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Abstract

Uroflowmetry is a cheap, simple and noninvasive test that is often first used for patients
with possible lower urinary tract dysfunctions. This test is usually automated to a high extend
and the result is a graph of the urine voiding speed (ml/s) vs. the time (s). For uroflowmetry
measurements obtained from women, these measurements are currently classified subjectively by
one or more physicians. The measurements are classified into one of four groups, each indicating
a set of underlying dysfunctions. In this research, it is investigated if this classification process
can be successfully automated by constructing multiple automatic classification methods. For
constructing these classifiers, a dataset of measurements and classifications by hospital staff
from the University Medical Center in Utrecht is used. One of the constructed classifiers is
the improved questionnaire proposed by van der Kamp [1], the other classification methods are
constructed using machine learning methods. All classifiers are evaluated on a set of chosen
performance measures. The ultimately chosen classifier is the regression forest classifier, which
was shown to have a good overall performance and gives an estimated accuracy of 96.7% for the
diagnosis of new patients.

I. Uroflowmetry

Classification of uroflowmetry measure-
ments

Uroflowmetry is often one of the first tests pa-
tients with the possibility of having lower urinary
tract (LUT) dysfunctions undergo. Because this
test is noninvasive, cheap and simple, it was one
of the first urodynamic tests to be automated.
In the University Medical Center of Utrecht,
the uroflowmetry measurements obtained from
women are divided into four classes by urolo-
gists. This is now done in a completely subjec-
tive way. Every class indicates that the patient
could suffer from a group of LUT dysfunctions.
In this research, it is investigated whether this
classification of digital measurements can also
be automated. The motivation behind this is
that it could give reassurance to hospital staff in
evaluating the measurements and could make the
classification of the measurements more reliable.
This research will build on prior investigations
by Brand, van der Kamp, Huizinga and Boele
[2], [1], [3], [4].

In the current research, first all available
uroflowmetry measurements were collected and
stored. After pre-processing the measurements,
the questionnaire optimization step proposed in
the research of Boele and van der Kamp was
replicated and improved to give an optimized
questionnaire. Next, machine learning methods
were employed to construct automatic classifica-
tion methods (classifiers). After defining a num-
ber of performance measures and evaluating the
values of these measures for the classifiers, the
regression forest was shown to have the highest
performance on uroflowmetry measurement clas-
sification with an estimated accuracy of 96.7%
for not yet seen measurements.

Clinical urodynamics

Clinical urodynamics is used to measure voiding
by the lower urinary tract (LUT for short), which
consists of the ureters, bladder and the urethra.
The purpose of this is having objective data of
voiding by the patient which can help a physician
in diagnosing certain LUT illnesses. There are
many forms of urodynamics; e.g. videourody-
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Figure 1: Four examples of uroflowmetry measurements assigned to the classes where the flow
(denoted by Q) has a Normal, Staccato, Interrupted, and Long flow. Source: [1].

namics, urethral pressure measurements and sys-
tometry. Most of these procedures are invasive
or expensive but uroflowmetry, a technique in
which LUT voiding speed (ml/s) vs. time (s) is
measured, is neither. Because of this, uroflowme-
try is often the first test that patients with the
probability of LUT dysfunctions undergo. The
result of this test is an uroflowmetry measure-
ment from which physicians can draw their first
hypotheses about the patient’s diagnosis. In the
University Medical Center in Utrecht (UMCU
for short), and for women above the age of 18,
physicians often divide the uroflowmetry mea-
surements in four different groups based on the
appearance of these curves (see figure 1). The
goal of this research is building an automatic
classification method for uroflowmetry measure-
ments that mimics the classification of this data
by physicians from the UMCU in the best way
possible. The reason behind this is that such

an automatic classification method can provide
an objective classification of the curves, reassur-
ing the physicians on the one hand and making
urflowmetry classifications more reliable on the
other [5].

The uroflowmetry measurements considered
in this research are obtained from a weight
transducer uroflowmeter: Andromeda Ellipse
M00101-2 [6]. In a weight transducer uroflowme-
ter, excreted urine lands in a container and the
weight of the urine is measured vs time. From
this weight, the volume of the landed urine is cal-
culated and by differentiation, the flow rate. The
advantages of the method are that it is relatively
simple and the measurements are quite accurate.
The disadvantages of this method are the large
effects of urine density on the results, the slow
response time and the occurrence of artifacts or
noise in the data as a result of the aforemen-
tioned differentiation step. [7].

Patterns in uroflowmetry

Uroflowmetry curves have several characteris-
tics, like maximum voiding speed or duration,
on which a physician can base a diagnosis. Also,
and more with women than with men, the shape
of the curve is important. In the UMCU, there
is consensus that uroflowmetry curves obtained

from women can be divided in four groups: nor-
mal flow (A), staccato flow (B), interrupted flow
(C) and long flow (D) (see figure 1) [1].

The normal flow curves, which are often
smooth, approximately symmetrical and have
high steepness, reflect a healthy voiding pattern
while all the other patterns can be due to mul-
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tiple LUT dysfunctions. Staccato flow and in-
terrupted flow are characterized by oscillations.
The difference between these two is that inter-
rupted curves have periods during which the
voiding speed drops to a very low point. A stac-
cato curve often indicates that the patient suf-
fers from bladder sphincter dyssynergia, a prob-
lem in the central nervous system regulation
of lower urinary tract muscles, whereas an in-
terrupted curve can also indicate that the pa-
tient is suffering from abdominal straining, a
tear in the abdominal muscles causing the pa-
tient to have pain while urinating. Oscillations
seen in the uroflowmetry curves can also be due
to artifacts in the measurements. The long flow
uroflowmetry curves are characterized by long
voiding times, little steepness and low maximum
voiding speed. They can be caused by decreased
power in the bladder muscles or a constant in-
creased pressure in the urethra. Another reason
can be a bladder outlet obstruction which lowers
the voiding speed [1],[5].

II. Constructing the classifiers

Data collection and pre-processing

In this research, a database of 1156 uroflow mea-
surements was collected, the dataset was ac-
quired by Dr. Rosier of the urology department
of the UMCU. All programming was done in
MATLAB R2015b. As already stated, the mea-
surements considered are obtained from women
above the age of 18. The measurements are ex-
ecuted with a weight transduced uroflowmeter
which measures the voiding speed of urine (ml/s)
vs. the time (seconds) with a frequency of 8Hz.
Sometimes there are spike artifacts in the data.
To account for this, the measurements are fil-
tered with a 2-second moving average filter as
advised by the International Continence Society
(ICS) [5]. Furthermore, the starting point and
endpoint of micturation are determined for each
curve and all data outside the start and end-
point is removed. As in van der Kamp’s research,
the starting point of micturation is defined as
the last time the voiding speed is zero before it
reaches 20% of its maximal value. The endpoint

of micturation is defined as the first point where
the voiding speed is zero after the last time 20%
of the maximal value is reached.

Besides uroflow measurements, the classifica-
tion of a subset of the measurements by staff of
the UMCU is used in this research. These clas-
sifications were obtained from the work of van
der Kamp and Boele. The former sent two sub-
sets of 400 and 365 processed measurements to
a professor in urology, a urologist and a doctor
in functional urology, who classified the curves.
Furthermore, the urologists gave a Visual Ana-
logue Scale (VAS) score between 0 and 10 denot-
ing the certainty about their classification. The
difference between the two sent subsets was the
scaling of the axes, in the first dataset the axes
were square and in the second they were scaled
according to ICS standards. Boele sent two sub-
sets of 20 and 30 processed measurements to 2
physicians in training and 3 urologists who were
asked to give a VAS score denoting the likelihood
of membership for all four classes. The measure-
ments in the first subset were given a VAS score
from 1 to 5, those of the second subset were given
a VAS score from 1 to 3. The scores obtained
by van der Kamp only had one class assignment
and VAS score, the scores obtained in by Boele
were VAS scores from 1 to 3 or 1 to 5 for each
class. This difference is accounted for by remov-
ing all VAS scores given by the hospital staff ap-
proached by Boele, except for the classes with
maximal scores. For physician Inter- and intra-
observer agreement, a subset of the curves was
scored twice in both of the former researches.
The double scores of these measurements were
also taken into account, resulting in 708 unique
scored uroflow measurements. In this database,
94.1% of the measurements came from van der
Kamp and 5.9% from Boele.

