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Abstract

Tidal sand waves are large-scale rhythmic bed forms commonly observed in tide-dominated
shallow seas with a sandy seabed. Sand waves typically occur in fields as for example
observed in the Southern Bight of the North Sea. They are here characterized by wave-
lengths between 100 and 1250 m, heights of 1 to 15 m and crests perpendicular to the
principal direction of the tidal current. Due to morphological processes, sand waves grow
and migrate which, in combination with the relatively small water depth of the North
Sea, might result in interference with ship navigation, dredging activities and pipelines.
Via near-bed orbital velocities, wind-generated surface gravity waves (i.e. wind waves)
are able to interact with sand wave dynamics. The influence of a wavy bathymetry due
to sand waves on the propagation of wind waves is not yet understood.

In this study the influence of sand wave fields on wind wave propagation is investi-
gated. Therefore a model is described based on the elliptic partial differential equation
called the Mild-Slope Equation by Berkhoff (1976). This theory assumes an irrotational
and inviscid fluid, linear harmonic waves and no energy dissipation and describes shoal-
ing and refraction effects. Also, the model assumes the absence of currents. Furthermore,
the model is characterized by a square domain where monochromatic wind waves inci-
dent from one of the boundaries and where the other boundaries describe non-reflective
boundary conditions based on the Sommerfeld Radiation Condition. In the middle of
the domain a patch of sand waves is located surrounded by a flat-bed configuration such
that the boundaries are located far away from the sand wave field. A finite difference
approximation is used to discretize the model. The resulting system of linear equa-
tions is subsequently solved by a direct solution method. The model is verified with an
analytical solution which exists in case of a flat-bed configuration.

The sand wave field is described by a bed elevation function that allows for variation
in sand wave height, sand wave length, orientation with respect to the incident wind
wave and asymmetry between the steep and mild slope. The patch-like structure is
created by applying a 2D spatial tapering function.

The results show that the orientation of the sand wave crests with respect to the
incident wind wave fronts has a major influence on the propagation of wind waves.
Maximum influence is found when the sand wave crests are orientated perpendicular
to the wind wave crests. The influence of the mean water depth, sand wave length,
sand wave height and asymmetry becomes stronger when the orientation of the sand
wave crests approaches perpendicularity. Furthermore, the influence of the mean water
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depth, sand wave height and sand wave length is relatively strong whereas the influence
of asymmetry is relatively small.

For regular patterns, amplifications up to three times the wind wave amplitude and
three times the near-bed orbital flow velocity are found above perpendicular oriented
sand wave crests with respect to the crest of the incident wind wave. Moreover, under
certain parameter conditions local maxima were found indicating the presence of Bragg
Resonance. In case of observed, irregular sand wave fields, wind waves also show amplifi-
cation in amplitude and near-bed flow velocity. Furthermore, the zones of amplification
of wind wave amplitude and near-bed orbital flow velocity are not always in union with
the change of bed elevation.
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Chapter 1

Introduction

1.1 Tidal sand waves

Large parts of the bottom of a shallow shelf sea are covered with more or less regular bed
forms (McCave, 1971; Terwindt, 1971). A classification of these bed forms, based upon
spatial scale, is summarized in Table 1.1 where ripples are the smallest bed form, tidal
sand banks the largest and tidal sand waves are found in between. Tidal sand waves are
large-scale rhythmic bed forms which are commonly observed in tide-dominated shallow
seas with a sandy seabed. Sand waves typically occur in fields which are for example
observed in The Bah́ıa Blanca Estuary in Argentina, the Adolphus Channel in Australia,
the Strait of Messina in Italy, at the mouth of San Fransisco Bay in the U.S.A. and also
in the Southern Bight of the North Sea (Figure 1.1) (Langhorne, 1973; McCave, 1971;
Terwindt, 1971; Bijker et al., 1998; Aliotta and Perillo, 1986; Harris, 1989; Barnard et al.,
2006; Santoro et al., 2002).

Due to the relatively small water depths of 17 to 55 meter at which sand wave fields
are found in the Southern Bight of the North Sea, the wave height of sand waves, which is
in the order of meters, can be significant. Furthermore, due to morphological processes,
sand waves migrate and change in height and shape. The combination of these dynamics
and the significant wave height makes the behaviour of sand waves of practical interest

Bed form Wave length Wave height Migration speed Time scale
Ripples 0.1− 1 [m] 0.01− 0.1 [m] - Hours
Beach cusps 1− 100 [m] 0.1− 1 [m] - Hours-days
Nearshore bars 50− 500 [m] 1− 5 [m] 0− 100 [m/yr] Days-weeks
Shoreface-connected
sand ridges

5− 8 [km] 1− 5 [m] 1− 10 [m/yr] Centuries

Sand waves 300− 700 [m] 1− 5 [m] 1− 10 [m/yr] Decades
Tidal sand banks 5− 10 [km] 5− 15 [m] - Centuries
Long bed waves 1.5 [km] 5 [m] Unknown Unknown

Table 1.1: Rhythmic bed form characteristics in coastal seas (Dodd et al., 2003).
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Figure 1.1: Location of sand wave fields (dark shading) in the Southern Bight of the North Sea
(Hulscher and van den Brink, 2001).

for safe ship navigation, optimized dredging strategies and safe pipeline constructions.
Beside tidal currents, also wind-generated surface gravity waves (i.e. wind waves)

can affect sand wave dynamics via near-bed orbital velocities. Conversely, due to the
undulating bathymetry of sand wave fields and the shallow water depth, wind waves will
feel the seabed and can therefore be affected by sand waves too. Hence, wind waves and
sand wave fields interact in a two-way manner: top-down and bottom-up. In the present
study, the bottom-up influence of a sand wave field on wind waves is investigated, as it
is not yet understood.

In order to frame the content of this study, in this chapter, first the existing literature
on this topic is briefly reviewed. Subsequently, the research objective and questions
are introduced, together with the relevance of this study. Finally, the outline of the
methodology together with a reading guide is addressed.

1.1.1 Characteristics

Sand waves fields have both one-dimensional and two-dimensional characteristics that
can be used for quantification. A summary of these characteristics is given below.

Sand wave height is the vertical distance between the crest and trough of a sand wave
and is throughout this thesis denoted with the symbol Hb. Within a sand wave
field spatial variability of wave heights can be found. Sand wave heights in the
North Sea range between 1 and 15 meter (McCave, 1971; Terwindt, 1971; Bijker
et al., 1998; Németh et al., 2002; Dodd et al., 2003; Dijk and Kleinhans, 2005;
Santen et al., 2011).

Sand wave length is the horizontal length between between two sand wave crests (or
troughs) and is in this thesis denoted with the symbol λb. Also a variety of wave-
lengths are possible within a sand wave field. Literature on sand waves in the
North Sea described sand wave lengths ranging between 100 and 1250 meter (Mc-
Cave, 1971; Terwindt, 1971; Bijker et al., 1998; Németh et al., 2002; Dodd et al.,
2003; Dijk and Kleinhans, 2005; Santen et al., 2011).
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Migration of sand waves is caused by morphodynamic processes, i.e. the dynamics
between topography and hydrodynamics. Literature on sand waves in the North
Sea gave an indication of migration between 0 and 25 meter per year (McCave,
1971; Bijker et al., 1998; Németh et al., 2002; Dodd et al., 2003; Dijk and Kleinhans,
2005; Besio et al., 2008; Santen et al., 2011). Hence migration of sand waves is
slow such that the time-scale of displacement of a whole bed form cycle is in the
order of decades. A brief explanation on morphodynamic processes of sand waves
is given in section 1.1.2. In this thesis, sand waves are assumed to be static.

Asymmetry between the steep and mild slope of the sand wave is throughout this
thesis denoted with the symbol Sb, which is the ratio of the stoss and lee slope of
the sand wave. Stoss is here defined as the slope of the sand wave which faces the
incident wind wave. Sand waves are often simplified for mathematical purposes to
a sinusoid with a perfect symmetric shape. In reality sand waves often have an
asymmetric profile with a steep- and a mild slope (Terwindt, 1971). According to
Besio et al. (2004), this asymmetry is caused by the presence of a residual current
caused by for example asymmetry of the tidal wave. Furthermore, an asymmetric
sand wave profile is an indicator for migration (Besio et al., 2008). Knaapen
(2005) used asymmetry as a predictor for sand wave migration and summarized
the degree of asymmetry for different locations in the Southern Bight of the North
Sea. Although another assymetry factor was used1, the observations in Knaapen
(2005) correspond to values of Sb between 1 and 3, which means that the longest
side of the sand waves can be upto three times as long as the short side.

Roughness caused by the surface structure is another characteristic of a sand wave as it
is relevant in hydrodynamic calculations. Dijk and Kleinhans (2005) analysed the
grain sizes found in sand waves and found grain sizes ranging between 178 and 510
micrometer2. Furthermore, often superimposed megaripples with heights upto the
height of sand waves itself are found on sand waves which cause a deformed shape
and more roughness (Catano-Lopera and Garcia, 2006). In this thesis roughness
is not taken into account.

Orientation of the sand wave crests is another important characteristic and is through-
out this thesis denoted with the symbol θb. Within a sand wave field, the crests
are almost (slightly deviated anti-clockwise) orientated perpendicular to the tidal
current (Hulscher et al., 1993). Németh et al. (2006) quantified this orientation to
deviate up to 10 degrees anti-clockwise from the direction of the principle current.
Furthermore the orientation of the crests can vary in a sand wave field due to
changing sub-tidal conditions for example induced by tidal sand banks (Hulscher
and van den Brink, 2001).

1Knaapen (2005) used the asymmetry factor As = λb2−λb1
λb1+λb2

. For nomenclature see Figure 3.1.
2lowest value is the D10 average grain diameter found at a coastal site, highest value is the D90

average grain diameter found at an offshore site.
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Spatial variability of a sand wave field is the last characteristic. Variability by for ex-
ample varying orientations, wave heights and wavelengths will cause irregular sand
wave field patterns. Also, bifurcations, which are points where a sand wave crests
splits into two sand wave crests, are commonly present (Langhorne, 1973). Dorst
et al. (2011) statistically assessed the spatial variability by a deformation analysis,
and concluded that sand wave behaviour is strongly variable over a continental
shelf with correlations that are not yet understood.

1.1.2 Morphodynamics

Sand waves grow and migrate due to morphodynamic processes. The predominant hy-
drodynamic influence is exerted by tidal currents which produce an oscillating movement
in the horizontal plane. This reciprocating flow is uniform in case of a (unrealistic) flat-
bed configuration, but in case of a perturbation on the flat-bed, uniform conditions are
absent and therefore vertical flow will be present. Hulscher (1996) studied the growth
of small perturbations resembling sand waves and sand banks by means of a linear sta-
bility analysis. It was herein found that the perturbed near-bed flow stimulates growth
as they produce, tide-averaged, a trough-to-crest movement. Because of this trough-
to-crest movement, sediment particles tend to drag towards the crest of the sand wave
whereas gravity tends to pull the sediment back down to the trough. Furthermore, when
a residual current or higher harmonic (e.g. M4 tidal constituent) is present, the sand
waves can develop an asymmetric shape and can migrate in the direction of the residual
current (Besio et al., 2004). Also, wind generated surface gravity waves can cause a
residual current (Stokes drift) and therefore are able to cause migration of sand waves.

1.1.3 Influence of sand wave patterns on wind waves

When two fluid layers, moving at different speeds, are in contact with each other, a
shear stress will be present and cause transfer of momentum and energy. Whenever
wind blows over water, this might give rise to the formation of wind-generated surface
gravity waves. In this study the focus lays on wind-generated surface gravity waves and
are for the sake of brevity hereafter called wind waves.

A distinction can be made in terms of direct and indirect wind waves. Direct wind
waves are generated by local winds. Indirect waves are also known as swell and are
remains of waves generated elsewhere which have travelled a far distance from their
origin, typically characterized by wavelengths between 300 and 600 meter and wave
heights of centimeters (The Open University, 1999). Swell is not assessed in this study.

A data analysis of hourly wave data (period 1989 to 2010) from two measuring
platforms3 in the Southern Bight of the North Sea, gave insight in wave periods and
significant wave height of wind waves4 (Rijkswaterstaat, 2015). It showed average wave
periods of 3 to 5 seconds and maximum wave periods of 10 to 11 seconds. Furthermore

3K13 alpha platform (53◦13.05′N3◦13.12′E) and EURO platform (51◦59.88′N3◦16.49′E).
4The significant wave height is the mean wave height of the highest one-third of the wave spectrum

per time interval.
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an average signficant wave height of 1 to 2 meter was found with a maximum of 7 to 8
meter.

When a wind wave propagates over an sand wave field, several processes are in-
fluencing the behaviour of the wind wave. The water column underneath wind waves
experience orbital motion, that decreases with water depth. In case of shallow to inter-
mediate water depth, the propagation of the wind wave is affected because this orbital
motion is influenced by the seabed. Due to the undulating bathymetry of sand wave
fields, the propagation speed (i.e. celerity or phase speed) of wind waves is locally chang-
ing when passing the sand wave field and therefore deformation of the shape of the wind
waves is possible. The celerity of a wind wave can be expressed as follows:

c =
λ

T
=
ω

k
, (1.1)

where λ is the wind wave length, T is the wind wave period, ω = 2π/T is the angular
frequency and k = 2π/λ is the wind wave number.

In case of a uniform water depth, wind waves are not deformed and therefore have
a permanent form and small amplitude. Under the assumption of a uniform depth and
small ratio of wave height to water depth, George Biddell Airy published a theory nowa-
days known as Airy theory or Linear Wave Theory. Furthermore the theory assumes an
irrotational, incompressible and inviscid fluid.

