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Summary

Background In an Epilepsy Monitoring Unit (EMU) it is important that seizures are recog-
nized accurately for diagnostic and safety purposes. The online supervision of all recorded
signal is labour intensive and demands skills and a lot of attention. In practice sometimes
seizures are missed or recognized late.

Objective We aimed to study the current nurse response in the EMU at SEIN and investi-
gated possible improvements with help of EEG-based seizure detection methods. Commer-
cially available software and several promising features were studied.

Method Retrospectively EEG recordings of patients admitted to the EMU with epileptic
seizures between May 2014 and April 2015 were collected. Of these seizures the nurse
response and nurse response time was investigated. Further, several seizure characteristics
like sounds, the use of the alarm button, and EEG characteristics were taken into account.
Secondly, it was investigated how commercially available methods were able to improve the
nurse response. Lastly, we studied a selection of promising features on the obtained EEG data.

Results In total, 205 seizures were included for this study. In the current EMU setting
67.0% of the seizures resulted in a nurse response with a median nurse response time of 32
seconds (p5-p95; 12 - 106 seconds). Sounds during the seizure and the use of the alarm
button influenced the nurse response. The commercial software of BESA and AIT was able to
detect respectively 38.7% and 66.1% of the seizures without a nurse response. In the offline
setting the improvement in nurse response time was 25.6 and 18.1 seconds for respectively
BESA and AIT. Lastly, for the features line length and the power over the wavelet coefficients
in the majority of the seizures a significant change was observed.

Discussion The results showed that an improvement in nurse response is possible and
wanted for diagnostic and safety purposes. It was shown that the commercially available
software might be able to support the nurses. Additionally, some studied promising features,
like line length and the power over the wavelet coefficients might be able to serve as a tool
for the nurses. Additionally, the recorded ECG signal might contain promising information as
well to assist the nurses. In this study mainly the sensitivity and latency is taken into account.
Specificity is also a very important performance features to take into account. Further,
it could be discussed what kind of output would be most applicable in an EMU setting.
Further research should be performed to study the online improvement of implementation
of innovative EEG-based seizure detection methods.
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1Introduction

Epilepsy is a chronic disease of the brain that is characterized by recurrent seizures. Seizures
can vary from the briefest lapses of attention or muscle jerks, to severe and prolonged tonic
clonic convulsions. The seizures are a result of excessive electrical discharges in a group of
brain cells. Different parts of the brain can be site of such discharges. Seizure characteristics
depend on where in the brain the discharge starts and how it spreads [66, 15].

Worldwide around 50 million people currently live with epilepsy. This makes epilepsy one
of the most common neurological diseases worldwide. An estimated 2.4 million people
are being diagnosed with epilepsy each year. The most common type of epilepsy, which
affects 6 out of 10 people with epilepsy, is called idiopathic epilepsy and has no identifiable
cause. Epilepsy with a known cause is labeled as secondary epilepsy, or symptomatic epilepsy.
Causes of secondary epilepsy are for example a severe head injury, a brain tumor, certain
genetic syndromes, or infections of the brain [66, 45, 8, 7].

The first choice of treatment is usually prescribing anti-epileptic drugs (AEDs). Although
the majority of patients is treated effectively with AEDs, in around 30% of all epilepsy
patients complete seizure control cannot be achieved with medication. Other possible
epilepsy treatments are for example surgery, vagus nerve stimulation (VNS), and deep brain
stimulation (DBS).

Epilepsy can be diagnosed by examination of patient history, where the seizure semiology
contains important information. Additionally, often electroencephalogram (EEG) findings,
neuroimaging, and other diagnostic tools, can be of great value for diagnosing and classifying
epilepsy. The most common differential diagnoses are cardiac or vasovagal syncope, sleep
disorders, and psychogenic non-epileptic seizures (PNES).

1.1 Seizure classification
Epileptic seizure types could be divided into two main groups, namely focal and generalized
seizures. Generalized seizures originate at some point, and rapidly spread across a big
bilateral part of the brain. The most common generalized seizures are the absence seizure
and the tonic clonic seizures. Tonic clonic seizures consist of a phase where all muscles
stiffen, followed by a clonic phase where arms and legs begin to jerk. An absence seizure is
characterized by abrupt changes in awareness [43, 54].

Focal seizures are defined as seizures limited to one hemisphere. They may be discretely
localized or more widely spread. The semiology, or characteristics, of the seizure may reflect
the involved networks. Some features of the seizure could identify which hemisphere is
involved, other features allow identification of a more specific area of the brain, for example
a certain lobe.

Seizures arising from the frontal lobe, generally consist of prominent motor features and are
typically short (< 2 minutes). Motor features are for example high energetic movements
or asymmetric tonic posturing. Frontal seizures can contain vocalization, bizarre behavior,
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BA

Fig. 1.1: The electrode placement (A) according to the international 10-20 placement system and
how an EEG signal can change when a seizure occurs (B) is shown.

urinary incontinence, or head deviation. Frontal lobe seizure have a tendency to occur
exclusively nocturnal and may begin with a brief aura.

For seizures arising from the temporal lobe behavioral arrest and automatisms are common.
Automatisms can include oro-alimentary characteristics like chewing and simple gesture
automatisms like fiddling. Often seizures start with an aura, which can be for example a déjà
vu or an epigastric aura. Specific features like ictal speech, vomiting, and drinking suggest
the seizure involvement of the non-dominant lobe. In temporal lobe seizures also autonomic
features are common like pallor and palpitations.

Seizures arising from the parietal and occipital lobe are less common. Parietal seizures consist
of sensory features, which are difficult due to the subjective nature. Typically sensations of
tingling or tickling of a person’s skin is reported but disorientation or visual illusions are also
possible. Occipital seizures are characterized by visual auras and also oculomotor features
could occur like eye closure, eye deviation, or nystagmus.

1.2 EEG

The EEG is one of the most used modalities in the diagnostics of epilepsy. The EEG measures
the electric activity of the brain. Specialized EEG technologists and clinical neurophysiologists
analyse the EEG for diagnostic purposes. The EEG can help solve the diagnostic question,
like answering where the seizure activity starts and how it spreads [57].

In case of a scalp EEG, electrodes are placed along the scalp. The electrodes are systematically
placed following an international positioning system. At Stichting Epilepsie Instellingen
Nederland (SEIN), the epilepsy centre where this project is executed, the 10-20 system is
used (see Figure 1.1A).

The electrodes capture electric potentials of neurons. The EEG activity always reflects the
summation of a group of neurons, since the electric potential of one neuron is far too small
to measure. In healthy adults the EEG shows a somewhat chaotic signal. Whenever a seizure
occurs, neurons start to fire synchronously, resulting in spikes and other rhythmic EEG
patterns (See figure 1.1B).

Certain seizure types have specific patterns. For example typical absence seizures show
three per second generalized spike-wave discharges and in mesial temporal lobe epilepsy
the evolving temporal theta rhythm (5-7Hz) is typical. Tonic seizures most often show
high frequency discharges. Generally, the seizure patterns of one patient show similar EEG
characteristics, but between patients there is a lot of variability.

2 Chapter 1 Introduction



Fig. 1.2: The observation room at SEIN with all the input signals displayed on the monitors; EEG,
ECG, video recordings, and sound recordings.

Sometimes, epileptic activity can be missed on the scalp EEG. Due to the skull and skin
between the electrodes and the brain, the signals of the neurons are somewhat suppressed.
Further, as the electrodes are situated along the scalp, the activity of deeper brain structures
is often not registered. For example for frontal seizures the scalp EEG is not always helpful
since the anatomical position is relative distant from the recording electrodes. Further, in
partial seizures, the ictal tissue can be very small. This could result in no noticeable signal,
since the EEG needs a certain amount of cortex neurons to be synchronized before it is
registered. Lastly, artefacts can obscure the recorded EEG signal. These artefacts can by
caused by for example muscle activity or movement for example. Nevertheless, for many
diagnostic questions the EEG is very informative and useful.

1.3 Epilepsy monitoring unit

If additional diagnostics are necessary, patients can be admitted to an epilepsy monitoring
unit (EMU). Registrations on the EMU are used to answer various diagnostic questions.
For example patients are admitted to localize the epileptic focus or to distinguish epileptic
seizures from PNES. In the EMU patients are monitored with the co-registration of an
EEG, Electrocardiogram (ECG), sound, and video recordings. Specific characteristics of the
epilepsy can be studied by the analysis of the recorded signals.

At SEIN in Heemstede on the EMU department eight patient rooms are available, therefore
a maximum of eight patients can be monitored simultaneously. Per room three to four
rotatable cameras, controlled by nurses, are installed that can capture the whole room,
except for the bathroom. In each room there is an intercom system by which patients and
nurses can communicate with each other. Further, the patient has an alarm button which
can be used to alert the nurses.

All the signals from the eight rooms are aggregated in the observation room (see Figure
1.2). In this room, specialized nurses continuously supervise all the recordings online. When
seizures occur, the nurses respond by attending to the patient and by executing standardized
tests to assess amongst others, responsiveness and cognitive functions during the seizure [6].
Moreover, nurses take care of the patient’s safety; they ensure patients do not get injured,
and when needed they administer medication. In conclusion, accurately detecting seizures
is important because of diagnostic and safety purposes.

1.3 Epilepsy monitoring unit 3



1.4 Problem definition
The online supervision of all recorded signals is labour intensive and demands skills and a
lot of attention. In practice sometimes seizures are missed or recognized late. In order to
assist the nurses to detect the seizures more rapidly and accurately, this project will focus on
automatic seizure detection as a tool to help the nurses recognizing seizures.

Automatic seizure detection can be achieved by using all kind of signals that change during
seizures, like movement, heart rate, the EEG, blood pressure, respiration, or temperature
[63, 52]. For this project we chose to study seizure detection based on the EEG signal.
The EEG is already recorded on the EMU and therefore it can be used without any added
measurements. Further, the EEG signal is closest to the source of the epilepsy and therefore
contains a lot of informative information. Moreover, the nurses staffing the observation
room are not thoroughly trained to read the EEG. Therefore, a tool that helps the nurses to
read the EEG and detect seizures might assist them to recognize seizures.

Literature is filled with articles about EEG-based seizure detection methods. Even commer-
cially available seizure detection software are produced.

1.5 Literature
In 1982 Gotman et al. [22, 23] developed one of the earliest patient non-specific EEG
seizure event detectors. Their algorithm is successful in detecting seizures that evolve with
a sustained rhythmic activity in the EEG. In the following decades a lot of algorithms for
seizure detection appeared. The field of seizure detection has become immense, a lot of
articles are published in a lot of different papers and even commercial software has been
developed.

Seizure prediction and seizure detection In the field of seizure recognition we can distin-
guish three different goals; seizure prediction, seizure onset detection, and seizure event
detection. There has been a lot of discussion about seizure prediction. Some believe that
there is something called a pre-ictal state that can be detected. They state that it is possible
to predict seizures minutes and sometimes even hours before the actual seizure starts. This
pre-ictal state however has remained elusive. Initially there has been a lot of enthusiasm, but
this has been muted when the initial reports could not be reproduced [32, 33, 42]. Seizure
onset detection aims to recognize when a seizure has started with the shortest possible delay
but not necessarily with the highest possible accuracy. Seizure event detection works the
opposite way. With seizure event detection it is aimed to recognize the seizure with a high
accuracy, so we get less false positive detections [44]. One can imagine that for reviewing
several offline EEG recordings, the detection delay is less important than for online use. In
this project we focus on seizure onset detection, since we want to implement the detection
algorithm in an online setting.

Algorithm structure Most of the seizure detection algorithms consist of three important
basic steps; pre-processing, feature extraction and classification (see Figure 1.3). For all
three steps many different methods are published in literature.

For pre-processing most algorithms filter the data between certain frequencies. For arte-
fact rejection some use simple filters and others implement more complex strategies like
independent component analysis [48].

4 Chapter 1 Introduction



EEG signal acquisition

Feature extraction

Classification

No seizureSeizure

Pre-processing

Fig. 1.3: A flowchart of algorithms construction in general. It shows the process from the EEG signal
to the decision in seizure or non-seizure data.

Classification implies the process to make a decision whether the observed feature is part of a
seizure or not. In literature many different approaches are chosen, from simple thresholding
techniques to more advanced machine learning artificial neural networks or support vector
machines [24, 49, 58, 52].

Commercially available software In short, there are three major commercial detection
software packages developed for online use. These include the software of AIT, Besa, and
Persyst. In chapter 3 the packages are described in more detail.

Features Many authors in seizure detection literature attempted to find the best feature for
seizure detection. Features that provide the most diversity between a seizure and non-seizure
EEG section and show most resemblance between different seizure epochs, are promising for
seizure detection purposes. The reviews of Nasehi et al. [44], Faust et al. [13], Ramgopal
et al. [52], Carney et al. [9], Jouny et al. [31], Logesparan et al. [38], Acharya et al. [2],
Alotaiby et al. [4], Orosco et al. [47], Van Putten et al. [50], and Giannakakis et al. [21]
studied various features.

In the time domain features like for example the mean, variance, skewness, kurtosis, and
energy are used [9]. In the frequency domain power of certain spectral bands like the delta,
theta, alpha, beta or gamma band are used to detect seizures [44]. Synchronicity between
electrodes is measured by amongst others cross correlation and phase correlation [50, 40,
29].

In literature often methods are used to transform the time series signal before the features
are extracted. For example the empirical mode decomposition or the horizontal visibility
graphs are used to transform the time series signal in order to focus on aspects of the
EEG that might help to detect seizures [4, 69]. In the time-frequency domain the wavelet
transform technique seems promising [13, 67, 18, 20, 3, 10]. It is stated that the wavelet
decomposition technique is able to capture very subtle details and sudden changes. With the
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wavelet decomposition it is possible to focus on certain frequency ranges. In chapter 5 more
about the wavelet decomposition technique is explained.

In the review article of Acharya et al. [2] it is mentioned that non-linear features are most
promising in the detection of seizures. Non-linear measures like entropy, gabor atom density,
and the Hjorth complexity are discussed in literature. In the review of Jouny et al. [31]
they studied several of these nonlinear measures. Most non-linear measures, address the
complexity of the EEG signal.

