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Abstract

With the increasing complexity of circuits and decreasing feature sizes, it is becoming
extremely difficult to manufacture fault-free circuits. Also, with the decreasing feature
size comes a higher susceptibility to environmental factors like radiation. These fac-
tors get compounded in a space context, where circuits are expected to have longer
lifetimes and also be resistant to higher concentration of radiation from the free space.
As a result, a lot of research has been conducted towards increasing the reliability and
fault-tolerance of chips, in order to increase their lifetimes and resilience against errors.
Processing requirements in space are also increasing, and many core processing is being
introduced for space applications to address this trend. The huge amount of inter-core
communication in these many core architectures necessitates networks-on-chip as the
interconnect of choice. Network-on-Chips (NoCs) due to their complex nature are more
susceptible to faults and failures. These two aspects necessitate the need for thorough
investigation of the effects of faults in a space NoC context, in order to develop methods
for detection and mitigation of the faults in the space environment .

In this context, a simulator for injecting different kinds of faults in a NoC has been
developed. A SystemC based cycle-accurate simulator for NoCs called the NoC Explorer
is already developed at Recore Systems. It has been extended with a fault injection
framework that can inject transient as well as permanent faults at different locations of
the NoC. A fault can be injected into six different components in or around each router
of the NoC. The faults injected can be transient or permanent, the probability of which
can be individually set by the user. The flits affected by the faults can be analyzed with
the output files generated by the framework, which gives a great insight on how different
faults can directly or indirectly affect the operation of a NoC in different conditions.
In addition to this, Python scripts have also been developed, for generation of different
statistics for the end user.

The fault injection framework has been subjected to detailed tests which show how
different faults can affect the performance and reliability of the NoC. It has also been
compared with two scientific papers in order to ascertain its validity against established
frameworks. It shows similar results as the papers being compared to, with differences
caused due to different architecture of the NoC. The performance of the framework has
been profiled and compared with the original NoC Explorer in order to determine the
overhead.
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Chapter 1.

Introduction

Reliability is a significant issue with all electronics systems, susceptible to aging and
other transient effects [2]. With the advent of the nanoscale era, manufacturing reliable,
completely fault-free, chips is becoming increasingly difficult and costly. As the technol-
ogy scales, process variability leads to variability in transistor performance, making them
gradually less reliable [3]. Rising complexity of circuits compounds the matter. This
issue in reliability is not only restricted to manufacturing-time failures but also includes
run-time soft errors and errors due to aging, the possibility of which also increases with
technology scaling. The International Technology Roadmap for Semiconductors (ITRS)
[4] identifies a long-term requirement for system-level reliability techniques for unreliable
devices. All of these have led to significant research on designing fault-tolerant circuits
with different methodologies.

The reliability problem is exacerbated in the space context[1] where both the aging
and transient effects are more important. On the one hand circuits deployed in space
need to be reliably functional for long periods of time in unmanned space locations,
and on the other hand radiation effects from various phenomena like solar flares, cosmic
rays, van Allen belts, etc. increase in space due to the absence of atmospheric protection.
Hence there is a huge requirement for building reliable circuits for space. Traditionally
reliability in space applications has been achieved by either of two methods. One is
simply by using an older technology which is more resistant to radiation and aging.
The other is by manufacturing circuits using radiation hardening processes, where the
manufacturing process is modified in order to reduce the consequences of radiation.
However the first method leads to more area and power requirements, and the second
method is significantly cost intensive. Hence there is an interest in using software and
digital logic solutions in current technology to enable reliable space applications.

1.1. Motivation

Space applications in the current era require huge processing power. Hence there is a
move towards systems with more cores for processing, the so-called many-core Systems-
on-a-Chip. In these systems there are lots of processing elements which communicate
between each other. For the communication between these elements, various interconnect
architectures like simple bus, hierarchical bus, ring based bus, etc. have been in use [5].
However as the number of cores increases, traditional bus based architectures face lots of
problems like bus contention, increasing arbitration complexity and delay, higher power
usage [6, 7] which can be overcome with a NoC solution. Due to its flexible, computer
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network like architecture, a NoC can support concurrent communication between pairs
of nodes in the network and adapt to changing data transmission requirements. Hence
SoCs for space are moving towards NoC interconnects.

A NoC constitutes the most area-intensive and complex subsystem in a many core
architecture [8], and considering the high data throughput over long, high-capacity wires,
it will lead to large heat dissipation. This accelerates the aging process of the circuit.
This coupled with higher susceptibility to radiation and crosstalk effects imply a higher
need for fault tolerant methods for NoCs. In order to effectively develop and evaluate
methods for fault detection and mitigation in NoCs, as a first step, the effects of faults
in the physical world on the functioning of a NoC need to be simulated and studied
thoroughly. This can be done by developing a framework for fault simulation in a NoC,
which can then be used to study the effects of faults in the NoC for different NoC
application traffic and fault conditions. This can provide an understanding of which
components of a NoC are more susceptible to errors due to faults, and thus are to be
focused on more in regards to fault mitigation strategies. The simulation framework
can later be used to test and evaluate the effectiveness of various fault detection and
mitigation techniques.

1.2. Contribution

A SystemC based cycle-accurate simulator for NoCs has been developed at Recore Sys-
tem, called the NoC Explorer [9]. In this thesis, an extension for the NoC Explorer is
proposed which adds fault injection capabilities. A flexible fault injection framework
is proposed, with user-definable parameters, for the insertion of faults into the NoC.
Also written in SystemC and integrated into the NoC Explorer framework with suit-
able modifications, it supports fault insertion into various components of the NoC and
generates information about faults generated and NoC traffic affected by faults. Using
Python scripts, this information is aggregated and converted into useful statistics and
information for the end user.

A thorough analysis of the fault injection framework in action has been presented,
with explanations of how a fault affects the NoC traffic directly as well as indirectly. A
comparison of the fault injection framework with other methods used in the scientific
community has been done, in order to compare and validate the functioning of the
framework. Finally, the code has been profiled in terms of performance and compared
with the performance profile of the original NoC Explorer, in order to quantify the
performance overhead of adding the fault injection framework.

1.3. Outline

Chapter 2 gives an overview of the function and architecture of NoCs. Chapter 3 serves
as an introduction to modeling and injection of faults in digital systems and discusses the
reasons for the methods chosen for the present research. Then we move on to simulation
of NoCs in general, and the specific details of the NoC Explorer, in Chapter 4.
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Chapter 5 discusses how faults can be injected inside a NoC and gives specific details of
the fault injection framework developed for the NoC Explorer. The next chapter focuses
on simulation results for the fault injection framework and involves detailed testing of
fault effects, comparison with scientific literature and performance profiling. Finally the
last chapter concludes the thesis and discusses possible work for the future.
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Chapter 2.

Networks on Chip: An Overview

In this chapter a general overview of NoCs is presented. First the need for NoCs in a
modern many core architecture context is discussed and then the architecture of a generic
NoC is touched upon. Next, the motivation for abstracting the NoC in terms of the
Open Systems Interconnect (OSI) reference layers is explained. Finally NoC topologies,
routing algorithms and flow control are discussed, ending with an explanation of the
architecture of a router and network interface.

2.1. Bus Architectures and the Need for NoC

Inside a chip, the processing elements need to communicate with each other for comple-
tion of the tasks as dictated by the application. As more and more processing elements
are packed into a chip, there is a greater need for efficient on-chip communication.

Traditionally on-chip communication in SoCs was based on point-to-point links and
various interconnect architectures like simple bus, ring based bus, etc. [5]. As the number
of cores and processing elements grew, problems started coming up with these intercon-
nect architectures. With a high node count, point-to-point architectures, in which every
node needs to be individually connected to the required nodes, become exceedingly com-
plex and consume lots of power. In case of buses, the complexity is less of an issue, but
the higher communication bandwidth requirement by multiple elements leads to bus
contention, communication bottlenecks, arbitration issues and higher power usage [6, 7].
Hence bus architectures are not scalable for large, many-core systems.

Even though there is a large communication requirement between nodes in a many-
core architecture, not all nodes need to be connected to every other node at any single
point in time. Communication needs between nodes change throughout the application
lifetime and at each point a node needs to be connected to a few nodes. There is thus a
need for a “shared, segmented global communication structure [6]”, where each node can
be connected to any node at will. This matches well with a data-networking architec-
ture where individual data packets are routed between nodes as per the communication
requirement. This idea has given rise to the notion of NoCs for many-core systems.

2.2. Introduction to NoCs

A NoC is an on-chip network based interconnect for multi- and many-core SoCs. It can be
circuit-switched or packet-switched. In most cases however, it is packet-switched, where
data is routed from source to destination in divisions of packets, and this is what will be
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considered in the present work. The conversion of raw data from the processing nodes
to packetized data is also handled by the NoC, making the communication transparent
to the processing nodes. The main components of a NoC fabric are links, routers and
network interfaces.

Links They are the physical connection between routers, connected according to a
specific topology. They also connect the routers to the network interfaces. They can
consist of one or more virtual or physical channels [6].

Routers They are responsible for routing the data from source to destination nodes
according to the specific routing protocol.

Network Interface (NI) It is the interface through which the processing core connects
to the router. It handles conversion of data from the core into packets and vice versa,
essentially making communication transparent to the processing core.

The architecture of a router and an NI depends on some design criteria selected for
a specific NoC, the concepts of which will be discussed in the following sections. After
that, the architecture of the router and NI for our case will be discussed.

2.3. The OSI Model for NoC

Due to its architectural similarity with a computer data network, it has been considered
that a NoC can be abstracted in terms of the Open Systems Interconnect (OSI) reference
model [6]. For our purposes of the NoC the most pertinent layers are data link layer,
network layer and transport layer. The layer below the data link layer, the physical
layer is dependent on physical design of the circuit and is not concerned with the digital
design of the NoC. The higher layers are related to the software and middleware and
hence not concerned with the NoC, with the assumption that the transport layer will
provide reliable communication to the higher layers [8].

Data link layer is responsible for the reliable transmission and flow control of data
packets/flits through links [8]. In other words, it is responsible for the communication
between pairs of routers, through the links. It consists of links, buffers and associated
control signals and logic. The data link layer protocols work to improve reliability of the
link, considering the physical layer to be not sufficiently reliable [10].

Network layer is responsible for the switching and routing of packets from the source
to destination. The router at each node of the NoC is responsible for forwarding the
packets to the next correct router.
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Transport layer is responsible for the end-to-end transmission of packets from source
to destination nodes. This includes the whole path from a source network interface,
through the different links in the path, to the destination network interface.

2.4. Topologies

The NoC topology decides how the different nodes are physically connected to each
other. It provides multiple paths for the movement of packets from source to destina-
tion, in order to make the traffic uniform across the NoC. How the routing of packets
takes place (i.e. the routing algorithm) is dependent on the topology selected. Different
topologies exist suitable for different applications, like mesh, spidergon, ring, butterfly
etc. They affect the network latency, throughput and power consumption. Hence a
suitable topology must be carefully selected for the required application.

An informative way of expressing regular networking topologies is the k-ary n-cube,
n being the number of dimensions and k being the number of nodes in each of these
dimensions [11, 12]. The number of nodes in a k-ary n-cube is given by [12]:

N = kn

In this present work we focus solely on two dimensional (2D) network topologies. Some
of them are discussed below.

2D Mesh This is a k-ary 2-cube network, with bidirectional links, and is the topology
of choice for many NoCs. The nodes are arranged in a linear, equispaced array of two
dimensions. Each node is connected to its 4 immediate neighbors except the edge nodes,
which are disconnected in one or two directions.

Torus This is also a k-ary 2-cube network, with unidirectional links. They are arranged
similar to a mesh, except that the each edge node is connected to the opposite edge node,
making the topology edge-symmetric. This property helps in balancing traffic load across
the network and reduces the maximum number of hops by half, compared to mesh [9].
However due to the edge links, there are longer and more irregular delays in the network
[6].

Folded Torus This is similar to the torus topology, except that a folding of the nodes
is employed to make the delays shorter and more uniform. Still, torus has longer delays
than Mesh and hence is not preferred [6].

Ring A ring is like a torus, with k-ary 1-cubes. This is a simple topology in terms of
routing. However it is not scalable since delays increase with increase of nodes.

Spidergon This has an even number of nodes, connected to neighbors, and also pairs
of nodes are connected in cross connection. A Spidergon topology performs better than
a Mesh under certain conditions [9].
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Fat tree It is a k-ary n-tree topology. It provides performance scalability (> 64 cores)
at the cost of higher power and area overheads [9].

(a) 2D Mesh (b) Torus (c) Folded Torus

(d) Ring (e) Spidergon (f) Fat tree

Figure 2.1.: Network on Chip Topologies

The aforementioned topologies have been shown in Figure 2.1. For the purpose of
the present research, the topology chosen should be simple and efficient, for a moderate
number of cores. Fat tree, with its high power and area costs, is not feasible for the
moderate number of cores in the system. Spidergon has better performance than Mesh
in some cases, but has more complexity and unequal lines. This makes routing algorithms
more complicated and the latencies less predictable. This is not favorable for the design
of fault tolerant algorithms. Mesh, in contrast, is simpler, with uniform latencies. Hence
we would concentrate on Mesh topology for our research.

2.5. Routing

This section concerns with the path along which a packet is transferred from source to
destination nodes across the network. Hence it works on the network layer. A routing
algorithm is designed considering lowest latency and highest throughput for the system
and application at hand [9].

2.5.1. Issues with Routing

Before a discussion on the various aspects and algorithms connected to routing in NoCs
it is beneficial to state the problems that can occur specifically due to the routing phase
from source to destination nodes:

8 CONFIDENTIAL



Deadlock Deadlock refers to a cyclic dependency among nodes requiring access to
common resources, due to which the packets in different nodes cannot make progress
[13]. While certain routing algorithms are immune to deadlocks, they can be prevented
by the use of virtual channels, among other techniques.

Livelock In this case packets travel around the network without ever reaching the
intended destination node [13].

Starvation Starvation refers to the phenomenon when a packet in a Virtual Channel
(VC) buffer cannot get access to an output channel in the network, or when a packet
is not allowed to be injected into the network from an input buffer in a network inter-
face. This happens when the output/input channel is always blocked by higher priority
packets.

2.5.2. Routing Mode

This refers to the way packets are passed from one router to another inside the NoC.
Alternatively called packet forwarding strategy, this is usually not dependent on the type
of routing algorithm. The different routing modes are presented below:

Store-and-Forward Routing In this case each packet moves as a whole from one router
to the other. The entire packet is stored in the router memory before it is forwarded
according to information contained in its header. Hence each buffer memory location
must be as big as the largest possible packet according to the system design.

Wormhole Routing In this type of routing packets are divided into smaller units called
flits (flow control units) which then “worm” through the network. The first flit, called
the header flit contains the address information, and on the basis of this information
its next hop is determined and is immediately forwarded. The rest of the flits called
payload flits and tail flit follow the same path. Thus in a way this type of routing is a
combination of packet switching with the data streaming quality of circuit switching [6].
This leads to less latencies. However a stalled packet can cause all the links in the path
to be occupied, which leads to more deadlocks. The main advantages are lower buffer
memory requirement and lower latencies.

Virtual Cut Through Routing This has elements from both store-and-forward and
wormhole routing. Like wormhole routing the router starts forwarding the packet to
the next router even before the whole packet has been received by it. However it only
does so if the next router has enough buffer space to receive the whole packet. Thus it
prevents node unavailability due to packet stalling like in case of wormhole but also has
lower latencies than store-and-forward routing.
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2.5.3. Routing Algorithms

Routing algorithms can broadly be divided in one way into deterministic, oblivious,
stochastic and adaptive [14]. This section concentrates on routing algorithms which are
either valid for all topologies or relevant to the mesh topology.

Deterministic They have specific, pre-determined paths for each source-destination
node pairs. They don’t change unless the network topology is changed. In congestion
free networks they have low latency.

Oblivious These algorithms do not take into account network conditions like traffic
patterns, congestion, etc. They base their routing decisions on the basis of some fixed
logic.

Stochastic As the name suggests, these algorithms make use of stochastic processes
to send packets. Multiple packets are sent out with random trajectories under the
assumption that at least one will reach the intended destination. They are simple and
inherently fault tolerant. However they lead to high network bandwidth usage.

Adaptive Adaptive routing algorithms intelligently adapt the routing paths to account
for changing network traffic conditions. However they are complex and take more re-
sources to implement.

The different algorithms are summarized in a Tables 2.1 and 2.2, including information
from [14]. Keeping in view the requirement for a logically simple routing algorithm, we
are using XY Routing for our present work, which is explained below.

2.5.3.1. XY Routing

XY routing is a dimension-ordered, deterministic routing algorithm, which means that
it routes at one direction at a time. Specifically, in XY routing, the packet is routed first
through the X direction, and then through the Y direction, to reach its destination.

(a) All Turns (b) XY Turns

Figure 2.2.: Turns in a Mesh or Torus

The XY is a simple routing algorithm which is also deadlock free. This can be ex-
plained by the turns model. When all turns are enabled, then packets are allowed to
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move in any direction, as shown in Figure 2.2a. A deadlock occurs if a packet moves
in a cyclic manner [15]. In XY routing this is preventing by forbidding two of the four
turns, as shown in Figure 2.2b.

Table 2.1.: Oblivious, Deterministic and Stochastic Routing Algorithms

Algorithm Type Outline
Avoids
Deadlock

Avoids
Livelock

Dimension order Deterministic,
oblivious

Routing in one dimen-
sion at a time

3 3

XY Routing first in X, then
Y dimension

3 3

Across first/last Route across the link
first/last

7 3

Turn model Few turns forbidden Depends 3

Source Deterministic Complete route is deter-
mined by sender

3 3

ALOAS Variant of source rout-
ing

3 3

Topology adaptive Re-programmable rout-
ing table, offline adap-
tive

3 3

Destination tag Routers determine the
route

3 3

Valiant’s Random Stochastic Partly stochastic 3 3

Probabilistic flood Flooding neighboring
nodes with probability

7 7

Random walk Multiple random paths 7 7

2.6. Flow Control

Flow control concerns with how data flow is controlled from one router to another.
Specifically, flow control determines how network resources like buffers are allocated to
the different flits/packets and how competition of packets/flits for the same resources is
resolved [16]. This is needed since the sending router (also known as upstream router)
should only send the data when the receiving router (also known as downstream router)
is capable of receiving it. Flow control operates at the data link layer.