According to Linear Wave Theory the angular frequency and wave number are related
to each other by the dispersion relationship:

ω2 = gk tanh(kh), (1.2)

where g is the gravitational acceleration and h is the variable water depth. Furthermore,
inside a wave train different celerities might be present and therefore the envelope of the
wave train becomes distorted. The speed at which this envelope travels is called the
group celerity and can be expressed as follows:

cg =
dω

dk
. (1.3)

Using Eq. (1.2) and (1.3) the group celerity can then be expressed as:

cg =
ω

2k

(
1 + kh

1− tanh2(kh)

tanh(kh)

)
. (1.4)

This group celerity is also the velocity at which wave energy travels (Longuet-Higgins
and Stewart, 1964). Therefore it is, in combination with conservation laws, used to
formulate wave behaviour.

The aforementioned fundamental properties of wind waves cause that the following
processes can occur whenever a wind wave propagates over a sand wave field:

Shoaling is the change of wind wave height due to an increase of energy density of
the wind wave. The group celerity of the wave train decreases which, due to

5



conservation of energy flux, results in a higher energy density of the wind waves
and hence an increase of wind wave height. Shoaling concerns large length scales
(i.e. wave train deformation instead of individual wave deformation).

Refraction is another process related to the conservation of energy flux. The process of
refraction tends to bend a wave crest to an alignment parallel with depth contours
(The Open University, 1999). When water depth varies beneath a single wave
crest, the wind wave propagates with varying celerties and hence the part of the
crest in deep water travels faster than the part in shallow water and therefore the
crest rotates.

Diffraction is the phenomena that happens when a wind wave encounters an obstacle,
bends around it, and propagates into the shadow-zone of the obstacle.

Reflection of waves happens when the waves encounter an obstacle. When wind waves
are incident on an wavy bathymetry such as sand wave fields, energy may be
backscattered by the bed forms (Davies and Heathershaw, 1983). Under certain
conditions, when the backscattered wave component is in phase with another wave
component, both signals might show constructive interference (i.e. superposition).
The latter is called Bragg Resonance and occurs when the wind wave length is
twice the sand wave length (Davies and Heathershaw, 1983; Liu and Yue, 1998).

Wave-current interaction between for example tidal currents and wind waves will
cause that energy is exchanged and will therefore influence wind waves by a Doppler
shift (Peregrine, 1976). The interaction of wind waves and currents can be coupled
by using a radiation stress tensor which requires depth- and phase averaging of the
wind waves (Longuet-Higgins and Stewart, 1964).

Wave breaking causes wave energy dissipation and occurs when the wind wave height
is greater than a certain proportion of the water depth and is therefore depth-
induced. White-capping also dissipates wave energy and is the breaking of the
top induced by the steepness of the wind wave.

Bottom friction will influence the behaviour of the wind wave when the water depth
is shallow such that wind waves feel the seabed. Due to form drag (i.e. friction
due to bed forms such as megaripples) and skin friction (i.e. friction due to grain
roughness) caused by the seabed the orbital motion is suppressed. However, friction
forces are generally small for short waves (i.e. wind waves) and are therefore often
neglected (Dingemans, 1994; Dalrymple et al., 1989).

Viscosity of the fluid causes that energy dissipates. Generally, viscous effects are only
normative in the thin bottom boundary layer. For the main body of the fluid
viscous effects can be neglected and therefore an inviscid fluid and subsequently
an irrotational fluid can be assumed (Dean and Dalrymple, 1991).

In order to assess the simultaneous effect of several of the aforementioned processes,
Berkhoff (1976) derived a partial differential equation called the Mild-Slope Equation
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that is able to calculate the combined effect of shoaling, refraction, diffraction and re-
flection for (wind) waves over an uneven bathymetry. This theory is only valid in case
of irrotational, linear harmonic waves and does not consider energy dissipation due to
friction or wave breaking (Berkhoff, 1972). Moreover, the Mild-Slope Equation assumes
that the vertical structure of the surface wave slowly changes in the horizontal plane such
that horizontal derivatives can be neglected in the formulation of the bottom boundary
condition (Berkhoff, 1976). Dingemans (1994) quantified this restriction as:

|∇h(x, y)|
kh

� 1. (1.5)

Hence, as the name already reveals, a mildly sloping bathymetry is required. Booij (1983)
verified the mild-slope equation with a fully three-dimensional equation and concluded
that the mild-slope equation still produces good results for bottom inclinations upto 1:3,
which however seems rather steep.

Literature provides the Mild-Slope Equation in elliptic (i.e. time-independent), hy-
perbolic (i.e. time-dependent) and parabolic forms (Berkhoff, 1976; Dingemans, 1994;
Radder, 1979). The parabolic formulation reduces computational cost but is limited to
wind waves propagating nearly along a given direction and thus will obliquely incident
wind waves result in significant errors (Dalrymple et al., 1989). Furthermore, the liter-
ature provides many more extended or modified forms of the Mild-Slope Equation that
account for example for energy dissipation or non-linear effects. In this study, the elliptic
Mild-Slope Equation is used to formulate the behaviour of wind waves over sand wave
fields.

Besides the Mild-Slope Equation, also Boussinesq type model equations can be used
to mathematically describe wind wave motion over an undulating bathymetry. The
Boussinesq equations are valid for weakly non-linear waves, a shallow to intermediate
water depth and fairly long wave lengths (Dingemans, 1994; Sharifahmadian, 2015).
Furthermore, the dispersion relation used in the Boussinesq equations are somewhat
crude, however improved versions are derived in literature (Dingemans, 1994). The Mild-
Slope Equation and Boussinesq type equations describe wave motion in the horizontal
plane with depth-integration, however when the variations in depth are important the full
three-dimensonal Navier-Stokes equations should be used (Sharifahmadian, 2015). The
Navier-Stokes equations are rather complicated and require much computational cost to
solve. Furthermore, Due to the freedom of choice in water depth and wavelength, the
Mild-Slope Equation is chosen over the more cumbersome Boussinesq equations.

1.2 Research objective and questions

The research objective of this study reads:

To investigate the influence of sand wave fields in a shallow sea on incident
monochromatic wind waves.

To reach this objective the following research question is formulated:
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1. What is the influence of sand wave fields on monochromatic wind waves and how
can this influence be visualized and quantified?

(a) What is the spatial variability of surface elevation and near-bed orbital veloc-
ities above a sand wave field and how can this be visualized and quantified?

(b) What parameters are dominating the spatial variability in surface elevation
and near-bed orbital velocities?

(c) Which configurations of input parameters show a significant influence?

1.3 Relevance

Sand waves are dynamic and therefore accurate knowledge about these dynamics is
necessary to ensure safe ship navigation, optimize dredging strategies and safe pipeline
constructions. Via near-bed orbital velocities, wind waves are able to interact with sand
wave dynamics and therefore this interaction is of practical interest to model sand wave
dynamics.

In order to improve the navigation safety in the North Sea, the SMARTSEA-project
has been set-up which is funded within the TKI Maritime Call of NWO-STW (STW,
2014). One of the aims in this multidisciplinary project is to better understand the
influence of storm events and wind waves on sand wave dynamics. In order to fully
understand the influence of wind waves on sand wave dynamics, it is also necessary to
investigate the bottom-up influence of sand waves on wind waves because wind waves
and sand wave interact in a two-way manner.

This study is relevant as it will investigate whether the presence of a physically
bounded sand wave field will influence the propagation of the wind waves. This will lead
to insights in spatial variability of the wind waves induced by the variable bathymetry.
The process of shoaling, refraction and reflection can locally increase or decrease the
wind wave height such that subsequently the top-down influence via near-bed velocities
of wind waves on sand waves can locally strengthen or weaken.

Furthermore, this study will give insight about what characteristics of a sand wave
field dominantly influence wind waves and what patterns are visible at the water surface.
Subsequently, this knowledge can be used to find out under which circumstances the
change of wind wave conditions induced by the sand wave field, becomes normative in the
dynamics of sand waves. Also, possibly the outcomes of this study can be used to extent
the knowledge on mapping bathymetric data via changing water surface conditions.

1.4 Outline of methodology and reading guide

In order to answer the research question, first, a hydrodynamic model is set-up such
that the influence of sand wave fields on the propagation of wind waves can be assessed.
Under the assumption of an irrotational, inviscid and incompressible water body and
the absence of currents and dissipative terms as bottom friction and wave breaking, the
elliptic Mild-Slope Equation is used to formulate the hydrodynamic model in Chapter
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2. Subsequently, the model domain and boundary conditions are formulated. Then, the
numerical formulation of the hydrodynamic model is discussed. The latter is done by dis-
cretizing the governing model equation using finite differences and subsequently solving
the linear system of equations with a direct solution method. Lastly, the hydrodynamic
model is verified using an analytical solution in a highly simplified case.

Secondly, a bathymetric data set representing the sand wave field, is used as input for
the hydrodynamic model. Due to the relatively slow migration and growth rate of sand
waves compared to the propagation speed of wind waves the bathymetry is assumed
to be static. In order to generate a regular sand wave field pattern, a bed elevation
function is formulated in Chapter 3 that allows for variation in sand wave orientation
with respect to the incident wind wave, sand wave length, sand wave height and sand
wave asymmetry. Also, A tapering function will be used to generate the patch-like sand
wave field surrounded by a flat-bed configuration towards the edges of the domain to
minimize undesired interference at the boundary.

In Chapter 4, the influence of sand wave fields on monochromatic wind waves will be
analysed by assessing different sand wave field configurations and incident wind waves.
A visualization of the spatial variability will be given which is subsequently quantified.
The influence of the parameters is summarized and compared in a sensitivity analysis.
Also, possible situations of Bragg Resonance and the influence of natural (irregular)
sand wave fields are assessed.

In Chapter 5 the Discussion is presented. Finally in Chapter 6 the conclusions and
recommendations are given.
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Chapter 2

Model formulation

In this chapter the hydrodynamic model, used to assess the influence of sand wave fields
on wind waves, is described. In case of a mildly sloping seabed, the behaviour of wind
waves can be modelled by means of a partial differential equation called the Mild-Slope
Equation, derived by Berkhoff (1976). In Section 2.1, this Mild-Slope Equation is treated
as it is the governing model equation. Subsequently, the model set-up is introduced
which includes the formulation of the required boundary conditions. Then, in Section
2.3 the numerical formulation of the model is described. Therefore in Subsection 2.3
finite difference is used to discretize the model equations. Subsequently in Subsection
2.4 the direct solution method is explained used to solve the system of equations. Finally
in Subsection 2.5 the model is verified with the use of an analytical solution.

2.1 Governing model equation

Under the assumption of linear harmonic waves, the classical, elliptic form of the Mild-
Slope Equation describes the combined effect of refraction and diffraction over a mildly
sloping bathymetry (see Eq. (1.5)). It is only valid in case of an irrotational fluid and
does not consider energy dissipation due to friction or wave breaking. The elliptic Mild-
Slope equation solves the time-independent, complex valued amplitude η̂(x, y) of which
the surface elevation η(x, y, t) (time-dependent) can be derived according to:

η(x, y, t) = <{η̂e−iωt}, (2.1)

where < denotes the Real part, i is the imaginary unit, ω is the angular frequency and t
is time. The complex valued amplitude describes essentially the time-independent part
of a complex wave signal, also known as the phasor. A more extensive explanation of
the complex valued amplitude can be found in Appendix A.1.

The elliptic Mild-Slope Equation, according to Berkhoff (1976), reads:

∇ · (ccg∇η̂) + k2ccgη̂ = 0, (2.2)

where ∇ = ( ∂
∂x ,

∂
∂y ) applied to a two dimensional scalar field represents the horizontal

gradient, ∇· the divergence operator, c(x, y) the phase celerity, cg(x, y) the group celerity
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and k(x, y) the wave number. The dispersion relationship in Eq. (1.2) according to Lin-
ear Wave Theory is used to express the relation between the wave number and angular
frequency. With Eq. (1.1) and (1.4), which are based on this dispersion relationship,
the product ccg can be formulated as:

ccg =
1

2

(ω
k

)2(
1 + kh

1− tanh2(kh)

tanh(kh)

)
, (2.3)

where h(x, y) is the variable water depth and is dependent on the bed elevation caused
by the sand wave field. The function determining h(x, y) is introduced in Chapter 3.
The elliptic Mild-Slope equation in Eq. (2.2) can be reduced to a Helmholtz-equation
without loss of generality. Radder (1979) introduced the required transformations to
obtain the so-called reduced Mild-Slope Equation. This form reads:

∇2η̃ +K2η̃ = 0, (2.4)

where ∇2 is the Laplace operator. The following transformations were used:

η̃ = η̂
√
ccg, K2(x, y) = k2 −

∇2√ccg
√
ccg

. (2.5)

In these formulations, η̃ is the modified complex amplitude and K is a modified wave
number which can be calculated beforehand and depends, through the water depth
h(x, y), on the horizontal coordinates x and y. The formula as presented in Eq. (2.4)
will be used for the mathematical problem statement in Section 2.2.

Furthermore, due to the assumption of an irrotational fluid, a velocity potential Φ
can be used to describe the vertical flow-structure beneath the wind wave, which is
according to Linear Wave Theory:

Φ(x, y, z, t) = <{Φ̂(x, y, z)e−iωt}, Φ̂(x, y, z) =
g

iω

cosh(k[h+ z])

cosh(kh)
η̂(x, y), (2.6)

where Φ̂ is the complex valued velocity potential, z is the vertical coordinate and g is the
gravitational acceleration. Subsequently when taking the horizontal derivative of this
velocity potential one can obtain the orbital velocity beneath the wave. Finally, because
of the elliptic form of the Mild-Slope equation, boundary conditions are required at all
boundaries enclosing the model domain. The behaviour of the Mild-Slope equation is
controlled by proper formulation of the complex valued amplitude on these boundaries,
hence making it a Boundary Value Problem. The boundary conditions are formulated
in Section 2.2.