Obstacles Although many articles are published about EEG-based automatic seizure detec-
tion methods, still the majority of epilepsy centres have not implemented them in clinical
routine.

One reason may be the high number of false-positive detections. Ictal EEG can vary greatly
across patients. The ictal EEG patterns of the one patient can have different characteristics
to the other patient’s ictal EEG. Furthermore, some physiological changes may seem like
seizure activity, for example sleep spindles, arousals, and alpha activity. Additionally, also
artefacts could cause false positive alarms.

Secondly, a lot of algorithms show good results on a publicly available benchmark data set,
but are not validated yet on large clinical databases. Lastly, a lot of algorithms are tested
offline, but are not ready yet for a continuous monitoring setting, due to e.g. programming
language for online registration.

1.6 Aim of this project
In this project we aimed to study the possible improvement of the nurse response on the
EMU at SEIN. We focused on automatic seizure detection possibilities based on the EEG.

Firstly, the need of improvement in the nurse response to seizures was investigated. As a
baseline measure it was aimed to investigate the nurse response and nurse response time
to seizures. Additionally, the effect of certain seizure characteristics on nurse response was
studied. In Chapter 2 this study is presented.

Secondly, we aimed to study commercially available seizure detection software methods in
an offline setting. We examined the possible improvement of nurse response when we would
implement such a seizure detection method. In Chapter 3 and Chapter 4 this study will be
described.

Lastly, we examined a selection of promising features from literature. We explored whether
the features could contribute in helping the nurses respond to seizures. Further, it was inves-
tigated how the performance stated in literature related to the performance in recordings
from our own clinical setting. In Chapter 5 and Chapter 6 this study is presented.

6 Chapter 1 Introduction



2Performance of the current nurse
response to seizures in the EMU

2.1 Introduction
In the EMU it is of importance that seizures are being recognized by the nurses for safety and
diagnostic reasons. In some cases, it is observed that seizures were missed, or recognized
in a later phase of the seizure. In this chapter the current nurse response to seizures in the
EMU at SEIN without any automatic seizure detection is studied in more detail to objectify
the need of a tool to help the nurses recognize seizures.

In 2012 Atkinson et al. [5] published a study where they examined the staff response in
the EMU of the Harper Hospital in Detroit. They showed that for 20 patients with a total of
170 seizures, for only 69 seizures staff responded. The overall staff response time was two
minutes and 22.3 seconds. They specified that approximately half of the seizures without
staff response was due to electrographic seizures without clinical semiology. Interestingly, in
their study 19 of these electrographic seizures without clinical manifestation were detected
by an automatic seizure detection method, nevertheless, no staff responded.

Another study that addresses the response to seizures in the EMU is the study of Shin et
al. [55]. They looked into different signals that could alert the medical staff. In addition,
they compared complex partial seizures to generalized tonic clonic seizures and PNES. They
observed that seizures of patients with PNES were more often signaled by the alarm button.
Besides, more often patients themselves pressed the button in case of PNES, compared
to generalized tonic clonic and complex partial seizures where more often someone else
pressed the button.

To give more insight in the current staff response in the EMU at SEIN we looked in more
detail to the response to epileptic seizures over a year’s time without any automatic seizure
detection. The main goal was to observe whether and with how much delay nurses respond
to seizures. Secondly, we obtained the video and EEG characteristics of the seizures, in order
to display what kind of seizure aspects help the nurses to respond. This information could
also indicate how the medical staff response could be improved and where automatic seizure
detection could help in the process of responding to seizures. Lastly, the data of this study
serves as a baseline measure for the following studies to investigate the improvement of
possible automatic detection methods.

2.2 Methods

2.2.1 Study population

For this study retrospectively video and EEG recordings of epilepsy patients admitted to the
EMU at SEIN Heemstede between May 2014 and April 2015 were collected. Patients with
confirmation in the EEG report of the occurrence of epileptic seizures during the registration
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Fig. 2.1: This form shows all the aspects that were scored per seizure. For a detailed explanation of
the scoring of EEG and clinical characteristics, see table 2.1. CSO = Clinical seizure onset,
CSE = Clinical seizure end, ESO = Electrographic seizure onset, ESE = Electrographic seizure
end, hh:mm:ss = hours:minutes:seconds

were included. These seizures could range from the most subtle to the most severe tonic
clonic seizures. Recordings with the occurrence of PNES were not included. The EEG reports
are routinely written by EEG technologists and supervised by clinical neurophysiologists.

Where possible, the first five seizures listed in the EEG report that did not occur during
the routine diagnostic EEG and lasted longer than five seconds were collected. During
the diagnostic EEG standardized tests are executed like opening and closure of the eyes,
hyperventilation, and light flashing. Out of the first five seizures two seizures were randomly
selected for scoring.

2.2.2 Scoring of seizures

The selected seizures were scored by three reviewers(FvB, EG, LJH) on aspects that might
signal or help the nurse to respond to the seizure. The scoring was performed using the
video images and the EEG recording. Similar to the nurses in the observation room, the EEG
recordings were reviewed using the common average reference montage. In this montage
the average of all electrodes is used as the reference input for each electrode.

Figure 4.1 shows all the aspects of a seizure that were scored. Firstly, the boundaries of the
seizures were noted. This includes the clinical seizure onset (CSO), the clinical seizure end
(CSE), the electrographic seizure onset (ESO), and the electrographic seizure end (ESE). For
the CSE, the moment when the patients were able to take care of themselves independently
again was selected. Up to that point, for safety reasons and to execute diagnostic tests, it is
of value to respond to the seizure. Electrographically the moment where the postictal phase
started was chosen as the end of the seizure activity. This most often shows a clear change
in the EEG. In some seizures it occurred that there is an absence of clinical or electrographic
features. Then, no boundaries of respectively the clinic or electrographic were reported. See
Figure 2.2 for a visual explanation of the CSO, CSE, ESO, and ESE in time.

Secondly, the nurse response was considered. Nurses can respond to a seizure by using the
intercom or by entering the room of the patient. In this study a nurse response is defined as
the use of the intercom or entering the room either during the seizure or within ten seconds
after the last end of the seizure.

8 Chapter 2 Performance of the current nurse response to seizures in the EMU



EEG patterns

Clinical symptomsESO

CSO

CSE

ESE

Longest seizure length

Postictal phase

EEG seizure length

Clinical seizure length

Fig. 2.2: A visualisation of how we chose the begin and end of the clinical symptoms and electrograph-
ical seizure patterns is shown. This is an example of how the different boundaries could be
situated relative to each other. It also possible that the boundaries are situated differently,
for example that the CSO is situated prior to the ESO. Another possibility is the absence of
the CSO/CSE or the ESO/ESE.CSO = Clinical seizure onset, CSE = Clinical seizure end, ESO
= Electrographic seizure onset, ESE = Electrographic seizure end.

Further, it was noted; whether the alarm button was used, whether the patient was in sight
of the cameras, whether the seizure produced sounds, whether the seizure occurred during
wakefulness or sleep, and whether the patient was alone in the room.

Lastly, the electrographic and clinical characteristics were scored during every 5 consecutive
seconds until the medical staff responded, up to a maximum of 60 seconds. We classified
these characteristics with a score between 1 and 4, resembling respectively no visible changes
up to very clear changes. See Table 2.1 for a detailed explanation of the different scores.

2.2.3 Analysis

In this study the seizures where already medical staff was present in the room at the first
sign of the seizure were excluded for further analysis, because the goal is to investigate the
response of the nurses based on the video and EEG aspects.

There are two important outcome measures of this study. One is the response rate, meaning
the amount of seizures that nurses responded to. The other is the response time, meaning
the time needed to respond to the seizure with respect to the first sign of the seizure.

At last, the scored seizure aspects were evaluated. The difference in seizure aspects be-
tween the seizures with a nurses response and the seizures without a nurse response was
investigated. This difference was evaluated with help of the statistical Chi-square test for
categorical groups like the EEG and clinical characteristics, and the Mann-Whitney U test
for seizure lengths. For the EEG and clinical characteristics, the mean rounded score of all
scored five-seconds sections of the considered seizure were used to categorize every seizure
in a score of one to four, from very subtle (1) to very clear (4) seizures.

2.3 Results
In total 121 patients were included in this study. Table 2.2 shows the patient characteristics.
37 patients had only one seizure, the other 84 patients had two seizures or more. This results
in 205 scored seizures. For 17 seizures, medical staff was already present in the room. These
seizures were excluded, resulting in 188 seizures included in this study (see Figure 2.3).
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Tab. 2.1: This table shows a description of how we scored the characteristics of the EEG and clinical
symptoms every 5 seconds up to the first 60 seconds of the seizure.

EEG characteristics
1 No visible changes
2 Subtle changes;

These changes are hard to notice in the background
3 Clear focal changes;

These changes might not directly catch the attention
4 Clear diffuse changes;

These changes immediately catch ones attention
Clinical characteristics
1 No visible changes
2 Subtle clinical symptoms;

These symptoms might be missed; for example staring, fiddling,
and/or arrest

3 Clear clinical symptoms;
These symptoms might not directly catch the attention; for
example tonic movement, wandering

4 Very clear clinical symptoms;
These symptoms immediately catch ones attention; for example
tonic clonic seizure, hypermotoric seizures

Tab. 2.2: Patient characteristics

Patient characteristics (N=121)
Gender 55m/66f
Mean age 29.0 (range; 2-73, SD;17.1)
Kind of registration

PSS 50
MD 18
24 hour 53

m = male, f = female, PSS = Pre-surgical screening, MD = Multi-day

Of the 188 seizures, 67.0% (126) resulted in a nurse response. Nurses could respond by
using the intercom or by entering the room of the patient. Of the 126 detected seizures, 92
times nurses entered the room of the patient as a response to the seizure. In 2 seizures only
the intercom was used. For 32 seizures, both the intercom was used and the nurse entered
the room of the patient. In 30 EEG recordings the intercom preceded the entering of the
nurse in the room.

2.3.1 Response time

For the 126 detected seizures, the median response time with respect to the first sign of
the seizure was 32 seconds (p5-p95; 12 - 106 seconds). The first sign either may be the
beginning in the EEG or the beginning of clinical symptoms preceding the EEG patterns.
Figure 2.4 shows the response time of the 126 detected seizures. Two outliers were observed.
One had a response time of 11 minutes and 4 seconds. This was a tonic clonic seizure. The
seizure was not detected because the patient was not in scope of the camera; the patient was
not correctly followed across the room with the cameras. The other outlier had a response
time of 27 minutes and 27 seconds. This seizure occurred during sleep and the EEG seizure
patterns started 12 minutes and 2 seconds before the subtle clinical symptoms started. For
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Tab. 2.3: Results of seizure characteristics per seizure group

All No response Nurse response p-value
(n=188) (n=62) (n=126)

Length (seconds)(median(p5-p95))
EEG 60 (12-310) 28 (9-107) 72 (18-377) <0.001
Clinical 91.0 (12-660) 28.5 (7-168) 119.5 (21-741) <0.001
Longest 88.5 (13-678) 29.5 (10-143) 125.5 (30-759) <0.001

Sounds (% (n))
At start of seizure

No 85.1 (160) 88.7 (55) 83.3 (105) 0.33
Vocalisation 12.8 (24) 11.3 (7) 13.5 (17) 0.67
Movement 2.1 (4) 0.0 (0) 3.2 (4) 0.15

During rest of seizure
No 73.9 (139) 90.9 (56) 65.9 (83) <0.001
Vocalisation 18.1 (34) 7.3 (5) 23.0 (29) 0.01
Movement 8.0 (15) 1.8 (1) 11.1 (14) 0.02

In view of camera (% (n))
At start of seizure

Yes 98.4 (185) 96.8 (60) 99.2 (125) 0.21
No 1.1 (2) 1.6 (1) 0.8 (1) 0.61
Partly 0.5 (1) 1.6 (1) 0.0 (0) 0.15

During rest of seizure
Yes 96.3 (181) 98.2 (60) 95.5 (121) 0.80
No 1.1 (2) 1.6 (1) 0.8 (1) 0.61
Partly 2.7 (5) 0.0 (1) 3.9 (4) 0.53

Alarm button used (% (n))
Yes 26.1 (49) 0.0 (0) 38.9 (49) <0.001

Wakefulness/sleep (% (n))
Sleep 42.5 (80) 48.4 (30) 39.7 (50) 0.26

Patient alone (% (n))
No 28.7 (54) 29.0 (18) 28.6 (36) 0.95

EEG characteristics (% (n))
1 6.9 (13) 4.8 (3) 7.9 (10) 0.43
2 35.1 (66) 46.8(29) 29.4 (37) 0.019
3 39.4 (74) 30.6(19) 43.7 (55) 0.086
4 18.6 (35) 17.7 (11) 19.0 (24) 0.83

Clinical characteristics (% (n))
1 17.0 (32) 27.4 (17) 11.9 (15) 0.008
2 61.7 (116) 62.9 (39) 61.1 (77) 0.81
3 18.1 (34) 9.7 (6) 22.2 (28) 0.035
4 3.2 (6) 0.0 (0 ) 4.8 (6) 0.08

The EEG length of a seizure is defined as the time between ESO and ESE, clinical length is the time
between the CSO and CSE, and the longest length is defined as the time between the first sign and the
last sign of the seizure. The subclinical and seizure without patterns in the EEG are not taken into
account in the calculations of the seizure lengths. The p-values show the significance in the difference
between the seizure with a nurse response and without a nurse response. For the EEG and clinical
characteristics, 1 represents very subtle seizures, 2 subtle seizures, 3 clear seizures, and 4 respresents
very clear seizures.
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121 patients

37 patients 84 patients

1 seizure 2 seizures

205 seizures

188 seizures

-17 seizures
(medical staff already present)

126 seizures 62 seizures

Nurse response No nurse response

Fig. 2.3: An overview of the flow of the seizures from the amount of patients into the nurse response
and no response group.

29 seizures the nurses responded within 20 seconds and for 24 seizure it took the nurses 60
seconds or more to respond to the seizure.