Some of the common flow control mechanisms are:

Credit based flow control In this method, an upstream router keeps track of available
buffer slots for packets/flits in the form of a counter. As packets/flits are sent, the
counter is decreased. It increases when the downstream router signals that the data has
been forwarded.
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Table 2.2.: Adaptive Algorithms

Algorithm Outline
Avoids
Deadlock

Avoids
Livelock

Minimal adaptive Shortest path routing 3 3

Fully adaptive Congestion avoidance 3 3

Congestion lookahead Congestion avoidance 3 3

Pseudo adaptive XY Partly adaptive XY 3 3

Surrounding XY Partly adaptive XY 3 3

Turnaround or Turnback Routing in butterfly and tree
networks

3 3

Turn back when possible Routing in tree networks 3 3

IVAL Improved turnaround routing 3 3

2TURN Slightly deterministic 3 3

Q Statistics based routing 7 7

Odd even Turn model 3 7

Hot potato Routing without buffers 7 7

Handshake This is a simple mechanism where upstream router first asserts a VALID
signal after putting up valid data. The downstream router signals when it has received
the correct data by asserting another VALID signal.

ACK/NACK This is similar to Handshake based flow control. However a copy of data
is kept in the sending router buffer until it receives the ACK signal from the receiving
router. If the receivers detects the data to be incorrect or there is a timeout, it sends a
NACK. If NACK is received the data is re-transmitted.

Besides this another concept that needs to be considered is virtual channel.

2.6.1. Virtual Channels

A VC is a logically separate channel by which a single physical channel can be shared by
multiple flits/packets. This is specifically designed for wormhole type of routing and was
first proposed by Dally [16]. Generally 2 to 16 VCs per physical channel are considered
for NoCs [6].

At the heart of the VC concept are separate buffers for a single physical channel,
corresponding to the separate VCs, along with the associated routing logic. Effectively,
VCs allow a single physical link to be multiplexed, so that multiple packets can be
transmitted during the same time frame, in a time-shared manner.

As a packet passes through a router, the VC used by all its flits must be fixed for the
current router. When the packet passes to the next router in its path, the VC used by
its flits could be different from the one used in the previous router, or the same. This is
decided by the VC Selection Policy of the NoC, which could be either of the following:
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Network Interface The VC to be used is fixed at the source by the Master NI.

Dynamic The VC to be used is selected dynamically for each router, usually using a
round robin or priority based selection policy.

The main advantages of Virtual Channel based flow control are:

Deadlock avoidance Mutual independence from one VC to another means that multi-
ple packets can be in the process of transmission in the same physical channel, avoiding
deadlock cases.

Performance improvement With multiple VCs, network performance is improved in
high load scenarios by preventing stalls.

Support for differentiated services VCs can be used to provide support for different
Quality of Service (QoS) for different channels. So data from higher priority VCs can
overtake the data from lower priority ones.

The disadvantages of VCs are a higher power and area overhead due to control logic
and duplication of buffers for each VC, and also latency overhead.

2.7. The Recore NoC

Recore has a packet-based NoC already developed for its multi core processing frame-
work, which is planned to be extended with fault tolerance capabilities. Hence the
present research will focus on simulating fault injection on a similar NoC. The main
specifications of the Recore NoC pertaining to the present discussion are presented be-
low:

• Packet based

• Wormhole based XY routing

• 4 service levels

• Credit based flow control

The service levels referred above are QoS levels, with level 0 being the highest priority
and lowest latency, and vice versa for level 3. Hence, a packet with an assigned QoS
level of 0 will be sent first through a link if it has a resource conflict with a packet with
a lower priority level.

The service levels are implemented in the NoC as VCs with the VC being used by a
packet fixed at the source NI.
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2.8. Representative NoC Architecture

In this section, the architecture of a router and the network interface, two of the primary
components of a NoC, is explained. The architecture of routers could vary, depending
on the required routing algorithm, flow control, etc. Hence a generic router which closely
resembles the Recore NoC is detailed here.

2.8.1. Router

The routers are the main components in a NoC which are responsible for sending the
packets along the correct links in order to reach the destination. The schematic of a
generic router with credit based VC flow control is shown in Figure 2.3. The major
components of the router are the VC buffers, Routing Computation Unit (RCU) , VC
allocator, switch allocator and the crossbar. A thing to be noted is that although this
router has been shown to have VC buffers only at the input side, some router designs
have output VC buffers too, after the crossbar stage.

The routing steps undertaken by a generic router are as follows:

Routing Computation (RC) Based on the header flit information and the routing logic
selected, the RCU finds the output port to send the flits of the packet to.

VC Allocation (VA) The VC allocator checks the credits of the input VCs of the next
target router and, based on availability, assigns a VC to the current packet.

Switch Allocation (SA) The switch allocator selects which input port of the router
should be connected to which output port via the crossbar

Crossbar The crossbar then writes the flit to the correct output port.

These routing steps are usually pipelined, with each routing step corresponding to a
pipeline stage. More efficient router designs sometimes combine one or more routing
steps into a single pipeline stage, in order to reduce routing latency.

2.8.2. Network Interface

The Network Interface (NI) is the component which is responsible for communication
between the processing core and the router in the NoC. It makes the communication
between the two transparent. In other words the NI decouples the processing core from
the NoC, facilitating the independent design of the two. The NI thus works at the
Network Layer.

In terms of function, it can be divided into two components, as shown in Figure 2.4.
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Figure 2.3.: Schematic of a router with n I/O ports and k input VCs

Master NI Master NI is the entity that initiates data transfer operations on the NoC.
It receives raw data from the processing core, packetizes it and sends it into the NoC.
It is responsible for taking data and the address from the core, dividing it into suitable
packets and flits, according to the network protocol, and sending it into the router.

Slave NI It receives flits from the network, correctly assembles them into packets,
depacketizes them into raw data. and then sends the raw data into the core.

To the router, the network interface is like any other router on a link. Hence on the
NoC side it handles flow control and also simulates buffering and VCs.
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Figure 2.4.: Network Interface
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Chapter 3.

Faults in Digital Systems

Before delving into how faults are modeled and simulated in the context of a NoC a
discussion on the types of faults and how faults occur in nature should be looked into.
Faults in digital systems can either be physical/hardware faults or faults in the software
[17]. The present work focuses on the reliability evaluation techniques for a NoC and
so the treatment is restricted to hardware faults. This chapter first discusses the broad
classes of faults that can occur in a digital circuit and how they are actually manifested
physically. Then the modeling of faults is discussed, and the concept of hierarchical fault
modeling is introduced, which is of importance in developing fault injection methods for
NoCs. Finally, different ways in which faults can be artificially injected into a system,
in order to study their behavior, are discussed.

3.1. Fault Classes

Among the different ways to classify hardware faults in a digital system, a prevalent way
is to classify them based on frequency of occurrence, into transient, intermittent and
permanent faults [18].

Transient Faults These faults happen randomly, usually in response to phenomena like
external radiation, crosstalk between wires, etc. The rate of occurrence of these faults
remains constant on average during the lifetime of a chip. The errors that result from
transient faults are known as transient errors, or alternatively, soft errors.

Intermittent Faults They are very similar to transient faults when a single fault oc-
currence is viewed separately. However, according to [18] the distinguishing criteria are
repetitive occurrence in a single location, a tendency to occur in bursts and the problem
being solved when the “offending circuit” is replaced.

Permanent Faults These faults, when they manifest, remain for the rest of the lifetime
of the system. They can be logic faults, where a certain signal is permanently stuck at a
high or low value, or delay faults, where there is a delay problem (setup/hold violations)
which causes incorrect behavior. It should be noted that in some cases errors might
occur only for certain data patterns. In these cases, the fault is still considered as a
permanent fault, which is masked in certain cases. For example, if a signal is stuck-at-0
and the intended signal value is also 0, then the fault is masked and would be manifested
only when intended signal value is 1.
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3.2. Fault Generation Mechanisms

MOSFET-based circuits, which are the most prevalent type of circuits currently in pro-
duction, can face erroneous behavior due to device physics and materials, mainly from
radiation, electromagnetic interference, electrostatic discharge and aging [8]. They cause
one or more of the classes of faults discussed in the previous section.

3.2.1. Radiation

System failure due to radiation is one of the biggest issues for electronics systems both for
space and ground applications [1]. The effect of radiation is greater in the space context
because of the lack of atmospheric protection. The sources of these are mainly radiation
from space as well as alpha particles that are generated from radioactive impurities inside
the devices and their packaging [8]. Atmospheric radiation sources could be from the
sun or from outside the solar system [19], which could be caused by solar flares [Figure
3.1], Coronal Mass Ejections (CMEs) [Figure 3.2], solar winds or galactic cosmic rays.

In terms of their effect on electronic circuits, these radiations cause one or more logic
values to invert in the circuit. When the bit flip occurs in a memory cell, it is called a
Single Event Upset (SEU), and when it causes an inversion of voltage levels in a wire or
logic gate, it is known as Single Event Transient (SET) [8]. These are both examples of
transient faults.

The probability of an SEU occurring depends on the critical charge needed for a bit
flip [8]. This required critical charge decreases with technology scaling, and hence SEU
probability increases with newer technology. In fact the Soft Error Rate (SER) due to
radiation increases by 8% per memory cell with every technology generation [20]. This,
coupled with the fact that more bits/memory cells are incorporated into a chip with
newer technology, means that the effect of radiation increases significantly with each
technology generation. The error rates in case of SET in wires and combinational logic
also grows at a similar rate [21, 22] but are masked since they only manifest when they
get latched at clock edges, resulting in lower effective error frequency.

Prolonged exposure to radiation over a course of years can also lead to permanent
faults in the circuits. The methods for handling these faults are different from those for
transient faults.

Figure 3.1.: Solar Flare [1] Figure 3.2.: Coronal Mass Ejection [1]
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3.2.2. Electromagnetic Interference

Electromagnetic interference is primarily caused due to crosstalk between long wires
[8]. As technology scales, wires become thinner and hence resistance becomes higher.
To counteract this, wires are made taller, resulting in higher coupling capacitance and
inductance between parallel wires. This leads to delays, glitches and damped voltage
variations [23]. Another problem is the Skin Effect [24] with wires carrying high fre-
quency signals which causes wire resistance to be frequency-dependent. This leads to
signal delays in turn being dependent on frequency [25].

3.2.3. Electrostatic Discharge

A sudden discharge of electricity through an electronic device can cause its breakdown [8].
This current can be flowing in through an input pin or be induced from external fields.
However in modern ICs protection from electrostatic discharge is usually incorporated
in the I/O pins and circuit.

3.2.4. Aging

Aging is one of the major causes of errors in electronic circuits which finally leads to
permanent faults. There are various aging-related effects which cause degradation of the
circuit over time:

Electromigration is the transport of metal atoms in wires induced by high current
density. It thus thins out the wear, causing even higher current density and hence
aggravating the process. Initially it causes increasing delay and eventually an open
circuit between previously connected wires or short between previously open wires [18].

Negative Bias Temperature Instability (NBTI) is the gradual increase of threshold
voltage of a MOSFET and the consequent decrease in drain current, due to the migration
of charge into the gate oxide. It is very sensitive to temperature increase but the effect
slows down with higher signal frequency [26].

Hot Carrier Injection has an effect similar to NBTI. In this phenomenon fast carri-
ers (electrons/holes) are injected from the conducting channel into the insulating gate
dielectric, made of Silicon Dioxide (SiO2). The threshold voltage increases and hence
degrades speed of operation [27].

3.3. Fault Modeling

For faults to be handled and corrected, they need to be modeled first. The set of all
modeled faults is known as the fault model, which models the effect (i.e. the error
generated), location, duration and other parameters of a fault occurrence. Depending
on the component of the digital system, faults are modeled in different ways and with
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different parameters, to closely model real world fault conditions. However, transient
and permanent faults are in general modeled with some basic characteristics which are
explained below:

3.3.1. Transient Fault Modeling

The basic units with which transient faults can be modeled are SETs and SEUs.

As discussed previously. an SET occurs when an energy pulse is issued from the
ionization of a component in an electronic circuit by radiation, leading to an inverted
logic transient [1]. An SEU occurs when radiation similarly affects a storage element
like a flip-flop, latch, SRAM cell, etc., leading to the error being present till a new value
is written into the storage element. An SEU can also occur by an SET being latched on
a clock edge into a storage element.

An SET can be modeled as a bit flip in a signal, and SEU as a bit flip in a register
or memory cell [28]. In the case of an SET being latched into a storage element, the
effects can be modeled by directly considering it as an SEU in most cases, since these
would be synchronous circuit elements. The parameters concerned with a transient fault
occurring in a particular component are the transient fault error rate or transient fault
probability, as well as the duration.

3.3.2. Permanent Fault Modeling

Permanent faults can occur in the form of logic faults and delay faults. How they are
modeled also depends on the component that is being modeled. Logic faults in memory
devices can be stuck-at faults, where certain bits in a memory cell are stuck at a high
or low value, respectively called a stuck-at-1 or stuck-at-0 fault. Faults in wires can be
broken wires, which can be modeled as stuck-at-0 faults at the inputs to components.
Wires can also be short-circuited to another wire, which is known as a bridging fault.
This is modeled by mirroring the signal in the faulty wire with that of another wire.
A special case of this is when the wire gets shorted to a power supply rail or a ground
plane, which can be modeled as stuck-at-1 and stuck-at-0 respectively.

Since permanent faults occur with lower probability than transient faults [29], a sep-
arate permanent fault probability value is usually used to model the frequency of occur-
rence of such faults.

3.3.3. Hierarchical Fault Modeling

Faults can be represented in layers, forming a multi-layer cause-effect relationship [8]. At
the lowest layer the faults of the physical devices like transistors or wires are modeled.
Higher layers successively model gates, modules, etc. At successively higher layers, lower
layer modules are represented as components. The higher layers make the fault model
more abstract and remote from the original physical fault causes. However this is helpful
for research purposes since working with the lower level physical fault models requires
higher time, complexity and computation cost.
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In later chapters where fault modeling of a NoC is considered, it will be seen that the
NoC faults can best be hierarchically modeled following the OSI layer model.

3.4. Fault Injection

Fault injection is the artificial insertion of faults into a system, in order to observe the
resulting behavior [17]. The effects of faults on system performance can be analyzed,
which is then used to evaluate a system’s resilience to faults and also to validate fault
detection and mitigation mechanisms.

Fault injection systems can be designed for both electronic hardware and software
systems to evaluate their respective fault resilience. There are various ways by which
faults can be injected, depending on the requirements. A classification of the broad
types have been given in Figure 3.3.

3.4.1. Hardware-based Fault Injection

Hardware-based fault injection involves directly exercising the system under considera-
tion with faults injected with the help of special test hardware [17]. Usually the faults
in this case are injected at the Integrated Circuit (IC) pin level, but some designs exist
where the faults are injected internally into the chip.

Advantages of this method are higher fault location coverage in some cases, real-time
and high resolution fault injection, leading to fast and accurate experiments. Finally,
the fault injection is done on real hardware and software and hence takes into account
the most realistic possible depiction of the system, without requiring any modeling or
validation.

However this method has its disadvantages. Externally forcing faults can cause damage
to the circuit. Location and types of faults that can be injected are limited, along with
low observability of the fault effects, due to the access to the system through external
pins only. Also, hardware-based injection requires specific hardware for each system to
be injected with faults, leading to low portability and high initial setup time and cost.

In the present work, we need high observability and control over fault injection, so
that effects of faults on individual flits/packets can be observed. Also, the objective is

Figure 3.3.: Fault Injection Techniques
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more of a design space exploration instead of benchmarking a fully developed system
against faults. Hence this method is not suitable for our case.

3.4.2. Software-based Fault Injection

This is a software-driven way of injecting faults into a complete hardware/software sys-
tem. The faults are injected to simulate faults occurring in the system and it can be used
to inject various kinds of faults, from memory faults to network errors and erroneous
program flags [17].

Advantages are the ability to inspect faults in software which is not possible in hard-
ware based fault injection, and running the injection on real hardware, requiring no
model development. At the same time, it does not require extra hardware, so set up
cost is low.

Disadvantages are that injection location and timings are less flexible, and certain
hardware faults cannot be simulated and/or observed from the software level. Also, it
requires modification of the original software, which might lead to performance changes
and also affect scheduling in time-critical applications.

In our present work, the NoC is a fully hardware centric system and hence software
based simulation methods are not applicable. On higher layers of abstraction, when
the NoC is used in practice with the Recore multi-core framework, software based fault
injection method may be used to access and evaluate certain areas of the system.

3.4.3. Simulation-based Fault Injection

This involves the creation of a model of the entire system under consideration and
adding fault injection into the model. The simulation models were traditionally specified
using a hardware description language like Very High Speed Integrated Circuit Hardware
Description Language (VHDL) or Verilog, like the MEFISTO [30] tool. However recently
the same concepts have been translated into SystemC models [31]. SystemC, being able
to simulate more complex systems faster and at higher abstraction levels, is considered
to be useful in fault injection of large complex systems. In case of simulation based
fault injection methods an important consideration is the accuracy of the model and
determining what level of accuracy is actually needed for the application at hand.

Advantages are huge flexibility, in terms of fault models and injection, and support
for any level of abstraction, depending on the model. It affords maximum controllability
and observability, at the same time needing no extra hardware [17].

