such as Dropbox, Slack, Trello, or Amazon’s Alexa, libraries for Neural
Networks, databases, communication protocols or speech synthesis; and many
more. Due to the steadily growing amount of NodeJS libraries the amount of
nodes is easily extendable.

14

77



Location Tracking Service

The final implementation will be a NodeJS application that runs in the back-
ground and processes the BLE beacons identified by the BLE scanner modules
within the meSch platform. The application then decides to which BLE scanner
the BLE beacon was closest in proximity. The BLE beacon subsequently has to
be associated with the correct person or object by requesting a look up from

. Unfortunately for now data can only be entered into the meSch
platform via MQTT but not send outside of the platform. Therefore temporarly
the internal global variable storage of the meSchHub is used to store the
required data. But the storage capacities are more limited then the intended
final implementation and the data is only available as long as the server is
running. After a restart the stored information is lost.

Assembly: Extended Memory

For realizing first the meSch client software has to be installed on three
Raspberry Pis and one Android smartphone . The Rasp-
berry Pis get configured as BLE scanner, the Android smartphone as speech
input module and one Raspberry Pi as a web display module . Sev-
eral objects such as a key chain and glasses get equipped with a BLE beacon.
The BLE scanner and beacons get associated with the objects and locations.
We use the Behavior Engine of the meSchHub to write a small
script that keeps track of the location of the user . Another script
handles the interaction with the user by processing the speech input such as
“Where are my glasses?”. It looks up the associate beacon ID and the location
where it was last seen by the system. Then it displays the result of the query
in a natural language text such as “Your glasses are in the living room.” on
the web display.

Assembly: Context-aware Reminders

For this realization of the use case we do not aim for the most sophisticated
scenario that includes user localization. In this scenario we want to send
context-triggered reminders to the user as smartphone notification or to a
personal notification device. To achieve this the meSch client software needs
to be installed on a Android smartphone and a Blidget notification
module that incorporates light, sound and tactile feedback. As
described before we created a MQTT interfaces to various APIs in Node-RED.
Partially those interfaces request new data automatically in fixed frequencies.
A script in the Behavior Engine of the meSchHub will react to those sent infor-
mation and sent out reminders to the user to e.g. water the plants because
it has not rained in two days. This meSch Behavior Engine is certainly not
the that we envision but already forms a decent starts with a lot of
possibilities.

These two examples show that it is already possible to create functional
ExP of ILE use cases even with a limited tool set. In the following chapter the
outcomes and findings of this work will be discussed in more detail.

78



Chapter 6

Discussion & Conclusion

This work attempted to facilitate the time- and cost-efficient functional ExP of
ILEs, which resulted in a formal description of an functional ExP toolkit. How-
ever, two underlying questions had to be clarified first to tackle this problem
statement. The desired UX within ILEs that is supposed to be prototyped and
the impact and adaption on a design and development process for ILEs caused
by introducing functional ExP had to be determined.
First result was a generic UX outline of ILEs with three dimensions: the Inten-
tions of Use, Context of Use and the characteristics of the system in question.
These system characteristics include specific aspects for UX and IxD within
ILEs and a set of abstract components that ILEs can be assembled from. For
illustration purposes furthermore a set of ILE use case examples was created.
They mediate our vision on future ILE applications and are also used as input
and proof of concept for the functional ExP toolkit. This UX outline forms
furthermore an excellent guideline for the design and development of ILEs.
Second result is an optimized ILE design and development process with func-
tional ExP. Current methods were elaborated and advice from current research
for the incorporation of UCD in an Agile and Lean development process had
been considered. The result is an agile, lean and continuous development
process for ILEs. The mix out of functional ExP and Continuous Development
principles enables Continuous Interdisciplinary Prototyping. An evaluation by
industry professional from corresponding fields has indicated that the concept
of functional ExP and the optimized design and development method with CIP
is perceived as promising and interesting to pursue. A more comprehensive
evaluation of the optimized design and development method and the functional
ExP toolkit in a real world setting would have been evidentially more signifi-
cant in meaning. But both, the implementation of the complete functional ExP
toolkit as well as an application in a real project would have exceeded the
scope of this graduation project. Main contribution of this work is therefore
the derived toolkit specifications, the translation into actual toolkit components
and the start on the toolkit in form of a proof of concept implementation. The
proof of concept has shown that already with a limited tool set the prototyping
efforts for ILE use cases can be significantly decreased.