After all data was collected, the VAS scores
and classifications of the curves were used to
form likelihood assignments for class member-
ship. These likelihood assignments are 1 × 4
vectors in which the four elements from left to
right correspond to classes A, B, C, and D re-
spectively. Each element denotes the likelihood
that the measurement belongs to the respective
class, the sum of all elements therefore is always
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one. These likelihood assignments were made in
the following way: every curve has a set of class
assignments with VAS scores denoting the cer-
tainty of the people who classified the curves.
For every scored curve, for every class assign-
ment, the VAS score of the classification was
added to the position in the vector corresponding
to the class. After all scores were added, the vec-
tor was normalized. This resulted in likelihood
assignments of instance membership for each of
the four classes in which the certainty of the hos-
pital staff is also taken into account.

As an example, let’s say that there are three
staffmembers assigning classes and giving VAS
scores to a certain measurement. Staff mem-
ber 1 assigned class A to the measurement with
VAS score 6, staffmember 2 assigned class D with
VAS score 4 and staffmember 3 assigned class D
with VAS score 6. Now the unnormalized like-
lihood assignment vector would be [6, 0, 0, 10].
Dividing by 16 (the sum of all scores) gives
[0.375, 0, 0, 0.625], which is the likelihood assign-
ment for this curve. It denotes that there is a
37.5% likelihood of membership in class A and
62.5% likelihood of class membership in class D.
If a class had to be assigned to this measure-
ment, it should be class D because the likelihood
of membership in this class is the highest.

After computing the likelihood assignments
for the scored curves, the set of curves with a
likelihood of 100% of belonging to a certain class
were stored as well as their assigned classes and
sources (van der Kamp or Boele). The result-
ing set, which is called the golden curves set,
contained 428 curves. Of these curves, 71% be-
longed to class A, 12% to class B, 14% to class
C and 3% to class D. Distribution of class fre-
quencies like this in uroflowmetry are also seen
in literature [4], [1], [2], [8], [9].

Questionnaire

In the work of Brand, a set of 48 classified
uroflow measurements was considered [2]. These
flow measurements were obtained from young
women who were mostly healthy. For the au-
tomatic classification of these measurements,
a classification questionnaire was implemented.

The questions asked about a measurement in this
questionnaire were based on literature regarding
flow patterns and insights of experts from the
UMCU. The answers to the questions resulted
in a class assignment. This questionnaire was
shown to have high accuracy, 98% of the 48 clas-
sified curves considered in this research were cor-
rectly classified.

In the research of van der Kamp, this ques-
tionnaire was further investigated. A bigger set
of 138 classified curves was employed instead
of 48. A performance measure used in his re-
search was the area under the Receiving Oper-
ating Characteristic curve (ROC curve). This
measure gives more insight in the distribution
of false and true positives than accuracy alone,
more can be read about this measure in the sec-
tion about performance measures. For the ques-
tionnaire proposed by Brand, the ROC curve
area was 0.85. One of the goals of the research
of van der Kamp was altering the questionnaire
in such a way that the resulting ROC curve
area was maximized. The order of the questions
was changed and errors in the used MATLAB
code were corrected. Furthermore, the questions
asked in the questionnaire depended on certain
parameters and the parameters that gave the
maximal ROC curve area were searched with an
interior point algorithm. The modifications of
the original questionnaire resulted in a final ROC
curve area of 0.99 and an accuracy of 94% on the
138 classified curves [1].

As the first step in the current research, the
optimization method proposed by M. van der
Kamp is replicated and improved. The code used
in the investigations by van der Kamp was ob-
tained and as much code as possible was left
unchanged. There are five differences in the
way the questionnaire optimization is done when
compared to the former research.

The first difference is the size of the dataset
on which the parameters are optimized. As al-
ready stated, there are now 428 classified golden
curves on which the questionnaire parameters
can be optimized instead of 138. Using more
data is convenient, because using a larger sam-
ple (dataset) size often gives rise to more reliable
statistical predictions.
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The second difference is the function that is
maximized in the parameter optimization step:
in this research the average value of Cohen’s
kappa for all four classes is used as the function
to maximize. Cohen’s kappa value for one class
is given as:

κ =
p0 − pe
1− pe

(1)

where

pe =
N1

T ·N1
c +N0

T ·N0
c

n2
, p0 =

TP + TN

n
.

In the above equation, n stands for the number
of classified measurements. N0

T stands for the
number of golden curves assigned by staff as not
belonging to the class. N1

T stands for the num-
ber of classified golden curves assigned by staff
as belonging to the class. N0

c is the number of
measurements predicted by the classifier as not
belonging to the class. N1

c is the number of mea-
surements predicted by the classifier as belonging
to the class. TP is the number of measurements
correctly predicted to be in that class and TN is
the number of measurements correctly predicted
as not being in that class by the classifier.
Cohen’s kappa is a measure for the agreement of
the classifier with the classes assigned by urol-
ogists weighted with the probability that this
agreement is by random chance. It takes the true
positives (TP), true negatives (TN) and prob-
ability of random agreement into account and
is therefore often considered as a robust mea-
sure for classifier performance [10]. In this re-
search, the average over the Cohen’s kappa val-
ues was optimized instead of the ROC curves
because this method corresponds more with the
questionnaire optimization step proposed by van
der Kamp.

The third difference is the minimization algo-
rithm used in the parameter optimization step.
In the research by M. van der Kamp an interior
point method was used to find parameter val-
ues. In this research, a heuristic method is used,
namely the pattern search heuristic. Function
evaluations in the case of the questionnaire tend
to take a lot of time, and Cohen’s kappa, as with
accuracy, is a discontinuous function of the ques-
tionnaire parameters. Pattern search was chosen

because it can be used to find the minimum of a
discontinuous function and it uses relatively few
function evaluations for finding an optimum as
compared to heuristic methods such as particle
swarm or simulated annealing [11].

The idea behind pattern search is to start
with an initial optimal point (or center) and step
size 1. For each parameter, the step size is added
and subtracted to generate 2n new points (where
n is the number of variables) and the function
to minimize is evaluated at these new points.
If the minimum over both the new points and
center is attained at a new point, this point be-
comes the new center and the step size is dou-
bled. When this is not the case, the old cen-
ter remains the center, the step size is halved
and the above process is repeated. The heuris-
tic stops and returns the center as the optimal
point when the method reaches a stopping con-
dition specified by the user. In this research,
the stopping criterion was a minimal step size of
10−3. This value was chosen because it was seen
that convergence has almost certainly occurred
when a mesh size smaller than 10−3 is attained
(remember that the mesh size doubles when a
new optimal point is found, halves when no new
point is found and starts at value 1).

The fourth difference between the current
and earlier optimization method is the con-
straints which must hold for the optimal point.
In the earlier research, an interval was specified
in which the optimal point must lie [1]. In the
current research, the initial point is chosen to lie
inside this interval, but in the course of calcula-
tions the movement of the center point is unre-
stricted. Because it is a heuristic, pattern search
does not give the same optimal point every time.
Because of this, the procedure was repeated 50
times and the parameter settings resulting in the
lowest average kappa value were chosen.

The fifth and final difference is the implemen-
tation of likelihood prediction in the question-
naire algorithm. Every question in the question-
naire can either give an indication that a mea-
surement belongs to one of two classes or just
one class (see example below). The likelihood
predictions made by the questionnaire are now
constructed as follows: stepwise, the answer to

5



S.P.R. Baas
A machine learning approach to automatic classification

of uroflowmetry measurements

every question in the questionnaire is computed.
Now for the class indication that the answer to
the question gives, if there is any, the element
corresponding to this class in the likelihood vec-
tor is raised by one. After all questions have
gone through this process, the likelihood vector
is normalized, resulting in the ultimate likelihood
prediction.

As an example, consider a questionnaire con-
sisting of the questions:

• Is the maximal flow higher than 10 ml/s?

• Does the measurement have an interrup-
tion?

• Are there staccato peaks in the measure-
ment?

In the first question, yes indicates Normal flow
and no indicates Long flow. In the second ques-
tion yes indicates Interrupted flow and no does
not give a class indication. No interruptions
could still mean that the measurement belongs
to either one of the other three classes. In the
third question, yes denotes Staccato flow and no
also does not give a class indication. Now if the
answers to the questionnaire were [yes, no, yes],
in the unnormalized likelihood vector one point
would be given to Normal flow and one point for
Staccato flow. The normalized likelihood predic-
tions would then be [0.5, 0.5, 0, 0].