The disadvantages are all related to modeling, which requires lots of development
efforts. Also, the accuracy of the model directly relates to how accurate the fault injection
system would be.

Since we are targeting a fault injection tool which will help in evaluation of fault
tolerance techniques in a high abstraction level, simulation-based fault injection suits
our purposes well.

Simulation-based fault injection is usually achieved by modifying the hardware descrip-
tion code. It is done by inserting an additional component into the hardware description,
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Figure 3.4.: Types of Saboteurs

either a saboteur or mutant, which pertain to structural or behavioral features of the
model, respectively [17]. Another method, using simulator commands, does not require
the modification of the hardware description.

3.4.3.1. Saboteurs

A saboteur is a special component added to the original model in between a signal to
modify its data or timing characteristics [17]. It is activated when an external control
signal is asserted, otherwise it passes on the data unmodified.

Saboteurs can be of three main types [17]:

Serial Simple Saboteur It intercepts a signal from a source to a destination port and
modifies it.

Serial Complex Saboteur It intercepts the signals between two or more sources and
destinations and modifies their signals according to some complex fault model. It
can be used to model crosstalk [32] or bridging faults between signals for example.

Parallel Saboteur In this case no signal path is broken. It is added as an additional
driver for a resolved signal [30]. It is useful for simulating disturbances on buses
[32].

Saboteurs are relatively easier to implement but are limited to only modeling faults in
signals. Hence they are used in simple cases. The different types of saboteurs are shown
in Figure 3.4.

3.4.3.2. Mutants

A mutant is a modified description of a component in the original design. When inactive,
it behaves exactly like the original component. When activated, it behaves like a faulty
component. It is generated by modifying the code of the original component and adding
code for fault injection capabilities. This method is extremely customizable and suitable
for injecting various kinds of faults, both in signals and variables inside components [32].
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3.4.3.3. Simulator Commands

This technique involves using the commands of the simulator to inject faults at simulation
time [17]. Since the built in commands of the simulator are used, there is no requirement
for modifying the original model in any way, making this a very non-intrusive fault
injection method.

Using this technique involves either modification of signal values or variable values of
the model under simulation. However, unlike in case of VHDL where existing simulators
have the capability for signal and variable value modification, there is no such support
in a standard SystemC environment [32]. For the SystemC case, some extensions are
needed, like fault injection enabler data types [33]. Hence modification of the code is
needed, but not in terms of the logical or behavioral description.
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Chapter 4.

NoC Simulation Tools

For quick benchmarking and evaluation of a system, developing a simulation platform
which emulates the behavior of the original system is beneficial. This chapter discusses
some openly available simulation tools for NoCs and then pertinent details of the NoC
Explorer that has been developed in-house at Recore Systems.

4.1. NoC Simulation Tools

There have already been some simulation tools developed for NoC both in academia
and industry. They support different subsets of features, and have been written using
different languages. A brief overview of some of the common and popular tools is given
below.

4.1.1. BookSim

BookSim [34, 35], a product of Stanford University, is one of the most widely used
NoC simulators currently available. It is a highly detailed, modular, cycle accurate
simulator written in C++ and can also be used for simulating other kinds of networks
besides NoCs. Due to its flexible and modular nature, it can be modified in diverse ways
to emulate many network configurations. In terms of configuration, the current version
(BookSim 2) supports 8 standard topologies along with user-specified topology, standard
and custom routing functions, and virtual channels with customizable buffer size. Many
other functions and components are customizable like the switch allocator, VC allocator,
etc. It supports both open-loop and closed-loop synthetic traffic generation and can be
interfaced with a full-system simulator to use its traffic. It does not support power-area
analysis and mixed language simulation.

4.1.2. NoCsim

NoCsim [36, 37] is a SystemC based event-driven NoC simulator. It supports 5 net-
work topologies, various routing functions for each topology, different types of switching
mechanisms and multiple VCs. It supports synthetic traffic patterns as well as traffic
traces input from a file. Simulation results include the standard latency and throughput
analyses as well as energy consumption and various comparisons with network load.
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4.1.3. Noxim

Noxim [38] is another SystemC based NoC simulator developed at University of Catania,
Italy. It only supports 2D mesh topology with wormhole routing. Network size, buffer
size, packet size, routing algorithm, traffic pattern etc. can be configured. There is no
support for custom traffic. Results are in terms of throughput, average and maximum
latency, received packets and flits, total energy consumption. In addition, the work done
by each system element and detailed activity of flits can be seen. Area-power analysis and
mixed language simulation is not supported. Recently Noxim has been extended [39] to
support simulation of Wireless NoC (WiNoC) architectures in addition to conventional
wired NoCs.

4.1.4. NoCTweak

NoCTweak [40, 41] is also another SystemC based NoC simulator developed at UC
Davis. The currently available version supports 2D mesh topology, with customizable
parameters like routing algorithm, virtual channels, buffer depth, switch arbitration, etc.
Traffic can be synthetic or real embedded application traces input from files. It also has
power and area models from commercial processes. Results generated are parameters
like throughput, latency, power and energy consumption.

Although each one of these simulators have their own strengths, most of them are not
suited for simulation of faults in the NoC. Booksim, being a highly modular simulator,
can be extended to support fault injection, as done in [42] for example. However, it
does not support mixed-language simulation, which helps in simulating NoC hardware
more realistically. Noxim has also been used for fault injection, for example in [43],
but also cannot support mixed-language simulation. In addition, it only supports the
mesh topology and has no support for custom traffic scenarios. Thus there is a need
for a NoC simulator with fault injection which has support for multiple topologies and
algorithms, and mixed-language simulation. The NoC Explorer has all of these features,
and in addition, it has now been extended to show detailed activity of flits and packets
(explained in Section 5.2.1.6) like Noxim. Hence it is deemed to be a suitable candidate
for a fault injection framework.

In this context it should be noted that though the simulation and testing in Chapter
6 is focused on NoC with a 2D mesh based topology and wormhole based XY routing,
as explained in Section 2.4, the fault injection framework designed in this present work
is compatible with other NoC topologies and schemes as well.

4.2. NoC Explorer Features

The NoC Explorer [9] has been developed at Recore Systems as a tool for design space
exploration for Networks on Chip for SoC. It can be used to characterize the perfor-
mance of a NoC architecture for a specific application to find out its suitability. The
proposed extension of the NoC Explorer, to be discussed in the next chapter, is to add
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support for fault injection capabilities in the design space exploration. The extended
NoC Explorer could possibly be used to find out the effectiveness of various techniques
for fault tolerance at different components of the NoC, which would facilitate the design
of a final fault tolerance NoC product in the future. A brief idea about some of the
aspects of the NoC Explorer, which relate to the fault injection system, are discussed
next.

4.2.1. Configuration and Simulation

• Topology: Support for mesh, torus, folded torus and spidergon topologies. More
topologies can be supported if designers add more custom modules.

• Routing Algorithm: XY routing for mesh topology, Torus XY for torus topology,
routing across first or last for spidergon topology.

• Network Size: Number of routers for X, Y direction in case of mesh based
topologies, and number of nodes for spidergon topology.

• Virtual Channels: VCs can be configured on the basis of number of VCs, buffer
depth and VC allocator and arbiter policies.

• Clock: Supports different clock frequencies for NoC.

• Mixed Language Simulation: Modules within the NoC simulator can be re-
placed with VHDL modules, supported by simulators like Questasim, which would
provide more accurate RTL level simulation instead of Transaction Level from
SystemC.

4.2.2. Traffic Generator

The traffic generator of NoC Explorer supports:

• Synthetic and Custom Traffic

• Flit Interval Selection

• Simulation time parameters

4.2.3. Results

NoC Explorer generates CSV data about flits. This is aggregated by the Python scripts
to generate useful data.

4.3. NoC Explorer Framework

The NoC Explorer is divided into distinct modules, written either in SystemC or Python.
The SystemC modules are associated with the actual NoC emulation along with traffic
generation and monitoring, while the Python scripts are used for further analysis of
data.
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4.3.1. SystemC Modules

The hierarchy of the SystemC modules in the NoCExplorer is shown in Figure 4.1, taken
from [9]. It has three main components: the NoC library, the traffic generator and the
traffic manager. These are discussed, followed by an overview of the packet and flit
format that has been used.

Figure 4.1.: NoC Explorer: Framework

4.3.1.1. NoC Library

This consists of SystemC descriptions of routers, network interfaces, packet and flit
modeling and the network topology containing all of these components. The NoC library
is described in hierarchical SystemC modules, the description of which follows:

Topology This decides the topology in which the whole NoC will be laid out, as spec-
ified by the user. Depending on user input, it instantiates a number of routers and
corresponding network interfaces, and connects the data and control signals according
to the specified topology.

Router This is a hierarchical implementation of the router component. It is divided into
separate SystemC modules, comprising of RCUs, VCs, physical link and VC allocator
and crossbar. The RCU and the VCs are instantiated as many times as there are
input ports in the router. The crossbar and the physical link and VC allocator are each
instantiated once. The data and control paths of the router for one input port are shown
in Figure 4.2.

The RCU is the first component in the datapath. It reads in the flit from the input
port, and if it is a Head flit, it computes the direction the flits of the packet are to be
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Figure 4.2.: NoC Explorer: Router

sent to, using the routing algorithm specified by the user. It then writes this output
port direction information into all the flits in the flit packet and writes them into the
correct VC as specified in the VC field of the flits.

The VC component implements a set of FIFO buffers for VCs, and also contains
logic for flow control. There is one input port and multiple outputs corresponding to
the physical outputs of the VCs to the next stage. It reads in the flit sent by the
RCU, and based on the VC write select signal, writes it into the correct FIFO buffer.
In accordance with the wormhole routing protocol, it sends an acknowledgment signal
(ACK) after the Tail flit is written, signaling the end of reception of the packet to the
upstream router/NI. The VC component also maintains the flow control credit counters
and sends the available credit information about every VC to the upstream router/NI.

The Physical Link and VC Allocator corresponds to the VA and SA stages of the
router. It performs the following steps:

1. Read the flits from the VCs of all the output ports, in the priority decided by the
physical input port arbiter and the VC arbiter (can be round robin or priority
based, as selected by the user).

2. If it is a Head flit:

a) From the output direction calculated by RCU, find the output port (physical
link to be used).

b) Select a VC which is free on the next stage router according to user-specified
VC selection policy (could be dynamically chosen or could be the VC chosen
by the network interface). Wait if VC is not free.

c) Enable the appropriate signal in the crossbar so that the input port to output
port connection is enabled.

3. Check for free credits and keep on sending flits from the input port to the output
port.

4. If it is a Tail flit, write the flit to the output port and close the connection.

The crossbar is like a matrix which connects a specific input stage to an output port.
Each input port has a Select signal which connects the input to a specific output port.
These select signals are controlled by the physical link and VC allocator. It is to be
noted that the crossbar in the NoC Explorer is of a fully connected design, which means

CONFIDENTIAL 29



that each input port can be connected to all the output ports, including the output port
associated with its own direction. This means a flit can enter a router and be returned
back to the upstream router.

Network Interface The NI serves as a bridge between a node and a router, and is
required to support bidirectional communication, i.e. transmission and reception of
packets. Hence it can be divided into two main components, viz. the Master NI and the
Slave NI, which have been defined separately in the NoC Explorer. In essence the NI is
to be designed in such a way that to the router it looks like another generic router, and
to the node it looks like a generic memory location.

Figure 4.3.: NoC Explorer: Master Network Interface

A schematic of the Master NI is shown in Figure 4.3. In the Master NI there are two
arbiters for VCs, one for input and the other for output. The VC output arbiter monitors
the credits available in the VCs of the router and sends flits to the router accordingly.
The VC input arbiter determines which VC the incoming data from the node is to be
stored.

Since the node is oblivious to credit availability, the VC input arbiter just sends a
signal which informs the node if there is any free VCs available. When a free VC is
available, the node sends the packet request, which is then converted into packets and
flits by the packet and flit assembler. The VC input arbiter then stores it into a VC
based on the VC allocation scheme set by the user. Based on the credit availability in
the connected router and the VC arbitration scheme, the VC output arbiter transmits
the flits to the router. The rate at which a flit is written into the VC can be set by the
flit interval selection mode.

The Slave NI functions in a similar way. It receives flits from the associated router,
following flow control and VC arbitration policies, and assembles them into packets.
Since this is a simulator, the disassembly of packets into raw data has been omitted
since the node does not use received data in any way.

4.3.1.2. Traffic Generator

This is responsible for generating the traffic for the NoC Explorer. It generates data
and sends it into the network from different nodes through the Network Interfaces. It

30 CONFIDENTIAL



has support for both synthetic traffic as well as custom traffic specified by Synchronous
Data Flow (SDF) graphs.

The main functional component of the traffic generator is the traffic node. The NoC
Explorer can be used to model nodes, one of which can be connected to a single NI. To
specify the characteristics of each node, the following parameters can be set by the user:

Destination Node Selection The destination node can be randomized for synthetic traf-
fic or be fixed for user defined custom traffic. The possible options are random,
fixed, neighboring, transpose and round robin neighbor destination node.

Data Size This, in conjunction with the data width of each flit, determines the packet
size, or the number of flits in a packet.

Operational Limits A node can be started and/or stopped based on certain parameters.
A start time can be set. The node can also be stopped based on end time, a data
limit, or after sending a specific number of packets into the network.

Bandwidth The bandwidth parameter is used to determine the flit injection rate, which
is the rate at which new flits are injected from the node into the network.

Internal Memory Internal buffer memory can be specified to model specific application
scenarios.

The node is implemented using two primary threads, a send thread and a receive thread.
Based on the node modeling parameters, the send thread requests a data transfer to the
Master NI and sends the data, which is then packetized and sent into the network by
the Master NI. The receive thread coordinates the reception of data from the Slave NI.
A flow chart of how the node is modeled using the two threads is shown in Figure 4.4,
taken from [9].

4.3.1.3. Traffic Manager

The traffic manager receives incoming packets (to the destination node) from the NoC
through the Slave Network Interface and monitors the data. It is a single component
which is connected to the output of every slave NIs in the network. It is responsible for
time-stamping each flit as it leaves the network, and also to check out of order arrival of
flits.

In addition, it writes a set of output files regarding the traffic and the NoC resources:

trafficPattern.csv This contains information about the packets that are accepted into
the NoC.

outputFlit.csv This file stores information about the flits which leave the NoC after
reaching the respective destination routers. Information like in and out time, hop
count, etc. are available which are later used by the Python scripts. This file is
also used in conjunction with the trafficPattern.csv file to extract missing packet
information.
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Figure 4.4.: Traffic Node Flowchart

noConfig.csv This stores the configuration of the NoC in the current simulation run.

routerCongestion.csv The router performance and any bottlenecks can be determined
from this file, which stores the average number of flits per cycle that each router
has processed.

linkUtilization.csv This file stores information about link bottlenecks and performance.

4.3.1.4. Packet and Flit Format

Since the Noc Explorer uses wormhole type of routing, the packets are divided into
separate flits, which are re-assembled at the destination. In the NoC Explorer, a flit
is transmitted in the form of a System C data structure containing the following data
fields:

Flit type Head, Body or Tail type of flit.

Flit sequence number This is the order in which the flits of a packet are sent, so that
they might be re-assembled in the correct order at the destination.

Flit data The data to be sent in each flit.
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VC Number The VC to be used by all the flits of the packet while traversing a specific
router.

Output port direction This is updated by the RCU of each router, which is then used
by the physical link and VC allocator to send the correct signal to the crossbar.

Source and Destination nodes The information is used by the routing logic only in the
case of the Head flits, since the simulator uses wormhole routing. In case of other
flit types, this is only for post-simulation analysis.

Packet ID Each packet is given a unique ID for diagnostic and analysis purposes.

Hop count Used for performance evaluation of routing algorithms for a specific appli-
cation scenario.

Timestamps Entry and exit timestamps are recorded for performance and latency mea-
surement.

4.3.2. Python Scripts

NoC Explorer provides with multiple Python scripts for post-simulation analysis of the
NoC performance. A description of the different python scripts in NoC Explorer along
with their usage is given in Appendix B.

Missing Flits Using the traffic pattern and the output flit information, the flits that
are missing can be found out. That could be because of deadlock, insufficient
simulation time or other faults generated in the NoC by the fault injector.

Latency and Throughput Analysis Various statistics about the NoC traffic like accepted
and ejected loads/cycle, VC utilization, packet and flit latency is provided.

Heat Map This provides a map of router and link utilization in the selected topology.

4.4. Data Flow

It is helpful to understand the data flow as a flit starts from its source and reaches its
destination, in order to to better understand where and how faults can be injected. A
broad overview of how a flit moves from source to destination is presented below, which
is also represented in Figure 4.5, taken from [9].

1. Traffic node generates data and sends it to the Master NI

2. The Master NI divides this data into packets and flits, determines a VC to be used
and stores the flits into the VC.

3. Master NI sends the flits sequentially into router when the input port is free to
receive flits.
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4. The RCU determines the output port to send the flits to, according to the routing
algorithm, and writes that information into the flit. It then writes the flits into
the correct VC.

5. The physical link and VC allocator eventually reads the flits and determines the
VC to be used for the next router. It writes this information into the flit and
signals the crossbar to send the flit to the specific output port.

6. The crossbar writes the flit to the correct output port.

7. On reaching the destination router, the flit is sent to the Slave NI

8. The Slave NI reassembles the flits into packets in the correct order.

9. The output flit is then sent to the Traffic Manager for analysis.
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Chapter 5.

Fault Injection in the NoC Explorer

This chapter concerns with the design and implementation of the fault injection frame-
work for the NoC Explorer. Before delving into the specific design aspects, it is beneficial
to discuss the faults that need to be simulated in terms of function and location, in or-
der to model them correctly. Hence the first part of the chapter puts forward the ways
that faults can be classified and modeled, and discusses the best way to work with
when it comes to building a fault injection framework. The second part then explains
the specifics of the fault injection framework that has been implemented for the NoC
Explorer.