In the beginning of this work the focus was narrowed from Smart Environ-
ment to ILEs, justified by the high dependence of UX on the user, his Intention
and the Context of Use, and the system characteristics. Interesting is whether
at least part of our findings and outcomes can be applied to the broader

79



scope of UX in Smart Environment as well. The underlying UX dimensions
would be retained since they are domain-independent. The Intentions of Use
would certainly need to be extended. However, since ILEs were defined as a
subset of Smart Environments all of the Intentions of Use found in this work
also apply to Smart Environments. Same is true for the Context of Use and
the system components but not for the specific aspects for UX and IxD. These
would potentially be exactly the same due to the fact that they are based on
general IoT system characteristics.

In this work certain digital prototyping methods were neglected when eval-
uating current available ExP methods. Kuniavsky [35] and Tang et al. [54]
elaborate both on Digital Simulation Environments such as UbiWise [6] and
UbiReal [45]. The use of Virtual Reality (VR), Augmented Reality (AR) and mixed
Reality becomes especially interesting with new VR and AR headsets entering
the market. However, in our opinion, those methods still miss the physical
and spacial aspects of a real prototype which are important factors for implicit
interaction.

Another aspect that was mostly neglected are prototyping activities concern-
ing ergonomics and aesthetics of physical objects. As stated before, physical
aspects of a system are highly important for ILEs, IoT and similar systems
and are potentially major influencing factors on the interaction with an object.
Which aspects of physical modeling are worthwhile to concentrate on and
other perspectives for future work are explained in the concluding chapter of
this work.

80



Chapter 7

Future Work

Industrial Design becomes more important for IT especially in a world where
every day things get connected to the internet and become smart devices.
In our opinion high potential for future research is in the rapid creation of a
technical prototype that is already integrated in a physical prototype of the final
object. Technologies such as mobile 3D scanning and 3D modeling could be
used to quickly generate a high-fidelity casing for hardware components. The
hardware components and handcrafted physical model could be scanned and
integrated. An alternative would be an 3D model completely created within
a 3D modeling program. In our opinion a software that could arrange the
hardware components in such a way to fit the inside of a 3D Model of an
object automatically would be a highly valuable tool.

There is certainly high potential for AR and mixed Reality within Smart En-
vironment applications. However, in our point of view its application domain
is less development and prototyping but more end user applications such as
the dynamic augmentation of environments and objects around the end user.

Concluding we would like to emphasize once more that his work is meant
as an initiator for a toolkit for functional ExP. High efforts are still needed
after the finalization of this project to make it a valuable toolkit for UX design
and research. As soon as all technical components used within the proof of
concept are available under open source license, the outcome of this work
will be published as open source project, too. After finalization of a major
part of the toolkit components an actual long-term evaluation in a real world
context can be reconsidered.

81



Bibliography

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash.
Internet of things: A survey on enabling technologies, protocols, and
applications. Communications Surveys & Tutorials, IEEE, 17(4):2347–2376,
2015.

[2] L. Alben. Defining the criteria for effective interaction design. interactions,
3(3):11–15, 1996.

[3] A. Anvari-Moghaddam, H. Monsef, and A. Rahimi-Kian. Optimal smart
home energy management considering energy saving and a comfortable
lifestyle. Smart Grid, IEEE Transactions on, 6(1):324–332, 2015.

[4] K. Ashton. That ’internet of things’ thing - in the real world, things matter
more than ideas., 2009. .

[5] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey.
Computer networks, 54(15):2787–2805, 2010.