2.2 Model domain and boundary conditions

In order to assess the influence of sandwave fields on wind waves, a model is formulated.
This model has a square domain of length L in both directions and consists of two
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zones. The zone Ω0 with a flat-bed configuration and the zone Ω1 with the sand wave
field patch. A sketch of the model domain is given in Figure 2.1. The zone with the flat-
bed configuration is established to minimize the influence of the sand wave field near the
boundaries (i.e. constant h(x, y)) such that physically realistic boundary conditions can
be imposed more easily. Furthermore, the wind waves are chosen to enter the domain
through the West boundary Γwest and with its crests always perpendicular to the y
coordinate. An arbitrary orientation of the wind wave crests with respect to the sand
wave field will be captured in the orientation of the sand wave field itself (see Chapter
3). However, when the sand wave field is rotated inside Ω1 this will also change the
appearance of the sand wave field (e.g. for instance more crest length is present).

Inside the model domain, the reduced Mild-Slope equation given by Eq. (2.4) is
governing which requires formulation of the transformed complex wave amplitude η̃ on
the boundaries. At the West boundary condition we prescribe the transformed complex
valued amplitude of the incident wind wave, which when assuming crests parallel to
the y coordinate and a phase such that that crest is at the domain edge, results in the
following Dirichlet type boundary condition on the West:

η̃ = Ã0, Ã0 = A0
√
ccg, at Γwest, (2.7)

where Ã0 is the transformed amplitude of the incident wind wave and A0 is the (non-
scaled) amplitude of the incident wind wave. The other boundaries need to represent

0 L
x

L

y

Ω1

Ω0

Γnorth

Γwest Γeast

Γsouth

Figure 2.1: Sketch of the model set-up. Ω1 represents the zone where the sand wave field is
located including the tapering (see Section 3.4, hence ccg is variable here. Ω0 represents a zone
with a flat bed configuration, hence ccg is constant here. Furthermore, Γ represents a boundary.
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open sea and should actually describe behaviour of the wind wave propagating progres-
sively. Therefore Non-reflective boundary conditions (also reffered as Artificial Boundary
Conditions or Open Boundary Conditions) need to be imposed on the North (Γnorth),
East (Γeast) and South (Γsouth) boundaries. An often used non-reflective boundary con-
dition is derived from the Sommerfeld Radation Condition, named after Arnold Som-
merfeld, which states that when waves at a source radiate to infinity, no energy should
be reflected. For a Cartesian coordinate system and a boundary at a finite distance, this
Sommerfeld radiation condition in terms of complex amplitudes is expressed as:

dη̃

dn
= iK cos(θi)η̃, (2.8)

where n is the inward normal with respect to the boundary and θi is the angle of
the incident wind wave with respect to this normal (Tsay and Liu, 1983; Givoli, 1991;
Oliveira, 2004; Panchang and Pearce, 1991). For the South and North boundaries these
angles are respectively −90 and 90 degrees, such that Eq. (2.8) reduces to a Neumann
type boundary condition:

dη̃

dy
= 0 at Γsouth, (2.9)

dη̃

dy
= 0 at Γnorth. (2.10)

At the East boundary condition, the angle is 0 degrees and therefore Eq. (2.8) describes
a boundary condition of Robin type:

dη̃

dx
= iKη̃ at Γeast. (2.11)

2.3 Discretization using finite differences

For the numerical formulation of the model equations we choose for the finite difference
method. An equidistant grid is chosen such that ∆ = ∆x = ∆y. The discretizations of
the derivatives at a grid node are approximated using a Taylor Series. Four different
kind of finite difference approximations, all being fourth order accurate, are used. The
latter essentially means that four degrees of freedom are used to formulate a derivative
of a local grid node assuming a certain accuracy. Unfortunately, attempts to discretize
the derivatives by lower order accurate discetizations, which require less computational
cost, led to unacceptable errors when keeping the number of grid nodes equal as will be
shown in Section 2.5.

The square grid of size Ω0 = [L,L], is numbered by by m = [1, N ] and n = [1, N ]
elements in respectively x and y direction. Hence, (x1, y1) denotes the South-Western
most grid node and (xN , yN ) denotes the North-Eastern most grid node.

13



Discretization of derivatives

Below the used discretizations are given to determine the derivatives evaluated at base
point (xm, yn). The discretizations of the second order derivatives over respectively x
and y by a central spaced finite difference discretization, fourth order accurate are given
below and is visualized in Figure 2.2a.

d2η̃

dx2

∣∣∣∣
xm,yn

=
− 1

12 η̃xm−2,yn + 4
3 η̃xm−1,yn − 5

2 η̃xm,yn + 4
3 η̃xm+1,yn − 1

12 η̃xm+2,yn

∆2
+O(∆4),

(2.12)

d2η̃

dy2

∣∣∣∣
xm,yn

=
− 1

12 η̃xm,yn−2 + 4
3 η̃xm,yn−1 − 5

2 η̃xm,yn + 4
3 η̃xm,yn+1 − 1

12 η̃xm,yn+2

∆2
+O(∆4).

(2.13)
The discretizations of the second order derivatives over respectively x and y by an
off-centered finite difference discretization, fourth order accurate are required for the
near-boundary grid nodes and are given below and visualized in Figure 2.2b.

d2η̃

dx2

∣∣∣∣
xm,yn

=
1

∆2

(
10

12
η̃xm−1,yn −

15

12
η̃xm,yn −

4

12
η̃xm+1,yn +

14

12
η̃xm+2,yn

− 6

12
η̃xm+3,yn +

1

12
η̃xm+4,yn

)
+O(∆4), (2.14)

d2η̃

dy2

∣∣∣∣
xm,yn

=
1

∆2

(
10

12
η̃xm,yn−1 −

15

12
η̃xm,yn −

4

12
η̃xm,yn+1 +

14

12
η̃xm,yn+2

− 6

12
η̃xm,yn+3 +

1

12
η̃xm,yn+4

)
+O(∆4). (2.15)

Note that the discretizations in Eq. (2.14) and (2.15) are here denoted for the West
and South near-boundary respectively. The same coefficients apply when flipping the
indices to obtain respectively the discretization for the East and North near-boundary
condition.

Finally, discretizations for the first order derivatives over respectively x and y, fourth
order accurate, required for the formulation of the boundaries, are given below and
visualized in Figure 2.2c.

dη̃

dx

∣∣∣∣
xm,yn

=
25
12 η̃xm,yn − 4η̃xm−1,yn + 3η̃xm−2,yn − 4

3 η̃xm−3,yn + 1
4 η̃xm−4,yn

∆
+O(∆4), (2.16)

dη̃

dy

∣∣∣∣
xm,yn

=
25
12 η̃xm,yn − 4η̃xm,yn−1 + 3η̃xm,yn−2 − 4

3 η̃xm,yn−3 + 1
4 η̃xm,yn−4

∆
+O(∆4). (2.17)

Note that the discretizations in Eq. (2.16) and (2.17) are one-sided (backward) finite
difference and applicable to the East and North boundary condition respectively. How-
ever, when giving the coefficients the opposite sign and flipping the indices, the forward
finite difference discretizations which can be used for the formulation of the West and
South boundary condition is obtained.
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Stencils

Substituting the discretization of the derivatives in Eq. (2.4), the numerical formulation
as given below results. The corresponding stencil is depicted in Figure 2.2a.

− 1

12
η̃xm,yn−2 −

1

12
η̃xm−2,yn +

4

3
η̃xm,yn−1 +

4

3
η̃xm−1,yn + (K2

xm,yn∆2 − 5)η̃xm,yn

+
4

3
η̃xm+1,yn +

4

3
η̃xm,yn+1 −

1

12
η̃xm+2,yn −

1

12
η̃xm,yn+2 = 0. (2.18)

Furthermore, near the boundaries (one grid inward off the boundary), a different
stencil is required as Eq. (2.18) will not fit here. The formulation for the West Near-
Boundary is given below with its corresponding stencil in Figure 2.2b. The stencil can
be flipped and/or rotated without changing the sign of the coefficients to obtain the
formulation for the other near-boundary grid nodes.

− 1

12
η̃xm,yn−2 +

4

3
η̃xm,yn−1 +

10

12
η̃xm−1,yn −

(
K2
xm,yn∆2 − 15

12
− 5

2

)
η̃xm,yn −

4

12
η̃xm+1,yn

+
14

12
η̃xm+2,yn −

6

12
η̃xm+3,yn +

1

12
η̃xm+4,yn +

4

3
η̃xm,yn+1 −

1

12
η̃xm,yn+2 = 0. (2.19)

The discretized boundary conditions are formulated as follows:

η̃x1,yn = Ã atΓwest, (2.20)

25

12
η̃xm,yN − 4η̃xm,yN−1 + 3η̃xm,yN−2 −

4

3
η̃xm,yN−3 +

1

4
η̃xm,yN−4 = 0 atΓnorth, (2.21)(

25

12
− iKxm,yn∆

)
η̃xN ,yn−4η̃xN−1,yn+3η̃xN−2,yn−

4

3
η̃xN−3,yn+

1

4
η̃xN−4,yn = 0 atΓeast,

(2.22)

− 25

12
η̃xm,y1 + 4η̃xm,y2 − 3η̃xm,y3 +

4

3
η̃xm,y4 −

1

4
η̃xm,y5 = 0 atΓsouth. (2.23)

Furthermore, the stencils belonging to the boundary conditions given in Eq. (2.9)-(2.11)
are depicted in Figure 2.2c. Lastly, there are also corner nodes one grid inward off the
boundary which require formulation. These corner nodes are a combination of Eq. (2.14)
and (2.15).
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xm−2 xm−1 xm xm+1 xm+2

yn−2

yn−1

yn

yn+1

yn+2

(a) The central spaced stencil for the interior nodes in the domain as given in (2.18).

xm−1 xm xm+1 xm+2 xm+3 xm+4

yn−2

yn−1

yn

yn+1

yn+2

(b) Stencil representing the in x direction off-centered discretized model equation on the West
Near-Boundary grid nodes as given in Eq. (2.19). The stencil can be rotated and flipped to
obtain the North, West and South Near-Boundary Stencil.

yN−4

yN−3

yN−2

yN−1

yN

xm

y1

y2

y3

y4

y5

xm

xNxN−1xN−2xN−3xN−4

yn

(c) From left to right: stencils corresponding to North, East and South Boundary grid nodes,
represented by a one-sided finite difference as given in Eq. (2.21)-(2.23).

Figure 2.2: Visualization of the fourth order accurate stencils used for the model formulation.
The dark shaded node is the evaluated grid node (or base point), the light shaded nodes are used
to formulate the base point.
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2.4 Direct solution method

In order to obtain a solution, the linear system of equation resulting from the discretiza-
tions presented in Section 2.3, it is chosen to use a Direct Solution Method. Therefore
the unknowns at each grid node are expressed in matrix notation as follows

[V ]{η̃} = {f}, (2.24)

where [V ] is the system matrix, {η̃} is the unknown vector of complex valued amplitudes
and {f} is a vector containing the known right hand side of the discretized equations.
The unknown vector matrix {η̃} can then be obtained by computing the inverse of [V ]
as given in the following expression:

{η̃} = [V ]−1{f}. (2.25)

In MATLAB, the operation in Eq. (2.25) is extensive and therefore it is more convenient
to use the build-in solver for systems of linear equations (i.e. backslash operator). It
uses the optimal solve technique corresponding to the structure of the matrix. The
function should look like: {η̃} = [V ]\{f}. Furthermore, the sparse identity of the
system matrix is used in our advantage such that RAM requirements are reduced to
manageable proportions. A more detailed explanation on this sparse implementation is
given in Appendix A.2.

2.5 Model verification

In order to assess the accuracy of the model, we choose to verify the numerical solution
in a flat-bed situation for which an analytical solution exists. The error is quantified
with the scaled Root-Mean-Square Error (RMSE) and is defined as follows:

RMSE =
1

A0

√√√√ 1

N2

N∑
n=1

N∑
m=1

∣∣η̂m,n − η̂Am,n∣∣2, (2.26)

where A0 is the amplitude of the predefined incident wind wave, N2 is the number of
grid nodes, η̂ is the numerical solution of the complex valued amplitude and η̂A is the
analytical solution of the complex valued amplitude. The analytical solution is given by:

η̂A(x, y) = A0e
ik0x, (2.27)

where i is the imaginary unit and k0 is the constant wave number according to the
dispersion relationship in Eq. (1.2).

The differences between the analytical and numerical solution are visualised in Figure
2.3. From this surface plot it can be seen that the differences of the real and imaginary
parts are uniform in y-direction, which is in coherence with expectation based on sym-
metry. Although it is hard to notice in Figure 2.3a, the error increases when x increases
(the trough is less deep than the crest is high), this is caused by a dispersion error.
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Furthermore, in Figure 2.4 RMSE is plotted against the number of grid nodes in one
direction N . Here it can be seen that the RMSE of the fourth order accurate model
decreases fourth order with respect to the increasing number of grid nodes. Also, in
Figure 2.4, the second order model is included which shows a second order decrease (see
Appendix A.3). When comparing these two discretizations, it can be seen that the error
of the fourth order discretization reduces faster with an increasing number of grid nodes.
Therefore, less grid nodes are required to obtain the same accuracy which reduces the
computational cost to manageable proportions for a personal computer.

In Figure 2.5 different combinations of the wave number k and the step size ∆ are
assessed and the RMSE error is determined. k∆ is a dimensionless number to express
the number of grid nodes per wave length (points per wave length is 2π/(k∆)). The
restriction of RAM storage required that the maximum allowed RMSE is set to 10−2,
the value of k∆ should then be less than about 0.5 [-].