5.1. Modeling and Classification of Faults

The faults in different components of a NoC can be looked at from two different per-
spectives: a physical location perspective, or from a functional perspective in terms of
OSI layers. Radetzki et al. [8] and Wuderlich et al. [44] give a detailed account of fault
classification and modeling in terms of OSI layers. The OSI layer model helps in un-
derstanding how faults affect the system and give an idea of what broad ways to tackle
the problem. However, faults can also be distinguished in physical location terms, into
faults in the control logic and datapath [45].

At the end of the day, when fault injection capabilities need to be implemented in
the simulator, they would be implemented at specific locations of the NoC for different
fault effects, and hence a physical location perspective is helpful. However, a functional
perspective is helpful in examining how the effect of a fault can translate into higher
layers, and thus distinguishing the actual source of a fault which could come from a
higher or a lower layer. In fact these two perspectives are not orthogonal, and can be
mapped onto each other in such a way that we can design fault injection functionally
for the different layers and then map them into physical locations. Something similar is
also seen in [46] where faults are injected on different physical locations and their effects
are seen to affect the system in different ways, which can be segregated into faults
happening at different OSI layers. Hence we divide the fault injection framework design
into different OSI layers and discuss the physical perspective of the implementation in
each layer.
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5.1.1. Data Link Layer

This concerns with the flow of data through links between routers and also through the
router. In this case, the datapath components are the links, VC buffers and path through
the different components of the router. Transient errors can be SEUs and SETs. SETs
can be latched and manifest as SEUs in the buffers. SEUs can also happen directly at
the buffers. Permanent faults can be stuck-at faults in case of buffers, and broken wires,
shorted wires or wires that are stuck to a voltage level. So it is convenient to think of
fault injection of datapath components in this layer in terms of two different types of
locations: wires and buffers. Each wire should have a saboteur type of fault injector
which modifies the signal going to the destination. One saboteur component per link
should be able to simulate faults in the wire between the output port to the input port.
In the present case, the saboteur component has been associated with the input side,
i.e. the input ports of each router. In the case of the VC buffers, each VC (multiple VCs
associated with each wire) can have some mutant logic in the code which would modify
the current contents of its own buffer.

Depending on which bit position the fault occurs in the VC buffer or link, and also
the type of flit, it can have different effects. It could change the flit payload (i.e. the
data contained in the flit), the destination address or even modify the type of flit it has
been designated as. This also depends on the type of the original flit, since different flit
types will have different flit formats. For example, a Body flit will not have destination
address information.

The control logic components in this layer are the flow control logic. Although an
SEU is a transient fault, in this case it can affect router operation permanently. This
is because when a transient fault changes the credit counter, this value is used for all
future router operations till the router or NoC is reset, making the fault effect essentially
permanent. It can lead to less flits being sent than capacity, or router stalls. Permanent
faults can manifest themselves as stuck-at faults in the credit counter, or a credit counter
which fails to update. In this fault injection framework, permanent faults have been
implemented as a counter which stops updating.

5.1.2. Network Layer

This is concerned with the correct routing of flits along the path from source to des-
tination. Concerned physical locations, which are solely control logic components, are
the RCUs, crossbar and VC allocation unit. The way faults in these components affect
the packet transmission differs, and is also different in transient or permanent faults.
Since all the faults occur in the control logic inside functional components, they are best
simulated using mutants.

RCU In case of the RCU, when a transient fault occurs, it will direct the whole packet
to a wrong output, since only the head flit is involved in routing computation. Rest
of the flits will follow the same direction. In case of permanent faults, the situation is
similar; only all the packets will be sent to a single output port. It is important to note
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that since the RCU is before the VA, the flits will all be routed through correct VCs and
hence there won’t be any overlap of flits from different packets.

Crossbar Unlike the RCU, the crossbar works on the flit level. It sends each flit to an
output port based on the port select signal it has received. Hence in case of the crossbar,
when a transient fault occurs, a single flit from an input port may be redirected to a
wrong output port. Since this is at flit level, some flits of a packet maybe sent elsewhere
than the rest, leading to flit loss and loss of packet integrity, which is harder to recover
from. In case of permanent faults, this problem is not apparent since all flits are directed
to the same port. However, since the crossbar is after the VA, on occurrence of faults,
flits from different VCs can overlap and be ejected out of order from the output port(s).

VC Allocator Faults can occur in two different ways in the VC Allocator. The VC
allocator may allocate random VCs to a flit in temporary fault mode, or send all flits
in the same VC, or lose all flits, in permanent fault mode. Also,the priority ordering
of packets might be disrupted due to a fault. So, a packet which was supposed to be
sent first might be kept waiting for other packets till the fault condition is resolved, in
temporary fault mode, or permanently kept waiting in permanent fault mode.

Faults in the network layer can also be due to unresolved errors from the data link
layers like address modification, or type of flit modification.The data link layer errors
don’t seem to be solvable by this layer and would be propagated to the transport layer,
with the exception of stochastic methods (flooding, random walk) [47] where the correct
information is available in a redundant packet.

5.1.3. Transport Layer

This is concerned with end to end transmission of packets (collection of flits) from source
node to destination node. In this case it covers the packet entering the network interface
from the source node, traveling through routers to the destination router and exiting
through the network interface into the destination node.

Faults can happen due to unresolved errors from the lower layers, i.e. package corrup-
tion (from Data Link Layer) or package loss (from Network layer). Besides this, faults
can occur directly at the transport layer in terms of data corruption and package loss at
the network interfaces at the source and/or destination nodes. Flits might be lost, the
whole package might be lost, data or address might be corrupted at one of the network
interfaces. Like all other cases, this can be temporary or permanent. In summary, the
errors of the transport layer can be emulated in similar way to the faults in the buffers
of the data link layer.

A summary of how faults in the different physical locations in a router affect the NoC
in the different OSI layers is given in Table 5.1.
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Table 5.1.: Effect of faulty components on OSI layers

Component Data Link Layer Network Layer Transport Layer

Link 3 3 3

VC Buffer 3 3 3

Credit Counter 3 3 3

RCU 7 3 3

Crossbar 7 3 3

VC Allocator 7 3 3

5.2. Fault Injection & Diagnostics in the NoC Explorer

As discussed previously, the optimum way of injecting faults in a network on chip is to
divide the injection into specific physical locations, while keeping in view the OSI layers
associated with each. The NoC Explorer has thus been extended with fault injection
capabilities using the same idea. The following sections first describe the framework
and fault injection concepts in general and then go on to describe the fault generation
mechanisms in the different layers.

5.2.1. Framework

In brief, a fault injection manager has been designed which is responsible for generating
random faults at different locations of the NoC. The data regarding the faults to be
generated is sent to each router in the NoC through signals from the manager. The
router components then appropriately generate the requested faults. A record of fault
requests are kept by the fault injection manager in a separate CSV file, viz. faultReq.csv.
An important observation is that all fault requests may not manifest as a fault in the
flit/packet delivery. Hence a separate record of the fault generation requests is beneficial.
I addition, the record of the packet and flit path throughout the whole simulation time
window is stored for the analysis of effects of individual faults.

5.2.1.1. Fault Injection Manager

The fault injection manager is the central entity that is responsible for fault injection,
as well as keeping record of the fault injection requests. It generates a list of faults
to be injected in every node at each clock cycle, according to a given fault probability
distribution. It communicates the fault generation requirement to each router through a
signal to each one of them, after which the appropriate component in the router generates
a fault. The information available in the fault signal from the fault injection manager is
presented below:

Flag Indicates whether a fault needs to be generated

Component Specifies at which component in or around the router the fault would be
located. Possible locations are link, VC buffer, flow control credit counter, routing
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computation unit, crossbar, and physical link & VC allocator.

Port Specifies which port the component is associated with. This does not apply to the
crossbar since there is only one crossbar present in a router.

Channel In applicable cases, specifies which virtual channel is to be affected. This does
not apply to links, routing computation units or the crossbar.

Duration Specifies if the fault is permanent or transient, and if temporary, the duration
of the fault. A value of 0 indicates a permanent fault, while any other non-zero
value represents the duration of the temporary fault, in nanoseconds (ns).

In terms of implementation, this information is in the form of a C++ structure, which
is passed as a SystemC signal input to the routers. To make the structure SystemC-
compatible, overloaded output stream, equality and copy operators were defined. Also
for SystemC trace generation, a friend function sc trace() was defined.

The probability with which faults are generated is a two-level process. On the first
level, the routers that will be affected by a fault is selected with a probability value
set by the user, using a uniform distribution. Then, for each router that is affected,
the specific component that is affected is decided with equal probability from a uniform
distribution.

It should be noted that in real world scenarios, this probability distribution is not
totally realistic. Any component of the NoC can be affected, and the probability of this
happening depends on component area, complexity of the component, the technology of
silicon used and environmental factors. This would require a more detailed level of mod-
eling the circuits, fault mechanisms and the environment, and has not been attempted
in the present work. The framework could be extended in the future to support such a
realistic modeling paradigm.

5.2.1.2. Routers

Fault information signals from the fault injection manager connect to the routers. All
the applicable components in and around the router where faults may be possible receive
a copy of the fault signal, which is used by them to generate appropriate faults when
required. However, except the crossbar and the physical link & VC allocator, all the
other components have multiple instances in the router, one each for each associated
input port. The different instances of the same component have no information regarding
which ports they are associated with, making it impossible to generate the fault in the
correct component.

To solve the aforementioned issue, in each router there is a fault handler component.
The components with multiple instances also have a separate fault enable signal input.
The fault handler basically takes in the information from the fault signal and asserts the
fault enable input of the component where the fault is to be generated. On receiving a
fault enable signal, the respective component generates a fault based on the information
in the fault signal. The signals inside the a router, for a single input port, is shown in
Figure 5.1.
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Figure 5.1.: Router with Fault Injection Components

5.2.1.3. Flit Format & Flit Update

In addition to the data already present in the NoC Explorer flit data structure, each
flit is appended with additional information about the fault, for debug and verification
purposes. These additions are listed below:

Fault flag Indicates whether the flit had encountered a fault

Timestamp Specifies when during the simulation time it had encountered the fault

Fault location Indicates which node the flit had encountered the fault at.

Fault type Indicates whether the fault results in a data error, a routing error or any other
control logic error. This depends on the component where the fault is generated.

Redundant data All the flit data that can possibly be modified by a fault are replicated
as “original” data fields. These are untouched by the fault injection mechanism
and can later be used to ascertain whether a fault is present, by comparing with
the current data fields.

Except for the redundant information fields, all of the aforementioned fields are up-
dated when the flit encounters the effects of a fault. The redundant fields are written
at the time of the flit creation, by the traffic generator nodes. It should be asserted
that this information is only used for verification purposes and should not used by fault
detection and mitigation techniques of the fault tolerant NoC.

5.2.1.4. Faulty Flit Data

A method of monitoring the fault status of flits as they leave the NoC is required, in
order to verify whether faults are being injected properly, and also to verify that the
faults are being detected and mitigated by the reliability measures designed into the
NoC later on.
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In the NoC Explorer, the Traffic Manager is the main entity responsible for monitor-
ing of the flits leaving the NoC. Hence, it has been extended to support the function.
Whenever a flit arrives at the Traffic Manager, it checks its fault flag. If enabled, it
writes down all the fault-related information to a CSV file, viz. faultyFlit.csv.

Also there might be cases where a faulty flit is dropped when it arrives out of order,
without an associated Header flit, and hence never reaches a network interface. The
Traffic Manager thus never encounters them. Flits are usually dropped in at the RCU.
To handle these cases, the RCU has also been modified so that when it drops a flit, it also
writes the fault-related information into the same CSV file if the fault flag is enabled.

The information from the flit that is written into the CSV file is:

• Fault type

• Fault location

• Original and current packet IDs

• Original and current Source nodes

• Original and current Destination nodes

• Exit node

5.2.1.5. Router Stalls

Faults may cause certain components of a router to fail, causing a stall due to which
packets cannot move through the router. This can also indirectly affect traffic around the
router, stalling other routers in the process. The list of stalled routers is also recorded
after a simulation run, and stored in the routerStall.csv file.

When a router stalls, one or more flits get stuck in the router buffers. This fact
has been used to find the stalled routers. The state of all VC buffers in each router is
monitored. At the end of the simulation run, if any buffer of a router is non-empty, it is
considered to be stalled and is recorded into the CSV file.

5.2.1.6. Packet & Flit Path

A fault occurring at a specific location can trigger direct effects on flits passing through
the concerned router as well as indirect effects on flits in nearby routers. In order to
properly study and analyze this behavior, the path taken by each flit for the whole
simulation run is stored in a file (flitPath.csv). This has been achieved by recording the
details of every flit that enters the RCU of a router.

The information for each flit available in the file is:

• Original Packet ID

• Current Packet ID

• Current router/node
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• Current VC

• Time stamp

However, due to the huge amount of data generated because of this, an option has
been implemented to only record incoming head flits. This effectively makes it a packet
path recorder, and has been kept as the default option. In case a finer granularity of
traffic information is needed, for example to check whether body or tail flits are routed
differently than head flits in case of a fault, the flit path option can be enabled from the
constants.h header file.

5.2.1.7. Faulty Packet Statistics using Python Script

A Python script called faultStats.py has been developed which aggregates all the faulty
flit data and outputs the number of packets with different kinds of faults, i.e. number of
packets with data faults, routing faults due to data errors, routing faults due to other
causes, packets with fault flag enabled but no visible effects, and missing packets. A
packet with one or more flits which are faulty is considered a faulty packet. If there are
multiple faulty flits in a single packet, the type of fault recorded is the one with the first
faulty flit in the packet sequence.

Details of the script can be found in Appendix B.2.1. There are other Python scripts
which have been developed for specific test scenarios, which have been discussed later in
Chapter 6.

5.2.2. Mechanisms

5.2.2.1. Data Link Layer

Fault injection in the data link layer is the most involved since it is closest to the
component level. The various components pertaining to the data link layer are the
physical links, virtual channel buffers, ACK signals, and credit counters for flow control.
Fault injection for transient and permanent faults for these components are implemented
differently, as explained below.

Virtual Channel Buffers A fault generator thread has been implemented inside the
virtual channel SystemC module, which acts as a mutant for the virtual channel buffers.
It is triggered by positive edges of the fault enable signal, which is driven by the fault
handler component. When a transient fault request is received, it selects a random buffer
location in the requested VC buffer, using a uniform distribution, and creates a bit flip
at a random bit position of one of the fields of the flit, also using a uniform distribution.
This happens for all flits that may pass into that buffer location while the fault is active
for the requested duration. How a field is chosen depends on the flit format for the NoC
being considered.

For the NoC of Recore Systems, a flit is 36 bits long. Each flit, of any type, has 2 bits
for flit type (Empty/Idle, Header, Payload, Tail), 2 bits for VC identifier (also called
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Service Level Identifier in the specific case) and 32 bits of data. This 32 bits of data is
divided into different fields for the header flit as follows:

• 8 bits for source address. This is further divided into 4 bits each for X and Y
coordinates.

• 8 bits for destination address. This is further divided for X and Y coordinates.

• Rest of the bits are for block transfers. For our purposes, since they do not con-
tribute to routing, they are considered as generic data.

For the payload and tail flits, all the 32 bits are considered as data bits for our
purposes, since they do not contain any routing data. Considering a uniform probability
of an error occurring in any bit of a flit, the various fault probabilities for the different
flit types are:

Table 5.2.: Flit Fault Probabilities

Bits
Probability

Header Payload Tail

Flit type 2 0.056 0.056 0.056
VC Identifier 2 0.056 0.056 0.056

Source Address 8 0.22 0 0
Destination Address 8 0.22 0 0

Data 16 0.44 0.89 0.89

In case of a permanent fault request, a few variables related to fault injection are
maintained in each VC SystemC module, viz. a permanent fault type variable, a stuck-
at-0 fault mask and a stuck-at-1 fault mask. These three variables store information for
each buffer location of each channel. On getting a request for a permanent fault in a
specific VC, the fault generator thread selects a random buffer location in the VC. If
it already has been marked with a permanent fault, it ignores the request. Otherwise,
it changes the permanent fault type variable to the requested type (stuck at 0/1) and
creates a random fault mask for the selected buffer location. This fault information is
used by the VC write thread, inside the VC module, to write faulty data.

Credit Counters for Flow Control For flow control a similar approach is applied. When
a transient fault request is made, the fault generator thread creates a bit flip at one of the
bit positions of the counter for available credits, for the requested VC. While the fault
is active, for the requested duration, the credit counter is not updated even if flits are
written to or read out from the buffer. In case of a permanent fault request, a permanent
fault status variable for each VC is maintained. If the fault status for a specific VC is
high, that counter is prevented from being updated by the virtual channel logic. So the
value stop changing, starting from the occurrence of permanent fault.
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Physical Links Faults in the physical links are implemented using a saboteur compo-
nent, between each input port and RCU. A thread monitors the fault data and fault
enable signals and maintains a fault mask and a fault state variable. In case of perma-
nent faults, it generates a random mask and asserts the fault state variable true, if the
fault state variable was not already true. In case of transient faults, if the fault state
variable is not already true, it changes the fault mask and asserts the fault state variable
to be true for the duration requested.

Figure 5.2.: Fault generation in physical links

The saboteur component monitors the fault state variable. It directly passes on the
data from input to output when the fault state variable is false. When it is true, the
component modifies the data and outputs it to the RCU. The data is modified with the
same probabilities as discussed in the case of VC buffers. This concept has been shown
in Figure 5.2.

5.2.2.2. Network Layer

The components relating to the Network Layer are the RCU, crossbar and the physical
link & VC allocator. In the present work, fault injection has been added to all these
three components. The implementation follows a similar pattern as in the previous
cases. A separate thread (fault thread()) keeps track of the fault signal, and maintains
a fault state variable which is monitored by other functions in the component in order
to generate the fault.