[6] J. J. Barton and V. Vijayaraghavan. Ubiwise, a simulator for ubiquitous
computing systems design. Hewlett-Packard Laboratories Palo Alto, â AI
HPL-2003-93, 2003.

[7] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, et al. The agile
manifesto, 2001. .

[8] M. Brereton, A. Soro, K. Vaisutis, and P. Roe. The messaging kettle:
Prototyping connection over a distance between adult children and older
parents. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, pages 713–716. ACM, 2015.

[9] M. Brhel, H. Meth, and A. Maedcher. Exploring principles of user-centered
agile software development: A. Information and Software Technology, 61
(C):163–181, 2015.

[10] M. Buchenau and J. F. Suri. Experience prototyping. In Proceedings of
the 3rd conference on Designing interactive systems: processes, practices,
methods, and techniques, pages 424–433. ACM, 2000.

[11] Å. Cajander, M. Larusdottir, and J. Gulliksen. Existing but not explicit-
the user perspective in scrum projects in practice. In Human-Computer
Interaction–INTERACT 2013, pages 762–779. Springer, 2013.

[12] D. Clark. Smart-home gadgets still a hard sell, January 2015.
.

LXXXII



[13] M. Clark and P. Dutta. The haunted house: Networking smart homes to
enable casual long-distance social interactions. In Proceedings of the 2015
International Workshop on Internet of Things towards Applications, pages
23–28. ACM, 2015.

[14] C. Coelho, D. Coelho, and M. Wolf. An iot smart home architecture for
long-term care of people with special needs. In Internet of Things (WF-IoT),
2015 IEEE 2nd World Forum on, pages 626–627. IEEE, 2015.

[15] Y. P. Cruz, C. A. Collazos, and T. Granollers. The thin red line between
usability and user experiences. In Proceedings of the XVI International
Conference on Human Computer Interaction, page 46. ACM, 2015.

[16] M. Csikszentmihalyi and R. Larson. Validity and reliability of the experience-
sampling method. In Flow and the Foundations of Positive Psychology, pages
35–54. Springer, 2014.

[17] J. Gantz and D. Reinsel. The digital universe in 2020: Big data, bigger
digital shadows, and biggest growth in the far east. IDC iView: IDC Analyze
the future, 2007:1–16, 2012.

[18] J. J. Garrett. The elements of user experience. User-centered design for the
web. United States of America, 2002.

[19] R. Gervais, J. Frey, A. Gay, F. Lotte, and M. Hachet. Tobe: Tangible
out-of-body experience. In Proceedings of the TEI ’16: Tenth International
Conference on Tangible, Embedded, and Embodied Interaction, TEI ’16, pages
227–235, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3582-9. doi: 10.
1145/2839462.2839486. URL .

[20] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of things (iot):
A vision, architectural elements, and future directions. Future Generation
Computer Systems, 29(7):1645–1660, 2013.

[21] H. Gulliksson. Pervasive design. Håkan Gulliksson, 2015.

[22] M. Hassenzahl and N. Tractinsky. User experience-a research agenda.
Behaviour & information technology, 25(2):91–97, 2006.

[23] S. Hellweger and X. Wang. What is user experience really: towards a ux
conceptual framework. arXiv preprint arXiv:1503.01850, 2015.

[24] S. Houde and C. Hill. What do prototypes prototype. Handbook of human-
computer interaction, 2:367–381, 1997.

[25] iControl Networks. State of the smart home report, 2015.
.

[26] iControl Networks. Ces 2016: Are we getting real about
smart home?, January 2016.

.

LXXXIII



[27] S. Jespersen, R. Stounbjerg, and N. Verdezoto. Ambird: Mediating intimacy
for long distance relationships through an ambient awareness system.
Aarhus Series on Human Centered Computing, 1(1):2, 2015.

[28] B. Jiang and Y. Fei. Smart home in smart microgrid: A cost-effective
energy ecosystem with intelligent hierarchical agents. Smart Grid, IEEE
Transactions on, 6(1):3–13, 2015.

[29] P. Jongerius. Get Agile: Scrum for UX, design & development. BIS Publishers,
2014.