Machine learning approach

As a second step, it is investigated whether good
classifiers can be found using machine learning
methods. These classifiers could then possibly be
used instead of or in combination with the ques-
tionnaire. When using machine learning meth-
ods, often first some important properties (called
features or variables) of the datapoints are ex-
tracted from the dataset. These features are of-
ten a choice made by the user. After extract-
ing the features, the machine learning method
tries to make an as good as possible mapping (or
model) from the features to certain targets us-
ing an optimization method. This is often called
training the classifier and the used set of feature
values is often called the training set or the set of

training instances. Constructing these mappings
is called supervised machine learning and the
targets of the machine learning method can be
either classes or numbers. Each machine learn-
ing algorithm relies on a model template which
can be used to map the features to the targets,
and this model template directly defines the min-
imization function and the manner in which this
function can be optimized. When optimizing the
questionnaire, several aspects of the question-
naire were already fixed (e.g, the number and
order of questions asked). In machine learning
methods, only the type of model and the set of
features used to describe the data are chosen by
the user. Because of this, fewer aspects of the
model are predetermined and fewer choices have
to be made by the user.

If this research is concluded and a classifier
is found, this classifier could be used to diag-
nose new patients. These patients present not
yet seen uroflowmetry measurements to the clas-
sifier. If it is assumed that future uroflowmetry
measurements have similar shapes/feature val-
ues as the ones obtained from dr. Rosier, the
training set performance of the classifier would
roughly be the same as the performance on these
new measurements. If this is not the case how-
ever, it could be that a classifier that has high
training set performance does not perform well
on not yet seen instances. The reason for this
could be that the built classifier is too specific
for the training set data, sometimes also called
overfitting. Therefore, it would be useful to in-
vestigate classifier performance on not yet seen
data. An estimate for the performance on new
instances is the 10-fold cross validation perfor-
mance of a classifier, in the next section this
measure will be explained. In the field of ma-
chine learning, the classifier that is ultimately
chosen is often the classifier that shows the best
cross validation performance [12]. The reason
for this is that it is more useful to end up with a
classifier that is shown to perform well on not
yet seen instances as compared to a classifier
that is only shown to perform well on the al-
ready seen instances. After all, the idea is to use
the classifier for diagnosing new patients. For
machine learning algorithms, parameters can be
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tuned such that the model becomes more gen-
eral and the performance on new instances be-
comes higher. What is mostly done in the field
of machine learning, is plotting the cross valida-
tion performance vs. the parameter value and
the parameter value that results roughly in the
highest cross validation performance is chosen
[12]. For the generation of the questionnaire,
it takes a very long time to calculate just one
cross validation measure (5 days on the current
PC). Therefore, finding good parameter values
for the patternsearch heurisctic by constructing
the aforementioned plots would take too long.
This makes that the questionnaire classifier can-
not be further tuned to increase cross validation
performance.

As already stated, before using machine
learning algorithms, a set of features is deter-
mined. The names and descriptions of the fea-
tures used in this research can be seen in table
1. These features are based on the parameters
of the questionnaire used by van der Kamp and
Brand [1], [2].

A first idea was to build an as good as pos-
sible mapping from the features of the golden
curves to their classifications. This can easily be
done using the MATLAB classification learner
app. This app takes as input the feature values
for each measurement and each measurements
class. Then, there is a list of machine learning
algorithms out of which the user can choose. Af-
ter a method is chosen, the app automatically
generates the corresponding classifier. Further-
more, the user can tune the settings of the ma-
chine learning algorithm to get higher cross val-
idation performance. After the parameters are
tuned, the model can be exported to the MAT-
LAB workspace and used for classification. The
constructed classifiers often can also automati-
cally predict likelihoods for class membership, so
that these predicted likelihoods can also be com-
pared with the likelihood assignments given by
urologists. Most of the time, there is not one
specific machine learning algorithm that must
be used for a given problem, a set of multiple
machine learning algorithms has to be used and
evaluated. As a guideline to determine which
machine learning algorithms to use in this re-

search, two often used machine learning cheat
sheets are followed [13], [14]. After investigation
of these algorithm cheat sheets, the classifiers K-
nearest neighbor, support vector machine (SVM)
and random forest were chosen for this prob-
lem. For more information on K-nearest neigh-
bor, support vector machine and random forest
classifiers, see [15], [16] and [17] respectively.

A second idea was to consider all curves with
likelihood assignments made by hospital staff
and to make an as good as possible mapping
from the features of these curves to their respec-
tive likelihoods. There are a number of reasons
why it is interesting to do this. First, it was
seen that a large percentage of the golden curves
were classified as A and small percentages for
classes B, C and D. It is therefore possible that
a classifier trained on the golden curves alone is
not presented with enough examples belonging
to the classes B, C and D to give a good overall
classification performance. However, when the
likelihoods assignments are observed, it is seen
that 69.2%, 35.7%, 35.7% and 19.3% of the like-
lihoods for the classes A, B, C and D respectively
are larger than 0. The number of curves with
likelihoods assignments is also almost twice the
size of the set of golden curves. It is therefore
expected that when the classifiers are trained on
the likelihoods, the classifiers see more examples
that correspond to the classes B, C and D to
a certain extent and therefore get a better grip
on which measurements belong to which class.
The second reason to make such a mapping is
that it is expected that a classifier trained on
the likelihoods will have higher predictive power
for the likelihoods in comparison to one trained
on the golden curves. Because the golden curves
are directly determined from the likelihoods, it is
also expected that classifiers trained on the likeli-
hoods will have high classification performance.

The problem of mapping features to likeli-
hoods is a multivariate regression problem with
multiple responses, there is no app in MATLAB
that handles these problems. Therefore, scripts
are built in MATLAB to construct the regres-
sion classifiers. For the built classifiers, the class
assignment given to a measurement will be the
class with the highest predicted likelihood. Af-
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ter another inspection of the aforementioned al-
gorithm cheat sheets, support vector regression,
regression forest and ridge regression were cho-
sen as classifiers to build for this problem. For

more information on support vector regression,
regression forest and ridge regression, see [18],
[17] and [19], respectively.

Table 1: Names and descriptions of the features used in the machine learning algorithm to generate
classifiers for the uroflowmetry measurements.

Name of the feature
feature variable name
in MATLAB

description of the feature

Deceleration time
divided by acceleration time.

DTAT
This is the time after the maximal
flow of the uroflowmetry measurement is reached
divided by the time before this happens.

deceleration time divided by
maximal flow.

DS
This is the time after the maximal flow of the
uroflowmetry measurement is reached divided by
this maximal flow.

The number of interruptions
in the uroflowmetry measurement.

interruptions
This is the number of times the urine flow drops
to a value representing 20% of the maximal flow
or less.

The number of stacattopeaks in
the uroflowmetry measurement.

number of staccatopeaks
This is the number of times the urine flow has a
peak with peak prominence bigger than or equal to
20% of the maximal flow.

Maximal measured flow of
the uroflowmetry measurement.

QMAX This is the maximal measured flow
of the uroflowmetry measurement.

Average flow divided by the total
volume.

QV
This is the average flow divided
by the total urine volume
measured by the uroflowmeter.

Voiding time T The total time between
the start-and-endpoints of voiding.

Voiding time divided by maximal
flow.

TQ
The total time beween the start-and-endpoints
of voiding divided by the maximal urine flow
recorded.

Performance measures

It was already stated that accuracy alone can-
not fully give insight into the performance of a
classifier. Thus, for evaluating the classification
methods constructed in this research, a number
of performance measures is used. In this re-
search, there is a set of classified curves, called
the golden curves, and a set of curves with likeli-
hoods of membership in the four classes given by
hospital staff. The agreement of the built classi-
fiers with both these likelihoods and these classi-
fications can be evaluated. The measures taken

are accuracy, Cohen’s kappa value for all four
classes, ROC curve area for all four classes, the
area under the MAE curves and the 10-fold cross
validation accuracy. For all these measures, 1 is
the best value and 0 the worst.

• Accuracy is equal to the average sum of the
true and false positive rate (TP+TN

n from
equation 1) over all four classes [20]. It
indicates how well the classifier performs
overall on the golden curve set.

• Cohen’s kappa value can also be calculated
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for the golden curves, the measure is ex-
plained in the discussion following formula
1 and more can be read about this measure
in [10]. These kappa values are calculated
per class and therefore indicate how well
the classifier performs for each class.