RCU Since there are as many RCUs as there are router ports, the fault enable signal is
sent to the correct RCU by the fault handler, which is monitored by the fault thread().
If the fault state variable is not already true, in case of a permanent fault a random
faulty output direction is assigned and the fault state variable is made permanently
true. Hence any packet that passes through is given the same output direction. In case
of transient faults the same is done only for the duration specified, after which the fault
state variable is returned to false. Next time, if a transient fault occurs in the same
RCU, the faulty output direction might be different from the previous fault case.
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Crossbar Since there is a single crossbar in a router, there is no need for the fault
handler. The fault signal from the fault injection manager is directly monitored by the
fault thread() inside the crossbar module. If the fault state variable is not already true,
in case of a permanent fault a random faulty output port is assigned and the fault state
variable is made permanently true. Hence all flits which pass are sent into the same
output port.In case of transient faults the same is done only for the duration specified,
after which the fault state variable is returned to false. Next time, if a transient fault
occurs in the same RCU, the faulty output port might be different from the previous
fault case.

It must be asserted that even though the mechanisms are similar in the crossbar and
RCU, they work in different levels of granularity. The RCU fixes a direction for the
whole packet, when the head flit arrives, and so the whole of the faulty packet is sent
to the wrong direction. However, the crossbar works on a flit-to-flit basis. Hence a few
flits of the packet can sent to the wrong output port while the rest goes to the correct
output port, depending on when the fault was injected. It can therefore also lead to
packet integrity errors.

Physical Link & VC Allocator Since there is a single physical link & VC allocator in
each router, the fault signal from the fault injection manager is directly monitored by the
fault thread() inside the module. Out of the two fault possibilities mentioned in Section
5.1.2, fault injection in the input port ordering has been implemented. The Physical
Link & VC Allocator scans the input ports in priority order (port 0 to port N) or in
round robin order, and sends the packets to the destined output ports. If the fault state
variable is not already true, in case of a permanent fault a random input port is assigned
and the fault state variable is made permanently true. Hence only packets from that
input port would be sent to output ports, rest would be kept in waiting permanently.
In case of transient faults the same is done only for the duration specified, after which
the fault state variable is returned to false. Next time, if a transient fault occurs in the
same RCU, the input port chosen might be different from the previous fault case.

5.2.2.3. Transport Layer

In the case of Transport Layer, no separate fault injection methods have been imple-
mented. Unresolved errors in the lower layers which can trigger transport layer errors
like packet loss, out of order arrival can be studied, for the purposes of detection and
mitigation techniques.
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Chapter 6.

Simulation Results

In this chapter the fault injection framework is tested by simulating various NoC, traffic
and fault conditions. At first, the effect of a single fault in the NoC is evaluated and
analyzed. This helps us to look at direct as well as indirect effects that a fault can cause
to the NoC. Then the framework is compared to literature under different conditions, to
ascertain whether the effects of faults follow the same trend, as a means to qualitatively
validate the fault injection functionality. Finally a performance profiling of the NoC
Explorer with fault injection enabled is done, and compared with the framework disabled,
in order to realize the overhead caused due to the fault injection framework.

6.1. Single Fault Tests

This section serves to provide an idea of how a single fault at a component can affect the
operation of the NoC. All the six components where fault injection is possible, i.e. the
VC buffers, links, flow control, RCU, crossbar and the physical link and VC allocator,
have been tested separately.

In each simulation run, a single component of one random router in the NoC has
been injected with a fault. 30 such simulation runs have been done for a single type of
component. This has been repeated for all six components. So, in total, 30 * 6 = 180
simulation runs have been performed.

The parameters that have been used in these simulations are:

Topology : Mesh
Size : 5x5
Clock Period : 2 ns
Routing Algorithm : XY
Packet Size : 4 flits
VC’s : 4
VC Buffer Depth : 4
VC Selection : Network Interface
VC Arbitration : Round Robin
Physical Link Arbitration : Round Robin
Traffic Distribution : Uniform
Simulation Runtime : 100000 ns

Without any fault occurring, at the set traffic and simulation conditions, 31250 pack-
ets are transmitted through the NoC. This number can be less in cases in which one
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or a number of routers are stalled due to faults, leading to their inability to accept
packet requests from the traffic generator nodes. In the single fault testing, a system-
atic approach has been followed. For each component type, the data regarding the
single fault generated in the NoC and the details of the number of packets affected by
the fault in different ways, for all 30 simulation runs, are aggregated into a single file.
Moreover, for the cases where there are faulty packets and/or missing packets, the files
related to the original intended NoC traffic pattern (trafficPattern.csv), missing packets
(checkPacket.report), the faulty flit faultyFlit.csv) and the path taken by the packets
(flitPath.csv) are recorded. From these files, the faulty and missing flits are found out
and, by looking at the path taken and other details (explained later), the effect of these
faults in the NoC can be deduced.

In order to understand the node positions and the paths taken by the packets, a layout
of the 5x5 NoC with node numbers is provided in Figure 6.1.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Figure 6.1.: NoC Layout for Single Fault Testing

In each of the single fault test discussions, the results of the 30 injections are given in
the form of a table. Each table contains some or all of the following information:

• Time stamp of fault occurrence (in ns)

• Faulty Router

• Component of the router where fault has occurred

• Port which the component is associated to (not applicable for the crossbar or the
physical link & VC allocator)

• VC (only applicable for the case of faults in VCs)

• Total detected faulty packets (i.e. packets received with one of the flits having a
fault flag enabled)

• Number of these faulty packets which have data faults

• Number of packets which have routing faults due to data errors

• Number of packets which have routing faults due to other causes
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• Number of packets which do not show any effect of a fault, even though they have
flit(s) fault flags enabled.

• Missing packets: these may or may not have faulty packets, but are definitely
missing

6.1.1. Faults in Links

Table 6.1.: Link Fault Statistics

No. Time
Stamp
(ns)

Faulty
Router

Comp-
onent

Port Duration
(ns)

Total
Faulty
Packets

Data
Faults

Routing
Faults
due to
Data

Other
Rout-
ing
Faults

No
Mani-
fested
Faults

Missing
Packets

1 9 10 Link NI 2 0 0 0 0 0 0

2 303 6 Link Port 2 14 0 0 0 0 0 0

3 203 19 Link NI 20 0 0 0 0 0 0

4 21 13 Link Port 2 11 0 0 0 0 0 0

5 169 18 Link Port 2 10 0 0 0 0 0 0

6 787 6 Link Port 3 16 0 0 0 0 0 0

7 647 6 Link NI 17 0 0 0 0 0 0

8 21 22 Link Port 3 5 0 0 0 0 0 0

9 125 20 Link Port 2 12 0 0 0 0 0 0

10 157 20 Link Port 3 5 0 0 0 0 0 0

11 1165 2 Link Port 1 15 0 0 0 0 0 0

12 5 17 Link Port 2 17 1 1 0 0 0 0

13 801 11 Link Port 1 18 1 1 0 0 0 0

14 11 13 Link Port 1 7 1 1 0 0 0 0

15 299 17 Link Port 2 9 0 0 0 0 0 0

16 331 18 Link Port 1 10 0 0 0 0 0 0

17 39 9 Link Port 2 14 0 0 0 0 0 0

18 275 1 Link Port 2 18 0 0 0 0 0 0

19 115 24 Link NI 1 0 0 0 0 0 0

20 281 8 Link Port 1 10 1 1 0 0 0 0

21 91 1 Link Port 2 5 1 1 0 0 0 0

22 1011 3 Link Port 2 2 0 0 0 0 0 0

23 717 23 Link Port 3 15 1 1 1 0 0 0

24 213 12 Link Port 3 11 0 0 0 0 0 0

25 287 23 Link Port 1 1 0 0 0 0 0 0

26 77 19 Link Port 1 11 1 1 0 0 0 0

27 283 7 Link Port 2 2 0 0 0 0 0 0

28 507 21 Link Port 3 9 0 0 0 0 0 0

29 149 22 Link Port 1 14 1 1 1 0 0 0

30 453 11 Link Port 3 16 0 0 0 0 0 0

The results of single fault injections into the NoC links is shown in Table 6.1. Out of 30
injections, only 8 packets have been affected by the faults. This shows that most faults
do not actually affect proper NoC operation. This is because, in order for a fault to
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affect a flit, there needs to be an active operation with a flit happening in the specific
component of the router, when the fault occurs. Also out of these 8 faults, all of them
have predictably created data faults, out of which only 2 data faults have resulted in
routing faults. This is because there is more probability of a bit flip occurring in the
payload area of a flit, and also because address errors can only happen in the case of
header flits.

6.1.2. Faults in VC Buffers

Table 6.2.: VC Fault Statistics
No. Time

Stamp
(ns)

Faulty
Router

Comp-
onent

Port VC Duration
(ns)

Total
Faulty
Packets

Data
Faults

Routing
Faults
due to
Data

Other
Rout-
ing
Faults

No
Mani-
fested
Faults

Missing
Packets

1 113 7 Buffer Port 1 2 15 0 0 0 0 0 0

2 323 5 Buffer NI 0 4 0 0 0 0 0 0

3 79 12 Buffer Port 2 3 10 0 0 0 0 0 0

4 93 21 Buffer NI 0 7 0 0 0 0 0 1

5 621 17 Buffer Port 3 0 14 0 0 0 0 0 0

6 413 4 Buffer Port 3 0 11 0 0 0 0 0 0

7 465 1 Buffer Port 2 0 3 0 0 0 0 0 0

8 289 21 Buffer Port 1 2 8 0 0 0 0 0 0

9 277 24 Buffer Port 3 3 1 0 0 0 0 0 0

10 65 14 Buffer NI 1 20 0 0 0 0 0 0

11 625 22 Buffer NI 2 13 0 0 0 0 0 0

12 195 18 Buffer Port 1 0 16 0 0 0 0 0 0

13 217 23 Buffer Port 2 3 10 0 0 0 0 0 0

14 865 22 Buffer NI 2 6 0 0 0 0 0 0

15 23 24 Buffer NI 3 11 0 0 0 0 0 0

16 633 4 Buffer NI 0 11 0 0 0 0 0 0

17 215 9 Buffer Port 3 3 10 0 0 0 0 0 0

18 111 22 Buffer Port 2 2 17 0 0 0 0 0 0

19 817 12 Buffer Port 1 1 5 0 0 0 0 0 0

20 1179 19 Buffer Port 2 3 19 0 0 0 0 0 0

21 411 13 Buffer Port 2 0 18 1 1 0 0 0 0

22 51 8 Buffer Port 1 2 1 0 0 0 0 0 0

23 1607 18 Buffer Port 1 3 4 0 0 0 0 0 0

24 1613 21 Buffer Port 2 2 3 0 0 0 0 0 0

25 1061 7 Buffer Port 1 2 4 0 0 0 0 0 0

26 203 17 Buffer Port 3 3 6 0 0 0 0 0 0

27 709 13 Buffer Port 1 1 8 0 0 0 0 0 0

28 417 9 Buffer Port 3 3 12 0 0 0 0 0 0

29 41 17 Buffer Port 1 1 19 0 0 0 0 0 0

30 1317 12 Buffer Port 3 2 7 0 0 0 0 0 0

The results of the single fault injections into VC buffers is shown in Table 6.2. Out of the
30 simulation runs, one has a case of a data corruption, and one has a missing packet.

The packet with data corruption is in simulation run no. 21, with a packet ID of
2100006. It has a payload error, and so no routing errors have occurred. The missing
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packet is in simulation run no. 4, with a packetID of 2001250. Its source and destination
nodes are 20 and 8, respectively. Looking at the path followed by the packet (using
flitPath.csv data): 20→ 21→ 22→ 23→ 18→ 13 (Figure 6.2), shows that the packet
has followed the correct path according to XY routing. However the head flit has reached
node 13 at 99997 ns. Since the simulation time window is 100000 ns, it did not have
time to reach the final destination node. This is just due to simulation time chosen and
other random traffic factors and not related to faults.

2001250

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Figure 6.2.: Packet path for VC buffer test

6.1.3. Faults in Flow Control

The results of the single fault injection in the flow control credit counters of the routers
is given in Table 6.3. There are a number of missing packets in almost all the 30 cases,
amounting to a total of 478 missing packets. However, there are no detected faulty flits
in any of the cases. This is due to a discrepancy between the counter value and the
actual number of free buffer slots in the buffer, which is maintained separately by the
buffer read and write logic. This can be explained as follows: the VC buffers in this case
have a depth of four flits, which is equal to one packet. Since the maximum value of the
credit counter would be equal to the buffer depth of 4 (2 bits), any fault can only cause
the counter to be of some value from 0 to 4. Two cases can occur:

• If the fault changes the credit counter to a value which is less than the original
value (i.e. there are more slots empty than shown by the counter), then no flits
can get stored in the buffer after a point, even if it is not full. The next packet
coming in will thus be partially stored, stalling the associated routers.

• If the fault changes the credit counter to a value which is more than the original
value (i.e. there are less slots empty than shown by the counter), even though the
upstream router tries to transmit the packet, the FIFO buffer logic inside the VC
will prevent anything from being written after it is full. The packet will be thus
partially transmitted, stalling the associated routers.
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It is to be noted that this situation is aggravated since the buffer depth is equal to the
packet size, due to which any kind of fault completely prevents the transmission of the
packet. If the buffer depth were greater than the packet size, there would be a possibility
of packet transmission even in the presence of a fault, albeit at a lower effective (usable)
buffer size.

Table 6.3.: Flow Control Fault Statistics
No. Time

Stamp
(ns)

Faulty
Router

Comp-
onent

Port VC Duration
(ns)

Total
Faulty
Packets

Data
Faults

Routing
Faults
due to
Data

Other
Rout-
ing
Faults

No
Mani-
fested
Faults

Missing
Pack-
ets

1 119 2 Flow Ctrl. Port 3 2 15 0 0 0 0 0 5

2 137 9 Flow Ctrl. Port 3 0 3 0 0 0 0 0 0

3 631 13 Flow Ctrl. NI 2 14 0 0 0 0 0 29

4 123 0 Flow Ctrl. Port 2 0 3 0 0 0 0 0 59

5 569 15 Flow Ctrl. Port 2 2 11 0 0 0 0 0 14

6 469 9 Flow Ctrl. Port 3 1 16 0 0 0 0 0 0

7 25 11 Flow Ctrl. NI 1 16 0 0 0 0 0 29

8 321 3 Flow Ctrl. Port 2 1 1 0 0 0 0 0 59

9 999 15 Flow Ctrl. Port 2 0 5 0 0 0 0 0 14

10 41 12 Flow Ctrl. NI 1 12 0 0 0 0 0 29

11 15 24 Flow Ctrl. NI 1 6 0 0 0 0 0 0

12 223 12 Flow Ctrl. Port 2 3 1 0 0 0 0 0 29

13 453 6 Flow Ctrl. Port 3 1 3 0 0 0 0 0 8

14 639 15 Flow Ctrl. Port 3 0 3 0 0 0 0 0 11

15 311 21 Flow Ctrl. Port 1 1 11 0 0 0 0 0 2

16 175 2 Flow Ctrl. Port 3 3 10 0 0 0 0 0 5

17 281 24 Flow Ctrl. NI 1 3 0 0 0 0 0 0

18 53 2 Flow Ctrl. NI 1 16 0 0 0 0 0 0

19 25 11 Flow Ctrl. Port 3 0 13 0 0 0 0 0 8

20 125 2 Flow Ctrl. NI 0 4 0 0 0 0 0 0

21 1523 7 Flow Ctrl. Port 2 2 13 0 0 0 0 0 44

22 269 14 Flow Ctrl. Port 2 1 11 0 0 0 0 0 29

23 51 22 Flow Ctrl. Port 3 0 5 0 0 0 0 0 5

24 117 4 Flow Ctrl. NI 2 17 0 0 0 0 0 0

25 199 5 Flow Ctrl. Port 3 1 17 0 0 0 0 0 11

26 173 19 Flow Ctrl. NI 1 17 0 0 0 0 0 44

27 385 9 Flow Ctrl. NI 0 6 0 0 0 0 0 14

28 105 14 Flow Ctrl. Port 1 0 16 0 0 0 0 0 11

29 293 12 Flow Ctrl. Port 3 3 17 0 0 0 0 0 5

30 113 5 Flow Ctrl. NI 0 2 0 0 0 0 0 14

In order to better understand how the packets go missing, the case of simulation run
number 1, with 5 missing packets, has been considered. The fault has occurred in port 3
of router 2, inside VC 2. The fault timestamp is 119 ns. Going in the order of injection
time, the missing packet has with ID 400003, has source and destination nodes 4 and 17,
respectively. Looking at the path taken by the packet: 4→ 3 along VC 2, it can be seen
that the packet stalls at 3. Since the credit counter of VC 2 in router 2 has a fault at
the input port from 4→ 3 (port 3), the packet cannot reach router 2 and is stalled. It is
stored in VC 2 of router 3 and hence has blocked VC 2 of the 4→ 3 input port of router
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3. The next packet, with ID 400007, with source and destination nodes 4 and 16, tries
to move into router 3 through VC 2, and gets stalled in router 4 because of the blocked
VC in router 3. The packet is now stored in the input port of the router connected
to the Master NI, blocking VC 2 of that input port. The packet with ID 300011, has
source and destination nodes 3 and 7, respectively. Also following VC 2, it gets stalled
at router 3 because of the faulty credit counter of router 2. It then blocks VC 2 of the
input port connected to the Master NI. The packet with ID 400011 cannot even enter
router 4 because of the blocked VC 2 of input port from the Master NI, being blocked
by packet 400007. The packet with ID 300015, with source and destination nodes 3 and
2, shares a similar fate, being blocked due to packet 300011. This has been shown in
Figure 6.3.

