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Abstract

Continuous technological advancement enables the growing complexity of System-
on-Chip (SoC), so that testing and debugging become harder. Consequently, instru-
mentation devices need to be embedded into SoCs. Such instrument devices are
referred to as embedded instruments, which are intellectual property (IP) blocks that
can be accessed externally to test and debug an SoC from inside (on-chip).

Technological advancement also makes SoCs less dependable due to a higher
probability of malfunctioning transistors after deployment. Hence, some embedded
instruments can be re-used for dependability purposes after deployment such as
fault detectors, temperature sensors, voltage sensors, etc. These embedded in-
struments are accessed externally for testing and debugging, but it can also be ac-
cessed internally for dependability purposes. These internal access are employed
by an embedded device that executes a dependability application to maintain the
dependability of SoC.

Complex SoCs require more embedded instruments. Previously, the increasing
number of embedded instruments raised an accessing problem, because it was
done in ad-hoc manner. Then in 2014, IEEE 1687 Internal Joint Test Access Group
(IJTAG) standard introduced a methodology for accessing embedded instruments
in a flexible and standardized way. The standard specified accessing embedded
instruments using procedures written in Procedural Description Language (PDL).

IJTAG eases internal access into embedded instruments by using PDL access
procedures in a dependability application. This approach makes the complexity of a
dependability application grows with the increasing number of PDLs and what kind
of application it runs. Hence, an on-chip processor is required to execute a depend-
ability application, thereby the growing complexity of the dependability application
does not alter the hardware design that executes it.

This thesis proposes hardware and software co-design of an on-chip IJTAG de-
pendability processor. An on-chip IJTAG dependability processor is an on-chip pro-
cessor for executing a dependability application as well as accessing embedded
instruments on the IJTAG network. The hardware design is based on a single cy-
cle 32 bits Microprocessor without Interlocked Pipeline Stages (MIPS) design that
offers a simple and open source processor. Since the dependability application is
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written in PDL and is executed in MIPS processor, the software design starts with
building a PDL cross-compiler for MIPS. This cross compiler for PDL is developed
using ANother Tool for Language Recognition (ANTLR) tool. Finally to verify the on-
chip IJTAG dependability processor along with the PDL cross compiler, it is tested
to execute benchmark tests and a real dependability application test.
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Chapter 1

Introduction

The concept of dependability was coined by Jean Claude Laprie in 1980s as a trust-
worthiness of a computer system such that reliance can justifiably be placed on it.
Trustworthiness is usually misunderstood by people with usefulness. A system does
not have to be trusted to be useful, even a faulty system may produce correct results.
But a faulty system has a higher chance of failure which leads to a loss of use.

Technological advancement enables millions of transistors to be implemented
into a System-on-Chip (SoC). Then people start to integrate more complex pro-
cessors, bigger memories and more buses that grows the complexity of SoCs.
The growing complexity of SoCs affects on testing and debugging that becomes
harder. Consequently, instrumentation devices need to be embedded into SoCs
which is known as embedded instruments. Embedded instruments are Intellectual
Property (IP) blocks that can be accessed externally to test and debug an SoC from
inside (on-chip) such as Built-In Self-Test (BIST) engine, complex I/O characteriza-
tion and calibration, embedded timing instrumentation, etc.

Technological advancement also raises a dependability issue. The increasing
number of transistors means a higher probability of malfunctioning transistors after
deployment. Hence, some embedded instruments can be re-used to monitor the
malfunctioning transistors and its environment after deployment such as fault detec-
tors, temperature sensors, voltage sensors, etc. These embedded instruments are
accessed externally for testing and debugging, but it can also be accessed internally
for dependability purposes. These internal access are employed by an embedded
device that executes a dependability application to maintain the dependability of an
SoC.

The growing complexity of SoCs requires more embedded instruments. Previ-
ously, the increasing number of embedded instruments raised an accessing prob-
lem, because accessing embedded instruments was done in ad-hoc manner. This
problem triggered the emergence of IEEE 1687 Internal Joint Test Access Group (IJ-
TAG) standard that was ratified in 2014. IEEE 1687 IJTAG standard introduced a

1



2 CHAPTER 1. INTRODUCTION

methodology for accessing embedded instruments in a flexible and standardized
way. Nowadays, embedded instrument vendors are encouraged to present an em-
bedded instrument as an IJTAG wrapped IP block and procedures to access the em-
bedded instrument using the standard. Those procedures are written in Procedural
Description Language (PDL) that was also introduced along with the standard.