• ROC curves stem from the idea that, as
with the updated questionnaire, some clas-
sifiers can give likelihood assignments of in-
stance membership in certain classes [20].
One could now decide that when a likeli-
hood given to a class is greater than some
predetermined threshold, the measurement
is classified as that class. For each value
of this predetermined threshold, the clas-
sifier should make a number of good and
bad classifications, resulting in a true pos-

itive rate (N
1
c−TP
n from equation 1) and a

false positive rate (N
1
c−TP
n from equation

1) for each class. An ROC curve is now a
parametric plot of the true positive rate vs.
the false positive rate for certain values of
the threshold (see figure 2 for an example).
The ROC curve area corresponds to the
area under this curve integrated from 0 to
1. It indicates how well the classes assigned
to the golden curves can be predicted with
the likelihoods given for the four classes by
the classifier.

• Another measure is the area under the
MAE curves or the MAE area for short.
These curves are calculated in the follow-
ing way: first, 1000 thresholds are defined,
these are taken equidistant on the inter-
val [0,1]. Then, for each measurement
the classifier predicts four likelihoods for
class membership. Now for every class,
measurement, and threshold it is checked
whether the mean absolute error (MAE)
between the predicted and assigned like-
lihood is smaller than or equal to the
given threshold. Per class and threshold,
the fraction of uroflowmetry measurements
satisfying this condition is stored. Now as
a last step, the minimum, mean and max-
imum over these four fractions are calcu-

lated per threshold. These three variables
are plotted vs. the thresholds in an MAE
curves plot. The MAE area now corre-
sponds to the area under the curve rep-
resenting the minimum over the fractions.
For an example of an MAE curves plot, see
figure 3. An MAE curves plot describes
the distribution of MAE’s between pre-
dicted and assigned likelihoods for a clas-
sifier. The area under the MAE curves is
a measure indicating how well the classi-
fier can predict the likelihoods assigned by
hospital staff.

Figure 2: Example of an ROC curve, the true
positive rate is plotted vs. the false positive rate
for certain values of the classification threshold.
Source: [21].

• Another performance measure that is con-
sidered is the 10-fold cross validation ac-
curacy. This is an estimate for the overall
predictive power of the classifier for not yet
seen instances. The dataset is divided into
ten subsets, for each subset, the classifier is
trained on the complement and the accu-
racy of the resulting classifier on the former
subset is calculated [12]. These accuracies
are then averaged over all 10 subsets to give
the 10-fold cross validation accuracy.
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III. Agreement of hospital staff
on the likelihood
assignments

In this research, the ability of the constructed
classifiers to predict the assigned likelihoods is
evaluated. A first thing to investigate is if this
evaluation is justifiable. It could be that the
staffmembers themselves are incapable of pre-
dicting the likelihoods. In other words, it could
be the case that there is so much variation in
the individual likelihood assignments made by
the urologists that coming close to the weighted
average of these assignments is not useful. To in-
vestigate the agreement of the staffmembers on
the likelihood assignments, for each staffmem-
ber, the corresponding class assignment and VAS
score are left out of the classification database.
Now, the MAE curves denoting the agreement
between the assignments from this staffmem-
ber and the weighted (with VAS scores) average
of the scores by the other urologists are con-
structed. Note however that the likelihood pre-
dictions given by single staffmembers are always
classifications of 100% certainty about one class.
This is because the staffmembers only had to
give one classification. In previous researches,
some curves were scored twice by physicians (to
compute observer inter-and intra-agreement).
One could also treat these scores as classifica-
tions by different observers and evaluate them.
However, this set was relatively small and there-
fore wasn’t taken into account.

Not much variation in the performance of
individual urologists was seen. The average
standard deviations per threshold for the curve
corresponding to the minimum and maximum
over the fractions were 0.0260 and 0.0257 re-
spectively for the staffmembers approached by
van der Kamp and 0.0265, 0.0448 respectively
by Boele. Because the MAE curves for all urol-
ogists in both researches were this similar and
to avoid presenting a lot of the same results, the
MAE curves over all staffmembers in the two
researches were averaged. This resulted in two
averaged MAE curves and two averaged MAE
area’s. In figures 3 and 4, the averaged MAE

curves are plotted for the hospital staff that
evaluated the curves in the research of van der
Kamp and Boele respectively.

Figure 3: The MAE curves for the average ob-
server approached in the research by van der
Kamp. The minimum (solid), mean (dashed) and
maximum (dotted) over the fractions (f) of curves
over all classes with MAE between true and pre-
dicted likelihoods smaller than the threshold are
plotted vs. the thresholds (ε).

.

The average MAE areas for the staffmem-
bers in the research of van der Kamp and Boele
were 0.815 and 0.685 respectively. The observers
approached in the research by van der Kamp
predicted, on average, the true likelihood for
roughly 72% of the measurements (the curve
corresponding to the minimum over the frac-
tions starts at 0.72). The curves corresponding
to the minimal and maximal fractions lie close
to each other, corresponding to small variation
in the performance per class. The MAE curves
are mostly flat, indicating low deviation of the
MAE errors per measurement.

The observers approached in the research by
Boele predicted, on average, the true likelihood
for roughly 42% of the measurements. In the
beginning, the curves corresponding to the min-
imal and maximal fractions lie far apart from
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each other, but as the threshold increases this
distance becomes smaller. This corresponds to
large variation in the performance per class when
small errors are considered and smaller deviation
when larger errors are considered.

In both researches, there was (on average) a
fraction of measurements with a prediction MAE
of 1 for at least one class. This corresponds to
the sudden jump to a value of 1 that both the
MAE minimum curves have when a threshold
of 1 is considered. This is due to the fact that
the urologists always gave likelihood predictions
of 100% certainty for one class. If some golden
curves are then misclassified, the MAE becomes
one for both the assigned and predicted class.
For both researches, the fraction of measure-
ment with an MAE of 1 lies on average around
a value of 0.9 as this is the value attained before
the MAE minimum curves jump to a value of 1.

Figure 4: The MAE curves for the average ob-
server approached in the research by Boele. The
minimum (solid), mean (dashed) and maximum
(dotted) over the fractions (f) of curves over all
classes with MAE between true and predicted
likelihoods smaller than the threshold are plotted
vs. the thresholds (ε).

In this section, it was investigated how much
the approached hospital staff agreed with each

other on the membership likelihoods that they
gave to the measurements. It was shown that the
staff approached by van der Kamp showed high
agreement and the staff approached by Boele
showed moderate agreement. As 94.1% of the
measurements with likelihood assignments are
obtained from the research of van der Kamp,
the conclusion is that it is indeed useful to inves-
tigate classifier performance on likelihood pre-
diction.

IV. Classifier evaluations

Performance of the classifiers

In table 2, the values of the performance mea-
sures on are shown for all constructed classifiers
as well as the parameters given to the machine
learning model builders. For more information
about the construction and ideas behind the ma-
chine learning classifiers, see appendix B.

The support vector machine classifier does
not give likelihoods for class assignment, there-
fore the MAE area and ROC curve areas for this
classifier remain undetermined. The classifiers
that have the highest training set performance
are random forest and K-nearest neighbors with
an accuracy of 100% and Cohen’s kappa values
and ROC areas of 1. The regression forest clas-
sifier also has training set performance measures
around these values. The worst performing clas-
sifiers when accuracy and Cohen’s kappa are con-
sidered are the ridge regression and SVR classi-
fiers, where only the questionnaire classifier has
a lower kappa value for class D. The worst per-
forming classifier when the ROC and MAE ar-
eas are considered is the questionnaire classifier.
This indicates that the correspondence between
the predicted likelihoods and both class and like-
lihood assignments is low for this classifier. The
classifier that has the highest MAE area is the
regression forest classifier with an area of 0.890,
closely followed by the random forest classifier
with area 0.881. The regression forest classifier
is also the classifier with the highest 10-fold cross
validation, 96.7%. This means that this model
generalizes well and has high predictive power,
as the accuracy for new instances is high and
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does not differ much from the training accuracy,
which is 99.1%. The questionnaire classifier also
seems to generalize well, the training and cross
validation accuracies are 98.4% and 96.0% re-
spectively. The K-nearest neighbor classifier per-
forms reasonably well on all training set mea-
sures but has the lowest 10-fold cross validation
accuracy, which implicates overfitting. Two clas-
sifiers that perform well on all measures are the
regression forest and random forest models. The
support vector machine model also performs well
on all measures for classification, but most of the
time the performance measures for this classifier
are lower than these values for random forest and
regression forest.