Based on the limitations of RAM storage and accuracy, a domain is chosen of 5, 000
by 5, 000 meter with a step size ∆ of 5 meter. This results in a grid of 1, 000 by 1, 000
nodes, and a system matrix that can be solved on a 64-bit system with 8 Gigabyte RAM.
Furthermore, the threshold of a maximum RSME of 10−2 in combination with ∆ = 5
[m], requires that the wave numbers k inside the system may not exceed a value of 0.125
[m−1]. The latter corresponds with wave lengths of more than about 60 meter.

(a) Difference of real parts <{η̂} − <{η̂A} (b) Difference of imaginary parts ={η̂}−={η̂A}

Figure 2.3: Surface plots of the difference between the numerical and analytical solution.
Domain is 100 by 100 [m], k0 = 0.063 [m−1], ∆ = 0.1 [m]. Differences are in the order of 10−10.
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Figure 2.4: Increasing number of grid nodes N in x-direction (or y) versus RMSE. The domain
size used for this verification was 100 by 100 [m].
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Figure 2.5: different combinations of k∆ versus RMSE on a domain size of 100 by 100 [m].
With a threshold (indicated with the red horizontal line) set to RMSE = 10−2, the k∆ should
be less than about 0.5.
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Chapter 3

Bathymetry generation

3.1 Introduction

The model formulated in the previous section requires the variable water depth h(x, y)
between the still water level (η = 0) and the bed as input. To assess an arbitrary, regular
sand wave field pattern, in this chapter a two-dimensional bed elevation function is
formulated that describes the bathymetry zb(x, y) of a sand wave field. This bathymetric
function allows for variation in the characteristics given below, which are also visualized
in Figure 3.1.

• Sand wave height, denoted as Hb, is the vertical distance between the trough and
crest of a sand wave.

• Sand wave length, denoted as λb is the horizontal distance between the troughs of
a sand wave.

zb(x, y)

η(x, y)

α β

λb1 λb2

λb

λ

h(x, y)h̄

Hb

H

Figure 3.1: The cross-section of a (asymmetric) sandwave with corresponding nomenclature.
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• Asymmetry, denoted as Sb is the ratio between the length of the stoss λb1 and lee
λb2 side and is expressed as:

Sb =
λb1
λb2

. (3.1)

Stoss is here defined as the slope that faces the incident wind wave and lee is
the shadow zone with respect to the wind wave. The asymmetry factor can be
classified as follows:

– when Sb < 1, the stoss side is steeper than the lee side;

– when Sb = 1, the wave is symmetric;

– when Sb > 1, the lee side is steeper than the stoss side.

• Orientation, denoted as θb is the orientation angle of the sand wave crests with
respect to the crests of the incident wind wave (or for our model also with respect
to the y axis).

• Undisturbed water depth, denoted as h̄, is the water depth between the still water
level (η = 0) and the flat bed (zb = 0).

Below, a step by step explanation is given about how these characteristics are in-
cluded in a comprehensive 2D bed elevation function. Therefore, in Section 3.2, is
explained how the sand wave field can be represented by a plane wave. Then, in Section
3.3, asymmetry of the sand wave profile is included. Finally, in Section 3.4, a tapering
function is introduced required to generate the sand wave field patch surrounded by a
flat-bed configuration towards the boundaries of the domain.

3.2 Plane wave with arbitrary wave length, wave height
and orientation

A plane wave is a wave of constant wave number and amplitude with infinitely long wave
fronts. It can be used to represent the bed elevation zb of a sand wave field within a
given domain. Due to very slow displacement rates of sand waves, the waves are assumed
to be static and therefore time-dependency is neglected. Then, when considering a two
dimensional horizontal domain (x, y), the bed elevation for an arbitrary orientation θb
can be expressed as follows:

zb(x, y) = Ab cos(kbxx+ kbyy), (3.2)

with

λb =
2π√

k2bx + k2by

, θb = arctan

(
kby
kbx

)
. (3.3)

where Ab = Hb/2 is the amplitude of the sand wave, λb is the sand wave length, kbx and
kby are the counterparts of the wave vector |~kb| = 2π/λb in x and y direction respectively,
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and θb is the angle in degrees of the wave front with respect to the y-axis. Subsequently,
the variable water depth from the still water level (η = 0) to the undulating bed, can be
calculated as follows

h(x, y) = h̄− zb(x, y), (3.4)

where h̄ is the undisturbed water depth. Example plots of h(x, y), with orientations of
0 and 60 degrees, are depicted in 3.2a and 3.2b, respectively.

(a) h(x, y), θb = 0. (b) h(x, y), with θb = 60◦.

Figure 3.2: Example surface plots of the bathymetry represented by a plane wave when includ-
ing (a) no orientation and (b) orientation. Both panels are characterized by Hb = 4 [m], h̄ = 20
[m] and λb = 500 [m].

3.3 Asymmetry

In order to describe a smooth asymmetric profile two sinusoids, with different wave
numbers for the stoss and lee side, are merged together. This requires introduction of the
factor γstoss and γlee which, when multiplied with kbx or kby, will result in the appropriate
wave number for the stoss and lee side. The bed elevation including asymmetry can then
be expressed as follows:

zb(x, y) =

{
Ab cos (γlee [kbxx+ kbyy − ϕ1]) , if ϕ1 ≤ kbxx+ kbyy < ϕ2

Ab cos (γstoss [kbxx+ kbyy − ϕ2] + π) , if ϕ2 ≤ kbxx+ kbyy < 2π(p+ 1)
,

(3.5)
where

ϕ1 = 2πp, ϕ2 = 2π

(
p+

1

2γlee

)
, p =

⌊
kbxx+ kbyy

2π

⌋
, p ∈ Z. (3.6)
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In Eq. (3.5) and (3.6) ϕ1 is the phase where cycle p starts and the lee side begins (crest)
and ϕ2 is the position inside cycle p where the stoss side begins (trough). At a local
position (x, y) the cycle number p can be determined with the floor function as indicated
in the third term of Eq. (3.6). The factor γstoss and γlee can be determined with the
asymmetry factor Sb as given in Eq. 3.1 as follows:

γstoss = Sbγlee =

(
1 + Sb

2Sb

)
. (3.7)

Please note that for orientations θb > 90◦, the latter formulation will flip the steep and
mild sides due to the definition of the stoss side being the side that faces that the incident
wind wave. The derivation of Eq. (3.7) can be found in Appendix A.4. After calculating
the bed elevation, Eq. (3.4) can be used to compute the variable water depth which is
required for our model. An example plot of a bathymetry including asymmetry is given
in Figure 3.3.

x

0 500 1000 1500 2000

z

-20

-10

0

(a) 1D, z(x), with Sb = 4. (b) 2D, z(x, y), with θb = 60◦ and S = 4.

Figure 3.3: Example plots of a bathymetry including an asymmetric sand wave profile. Both
panels are characterized by Hb = 4 [m], h̄ = 20 [m] and λb = 400 [m].

3.4 Tapering function

A tapering function is used to create a patch-like sand wave field with a flat-bed con-
figuration surrounding it. This is done to minimize undesired interference of the wind
waves with the boundary. This tapering function w2D(x, y) describes a trapezium shaped
function with values ranging from zero to one. This tapering function will be multiplied
with the bed elevation zb(x, y) to create the desired flat-bed configuration towards the
boundaries.
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The domain can be divided into three zones as can be seen in Figure 3.4. The outer
zone Ω0 is the flat-bed zone, here the tapering function needs to describe zero-values.
The middle zone Ω1 consists of two parts, Ω1t and Ω1s. Ω1t is a transition zone which
gently introduces the sand wave field, here the tapering function requires to describe a
linear slope between zero and one. Ω1s is the sand wave field, here the tapering function
needs to describe one-values. When adding the transition and inner zone (Ω1t ∪ Ω1s),
one obtains Ω1 as indicated in Figure 2.1.

In order to divide the domain into these three zones, two input parameters are
defined, namely γ0 and γt, which represent the ratio of the domain used for respectively
the flat-bed zone and transition zone. From the relations in Figure 3.4 can be seen that
the condition

γ0 + γt < 0.5, (3.8)

must be satisfied to ensure a feasible distribution of the zones. The tapering function in
x and y direction only can then be determined with

w(s) =


0, if P ≥ s ≥ S
(γtL)−1(s− P ), if P < s ≤ Q
1− (γtL)−1(s−R), if R ≤ s < S

1, if Q < s < R

, (3.9)

where L the width of the square domain, and P , Q, R and S represent points for which
the dimensions can be obtained from Figure 3.4. Subsequently the tapering function for
the two dimensional domain can then be obtained by

w2D(x, y) = w(x)w(y), (3.10)

for which w(x) and w(y) are determined with Eq. (3.9). Example plots of the 1D and
2D tapering function are depicted in Figure 3.5.

When multiplying w(x, y) with the bed elevation zb(x, y) and subsequently subtract-
ing this from the undisturbed water depth h̄, one obtains the variable water depth, which
is expressed as follows:

h(x, y) = h̄− w2Dzb(x, y), (3.11)

A surface plot of the bathymetry including orientation, asymmetry and a tapering func-
tion to create the patch-like sand wave field is given in Figure 3.5c.
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P Q R S

L(γ0) = P

L(γ0 + γt) = Q

L(1− γ0 − γt) = R

L(1− γ0) = S

0 L
x

L
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Ω1s

Ω1t

Ω0

Figure 3.4: Sketch of the square domain of length L in both x and y direction including
nomenclature for the tapering function. Ω0 is the flat bed zone, Ω1t is the transition zone, and
Ω1s the sand wave field zone (Ω1 = Ω1t ∪ Ω1s). Furthermore, P,Q,R, S are points.

(a) Example of 1D tapering function w(s)

s

0 500 1000 1500 2000

w

0

0.5

1

(b) Example of 2D tapering function w2D(x, y) (c) 2D tapering function applied on a sand
wave field

Figure 3.5: Example surface plot of both the tapering function itself and applied on a sand
wave field.
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Chapter 4

Results

4.1 Introduction

By inserting the bathymetric data as explained in Chapter 3 in the model and formulat-
ing the configuration of the incident wind wave, the model outputs the simulated complex
valued amplitudes η̂ in the domain. Due to the varying bathymetry, the complex val-
ued amplitudes will show spatial variability. In this Chapter this spatial variability is
visualized and quantified.

In order to present an unambiguous view of the spatial variability of the wind waves
caused by the sand wave field, and hence not by phase differences of the wind wave, it is
chosen to transform the model output by first taking the absolute of the complex valued
amplitude: |η̂|. This essentially tells us the local amplitude of the wind wave. Subse-
quently, the dimensionless Amplification Factors AFA of the local wind wave amplitudes
can be calculated as follows:

AFA(x, y) =
|η̂|(x, y)

A0
, (4.1)

where A0 is the predefined amplitude of the incident wind wave at the West boundary.
When for example locally an amplification factor of 2 is found, the local amplitude is
twice the amplitude of the incident wind wave. These Amplification Factors are used to
visualize and quantify the spatial variability.

Furthermore, due to the potential interest to the near-bed influence of wind waves,
also the spatial variability of the near-bed orbital velocities is visualized and quantified.
In order to transform the complex valued amplitude to near-bed orbital velocities the
complex velocity potential is used (see Eq. (2.6)). Furthermore, also here is chosen to
exclude spatial variability caused by phase differences of the wind wave. The latter is
done by using the local near-bed orbital velocity amplitudes:

|ûnb|(x, y, z) =

∣∣∣∣∣dΦ̂

dx

∣∣∣∣∣
z=−h

|v̂nb|(x, y, z) =

∣∣∣∣∣dΦ̂

dy

∣∣∣∣∣
z=−h

, (4.2)
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where |ûnb| and |v̂nb| are the near-bed orbital velocity amplitudes in respectively x and
y direction and Φ̂ is the complex flow potential as given in Eq. (2.6). Subsequently,
an amplification factor is used to express the amplification with respect to the near-bed
orbital velocity at the west boundary. The amplification Factor of the near-bed flow
velocity amplitude AFnb is expressed as:

AFnb =
|~unb|
|~̄unb,west|

, |~unb| =
√
|ûnb|2 + |v̂nb|2, (4.3)

where |~unb| is the magnitude of the near-bed orbital flow velocity amplitude vector
and |~̄unb,west| is the the near-bed orbital flow velocity amplitude at the (flat-bed) west
boundary Γwest.

Lastly in Appendix B the sinh(kh) values are visualized. The latter gives an im-
pression of the influence of the bathymetry on the near-bed velocities assuming a still
water level, i.e. excluding the influence exerted by an increasing or decreasing wind wave
amplitude.

4.2 Visualization of model output

4.2.1 Visualization method

To visualize the spatial variability of the amplification of wind wave amplitude AFA and
near-bed orbital flow velocity AFnb, it is chosen to create a top-view plot of the domain
where a colormap is used to distinct between high and low values. A bright, yellow
color indicates high values whereas a dark, blue color indicates low values. Further, to
prevent visualization (and later on quantification) of distortion due to the transition
from flat-bed configuration to sand wave field, there is chosen to visualize only the part
of the domain as indicated with the solid line in Figure 4.1. A size of 2000 by 2000 meter
is chosen for this area of interest such that still two sand waves with a wave length of
1000 meter are able to be positioned inside this area.