Figure 6.3.: Packet path for flow control test

6.1.4. Faults in RCUs

The results of the RCU single fault injection is given in Table 6.4. There are 3 packets
that have been affected by faults, all of which seem to have had no manifested effect.
This means that these packets have reached their correct destination in spite of the
faults. There are also two cases of missing packets.

The packet with packetID 1100004 in simulation run no. 12 has the source at node
11 and destination at node 7. The fault location is also node 7. From the path followed
by the packet: 11 → 12 → 7 → 6 → 7 (see Figure 6.4), it can be seen that the packet
reaches the faulty destination node, is sent back to node 6. It is then sent by node 6
back to its intended destination following the XY routing protocol.

The packet with packetID 8 in simulation run no. 23 has the source at node 0 and
destination at node 11. The fault location is node 6. From the path followed by the
packet: 0→ 1→ 6→ 7→ 6→ 11 (Figure 6.4), it can be seen that at node 6, the packet
is incorrectly sent to node 7 due to the fault. However, following XY routing protocol,
node 7 sends it back to node 6, which is then sent correctly to node 11 since node 6
RCU is not faulty anymore.
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Table 6.4.: RCU Fault Statistics

No. Time
Stamp
(ns)

Faulty
Router

Comp-
onent

Port Duration
(ns)

Total
Faulty
Packets

Data
Faults

Routing
Faults
due to
Data

Other
Rout-
ing
Faults

No
Mani-
fested
Faults

Missing
Packets

1 75 21 RCU NI 4 0 0 0 0 0 0

2 181 9 RCU Port 3 8 0 0 0 0 0 0

3 9 2 RCU NI 10 0 0 0 0 0 0

4 47 14 RCU Port 3 6 0 0 0 0 0 0

5 583 15 RCU Port 3 9 0 0 0 0 0 0

6 597 3 RCU Port 1 19 0 0 0 0 0 2

7 729 3 RCU Port 1 5 0 0 0 0 0 0

8 249 13 RCU Port 3 20 0 0 0 0 0 0

9 331 19 RCU NI 6 0 0 0 0 0 0

10 195 22 RCU Port 1 13 0 0 0 0 0 0

11 229 5 RCU Port 3 4 0 0 0 0 0 0

12 235 7 RCU Port 2 16 1 0 0 0 1 0

13 345 9 RCU NI 17 0 0 0 0 0 0

14 271 3 RCU NI 19 0 0 0 0 0 0

15 629 1 RCU Port 1 7 0 0 0 0 0 0

16 651 0 RCU Port 2 15 0 0 0 0 0 0

17 89 14 RCU NI 8 0 0 0 0 0 1

18 211 9 RCU Port 2 20 0 0 0 0 0 0

19 111 6 RCU NI 16 0 0 0 0 0 0

20 289 5 RCU Port 1 10 0 0 0 0 0 0

21 9 8 RCU Port 2 5 0 0 0 0 0 0

22 227 6 RCU Port 2 5 0 0 0 0 0 0

23 563 6 RCU NI 12 1 0 0 0 1 0

24 987 0 RCU Port 1 3 0 0 0 0 0 0

25 663 19 RCU NI 8 0 0 0 0 0 0

26 61 3 RCU Port 2 12 0 0 0 0 0 0

27 201 2 RCU Port 3 15 0 0 0 0 0 0

28 93 13 RCU NI 20 1 0 0 0 1 0

29 519 21 RCU Port 1 9 0 0 0 0 0 0

30 275 8 RCU Port 3 2 0 0 0 0 0 0

The packet with packetID 2 in simulation run no. 28 has its source at node 0 and
destination at node 18. The fault has occurred in node 13. Looking at the path followed
by the packet: 0→ 1→ 2→ 3→ 8→ 13→ 8→ 13→ 18 (Figure 6.4), we see that the
fault has pushed the packet back to the previous node, and hence following XY routing
algorithm, it has moved again to node 13 and completed its intended path to reach node
18.

Hence, in general, a fault in the RCU has a less detrimental effect on the routing, since
the XY routing protocol takes care of small changes in the path caused by the faulty
RCU. The only effect it has in this case is an increase in latency. However, one case has
not been seen in the 30 iterations: the fault in the RCU can make the output port to be
the slave NI instead of any of the other router directions. In that case the packet will
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leave the NoC from the faulty node and hence not reach its intended destination.

Besides these, there also are cases of missing packets. Considering the first case,
of simulation no. 6, we see that the missing packets have packet IDs of 1601250 and
1501250. Packet 1501250 has source and destination nodes to be 15 and 14, respectively.
Packet 1601250 has source node and destination node to be 16 and 8, respectively. From
the flit path data, we see that in both cases the head flit reaches the intended destination
at 99997 ns. Hence this just means that all the flits of the packet were unable to exit the
NoC within the simulation time window. The case for simulation run no. 17 is similar.

1100004 (Simulation 12)
       8 (Simulation 23)

       2 (Simulation 28)

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Figure 6.4.: Packet paths for RCU test

6.1.5. Faults in Crossbars

The results of single fault injections in crossbars is given in Table 6.5. Out of the 30
runs, 10 have faulty packets, out of which 4 have been affected by routing faults, while
the other 6 have no manifested faults. However in each of these cases, and also in
cases where there are no faulty packets observed, there are numerous missing packets,
amounting to 2842. Since it is too cumbersome to cover all the cases separately, a few
representative cases will be considered: no faulty packets but missing packets present,
faulty packets with routing errors along with missing packets, faulty packets with no
manifested faults but with missing packets, and faulty flits with no manifested faults
and no missing packets.

6.1.5.1. No faulty packets, Missing packets

Considering the case of simulation run no. 6, with 313 missing flits, the fault location
is router 0. Looking at the missing packets in increasing order of starting time, the first
flit has a packetID of 700011 with source and destination nodes 7 and 0 respectively.
According to the flit path, the head flit goes through: 7 → 6 → 5 → 0 (Figure 6.5a),
and is stored in VC 2 at router 0. Hence the head flit has reached the destination, at
813 ns. The fault occurs at 815 ns, for 8 ns. Hence, the head flit has been sent to a
random incorrect port. Since the flit path ends at router 0, it can be inferred that the

CONFIDENTIAL 55



Table 6.5.: Crossbar Fault Statistics

No. Time
Stamp
(ns)

Faulty
Router

Component Duration
(ns)

Total
Faulty
P
ackets

Data
Faults

Routing
Faults
due to
Data

Other
Rout-
ing
Faults

No
Mani-
fested
Faults

Missing
Packets

1 1251 10 Crossbar 18 0 0 0 0 0 0

2 373 7 Crossbar 19 0 0 0 0 0 0

3 787 20 Crossbar 5 0 0 0 0 0 0

4 443 14 Crossbar 18 0 0 0 0 0 0

5 607 4 Crossbar 2 0 0 0 0 0 0

6 815 0 Crossbar 8 0 0 0 0 0 313

7 833 8 Crossbar 10 1 0 0 1 0 321

8 869 12 Crossbar 16 1 0 0 0 1 0

9 719 10 Crossbar 14 1 0 0 0 1 349

10 1175 7 Crossbar 14 0 0 0 0 0 0

11 135 1 Crossbar 20 0 0 0 0 0 0

12 61 10 Crossbar 20 0 0 0 0 0 0

13 253 7 Crossbar 16 1 0 0 1 0 349

14 125 20 Crossbar 20 0 0 0 0 0 312

15 535 3 Crossbar 17 0 0 0 0 0 0

16 285 17 Crossbar 6 0 0 0 0 0 0

17 1923 9 Crossbar 1 1 0 0 0 1 316

18 1145 13 Crossbar 11 0 0 0 0 0 192

19 131 3 Crossbar 6 0 0 0 0 0 0

20 1233 2 Crossbar 12 1 0 0 0 1 320

21 405 6 Crossbar 17 2 0 0 1 1 48

22 57 19 Crossbar 9 0 0 0 0 0 0

23 703 10 Crossbar 6 0 0 0 0 0 0

24 297 22 Crossbar 3 0 0 0 0 0 0

25 183 7 Crossbar 15 0 0 0 0 0 0

26 139 11 Crossbar 5 0 0 0 0 0 0

27 583 3 Crossbar 15 1 0 0 0 1 322

28 339 14 Crossbar 2 1 0 0 1 0 0

29 231 9 Crossbar 3 0 0 0 0 0 0

30 137 18 Crossbar 12 0 0 0 0 0 0
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head flit was not sent to any of the neighboring routers, but attempted to be sent to
the unconnected port of router 0 which is an edge router. Due to the absence of control
signals from the unconnected port, the Physical Layer and VC Allocator is kept busy
waiting, effectively stalling the router for the specific input port (5→ 0). Also, since the
packet size is 4 flits, the rest of the 3 flits are still stored in VC 2.

Now considering packet 800011 which is supposed to move from node 8 to 0, the path
taken is: 8 → 7 → 6 → 5 → 0 (Figure 6.5a), with the final VC being 2. Hence, it is
partially stored in the non-empty VC 2, the rest of its flits being stalled in router 5.
Since the flits of packet 700011 are already present and stalled, it cannot even reach the
Physical Link and VC Allocator. On the other hand the buffer for VC 2 is filled up, and
it will be unable to accept more flits.

Packet 200014, from node 2 to 0, ends with being stored at VC 1. Since the Physical
Layer and VC Allocator is already stalled, it fails to reach the Slave NI, even though
there is no fault occurring at the time. Packet 700014, supposed to move from node 7
to 0, moves along 7 → 6 → 5 (Figure 6.5a) in VC 1, and gets stalled at router 5 since
that specific port from 5→ 0 is blocked with flits from packet 800011. This also means
the VC used by packet 700014 (VC 1) at that input port (6→ 5) is full.

For the case of packet with ID 800014, which is supposed to move from node 8 to node
15, it moves along 8 → 7 → 6 (Figure 6.5a) in VC 1 and gets stalled before entering
router 5 because of VC 1 buffer being full.

In this way a chain reaction or a domino effect occurs, and gradually many neighboring
routers get stalled in some or all ports, leading to so many missed packets. It is to be
noted that in this test, the VC allocation scheme has been set to Master NI, which
means that the VC to be used by a packet is fixed by the Master NI and cannot be
changed in its path. So, in this case, even if other VCs in a router are free, the packet
is stalled if its assigned VC is blocked in the router. Thus is can be surmised that if the
VC allocation scheme were dynamic instead of being fixed at the NI, there could be less
cases of missed packets since packets could use unblocked VCs while moving through
intermediate routers.

6.1.5.2. Faulty packets with routing errors, Missing packets

Considering simulation run no. 7, with 1 detected faulty packet with routing error and
321 missing packets, the fault occurs at 833 ns, in router 8. Since the router is not at
any edge of the NoC, the previous problem of flits getting lost at the NoC boundary is
not possible.

First, we analyze the detected faulty packet since it is the first to be affected by
the fault. The packet ID is 100011, and source and destination nodes are 1 and 8,
respectively. Tracing the path taken: 1 → 2 → 3 → 8 (Figure 6.5b) through VC 2, it
can be seen that the head flit successfully reaches the destination. However, from the
faulty flit data, it is observed that the tail flit reaches node 8, but instead of being sent
into Slave NI, it has been sent into router 7. Since it is not a head flit, it is discarded
by the router. Also, since the Physical Layer and VC Allocator does not receive any
acknowledgment of the successful transmission of the tail flit, that specific input port
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(a) No Faulty Packets, Missing Packets

100011
    11
     12
1500012

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

(b) Faulty Packets with Routing Errors, Miss-
ing Packets

500010
600010

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

(c) Faulty Packets with No Manifested Faults,
Missing Packets

(d) Faulty Packets with No Manifested Faults,
No Missing Packets

Figure 6.5.: Packet paths for Crossbars

(3→ 8) allocation is not freed and the router is stalled for that input port. Even though
a packet can enter through that port and get stored in the VC, it cannot pass into any
output port.

Among the rest of the missing flits, the packet with ID 11 is supposed to move from
node 0 to 8. Looking at its path: 0 → 1 → 2 → 3 → 8 (Figure 6.5b) through VC 2, it
can be seen that it has followed the right path and has entered the destination router.
However, due to the stalled VC allocator, it cannot reach the Slave NI, and hence is
stuck in VC 2, which also means that VC 2 is blocked for any more packets trying to
enter.

The next packet with ID 12 has a similar problem. Originally supposed to go from
node 0 to node 23, it gets stuck at router 8 due to the physical layer and VC allocator,
and blocks VC 3 of that input port. For the next packet with ID 1500012, the source

58 CONFIDENTIAL



and destination nodes are 15 and 3, respectively. Looking at the path followed: 15 →
16 → 17 → 18 → 13 → 8 (Figure 6.5b) through VC 3, it gets stuck at router 8 for the
same reason, also blocking VC 3 of the input port (13→ 8).

Hence we can conclude that similar to the previous case, there is a chain reaction,
leading to the loss of so many packets.

6.1.5.3. Faulty packets with no manifested faults, Missing packets

Considering simulation run no. 9, with 1 detected faulty packet with no manifested error
and 349 missing packets, the fault occurs at 719 ns, in router 10. This router is also at
the edge of the NoC and hence can have flits/packets leaving the NoC.

Looking at the detected faulty packet with ID 1000010, it is seen that two of the flits
of the packet are affected by the faults, but have reached the correct destination node,
17. It can be concluded that the direction imposed by the fault in the crossbar was the
same as that required by the flits to reach the correct router, i.e. towards router 15.

The first missing packet has an ID of 500010, with source and destination being nodes
5 and 10. It reaches the destination node 10 at 725 ns, when the fault is still active.
At the destination node 10, instead of being sent to the Slave NI, it is sent to router 15
(Figure 6.5c). However, it can be concluded that by the time the tail flit has reached,
the fault is deactivated, and hence the tail flit is sent to the Slave NI. Without a head
flit, this is rejected and the physical link and VC allocator is stalled.

For the next missing packet with an ID of 600010, the source and destination are
nodes 6 and 20 respectively. It goes through the following path: 6 → 5 → 10 (Figure
6.5c) and gets stuck at 10 because of the stalled physical link and VC allocator in the
router.

The general trend continues like the previous two cases, leading to the rest of the
missing packets.

6.1.5.4. Faulty packets with no manifested faults, No missing packets

In the simulation run no. 8, there is 1 detected faulty packet with no manifested error
and no missing flits. The fault occurs at 869 ns, in router 12. This case is relatively
simple to understand.

The detected flit has an ID of 1200012, with source and destination nodes 12 and
21, respectively. Looking at the path: 12 → 11 → 16 → 21 (Figure 6.5d), it can be
concluded that the fault-imposed direction is the same as the required direction, leading
to the successful transmission of the flit.

6.1.6. Faults in Physical Link and VC Allocator

The results of single fault injections in physical link and VC allocator is given in Table
6.6. Out of the 30 runs, 3 have faulty packets, but a lot of missing packets, amounting
to 1579. Predictably, it has not lead to any data or routing faults, since it only affects
the priority in the input port arbitration. A few cases are considered to gain a better
understanding of how the faults affect the traffic: detected faulty packets but no missing
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Table 6.6.: Physical Link and VC Allocator Fault Statistics

No. Time
Stamp
(ns)

Faulty
Router

Component Duration
(ns)

Total
Faulty
P
ackets

Data
Faults

Routing
Faults
due to
Data

Other
Rout-
ing
Faults

No
Mani-
fested
Faults

Missing
Packets

1 235 3 PL VC Alloc. 2 0 0 0 0 0 0

2 235 4 PL VC Alloc. 6 0 0 0 0 0 0

3 361 4 PL VC Alloc. 20 0 0 0 0 0 0

4 695 10 PL VC Alloc. 9 0 0 0 0 0 0

5 1091 17 PL VC Alloc. 19 0 0 0 0 0 0

6 1567 14 PL VC Alloc. 15 0 0 0 0 0 1

7 641 10 PL VC Alloc. 12 0 0 0 0 0 0

8 641 18 PL VC Alloc. 12 1 0 0 0 1 0

9 87 17 PL VC Alloc. 18 0 0 0 0 0 329

10 497 2 PL VC Alloc. 14 0 0 0 0 0 0

11 363 5 PL VC Alloc. 8 0 0 0 0 0 307

12 79 16 PL VC Alloc. 1 0 0 0 0 0 0

13 87 4 PL VC Alloc. 10 0 0 0 0 0 304

14 305 15 PL VC Alloc. 3 0 0 0 0 0 312

15 329 2 PL VC Alloc. 3 1 0 0 0 1 35

16 1693 19 PL VC Alloc. 3 0 0 0 0 0 0

17 2039 0 PL VC Alloc. 13 0 0 0 0 0 0

18 359 4 PL VC Alloc. 9 0 0 0 0 0 0

19 985 15 PL VC Alloc. 14 0 0 0 0 0 0

20 541 21 PL VC Alloc. 2 0 0 0 0 0 0

21 433 10 PL VC Alloc. 12 0 0 0 0 0 0

22 853 9 PL VC Alloc. 13 0 0 0 0 0 0

23 387 9 PL VC Alloc. 12 0 0 0 0 0 0

24 41 14 PL VC Alloc. 4 0 0 0 0 0 0

25 1037 3 PL VC Alloc. 16 1 0 0 0 1 0

26 561 2 PL VC Alloc. 16 0 0 0 0 0 0

27 207 10 PL VC Alloc. 1 0 0 0 0 0 0

28 63 0 PL VC Alloc. 5 0 0 0 0 0 0

29 341 16 PL VC Alloc. 12 0 0 0 0 0 0

30 245 0 PL VC Alloc. 3 0 0 0 0 0 291
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packets, detected faulty packets along with missing packets, and missing flits without
any detected faulty packets.