[30] D. Kahneman, A. B. Krueger, D. A. Schkade, N. Schwarz, and A. A. Stone.
A survey method for characterizing daily life experience: The day recon-
struction method. Science, 306(5702):1776–1780, 2004.

[31] R. Khan, S. U. Khan, R. Zaheer, and S. Khan. Future internet: the internet of
things architecture, possible applications and key challenges. In Frontiers
of Information Technology (FIT), 2012 10th International Conference on, pages
257–260. IEEE, 2012.

[32] J. A. Kientz, S. N. Patel, B. Jones, E. Price, E. D. Mynatt, and G. D. Abowd.
The georgia tech aware home. In CHI’08 extended abstracts on Human
factors in computing systems, pages 3675–3680. ACM, 2008.

[33] B. Köhler, J. Haladjian, B. Simeonova, and D. Ismailović. Feedback in low
vs. high fidelity visuals for game prototypes. In Proceedings of the Second
International Workshop on Games and Software Engineering: Realizing User
Engagement with Game Engineering Techniques, pages 42–47. IEEE Press,
2012.

[34] T. Kubitza and A. Schmidt. Towards a toolkit for the rapid creation of
smart environments. In End-User Development, pages 230–235. Springer,
2015.

[35] M. Kuniavsky. Smart Things: Ubiquitous Computing User Experience Design:
Ubiquitous Computing User Experience Design. Elsevier, 2010.

[36] K. Kuusinen. Continuous user experience development. In INTERACT 2015
Adjunct Proceedings: 15th IFIP TC. 13 International Conference on Human-
Computer Interaction 14-18 September 2015, Bamberg, Germany, volume 22,
page 233. University of Bamberg Press, 2015.

[37] C. Larman and V. R. Basili. Iterative and incremental development: A brief
history. Computer, 36(6):47–56, 2003.

[38] E. L.-C. Law, V. Roto, M. Hassenzahl, A. P. Vermeeren, and J. Kort. Un-
derstanding, scoping and defining user experience: a survey approach.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 719–728. ACM, 2009.

[39] N. E. Lee, T. H. Lee, D. H. Seo, and S. Y. Kim. A smart water bottle for new
seniors: Internet of things (iot) and health care services. International
Journal of Bio-Science and Bio-Technology, 7(4):305–314, 2015.

LXXXIV



[40] D. Leonard and J. F. Rayport. Spark innovation through empathic design.
Harvard business review, 75:102–115, 1997.

[41] S. Li, L. Da Xu, and S. Zhao. The internet of things: a survey. Information
Systems Frontiers, 17(2):243–259, 2015.

[42] J. Liedtka. Perspective: linking design thinking with innovation outcomes
through cognitive bias reduction. Journal of Product Innovation Management,
32(6):925–938, 2015.

[43] J. Manyika, M. Chui, J. Bughin, R. Dobbs, P. Bisson, and A. Marrs. Disruptive
technologies: Advances that will transform life, business, and the global
economy, volume 12. McKinsey Global Institute New York, 2013.

[44] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac. Internet of things:
Vision, applications and research challenges. Ad Hoc Networks, 10(7):
1497–1516, 2012.

[45] H. Nishikawa, S. Yamamoto, M. Tamai, K. Nishigaki, T. Kitani, N. Shibata,
K. Yasumoto, and M. Ito. Ubireal: realistic smartspace simulator for
systematic testing. In UbiComp 2006: Ubiquitous Computing, pages 459–
476. Springer, 2006.

[46] M. Poppendieck and T. Poppendieck. Lean software development: an agile
toolkit. Addison-Wesley Professional, ISBN 0-321-15078-3, 2003.

[47] N. K. Prebensen, S. Rosengren, F. Okumus, and F. Okumus. Experience
value as a function of hedonic and utilitarian dominant services. Interna-
tional Journal of Contemporary Hospitality Management, 28(1), 2016.