To explore the influence of the parameters on spatial variability, a base configuration
is formulated and from there, the parameters are changed individually. By trial-and-error
the base case is chosen with the sand wave crests perpendicular to the incident wind wave
crests, as this case showed the highest influence of other parameters. The influence of
changing the wind wave amplitude is not shown, as it will not influence spatial variability.
Several visualizations are made, for which a summary of the parameter configurations
is given in Table 4.1.
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Figure 4.1: Definition of area of interest, the dash-dotted line is where the transition starts
from flat-bed configuration to sand wave field, the dashed line is where the sand wave field patch
is fully developed and the solid line represent the area of interest.

Fig. Description θb [deg] h̄ [m] λb [m] Hb [m] Sb [-] T [s] A0 [m]

4.2 base case 90 20 500 4 1 9 2
4.3 parallel orientation 0 20 500 4 1 9 2
4.4 shallower 90 12 500 4 1 9 2
4.5 longer sand waves 90 20 1000 4 1 9 2
4.6 lower sand waves 90 20 500 2 1 9 2
4.7 asymmetry 90 20 500 4 5 9 2
4.8 shorter wave period 90 20 500 4 1 7 2

Table 4.1: Overview of parameter configurations underlying the top-view visualization figures
representing spatial variability.

4.2.2 Sand wave orientation

Spatial variability is dominantly influenced by the orientation θb of the sand wave field.
In Figure 4.2 and 4.3 the spatial variability is visualized for θb = 90◦ and θb = 0◦

respectively. These specific orientations are chosen to compare a high-influence and low-
influence sand wave field configuration, respectively. In both Figures, panel (a) shows
the local water depth, (b) the amplification of the wind wave amplitude and (c) the
amplification of the near-bed orbital flow velocity.

In Figure 4.2b, above the sand wave crests, zones of amplification are visible indicat-
ing spatial variability whereas Figure 4.3b shows insignificant amplification of the wind
wave amplitude. Zones of amplification indicate shoaling of the wind waves. Also, in
figure 4.2b, minor amplifications are visible above the crests around x = 3000 meter.
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(a) −h (b) AFA (c) AFnb

Figure 4.2: Visualization of the spatial variability of the base case. For parameter configuration
see Table 4.1. (a) shows the local water depth, (b) the amplification of the wind wave amplitude,
(c) the amplification of the near-bed flow velocity.

(a) −h (b) AFA (c) AFnb

Figure 4.3: Visualization of the spatial variability with the sand wave crests oriented parallel
to the wind wave crests. For parameter configuration see Table 4.1. (a) shows the local water
depth, (b) the amplification of the wind wave amplitude, (c) the amplification of the near-bed
flow velocity.

Furthermore in Figure 4.2c, the amplification of the near-bed flow velocity shows
similar patterns to that of AFA. In Figure 4.3c only minor amplification of near-bed
orbital flow is visible.

In Figure B.1 and B.2 a visualization of sinh(kh) is given. For both figures an increase
of sinh(kh) is noticeable above the sand wave crests.

Furthermore, other visualizations showed that hardly any spatial variability was visi-
ble for sand wave field orientations between 0 and about 55 degrees. In case of orientation
angles larger than 55 degrees, the spatial variability started to increase significantly.
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4.2.3 Mean water depth

When the mean water depth h̄ decreases, higher amplifications and near-bed flow veloc-
ities are found. In Figure 4.4 the base case is changed to a depth of 12 meter. In Figure
4.4b it is visible that zones of amplification occur above the sand wave crests indicating
the process of shoaling. In comparison to the base case, these shoaling zones are more
compact and show higher amplifications. Possibly, due to a smaller water depth, the
process of refraction of the wind waves is stronger, such that more compact zones of
amplification are visible.

Furthermore, in Figure 4.4c, the amplification of near-bed velocity is depicted. Sim-
ilar patterns to that of AFA are visible. The zones of amplification of near-bed flow
above the sand wave crests are slightly wider in x and y direction than that of AFA.

In Figure B.3 a visualization of sinh(kh) is given. This figure shows that sinh(kh)
decreases when water depth becomes smaller. Also, the difference between the values
above the crests and troughs becomes more evident.

Lastly, when assessing an increase of water depth, the zones of amplification stretch
out in x direction and become less apparent, possibly because the process of refraction
is now weaker.

(a) −h (b) AFA (c) AFnb

Figure 4.4: Visualization of the spatial variability in case of a reduction in water depth. For
parameter configuration see Table 4.1. (a) shows the local water depth, (b) the amplification of
the wind wave amplitude, (c) the amplification of the near-bed flow velocity.

4.2.4 Sand wave length

To assess what happens to wind waves when the sand wave length increases, Figure 4.5
shows the base case now with a sand wave length of 1000 meter. In Figure 4.5b it can be
seen that the amplification zones are more concentrated than in the base case indicating
stronger shoaling and refraction effects.

In Figure 4.5c the amplification of near-bed flow velocity is depicted. Similar patterns
are found to that of AFA. Hence, the highest orbital velocities are found above the sand
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wave crests. In Figure B.4 a visualization of sinh(kh) is given. Due to the longer slopes of
the sand waves, the transition of relatively high sinh(kh) values at the crests to relatively
low sinh(kh) values in the trough is more gentle.

Lastly, when sand wave length decreases, the zones of amplification become less
apparent and will extend in x direction. This means that wind wave amplitudes will
become less high and more spread over the sand wave crests.

(a) −h (b) AFA (c) AFnb

Figure 4.5: Visualization of the spatial variability in case of a longer sand waves. For parameter
configuration see Table 4.1. (a) shows the local water depth, (b) the amplification of the wind
wave amplitude, (c) the amplification of the near-bed flow velocity.

4.2.5 Sand wave height

In Figure 4.6 the influence of sand wave height is assessed by adjusting the base case to
a lower sand wave height of 2 meter.

Figure 4.6b shows the amplification factors of the wind wave amplitude. It is visible
that that zones of amplification occur above the sand wave crest which have roughly the
same magnitude as in the base case. The sand wave slopes are less steep and therefore
the wind wave crests require a longer distance to bend, resulting in a more extended
amplification zone in x direction.

In Figure 4.6c the amplification of the near-bed velocity is depicted. It shows similar
patterns as that of AFA. Also here, the zones of amplification are extended in x direction.
The sinh(kh) visualization in Figure B.5 shows highest values above the sand wave crests.
Compared to the base case the difference between the values above the crests and troughs
has become less apparent.

Lastly, when assessing a larger sand wave height, roughly the same patterns are
found as in the base case (Figure 4.2), only now the depression (at about x = 3000 [m]
in Figure 4.2) of the amplification zones is shifted to the left. Due to steeper slopes
in this situation, the wind waves require less distance to bend towards the sand wave
crests. Furthermore, slightly higher magnitudes are found in amplification factors and
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near-bed orbital velocities.

(a) −h (b) AFA (c) AFnb

Figure 4.6: Visualization of the spatial variability in case of lower sand waves. For parameter
configuration see Table 4.1. (a) shows the local water depth, (b) the amplification of the wind
wave amplitude, (c) the amplification of the near-bed flow velocity.

4.2.6 Asymmetry

The base case in Figure 4.2, is configured with perfectly symmetric sand waves. To assess
the influence of asymmetry, there is chosen to change the base case with an asymmetry
factor Sb of 3, which means that the longest sides of the sand waves are three times as
long as the short sides. The latter is visualized in Figure 4.7.

In Figure 4.7b it can be seen that asymmetry causes that the zones of amplification
show some sort of curvature towards the steep side of the sand wave. When x increases,
the zones of amplification become less apparent. Apparently, the wind waves shoal higher
at the west than at the east and they progressively move towards the steep side of the
sand wave. Furthermore, it seems that the patterns are still in a build-up phase. Likely,
a repeating pattern will result when a larger domain is chosen.

In Figure 4.7c the amplification of the near-bed orbital velocity is depicted. Similar
patterns are found as that of AFA. Compared to the base case relatively same magni-
tudes are found however the depression in amplification in the base case (i.e. roughly at
x = 3000 meter) is now not so apparent.

When looking at the sinh(kh) values in Figure B.6, it can be seen that a different
gradient is visible in sinh(kh) above the steep and mild slope of the sand wave.

4.2.7 Wave period

To visualize the influence of a changing wind wave period, Figure 4.8 shows the base
case now with a wind wave period of 7 seconds. In case of a shorter wind wave period,
only minor influences are visible in the magnitudes of amplification factors and near bed
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(a) −h (b) AFA (c) AFnb

Figure 4.7: Visualization of the spatial variability in case of asymmetric sand waves where
the longest side is three times as long as the short side. For parameter configuration see Table
4.1. (a) shows the local water depth, (b) the amplification of the wind wave amplitude, (c) the
amplification of the near-bed flow velocity.

(a) −h (b) AFA (c) AFnb

Figure 4.8: Visualization of the spatial variability in case of a shorter wind wave period. For
parameter configuration see Table 4.1. (a) shows the local water depth, (b) the amplification of
the wind wave amplitude, (c) the amplification of the near-bed flow velocity.

flow velocities. The shoaling zones above the sand wave crests as can be seen in Figure
4.8b extend in x direction, which is also the case for the amplification of the near-bed
flow velocities in Figure 4.8c.

In Figure B.7 the spatial variability of sinh(kh) is visualized. Apparently, due to the
shorter wave period the sinh(kh) values increase significantly. Therefore the influence of
the bathymetry only (i.e. without the influence caused by increase or decrease of wind
wave amplitude) on the near-bed velocities becomes stronger.

In case of an increasing wind wave period the spatial influences become even smaller.
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Also here, still the same magnitudes are found for amplification factors of wind wave
amplitudes and near-bed flow velocities. Moreover, almost the same patterns are found
as in the base case.

4.3 Quantification of spatial variability

4.3.1 Quantification method

To provide insight in the magnitude of influence by sand wave fields on wind waves when
changing its configuration, a quantification method is introduced. The spatial variability
for a certain area is quantified by finding the maximum value, mean value, minimum
value and standard deviation inside this area. It is chosen to look at the change of wind
wave behaviour above the crest and troughs of the sand waves and above the full area
of interest (see Figure 4.1).

In order to determine the area of the sand wave crests and troughs, respectively the
highest and lowest 10% of the bed elevation are isolated. Subsequently, the output inside
these areas is being quantified.

To assess the influence of parameters, the base case which was already introduced in
the previous section, is also considered here. In the following subsections, one parameter
is changed and the influence on the Amplification Factors and near-bed orbital velocities
is assessed. Because of the numerous amount of graphs, they are all given in Appendix
C. In these graphs the following information is shown:

• the upward pointing triangle shows the maximum found value inside this area;

• the downward pointing triangle shows the minimum found value inside this area;

• the red circle shows the average value inside this area;

• the gray area shows the band of one time the standard deviation from the mean.
Therefore it gives an impression of the variability.

Finally, in the last subsection, the influence of all parameters are summarized in a
sensitivity analysis to show the mutual influence of the parameters.

4.3.2 Sand wave orientation

Figure C.1a, C.1c and C.1e show the amplification of the wind wave amplitude due to
change of sand wave orientation, respectively above the sand wave crests, troughs and
whole area of interest. Above the sand wave crests, it can be seen that the amplitudes
of the wind waves start to amplify for orientation angles greater than about 55 degrees,
indicating shoaling. Smaller orientations barely show amplification of the wind wave
amplitude. Between orientation angles of 65 and 80 degrees, the mean amplification
of wind wave amplitude decreases above the sand wave crests, and increases above the
sand wave troughs. Also, between the latter orientations, increase of wind wave am-
plitude is found above the troughs. For orientation angles larger than 80 degrees, the
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mean amplification of wind wave amplitude above the crests and troughs significantly
increase and decrease, respectively. Furthermore, the standard deviation increases when
the orientation angle approaches perpendicularity with respect to the incident wind wave
crest. Above the whole area of interest, the maximum found wind wave amplitude and
standard deviation increase whereas the mean wind wave amplitude decreases slightly
for an increasing orientation angle.

Figure C.1b, C.1d and C.1f show the amplification of the near-bed flow velocity due
to change of sand wave orientation, respectively above the sand wave crests, troughs and
whole area of interest. Roughly similar behaviour is visible as that of the amplification of
wind wave amplitude. Further, for orientations below 55 degrees, the near-bed velocities
slightly increase above the sand wave crests and slightly decrease above the sand wave
troughs with respect to near-bed velocity above the flat-bed. Above the whole area of
interest, the maximum found near-bed velocity and standard deviation increase when
the orientation angle reaches perpendicularity with respect to the incident wind wave
crest.

4.3.3 Mean water depth

Figure C.2a, C.2c and C.2e show the amplification of the wind wave amplitude due to
change of the mean water depth, respectively above the sand wave crests, troughs and
whole area of interest. Above the sand wave crests, the maximum, minimum and stan-
dard deviation of wind wave amplitude decrease when it becomes deeper. Above the
troughs, the wind wave amplitudes do not become higher. Also, above the troughs a
local maxima and minima are visible. Visual inspection showed that the zones of mini-
mum found amplification shift towards to slopes of the sand waves and are therefore not
found above the troughs, nor the crests. This is confirmed when looking at the whole
area of interest, which shows that the minimum found amplifications are mostly located
above the slopes of sand waves.

Figure C.2b, C.2d and C.2f show the amplification of the near-bed flow velocity due
to change of the mean water depth, respectively above the sand wave crests, troughs and
whole area of interest. Roughly, similar behaviour is visible as that of the amplification
of wind wave amplitude. In case of shallow water, the near-bed velocity can, in our
configuration, become three times as strong above the sand wave crests as above the
flat-bed.