6.1.6.1. Faulty packets, No missing packets

Considering simulation run no. 8, with 1 detected faulty packet and no missing packets,
the fault occurs at 641 ns, in router 18. The faulty packet, with packet ID 1600009, enters
the router at 651 ns, while moving from nodes 16 to 13. Looking at the path taken: 16→
17→ 18→ 13 (Figure 6.6a) and the fact that there have been no abnormal latencies as
the packet has moved from nodes 18 to 13, it can be concluded that the priority imposed
by the fault is the same as the original priority according to the arbitration policy. Hence
the operation of the router after the fault has resumed as normal, leading to no missing
packets.

(a) No Faulty Packets, No
Missing Packets

(b) Faulty Packets, Missing
Packets

300004
1000005
300005
1900005
300005

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

(c) No Faulty Packets, Miss-
ing Packets

Figure 6.6.: Packet paths for Physical Link & VC Allocator

6.1.6.2. Faulty packets, Missing packets

Considering simulation run no. 15, with 1 detected faulty packet and 35 missing packets,
the fault occurs at 329 ns, in router 2. In order to understand what happens, 2 packets
need to be considered together first.

The faulty packet, with packet ID 800005, has source and destination nodes 8 and 2,
and reaches router 2 at 329 ns in VC 0. Meanwhile, one of the missing packets, with
packet ID 300005, having source and destination nodes as 3 and 1, has already reached
router 2 at 325 ns, also in VC 0. However, by the time it reaches the physical layer
and VC allocator, it is under fault and does not give the priority to the packet. At 329
ns the packet 800005 arrives from router 7. By the fact that it successfully reaches its
destination (the Slave NI of router 2) we can conclude that the fault-induced priority
was the input port of router 7→ 2.
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From now, because of synchronization signals there is a deadlock. On the one hand,
the physical link & VC allocator only wakes up when there is new data coming into
its inputs, or a subsequent router buffer frees up to accommodate a waiting packet
transaction. On the other hand, the VCs write new data to their outputs only when
respective read enable signals are asserted by the allocator. The allocator has not done
this for the other input ports because in its last wake-up cycle it has only prioritized
input port 7→ 2. So the allocator is now stalled. The packet 300005 never gets priority
since it was already present in its input port from before. Thus it is stalled .This also
means that VC 0 of the 3→ 2 port is filled.

Also another packet, with ID 400005, and having source and destination nodes as 4
and 11, reaches router 3 in VC 0, and cannot reach router 2 since the VC 0 in that
input port is filled. The packet with ID 400007, with source and destination as 4 and
20, reaches router 2 via 4→ 3→ 2 in VC 2 and stalls.

The packets with IDs 20006 to 200009, with source at node 2, also stall in router 2
VC. Packets with IDs 200010 to 200014 do not even enter the router and get stalled in
Master NI.

In this way packets which pass near or through router 2 get stalled either due to the
stalled router 2 or filled buffers in nearby routers, leading to the missing packets.

6.1.6.3. No faulty packets, Missing packets

Considering simulation run no. 14, with no detected faulty packet and 312 missing
packets, the fault occurs at 305 ns, in router 15. This case can be explained in a similar
way to the previous case. When the fault occurs, since there is no detected packet flit,
it can be concluded that there was no flit from the input port prioritized by the fault.
Hence, as explained in the previous case, due to the absence of any data change in the
VC inputs of the allocator after the fault, it stalls and it is not possible for any packet
to travel through the router.

Looking at the missing packets in order of injection time, the packet with ID 300004
has source and destination nodes 3 and 15, respectively. It successfully reaches router
15 at 307 ns but is stalled and cannot reach the Slave NI.

The packet with ID 1000005, with source and destination nodes 10 and 15, reaches
router 15 in VC 0 and is stalled. Hence VC 0 of the 10 → 15 input port is blocked by
this packet. The packet with ID 300005 has source and destination nodes as 3 and 15,
respectively. It moves along 3 → 2 → 1 → 0 → 5 → 10 in VC 0 and gets stalled at
router 10 because of the blocked VC of the input port of router 15. It also effectively
blocks VC 0 of the 5 → 10 router input. The packet with ID 1900005 is also stalled at
the input of router 15 while going from node 19 to 15.

Later on, packet 300006 also gets stalled in router 5 while moving from nodes 3 to 15,
due to the blocked input port of 5→ 10. In this way, it can be concluded that the rest
of the packets moving through or nearby router 15 have been installed, leading to the
missing packets.
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6.2. Comparison with Literature

In order to validate the proper functioning of the fault injection system, it is beneficial
to compare it with established scientific literature. Two works have been considered, one
by Frantz et al. [46, 48] and the other by Liu et al. [43], for transient and permanent
faults respectively. The paper [48] is cited more, and is similar to [46], with the addition
of crosstalk faults. In the present work, results from [48] have been used. However
[46] has also considered since it has more details about the NoC architecture and fault
injection mechanisms, which helps in reproducing similar conditions in the comparison.
The paper by Liu et al. [43] is actually about fault tolerant routing algorithm design.
However, unlike other papers of the same type, it shows results for a generic NoC based
on XY routing, using the Noxim simulator. Hence it can be used to compare the fault
tolerant case with an established simulation platform like Noxim.

6.2.1. Transient Faults

The fault injection framework designed by Frantz et al. has been evaluated on a NoC
having routers with the RASoC architecture [46], an input-buffered router architecture
like the NoC Explorer router architecture. The NoC is written in VHDL and simulated
post-synthesis, providing a more realistic view of circuit behavior. The specifications of
the architecture are:

Topology : Mesh
Size : 5x5
Routing Algorithm : Deterministic source routing
VC’s : 5
VC Buffer Depth : 4
Flow Control : Handshake based
VC Selection : Not specified
VC Arbitration : Round Robin
Physical Link Arbitration : Round Robin
Flit size : 10 bits
Traffic Distribution : Uniform

It can be seen that there are quite a few differences between this and the NoC Explorer
fault injection framework. The routing algorithm is deterministic source routing, which
is not supported by NoC Explorer. Flow control is simpler and does not involve credit
counters. How the VC’s are selected (whether at source in the NI, or dynamically) is not
specified. The flit size is 10 bits, while that in case of the NoC Explorer is 36 bits, being
modeled according to the Recore NoC. This affects the VC buffer fault probabilities.
In view of this, a more qualitative comparison has been done, to see whether the NoC
Explorer fault injection framework follows the same trend for transient fault injection as
the established literature.

The paper [48] shows the effects separately for a number of router elements. These
are explained below:
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FIFO Buffers These correspond to the VC buffers and are self-explanatory.

FIFO FSM State Registers These refer to the registers for the flow control logic, which
is quite different from the NoC Explorer framework.

Arbitration Priority Registers These refer to the arbitration priority register of the VA
stage. In the case of the NoC Explorer, it is in the Physical Link and VC Allocator.

Arbitration Control FSM State Register This refers to the FSM logic in the VA stage.

For each of these cases, the effects of faults in terms of payload error, routing errors,
missing packets, router crash and packet formulation error. Packet formulation error
refers to missing header or tail flits. This is not separately supported by NoC Explorer,
and any errors of this type would be grouped into missing packet errors. The comparison
has been done keeping this in view. Also, looking at the fact that in[48] the total
percentage of different effects comes out to be 100 % always, it can be surmised that the
multiple effects by a single fault have not been considered. Payload and routing errors
are mutually exclusive and so pose no confusion. However a router crash or stall always
implies a packet is stuck in a router, i.e. a missing packet. Hence, in the NoC Explorer
experiments, in case of a router stall which causes missing packets, only the router stall
has been considered.

It is to be noted that fault injection into the equivalent to the Arbitration Control
FSM State Register has not been supported in NoC Explorer and hence is not considered.
Also, fault injection into the RCU and the crossbar have not been considered by Frantz
et al., and hence that feature has been left untested.

In the comparison, the average effects have been considered. 30 single fault simulations
have been done for each faulty component and the average effects have been observed.
The parameters used have been to keep the greatest similarity with [46], viz. same VC
configuration, clock period, NoC size, arbitration scheme, and a maximum fault duration
equal to clock period as mentioned before. The rest of the parameters have been kept
the same as the single fault tests of Section 6.1.

6.2.1.1. VC Buffers

A comparison of the two frameworks, the NoC Explorer and the one by Frantz et al., in
case of faults in VC buffers is given in Figure 6.7. As can be seen, the two frameworks
show very similar results for this case.

6.2.1.2. Flow Control

The comparison of the two frameworks in the case of faults in flow control registers
is shown in Figure 6.8. There are considerably more fault effects in case of the NoC
Explorer case, in comparison to the framework of Frantz et al. This can be attributed
to the different flow control protocols used. The RASoC router in [48] uses a simple
handshake-based flow control. There is a simple 2-bit register controlling the buffer flow
control [46]. Since the protocol is handshake-based, a fault can have an effect at most
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Figure 6.7.: Literature Comparison for Transient Faults: VC Buffer Faults

for one transaction. On the other hand, the flow control in case of the NoC in the NoC
Explorer is credit based. A temporary fault in the credit counter changes the counter
value to something different, which is used for all flow control calculations until the router
is reset. Thus in effect the transient fault, in this case, affects the NoC permanently,
which has been reflected in the results obtained.

6.2.1.3. VC Allocator Priority Register

The comparison results in case of faults in the VC allocator priority register are shown
in Figure 6.9. It is to be noted that in case of the NoC Explorer, the VC Allocator is
part of the Physical Link & VC Allocator module, while in case of the framework of
Frantz et al., it is part of the Output Controller module [46].

The NoC Explorer case shows higher number of packets missing. This can be at-
tributed to the router design. As explained in Section 6.1.6, due to the way synchro-
nization has been designed in the Physical Link & VC Allocator module of the original
NoC Explorer router architecture, once the order of input port is changed, the module
is deadlocked and no packets can pass through. This has lead to higher missing packets
in case of the NoC Explorer.

6.2.2. Permanent Faults

The paper by Liu et al. [43] shows the simulation results of, among others, the average
throughput and average delay in uniform traffic for a generic NoC employing XY routing,
at different percentages of faulty links. These can be compared with the extended NoC
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Figure 6.8.: Literature Comparison for Transient Faults: Flow Control Faults

Explorer with similar simulation parameters, giving a more high-level comparison of the
two.

The permanently faulty links simulated in [43] are implemented differently than the
NoC Explorer. Firstly, the faulty links are unable to send flits in the case of [43], acting
as broken links, while in the case of the NoC Explorer the faulty links send flits with
faulty data. Also, in case of [43], the simulation is started with a certain percentage
of links in the NoC already faulty, while the NoC Explorer fault injection framework
denotes links to be faulty at different time instants, based on probability. The latter
has been emulated in the NoC Explorer as a separate function, just for this test, so that
links are permanently faulty from the start even in case of NoC Explorer. This was a
necessary step in order two compare the two frameworks.

The NoC parameters for the case of [43], which have been also used for the NoC
Explorer comparison, are given below. The NoC parameters for the case of [43], which
have been also used for the NoC Explorer comparison, are:
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Figure 6.9.: Literature Comparison for Transient Faults: VC Allocator Priority Register
Faults

Topology : Mesh
Size : 8x8
Routing Algorithm : XY Routing
VC’s : 2
VC Buffer Depth : Not specified
Flow Control : Not specified
VC Selection : Not specified
Arbitration : Adaptive Round Robin (com-

bining ideas of round robin
and first come first serve)

Flit size : 36 bits

The simulation conditions used are:

Traffic Distribution : Uniform
Packet Injection Rate : 0.03 packets/cycle/node
Warmup time : 1000 cycles
Simulation time : 20000 cycles

The parameters that have not been specified have been kept the same as those of the
single fault testing. The warmup time has been neglected since the NoC Explorer does
not support delayed data collection for traffic statistics, while the total simulation time
has been set as 40 µs using the command line options. The simulations have been done
10 times and the results averaged out. The script used is faultLiuTest.py and has been
explained in Appendix C.3.
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6.2.2.1. Average Throughput

The average throughput, as defined in [43], is given by:

T =
Rflits

Nnodes ∗Nclk

where Rflits is the total number of successfully received flits, Nnodes is the total number
of nodes, and Nclk is the total number of clock cycles.

Table 6.7.: Literature Comparison for Permanent Faults: Throughput

Faulty Links NoC Explorer Liu et al.

0 % 0.03 0.03
5 % 0.0176 0.023
10 % 0.0067 0.016
15 % 0.0055 0.014
20 % 0.0037 0.010

Figure 6.10.: Literature Comparison for Permanent Faults: Throughput Degradation

The results of the comparison for link fault rates of 0 %, 5 %, 10 %, 15 % and 20 %
are shown in Table 6.7. The throughput degradation w.r.t. no faults is also compared
in Figure 6.10. The NoC Explorer shows faster throughput degradation than the Liu et
al. case. The general trend, however, is similar for both the cases, suggesting that the
effect of permanent fault injection is similar. Te faster degradation might be because
of different router architecture and also the different way that the link faults have been
implemented in the two cases.
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6.2.2.2. Average Delay

The average delay, as defined in [43], is given by:

D =
1

K

K∑
n=1

Di

where K is the number of number of packets successfully reaching their destinations
and Di is the delay for ith packet. This value is the same as the Average packet la-
tency(cycles) value, obtained using the analysis.py script.

Table 6.8.: Literature Comparison for Permanent Faults: Delay

Faulty Links NoC Explorer Liu et al.

0 % 21.5916 10.5
5 % 20.5436 10.5
10 % 19.2625 9.5
15 % 19.0399 9
20 % 18.6887 9

Figure 6.11.: Literature Comparison for Permanent Faults: Delay Decrease

The results of the comparison for link fault rates of 0 %, 5 %, 10 %, 15 % and 20 %
are shown in Table 6.7. Looking at the values, it can be seen that even in the baseline
case with no errors, the delay in case of the NoC Explorer, is approximately double that
of the Liu et al. case. This could be because of router design. The router in the NoC
Explorer is a 2-cycle router, i.e. it takes two cycles to complete a routing operation and
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send the packet from input to output. Although not specified in [43], if the router is
a 1-cycle router, this would perfectly explain the results. Plotting the delay decrease
percentage to gain a butter understanding (shown in Figure 6.11) the two cases follow
a same general trend, where the average delay decreases with higher number of faulty
links. This could be explained by the fact that the average delay formula considers only
successful transmissions, and since a longer path has higher chances of encountering
a faulty link, the packet transmissions which require a longer path get mostly failed,
leading to lower delays from the shorter paths of the successful cases.

6.3. Runtime Measurements and Performance Profiling

Performance profiling of a developed software is of significant importance, especially if
it is to be used quite routinely, for example for simulation and design space exploration
in this case. Performance profiling helps in narrowing down to parts of the code which
are consuming more resources, which can then be analyzed and optimized.

For the purposes of this research, the open source tool called Callgrind has been used,
which is part of the Valgrind [49] framework of debugging and profiling tools. Callgrind
is a run-time instrumentation based profiler, which mean that it inserts instructions
directly before the code execution to measure the performance. The code is run under
the Callgrind environment, fully supervised by the tool. The profile data output from
Callgrind is analyzed with the help of KCachegrind [50], a powerful GUI front-end for
Callgrind and other profilers.

KCachegrind provides a lot of information regarding the program execution, but for
our purposes, we will limit it to the flat profile, which provides a list of each function in
the code along with the number of times they have been called and the CPU time/cycles
spent in execution. It actually provides two timing values, both in relative time as well
as CPU cycles: an inclusive time and a self time. The inclusive time shows the whole
time spent in the function, including the times spent in all of the child functions it has
called. The self time only shows how long it has spent inside its own function. In order
to know which individual functions consume the most resources it is useful to look at
the self time instead of the inclusive time.

Three cases of the NoC Explorer have been profiled, as explained below. In order to
have the best possibility of comparison, the three cases have been run with a fixed seed
on the random number generator. This makes sure that none of the changes in execution
times of the different functions are due to randomization.

6.3.1. Original NoC Explorer

At first, the original NoC Explorer has been profiled, without any of the added code for
the fault injection framework. The simulation parameters chosen are the same as those
in Section 6.1, except the fact that no faults are injected. The results of the flat profile,
sorted according to decreasing order of self time, are given in Table 6.9. It is not a
complete list, but items lower down than those shown can be assumed to have very little
effect on CPU time. It can be seen that the rd thread() thread has the highest self time
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Table 6.9.: Callgrind Flat Profile for Original NoC Explorer

at 1183349709 cycles, followed by the operator= at 689808600 cycles. This is predictable
since the rd thread() thread, by design, wakes up every clock cycle to update the data in
its output port. In contrast, the wr thread() thread, which is only triggered by the read
enable signal, has a self time of 69745591 cycles. The operator= function has a high self
time since it is memory access constrained (has a lot of assignment operators inside the
body) and is used by a lot of functions, as evidenced by the high number of times being
called (19,183,582) compared to the other functions/threads.

6.3.2. NoC Explorer with Fault Injection — No Injected Faults

In the next case, the fault injection framework is enabled. However no faults are being
inserted. This is done by keeping the fault flag in the fault signal “false” while changing
all the other parameters. This make sure that the traffic is not affected in any way
by faults, while the fault injection manager is running. Hence a close comparison with
the previous case can be made, in order to get an idea of how much overhead the fault
injection manager poses on the application, without any of the other conditions changing.
The profiling results are presented in Table 6.10. While the function with the highest
self time is still the rd thread() thread, the second function in the list is now the write(flit
const &) function. The reason for higher self time is the more number of elements in
the flit data structure added for the fault injection, like fault flags, time stamps as well
as the redundant data and address information. Also, the saboteur component in the
link adds an extra write operation even for no faults inserted, adding to the number
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Figure 6.12.: Relative Utilization of NoC Explorer Functions

of function calls. The increase in elements in the flit data structure also explains the
increase in self time of the operator=(flit const&) function. The saboteur component
link thread() takes up some significant self time. The fault injection manager thread
fault gen thread() however does not pose too much overhead.