[48] A. Queirós, A. Silva, J. Alvarelhão, N. P. Rocha, and A. Teixeira. Usability,
accessibility and ambient-assisted living: a systematic literature review.
Universal Access in the Information Society, 14(1):57–66, 2015.

[49] P. J. Reaidy, A. Gunasekaran, and A. Spalanzani. Bottom-up approach
based on internet of things for order fulfillment in a collaborative ware-
housing environment. International Journal of Production Economics, 159:
29–40, 2015.

[50] C. Rowland, E. Goodman, M. Charlier, A. Light, and A. Lui. Designing
Connected Products: UX for the Consumer Internet of Things. ” O’Reilly
Media, Inc.”, 2015.

[51] R. M. Ryan and E. L. Deci. On happiness and human potentials: A review
of research on hedonic and eudaimonic well-being. Annual review of
psychology, 52(1):141–166, 2001.

[52] M. Schrage. Serious play: How the world’s best companies simulate to
innovate. Harvard Business Press, 2013.

[53] C. Snyder. Paper prototyping: The fast and easy way to design and refine
user interfaces. Morgan Kaufmann, 2003.

LXXXV



[54] L. Tang, Z. Yu, X. Zhou, H. Wang, and C. Becker. Supporting rapid
design and evaluation of pervasive applications: Challenges and solu-
tions. Personal Ubiquitous Comput., 15(3):253–269, Mar. 2011. ISSN 1617-
4909. doi: 10.1007/s00779-010-0332-6. URL

.

[55] K. Väänänen-Vainio-Mattila, T. Olsson, and J. Häkkilä. Towards deeper
understanding of user experience with ubiquitous computing systems:
Systematic literature review and design framework. In Human-Computer
Interaction–INTERACT 2015, pages 384–401. Springer, 2015.

[56] M. Weiser. The computer for the 21st century. Scientific american, 265(3):
94–104, 1991.

[57] A. Whitmore, A. Agarwal, and L. Da Xu. The internet of things—a survey
of topics and trends. Information Systems Frontiers, 17(2):261–274, 2015.

[58] K. Wolf, E. Abdelhady, Y. Abdelrahman, T. Kubitza, and A. Schmidt. mesch:
Tools for interactive exhibitions. In Proceedings of the Conference on
Electronic Visualisation and the Arts, EVA ’15, pages 261–269, Swinton, UK,
UK, 2015. British Computer Society. doi: 10.14236/ewic/eva2015.28. URL

.

[59] M. Wu, T.-l. Lu, F.-Y. Ling, L. Sun, and H.-Y. Du. Research on the architec-
ture of internet of things. In Advanced Computer Theory and Engineering
(ICACTE), 2010 3rd International Conference on, volume 5, pages V5–484.
IEEE, 2010.

[60] Z. Yang, Y. Peng, Y. Yue, X. Wang, Y. Yang, and W. Liu. Study and application
on the architecture and key technologies for iot. In Multimedia Technology
(ICMT), 2011 International Conference on, pages 747–751. IEEE, 2011.

LXXXVI



Acronyms

Application Protocols - Application Protocols - please consult Al-Fuqaha et al.
[1]. 8

Infrastructure Protocol - Infrastructure Protocol - please consult Al-Fuqaha
et al. [1]. 8

6LoWPAN - IPv6 over Low power Wireless Personal Area Networks. 8

AAL - Ambient Assisted Living - umfasst Methoden, Konzepte, (elektronische)
Systeme, Produkte sowie Dienstleistungen, welche das alltägliche Leben
älterer und auch benachteiligter Menschen situationsabhängig und unauf-
dringlich unterstützen.. 4, 18, 19, 33, 42

Agile - for a definition see chapter 4.1. 45–48, 52, 57, 77

AI - Artificial Intelligence - see chapter 1.1 for a definition.. 4, 42

AmI - Ambient Intelligence - refers to electronic environments that are sensitive
and responsive to the presence of people.. 3, 4

API - Application Program Interface - a set of functions and procedures that
allow the creation of applications which access the features or data of
an operating system, application, or other service.. 61, 67, 68, 71, 72, 74,
75