1.1 Motivation

Using IJTAG eases internal access into embedded instruments. Because PDL ac-
cess procedures, which is originally intended for testing and debugging, can be
used in a dependability application to access embedded instruments on the IJTAG
network. For example : IJTAG wrapped temperature sensors, fault detectors and
voltage sensors are accessed internally just by executing its respective PDL access
procedures. Afterwards, the information from embedded instruments are processed
and a preventive action can be done if necessary. This will enable the execution
of life-time dependability procedures using embedded instruments. This approach
requires the dependability application to be written in PDL too. Yet the complexity
of a dependability application grows with the increasing number of PDLs and what
kind of application it runs. Hence an on-chip processor, whose sole purpose to exe-
cute a dependability application, is required. Thereby the growing complexity of the
dependability application does not alter the hardware design that executes it.

In general, a processor design needs to consider both hardware and software
parts. The hardware of the on-chip processor is a machine that supports to execute
a dependability application as well as accessing embedded instruments on the IJ-
TAG network. On the other side the software of the on-chip processor is a machine
code of a dependability application that provides what kind of operations that the
hardware should do. This thesis describes the design of an on-chip processor from
hardware and software perspectives as a co-design for executing a dependability
application using IJTAG network, which is specified using PDL.

1.2 Problem Statement

The challenge of hardware and software co-design is that the solution can be built
unequally. It is possible to have a simple software in a cutting edge hardware that
consumes area or a complex software in a simple hardware that takes a lot of time.
Certainly, further analysis from hardware and software perspectives are necessary
to determine the design requirements.

Dependability application as the software side runs on the processor hardware.



1.3. CONTRIBUTIONS 3

Since the dependability application is written in PDL, it entails the hardware to be
able to execute PDL syntaxes. Nowadays, there are many processor options that
can be extended to do such operations. Therefore, further investigation is required
to study what kind of processor is suitable for executing dependability application as
well as accessing embedded instruments on the IJTAG network.

Executing PDL on-chip requires PDL to be compiled into a machine code, which
requires a cross compiler for PDL. The compiled machine code will be executed
in the on-chip processor as the dependability application. Since the needs of a
machine code for PDL is obvious, a cross compiler for PDL is considered to be an
important part in this thesis.

Summing up the problems, this thesis is conducted to achieve the following ob-
jectives :

1. Analyze the solution for an on-chip processor to execute a dependability appli-
cation from hardware and software perspectives.

2. Determine and extend a processor design to be able to execute a dependability
application written in PDL.

3. Design a cross compiler for translating a PDL code into a machine code for the
selected processor.

4. Test the on-chip processor along with the cross compiler for PDL to perform a
real dependability application.

1.3 Contributions

There are two major contributions in this thesis. First, this thesis contributes the
design of an on-chip IJTAG dependability processor. An on-chip IJTAG dependability
processor is an on-chip processor that executes a dependability application as well
as accessing embedded instruments on the IJTAG network. The software side is a
machine code of a dependability application written in PDL.

Second, this thesis contributes a prototype of a PDL cross compiler which has not
been explored before. PDL cross compiler compiles PDL syntaxes into a machine
code. A compiler generally needs years of development to be able to target many
machines and ensures the absence of bugs and errors. This approach might give
an insight for making a compiler or a cross compiler for programming languages that
has not been explored yet.

What this thesis does NOT contribute to is new ideas in the field of depend-
ability. This thesis does not discuss how to increase the dependability of a circuit.
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This thesis focus on easing further development of a dependability application by
hardware-software co-design of an on-chip IJTAG dependability processor.

1.4 Outline

The first chapter introduces the topic, problem statements and contributions of this
thesis.

Chapter 2 describes the related works of this thesis. All related works on IJTAG,
hardware and software for building an on-chip IJTAG dependability processor and
PDL cross compiler are explained briefly in this chapter.

Chapter 3 analyzes the solution for an on-chip processor to execute a depend-
ability application. This analysis has two point of views : hardware and software
perspectives. The result of this chapter is design requirements for hardware and
software.

Chapter 4 explains the works related to hardware design of an on-chip IJTAG de-
pendability processor. It implements the hardware design based from the hardware
requirements in chapter 3. Then it is concluded with a discussion and the hardware
design of an on-chip IJTAG dependability processor.

Chapter 5 describes the works related to PDL cross compiler. It implements the
cross compiler design based from the software requirements in chapter 3. After-
wards it is followed with a section for how to use the PDL cross compiler. Subse-
quently it is concluded with a discussion and the PDL cross compiler design.

Chapter 6 discusses the experimental results for executing a dependability ap-
plication. It begins with verifying the on-chip IJTAG dependability processor and
the PDL cross compiler with benchmark testing. Then it is tested for performing a
dependability application. Finally, it is closed with discussion and analysis of the
results.