For some classifiers, it is interesting to fur-
ther investigate the cross validation performance
to fully determine which classifiers perform best
on new instances. The classifiers which are in-
teresting to further investigate are the classifiers
that performed well on classification, likelihood
prediction or both. Furthermore, these classi-
fiers should have a small difference between the
10-fold cross validation accuracy and the train-
ing set accuracy because this indicates that the
model generalizes well. As often seen in machine
learning research, the ultimately chosen classi-
fier will be the one with the highest cross val-
idation performance measures [12]. The reason
behind this is that the ultimate classifier is going
to be used to diagnose new patients and there-
fore should have good performance on not yet
seen instances.

The classifiers chosen for further investiga-
tions were:

• The questionnaire classifier for classifica-
tion. The 10-fold cross validation Co-
hen’s kappa values are [0.971, 0.930, 0.941,
0.576].

• The SVM classifier on classification. The
10-fold cross validation Cohen’s kappa val-
ues are [0.953, 0.741, 0.761, 0.743].

• The KNN classifier on both classification
and prediction. The 10-fold cross valida-
tion MAE area is 0.6177, the cross valida-
tion Cohen’s kappa values are [0.767, 0.407,

0.543, 0.524] and the cross validation ROC-
curve area’s are [0.866, 0.701, 0.758, 0.671].

• The regression forest classifier on both clas-
sification and likelihood prediction. The
10-fold cross validation MAE area is 0.826,
the cross validation Cohen’s kappa val-
ues are [0.942, 0.756, 0.774, 0.734] and
the cross validation ROC-curve area’s are
[0.988, 0.972, 0.951, 0.738].

• The random forest model on both classifi-
cation and likelihood prediction. The 10
fold cross validation MAE area is 0.769,
the cross validation Cohen’s kappa val-
ues are [0.943, 0.746, 0.745, 0.686] and
the cross validation ROC-curve area’s are
[0.986, 0.974, 0.940, 0.827].

To estimate the 10-fold cross validation kappa
and ROC area values for all classifiers other than
the questionnaire, the 10 fold cross validations of
these measures is computed 50 times and aver-
aged. The ridge and support vector regression
classifiers weren’t chosen for further investiga-
tion. This is because of the low classification and
likelihood predictive performance of these classi-
fiers showed on the training set.

It is seen that both the random forest and
regression forest classifiers have good overall
cross validation performance. All cross valida-
tion kappa values indicate substantial agreement
between the predicted and assigned classes [1].
This is also the case for the support vector ma-
chine classifier. The cross validation MAE area
for the regression forest classifier is 0.826, which
is still higher than some MAE area’s attained for
some classifiers on the training set. The classifier
with the highest cross validation Cohen’s kappa
values (except for class D) is the questionnaire
classifier. The value of Cohen’s kappa for class
D however show only moderate agreement. Fur-
thermore, the standard deviation over 10 runs
for Cohen’s kappa for class D was 0.393. In com-
parison to the standard deviations of other Co-
hen’s kappa values (both for the questionnaire
and other classifiers) this value is very high. This
makes the predictions of this classifier for class
D unreliable.
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The regression forest is the classifier that
should be chosen as the ultimate classifier. The
random forest, support vector machine and re-
gression forest classifier all have cross validated
Cohen’s kappa values in the same ranges. When
the ROC areas are considered, the random for-
est wins, as the cross validated area for class D
is almost 0.1 higher than that of the regression
forest classifier. When cross validated accuracy
and MAE area are considered however, the re-
gression forest is the best. Because the regres-
sion forest only has a significantly lower cross
validated value than the random forest for the
ROC area of class D, this classifier is the ulti-
mately chosen one.

Instead of using just one classifier, one could
also use two classifiers, one for likelihood pre-
diction and one for class prediction. The only
classifier with significantly higher Cohen’s kappa
values than the regression forest classifier is the
questionnaire. However, it was shown that the
classification power for class D is very weak
for this classifier and therefore it should bet-
ter not be chosen for classification. Further-
more, a downside to using two classifiers could be
that the two classifiers sometimes do not agree
with each other on class assignments. Therefore,
the predicted likelihoods and class assignments
wouldn’t correspond, which might cause confu-
sion in hospital staff.

The questionnaire classifier

In the current research, the questionnaire opti-
mization step proposed by van der Kamp was
replicated and improved. In this subsection, this
ultimately found questionnaire is investigated.

The maximal average kappa value found on
the training set was 0.882, the corresponding pa-
rameter values are shown in table 3. The found
questionnaire performs better on classification
as compared to likelihood prediction. The ac-
curacy of this classifier on the training set is
98.4% and the Cohen’s kappa values are [0.983,
0.912, 0.900, 0.732] corresponding to nearly per-
fect agreement for classes A, B, and C and sub-
stantial agreement for class D. This classifier
has a lower area under its MAE curves (0.604)
and ROC curves ([0.982, 0.951, 0.770, 0.724])
as compared to all other constructed classifiers.
The 10-fold cross validation for the questionnaire
classifier is 96.0%. The cross validated Cohen’s
kappa values were [0.966, 0.958, 0.931, 0.586] in-
dicating nearly perfect agreement for classes A,
B and C but only moderate agreement for class
D.

The MAE curves for the questionnaire are
plotted in figure 5. The distance between the
curves corresponding to the minimal and max-
imal fraction of curves on average is large, de-
noting variation in performance per class for this
classifier. Also, there are no curves for which the

classifier gives the true likelihood assignment as
the curve corresponding to the minimum of the
fractions takes on the value 0 when the threshold
considered is 0.

Figure 5: MAE plots for the optimized question-
naire. The minimum (solid), mean (dashed) and
maximum (dotted) over the fractions (f) of curves
over all classes with MAE between true and pre-
dicted likelihoods smaller than the threshold are
plotted vs. the thresholds (ε).

All MAE values are lower than a value around
0.8, as the MAE curve corresponding to the min-
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imum over the fractions becomes 1 after a value
around 0.8.

The performance of the new questionnaire
on the golden curves is higher than for the old
questionnaire, an accuracy of 96.7% compared
to 87.9%. However, the performance of the ques-
tionnaire with the old parameters on the likeli-
hoods is better, a MAE area of 0.697 instead
of 0.604. When comparing the values of the
parameters for both questionnaires, only the pa-
rameters TQ, PIEK, PKcut, Msize, Qmaxcut
and QV lie around the same value. The differ-
ences in the parameter values are likely due to
the fact that the search space for the parameters
was chosen to be unbounded for this research.

Table 3: The parameter values for the question-
naire found in this research and the parameter
values proposed by van der Kamp, as well as the
maximal drops in accuracy when the parameter
values are either set to 0 or infinity

Parameter
name

New
parameter
value

Old
parameter
value

Drop in
accuracy
when
changed
to zero
or infinity.

DTAT 0.804 2.96 0.230%
DS 2.43 0.608 2.34%
T 41.7 12.0 0.230%
TQ 1.12 1.50 0.230%
PIEK 1.00 1.00 71.3%
PKcut 0.172 0.171 37.9%
Lint 0.0441 2.01 11.2%
VolInt 0.0474 0.0980 11.2%
Nint -29.0 1.00 11.2%
Msize 0.0956 0.0510 0%
Qmaxcut 6.94 6.11 13.6%
QV 0.0247 0.0300 0.940%

Parameter importance for the questionnaire can
be investigated by looking at the biggest change
in questionnaire performance when the param-
eter is either set to 0 or infinity. Most ques-
tions namely compare certain features of the
uroflowmetry curve with the parameter values.
These curve features are always positive. There-

fore, if one of these parameter values is set to
infinity or zero, the result is a tautology or a
contradiction (e.g. X < ∞, X > ∞, X > 0
or X < 0). In both cases, this should lead to
false classifications lowering the accuracy of the
questionnaire. The maximal drop in accuracy
for setting the parameter to either 0 or infinity
now denotes parameter importance for the ques-
tionnaire and in the last column of table 3, these
values are shown.

The parameter PIEK seems to be the most
important parameter of all with a 71.3% drop
in accuracy, and the least important parameter
seems to be Msize, with 0% drop. The parame-
ters DTAT, T, TQ, Msize and QV all have drops
under 1%, these parameters are therefore likely
to be redundant for questionnaire classification.

The regression forest classifier

The regression forest classifier built in this re-
search is shown to have high if not the high-
est values for all (training and cross validation)
performance measures. If one classifier should
be chosen for classifying uroflowmetry measure-
ments, it should be this one. In this section, the
regression forest classifier is further investigated.