AR - Augmented Reality - a live direct or indirect view of a physical, real-world
environment whose elements are augmented by computer-generated sen-
sory input.. 78, 79

ASR - Automatic Speech Recognition - (ASR) can be defined as the independent,
computer-driven transcription of spoken language into readable text in
real time (Stuckless, 1994).. 61, 68

B2B - business to business - refers to a situation where one business makes
a commercial transaction with another.. 57

Big Data - see chapter 1.1 for a definition.. 4

BLE - Bluetooth Low Energy - is a wireless personal area network technology..
6, 8, 9, 41, 69, 72, 74, 75

CDR - Central Design Record central artefact that documents design agree-
ments for the whole design and developer team.. 53

LXXXVII



CIP - Continuous Interdisciplinary Prototyping - for further information please
see chapter 4.2. 53, 55, 58, 61, 62, 64, 66, 68

Cloud Computing - see chapter 1.1 for a definition.. 4

cloud service - an application that is executed on a remote server and in
most cases accessible via an API. 11

CoAP - Constrained Application Protocol. 9

Continous Development - see Kuusinen [36]. 52, 62

COP - Common Operating Picture - for further information please see chapter
3. 31

EPC - Electronic Product Code - is designed as a universal identifier that
provides a unique identity for every physical object anywhere in the
world, for all time.. 8

EXI - Efficient XML Interchange format. 9

ExP - Experience Prototyping - for information see chapter 2.3. LXXXIII, 2, 20,
21, 23, 25, 48, 78

functional ExP - functional Experience Prototyping/functional Experience Pro-
totype - for our definition please see chapter 2.6. LXXXII–LXXXIV, 2, 26,
27, 41, 45, 51–65, 71, 73, 74, 76, 77, 79

GUI - Grapical User Interface - a visual way of interacting with a computer..
21–23, 25, 40, 41, 43, 65, 66, 68, 73, 74

HCI - Human Computer Interaction - researches the design and use of com-
puter technology, focusing on the interfaces between people (users) and
computers.. 18, 62

HTTP - Hypertext Transfer Protocol. 9

I/O - Input/Output abbreviation for input and output devices and interfaces..
60, 65, 67, 70

IDE - Integrated Development Environment. 9, 13

IEEE 1905.1 - IEEE 1905.1 is a communication platform developed by Google.
9

ILE - Intelligent Living Environments - a subset of Smart Environments defined
within this work in chapter 1.1. LXXXII–LXXXIV, 2–4, 6, 15, 20–27, 29–38,
40–42, 45, 51–55, 57, 59–61, 63, 68, 70, 71, 73, 74, 76–78

IM bot - Instant Messaging Bots - IM bot is a chatterbot program that uses
instant messaging as an application interface.. 68

LXXXVIII



IoT - Internet of Things - the network of physical devices, vehicles, buildings
and other items—embedded with electronics, software, sensors, and
network connectivity that enables these objects to collect and exchange
data.. LXXXIII, LXXXIV, 1, 4, 6, 7, 9, 11, 13, 15, 17, 22, 35, 56, 71, 72, 74,
77, 78

IP - Internet Protocol - communications protocol for computers connected to
a network, especially the Internet, specifying the format for addresses
and units of transmitted data.. 74

IPA - Intelligent Personal Assistant - a software agent that can perform tasks
or services for an individual.. 38, 40–42

IPv4 - Internet Protocol version 4 is the fourth revision of the Internet Protocol
and is the most common version used today.. 8

IPv6 - Internet Protocol version 6 is the most recent version of the Internet
Protocol. 8

IT - Information Technology. 1, 6, 11, 24, 79

IxD - Interaction Design - s defined as ”the practice of designing interactive
digital products, environments, systems, and services.”. LXXXIII, 23, 32,
35, 55, 57, 77

JSON - JavaScript Object Notation. 9

Kanban - for more information see chapter 4.1. 48

KUI - Kinetic User Interface - an emerging type of user interfaces that allow
users to interact with computing devices through the motion of objects
and bodies.. 40