2.3.2 Descriptive results

All scored aspects of the seizures are listed in Table 2.3. Of the 188 seizures, in 62.8% (118)
the start of EEG seizure patterns preceded the clinical symptoms. In 14 seizures (7.4%)
there were no clinical symptoms at all and 3 times (1.6%) there were no EEG patterns. For
28.2% (53) of the seizures, the clinical symptoms preceded the EEG seizure patterns. For all
the subclinical seizures and seizures without EEG patterns, no nurse response was noted.
Seizures in the no response group showed significantly (p < 0.001) shorter seizure lengths
compared to the group seizures with a nurse response.

Whenever the alarm button was used to inform the nurses a seizure occurred, the nurses did
respond to it accurately. Further, out of the 43 times the alarm button was used, for 65.1%
(28) the patient pressed the button, and for 34.9% (15) a companion in the room pressed
the button.

In 28.7% (54) of the seizures, the patient had a companion with them in the room. The
response rate to these seizures was comparable to seizures where the patient was alone in
the room (p = 0.95). For seizures during wakefulness a companion seemed to improve the
responder rate slightly. For 75.6% of the seizures during wakefulness with a companion
in the room a nurse responded, compared to a response rate of 68.0% in seizures during
wakefulness without a companion (p = 0.416).
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Fig. 2.4: The 126 seizures with a nurse response and their corresponding response time are shown.
The seizures are sorted based on response time. Two horizontal lines represent respectively
the 20 (green) and 60 (red) second line. Note that the two outliers are not displayed in total.
For 29 seizures the nurses responded within 20 seconds and for 24 seizure it took the nurses
60 seconds or more to respond to the seizure.

In 80 recordings the seizure occurred during sleep. In 62.5% (50) of these seizures nurses
responded, compared to 70.4% response rate for seizures during wakefulness (p = 0.26).

For 2 seizures, the patient was not in scope of the camera during the main part of the seizure.
In both of these seizures, the patient was in the bathroom at the beginning of the EEG
recording. For one of these two seizures, the nurses did not respond, for the other it took
the nurses 11 minutes and 4 seconds before they entered the room of the patient. For 5
seizures the patient was partly not in scope of the camera during sections of the seizure.
These patients were not followed adequately with the cameras. One of these 5 seizures did
not result in a nurse response. The nurse response time of the four remaining seizures did
not differ significantly to seizures where the patients were in scope of the camera.

For 24 seizures the patient made a vocal sound at the beginning of the seizure. In 70.8% (17)
this resulted in a nurse response. In four seizures, the patient made sounds by movement
at the beginning of the seizure, this resulted in all four cases in a nurse response. During
the rest of the seizure, 49 seizures included sounds (34 vocal, 15 movement). Of those
seizures 87.7% (43) resulted in a nurse response. There is a significant difference between
the detection of seizures with and without sound aspects (p < 0.001).

The majority of seizures (61.7% (116)) was scored as clinically subtle (2). To all 6 seizures
that were marked as clinically very clear, nurses responded. On the contrary, for 31.4% (11)
of the very clear seizures based on the EEG, no nurse responded (p = 0.11). Figure 2.5
shows the distribution of the EEG and clinical characteristics combinations of the response
and no response group in a table.

2.4 Discussion
In this part of our project it is studied whether and with how much delay the nurses
responded to the seizures. Besides, several video and EEG aspects were taken into account.
The study results indicate the necessity of a tool to help the nurses. With 62 (33.0%)
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Fig. 2.5: These tables show the EEG and clinical characteristics combinations of the response and no
response group. It shows the percentage of seizures that showed the considered combination
in the specific group. The red areas represent areas with little amount of seizures and the
green areas with more amount of seizures.

missed seizures, we can conclude that improvement in responding to seizures is possible.
Additionally, for 19.0% (24) of the seizures with nurse response, the response time was over
60 seconds. For diagnostic and safety reasons it would be valuable to improve this response
time.

Our results compared to those of Shin et al. [55] and Atkinson et al. [5] show different
results. Based on the amount of seizure response, Shin et al. showed with 80% response
rate a higher, and Atkinson with 40.6% a lower response rate compared to our response
rate of 67.0%. Further, the study of Atkinson et al. presented a mean response time of 2
minutes and 22.3 seconds. In the study of Shin et al. a mean responder time is 23.5 for
complex partial seizures and 20.3 for tonic clonic seizures was observed. Comparing this to
our mean response rate of 32 seconds, it seems more comparable with the study Shin et al.
published. The differences between our study and the studies of Shin et al. and Atkinson et
al. might be explained by the difference in data selection. In our study we did not select
the recordings based on seizure type, whereas the studies of Atkinson et al. and Shin et al.
selected specific seizure types; Shin et al. selected complex partial seizures and generalized
tonic clonic seizure and Atkinson et al. used partial onset seizures, generalized tonic clonic
seizures, and myoclonic seizures.

One can question whether for all of the missed seizures a nurse response was needed.
Furthermore, it could be questioned if the nurses did recognize the seizure but chose to not
respond to this seizure by intercom or entering the room. We included seizures with a length
of more than 5 seconds selected from the first five occurred seizures. For every such seizure
a nurse response is preferred for diagnostic tests and safety reasons.

A major part of the seizures were scored as clinically subtle within the first 60 seconds. In
Figure 2.5 it can be observed that the clinically subtle seizures are equally detected as not
detected. This figure also showed that very clear clinical seizures were always detected. On
the contrary, when observing the EEG characteristics we see that the very clear patterns are
still missed sometimes. This could affirm that the nurses mainly focus on the video images.
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It is shown that the alarm button is a very good tool to alert the nurses. Nurses always re-
spond to this button. Nevertheless, this button showed some technical issues. Sometimes the
button is pressed by the patient, but no signal is send to the observation room. Furthermore,
sometimes patients cannot find the button quickly.

In this study it was shown that a companion in the room did not result in a higher nurse
response rate. Generally, it was expected that an extra person in the room, could help to
alert the nurses. Although in our study this added value of a companion is not clearly shown,
we did observe a trend to a higher nurse responses in seizures with a companion during
wakefulness.

In scoring the start of the EEG and the clinical and EEG characteristics every 5 seconds it
is expected that there could be some difference in interpretation of the signals. Although
a thorough study to inspect the inter-observer agreement was not performed due to time
constraints, we did explore the possible variation. We selected ten random seizures to
score the start of the EEG patterns by an experienced clinical neurophysiologist. A mean
difference with respect to the original observer score of 2.8 seconds (SD = 3.8) was noted.
This indicates that sometimes, choosing the start of the seizure in the EEG is somewhat
subjective and fluctuates within several seconds.

We scored the EEG and clinical characteristics only for the first 60 seconds, while some
seizures lasted longer and might evolved in more or less clear changes in EEG and/or clinical
characteristics. That could result in seizures that progressed in very clear EEG patterns but
started subtle and thus are scored as subtle EEG seizures.

Of the 62 seizures without nurse response 17.7% (11) showed very clear EEG patterns (score
4). Since many seizure detection algorithms show better results for clear seizures, we expect
that a seizure detection algorithm at least is able to alert the nurses for these clear missed
seizures.

2.5 Conclusion
This study provided insight in the nurse response to seizures in the EMU at SEIN. With a
response rate of 67.0% we can conclude that improvement in the amount of seizures with
a response is possible. For the response time, 19.0% of the seizure with a nurse response
showed a response time over 60 seconds. As an epilepsy expertise centre we believe it should
be aimed to improve both the response rate and response time for diagnostic and safety
purposes.

We conclude that the use of the alarm button or sound aspects are seizure characteristics
that influence the nurse response rate. Further, seizures without a nurse response show
shorter seizure lengths compared to the seizures with a nurse response.

A notable part of the missed seizures showed clear EEG patterns. Literature shows that
seizures with clear EEG patterns are easier to detect with an automatic detection than
seizures with subtle EEG patterns. This indicates that a tool based on the EEG might help
the nurses in the EMU at SEIN to detect seizures more accurate.

Lastly, this nurse response measurement helps us to inspect the possible improvement when
automatic seizure detection methods are implemented, which is the follow-up research of
this project.
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3Commercially available
algorithms

3.1 Introduction
To view and analyze the EEG recordings nowadays hospitals use EEG viewers. This software
displays the EEG and gives certain signal analysis possibilities. Sometimes seizure detection
is already a module and thus part of such software. For example, at SEIN they use the
Micromed software to view and analyze the EEG recordings. Somewhere in their software
it is possible to use some kind of seizure detection. This however, is not user friendly and
hardly used at SEIN.

Several companies focus on more advanced quantitative methods to analyze EEG. Some have
spike detection or even include automatic observation of the background activity. Seizure
detection is available in some software packages. Often they offer only offline seizure
detection, but sometimes it is also presented as an online tool. Companies that offer these
modules include BESA, AIT, and Persyst.

This Chapter describes the algorithms of BESA, AIT, and Persyst in more detail. Following,
in Chapter 4 our study that investigated the added value and the sensitivity and latency
performance of the algorithms of BESA and AIT is presented. Due to availability, the
performance of the Persyst software is not investigated thoroughly, but the algorithm will be
shortly described in the following sections. The following sections describe the algorithms of
BESA, AIT, and Persyst, to give an overview of the available commercially available online
seizure detection algorithms.

3.2 BESA
MEGIS Software GmbH was founded by Dr. Michael Scherg in 1995. They introduced digital
EEG software that is easy to use. In the following years they expanded their software with
amongst other things, imaging methods and source modules. In 2009 they renamed the
company to BESA GmbH. BESA is an acronym for Brain Electrical Source Analysis. Nowadays
they provide several software packages for EEG analysis of which some packages can be
used in the field of epilepsy.

3.2.1 Seizure detection algorithm

In 2007 BESA proposed a seizure detection algorithm by an article of Hopfengärtner et
al.[26]. In 2014 they improved the algorithm and performed a validation study for clinical
routine [27]. The algorithm is based on change in amplitude and frequency of the EEG
signal. They hypothesize that electroencephalographic seizure activity manifests itself by a
sequential change in frequency and amplitude that is distinct from non-seizure or background
activity.

17



Fig. 3.1: The EEG electrodes of the 10-20 system with additional F9 and F10 electrodes. The blue
electrodes represent the left subset and the green electrodes represent the right subset used in
the BESA algorithm. The grey electrodes show the referenced electrodes. The red electrodes
Fp1 and Fp2 are omitted due to eye blink artefacts.

Steps through the algorithm The electrodes that are selected for the algorithm are divided
into a left and right subset. The left subset consists of the electrodes F7, T7, P7, O1, F3,
C3, and P3. The right subset contains the electrodes F8, T8, P8, O2, F4, C4, and P4. They
referenced these electrodes against the average of Fz, Cz, and Pz. Electrodes Fp1 and Fp2
are omitted due to eye blink artefacts.

Figure 3.2 shows a flowchart of how the BESA algorithm processes EEG data. First the
data is segmented into epochs of 2 seconds. They use overlapping epochs with an overlap
of 50%. Secondly artefact rejection is performed per channel (j) for each epoch (k).
High amplitude EEG sections are omitted. This is accomplished by equation 3.1, where
x̃max,min[j, k] = max,min{xn[j, k]− x[j, k]} are the maximum and minimum amplitudes of
the signal. When d[j, k] is greater than the threshold of 600 µV , the epoch of that specific
channel is omitted.

d[j, k] = x̃max[j, k]− x̃min[j, k] (3.1)

As a third step, the integrated power (IP) and normalized energy (E) are calculated per
channel (j) per epoch (k) according to equations 3.2 and 3.3. The used frequency band (b)
for integrated power is from 2, 5 to 12Hz. After that the IP and E are averaged per epoch
following equations 3.4 and 3.5, where Nchi[k] denotes the number of artefact-free channels
in epoch k. The IP and E are interpreted as an estimate for respectively characteristic
frequency and amplitude changes.

IP [j, k, b] =
f2

b∑
fl=fb

1

Pn[j, k](fl) (3.2)

E[j, k] = 1
N

∑
n

(xn[j, k]− x[j, k])2 (3.3)

IP [k, b] = 1
Nchi[k]

∑
j

IP [j, k, b] (3.4)
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Fig. 3.2: The flowchart of the BESA algorithm. It shows the criteria and steps of how the algorithm
scores the EEG on seizures.
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E[k] = 1
Nchi[k]

∑
j

E[j, k] (3.5)

Finally these calculated IP and E values are compared to certain thresholds. These thresholds
are calculated over a section of 15 seconds. The precise method is unknown, as it is not
described in literature. If both IP and E are above threshold, the epoch is marked as "suspected
for seizure". If a cluster of 9 consecutive epochs, representing ten seconds, are marked as
"suspected for seizure" and those 9 epochs together cross a certain threshold as well, this
section is marked as a seizure.

Setting The patient group used in the validation study of 2014 consisted of 117 patients
with temporal lobe epilepsy, 35 patients with extra-temporal lobe epilepsy, 2 patients with
multifocal epilepsy, and 5 patients with undetermined seizure origin. They selected patients
who were admitted to the Epilepsy Center Erlangen for non-invasive long-term video-EEG
monitoring as part of presurgical evaluation.

They analyzed a total of 25,278 hours of scalp EEG recordings, including 794 clinically
identified seizures. The duration of the recordings per patient varied between 46 and 310
hours (mean: 159 hours). The number of seizures per patient varied between 2 and 28 per
patient (mean: 5 seizures).

They analyzed 551 complex partial seizures, 115 simple partial seizures, and 128 secondary
generalized tonic clonic-seizures. They did not include subclinical seizures or clinically
evident seizures without visually recognizable EEG pattern.

Performance The averaged sensitivity value was 78.8%. For 110 patients the sensitivity
was perfect, 100%. In three patients the algorithm did not detect any seizure. For the
temporal lobe patient recordings, consisting of 589 seizures, sensitivity reached an averaged
value of 81.0%. For the recordings of patients with extra-temporal lobe epilepsy, consisting
of 172 seizures, the averaged sensitivity was 71.3%, which is significantly lower than for
temporal lobe epilepsy patients. This observation contains some uncertainty due to the
different volumes of the two groups.

The averaged rate of false positive events per hour was 0.11/h. For temporal lobe patients
the averaged false positive rate was slightly lower with 0.08 false positives per hour. For the
extra-temporal lobe patients, the rate reached 0.16/h.

Strength and weaknesses The algorithm BESA proposed can be used without adaptations
per patient. For all patients identical parameters are used. The performance is based on
a large data set including all kinds of artefacts, different states and non-ictal pathological
patterns.