The final chapter concludes this thesis and suggests the future works.



Chapter 2

Related Works

An on-chip IJTAG dependability processor is an on-chip processor for executing a
dependability application as well as accessing embedded instruments on the IJTAG
network. Since a machine code of a dependability application, which is written in
PDL, is required, the software design starts with building a cross compiler for PDL.
This chapter explains related works that are required to build an on-chip IJTAG de-
pendability processor.

2.1 IJTAG

IEEE 1687 IJTAG standard was ratified in 2014. It introduced a methodology for
accessing embedded instruments via the IEEE 1149.1 Test Access Port (TAP) [7].
This standard emerged as the solution for widespread development of embedded
instruments which had its own access method. IEEE 1687 IJTAG described an
instrument-centric approach that allows procedural access to a Test Data Register
(TDR) accessible via TAP. The methodology included a network interface (ICL) and
a description language (PDL).

Using IJTAG offers a reconfigurable scan network (figure 2.1), which becomes
one of the advantages of IJTAG. Accessing a specific instrument on the IJTAG net-
work, which has been specified in ICL, is instantiated within PDL commands. Then
dedicated scan vectors are generated for accessing the specific instrument through
a process known as retargeting. The following section will explain ICL, PDL and
retargeting.

2.1.1 ICL

IEEE 1687 defines the purpose of Instrument Connectivity Language (ICL) as a
facility to describe the elements that comprise of embedded instrument access net-
work as well as their logical connections to each other. IEEE 1687 uses ICL as

5
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Figure 2.1: Example of a reconfigurable scan network

the representation of IJTAG network. ICL calls its fundamental entity as module.
A device may consist of several modules that have hierarchical order with the root
module is referred to as top − level module. Each connections between modules
may be constructed from primitive building blocks such as multiplexers or storage
elements. Even more black box can also be used so that instrument vendors can
hide its connections as long as it allows retargeting tool to navigate the network to
control and observe any instrument on the network [7].

2.1.2 PDL

PDL is used as an amenity to provide a means to define procedures for accessing
instruments (embedded instruments). IJTAG standard uses two level of PDL, PDL
level 0 and level 1. PDL level 0 is limited for IJTAG related operations where PDL
level 1 extends Tcl scripting language that covers what programming languages can
do (figure 2.2).

Figure 2.2: Comparison of PDL level 0 and 1

Tcl can be used to define mathematical and logical operations, along with ex-
pressions, statements, procedure calls, branches, etc. Tcl scripting language has
many common syntaxes with C programming language. In terms of mathematical
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operations, it behaves similar with C programming language but with different syn-
taxes (figure 2.3).

Figure 2.3: Comparison of Tcl, C and pseudocode syntaxes

PDL is designed to handle IJTAG related operations. A PDL code starts with an
iPDLLevel command to define the PDL level. Then it is followed by iProcsForModule
command to define which module in ICL that will execute the procedure. With PDL
level 1, the user can specify their own needs in the PDL file using Tcl syntax. For
example, listing 2.1 shows an example of a PDL level 1 script for measuring average
temperature from two temperature sensors. Commands with ’i-’ prefix are IJTAG
related commands and the rest are Tcl syntaxes. Requesting a temperature is done
by accessing the particular temperature sensor. In this example, it is done by writing
0x1F1F into the temperature sensor within an iWrite command and read the temper-
ature later within an iRead command. However, those iWrite and iRead commands
are not executed individually, but in a group. This group of commands consists of
iWrite, iRead or iScan commands from previous iApply command into the next iAp-
ply command. Each group are executed concurrently. So that in this example there
are two concurrent groups, the first one is for writing and the second is for reading.
The amount of time for executing a concurrent group is non-deterministic, it depends
on the number of instruments, the commands within the concurrent group and the
retargeted pattern (which will be explained later in section 2.1.3). PDL also supports
execution of waiting state using iRunLoop command. In this example it was used
to wait for the temperature sensors to finish, before it is available to be read later.
Next the temperatures are assigned into a variable acc using iGetReadData. Then
the calculation for measuring average temperature can be done.
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Listing 2.1: Example of a PDL level 1 script

iPDLLevel 1 −version STD 1687 2014 ;
iProcsForModule I n t e g r a t o r
iProc measureTemp{}
{

i W r i t e tempSensor0 0x1F1F / / request temperature0
i W r i t e tempSensor1 0x1F1F / / request temperature1
iApp ly

iRunLoop 2000 −sck / / wa i t the sensors

iRead tempSensor0 / / f e t ch the temperature0
iRead tempSensor1 / / f e t ch the temperature1
iApp ly

set acc [ expr iGetReadData tempSensor0 ]
set acc [ expr acc + iGetReadData tempSensor1 ]
set acc [ expr acc / 2 ]

}

2.1.3 Retargeting

Previously, embedded instruments were connected in serial. For example an at-
tempt to access TDR2 needs to provide a scan vector from TDR1-TDR4 (figure
2.4).