Lean - for a definition see chapter 4.1. 45, 47, 48, 52, 53, 62, 77

LiFi - Light Fidelity - is a bidirectional, high-speed and fully networked wireless
communication technology similar to Wi-Fi.. 8

LoRaWAN - (Long Range Wide Area Network) is a network protocol by the
LoRa Alliance. 8, 9

micro-controller - A microcontroller (or MCU, short for microcontroller unit)
is a small computer (SoC) on a single integrated circuit containing a
processor core, memory, and programmable input/output peripherals..
9

middleware - software that acts as a bridge between an operating system
or database and applications, especially on a network.. 11

mixed Reality - mixed Reality - is the merging of real and virtual worlds to
produce new environments and visualizations where physical and digital
objects co-exist and interact in real time.. 78, 79

LXXXIX



MQTT - Message Queue Telemetry Transport. 9, 72, 74, 75

Neural Networks - a family of models in Machine Learning inspired by bio-
logical neural networks.. 75

NFC - Near Field Communication - is a set of communication protocols that
enable two electronic devices, one of which is usually a portable device,
to establish communication by bringing them within about 4 cm (2 in) of
each other.. 6, 8, 69

open source - source code made available with a license in which the copy-
right holder provides the rights to study, change, and distribute the
software to anyone and for any purpose.. 71, 74

OS - operating systems is the collection of software that directs a computer’s
operations, controlling and scheduling the execution of other programs,
and managing storage, input/output, and communication resources.. 11

OWL - Web Ontology Language is a semantic web standard by W3C. 9, 74

Pair Programming - Pair programming is an agile software development tech-
nique in which two programmers work together at one workstation. 45

Physcial Computing - see chapter 1.1 for a definition.. 3, 4

RDF - Resource Description Framework. 9

REST - REpresentational State Transfer. 9

RFID - Radio Frequency Identification - uses electromagnetic fields to automat-
ically identify and track tags attached to objects.. 6, 8

Scrum - for a definition see chapter 4.1. 45, 47, 48, 52, 57

SDK - Software Development Kit - typically a set of software development
tools that allows the creation of applications for a certain development
platform.. 68

single-board computer - A single-board computer (SBC) is a complete com-
puter built on a single circuit board, with microprocessor(s), memory,
input/output (I/O) and other features required of a functional computer..
9, 11

Smart Environment - evolves from the definition of Ubiquitious Computing.
LXXXII, 2–6, 22, 71, 77, 79

home automation - home automation - automation of devices, chores and
activities at home.. 1

Smart Home - Smart Home - currently popular term for for systems.. 1, 4,
15, 17, 42, 43

XC



Smart Home hub - Smart Home hub - Hub connected to the internet and
other smart home appliances.. 2, 15

speech synthesis - the process of generating spoken language by machine
on the basis of written input.. 61, 68, 75

TCP - Transmission Control Protocol. 9

Technical Protoyping - for our definition see chapter 2.1. 13, 24, 27

TUI - Tangible User Interface - a user interface in which a person interacts
with digital information through the physical environment.. 40

UbiComp - Ubiquitious Computing - see chapter 1.1 for a definition.. 3, 4, 6,
17–19, 22, 26, 49, 54, 71

UCD - User-centered Design - a framework of processes in which the needs,
wants, and limitations of end users of a product, service or process are
given extensive attention at each stage of the design process. 45, 56, 77

UDP - User Datagram Protocol. 9, 72

UI - User Interface - the means by which the user and a computer system
interact.. 54, 72

URI - Unique Resource Identifier. 9

usability - usability - Usability is the ease of use and learnability of a human-
made object. In software engineering, usability is the degree to which
a software can be used by specified consumers to achieve quantified
objectives with effectiveness, efficiency, and satisfaction in a quantified
context of use.. 18