4.3.4 Sand wave length

Figure C.3a, C.3c and C.3e show the amplification of the wind wave amplitude due to
change of the sand wave length, respectively above the sand wave crests, troughs and
whole area of interest. Above the sand wave crests, the maximum and mean amplification
of wind wave amplitude, as well as the standard deviation increase when sand wave length
increases, indicating stronger shoaling. Furthermore, above the crests and troughs local
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maxima and minima are found. Due to slower or faster refraction processes, the zones
of amplification shift in the x coordinate. Hence, due to the restriction a calculation
domain (i.e. area of interest) certain information can be positioned outside this domain
and therefore local maxima and minima are found in the graphs. The whole area of
interest shows that for sand wave lengths bigger than 300 meter, locations are found
where the wind wave amplitude is zero, indicating destructive interference.

Figure C.3b, C.3d and C.3f show the amplification of the near-bed flow velocity due
to change of the sand wave length, respectively above the sand wave crests, troughs and
whole area of interest. Roughly, similar behaviour is visible as that of the amplification
of wind wave amplitude. Near-bed velocities increase above the crest when the sand
waves become longer, upto three times as strong as the near-bed velocity at the flat-bed.

4.3.5 Sand wave height

Figure C.4a, C.4c and C.4e show the amplification of the wind wave amplitude due to
change of the sand wave height, respectively above the sand wave crests, troughs and
whole area of interest. Above the sand wave crests, it can be seen that the maximum
found amplification and standard deviation increase with sand wave height. Also, for
sand wave heights between approximately 1 and 2.5 meter it is visible that the mini-
mum found amplification factor above the sand wave crests is higher than 1. The latter
means that apparently anywhere above the sand wave crests wind waves are increased
in amplitude. Above the troughs, a drop in mean and minimum amplification of the
wind amplitude is found around a height of 1.8 meter. When looking at the whole area
of interest, it can be concluded that location where the wind wave amplitude is zero are
mostly located above the slopes of the sand waves.

Figure C.4b, C.4d and C.4f show the amplification of the near-bed flow velocity due
to change of the sand wave height, respectively above the sand wave crests, troughs and
whole area of interest. Roughly, similar behaviour is visible as that of the amplification
of wind wave amplitude. The maximum and mean near-bed velocities and standard
deviation increase above the sand wave crests when sand wave height increases. Above
the troughs, near-bed velocities decrease.

4.3.6 Sand wave asymmetry

Figure C.5a, C.5c and C.5e show the amplification of the wind wave amplitude due to
change of the asymmetry factor, respectively above the sand wave crests, troughs and
whole area of interest. Above the sand wave crests, the maximum found amplification of
wind wave amplitude slightly decreases and the standard deviation decreases when sand
waves become more asymmetric. Above the troughs, the mean amplification of wind
wave amplitude slightly drops, whereas the maximum found amplification and standard
deviation increase when sand waves become more asymmetric. Lastly, above the whole
area of interest, no significant change is visible.
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Figure C.5b, C.5d and C.5f show the amplification of the near-bed flow velocity due
to change of the asymmetry factor, respectively above the sand wave crests, troughs and
whole area of interest. Roughly, similar behaviour is visible as that of the amplification
of wind wave amplitude.

4.3.7 Wave period

Figure C.6a, C.6c and C.6e show the amplification of the wind wave amplitude due to
change of the wind wave period, respectively above the sand wave crests, troughs and
whole area of interest. Wind wave periods bigger than T = 6 seconds are assessed due
to the earlier mentioned RAM restriction (see Section 2.5). Above the sand wave crests,
the amplifications of the wind wave amplitudes are relatively constant, only at short
periods, the mean amplification shows slightly higher magnitudes. Also at these smaller
periods, the standard deviation is less above the sand wave crests. Although differences
are small, above the troughs the mean amplification factor shows a maximum around 8
to 9 seconds. Also the standard deviation above the troughs is smaller for short wind
wave periods. When looking at the full area of interest, relatively constant behaviour
can be seen for the mean, maximum and standard deviation of amplification factors.

Figure C.6b, C.6d and C.6f show the amplification of the near-bed flow velocity due
to change of the wind wave period, respectively above the sand wave crests, troughs and
whole area of interest. Roughly, similar behaviour is visible as that of the amplification
of wind wave amplitude. The highest amplification of near-bed flow velocities are found
above the sand wave crests and in case of shorter wind wave periods. The amplification
of mean near-bed velocity drops above the sand wave crests when the wind wave period
becomes longer. Above the troughs, the standard deviation increases when the wind wave
period becomes longer. Furthermore, when comparing the latter with the distribution
above the whole area of interest, it can be concluded that the lowest near-bed velocities
are found above the slopes of sand waves.

4.3.8 Parameter sensitivity analysis

To assess the mutual influence of the parameters on amplification of the wind wave am-
plitude and near-bed orbital velocities, the influences of the parameters in the previous
section are summarized in a comprehensive sensitivity analysis. The parameter config-
uration as used in the base case is considered as the starting point, which is located at
the points where all lines intersect as can be seen in Figure 4.9 and 4.10. To combine
all the parameters on the x axis, a percentage scale is used (e.g. λb = 500 [m] in the
base case, equals 100% on this scale and λb = 250 [m] equals 50% on this scale). The
indicator used to quantify the sensitivity is the maximum found amplification, factor
AFA,aoi,max, and maximum amplification of near-bed flow velocity AFnb,aoi,max, inside
the full area of interest, as it is believed that these indicators give the best representation
of the influence of a sand wave field on wind waves.
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Figure 4.9: Parameter sensitivity analysis of the base case on the influence of the maximum
found amplification of the wind wave amplitude (AFA) above the full area of interest.
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Figure 4.10: Parameter sensitivity analysis of the base case on the influence of the maximum
found amplification of the near-bed flow velocity (AFnb) above the full area of interest.

Figure 4.9 depicts the sensitivity of parameters on the maximum amplification of the
wind wave amplitude found in the area of interest. Sand wave orientation, sand wave
length, sand wave height and the mean water depth show significant influence. The wind
wave period and asymmetry factor have less influence.

Figure 4.10 depicts the sensitivity of parameters on the maximum amplification of
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near-bed orbital flow velocity in the area of interest. The influence of sand wave ori-
entation is strong. Furthermore, the mean water depth, sand wave length, sand wave
height and wind wave period have relatively strong influence whereas the influence of
the asymmetry factor is small.

4.4 Bragg Resonance

Bragg Resonance (see Section 1.1.3) is caused by reflection of wave components due to
a wavy bathymetry resulting in constructive interference (i.e. superposition). For the
model-specific situation this Bragg Resonance occurs when the following condition is
satisfied:

nλ = 2λb cos(θb), (4.4)

where n indicates a multiple of the wind wave length λ, and λb is the sand wave length.
Due to the dispersion relationship, the wavelength of the wind wave varies when trav-
elling over a sand wave, hence strictly there is no constant wind wave length λ. In this
section, an assessment is performed to find conditions where constructive interference
due to Bragg Conditions (i.e. Bragg resonance) might become evident.

In Figure 4.11 the maximum found amplification factor of the wind wave amplitude
above the full area of interest AFA,aoi,max is explored for varying combinations of sand
wave length and orientation of the sand wave field. Assuming a constant wave length
as found above the flat-bed configuration, the red dash dotted lines are locations where,
according to the theory, Bragg’s Law (Eq. (4.4)) is satisfied. In this figure it is visible
that the highest amplifications of wind wave amplitude are found in case of long sand
wave lengths and orientations of the sand wave crests perpendicular to the wind wave
crests. However, maybe even more interesting is the visible curved zone of amplification
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Figure 4.11: Exploring
possible Bragg Resonance for
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Figure 4.12: Exploring
possible Bragg Resonance for
combinations of λb and θb:
Base Case with Hb = 2 me-
ter.
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ter: zoomed.
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Base Case with h̄ = 12 me-
ter.
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Figure 4.17: Exploring
possible Bragg Resonance for
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Base Case with Hb = 0.1 me-
ter.

found in the domain of 200 ≤ λb < 600 and 60 ≤ θb ≤ 83, indicating local maxima.
Although, this curved zone of amplification is not positioned exactly above the Bragg
Condition lines (i.e. red dash dotted line where n = 2), it shows similarities.

In Figure 4.12 the base case (Figure 4.11) is adjusted to a lower sand wave height
of Hb = 2 meter. Now, the curved zone of amplification from Figure 4.11 has almost
vanished. However, at the n = 1 Bragg Condition line a curved zone of amplification
exists, which is possibly related to Bragg Resonance. Furthermore, the influence at long
sand wave lengths and perpendicular orientated sand wave crests decreased.

In Figure 4.13a the base case (Figure 4.11) is adjusted to a higher sand wave height
of Hb = 6 meter. Now it seems that multiple curved zones of amplification (i.e. at n = 2
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and n = 3) are present. Apparently when sand wave height increases, Bragg Resonance
becomes more evident. The latter can possibly be explained that wave components are
easier reflected when the slopes of the sand wave are steeper. When zooming in on a
part of this curved zone of amplification as depicted in Figure 4.14, a clear stroke of
amplification is found slightly off-positioned with respect to the Bragg Condition line.

In Figure 4.15 the base case (Figure 4.11) is adjusted to a smaller water depth of
h̄ = 12 meter. It seems that even more curved zones of amplification are present now.
Furthermore, due to the smaller water depth the influence of the sand wave field in
general is higher.

In Figure 4.16 the base case (Figure 4.11) is adjusted to a larger water depth of
h̄ = 30 meter. The overall darker colors compared to the base case indicate that the
overall influence of the sand wave field is less. Furthermore, a single, relatively wide
curved zone of amplification is visible at the n = 1 Bragg Condition line.

Lastly, in Figure 4.17 the base case (Figure 4.11) is adjusted to a very small sand
wave length Hb = 0.1 meter. In this situation we expect that non-linear effects are not
yet significantly present. Also please note that the colorbar is adjusted to a smaller
range. Although the amplifications are minor, a clear curved zone of amplification is
visible at the n = 1 Bragg Condition line. Furthermore, in contradiction to the other
cases the highest amplifications in the area of interest are no longer found at the largest
sand wave lengths, but show a maximum at about 600 to 700 meter and an orientation
of 90◦ degrees.

4.5 Observed sand wave fields in the North Sea

In this section the wind wave propagation over observed sand wave fields in the North
Sea are assessed. The raw, observed bathymetric data needs to be manipulated such
that it can be put in the model. Therefore first the observed data was interpolated such
that it fit in the 5000 by 5000 meter domain with a space step of 5 meter. Secondly,
after subtracting the mean observed water depth, a tapering function was used to create
the patch-like structure of the sand wave field with a flat-bed surrounding it. A circular
tapering function (see Appendix A.5) was used such that the observed sand wave field
could be rotated easily within the domain1. In Figure 4.18 the area of interest and the
dimensions of the circular tapering function are visualized.

Four observed sand wave fields are used to assess wind wave behaviour above them.
Figure 4.19, 4.20, 4.21 and 4.22 show, in sequence, a relatively irregular sand wave field
with lots of bifurcations and short sand wave lengths to a more regular sand wave field
pattern with longer sand wave lengths. In these figures, part of the sand wave crests are
visualized by black lines for easier reference.

In Figure 4.19b and Figure 4.19c the amplification of wind wave amplitude above a
relatively irregular sand wave field is visualized. Reflections caused by the boundaries
of the model are visible and hence interpretation of the results should be done carefully.

1the imrotate() function of MATLAB was used
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Figure 4.18: Definition of the area of interest and circular tapering function. The dash-dotted
line where the transition starts from the flat-bed configuration to the sand wave field, the dashed
line is where the sand wave field is fully developed and the solid line represents the area of
interest.

Zones of amplification of the wind wave amplitude are visible, but are not directly related
to the patterns of the local water depth in Figure 4.19a and 4.20a, respectively. However,
in Figure 4.19c and Figure 4.20c, the amplification of near-bed orbital flow velocity is
depicted and shows roughly similar patterns to the bed elevation. Hence, the near-bed
velocities caused by these bathymetries, which are also relatively deep and the sand
waves slopes are relatively steep, are mainly caused by change of local water depth and
not so much by the shoaling effect of wind waves. Further, it is visible that the near-bed
flow velocity is amplified stronger than the wind wave amplitude in both figures.

In Figure 4.21b and Figure 4.22b, the amplification of wind wave amplitude for two
more regular observed sand wave fields is visualized. Also these two sand wave fields are
positioned in a relatively smaller mean water depth compared to the sand wave fields in
4.19 and Figure 4.20. In Figure 4.21, zones of amplification of the wind wave amplitude
are clearly visible that are slightly deviated from the orientation of the sand wave crests.
Apparently, due to refraction, the wind waves do not necessarily show shoaling above
the sand wave crests but also above the troughs of sand waves. in Figure 4.22b, the
zones of amplification are less apparent, possibly because the sand waves are not so
high. Furthermore, in 4.21c and Figure 4.22c the amplification of the near-bed flow
velocity is visualized. The near-bed flow velocity now shows similar patterns to that of
the amplification of the wind wave amplitude. Hence, the process of shoaling is now
more controlling the near-bed flow velocity than the change in local water depth due to
bed elevation.

The interference patterns that are visible in Figure 4.19 to 4.22 might, possibly,
cause irregularities in the sand wave field and be a possible explanation of for example
bifurcations.
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Furthermore, a closer look is given when the observed sand wave field in Figure
4.21 is oriented differently with respect to the incident wind wave. In Figure 4.23 the
latter is visualized, with symbols as explained in Section 4.3.1. The orientation is an-
ticlockwise with respect to its current position as shown in Figure 4.21. At a rotation
of approximately 50 degrees, the sand wave crests are more or less oriented parallel to
the sand wave crests, and shows that spatial variability of the wind waves decreases.
In contradiction, at a rotation of approximately −30 degrees, the sand wave crests are
approximately orientated perpendicular to the incident wind wave crests and show great
spatial variability.