The algorithm is not able to detect seizures with the following features: a) A seizure duration
of less than 10 seconds; b) a seizure with a low amplitude; c) a seizure pattern presented in
only a few electrodes; and d) a seizure with activity in the beta band. Besides, seizures that

evolve quickly into the generalized tonic-clonic phase accompanied by artefacts are difficult
to be detected as well.

They mentioned that for the lower frequencies they managed to detect more seizure patterns
in the delta band due to their frequency range from 2, 5 to 12Hz. A negative side effect of
these lower frequencies is the increased false detection rate, substantially due to prolonged
frontal and temporal intermittent rhythmic delta activity.
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The article of 2014 did not mention anything about the detection delay. This is however also
an important parameter. Looking at the criteria of the algorithm the detection delay will
be at least 10 seconds in an online setting. In their previous study of 2007, with a smaller
patient population they noted a delay varying between 10 and 44 seconds.

The article of 2014 mentions that the method of BESA is comparable to EpiScan from AIT
3.3 with respect to artefact rejection and a multichannel calculation.

Recent developments As mentioned before the signals of electrodes F9 and F10 were
not included in the algorithm calculation. Recently BESA added these two electrodes to
respectively the left and right subset. Furthermore they are in a progress of development
and improvement of the algorithm. Nowadays they focus more on pediatric recordings, to
see if their algorithm is able to detect seizures in EEG of children.

SEIN has a closer collaboration with BESA in comparison to the contact wit Persyst and AIT.
In order to help each other SEIN and BESA work together to improve the BESA algorithm
and research whether it is an option in the EMU setting of SEIN.

3.3 AIT
The Austrian Institute of Technology (AIT) is a large research institute consisting of different
departments, from digital safety to health and environment. The computational Encephalog-
raphy research group of AIT develops software for analyzing EEG recordings. Part of this
software is a seizure detection method named ’EpiScan’.

3.3.1 Seizure detection algorithm

In 2014 Fürbass et al.[16] published a prospective multi-center study regarding the algorithm
’EpiScan’. As part of this article they also made a comparison with the Persyst algorithm.

Steps through the algorithm The EEG is analyzed in epochs of 0.25 seconds. Frequencies
below 0.7 Hz and above 99 Hz are removed by finite impulse response filters. A notch filter
is used to filter at 50 and 60 Hz.

Segments with excessive amplitudes are removed, resulting in some artefact removal from
loose electrodes for example. After artefact removal, they use two algorithms to check
the EEG for rhythmic patterns in the time and frequency domain. These algorithms are
respectively Epileptiform Wave Sequence Analysis (EWS) and Periodic Waveform Analysis
(PWA) [25, 17]. The PWA was designed to detect rhythmic patterns that can be found
most frequently. For temporal lobe epilepsy this should work properly with the frequencies
displayed during those seizures. The EWS analysis is designed to detect especially seizure
patterns with a moderate irregular structure, high frequency variations, abrupt phase
changes, and distortions by muscle or electrode artefacts. A third feature they use is
energy. The algorithm scans the EEG for tonic and tonic-clonic seizures with strong muscle
artefacts.

The extracted features are normalized by a spatio-spectral model of the brain activity. They
update the model continuously by past information from the EEG. Furthermore they use
classifiers to remove events with physiological origin. They state that these two steps avoid
repeated detections of patterns that are not seizures.
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PWA The PWA consists of a continuous wavelet transformation. It searches for rhythmic
patterns. They use waveforms to detect periodic patterns in the delta-, theta-, alpha-, and
beta-bands. They normalize the waveform results to the total energy in the EEG in order to
only detect dominant components.

EWS The EWS analysis is a time series analysis. This is chosen because patterns with
irregular structures are difficult to measure with a spectral analysis. First, the analysis
searches for epileptogenic waves. The wave has to meet three criteria to be defined as a
wave. It has to be within a certain frequency range, has high enough amplitude, and small
high frequency noise. All waves are handled separately, this way the variations in the signal
is not a problem. After defining the waves, the waves are clustered based on the three wave
classification criteria. In this process some waves will be excluded as they do not fit into
any cluster. Thirdly, the clustered waves are sequenced, allowing gaps that correspond to
artifacts and/or distortion. At last, within the sequence, the analysis calculates a similarity
value, to inspect the similarity between groups of waves. They observed that ictal sequences
of epileptogenic waves look similar to each other, therefore they state that this similarity
value indicates whether an EEG section is ictal.

Setting They used the EEG recordings of 205 patients older than 18 years, of which 94
recordings consists of seizures. Data were recorded at three EMUs, two in Vienna and one in
Heeze. A total of 15.684 hours of EEG with 526 seizures was analyzed.

They let reviewers score the EEG on seizures. These reviewers were asked to decide whether
the EEG at a defined moment represented a seizure. They could choose six different values
of increasing certainty. Based on that score, data was divided into four groups; a) all marked
seizures without opinion of reviewers, b) all seizures with perception value of at least 25%
certainty, c) all seizures with perception value of at least 50% certainty, and d) all seizures
with perception value of at least 75% certainty.

Performance They defined a seizure epoch as a three minute time range starting from the
beginning of the seizure marker. An EpiScan alarm occurs at a specific moment in time,
without a time duration. When this alarm appeared in a seizure epoch it was defined as a
true positive detection.

They showed in the group where seizures were clearly visible according to the experts
(> 75%), a sensitivity of 81%. They noticed an expected lower sensitivity of 78% and 72%
for the groups in which the experts were less certain, respectively the > 50% and > 25%
group. When calculating the sensitivity for all seizures, regardless of whether those seizures
were visible in the EEG, they achieved a sensitivity of 72%. During the study, EpiScan
discovered 16 previously undetected seizures. Overall, a false alarm rate of 7.05 per day
was achieved.

In the comparison with Persyst, they state that the algorithm of Persyst achieved a sensitivity
of 68% compared to the 72% of EpiScan. Also for the other groups the sensitivity of EpiScan
was higher. For the false alarm rate Episcan showed better results in comparison to Persyst
for all the detection groups as well. The false positive rate of Persyst appeared to be 27%
higher than the false positive rate of EpiScan.

In the study they also tested the algorithm on a small pediatric publicly available data set of
24 patients. A sensitivity of 67% and false positive rate of 7.7 per day was achieved.
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Strength andweaknesses In their article they do not explicitly explain what kind of seizures
were missed and what made the false detections. However we could reason that the more
subtle seizures are more difficult, because the sensitivity gets lower when reviewers are less
certain of the occurrence of a seizure. In this reasoning we assume that reviewers are less
certain when seizures show subtle EEG patters.

Their algorithm is intentionally built out of two analysis methods, the PWA and EWS. This
way they tend to focus with the PWA on the obvious seizures and with the EWS the more
difficult seizures to detect properly.

The performance of the EpiScan algorithm is based on a large uncut dataset, for a reliable
false detection rate this is important.

Lastly AIT offers another kind of software, called Neurotrend. This software takes several
features and displays it in time. It is based on totally other calculations than EpiScan. It does
not detect seizures yet, but in the future it might be able to.

3.4 Persyst
Persyst is an American company, founded by Scott Wilson in 1987. They develop EEG
analysis products for amongst others Intensive Care Units (ICU) and EMU purposes. For the
long-term monitoring on the EMU they provide software which they state is able to detect
spikes and seizures. Furthermore their software is able to help in the offline reviewing of
long-term EEG registrations.

3.4.1 Seizure detection algorithm

A validation study of the Persyst algorithm for seizure detection is presented in 2015 by
Sierra-Marcos et al. [56]. The algorithm this study refers to is a version of June 2013. As
mentioned in the article there are ongoing refinements to improve the algorithm. Thereby
the steps through the algorithm and the performance discussed in the validation study might
not fully correspond to the current algorithm Persyst offers.

Steps through the algorithm The algorithm is based on changes in background activity,
displaying rhythmicity, evolution in amplitude and/or frequency, and asymmetry. A key input
to the algorithm is the rhythmicity spectrogram. It measures the amount of rhythmicity at
each frequency presented in the recording. The algorithm is built by combining the output of
many small artificial neural networks, each of which were trained to recognize a particular
feature. A set of various EEG recordings was used to train the algorithm. These recordings
were drawn from EMU, ICU, and ambulatory settings.

They analyze the EEG per one-second epochs. Per epoch two outputs are presented. One
output represents the identification of seizures and the other shows the probability curve
that shows the probability that an epoch would be marked as "seizure". At least 11 epochs,
representing 11 seconds, have to be marked as "seizure" to generate an identification of a
discrete seizure event.

Setting They analyzed 98 recordings, which they classified in four groups:

1. Recordings with periodic lateralized epileptiform discharges (PLEDs) and/or Periodic
epileptiform discharges (PEDs) with seizures. 21 patients were included in this group.
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2. Recordings with PLEDS/PEDs but without seizures. 29 patients were included in this
group.

3. Recordings with seizures but without PLEDs/PEDs. 17 patients were included in this
group.

4. Recordings without PLEDs/PEDs and seizures. These recordings did contain some
suggestive patterns for seizures. 31 patients were included in this group.

The total duration of all recordings was 82.7 hours (mean: 1 hour; range 20 minutes - 19
hours). The recordings of group A contained 170 seizures (mean 4; range 1-50) and of
group C 98 seizures (mean: 3; range 1-18).

The presumed etiology of the included patients was structural-metabolic in 66, genetic in 7,
and unknown in 25 patients.

Performance The sensitivity of this algorithm was 76.1%. For 29 patients, all seizures were
captured. In three subjects no seizures were detected. For group C the averaged sensitivity
was 100% and for group A 75%.

80 false positive events were identified, resulting in a false positive rate of 0.97 per hour.
Two recordings in group B show a very high false positive rate of more than 20 per hour.
False positive detections were concentrated in group A and B, both with PLEDs/PEDs

Strength and weaknesses Of the 64 undetected seizures, 30 correspond to subtle ictal
patterns without clear changes in frequency and amplitude, 21 to short events, 8 to fast
rhythms, and 5 to muscular artefacts.

They state that the performance is lower in patients having periodic patterns, with and/or
without seizures. The strength of this study is that they took difficult EEG recordings to
validate their algorithm. A weakness to these recordings is that they are relatively short and
have relatively small amount of seizures, therefore this can hardly be called a validation
study. Especially about the performance measure of false positive events we can not draw
conclusions.

The output of probability could be a strength, because it might make it able to respond
more quickly to seizures. It could make the medical staff more aware of something might
happen.

3.5 Conclusion
The three considered companies have constructed very different algorithms. BESA uses a
relatively simple robust algorithm with certain thresholds to discriminate between seizure
and non-seizure patterns, Persyst uses more complex neuronal networks, and AIT uses
different wavelet analyses to detect the seizures. With the available articles we were not
able to get a total detailed insight into all the algorithms.

In the different validation studies, three different methods are noted. The main difference
can be observed in the way the data recordings were divided. Where BESA and AIT used big
data sets, Persyst chose a relatively small amount of recordings. BESA did not discriminate
between certain recordings, whereas AIT and Persyst divided the recordings in different
subgroups. Persyst indicated that they used very challenging recordings with and without
PLEDs or PEDs and with and without seizures. AIT made another partition, they let reviewers
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Sensitivity False positives per hour
BESA 78,8% 0.11

Persyst 76,1% 0.97
AIT 72% 0.29

Tab. 3.1: This table shows the sensitivity values and false positive rates of the three algorithms
obtained in their own validation studies.

score the seizure events and divided the EEG sections into groups of seizure certainty based
on the opinion of the reviewers.

Looking at the performance measures in the validation articles, BESA shows the best
sensitivity value and false positive rate. Table 3.1 shows the different performance results.
In the article of AIT, they also used the algorithm of Persyst on their data and with their
method, then the sensitivity value and false positive rate of Persyst showed respectively 68%
and 0,4 false positives per hour. We should be aware that the performance measures are
obtained from different data and different methods.

Persyst and BESA both mentioned that the algorithm struggles with subtle seizure patterns.
In the results of the AIT validation study we could also conclude that subtle seizures are
more difficult to detect. AIT explicitly has a certain analysis for more difficult seizures, but
still we believe they encounter problems with subtle seizures just like BESA and Persyst.

None of the validation articles studied the latency values thoroughly. We believe that latency
is however very important for the EMU setting to study an improvement in response time
compared to the current situation. The Persyst software includes a probability value which
indicates whether it is less or more likely that a seizure is occurring. We expect that such a
probability value could really help to grab the attention of nurses on the EMU to look more
precisely to a certain patient and detect seizures adequately and more rapidly.

Because of several aspects described above we can not conclude which commercially available
algorithm would be best suitable for SEIN without further research. We consider the
probability value of the Persyst software as an added value. Their validation study though is
with the little amount of data not very convincing. BESA seems to have a good algorithm
because it is robust. A downside is that they probably have the most issues with subtle
EEG patterns. For the more difficult EEG patterns AIT seems most applicable because they
intended to implement a special waveform analysis for those seizures. Lastly we believe
that the latency values are important. In all the articles they did not elaborate about latency
values. We however believe that for EMU purposes the latency values could be important to
decide which algorithm is more applicable.

In the following chapter we will look more closely to the added value and sensitivity and
latency performance of the algorithms of BESA and AIT on our previously obtained EEG
recordings.
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4Sensitivity and latency
performance and seizure nurse
response improvement of two
commercial seizure detection
algorithms

4.1 Introduction

As described in Chapter 3, commercial seizure detection methods for an online clinical
setting are being developed. These EEG based algorithms for seizure detection might be
able to help the nurses in responding more accurately to seizures, which is important for
diagnostic and safety purposes.

In the articles of Hopfengärtner et al. [27] and Fürbass et al. [16] validation studies of
respectively BESA and AIT are described. Both studies mainly focus on sensitivity and
false positives, while the latency is also an important aspect for the implementation of the
algorithm in a clinical online setting. Further, in order to implement a seizure detection
algorithm, improvement of the current situation, both in terms of detected seizures and
response time is essential.

The aim of this study is to investigate performance in terms of sensitivity and latency of
BESA and AIT on our previously obtained EMU EEG recordings. Moreover, the improvement
with respect to the current nurse response is of interest in order to determine the added
value of implementing BESA or AIT. The improvement in number of detected seizures, and
gain in response time is studied.