The regression forest classifier consists of
a set of automatically built regression trees.
These trees are built using a random subset
of the features and training instances. Regres-
sion trees are binary trees, for every node except
the leaf nodes a question is asked about one of
the features of a given uroflowmetry measure-
ment. Now there are two branches exiting the
node, corresponding to answer yes or no. From
these branches, another node is reached and the
process is repeated until a leaf node is reached.
When a leaf node is reached, a real number cor-
responding to this leaf node is the prediction
made by the regression tree. For an example of
a regression tree, see figure 6.
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Figure 6: Example of a regression tree made
in ClickCharts. The numerical prediction is the
price of a concert ticket. Standing is the feature
denoting whether the visitor wants to stand up
or sit during the concert. Balcony is the feature
denoting whether the visitor wants a seat at the
balcony.

In a regression forest, each regression tree
makes a likelihood prediction and the mean of
all these likelihoods is the likelihood prediction
made by the regression forest. This procedure
generalizes the responses of the regression trees,
which often overfit the data. It is often seen that
regression forest classifiers compete well with
other often used classifiers, while still maintain-
ing high performance on new instances [17]).
The TreeBagger() function used for regression
forest construction can only construct forests
that give one output value. Therefore, four re-
gression forests are constructed to predict the
likelihood of curve membership for each of the
four classes. When these four different likelihood
predictions are obtained, the likelihood predic-
tions that are negative are made zero and the
resulting likelihood vector is normalized. Be-
cause four regression forests are constructed,
whenever the ”error” for the regression forest
model is discussed, the average of this error over
the four regression forest models is meant. For
more information on how regression forests work
and are constructed, see appendix B.

The regression forest model is the model with
the highest training and cross validation MAE
area. The MAE curves for the regression forest

model are plotted in figure 7. Surprisingly, al-
most none of the likelihood predictions are spot
on, the curve corresponding to the minimum
over the fractions starts at a value slightly above
zero. However, there is a fast incline seen in the
MAE curves of this classifier, denoting high de-
viation in the MAE’s per measurement for this
classifier. It is seen that the MAE’s for all classes
are lower than a value around 0.5, as the MAE
curves have converged to a fraction of 1 when the
threshold is around 0.5. On average, the curve
corresponding to the minimum and maximum
over the fractions lie close to each other, denot-
ing similar likelihood predictive performance per
class.

Figure 7: MAE plots for the regression forest
model. The minimum (solid), mean (dashed) and
maximum (dotted) over the fractions (f) of curves
over all classes with MAE between true and pre-
dicted likelihoods smaller than the threshold are
plotted vs. the thresholds (ε).

It can be investigated if more data would
improve the cross validation performance of the
regression forest model. For investigating this, a
curve is plotted for the out of box (OOB) mean
squared error of the classifier vs. the training
set size. This OOB mean squared error is now
explained. As stated earlier, for building a tree
in a regression forest, a subset of the total train-
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ing set is used. Now for calculating the OOB
mean squared error, predictions are done on
the instances not included in this subset (out
of the box) with the built tree. After this, the
mean squared errors between the predicted and
assigned likelihoods are calculated. Finally, the
calculated mean squared errors are averaged over
all trees to give the OOB mean squared error.
The OOB mean squared error can be seen as an
estimate of the mean squared error of the regres-
sion forest classifier on not yet seen instances.

Now, for constructing the aforementioned
plot, the total training set is permuted and
divided into 50 parts. The first part is ini-
tially used for training the regression forest and
the OOB mean squared error is calculated and
stored. The next training set part is now added
and again the model is constructed and the error
is calculated and stored. This process is repeated
until the total training set is used. After this, the
total process beginning with the permutation of
the training set is repeated another 9 times and
the calculated OOB mean squared errors are av-
eraged over these 10 runs. The permutation of
the dataset has the effect that the order of the
training instances has no influence on the ap-
pearance of the aforementioned plot. The plot
of the OOB mean squared error vs. the train-
ing set size for the regression forest classifier is
shown in figure 8.

It is seen that the error has a lot of varia-
tion when small training set sizes are used and
becomes more stable as the training set grows.
There also seem to be oscillations in the overall
trend of the plot. This is curious, as one would
expect that the overall trend of the OOB error
would only decrease in the training set size. The
OOB error also seems to be very small when
the smallest training set size is used, this was
also not expected. As it is seen that the OOB
error still shows some variation when the to-
tal training set is used, more training data is
probably needed for the OOB error to fully con-
verge. However, this would probably only result
in changes of an order of magnitude -3 as for the
last 200 instances added the OOB mean squared
error stays in the interval [0.115, 0.12]. Because
the likelihoods themselves are of order of mag-

nitude -1, it is probably not useful to add more
data.

Figure 8: Plot of the OOB mean squared error
vs. the training set size for the regression forest
classifier.

Another thing to investigate using regression
forests is the importance of each feature that
is fed to the model. This can be done using
the out of box permuted predictor delta error.
For any variable, this measure is the increase in
OOB mean squared error if the values of that
feature are permuted across the observations.
A larger error corresponds to a more important
feature. In table 4, estimates of the values of
the OOB mean squared error, averaged over 10
models, are shown for each feature. The num-
ber of staccato peaks, number of interruptions,
voiding time divided by maximal flow and de-
celeration time divided by maximal flow are the
variables that seem to be the most important.
The other variables all lie around an error of
0.6. The reason behind this is probably that
only the number of interruptions may indicate
Interrupted flow behavior and the number of
staccato peaks distinguishes Staccato flow be-
havior, but all the other variables distinguish
Long from Normal flow behavior and therefore
basically indicate the same thing.
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Table 4: Estimates of the out of box permuted
predictor delta error for the variables given to the
regression forest builder, the errors are averaged
over 10 built models.

Parameter name
Out of box
permuted predictor
delta error

Deceleration time
divided by
acceleration time

0.736

Deceleration time
divided by
maximal flow

0.640

Number of
interruptions

1.34

Number of
staccato peaks

2.00

Maximal flow
0.562

Average flow
divided by
total volume

0.658

Voiding time
0.606

Voiding time
divided by
maximal flow

0.769

Something that can also be investigated is
the effect of the parameters chosen in the pre-
processing of measurements on the regression
forest classifier. An averaging filter with a sliding
window of 2 seconds was used, the starting-and
endpoints of micturation depended on a percent-
age of 20% of the maximal flow and furthermore
the minimal staccato peak prominence was cho-
sen as 20% of the maximal voiding speed. It is
now investigated how much the performance of
the regression forest classifier depends on these
values.

In figure 9, the value of the window size of
the averaging filter is plotted vs. the OOB mean
squared error for the regression forest classifier.
To account for randomness, the average is taken
over 10 runs.

Figure 9: Plot of the OOB mean squared error
vs. the windowsize of the averaging filter, aver-
aged over 10 regression forest models.

It is seen that in the range [2, 2.5], the er-
ror does not change that much. Outside of this
interval, the error gets larger and the regression
forest model performs worse. The reason behind
this is probably that outside this interval, the av-
eraging filter window gets too large or too small.
When the averaging filter window gets too large,
the filter also leaves out the low frequency os-
cillations in the Staccato and Interrupted flow
measurements. This has as effect that the re-
gression forest falsely gives a higher probability
for Normal flow for these measurements. Also,
when the averaging filter window gets too small,
the high frequency oscillations stay in the mea-
surement, resulting in more normal flow curves
that falsely have a higher predicted likelihood
for Staccato or even Interrupted flow behavior.

In figure 10, the values of the voiding thresh-
old percentage, which define the start and end-
points of micturation, are plotted vs. the OOB
mean squared error of the regression forest
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model.

Figure 10: Plot of the OOB mean squared error
vs. the percentage defining the voiding threshold
(α), averaged over 10 regression forest models.

To account for the randomness of the mod-
els, the average is taken over 10 runs. It is seen
that in the range [0.05, 0.2], the error does not
change that much but outside of this interval
the error grows bigger. The reason behind this
is that when the voiding threshold becomes too
big, some small peaks in the Interrupted curves
vanish and some of them might falsely get a
higher predicted likelihood to be a Normal flow
curve. Also, when the voiding threshold becomes
too small, some very small peaks outside of what
one would consider as the real voiding period are
not removed from the measurement, resulting in
Normal curves falsely getting a higher likelihood
prediction to be an Interrupted curve.