(a) −h (b) AFA (c) AFnb

Figure 4.19: Visualization of the spatial variability caused by a observed sand wave field in
the Southern Bight of the North Sea (coordinates: UTM 31U 470000 5740000). (a) shows the
local water depth, (b) the amplification of the wind wave amplitude, (c) the amplification of the
near-bed flow velocity.
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(a) −h (b) AFA (c) AFnb

Figure 4.20: Visualization of the spatial variability caused by an observed sand wave field in
the Southern Bight of the North Sea (coordinates: UTM 31U 510000 5760000). (a) shows the
local water depth, (b) the amplification of the wind wave amplitude, (c) the amplification of the
near-bed flow velocity.

(a) −h (b) AFA (c) AFnb

Figure 4.21: Visualization of the spatial variability caused by an observed sand wave field in
the Southern Bight of the North Sea (coordinates: UTM 31U 550000 5781000). (a) shows the
local water depth, (b) the amplification of the wind wave amplitude, (c) the amplification of the
near-bed flow velocity.
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(a) −h (b) AFA (c) AFnb

Figure 4.22: Visualization of the spatial variability caused by an observed sand wave field in
the Southern Bight of the North Sea (coordinates: UTM 31U 575000 5792000). (a) shows the
local water depth, (b) the amplification of the wind wave amplitude, (c) the amplification of the
near-bed flow velocity.
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Figure 4.23: Spatial distribution for different orientations of the observed sand wave field as
given in Figure 4.21. Orientation is measured anticlockwise from the situation as given in Figure
4.21. The symbols denote: 4 max, 5 min, © mean and the gray area shows the standard
deviation.
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Chapter 5

Discussion

5.1 Model

Modelling the true behaviour of wind-generated surface gravity waves (i.e. wind waves)
is rather difficult due to the combined effects of several physical processes. In order to
mathematically express the behaviour of wind waves, assumptions and simplifications
are made to formulate the latter. The Mild-Slope Equation, which is the governing model
equation, assumes linear harmonic waves, an inviscid, incompressible fluid, irrotational
flow but moreover a slight variation of water depth over the distance of a wind wave
length, i.e. a mild-sloping bathymetry. Beside these assumptions, boundary conditions
are imposed in the model which require a priori knowledge about the angle of the inci-
dence of the wind wave on these boundaries. In this model, these angles are estimated
to be the same as the angle of the predefined incident, monochromatic wind wave at
the incoming boundary. Errors in the expression of these boundary conditions might
be reduced by for example iterative updating of these boundary conditions. All in all,
the model is able to output the complex valued amplitudes, which should be interpret
carefully due to the aforementioned assumptions.

Furthermore, the large system matrix that has to be stored to use the direct-solution
method limits the number of nodes. An iterative solution method will eliminate this
limitation at the cost of possibly slower calculation speeds and convergence criterions.

Lastly, the model is verified with an analytical solution under the assumption of a
flat-bed configuration. This verification method is considered normative for the accuracy
of the model. An analytical solution in case of bathymetric configuration including a
sand wave field might be more representative as a method for verification, however the
analytical solution to this situation is more difficult, if it exists.

5.2 Bathymetry generation

The model is able to generate a regular bathymetric profile of a sand wave field based on
input parameters: sand wave height, sand wave length, asymmetry and orientation of
the sand wave crests. Irregularities as for example variable spacing between sand waves
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or local increase in sand wave heights can not be produced. However, field-data (i.e.
observed water depths) or manually adjusted water depths can be used as input.

Furthermore, to gently introduce the sand wave field, a tapering function is used.
This tapering function describes a linear transition from the flat-bed configuration to
the sand wave field and therefore has a trapezium shape. A sinusoidal shaped transition
between the flat-bed and sand wave field will describe the transition even more gently.
The tapering function will then look like a Tukey window. A quick comparison of the
Tukey window with the current used tapering window at the regular sand wave field
patterns, showed maximum differences of 5% inside the area of interest. Another option
for the tapering window can be a circular window (see Appendix A.5) as used for the
observed sand wave fields. The latter makes rotation of an observed data set easier,
however more information is lost.

5.3 Assessment of results

This MSc project is conducted to assess the influence of sand wave fields on wind waves.
The influence on wind waves is made insightful and quantifiable by assessing the spatial
variability of amplification factors of the wind wave amplitude and the corresponding
near-bed orbital flow velocities inside the domain. Subsequently, a base configuration
with certain parameter settings is established. From there a parameter is changed indi-
vidually and the change of spatial variability due to this change in parameter is assessed.
The base case is chosen based on a high influence situation, which is when the sand wave
crests were orientated perpendicular to the wind wave crests. This orientation however
causes a symmetric situation and might therefore be a somewhat risky base case. Also,
the results may describe very case specific behaviour and therefore the generality of the
results may be questioned. To come to more generic conclusions, combinations of param-
eters should be assessed for their influence on wind waves and this method of assessment
might therefore not be that suitable. From the results in this thesis, it became for ex-
ample evident that the orientation angle has a significant influence on the effect of other
input parameters (e.g. sand wave height and sand wave length), such that research to
the influence of changing combinations of these parameters may result in more in-depth
knowledge about the relations of parameters to the effect size. in Section 4.4 however,
the influence of various combinations of orientation angles and sand wave lengths were
explored, which resulted in local maxima of influence (likely Bragg Resonant cases). As
this shows that local maxima exist, it may be required to enhance full exploration of
the influence on wind waves by all combinations of parameters: simply assuming linear
or exponential behaviour between two parameter values is therefore not sufficient. To
prevent extremely numerous of combinations and with that very high computational
cost, the parameter space can be reduced from currently 7 to 4 parameters by a scaling
procedure of the Mild-Slope Equation to its dimensionless form. The formulation of this
dimensionless Mild-Slope Equation is introduced in Appendix D.

Furthermore, in order to quantify spatial variability of the amplification factors and
near-bed orbital flow velocity, the maximum, minimum, mean and standard deviation
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are determined for areas above the sand wave crests, sand wave troughs and the full area
of interest. This choice is made as it is believed that this gives an adequate quantification
of the spatial variability. However, one might find other quantification methods more
suitable (e.g. whisker plots). Also, for some analysis (i.e. sensitivity analysis and Bragg
Resonant situations) it was required to accommodate the spatial variability of the full
area of interest in one indicator. The maximum found amplification factor of the wind
wave amplitude above the full area of interest was chosen for this single indicator. The
latter is done as it is believed that the maximum influence is herewith expressed, however
one may be more interested in other single indicators as for example the mean value or
the standard deviation).

The result showed that the zones of amplification of wind wave amplitude and near-
bed orbital velocity can move outside the area of interest because of stronger or weaker
refraction processes. Therefore, essential information can be positioned outside our
calculation domain and hence is not incorporated in our analysis. Further, the influence
of an observed, irregular sand wave field caused noisy reflections due to the boundary
conditions, hence interpretation should be done carefully.

The results showed that sand wave fields are able to amplify wind wave amplitude
and causes spatial variability in wind wave propagation. Subsequently, this increasing
or decreasing wind wave amplitude has effect on the strength of the near-bed orbital
velocity and consequently on morphodynamic processes. The SMARTSEA project is
investigating the influence of wind waves on sand waves, hence this knowledge on spatial
variability in near-bed orbital flow velocities induced by the shoaling, refraction and
reflection effects of the incidental wind waves can change sand wave dynamics and will
likely cause spatial variability among a sand wave field.

Lastly, it is relatively hard to find observed data of surface elevation such as satellite
imagery to validate the model outcomes with. The first reason is that the model assumes
perfect monochromatic wind waves which are incident only from one direction. When
speaking of a domain size of kilometres, it is almost impossible to find such conditions.
Secondly, the way to retrieve such data is a very costly business and might therefore
not be in reach from a financial perspective. However, when bathymetric data and a
satellite image of the surface elevation at this specific location are available, the model
output may possibly be validated qualitatively. Furthermore, it might be possible to
recreate the situation in a laboratory. As far as we know, no experiments have been
carried out to the behaviour of wind waves above a wide extending sand wave field in
both horizontal directions. Subsequently, the measured data from this experiment could
then possibly be used for validation. Finding situations which create the possibility to
validate the model as formulated in this thesis may be a topic for future research.
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Chapter 6

Conclusion and
Recommendations

6.1 Conclusion

The aim of this thesis was to investigate the influence of sand wave fields in a shallow sea
on incident wind waves. Therefore, first a hydrodynamic model based on the Mild-Slope
Equation was formulated which is able to model wind wave behaviour when propagating
over a wavy bathymetry. The model has a square domain with the West boundary
describing the incident wind wave with a Dirichlet type boundary condition. The other
boundaries physically represent open sea, and are described with non-reflective boundary
condition based on the Sommerfeld Radiation Condition. For our system the latter
resulted in Neumann type boundary conditions at the North and South boundary and
a boundary condition of Robins’ type on the East boundary. In order to minimize
interference with the boundaries, the boundary conditions are formulated a far distance
from the sand wave field. The latter is implemented by locating a sand wave field patch
in the middle of the domain surrounded by a flat-bed configuration.

The model equation was then approximated by finite differences. Subsequently, the
resulting system of linear equations was solved by a direct solution method. The numer-
ical implementation of the model was done in MATLAB.

Lastly, the model was verified with an analytical solution in case of a flat-bed config-
uration. Restrictions of the capacity of the computer used to run the simulations showed
that the accuracy of the model needed to be set to a Root-Mean Square Error (RMSE)
of 1%. The latter was necessary to solve a numerical system of 5, 000 by 5, 000 meter
with a space step of ∆x = ∆y = 5 meter.

Subsequently, a bathymetric dataset is required as input for the model. The regular
sand wave fields are formulated by means of a bed elevation function consisting of a
plane wave with a specific orientation, sand wave height and sand wave length. Asym-
metry is included by merging together two different sinusoidal wave signals at the same
phase but characterized by different wave lengths. Lastly, to generate the patch-like sand
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wave field surrounded by a flat-bed configuration as explained at the previous research
question, a tapering function is formulated. This tapering function describes a two-
dimensional trapezium shaped structure with values ranging between 0 and 1 which is
multiplied with the bed elevation data. The observed bathymetric dataset was manipu-
lated with a circular tapering function such that the dataset could be rotated more easily.

Due to the influence of sand wave fields, wind waves will show spatial variability
caused by refraction, shoaling and reflection. The spatial variability of the wind wave
is assessed by looking to the amplification of the pre-defined amplitude of the incident
wind wave and the near-bed orbital flow velocity beneath the wind waves. The latter
can be visualized by using a top-view colormap where low values are indicated with a
dark, blue color and high values are indicated with a bright, yellow color. Furthermore,
an area of interest is established which is smaller than the area of the sand wave field
patch. The latter is done to prevent visualization and quantification of distortion caused
by the transition of the flat-bed to the sand wave field patch. Subsequently, the spatial
variability was quantified by looking at the distribution of the data above the sand wave
crests, -troughs and full area of interest. This was done by determining the maximum
and minimum found value and the mean and standard deviation inside these areas.

From the results can be concluded that the orientation of the sand wave field has a
major influence on the influence of the other parameters. Therefore the orientation of
the sand wave field with respect to the incident wind wave is very dominant compared
to other parameters.

When looking at the amplification of the wind wave amplitude and near-bed orbital
flow velocity, water depth, sand wave length and sand wave height show significant
influence. Wind wave period and asymmetry show less influence. Specific combinations
of parameters even show local maxima of influence which might be associated by Bragg
Resonance. A maximum amplification of approximately three times the wind wave
amplitude was found in case of a small water depth, long sand wave length, high sand
wave crests and sand wave crests orientated perpendicular to the crests of the incident
wind waves. In the latter case, also the highest near-bed orbital flow velocities were
found at the crests of the sand waves, upto three times as high as the near-bed flow
velocity in case of a flat-bed.

Lastly, in case of observed sand wave fields, the boundary conditions of the model
showed noisy reflections. Furthermore, the zones of amplification of the wind wave am-
plitude were the strongest for the relatively shallower locations and were overall slightly
deviated from the orientation of the sand wave crests. At the shallower locations, the
amplification of the near-bed flow velocity is more dominated by wind wave amplitude
whereas at deeper locations the changing local water depth caused by the sand wave field
is more dominant. The visible interference patterns of near-bed velocity were not always
in union with the change of bed elevation. Also, possibly this might be an explanation
for spatial variability of bed elevation among the sand wave field.
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6.2 Recommendations

For further work in this field it is recommended to analyse the influence of simultaneous
change of parameters. The current assessment method, by means of a base configuration
and individually changing parameters from there, might not be sufficient to gain in-depth
knowledge about the influence of sand wave fields. The reduction of the parameter
space due to formulation of the model equation in a dimensionless form as introduced
in Appendix D is also recommended to use. The latter will prevent using parameter
configurations which is essence describe similar conditions.

Furthermore, it is recommended to find methods for validation of the model output.
The current output may theoretically be correct but it is currently unknown if the
findings correspond with real observations. An experiment in a laboratory where a sand
wave field patch is recreated in both horizontal coordinates might give the required data
and insights to validate the model outcomes.