4.2 Methods

In this study the previously obtained EEG recordings were scored with both the BESA and
the AIT algorithm. Details about the algorithms are written in Chapter 3 and information
about the recordings can be found in Chapter 2.

The analysis of the data by BESA and AIT resulted in an output of time points where the
algorithms stated a seizure occurred. To decide whether the algorithms made a correct
detection, the boundaries (CSO, ESO, CSE, and ESE) of the seizure, that were scored in
Chapter 2, were used. A correct detection was defined as a detection within ten seconds
before the first start (CSO or ESO) of the seizure up to ten seconds after the last end (ESE or
CSE) of the seizure (see Figure 4.1).
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Fig. 4.1: The definition of a correct detection is illustrated. A correct detection is defined as a detection
within ten seconds before the first start of the seizure till ten seconds after the last end of the
seizure.

4.2.1 Analysis

Firstly, the sensitivity and latency performance of the BESA and AIT algorithms were
studied. The amount of detected seizures were determined, resulting in a sensitivity score.
Furthermore, the amount of seizures that were detected by both the BESA and AIT algorithm
were considered. Latency was studied by comparing the detection time points of the
algorithms with the ESO. For BESA it is known that in an online setting, the algorithm
demands at least ten seconds of seizure data before it gives an alarm. To translate the
detection moment of the offline setting to an online setting, at least 10 seconds should be
added for the BESA algorithm. For AIT it is not known on forehand what the consequences
in terms of response time are when translating the results to an online setting.

Secondly, the response improvement with respect to the previously inspected nurse response
is studied. Both improvements in amount of detected seizures, and gain in response time
were taken into account. As nurse response time point the moment the intercom is used, or
the moment the nurse entered the room was used. Because the nurses need some time to
walk from the observation room to the patient’s room, 5 seconds were taken into account as
delay time.

Lastly, subgroup analyses were executed to investigate the differences in performance
between groups based on the seizure aspects EEG and clinical characteristics. In the previous
study (see Chapter 2) the EEG and clinical characteristics are described in more detail. For
this study we used the maximum score of the EEG and clinical characteristics scores per
seizure, to divide the seizures into four different groups, from very subtle to very clear
seizures (see Table 2.1 in Chapter 2). The amount of detected seizures and response time of
the different groups were investigated. Since the seizures where already medical staff was
present were not scored on EEG and clinical characteristics, these seizures were excluded for
this part of the analysis.

4.3 Results

4.3.1 Sensitivity

Figure 4.2 shows the sensitivity performance of BESA, AIT, and the nurses. It illustrates that
the BESA algorithm was able to detect 63.9% (131) of the seizures and the algorithm of
AIT correctly detected 76.1% (156) of the seizures. Furthermore, the amount of the shared
seizures that were both detected by BESA and AIT are illustrated. For 61.5% (126) of the
seizures, both BESA and AIT showed a correct detection.
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Fig. 4.2: The amount of seizures that are detected by the different groups, Besa, AIT, and the nurses.
For 126 seizures, both BESA and AIT detected them. Additionally BESA detects 5 and AIT
detects 30 seizures. The nurses were at 17 seizures already present, and responded to 126
seizures out of the 205.

4.3.2 Latency

For the 131 and 156 detected seizures by respectively BESA and AIT, the latency values were
calculated. These values were computed by comparing the time of detection to the ESO.
Figure 4.3 shows these latency results. The median latency value for BESA was 3.75 seconds
(p5-p95; -4.0-41.1), in comparison with the latency of 10.15 seconds (p5-p95; -3.9-49.5) for
AIT (p < 0.001). For BESA there is one major outlier with a latency of 33 minutes and 59
seconds. This corresponds to a seizure with a very slow build up of epileptic patterns. Of the
126 seizures where both BESA and AIT produced a correct detection, for 77.0% (97) the
detection of BESA preceded the detection of AIT in the offline setting.

Online setting Considering the delay of ten seconds when implementing BESA in an online
setting, for the latency results ten seconds should be added. This results in better latency
results for AIT (p < 0.001). Taking the ten second delay in consideration, for the 126
seizures where both BESA and AIT showed a correct detection, for 35.7% (45) the detection
of BESA preceded the detection of AIT, compared to 77.0% in the offline setting.

4.3.3 Improvement

Figure 4.4 shows the amount of detected seizures by BESA and AIT for the different nurse
response groups. In the subgroup of seizures that were not detected by the nurses, BESA
and AIT both detected 24 (38.7%) shared seizures. Additionally, AIT is able to detect 17
(27.4%) seizures that were not detected by BESA. When implementing AIT the results show
an improvement of 66.1% detected seizures in the group of seizure where the nurses did not
respond to.

For the seizures that were detected by the nurses as well as by BESA and/or AIT (see Figure
4.4), possible response time improvement by automated seizure detection was studied.
Figure 4.5 shows detection by BESA and AIT with respect to the nurse response. The median
improvement in time in the offline setting for BESA is -25.6 seconds (p5-p95; -88.7-7.6),
compared to the median improvement of -18.1 seconds (p5-p95; -89.4-18.3) for AIT (p =
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Fig. 4.3: The latency values of Besa(left) and AIT(right) with respect to the ESO. At zero the ESO is
visualized. The bars represent the time point of the detection of respectively BESA and AIT.
A negative value indicates that the time point of detection lies before the ESO, a positive
value represents a detection of the algorithm after the ESO. For BESA it is known that the
algorithm in an online setting, needs ten seconds of seizure before it gives an alarm. The
green vertical line at ten seconds illustrates these ten seconds.

0.007). As discussed, the estimated delay from the nurses walking to the room and the BESA
delay in online use is visualized by vertical lines in the figure. Taking the ten second delay in
consideration results in a slightly better possible improvement for AIT (p = 0.57).

4.3.4 Subgroup analysis

EEG and clinical characteristics of seizures detected by BESA and AIT were examined. Figure
4.6 shows the results of the subgroup analysis based on clinical and EEG characteristics.
It can be noticed that for the subtle seizures in the EEG, BESA and AIT present lower
sensitivity values than for clear and very clear seizure patterns. For 7 out of 205 seizures, no
electrographic patterns were observed. None of these seizures were detected by BESA or
AIT.

Further, the response time for the different subroups based on the EEG and clinical character-
istics was calculated. There was no significant difference between the subgroups regarding
the response time. Figure 9.2 in supplementary materials shows the boxplots of the response
time of the subgroups.

4.4 Discussion

In this part of the project the commercially available seizure detection algorithms by BESA
and AIT were investigated in an offline setting with help of EEG recordings. The results of
both BESA and AIT show improvements in more detected seizures as well as improvement
in response time. It is observed that AIT is able to detect more seizures than BESA does.
It can be concluded that for the detected seizures, BESA is able to detect them before AIT
does in the offline setting. When translating the offline results to an online setting with the
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Fig. 4.4: The detection of Besa and AIT in the subgroups based on the nurse response. Additionally, it
shows the amount of seizures that were both detected by Besa as well as by AIT.

Fig. 4.5: The detection improvement with respect to the nurse response. On the x-axis at zero, the
nurses enter the room. bar graphs to the left side show an improvement, and to the right
show a detection after the moment the nurse entered the room. The vertical lines show time
boundaries to take into account. A delay time of 5 seconds (red) is taken into account for the
nurses to walk from the observation room to the room of the patient. Additionally, for BESA
a time period of 10 seconds (green) is taken into account, as for online use, the algorithm
needs ten seconds of seizure data before it results in an alarm.
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Fig. 4.6: The distribution of detected and not detected seizures for the four subgroups based on
previously scored maximum values of the clinical (top) and EEG characteristics (bottom).
The results of BESA are shown left, and of AIT right. Seizures where already medical staff
was present in the room were not taken into account.

known delay of ten seconds for the algorithm of BESA, the results change to a slightly better
performance of the AIT algorithm.

Comparing our AIT results with those reported by Fürbass et al. [16], we observe comparable
sensitivity results. They showed a sensitivity of 72% on their entire data set, compared
to a sensitivity of 76.1% that was obtained in this study. Fürbass et al. showed a gradual
decrease in detection sensitivity when seizure certainty, as oberved by experts, decreased.
This decrease in sensitivity is also observed in our data when the seizures are scored as more
subtle (Figure 4.6). It seems however, that our sensitivity results for the subtle seizures are
lower then the results of Fürbass et al. Nevertheless, a true comparison is difficult due to
different seizure categories.

Recent work by Hopfengärtner et al. [27] reported detection sensitivity results considerably
higher than the sensitivity values found in this current study. They reached a sensitivity
of 87.3% on their data, whereas the results on our data show a sensitivity of 63.9%. This
difference might be explained by different inclusion criteria. Where our study included
all kinds of epileptic seizures, Hopfengärtner et al. only included presurgical patients and
only seizures with evident clinical symptoms. The definition of evident clinical symptoms
remains unknown. Furthermore, they excluded seizures without visually recognizable
seizure patterns in the EEG.

Because detection performance was studied in an offline setting, the real improvement in
an online situation could be discussed. The articles of Shin et al. [55] and Atkinson et
al. [5] both show that even though they are alarmed by the automatic seizure detection
methods, medical staff does not always respond to these seizure alarms. Therefore, it could
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be questioned if the possible added seizure detections by both AIT and BESA, would result
in nurse responses.

Further, regarding the response time, the translation to online use might change the results.
In the offline results of this study, it was observed that BESA showed better results in response
time than AIT. However, when we took the translation to the online setting for BESA into
account, this difference altered. Further, we do not know on forehand, what consequences
the online use includes precisely and how this influences the results.

During routine EEG analysis and documentation, only sections of interest in the EEG are
selected to store. The various lengths of data prior to the seizure might have influenced the
performance of the algorithms. During verbal communication, both BESA and AIT stated
that the algorithms perform slightly more sensitive with a shorter amount of data prior to
the seizure. Both algorithms need a baseline measure to compare EEG sections with previous
EEG sections. AIT stated that the algorithm needed approximately 30 minutes of EEG data
before the actual seizure started to perform best. In our data set, this amount of pre-seizure
data was available for only 20 seizures (see supplementary materials, Figure 9.1). Therefore,
it could be expected that the true sensitivity performance of BESA and AIT is slightly lower.

This study only inspected the sensitivity and latency, while the specificity is also a very
important performance feature to take into account. Several studies mentioned that most
seizure detection methods are not yet implemented due to the high false positive rate. Based
on interviews and questionnaires on the EMU at SEIN, our nursing staff regards a false
positive rate of approximately 0.5 per hour as acceptable. It could be questioned how
the real acceptance is when algorithms are implemented. We believe that focusing on the
improvement of the current performance is most important. This might include another
kind of output to make the automatic detection method more applicable to an online EMU
setting.

4.5 Conclusion
In this part of the project the performance of BESA and AIT are investigated. Regarding
the sensitivity, AIT performs considerably better than BESA. Also when investigating the
improvement to the current situation AIT seems to show a greater gain of detected seizures
that were not recognized by the nurses.

When looking at the response time, BESA seem to show better results in the offline setting
with respect to AIT. However, when translating this difference to an online setting this
difference might shift towards an equal response time. With these results it cannot be
concluded that BESA will perform better when investigating the response time. When
investigating the response time we do see an improvement in time with respect to the nurse
response. Also when translating this improvement in response time to an online setting it is
expected they still benefit from an automatic detection method.

In conclusion, this study proves that improvements in response rate and response time could
be possible by implementing BESA or AIT. Still, research in an online setting should be
performed to study the real benefit from a automatic seizure detection algorithm.
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5Information about the selected
features

5.1 Introduction
Beside commercially available software, also several other seizure detection algorithms were
created and published in literature. Literature is filled with seizure detection possibilities.
In order to make a promising algorithm features that can discriminate very good between
non-seizure and seizure activity are needed. In our project we investigated a selection of
promising features stated in literature.

For this study the following features were selected:

1. Line length
2. Power of the Daubechies 4 wavelet transform

a) Power D3; 16 - 32 Hz
b) Power D4; 8 - 16 Hz
c) Power A4; 0 - 8 Hz

3. Mean cross correlation
4. Sample entropy
5. Fast weighted horizontal visibility

a) Mean degree
b) Mean strength

In this Chapter the selected features are described in more detail. In the next Chapter (Chap-
ter 6) the study of the performance of these features on our EEG recordings is presented.

5.2 Line length
The first selected feature is line length. Line length is calculated by taking the absolute
difference between the amplitudes of every successive point in time. This results in the
calculation of the vertical distance between samples.

Translating this to the EEG, when a seizure occurs, changes in frequency and amplitude are
expected. Line length is sensitive to these changes, and therefore probably able to detect the
seizures.

Several studies mentioned line length as a promising feature for seizure detection [52, 12,
24, 32, 38]. In a review by Logesparan et al. [38] it was concluded that out of the 65
discussed features, line length and relative power in the 12.5 − 25Hz wavelet coefficient
band were the best performing features. Beside performance in discriminating between
epileptic and normal background EEG, they also took the complexity of the feature into
account to study the applicability for online use. Since relative power is more complex to
compute, line length might be preferable for online use. Logesparan et al. mentioned a
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sensitivity of 85.4% and specificity of 52.1% for the line length feature. Mainly the sensitivity
value seems promising. These results were based on 172 hours EEG data of 24 adults and
47 seizures.

In 2015, Logesparan et al. [39] discussed five normalization techniques for the line length
feature and concluded that median decaying memory was the best approach. This normaliza-
tion corrects for amplitude variations over time and variations between people. This method
normalizes the value of line length by relating the considered line length value to the median
value of line length calculated in previous EEG sections. In this study the feature line length
is computed with the normalization technique median decaying memory according to the
studies of Logesparan [39, 38].

Because subtle seizures do not stand out for their amplitude increase, it is hypothesized that
line length will not be efficient for those seizures. Nevertheless, because of the promising
expectations from literature, we implement it to see the performance on our seizure data.

Calculation EEG sections of one second with zero overlap were used. The feature was
calculated for every electrode. This results in a new value per electrode for line length every
second.

Per EEG section (k) we calculate line length (LL) with the following Equation;

LL(k) =
N∑

n=2
|y(n− 1)− y(n)| (5.1)

Where y is the raw EEG signal, n the sample index, and N the total number of samples of
each EEG section.