In figure 11, the percentage of maximal
voiding speed defining the minimal staccato
peak prominence is plotted vs. the OOB mean
squared error. To account for the randomness
of the models, the average is taken over 10 runs.
It is seen that in the range [0.1, 0.25], the error
does not change that much but outside of this
interval the error grows bigger. This is likely due
to too much or too little staccato peak detection,
resulting in measurements getting a too high or

low likelihood prediction to be a Staccato curve
respectively.

It is observed from these last three plots that
the parameters window size, voiding threshold
percentage and staccato peak percentage are
chosen so that the OOB mean squared error is
reasonably close to a local minimum value (which
is quite possibly a global minimum value). How-
ever, it is also seen that the size of the ranges that
the errors take on in these plots all lie around a
value of 0.02. The likelihoods themselves are in
the order of magnitude -1, so an increase in mean
squared error of 0.02 is not really that bad. It
is therefore concluded that the built classifier is
dependent on the chosen pre-processing parame-
ters, but if these parameters were to change, the
obtained values for the performance measures
wouldn’t change drastically. This makes the re-
gression forest a robust model.

Figure 11: Plot of the OOB prediction error vs.
the percentage of maximal voiding speed denoting
minimal staccato peak prominence (β), averaged
over 10 regression forest models.

V. Classification Display

In the research of van der Kamp, besides a
questionnaire, a classification display was con-
structed in MATLAB. In this research, this dis-
play was altered to also show the likelihood pre-
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dictions given by the classifier in the form of a
pie chart. Furthermore, the colors shown in the
display were changed, the axes of the plot of the
measurement were changed and the curve char-
acteristics (such as maximal voiding speed) are
rounded according to the ICS standards. The re-
sult is a function that takes as input the classifier
and a raw (unprocessed) uroflowmetry measure-
ment and outputs the display. Finally, in red
or green, advice is given on whether the patient
should be sent to a physician. An example of the
shown display for a certain uroflowmetry mea-
surement is given in appendix A.

VI. Recommendations for
further research

In this research, a number of steps are made in
constructing an automatic classification system
for uroflowmetry measurements. There are still
a few more interesting subjects to investigate,
which are left for further research.

In this research, machine learning methods
are used to find classifiers for uroflowmetry mea-
surement classification. These methods leave
fewer choices to the user when compared to the
questionnaire optimization because the methods
find the best form of the chosen classifier for the
data with built in optimization methods. Two
things that were left to the user however were the
choice of features extracted from the data and
the pre-processing step that each measurement
had to undergo before classification. Another
(less ad hoc) strategy would be to directly ob-
tain features from the data. One example would
be to scale all uroflowmetry measurements to the
square [0, 1]× [0, 1] and divide the voiding speed
axis into n regions. The number of times the
voiding speed measurements lie in each of these
regions could then be used as n features for clas-
sification. Another idea is to use deep learning
methods. Deep learning methods try to learn
the optimal representations of data with the use
of neural or other networks. This would remove
the choice of feature selection in this research
because features would then be extracted auto-
matically [22].

Also, it would be interesting to investigate if
the automatic classification method proposed in
this research could be applied on a larger scale
(i.e. in more hospitals than the UMCU only).
In order to investigate this, uroflowmetry mea-
surements and classifications have to be obtained
from other hospitals.

VII. Conclusion

In this research, it was investigated if the classi-
fication of uroflowmetry measurements obtained
from women by staff from the University Medi-
cal Center in Utrecht could be automated. The
questionnaire optimization step proposed by van
der Kamp was replicated to give a questionnaire
for automatic classification. Furthermore, ma-
chine learning algorithms were used to gener-
ate a set of other classification algorithms. All
constructed classifiers were evaluated on a set
of performance measures. The classifier that
had the highest overall performance was the re-
gression forest classifier with an estimated ac-
curacy of 96.7% on not yet seen uroflowmetry
measurements. Further research could focus on
uroflowmetry measurement classification outside
of the University Medical Center.
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Appendix A Classification display example

Figure 12: Example of the classification display given for an uroflowmetry measurement.
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Appendix B More information about the machine learning
classifiers and their construction

In this appendix, the ideas behind the machine learning classifiers constructed in this research are
outlined, as well as the way in which they were constructed. For the construction of the classifiers,
a feature matrix was used. In this matrix, every column corresponds to a feature and every row
corresponds to a training instance. Before a classifier is constructed, all columns of the feature
matrix are scaled to the interval [-1, 1] by subtracting the mean and dividing by the maximal value
in the column (there are no negative values). This often increases the efficiëncy of the machine
learning algorithms. When new instances are classified, the features of this new instance are of
course also scaled in the same way.

B.I Ridge regression

Ridge regression is actually an extension of multivariate regression, which tries to make an as best
as possible polynomial fit from the features to numerical outputs [19]. In multivariate regression,
a matrix of variable values X ∈ Rm×(pn+1) is constructed where m is the number of instances, n is
the number of features and p is the number of powers of the features used as additional variables.
The first column of X consists of ones so that a constant can be added to the polynomial regression
fit. Furthermore, a vector of numerical outputs Y ∈ Rm×1 is also used. The aim of multivariate
regression is now to find a matrix Θ ∈ R(pn+1)×1 such that the mean squared error between X ·Θ
and Y is minimized, i.e.:

min
Θ∈Rn×1

(XΘ− Y )2. (2)

Where v2 denotes vT v when v ∈ Rs×1, s ∈ N. The difference between regression and ridge regression
is that the coefficients in front of the features in the polynomial fit are penalized using some
parameter λ ∈ R. The effect of this is that the extent to which the features are used for prediction
becomes smaller and the regression model becomes more simple, which can reduce overfitting. A
new minimization function is used:

min
Θ∈Rn×1

(XΘ− Y )2 + λΘ2. (3)

Analyzing the derivative of this function at it’s root gives the optimal Θ matrix:

Θ = (XTX − λIpn+1)−1XTY. (4)

In MATLAB, ridge regression is done by calling the ridge(Y, X, K, 0) built-in function. The Y
matrix is the same as the one in the description above, the X matrix is the X matrix above with the
first column, which only contains ones, deleted. K is an 1×k vector of values of λ to be considered.
For each of the values in K, the ridge() function makes a ridge regression model. The zero denotes
that the feature columns in the X matrix do not have to be scaled and centered. After completion,
the ridge() function outputs k different ridge regression models. After all parameters are chosen,
four regression models are made, each one for predicting the likelihood of measurement membership
in one of the four classes. If all four likelihood predictions are obtained, the negative likelihood
predictions are converted to zero and the resulting likelihoods are normalized to give the resulting
likelihood vector. Because four models were constructed, all cross validation mean squared errors
considered in the parameter selection step were averaged over all four ridge regression models.

There are two parameters which have to be chosen to build the ridge regression model, namely
the powers of the features added to X and the λ parameter for regularization. The first chosen
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parameter is the number of powers of the features added to X. When powers of the features are
added to X, ridge regression can make a higher polynomial fit for Y. The 10-fold cross validation
mean squared error (MSE) is plotted vs. the added feature powers in figure 13. It is seen that for
a power of 2, the cross validation MSE is the smallest and so this parameter is set to 2.

The value of the 10-fold cross validation MSE (averaged over 10 runs) is plotted vs. the value
of λ in figure 14. It is seen that after λ = 1, the cross validation MSE has more or less converged.
Therefore, λ is set to 1.

After determining suitable power and λ values, the ridge regression classifier is trained on all
uroflowmetry data with the chosen parameters. The results for this model are shown in table 2.

Figure 13: Plot of the 10-fold cross valida-
tion mean squared error for the ridge regres-
sion model vs. the number of feature powers
added.

Figure 14: Plot of the 10-fold cross validation
mean squared error (averaged over 10 repetitions)
for the ridge regression model vs. the value of λ.

B.II K-nearest neighbor

The idea behind the K-nearest neighbor (KNN) classifier is to let the data speak for itself [15]. In
order to classify a new instance, the classes of the k-nearest neighbors of the instance are observed.
The class that is observed the most in these k neighbors is predicted. Typically, k is chosen to
be odd to avoid ties. Two choices have to be made using the (Fine) K-nearest neighbor classifier,
namely the parameter k denoting the number of neighbors observed and the distance measure
used.