For the SMARTSEA project it is recommended to incorporate spatial variability
in near-bed orbital velocities induced by shoaling, refraction and reflection of the wind
waves. The locally changing near-bed velocities are not always in union with the bed
elevation and hence will affect sand wave dynamics by locally stronger or weaker mor-
phodynamics then expected.
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Appendix A

Mathematical background

A.1 Complex valued amplitude

The complex valued amplitude, which is also called a phasor, is the steady part of a
complex wave signal and is solved in the Mild-Slope equation. The complex wave signal
can be expressed in a Cartesian coordinate system (right hand term in Eq. (A.1)) or,
by using Euler’s Formula, in a polar coordinate system (left hand term in Eq. (A.1)).
For a signal propagating to the right this results in the following expression:

Aei(kx−ωt+ϕ) = cos(kx− ωt+ ϕ) + i sin(kx− ωt+ ϕ) (A.1)

where A is the amplitude, k = 2π/λ the wave number, ω = 2π/T the angular frequency
and ϕ the phase. Taking the Real part of Eq. (A.1) will result in the surface elevation
η. Further, the polar notation allows for separation of the arguments in the power. The
latter means that the left hand side of Eq. (A.1) can be rewritten into a product of two
complex wave signals as

Aei(kx−ωt+ϕ) = Aei(kx+ϕ)e−iωt (A.2)

In case of monochromatic wave behaviour, there is no variation in the time-domain and
hence e−iωt is not of interest. Therefore there can be chosen to only calculate the steady
part, the phasor, of Eq. (A.2), η̂, which is expressed as:

η̂ = Aei(kx+ϕ). (A.3)

The behaviour of the phasor is visualized in Figure A.1. In this figure it is visible that
whenever the argument is a multiple of π, the Real part of the signal is at its crest or
trough (i.e. maximum amplitude), and when on a multiple of π/2, the wave signal is at
zero (i.e. no amplitude).
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η̂ = Aei(kx+ϕ)
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η

Figure A.1: Complex wave signal of the phasor η̂ = Aei(kx+ϕ), for which the reflection on
the Real (Re) axis represent the steady state surface elevation η which fluctuates between the
amplitude A and −A.

A.2 Sparse matrix technique

The direct solution method as introduced in Section 2.4 first requires that the grid
nodes are represented in a vector form rather than the current (n,m) index. Therefore
re-indexing is required, which is done by the new index:

m∗(m,n) = m+ (n− 1)M (A.4)

Now, the system matrix of size N2 × N2 can be filled with the coefficients from the
discretized model equations. The row-number represents the grid node m∗ which is
being evaluated whereas the column-numbers are the m∗ index of the neighbouring grid
nodes. In case of a non-zero value in the matrix, a neighbour grid node influences the
solution of the evaluated grid node. An example of an one dimensional, second order
accurate system matrix of a Laplace problem is given in Eq. (A.5).

[V ] =



−2 1 0 · · · 0 0
1 −2 1 · · · 0 0

0 1 −2
. . . 0 0

...
...

. . .
. . . 1 0

0 0 0 1 −2 1
0 0 0 0 1 −2


(A.5)

The example of the system matrix in Eq. (A.5) shows three non-zero diagonals, which
means that each grid node is expressed by two neighbouring grids (coefficient of 1) and
itself (coefficient of −2) whereas other grid nodes do not directly affect the evaluated grid
node (coefficient of 0). Furthermore, the system matrix contains a significant number of
zero-values.
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Due to the relatively small wavelength of wind waves compared to the large extent
of sand wave fields, the model must be able to solve a large numer of grid nodes in
both x and y direction. When for example a 103 × 103 grid size is chosen, the system
matrix contains 106 × 106 elements. When using the straight-forward way of mapping
the system matrix (including all zero-values) as indicated in Eq. (A.5), the required
RAM storage is in the order of tens of Terabytes, and therefore too big to solve on a
personal computer1.

To overcome this RAM requirement, the sparse matrix structure is used in our
advantage. MATLAB has the ability to only store the non-zero values with its index in
the system matrix and the size of the system matrix2. The example matrix in Eq. (A.5)
then reduces to:

[Vsparse] =



1 1 −2
2 1 1
1 2 1
2 2 −2
3 2 1
2 3 1
3 3 −2
...

...
...

N2 − 1 N2 1
N2 N2 −2


(A.6)

Due to storage of the system matrix in the sparse structure as given in Eq. (A.6), the
RAM requirement reduces for the 103 × 103 grid size situation, to a manageable size of
about 6 to 7 Gigabyte on a 64 bit computer.

Besides the system matrix [V ], also the known right-hand side vector {f} needs to
be stored. The discretized model equations in Eq. (2.18)-(2.23) have a right hand side
of fm∗ = 0. However, the West boundary grid nodes, given by Eq. (2.20), have a right
hand side equal to the scaled amplitude of the wind wave. Hence, in the right hand
side vector {f} the row-numbers corresponding to the m∗ index of the Western grid
nodes, are valued Ã0. Furthermore, in the system matrix [V ], the Western grid nodes
are independent of neighbours and therefore only have a central coefficient of 1.

Now that both the system matrix and the solution matrix can be filled, the unknown
vector {η̃} can be solved with Eq. (2.25). Subsequently, the two-dimensional represen-
tation of η̃ can be restored by the known combinations of (m,n) and m∗. Furthermore
the complex valued amplitude η̂ can be obtained by transforming back using Eq. (2.5).

1At the moment about 4 to 8GB RAM is the standard for a personal computer.
2In MATLAB this function is called sparse().
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A.3 Discretized model equations of second order accurate
model

In this appendix the stencils used for the discretization of the second order accurate
model are given. The interior grid nodes are approximated by a central space finite
difference schematization:

1η̃xm−1,yn + 1η̃xm,yn−1 + (K2
xm,yn∆2 − 4)η̃xm,yn + 1η̃xm+1,yn + 1η̃xm,yn+1 = 0. (A.7)

The boundaries are expressed by one-sided finite differences:

η̃x1,yn = Ã0 atΓwest, (A.8)

3

2
η̃xm,yN − 2η̃xm,yN+1 +

1

2
η̃xm,yN−2 = 0 atΓnorth, (A.9)(

3

2
− iKxN ,yn∆

)
η̃xN ,yn − 2η̃xN ,yn+1 +

1

2
η̃xN ,yn+2 = 0 atΓeast, (A.10)

− 3

2
η̃xm,y1 + 2η̃xm,y2 −

1

2
η̃xm,y3 = 0 atΓsouth. (A.11)

A.4 Wave numbers of an asymmetric sand wave profile

In this appendix, the derivation of the factors γstoss and γlee is given. First, from the
relations in Figure 3.1 it can be seen that the following counts:

λb = λb1 + λb2. (A.12)

Furthermore the asymmetry factor Sb is repeated here:

Sb =
λb1
λb2

. (A.13)

When combining Eq. (A.12) and (A.13) one can express the horizontal lengths of the
stoss and lee side respectively as:

λb1 =
λb

1 + S−1
b

, λb2 =
λb

1 + Sb
. (A.14)

Now we should work towards an expression of:

kb1 = γstosskb, kb2 = γstosskb, (A.15)

where kb1 and kb2 are the required wave numbers to create the sinusoids for the stoss
and lee side respectively. We know that these wave numbers are equal to:

kb =
2π

λb
, kb1 =

2π

2λb1
, kb2 =

2π

2λb2
. (A.16)
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Note that the required wavelength of the stoss and lee sinusoid corresponds to twice the
horizontal length (λb1, λb2) of the stoss and lee side.

Now by substituting of Eq. (A.14) and (A.16) into (A.15), γstoss and γlee can be
expressed as follows:

γstoss =
1 + Sb

2Sb
, γlee =

1 + Sb
2

. (A.17)

A.5 Circular tapering function

First it is necessary to determine the center coordinates of the domain:

xc =
L

2
, yc =

L

2
, (A.18)

where L is the length of the square domain. Subsequently, the tapering function can be
described as:

w2D(x, y) =


0, if rvar ≥ (12 − γ0)L
cos
(

π
γtL

[
(12 − γ0)L− rvar

]
− π

)
, if (12 − γ0 − γt)L ≤ rvar < (12 − γ0)L

1, if rvar < (12 − γ0 − γt)L
,

(A.19)
where rvar =

√
(x− xc)2 + (y − yc)2 is the variable radius from the center coordinates,

γ0 is the ratio of the domain used for the flat-bed configuration and γt is the ratio of the
domain used for the transition zone (see Figure 3.4 for reference).
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Appendix B

Visualization of Spatial
Variability: sinh(kh)

Figure B.1: Visualiza-
tion of spatial variability
of sinh(kh) corresponding to
Figure 4.2: base case.

Figure B.2: Visualiza-
tion of spatial variability
of sinh(kh) corresponding to
Figure 4.3: base case with
θb = 0 degrees.

Figure B.3: Visualiza-
tion of spatial variability
of sinh(kh) corresponding to
Figure 4.4: base case with
h̄ = 12 meter.
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Figure B.4: Visualiza-
tion of spatial variability
of sinh(kh) corresponding to
Figure 4.5: base case with
λb = 1000 meter.

Figure B.5: Visualiza-
tion of spatial variability
of sinh(kh) corresponding to
Figure 4.6: base case with
Hb = 2 meter.

Figure B.6: Visualiza-
tion of spatial variability
of sinh(kh) corresponding to
Figure 4.7: base case with
Sb = 3.

Figure B.7: Visualiza-
tion of spatial variability
of sinh(kh) corresponding to
Figure 4.8: base case with
T = 7 seconds.
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Appendix C

Graphs showing the distribution
of spatial variability

In this appendix, the distribution of the Amplification Factors of wind wave amplitude
and near-bed orbital flow velocity above the sand wave crests, troughs and above the
whole area of interest are given. Each figure is characterized by the base case configura-
tion where the parameter on the x axis is being changed and assessed.
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(a) Amplification of wind wave amplitude
above sand wave crests
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Figure C.1: Spatial distribution of the base case with a variable orientation. The symbols
denote: 4 max, 5 min, © mean and the gray area shows the standard deviation.
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(a) Amplification of wind wave amplitude
above sand wave crests
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above sand wave crests
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(c) Amplification of wind wave amplitude
above sand wave troughs

h̄ [m]
15 20 25 30

A
F
A
[-
]

0

1

2

3

(d) Amplification of near-bed flow velocity
above sand wave troughs
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above area of interest
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above area of interest
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Figure C.2: Spatial distribution of the base case with a variable water depth. The symbols
denote: 4 max, 5 min, © mean and the gray area shows the standard deviation.

64



(a) Amplification of wind wave amplitude
above sand wave crests
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(d) Amplification of near-bed flow velocity
above sand wave troughs
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Figure C.3: Spatial distribution of the base case with a variable sand wave length. The symbols
denote: 4 max, 5 min, © mean and the gray area shows the standard deviation.
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(a) Amplification of wind wave amplitude
above sand wave crests
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Figure C.4: Spatial distribution of the base case with a variable sand wave height. The symbols
denote: 4 max, 5 min, © mean and the gray area shows the standard deviation.
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(a) Amplification of wind wave amplitude
above sand wave crests
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above sand wave troughs
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(d) Amplification of near-bed flow velocity
above sand wave troughs
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(e) Amplification of wind wave amplitude
above area of interest
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(f) Amplification of near-bed flow velocity
above area of interest
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Figure C.5: Spatial distribution of the base case with a variable asymmetry factor of the sand
waves. The symbols denote: 4 max, 5 min, © mean and the gray area shows the standard
deviation.
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(a) Amplification of wind wave amplitude
above sand wave crests
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(b) Amplification of near-bed flow velocity
above sand wave crests
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(c) Amplification of wind wave amplitude
above sand wave troughs
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(d) Amplification of near-bed flow velocity
above sand wave troughs
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(e) Amplification of wind wave amplitude
above area of interest
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(f) Amplification of near-bed flow velocity
above area of interest
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Figure C.6: Spatial distribution of the base case with a variable wind wave period. The symbols
denote: 4 max, 5 min, © mean and the gray area shows the standard deviation.
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Appendix D

Dimensionless form of the
Mild-Slope Equation

First the Mild-Slope Equation in its dimension full, according to Berkhoff (1976), is
repeated here:

∇ · (ccg∇η̂) + k2ccgη̂ = 0. (D.1)

Now we choose to scale the wave number k with the mean water depth h̄ such that the
following counts:

k =
k∗

h̄
, (D.2)

where k∗ is the dimensionless wave number for the flat-bed configuration. Also we scale
the variable water depth with the mean water depth:

h = h∗h̄ (D.3)

where h∗ is the dimensionless variable water depth. Furthermore, we scale the complex
valued amplitude η̂ by the predefined amplitude of the incident wind wave A0 as follows:

η̂ = η̂∗A0, (D.4)

where η̂∗ is a dimensionless complex valued amplitude (i.e. note that throughout this
thesis |η̂|/A0 = AF). Lastly, we scale the Cartesian coordinate system by a sand wave
length λb, hence:

x = x∗λb, y = y∗λb, ∇ =
∇∗

λb
, (D.5)

where x∗, y∗ and ∇∗ represent the dimensionless coordinate system.
Subsequently, with the dispersion relationship from Linear Wave Theory and use of

Eq. (D.2) the phase and group celerity can be expressed as follows:

c = c∗
√
gh, c∗ =

√
tanh(k∗h∗)

k∗h∗
(D.6)
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cg = c∗g
√
gh, c∗g =

c∗

2

[
1 + k∗h∗

1− tanh2(k∗h∗)

tanh(k∗h∗)

]
(D.7)

Now, when substituting Eq. (D.2) to (D.7) into Eq. (D.1), the following dimension-
less form of the Mild-Slope Equation results:

∇∗ ·
(
c∗c∗g∇∗η̂∗

)
+ Θ2k∗2c∗c∗gη̂

∗ = 0, (D.8)

where Θ = λb/h̄.
Now, when different sets of parameters, consisting of θb, λb, Hb, Sb, h̄, A0 and T ,

produce the same values for k∗, Θ, Sb and θb, the Mild-Slope Equation mathematically
shows the same behaviour.

However, due to the sand wave field patch, the size of this patch also influences the
mild-slope equation and therefore still differences might be present as this size is not
included in the scaling procedure.
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