After calculation of the line length value, normalization is carried out by the median decaying
memory method. The normalized value of line length is calculated with the following
equations;

Normalized LL(k) = LL(k)
z(k)

Where z is;

z(k) = (1− λ)median{LL(k − 1) · · ·LL(k − 118)}+ λz(k − 1)

Where λ = 0.99 and the initial conditions of z(1) = 0 and Normalized LL(1) = 0 are used.
For the first 118 epochs the median is calculated on all available epochs and with a λ of
0.92.

5.3 Power of the Daubechies 4 wavelet transform
The second feature is the power based on the Daubechies 4 (Db4) wavelet transform of the
EEG signal.

Wavelet transform is a decomposition technique that is able to analyze signals at different
frequency scales. Other than the Fourier transform that uses sine waves, it uses short mini
waves. In this way the wavelet transform overcomes the time/frequency resolution problem
of the Fourier transform. The wavelet transform is able to localize both in frequency and
time. There are many possible shapes of these mini waves; Db4 is one of them (see Figure
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Fig. 5.1: The mother wavelet Daubechies 4 (Db4)

5.1). Once the wavelet is fixed, one can form dilations of the so called mother wavelet to
focus on certain frequency bands. For high frequencies a compressed wavelet can be used
and for low frequencies the wavelet is stretched out.

For the discrete wavelet transform (DWT) always the factor two is used to decompose
the signal, both in time and frequency, whereas for the continuous wavelet transform
(CWT) the parameters change smoothly. The CWT results in a higher resolution, but is also
computational more complex.

In this study the DWT is used with the Db4 mother wavelet. The dilation of the DWT can be
illustrated as a tree of filters (see Figure 5.3). In the first step the signal is decomposed into
a component with lower frequencies(approximation coefficient), and a component including
the high frequencies(detail coefficient). In the next levels, the approximation coefficients
are further decomposed into next level of approximation and detail coefficients. In every
level the time resolution and the frequency span is halved. An example of a decomposed
signal is shown in Figure 5.2

In the review article of Faust et al. [13] the authors discussed wavelet-based EEG seizure
detection algorithms. They state that wavelet based algorithms can capture subtle changes
in the EEG signal very accurate. A wavelet is able to make minute changes clear, that are
difficult to spot with the naked eye. The study of Faust showed that the Daubechies 4 (db4)
wavelet is most commonly used and has the highest classification accuracy. Beside Faust et
al. there are several more studies that looked in more detail to wavelets and especially to
Db4 wavelets [34, 51, 60, 3, 4, 38]. Several articles based on the Db4 wavelet, claim to
obtain accuracy values between 80% and 100%. Most results are based on publicly available
data sets, or obtained with a small data set.

After wavelet transformation there are several features that can be computed with the
transform coefficients. Several features are mentioned in literature, like for example energy
and line length. We chose one features to calculate, namely the power over the decomposed
signals that is used in several articles [38, 13, 4, 60]. Logesparan et al. [38] concluded
that despite the relatively more complex method, the best performing feature of their study
is the relative power in the 12.5-25 Hz band of the wavelet decomposition coefficient.
With a sample frequency of 200 Hz, they decompose the signal with the db4 wavelet. The
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Fig. 5.2: An example of a decomposed signal by discrete wavelet transform. The top graph shows
the original signal and the other graphs show decomposed versions of this signal. It can be
observed that the signal frequency bands and time resolution change.
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Fig. 5.3: The DWT decomposition of the signal in different frequency bands. Every step it produces
an approximation(A) and a detail(D) information signal. With every step the frequency span
and time resolution is halved.
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detail coefficient values of level 3, spans the frequency band of 12.5-25 Hz. Logesparan et
al. related the power values to a background power with using median decaying memory
method.

Calculation EEG sections of one second with zero overlap were used. The feature was
calculated for every electrode. This means that for every electrode every second a new value
for power is calculated.

We will use three different scales to calculate the wavelet transform on.

• Detail 3: 16 - 32 Hz
• Detail 4: 8 - 16 Hz
• Approximation 4: 0 - 8 Hz

These bands are based on a sample frequency of 256 Hz. These frequency bands differ
slightly from the 12.5-25 Hz band used by Logesparan et al.

We decomposed these EEG sections with the wavelet Db4 and calculated for the decomposi-
tion level 3, and 4, the power over the detail coefficients. This is calculated following the
next equation as is written in the article of Logesparan et al. [38];

Power(k) = median{DW 2}

Where DW are respectively the D3, D4, and A4 coefficients. After calculation of the power,
normalization is carried out by the method median decaying memory. This method is
calculated with the following equations;

Normalized Power(k) = Power(k)/z(k)

Where z is;

z(k) = (1− λ)median{Power(k − 1) · · ·Power(k − 120)}+ λz(k − 1)

Where λ = 0.99923 and the initial conditions of z(1) = 0 and NormalizedPower(1) = 0.
For the first 120 epochs the Normalized Power is calculated on all available epochs and with
a λ of 0.92

5.4 Mean cross correlation
Thirdly, the feature mean cross correlation (MCC) was selected. Cross correlation measures
the similarity between two signals. MCC detects crosstalk between all electrodes. It measures
the spread of the synchronicity of the electrode signals. During a seizure it is observed that
the EEG shows synchronicity, therefore it is expected that MCC is able to detect seizures.

In 2008 Meier et al. [40] published a study that derived seven features for quantifying a
seizure. In this study they analyzed the feature performance on different seizure types, like
polyspikes, theta rhytm, delta rhythm, etcetera. Their results show that MCC achieved the
best results of all studied features in discriminating between seizure en non-seizure epochs.
In this study the MCC is calculated by only using the cross correlation between channels
without shifting the signals in time. In 2011, Iscan et al. [28] proposes a seizure detection
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algorithm that uses cross correlation. They obtained a 100% accuracy, whereas other feature
studies obtained values of accuracy lower than 100% on the same data set. The study of
Iscan et al. used a slightly different way of calculating the cross correlation with respect to
the study of Meier et al.. Beside these two studies, there are more studies that conclude
that cross correlation is a promising feature [62, 61, 29]. Nonetheless, not all articles about
seizure detection show that MCC is applicable for seizure detection [19, 35, 30].

Calculation EEG sections of one second with an overlap of 50% were used. This means
every half second a new value for mean cross correlation is calculated. Mean cross correlation
is calculated with the following equation;

mean CC = 2
Nch(Nch − 1)

∑
i 6=j

yiyj , (5.2)

where Nch is the number of channels, and i and j are the channel indices. yi and yj are the
channel signals. In the calculation of the cross correlation between two signals, only the
unshifted cross correlation is calculated.

5.5 Sample entropy

The next selected feature is Sample Entropy. Entropy is a nonlinear measure, that catches
the degree of chaos in a system. An unpredictable signal results in high entropy values.
The other way around, an ordered predictable signal will produce low entropy values. For
instance, when flipping a coin, the outcome of head or tail is equal, and therefore very
unpredictable, resulting in a high entropy. On the contrary, when you have a coin with two
similar sides, the outcome, is very predictable and therefore the entropy of the outcome of
that coin is very low.

Translating entropy to the EEG signal, in a normal healthy EEG, the signal is chaotic and
random. During a seizure the signal becomes more organized and predictable. Therefore, it
is hypothesized that the value of entropy drops during an epileptic seizure.

Several studies mention entropy as a possibly promising feature for seizure detection [58,
59, 31, 1, 14]. In 2012 Song et al. [58, 59] published a study about the use of sample
entropy in a seizure detection algorithm. With the proposed algorithm they conclude that
they can reach accuracy values of 99%. Additionally they state that the computation is fast
and therefore applicable for online use. They obtained their results on a publicly available
data set.

The study of Jouny et al. [31] investigated several features that address the classification
of the onset of partial seizures. They selected several complexity measures to study this
classification. Their results show that, among others, sample entropy was reliable to assess
early seizure onset. This study used intracranial EEG recordings to obtain these results.

Acharya et al. [1] review several entropy measures. They conclude that Renyi’s entropy,
sample entropy, spectral entropy and permutation entropy are four features that are highly
discriminative to distinguish between seizure and background EEG sections.

In this study we selected sample entropy to calculate.
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Calculation We use 1 second EEG sections with zero overlap. The feature was calculated for
every electrode. This results in a new value per electrode of sample entropy every second.

Step 1 First, the embedding dimension (m), and the comparison distance (r) should be
specified. In this study we choose a embedding dimension of 2, and a comparison distance
of 0.2 times the standard deviation of the considered EEG section, just as in the study of
Song et al [58, 59] and Acharya et al. [1].

Step 2 Given N data points from a time series (x), the data is converted to vectors, defined
as Xm(i) = [x(1), x(i+ 1), ..., x(i+m− 1)], for 1 ≤ i ≤ N −m+ 1. These vectors comprise
m consecutive x values, starting at the ith sample.

Step 3 The distance between vectors Xm(i) and Xm(j) is calculated. The distance is defined
as the maximum absolute difference between their scalar components:

d[Xm(i), Xm(j)] = maxk=0,...,m−1(|x(i+ k)− x(j + k)|)

Step 4 For every Xm(i), the number of j (1 ≤ j ≤ N −m, j 6= i), such that the calculated
distance is equal or smaller than r. This number per Xm(i) is represented as Bi. Then, for
1 ≤ i ≤ N −m,

Bm
i = 1

N −m− 1Bi

Only the first N −m vectors of length m are considered, to ensure that for the next step also
the vector Xm+1(i) also exists.

Step 5 Bm is defined as

Bm = 1
N −m

N−m∑
i=1

Bm
i (r)

Step 6 Next, the embedding dimension is set to m+ 1 and calculations of step 2 till 5 are
executed again, resulting in an Am.

Bm and Am represent the probability that two sequences will match for respectivelym and
m+ 1 points.

Step 7 Finally, Sample entropy is calculated

Sample entropy(m, r) = ln[B
m(r)

Am(r) ] (5.3)

Example Let X = (1, 3, 6, 2, 5, 8, 1, 4). This time series includes 8 values (N = 8).

For this example M = 2, and R = 3. This results in
X2(1) = (1, 3)
X2(2) = (3, 6)
X2(3) = (6, 2)
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Fig. 5.4: The left bar graph shows the example data. The middle graph shows the network with
corresponding degree values. The right graph shows the weight of the different connections.

X2(4) = (2, 5)
...

X2(7) = (1, 4)

Next, The amount of sequences, similar to the considered sequence, are summed. A sequence
is defined as similar when each element of the compared sequences differ not more than
R = 3. For instance, X2(3) is not similar to X2(1) because the first element in these two
sequences differs by more than 3. The conditions of similarity to X2(1) are satisfied by
X2(2), X2(4), and X2(7). Because only the first 6 (N −m = 6) elements are considered,
X2(7) is excluded. This results in B1 value of 2, which results in a Bm

i of 2
8−2−1 = 2

5 .

This can be calculated for the first 6 vectors inX2, resulting in a vector of B2
i = [2/5, 3/5, 1/5,

3/5, 2/5, 1/5]. This results in a Bm = 1
6 ∗ 12/5 = 2/5. After the calculation of B2, we

increment m to 3, and make the same calculations,

X3(1) = (1, 3, 6)
X3(2) = (3, 6, 2)
X3(3) = (6, 2, 5)
X3(4) = (2, 5, 8)
...

X3(6) = (8, 1, 4)

Here, for instance, only X3(4) matches the criteria of similarity to X3(1). With these vectors,
A2

i becomes [1/5, 1/5, 1/5, 1/5, 1/5, 1/5]. This results in A2 = 1/5.

For this example the sample entropy results in ln( 2/5
1/5 ) = ln(2).

5.6 Fast weighted horizontal visibility
At last, a feature called Fast Weighted Horizontal Visibility (FWHV) was selected. The
horizontal visibility graph, introduced by Lucasa et al. [36] is a way of converting the data
in time series to a network. They consider the time series data as a landscape, that connects
every point in time with all points that can be seen from the top of the considered one.

In 2014 Zhu et al. [69] published an article where they introduce the horizontal visibility
algorithm in order to detect seizures. It was suggested as a feature applicable for online use,
as it is computational fast and robust. Furthermore, the results of this study show a 100%
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classification accuracy for identifying healthy from ictal EEG. They used a publicly available
data set to acquire these performance results.

There are two features that are calculated in the article of Zhu et al. based on the horizontal
visibility graph, namely mean degree, and mean strength. Mean degree only inspects the
amount of connections, and mean strength also includes the difference in amplitude and
distance of the connections.

Calculation EEG sections of 8 seconds with an overlap of 50% were used. The feature was
calculated for every electrode. This results in a new value per electrode for mean degree
and mean strength every 4 seconds.

A horizontal visibility graph converts the data of time series to a network. It connects each
time point (xi) with another time point (xj) when; xk < xi ∧ xk < xj∀k ∈ ∧i < j. This
results in a network with nodes that are connected with each other (see figure 5.4). The
amount of nodes are equal to the amount of time points.

Mean degree Per node a degree (di) can be calculated. The degree is defined as the
amount of connections a node creates with other nodes. Per EEG section the mean degree
(d̄) can be calculated by the following equation, where N is the amount of nodes in the EEG
section.

d̄ = 1
N

N∑
i=1

di (5.4)

Mean strength For the calculation of the mean strength, first the weight of each connection
should be calculated. The weight of each connection is defined as |(xi − xj)(i − j)| + 1.
In this calculation the distance of the connection and the amplitude of the nodes is taken
into account. Next the strength (si) per node is calculated by summing the weights of all
connections of the considered node. At last, the mean strength s̄ is calculated with the
following equation, where N is the amount of nodes in the EEG section.

s̄ = 1
N

N∑
i=1

si (5.5)

Example Let X = (1, 5, 4, 2, 1, 6, 5, 8), see figure 5.4. The first node is associated with the
first value of X. As defined for the first value of X, the amount of connections is one. For
this data, the degree sequence is (1,3,3,3,2,6,2,2). Consider the connection of node 1 to
node 2, the weight of this connection is |(1 − 5)(1 − 2)| + 1 = 5. Calculating the strength
sequence results in (5,12,12,14,8,34,6,9). For this example the mean degree of 22/8 = 2.75,
and a mean strength of 100/8 = 12.5.
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6Sensitivity performance on
detecting seizures of a selection
of promising features

6.1 Introduction
Beside the commercially available algorithms, a lot other seizure detection algorithms were
created and published in literature. In order to make a promising algorithm features that
can discriminate between non-seizure and seizure activity are essential. Literature is filled
with features that could help to detect seizures. In this study we investigated a selection of
these promising features on the in this project obtained EEG recordings.