UX - User Experience - various definitions available such as: All the aspects
of how people use an interactive product: the way it feels in their hands,
how well they understand how it works, how they feel about it while
they’re using it, how well it serves their purposes, and how well it fits
into the entire context in which they are using it. - Alben [2]. LXXXII–
LXXXIV, 2–4, 6, 17–19, 22–27, 29–33, 35–37, 40, 41, 45, 48–50, 52–54, 56–59,
62, 77, 79

VR - Virtual Reality - is a computer technology that replicates an environment,
real or imagined, and simulates a user’s physical presence and environ-
ment to allow for user interaction.. 78

Weave - Weave is a communication platform developed by Google. 9, 74

WiFi - WiFi is standard for WLAN but commonly used especially in the US as
synonym for WLAN. 6, 8, 9, 72

WSN - Wireless Sensor Networks - are spatially distributed autonomous sen-
sors to monitor physical or environmental conditions.. 6

XML - Extensible Markup Language. 9

XCI



Appendix A

List of Identifiers

List of contextual dimensions for ILEs as part of the UX
dimension “Context of Use”
→ see p. 35
Tool components for a functional ExP tool kit
→ see p. 65
Characteristics of IoT
→ see figure 2.1 on p. 7
The optimized design and development method for func-
tional ExP defined in this work.
→ see chapter 4.2
Different common user evaluation methods within re-
search and industry
→ see p. 50
Various IoT application examples within research and
industry
→ see figures 2.9 and 2.9 on p. 16 and 17
Different common ExP methods within research and in-
dustry
→ see figure 2.4 for details on p. 21 for details
List of general Intentions of Use for ILEs as part of the
UX dimension “Intentions of Use”
→ see p. 33
List of IxD aspects for ILEs as part of the UX dimension
“System Characteristics”
→ see p. 37
List of IxD aspects for explicit interaction within ILEs as
part of the UX dimension “System Characteristics”
→ see p. 37ff
List of IxD aspects for implicit interaction within ILEs as
part of the UX dimension “System Characteristics”
→ see p. 37ff
Main objective of this work
→ see p. 26
Aspects of an design and development optimized method
for incorporating functional ExP
→ see p. 53

XCII



Research and design questions that need to be answered
to pursue of this work
→ see p. 26
Specification for a functional ExP tool kit
→ see p. 61
Technical challenges of IoT
→ see figure 2.1 on p. 7
List of use case examples for ILEs
→ see p. 42
List of UX Design aspects forILEs as part of the UX di-
mension “System Characteristics”
→ see p. 36
The UX outline for ILEs defined in this work.
→ see chapter 3.1

XCIII



Appendix B

Evaluation Documentation

• Interview Structure:

– Background of executing researcher
– Background of interviewee
– Introduction to graduation topic
– Introduction to concept of functional Experience Prototyping
– Question: Do you have any question on the concept of functional
Experience Prototyping?

– Bridge to design & development process using fExP
– Question: What is the typical design & development process used
by expert/researcher?

– Introduction to design & development process using fExP
* agile
* user-centered design - focus on added value for user - fulfillment

of a user need or solving a problem
* conception & creation phase

* conception
· iterative development of concept
· process can jump back to any step caused by new insights
through design workshops or user tests

· first enters the creation phase is concept is validated
* creation

· continuous development - no fixed time frame for sprints
· sprints of ux tasks and technical development can be asyn-
chronous

* prototype
· Starts with low fidelity experience prototyping and technical
feasibility studies in the conception phase

· A scenarios based functional experience prototype is created
in the end of the conception phase for concept validation

· This scenario fExP is extended provide the UX of the full
concept

– Question: What is your opinion on this process?

XCIV



– Question: Do you think it is realistic and applicable in a real world
setting?

– Question: What points or aspects would your identify as critical or
challenging (in a real world setting)?

– Question: Do you have any other feedback ore remarks on the design
& development process using fExP?

– Question: Do you have any other feedback or remarks on this grad-
uation project?

– Question: Any other question or topic you would like to discuss?

• Interview/focus group discussion will be recorded preferably as video
recording and at least as an audio recording.

• Answers and other important element of the interview will be documented
in a transcript

XCV