The K-nearest neighbor classifier used in this research is constructed using the classification
learner app from MATLAB. It was observed that the 10-fold cross validation accuracy descended
when k was chosen to be higher than one, so k is set to 1. After setting k=1, changing the distance
measure to city block (Manhattan) distance increased the cross validation accuracy, so this distance
measure is chosen. The resulting classifier is exported from the classification learner app and the
results for this model are shown in table 2.
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B.III Classification and regression trees

Classification and regression trees are used to predict responses from data, for classification trees,
these responses are classifications and for regression trees these responses are numbers [23]. For
response prediction, the decisions in the tree should be followed from the root down to a leaf node.
The leaf node gives the response. For an example of a regression tree, see figure 6. Decision and
regression trees are built in the four following steps:

• Start with the total training set. For every feature, sort all features values in order of mag-
nitude and look at all possible ways that the resulting set of values can be split in two. For
example, let’s say that the feature number of staccato peaks has values {0,1,4} for instances
2, 1, and 3, these values can then be split in {0}, {1,4} and {0,1},{4}. Every split results in
two new subsets of training instances.

• Now for every possible split, the split that resulted in the best optimization criterion is
chosen. The optimization function for constructing classification trees is Gini’s diversity
index summed over all subsets. This function has to be maximized. Gini’s diversity index is
an estimator for the probability that two instances taken from a set have the same class. It is
calculated as

∑c
i=1 p

2
i where c is the number of classes in the subset and pi is the fraction of

instances in the subset belonging to class i. All instances in a subset get the same prediction,
which is the most frequently occurring class over all subset instances. For the construction
of a regression tree, the optimization criterion is the minimization of the mean squared error
between the predicted and actual numerical values assigned to the subset instances summed
over all subsets. Again, all instances in the subset get the same numerical prediction, which
is the mean of all numerical responses of the instances in the subset.

• After the best split is chosen, the split is imposed.

• Now for every resulting subset of instances, the whole process is repeated. The process halts
when all subsets have size less than 2 for classification trees and 5 for regression trees.

Now, for prediction on new instances, the splits are followed until the subset that the new instance
should belong to is found. The prediction for this new instance is then the response corresponding
to that subset.

B.IV Random forests and regression forests

For the construction of a random or regression forest, a number of trees is build which is specified
by the user. For constructing these trees, a random subset of both the training instances and the
n features is selected with size

√
n for classification and size n

3 for regression [17]. Now, using
this random subset of features, a classification or regression tree is built for a random forest or
regression forest respectively. Prediction is done for new instances by outputting the class with the
highest frequency among all trees in a random forest and outputting the mean of all tree responses
in a regression forest. The averaging of the tree predictions has as effect that the regression or
classification forest is more general than just one classification or regression tree, while not becoming
too simple. The number of trees to build for the regression or classification is a free parameter, an
optimal value for this parameter can be found by observing the cross validation performance when
the number of grown trees changes. The number of trees resulting in the highest cross validation
performance should be chosen.

Random forests are built in MATLAB using the classification learner app. It was seen that
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building 95 trees resulted roughly in the highest cross validation accuracy so the number of trees
is set to 95. The resulting classifier is exported from the classification learner app and the results
for this model are shown in table 2.

The classification learner app cannot build regression forests, so this classifier had to be built in a
script using the TreeBagger(NoTrees, X, Y, ’Method’, ’regression’) function. Four regression forest
models are built, as the TreeBagger() function can only predict one dimensional responses. Each
regression forest predicts likelihoods for instance membership in one of the four classes. Because
four models were made, all out of box mean squared errors considered in the parameter selection
step were averaged over all four regression forest models. In the TreeBagger() function, NoTrees
stands for the number of trees, X stands for the feature matrix and Y is a vector in which each
row corresponds to the likelihood for membership in one of the four classes assigned to an instance.
When the TreeBagger function is called, it automatically builds a regression forest model mapping
the features to the likelihoods. In figure 15, the out of box mean squared error is plotted vs. the
number of trees, it is seen that the error descends much slower when the number of trees is bigger
than 250, so this value is chosen for the number of trees.

Figure 15: Plot of the out of box mean squared
error vs. the number of built trees for the regres-
sion forest.

Figure 16: A 2-dimensional example of the sepa-
rating hyperplane made for a support vector ma-
chine classifier. Source: [24].

For determining the ultimate likelihood vector, first the four regression forest classifiers are used
to predict the likelihoods of membership in the four classes. These likelihoods are put in a 1 × 4
vector. Then, the likelihoods smaller than zero are made zero and the resulting likelihood vector
is normalized. The results for the regression forest classifier are shown in table 2.

B.V Support vector machines for classification and regression

The idea behind the support vector machine (SVM) for classification is to build a hyperplane sepa-
rating differently classified data, see figure 16 for a 2-dimensional example. This hyperplane serves
as a classification boundary where instances on different sides of the boundary get different class
predictions. The goal is to attain as much generalization as possible by maximizing the distance
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between the hyperplane and the training instances. This is done by constructing two additional
parallel hyperplanes and maximizing the distance between the two outer hyperplanes while still
excluding instances from the inner region. This problem is solved by constructing a quadratic op-
timization problem, subject to certain constraints, which can be solved by the Lagrange multiplier
method. If this quadratic optimization method does not have a feasible solution, it is said that the
data is not linearly separable. In the aforementioned quadratic optimization problem, the number
of misclassified instances is also minimized to a certain extent. This extend is determined with a
parameter C∈ R, which is a free parameter and should be chosen by the user.

If the data is not linearly separable by a hyperplane, kernel tricks are often used. Kernel tricks
are transformations to make the data linearly seperable. Mostly, a set of size k of functions is
chosen, which are mappings from the features of the instances to the real numbers. The values of
these functions can then be used as (possibly linearly separable) new features for SVM training.
The kernel trick is also something to be chosen by the user. For more information on classification
support vector machines, see [16].

Classification SVM classifiers can be constructed in MATLAB with the classification learner
app. First, out of the often used linear, polynomial and Gaussian kernels, the cubic kernel function
was chosen as this function resulted in the highest 10-fold cross validation accuracy. After deter-
mining the kernel function, the parameter C (called the ”box constraint level” in MATLAB) in the
quadratic optimization problem was investigated. This parameter was chosen to be equal to 1, as
the cross validtation accuracy only descended when bigger values were chosen. The performance of
the resulting SVM classifier is shown in table 2. As the SVM classifier does not predict likelihoods
for class membership in the four classes, the MAE area and ROC areas remain undetermined for
this classifier.

In support vector regression (SVR), the middle hyperplane corresponds to the responses given
to training instances. The idea is now actually to get as many instances as possible inside the
two outer hyperplanes to obtain an as small as possible mean squared error (see figure 17). The
difference with SVM classifiers is now that the distance between the two hyperplanes is another
parameter to be tuned by the user. Again, a quadratic optimization problem is proposed which
can be solved using the Lagrange multiplier method. Also, a parameter C is defined by the user to
define how far training instances may lie outside of the two outer hyperplanes. For making a higher
order fit to the data, kernel functions can be used to transform the nonlinear relation between the
output and the original features to a linear one. The kernel is another parameter to be decided for
support vector regression classifiers. For more information on support vector regression, see [18].

The classification learner app in MATLAB cannot build support vector regression models, so
this model had to be build using a MATLAB script. Four SVR models were build, one correspond-
ing to each class. For calculating the ultimate likelihood vector, all predicted likelihoods that were
negative are made zero and the resulting likelihood vector is normalized. All cross validation mean
squared errors considered in the parameter selection step were therefore averaged over all four SVR
models. As already stated, the kernel function, distance between the two hyperplanes (denoted
by ε) and the parameter C (called the ”box constraint level” in MATLAB) have to be chosen by
the user to construct a SVR model. When comparing the performance of linear, polynomials and
Gaussian kernels on the cross validation mean squared error, the polynomial kernel was chosen.
After the kernel function was chosen, the 10-fold cross validation mean squared error was plotted
vs. the distance between the two hyperplanes (ε). It is seen that an ε of 0.1 resulted in the lowest
error so this value is chosen. In figure 19, the 10-fold cross validation mean squared error is plotted
vs. C (the box constraint level). It is seen that C=2 resulted in the lowest cross validation error, so
this value is chosen. The performance measures for the classifier constructed with these parameters
are shown in table 2
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Figure 17: A two dimensional example of a support vector regression classifier.

Figure 18: Plot of the 10-fold cross validation
mean squared error vs. the distance between the
outer hyperplanes (ε) for the support vector re-
gression model.

Figure 19: Plot of the 10-fold cross validation
mean squared error vs. the box constraint level
(C) for the support vector regression model.
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