Promising features might be able to help nurses to respond to seizures more accurately.
This study evaluates whether the selected features are indeed helpful to assist the nurses.
This could for example be a contribution and improvement to the commercially available
algorithms or resulting in another kind of output that could help the nurses, like a seizure
probability value or a trend display of certain features.

Additionally, some articles claim to obtain very high accuracy values with their chosen
features, higher values than validation studies of commercially available software have
reached. It is of interest to inspect how the stated performance of the promising features
in certain articles relate to the performance on our data set. Most literature results are
obtained on publicly available EEG recordings or on a small amount of specific EEG data.
With the aim of implementing these features in an online setting, it is essential to observe
the performance on a more realistic data set. We believe that our data set is realistic, as it is
a random selection of all kind of epileptic seizures, recorded in a year time on the EMU at
SEIN.

Investigating promising features results in a better exploration of what could be expected at
SEIN when implementing such features. In this chapter the sensitivity performance of the
features on our previously obtained data (see Chapter 2) is inspected. The aim of this study
is to investigate whether the chosen features show a change in case of a seizure. A change
would indicate that this feature might help to distinguish between seizure and normal EEG.
Furthermore, it is of interest to observe whether the feature responded to those seizures,
where either the nurses did not respond, or where BESA and/or AIT were not able to detect
those seizures.

6.2 Methods
To study whether the features could be of added value to help the nurses respond more
accurately to seizures, the feature data, calculated on several EEG recordings, was analyzed.
To inspect whether the features change during a seizure, we compared a pre-seizure section
with a seizure section of feature data.
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6.2.1 Data selection

In order to make a good comparison between a pre-seizure section and a seizure section,
a selection of the 205 EEG recordings was used based on the duration of data available
prior to the seizure. At SEIN, in the clinical setting only the important parts of the EEG
recordings are stored. Consequently, for some EEG recordings only a little amount of data is
available prior to the seizure. This could results in a very short pre-seizure section. Moreover,
the features line length and power of the wavelet transform use a normalization technique
that needs time to build up a baseline. Therefore, EEG recordings containing less than 200
seconds of data prior to the first sign of the seizure (ESO or CSO) were excluded. Moreover,
EEG recordings without an ictal EEG pattern (without ESO and ESE) were excluded, because
the seizure section was based on the ESO and ESE.

6.2.2 Data pre-processing

Of the selected EEG recordings the data of the electrodes of the international 10-20 system
were included. This results in the inclusion of the Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3,
Cz, C4, T8, P7, P3, Pz, P4, P8, O1, and O2. The common average montage was used; the
average of all electrodes is used as the reference input for each electrode.

6.2.3 Features

For the selection of promising features, we used the following criteria. We preferred features
that were stated as computational fast enough to be implemented in an online system.
Further, features that aimed to detect seizures with the shortest possible delay were favored.
Lastly, features that were promising for more difficult seizure patterns were preferred.

Literature is filled with possible interesting features for online seizure detection. A fairly
arbitrary selection was made while keeping the criteria described above in mind. It was
attempted to get a range of features that address different kind of characteristics of the EEG
seizure patterns. Because of time constraints and reproducibility of certain features not all
promising features found in literature were used. It should be noted that the chosen features
represent a subset of a lot of promising features. Consequently, there might be missing some
very promising features in the subset used in this study.

We selected five categories of features;

1. Line length
2. Power of the Daubechies 4 wavelet transform

a) Power D3; 16 - 32 Hz
b) Power D4; 8 - 16 Hz
c) Power A4; 0 - 8 Hz

3. Mean cross correlation
4. Sample entropy
5. Fast weighted horizontal visibility

a) Mean degree
b) Mean strength

Detailed information about the features is described in Chapter 5.
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Fig. 6.1: The boundaries of the pre-seizure and seizure section. CSO = Clinical seizure onset, CSE =
Clinical seizure end, ESO = Electrographic seizure onset, ESE = Electrographic seizure end.

6.2.4 Pre-seizure versus seizure section

The pre-seizure and seizure sections were defined as illustrated in Figure 6.1. The pre-seizure
section was selected as the feature data from 150 seconds after the start of the EEG recording
till 10 seconds before the first sign of the seizure (ESO or CSO). For the seizure section, the
data between two seconds after the ESO and two seconds before the ESE was selected.

Difference between median values of pre-seizure and seizure section Per EEG recording,
per electrode, the pre-seizure feature data was compared to the feature data of the seizure
section. For this comparison, it was first tested whether the data was normally distributed.
Then, the feature values of the two sections were compared with statistical tests. Since most
data was not normally distributed, the Mann-Whitney U test was used. This test tests the
hypothesis that the data comes from distributions with the same median value.

For the electrodes that showed a significant difference, it was calculated whether the median
value of the seizure section was increased or decreased with respect to the median value of
the pre-seizure section.

Separability between pre-seizure and seizure section Of the electrodes that showed a
significant difference the size of the difference between the seizure median and the pre-
seizure median value was investigated. In this study this value will be defined as a measure
of separability of the two sections. We calculated the separability with help of the variation in
the pre-seizure section. This variation was defined as the difference between the pre-seizure
median value and 95th or 5th percentile. The difference between the median values was
expressed in amount of pre-seizure variation, see equation 6.1. In this way the outcome
results in a value of separability between the pre-seizure and seizure section. For electrodes
where the median value of the seizure was lower than the value of the pre-seizure section,
the 5th percentile score was used and for changes where the median value of the seizure is
higher than the value of the pre-seizure section, the 95th percentile was used.

Separability = Median(Pre)−Median(Sei)
abs((p95/5 value−median(Pre))) (6.1)
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Fig. 6.2: The amount of available data prior to the first sign of the seizure (CSO or ESO) per EEG
recording is displayed. The horizontal line represents the 200 seconds of data availability
preceding the seizure. 74 seizures contained more than 200 seconds before the first start of
the seizure.

6.2.5 Subgroup analysis

AIT, BESA, and Nurse response Lastly, the performance of the features was inspected with
respect to the groups of seizures were either the nurses did not respond to, or the groups
were BESA or AIT was not able to detect the seizures. We inspected how many undetected
seizures had significant changes in the selected features.

EEG characteristics Furthermore, the previously scored EEG characteristics (see Chapter
2) were considered, to observe the feature changes per EEG characteristics group. The
separability values were calculated per subgroup according to Equation 6.1.

6.3 Results

6.3.1 Data selection

Seizures that contained less than 200 seconds of EEG data prior to the first sign of the seizure
were excluded. Figure 6.2 shows the amount of available data per EEG recording preceding
the seizure. Of the 205 EEG recordings, 131 seizures were excluded for this study based
on data availability prior to the seizure. Out of the remaining 74 seizures, one seizure was
excluded, since it did not contain ictal EEG patterns. This resulted in 73 selected seizures for
this study. It was inspected whether there was a bias in the selection of these seizures. We
compared the included and excluded group in terms of distribution of seizure length and
EEG characteristics. The selected seizures showed significantly longer seizures (p=0.01).
For the EEG characteristics there was no significant difference between the two groups.
Figure 9.4 and 9.3 in the supplementary materials illustrate the differences in length and
EEG characteristics for the included and excluded recordings.
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Tab. 6.1: Results of significant feature changes

Line Wavelet MCC Sample FWHV
length D3 D4 A4 Entropy Degree Strength

Amount of seizures (%)
>1 significant electrodes 100 100 100 100 97.3 100 97.3 97.3

Increase 97.3 94.5 97.3 97.3 91.8 69.9 74.0 89.0
Decrease 26.0 34.2 21.9 19.2 5.5 83.6 49.3 86.3

>5 significant electrodes 98.6 100 98.6 91.8 - 98.6 86.3 91.8
Increase 93.1 93.1 89.0 82.2 - 46.6 54.8 64.4
Decrease 9.6 11.0 8.2 5.5 - 54.8 28.8 41.1

>10 significant electrodes 95.9 93.1 91.8 83.6 - 90.4 60.3 68.5
Increase 84.9 82.2 80.8 76.7 - 31.5 35.6 20.5
Decrease 4.1 5.5 5.5 5.5 - 45.2 17.8 9.6

MCC = mean cross correlation, FWHV = fast weighted horizontal visibility

6.3.2 Features

Figure 6.3 shows an example of all features of seizure 12 of the T7 electrode. Additionally, it
shows an example of two corresponding boxplots displaying a significant difference between
the pre-seizure and seizure feature data.

Per feature per electrode it was calculated whether the feature data of the pre-seizure section
was statistically different in terms of median values to data of the seizure section. Figure
6.4 illustrates how many electrode channels per feature showed a significant difference
between the pre-seizure and seizure sections. Since the feature mean cross correlation is not
calculated per electrode, only one value is shown per seizure. Additionally, the figure shows
the distribution of median increases and decreases among the significant channels. Table 6.1
shows the results of the features on seizure level. It shows for how many seizures more than
one, more than 5, and more than 10 electrodes responded to the seizure.

For the features line length, the power in the wavelets, and the MCC we mainly observed an
increase of the median value in case of a seizure. For the sample entropy, and the strength
and degree of the FWHV, there is more spread between the increase or decrease of the
median values. Further, it is noted that the sample entropy and FWHV show less significant
responses with respect to the other features.

Separability For every electrode channel with a significant feature change the separability
value is calculated according to Equation 6.1. Figure 6.5 shows the results of these sepa-
rability values. This figure illustrates that for line length, the power over the wavelets and
the MCC the majority of changes shows a clearly separable increase of the median value
with respect to the pre-seizure section. For the features sample entropy, FWHV degree and
strength, there is more spread in the decrease and increase of the feature data.

Lastly, all the feature data of the electrodes with a significant change were plotted in time.
Figure 6.6 shows the significant data in time, the data with an increased median value
is separated from the data with a decreased median value. It shows that for the features
line length and the power over the wavelets the increase data dominates. For the MCC the
signal shows outliers, which results in less clear observable changes. For the FWHV degree,
strength, and sample entropy clearly two signals are shown, one signal with an increase of
the median value, and one with a decrease of the median value.
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Fig. 6.3: An example of the features of the T7 electrode of seizure number 12 are displayed. The red
vertical lines represent the boundaries of the electrographic seizure (ESO and ESE), and the
yellow lines represent the boundaries of the clinical seizure (CSO and CSE). The green lines
represent the pre-seizure section. The boxplots represent the feature data of the pre-seizure
data and the seizure data.
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Fig. 6.4: Per feature the amount of channels that showed a significant difference between the pre-
seizure feature data and the feature data of the seizure section is displayed. Note that for
the mean cross correlation there is no value per electrode, but only one outcome per feature.
Therefore, this feature shows either a difference, or no difference at all.

Fig. 6.5: The differences between the medians of the pre-seizure section and seizure section of the
electrodes were there was a significant change are displayed. The difference is expressed
with respect to the variation of the pre-seizure section. For the values of line length and the
power over all wavelets, the outliers (up to 150) are not all shown in this graph.
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Fig. 6.6: The summed data of the the significant electrodes in time is shown. The red graphs show
the significant data with an increase in median value and the green graphs the significant
data with a decrease in median value. The vertical line represents the ESO. The graphs show
the median value with the 25% and 75% intervals.
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6.3.3 AIT, BESA, nurse response

Of the 73 selected seizures, BESA was able to detect 46 (63.0%) seizures, AIT was able
to detect 55 (75.3%) seizures, for 50 (68.5) seizures the nurses responded, and for 6
seizures already medical staff was present. Table 9.1 in the supplementary materials shows
the amount of electrodes per seizure that showed a significant response in the features of
respectively the not detected groups of AIT, BESA, and the nurses. For all features significant
changes are observed for the majority of the seizures. The features line length, power over
the wavelet coefficients and the MCC seems to perform best based on significant observed
differences.

For 5 seizures, nor BESA, nor AIT, nor the nurses noticed the seizures. In all of the five
seizures, several features showed significant responses. Only for one seizure the FWHV
based features did not show changes. Three of these five seizures did not obtain a EEG
characteristic score higher than two, the other two seizures no higher score than 3 (How the
scoring was executed see Chapter 2). Four of the five seizures were relatively short (range
8-30 seconds), the other recording showed a seizure of approximately 50 seconds of very
subtle activity in only a very small selection of electrodes. Two of the five seizures showed
some muscle artefacts. Figure 6.7 shows an example of a seizure that was not detected by
any modality (BESA, AIT and/or nurses) but showed some significant results, as shown in
the figure.

6.3.4 EEG characteristics

Lastly, differences in median values between the subgroups based on the EEG characteristics
were investigated. Of the 73 seizures, 3 were scored as very subtle( 1), 24 subtle (2), 26 as
clear (3), and 14 as very clear (4). The 6 remaining seizures were not scored, since already
medical staff was present in the room. Figure 6.8 shows the results of all the features and
their different subgroups. For the features line length, sample entropy, and the power of the
wavelet coefficients it is observed that for the very subtle (1) and very clear (4) seizures these
features show better results in median difference than for the averaged EEG characteristics
score of 2 and 3 (p < 0.05). Further, for line length and the power of the wavelet coefficients
there is a gradual increase from the subtle group (2) to the very clear (4) seizures.

6.4 Discussion

In this study the sensitivity of a selection of promising features was studied on EMU EEG
recordings. For the majority of seizures the features showed significant changes. The features
line length and power of the wavelet coefficients produced significant changes in the most
seizures with the most electrodes. For respectively 84.9% and 82.2% of seizures line length
and the power of wavelet produced a significant increase in more than 10 electrodes. When
observing the separability in the feature signal, also these two seizures showed the most
difference between the pre-seizure and seizure feature data.