6.3.3. NoC Explorer with Fault Injection — Faults Injected

Next, the NoC Explorer with Fault Injection framework enabled has been profiled. The
simulation parameters chosen are the same as those in Section 6.1, except the fault
injection parameters, which are given below:

Temporary Fault Probability : 0.02 %
Permanent Fault Probability : 0.002 %

As discussed in [8], the transient or soft error rate can vary widely depending on
technology and environmental factors. Hence an arbitrary value of 0.02 % has been
chosen, which is fairly pessimistic. As for the permanent faults, the ratio of temporary
to permanent faults in various published literature vary between 4 to 1000 [51]. Keeping
this into consideration, a pessimistic ratio of 10 has been chosen.

The previous case can be considered as a baseline for the fault injection framework.
It shows the overhead for the extra code that is being executed without any faults
occurring. When faults are actually injected, which is being investigated in this case,
the traffic conditions change dramatically, due to misrouting, missing packets, longer
routes, etc. There would be less number of packets injected into the NoC due to router
stalls. The stalls could also cause lots of functions to be put on wait. The results of
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Table 6.10.: Callgrind Flat Profile for NoC Explorer with Fault Injection — No errors
inserted

the flat profile, sorted according to decreasing order of self time, are given in Table
6.11. As can be seen, the rd thread() thread still takes the most self time. Most of
the functions directly related to fault injection are not on the top 20 items in the list,
except the link thread() thread with a self time of 1034804537 cycles.This is because,
the link thread() acting as a saboteur, is activated every time a link is active, even
when a fault is not to be generated. However, as predicted, a lot of the functions have
significantly longer self times than in the previous case.

A comparison of the relative self times of the different threads for each of the three
cases is shown in Figure 6.12.

6.3.4. Total Execution Cycles

Besides the detailed profile of the three cases, the total execution time of these cases
should also be considered, the data of which has been provided in Table 6.12. The
total execution cycles for each case can be obtained from KCachegrind and is equal to
the inclusive time of main function of the application. The case with fault injection
framework enabled but no faults are injected, shows an increase of 30.5 %. On the other
hand, the case with injected faults shows a significant increase of 91.5 %. This is mainly
due to increased waiting times of many of the functions due to stalls, and also due to
more code being executed for the fault injections. Change in NoC traffic could also be
a contributing factor.
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Table 6.11.: Callgrind Flat Profile for NoC Explorer with Fault Injection — Errors in-
serted

There are certain points where the code can be optimized for better performance. First
of all, the wr thread() should be concentrated on first. Secondly. the saboteur component
for links could be substituted with an equivalent mutant within the code of the RCU
and evaluated for any performance increase. Also, since this is a simulation of a NoC,
which consists of many separate components working in parallel and communicating
with each other, it can be parallelized and executed on multiple CPU cores, speeding
up the execution. However, the SystemC framework does not inherently support multi-
threading, and this feature has to be manually implemented, as done by the likes of [52]
and [53].

Table 6.12.: CPU Cycles Spent on NoC Explorer

Cycles Increase (w.r.t. Original)

Original 12,310,876,777 —
with Fault Injection; no injected faults 16,071,602,583 30.5 %
with Fault Injection; faults injected 23,587,429,410 91.5 %
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6.4. Summary

In this chapter, the NoC Explorer with fault injection framework has been benchmarked
under different conditions. Single faults have been inserted at separate components and
the effects of the same have been analyzed and explained. It has then been compared
with scientific literature to ascertain its validity. Transient fault injection in VC buffers,
flow control and VC allocation priority register has been compared with Frantz et al.
[48]. The results are similar, with the differences being due to a different flow control
algorithm and a different synchronization mechanism in the VC allocator in the NoC
Explorer. Permanent fault injection in links has been compared with Liu et al. [43], in
terms of throughput and delay. Both of these follow the same general trend.

Finally, the NoC Explorer has been profiled to measure performance, using the Call-
grind tool. There is a 30.5 % overhead of the NoC Explorer with fault injection frame-
work with no faults being generated, compared to the original NoC Explorer. This
overhead increases when faults are injected, due to router stalls, waiting threads, more
function execution and change in NoC traffic.
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Chapter 7.

Conclusion and Future Work

The first step towards a realistic design of a NoC for fault-prone environments like the
space requires a thorough analysis of the effects of various kinds of faults inside the NoC.
A simulator which can simulate faults in a NoC can be used to study fault effects in
a NoC context, provide insight regarding which components inside the NoC are more
error-prone, and also enable the evaluation of fault detection and mitigation strategies
developed for the NoC.

7.1. Conclusion

In this thesis, a fault injection framework for the NoC Explorer (a NoC simulator de-
veloped at Recore Systems) has been proposed, which can simulate the occurrence of
transient as well as permanent faults inside the NoC. It has customizable parameters for
simulating various fault conditions, and has tools which can be used to analyze direct
and indirect effects of individual faults, as well as overall effect on the traffic.

The main contributions of the thesis are:

• A fault injection framework for the NoC explorer, which enables the simulation
of transient and permanent faults in a NoC, and analyze their effects and conse-
quences.

• Using the developed framework to inject single faults in individual NoC compo-
nents inside the NoC, for a mesh based NoC with wormhole type XY routing, and
analysis of the direct as well as indirect effects of each fault to the NoC traffic.

• Comparison of results from the fault injection framework with two scientific works,
to examine if they match the framework considering similar conditions. Differences
in results, if present, have been explained.

• Performance profile and comparison of the NoC Explorer with the fault injection
framework with the original version of the simulator, to quantify the overhead
caused due the addition of the framework.

These are explained in detail next.

7.1.1. Fault Injection Framework

The NoC Explorer has been extended with a highly flexible fault injection framework for
simulating transient and permanent faults in an NoC. It supports customizable transient
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and permanent fault probabilities along with maximum duration of a transient fault,
ability to select specific router components to inject faults into, and maximum faults to
be generated in a simulation run.

It maintains outputs a set of CSV files which record various data, i.e. the fault requests
made by the fault injection manager, the list of faulty flits detected by the framework,
and the list of router stalls. It also outputs the whole of the path taken by each flit
(or by each packet as a whole, as selected by the user) throughout the whole simulation
run, in another CSV file. This extensive information about how each flit has moved
through the NoC can help in analyzing how a fault has affected a flit, leading to better
understanding towards fault detection and mitigation techniques. In addition a Python
script has been provided, which aggregates the data available from all of the output
files and calculates how many packets have been affected by each type of fault in the
simulation run, as well as the number of missing packets.

7.1.2. Single Fault Tests

Using the developed framework, simulations have been done in which, for each simulation
run, only one component of one random router in the NoC has been injected with a
transient fault. This has been done for each component of the router. 30 such simulation
runs have been done for a single type of component. This has been repeated for all six
components. This has helped in he understanding of how a single fault can directly or
indirectly affect traffic in the NoC, without the interference of other faults.

A general conclusion is that only a fraction of generated faults actually lead to er-
roneous flits in the NoC traffic. This is because the faulty component needs to be in
operation with a flit at the time of the fault in order to cause a faulty flit. In terms of
fault locations, a fault in a VC buffer, link or an RCU has a low probability to affect the
NoC traffic, while a single fault in a flow control credit counter, crossbar or a physical
link and VC allocator can cause havoc in the NoC traffic.

7.1.3. Literature Comparison

The fault injection framework has been compared with two published research works,
one by Frantz et al. [46, 48] and the other by Liu et al. [43].

The work of Frantz et al. concerns with transient fault effects in routers, looking at
how faults at different components have different consequences. The results for VC
buffers are very similar. For the cases of flow control and VC allocator priority register,
the NoC Explorer fault injection framework registers more errors in general, which can
be explained due to the more complex credit based flow control and the inherent design
differences in the router, which leads to synchronization issues.

The work of Liu et al. concerns with permanently faulty links and is more of an
overall view of traffic throughput and delay trends. The results of the NoC Explorer
fault injection framework follows the general trend of the work by Liu et al. even though
differences exit in absolute numbers, possibly due to differences in router architecture
and the difference in the modeling of link faults.
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7.1.4. Performance Profile

The NoC explorer with fault injection framework has been profiled in terms of perfor-
mance and compared with the performance of the original NoC explorer. There is a
30.5 % overhead compared to the original NoC Explorer, when the framework is active
but no faults are being injected. This gives a more realistic view of the overhead, since
the NoC traffic essentially remains the same. When faults are injected, the overhead
increases significantly, but is also due to the consequences of the faults like router stalls,
waiting threads and change of NoC traffic.

7.2. Future Work

The fault injection framework for the NoC explorer developed in this research is a good
starting point for the evaluation of NoC reliability in fault-prone conditions. However,
there are areas where it can be improved upon and extended. Some directions which
can be pursued in the future are:

• The fault probability can be made more realistic. Instead of a two-step uniform
distribution where a router is uniformly selected, and then one of the router com-
ponents is selected uniformly, a probability function can be developed considering
the relative areas and complexity of the different router components. This would
need changes mainly in the fault injection manager and the fault handler inside
the router.

• More fault injection locations can be added. Fault injection can be added for the
arbitration logic in the physical link and VC allocator. Adding fault injection into
the master and slave NIs would enable the study of cases where a fault is directly
generated at the transport layer.

• As explained in Section 6.3.3, the fault injection implemented for links leads to
waste of CPU time even when there is no fault to be generated. It can be replaced
with some mutant code in the RCU instead of keeping it as a separate saboteur
component, and compared with the previous case to see if performance is improved.

• In addition, the fault injection framework can be used to study the effects of faults
in NoCs with different topologies, routing algorithms and other parameters, after
validating the framework in those scenarios.

CONFIDENTIAL 79





Appendix A.

NoC Explorer Parameters

The different parameters that can be modified by the user, in the extended NoC Explorer,
are given below. They have been divided by location.

A.1. Command Line

The command line parameters are used to specify the following:

Simulation Time In microseconds (µs)

Clock period In picoseconds (ps)

Traffic Generator Parameters Node start and end times, max. & avg. bandwidth,
max. & min. burst size, destination node selection scheme, flit interval scheme

Routing Algorithm XY, West First, South Last, Across First, Across Last

VC Selection Scheme Fixed at Master NI or dynamically allocated at each router

VC Arbitration Scheme Priority or round robin

Physical Link Arbitration Scheme Priority or round robin

A.2. constants.h

This resides in the simulation testbench directory and is used to specify the following
parameters:

Topology Selection Mesh, Torus, Folded Torus, Spidergon

Dimensions Number of nodes each in X and Y directions

Physical links The number of physical links corresponding to each port of a router or
NI

Timing information How many cycles for reset and various router stages.

Data width In number of bits

Virtual channels Number of VCs, buffer depth of each VC
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Packet size Maximum and minimum packet size

Fault Injection To enable/disable the fault injection framework

Packet Path To switch between packet of flit path recording

Transient Fault Probability In percentage

Permanent Fault Probability In percentage

Maximum Duration of Transient Faults in nanoseconds (ns)

Maximum Faults Maximum faults to be injected. A value of ’0’ implies no limit

Faulty Component Which component the faults are to be inserted into. A value of ’-1’
implies random.
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Appendix B.

Python Scripts

The Python scripts that are part of the extended NoC Explorer framework are given
below. They have been divided into scripts from the original NoC Explorer, and the
scripts for the fault injection framework.

B.1. Original NoC Explorer

B.1.1. analysis.py

Typical Usage:
./analysis.py outputFlit.csv trafficPattern.csv [clock period] [injection load factor] [no.
of VCs] > analysis.report

This script uses the data from the original intended traffic data from traffic generator
(trafficPattern.csv) as well as the output flit data from the traffic manager (output-
Flit.csv), and reports the average, minimum and maximum values of the following into
the analysis summary.csv file:

• Packet latency, in cycles

• Flit latency, in cycles

• Flit latencies for 3 to 10 hops, in cycles

• Accepted traffic injection load, in flits/cycle

• Ejected traffic injection load, in flits/cycle

The same information is also written into standard output, which has been redirected
in this usage case into the analysis.report file.

B.1.2. checkPacket.py

Typical Usage:
./checkPacket.py outputFlit.csv trafficPattern.csv [injection load factor] > checkPacket.report

This script uses the data from the original intended traffic data from traffic generator
(trafficPattern.csv) as well as the output flit data from the traffic manager (output-
Flit.csv), and reports the following into the checkPk summary.csv file:
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• No. of packets generated by Traffic Generator

• No. of packets accepted by the NoC

• No. of packets rejected

• No. of packets transmitted by the NoC, i.e. successfully exited the NoC through a
Slave NI

• Ejected traffic injection load, in flits/cycle

B.1.3. linkUtilization.py

Typical Usage:
./linkUtilization.py [-inCsv linkUsage.csv] [-clkPer ¡ns¿] [-outCsv linkBwUsage.csv] [-
totalTime -1] [-totalTimeUnit ns] [-numLink 24] [-numNI 18]

This script uses the linkUsage.csv file output from the simulation, which contains the
total links input and output at each link in the NoC, and creates a file linkBwUsage.csv.
This file contains details of each link’s input and output utlization percentage and average
bandwidth.

The linkBwUsage.csv file is used by the heatMap.py script to create the heat map
images.

B.1.4. heatMap.py

Typical Usage:
./heatmap.py [-rCsv routerCongestion.csv] [-lCsv linkBwUsage.csv] [-ipSvg mesh-3x3-
Option2.svg] [-opSvg routerCongestion.svg] [-lSvg linkUtilization.svg] [-topology spider-
gon] -nodeCount n

This script basically creates a visual representation of the router congesion and the
link utilization. It requires an SVG file of the appropriate NoC size (3x3 in the default
case), where each router, Master NI and link is labeled.

It takes the data from the routerCongestion.csv file and the linkBwUsage.csv file
(obtained using the linkUtilization.py script) and outputs two SVG files, one for mapping
the router congestion and the other for visualizing link bandwidth usage.

B.2. Fault Injection Framework

B.2.1. faultStats.py

Typical Usage:
./faultStats.py faultyFlit.csv

It processes the data from the faultyFlit.csv file and outputs the following counts:
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• Total faulty packets (packets having at least one flit’s fault flag enabled)

• Packets with Data Faults

• Packets with Routing Faults due to Data Corruption

• Packets with Other Data Faults

• Packets with Routing Faults due to other causes

• Packets with no manifested faults (packets having flit(s) with the fault flag enabled
but no visible fault effects)

• Missing packets (these may or may not have the fault flag enabled, but are definitely
missing)

It also writes all of this information except the missing packets and the ”packets with
other data faults” into the combinedFaultStats.csv file, to be used by other scripts.
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Appendix C.

Simulation Scripts

The scripts which have been used for the different simulations in Chapter 6 are detailed
here. All of these scripts need to be executed from the respective testbench directories as
parent working directory. For selecting NoC parameters, the constants.h file needs to be
modified, and for selecting simulation parameters, both the run.sh and the runShort.sh
scripts should be modified with the required changed.

C.1. Single Fault Tests

Script : faultSingleTest.py
Location : nocexplorer/python/

Typical Usage:
./faultSingleTest.py [n],
where n is the number of times the simulation is to be run (default value = 30).

For testing each of the separate components, the component to be simulated needs to
be changed in the constants.h file.

The script outputs a file: faultStatsAgg.csv inside an “aggResult” subdirectory. This
contains, for each simulation run, the details of the fault generation request, the details
about the faulty packets and the missing packets. Also, for all the cases where there are
detected faulty packets and/or missing packets, it stores the following files associated
with those respective simulations, numbered according to simulation run number:

checkPacket.report Contains IDs of missing packets

faultyFlit.csv Contains list of flits detected faulty flits (in single fault testing there can
only be one)

flitPath.csv Path data for all packets transmitted in the NoC

trafficPattern.csv Original intended traffic pattern

C.2. Transient Fault Tests

Script : faultFrantzTest.py
Location : nocexplorer/python/
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Typical Usage:
./faultFrantzTest.py [n],
where n is the number of times the simulation is to be run (default value = 30).

For testing each of the separate components, the component to be simulated needs to
be changed in the constants.h file.

The script outputs a file: faultStatsAgg.csv inside an “aggResult” subdirectory. Ad-
ditional to all the data contained in the case of the single fault testing results, it also
contains details about router stalls. For the missing packets and router stalls fields, it
only shows whether packets have been missing or routers have stalled, with a 1 or a 0,
instead of actual numbers. This is in accordance with the simulation results by Frantz
et al. [46, 48].

Unlike the single fault testing case, this does not store any files related to individual
simulation runs.

C.3. Permanent Fault Tests

Script : faultLiuTest.py
Location : nocexplorer/python/

Typical Usage:
./faultLiuTest.py [n] [Nnodes] [Nclk cycles],
where

n : number of times the simulation is to be run (default value = 10)
Nnodes : total number of nodes in the current topology (default value = 64)
Nclk cycles : number of clock cycles the NoC has been simulated for (default value = 20,000)

In the constants.h file, the LIU TEST macro has to be defined (the #define statement
needs to be uncommented), and the LIU FAULT FRAC constant needs to be set, equal
to the percentage of faulty links required.

The script outputs a file: faultStatsAgg.csv inside an “aggResult” subdirectory. The
file contains the following information for each simulation run:

• Average accepted thoughput

• Average transmitted throughput

• Average latency

Between the throughput values, the average accepted throughput values have been
used, in accordance with the definition provided by Liu et al. [43].

C.4. Performance Profiling

Script : runProfile.sh
Location : nocexplorer/tb/profiling/
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Typical Usage:
./runProfile.sh

This is just a shell script which runs the NoC Explorer through the Callgrind tool of
the Valgrind framework. The simulation related parameters, which are located in the
run.sh for the other test cases, are also located in the runProfile.sh script in this case.

The output is a Callgrind output file with an extension equal to the process ID of
the simulation run. This file can be opened on Kcachegrind to view and analyze the
performance profile.
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