Furthermore, it was shown that for the seizures that BESA, AIT, and/or the nurses missed,
the features line length, power over the wavelets, MCC, and also sample entropy showed
convincing results in terms of amount of significant changes. Therefore, these features
could be of added value. Further, in the subgroup analysis based on the different EEG
characteristic groups, it was shown that not only to the very clear but also to the subtle
seizures the features responded.
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Fig. 6.7: The feature and EEG data of seizure 36 are shown. This seizure was not detected by the
nurses, BESA, and AIT. The green lines represent the pre-seizure section, the red lines the
electrographic seizure (ESO and ESE) and the yellow lines the clinical seizure (CSO and
CSE). On top a part of the EEG recording in the pre-seizure section and in seizure section are
illustrated.
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Fig. 6.8: For each feature the boxplot of the median differences calculated using equation 6.1 are
shown. Only the differences of significant channels are shown. On the x-axis the different
EEG characteristics groups are displayed from very subtle (1), to subtle(2), to clear(3), to
very clear(4) EEG seizure pattern. The first group contains 3 seizures, the second 24, the
third 26, and the fourth group 14 seizures.

We should be aware that for the feature line length also the false positive rate is very
important, as this feature responds to amplitude and frequency changes. Artefacts normally
are also depicted with major amplitudes. Logesparan et al. [38] obtained a specificity of
52.1% in their study, which might be not very user-friendly in online use. Nevertheless, in
combination with other features, line length might be of good use to help the nurses on the
EMU.

In the results it was shown that the changes in MCC were promising based on amount of
significant changes, but due to the amount of variation in the signal, it might be difficult
to really distinguish seizure from pre-seizure data. Furthermore, also this feature is very
sensitive to amplitude changes. Still, we believe that a measure for electrode cross-talk could
be very beneficial for seizure detection use, but whether mean cross correlation is the best
option could be questioned. In literature also people question mean cross correlation and
also other possible measures for crosstalk are suggested [68, 53, 41, 65].

The features of power based on the wavelet coefficients showed very promising results, both
in amount of significant channels and in the size of the difference. Because the wavelet
coefficients focus on a certain frequency band it is expected that the feature suffers less from
artefacts, which is a positive aspect of this features category.

For the feature sample entropy sometimes the signal showed a promising increase instead of
the expected drop of entropy. This might be explained by the amount of artefacts during the
seizure. With these artefacts, the signal might become more chaotic. If artefact rejection is
introduced, these results are expected to change [14].

Our results for the features based on the FWHV showed much less promising results than
the 100% accuracy that was mentioned in the article of Zhu et al. [69]. In this case the used
recordings might play a role or the classification method mentioned in the article Zhu et
al. published. In our study we did obtain several significant changes, but less impressive
compared to the other features.
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For the subgroup analysis based on the EEG characeristics, the results show limitations, as
only the first 60 seconds are taken into account for the EEG characteristics. For some subtle
seizures the electrographic patterns might have evolved in very clear seizures.

In this project raw EEG was used without any artefact rejection. This might have influenced
our results. Some features might have performed better with artefact rejection. However,
other features might have performed poorer.

6.5 Conclusion
The features studied in this study are capable in showing changes when a seizure occurs
in at least some electrode channels. Line length and the power of the wavelet coefficients
showed the most promising results. Furthermore, we observed that for the missed seizures
by BESA, AIT, or the nurses, the features line length, the power of the wavelet coefficients,
MCC, and sample entropy might be of added value. The variation in the MCC feature might
make this feature less applicable in the EMU setting.

Definitely, more research is needed to conclude whether the features really could contribute
to BESA or AIT, or that the feature could be of direct use in the EMU at SEIN. The latency
values of the feature changes is essential for the online setting. Furthermore, the amount of
false positive alarms that might occur by implementing features, is also an important aspect
to study.

Regarding the results the feature line length, the power over the wavelet coefficients, and
sample entropy showed the best results and therefore it is advised to study these features
more intensively.
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7Discussion

This project addressed the seizure nurse response on the EMU at SEIN and possible improve-
ment possibilities with help of automatic seizure detection methods based on the EEG. This
chapter presents some discussion points to take into account for an implementation tool to
help the nurses on the EMU respond more accurately to seizures.

Artefacts The scalp EEG is often contaminated with artefacts. These artefacts can arise from
various sources, like the patient themselves, caused by amongst others muscle contractions,
eye blinking, or movements. For the field of automatic seizure detection this is a challenge,
since it could cause false positive detections on the one hand and on the other hand, seizure
activity often is obscured by these artefacts. In this project, when studying the features, these
artefacts might have influenced the outcome. Features might have responded to artefacts, or
features did not perform as expected because of the artefacts.

Inter-patient variability Another obstacle for automatic seizure detection methods is the
inter-patient variability. A seizure pattern for the one patient, does not always resemble ictal
activity of another patient. For one specific patient, an algorithms can be tweaked to perform
very good, but for the next patient it could perform poorly. This is a difficult problem. There
are many patient specific algorithms published that use for example pattern recognition.
These methods however always need a certain amount of seizures to learn, before they
perform good. This is an attractive method for monitoring purposes over a long period of
time. Though, on the EMU this approach is not preferred due to the fact that we want to
detect the first seizure as well, as it might be the only seizure that occurs during the EEG
recording.

False positives In many articles the false positive rate is mentioned as major reason why all
the possible seizure detection methods are not yet implemented. It is expected that nurses
with a high false positive rate, will ignore the alarm. On the EMU we should be aware
that the false positive rates mentioned in literature have to be multiplied by eight, since we
can monitor eight patients simultaneously. Based on interviews and questionnaires on the
EMU at SEIN, our nursing staff regards a false positive rate of approximately 0.5 per hour
as acceptable. It could be questioned how the acceptance is when a online tool really is
implemented.

Sensitivity At SEIN also a significant part of the EEG recordings contain seizures without
epileptic origin. Nurses need to response to these seizures as well. The sensitivity that is
mentioned in literature could therefore in the clinical setting be experienced lower. For
seizure detection on recordings of patients with PNES, it is expected to result in no alarms,
since the EEG does not show epileptic patterns during the PNES seizure. This decreased
sensitivity could harm the user-friendliness of the automatic seizure detection method.

ECG Several studies have documented changes in the ECG during a seizure [11, 64, 37,
46]. Zijlmans et al. [70] published an article in which they researched heart rate changes
and ECG abnormalities during epileptic seizures. They showed an increase in heart rate
of more than 10 beats per minute in the majority of seizures. Furthermore, they showed
that a noticeable part of the seizures, the ECG changes preceded both electrographic and
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clinical onset. In some seizures they observed that where the seizure activity could not be
registered in the EEG signal, the ECG could helped to notice the seizure. In the EMU the ECG
is recorded with two supraclavicular electrodes. Using the ECG signal might be a promising
addition to a seizure detection method.

Output In almost all seizure detection articles an algorithm was created that in the end
results in an alarm in case of a seizure. We believe it should be questioned whether that is the
best output method on the EMU at SEIN. The on/off sound alarm and false positives might
be not accepted by the nurses in the EMU. We expect that another output might be more
applicable and user-friendly. For example Persyst already published a seizure probability
value. This value changes over time. Another possibility is a feature or combination of
features that is displayed over time. One could see it as a simplified version of the EEG that
can grab the nurses’ attention when the signal changes. We believe that with such an output
the false positives will be more accepted by the nurses.
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8Conclusion

In this project we studied the seizure nurse response on the EMU and possible improvements
with help of commercially available software or features.

With a nurse response of 67% we conclude that improvements in responding more accurately
to seizures is possible. Improving this increases the quality of the EMU diagnostics and safety.
We observed that sounds accompanying seizures helped to alert the nurses. Further, it was
noticed that to some seizures with clear EEG patterns no nurse response was observed. It is
noticed in literature that automatic seizure detection methods perform better on clear EEG
patterns. This suggests that by adding a tool that detects seizures in the EEG could improve
the nurse response.

For the study where BESA and AIT were investigated, we conclude that AIT was able to
detect the most seizures. For the improvement in response time in the offline analysis BESA
performed better than AIT. Nevertheless, when taking the ten seconds delay of BESA into
account, AIT performed better. For the real online improvement more research is needed.

From the feature analysis we concluded that the power of the wavelet coefficients and
line length showed the most promising results. Moreover, in seizures that were missed by
BESA, AIT, and the nurses, these features did show changes when the seizure occurred. This
suggests that the features power of the wavelet coefficients and line length could be of added
value to the nurse response. Nevertheless, more research needs to be carried out, to study
other aspects like false positive rates and latency.

Lastly, we believe that another kind of output, other than an alarm, should be considered. It
is expected that an on/off audio alarm is not user-friendly on the EMU. A trend display or
seizure probability value could be more efficient and applicable on the EMU. Additionally,
also the ECG information should be considered, since it could contain information about
seizure occurrence, even when the EEG does not show changes. Furthermore, the EEG
sometimes seems to precede clinical and electrographic changes.
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9Recommendations

AIT We advise to consider AIT as a possible partner in constructing a seizure detection tool
specifically for SEIN. AIT showed promising results in our project. Thereby, AIT is a research
institute and therefore it is expected that they, more than other commercially companies,
might be open for such a project.

A technical physician could be a great partner in this project, since he/she can build the
bridge between the programmers of AIT and the clinical setting at SEIN.

Output It is advised to study the possibility of showing a trend display over time of certain
features. One could see this as a simplified version of the EEG, a version of the EEG that
nurses could analyse very easily. For example when line length is used and the value
increases, the attention of the nurses should be grabbed. This could be done with a trend
display in combination of color changes on the screen.

Additionally, for safety reasons it is advised to combine such a trend display with a more
specific seizure detection alarm, to make sure that major seizures are never missed.

ECG We advise to study the ECG signal in more detail in order to implement it in a system
to help the nurses respond to seizures. The signal could be of great added value to the
EEG.

Innovation We believe that SEIN as a specialized expertise centre should stand out for their
high tech innovations. Investing in innovating projects and implementations in the clinical
setting helps the expertise centre to increase the quality and deliver clinical care that cannot
be achieved at the hospitals. The modern EMU is a perfect place to let those innovations
take place.

We believe that SEIN could benefit in many ways from these improvements. Clinical care,
quality improvements, other hospital’s interest, patient’s interest, published articles, and
thereby blooming of the whole centre.
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Fig. 9.1: This figure shows the amount of seconds available before ESO (Electrographic seizure onset)
per seizure. The data is sorted based on the amount of data available prior to ESO. 20
seizures contain more than 30 minutes of data preceding the ESO and 76 seizures have less
than one minute of data available before the start in the EEG. The horizontal lines represent
60 seconds and 30 minutes.

Fig. 9.2: This figure shows a boxplot of the response time of the different groups of BESA and AIT.
For the very subtle (clinical characteristics = 1) of AIT there seems to be more improvement
than to the clinically more clear seizures. This difference however, calculated with the Mann
Whitney U test, resulted in a p-value of 0.32.
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Fig. 9.3: This figure shows the difference in EEG characteristics between the included and excluded
seizures. There was no significant difference between the two groups. Left the group with
EEG recordings that included less than 200 seconds prior to seizure, right the seizures with
more than 200 seconds preceding the first sign of the seizure.

Fig. 9.4: This figure shows the difference in EEG seizure length (ESE - ESO) between the included
and excluded seizures. The included group showed significant longer seizures compared to
the excluded group. Left the group with EEG recordings that included less than 200 seconds
prior to seizure, right the seizures with more than 200 seconds preceding the first sign of the
seizure.
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Tab. 9.1: Results of significant feature changes for the undetected group of AIT, BESA and the nurses.

AIT (n = 18) Line Wavelet MCC Sample FWHV
length D3 D4 A4 Entropy Degree Strength

Amount of seizures (%)
>1 significant electrodes 100 100 100 100 100 100 88.9 88.9

Increase 94.4 88.9 94.4 100 88.9 88.9 72.2 77.8
Decrease 5.6 11.1 5.6 0 11.1 11.1 16.7 11.1

>5 significant electrodes 100 100 94.4 88.9 - 94.4 77.8 72.2
Increase 88.9 83.3 72.2 66.7 - 61.1 50 50
Decrease 11.1 16.7 22.2 22.2 - 27.8 27.8 22.2

>10 significant electrodes 94.4 77.8 83.3 72.2 - 88.9 50 27.8
Increase 77.8 66.7 55.6 55.6 - 50 33.3 5.6
Decrease 16.7 11.1 27.8 16.7 - 38.9 16.7 22.2

BESA (n=27) Line Wavelet MCC Sample FWHV
length D3 D4 A4 Entropy Degree Strength

Amount of seizures (%)
>1 significant electrodes 100 100 100 100 96.3 100 92.6 92.6

Increase 96.3 92.6 96.3 92.6 85.2 81.5 74.1 81.5
Decrease 3.7 7.4 3.7 7.4 11.1 18.5 18.5 11.1

>5 significant electrodes 96.3 100 96.3 81.5 - 96.3 74.1 77.8
Increase 88.9 88.9 81.5 63.0 - 59.3 48.1 55.6
Decrease 7.4 11.1 11.1 18.5 - 37.0 25.9 22.2

>10 significant electrodes 92.6 85.2 77.8 70.4 - 85.2 51.8 44.4
Increase 77.8 66.7 59.3 51.8 - 48.1 29.6 7.4
Decrease 14.8 18.5 18.5 18.5 - 37.0 14.8 37.0

Nurse (n=17) Line Wavelet MCC Sample FWHV
length D3 D4 A4 Entropy Degree Strength

Amount of seizures (%)
>1 significant electrodes 100 100 100 100 94.1 100 94.1 94.1

Increase 100 94.1 94.1 88.2 88.2 76.5 64.7 88.2
Decrease 0 5.9 5.9 11.8 5.9 23.5 29.4 5.9

>5 significant electrodes 100 100 100 94.1 - 94.1 64.7 82.3
Increase 94.1 88.2 94.1 64.7 - 41.2 35.3 52.9
Decrease 5.9 11.8 5.9 29.4 - 52.9 29.4 29.4

>10 significant electrodes 94.1 88.2 88.2 76.5 - 82.3 41.2 64.7
Increase 88.2 82.3 64.7 52.9 - 41.2 17.6 11.8
Decrease 5.9 5.9 23.5 23.5 - 41.2 23.5 52.9

MCC = mean cross correlation, FWHV = fast weighted horizontal visibility
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