Figure 2.4: A scan network before IJTAG

After IJTAG, the TDRs can be connected in a multiplexed fashion with logical
connections between them (figure 2.5). These connections are documented in ICL,
while accessing the TDR is instantiated within PDL commands. In this manner,
accessing a TDR does not need to go through all TDRs, but it needs dedicated scan
vectors. For example, an attempt to access TDR2 starts from a PDL commands :

iWrite TDR2 0x101

This command means an access request for writing 0x101 to TDR2. On the network
level those commands are translated to set ScanMux Control Bit-1 (SCB1) to 1 that
has initial value 0. This will open the scan network to access TDR1, SCB2 and
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Figure 2.5: A scan network after IJTAG

SCB3 only, because the values of SCB2 and SCB3 are initially 0. Then, in the next
cycle the values of SCB1, SCB2 and SCB3 respectively need to be set to 1, 0 and 1.
Finally, TDR2 is accessible. This process of translating an instrument-level pattern
(in this example is an iWrite command) into scan vectors is called retargeting.

2.2 Retargeting Engine

Retargeting engine is a hardware accelerator for on-chip retargeting. This retarget-
ing engine is proposed by [9]. Retargeting engine is developed under CAES-TDT
department in the University of Twente as a part of a dependability manager.

Figure 2.6: Example of H-Array representation for a reconfigurable scan network
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2.2.1 Hierarchy Array

Retargeting requires processing on the network model (ICL) for generating specific
scan vectors. Thus the retargeting engine also proposed an on-chip version of ICL
which is referred to as Hierarchy Array (H-Array). For example, figure 2.6 shows the
H-Array representation of a reconfigurable scan network. The color on the right side
of the table represents the network that is included if the same color is activated.
For example, SIB1 (green) will include the whole scan network when it is activated.
Meanwhile IO3 will only include TDR1, etc.

2.2.2 Retargeting Engine Interface

Retargeting engine interacts with the IJTAG scan network, therefore it has IJTAG
ports interface : SI, RST, Sel, CE, SE, UE, TCK and SO (figure 2.7). Other than the
IJTAG related ports, it has seven other ports. Those seven ports comprise of :
1. RegValue : provide the value for a register (instrument);
2. RegID : provide the value of register ID corresponding to the register index in the
H-Array;
3. Concurrent : define the concurrent group of commands;
4. Read/Write : define the read or write of an access request (1 for read, 0 for write);
5. ReadID : return the read ID of a register corresponding to the register index in
the H-Array;
6. ReadValue : return the read value of a register (instrument);
7. Error : Return an alert if an error occurs;

Figure 2.7: The Interface of Retargeting Engine
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2.2.3 How Retargeting Engine Works

Retargeting engine works by first receiving access requests for one or more registers
(instruments). Each access request needs to provide the operations (write or read)
on Read/Write port, register value (used for write value) on RegValue port and regis-
ter ID (correspond to H-Array) on RegID port. Retargeting engine executes a group
of access requests concurrently. A group of access requests is formed while the
Concurrent port stays HIGH. So several access requests that are requested while
the Concurrent port HIGH are considered to be in the same group. After a group of
access requests is formed and Concurrent port goes LOW, the retargeting engine
starts to generate scan vectors for the access requests. Finally, the retargeting en-
gine returns ReadID and ReadValue if there are read access requests unordered,
because the retargeting engine produces effective scan vectors that may access
embedded instruments not in order.

Figure 2.8: Example of a group of concurrent access requests

For example, figure 2.8 shows the waveform of a group of access requests for
retargeting engine. This example uses the same H-Array that has shown before
in figure 2.6. These access requests comprise of writing 0b0010 to TDR1, writing
0b1000 to TDR2, read from TDR2 and read from TDR1, while the Concurrent port
stays HIGH. When Concurrent port goes to LOW, retargeting engine interprets it as
the end of a group of access requests and starts to generate scan vectors for these
access requests. Since the returning of read access requests are unordered, it is
possible to get the value of TDR1 first followed by TDR2 although the orders are the
other way around.
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2.3 Compiler

Compiler is a computer program that reads a program written in one language
(source language) and translates it into another language (target language) [1] (fig-
ure 2.9). The target language of a compiler is generally a machine executable
language (machine code). The first complete compiler was implemented by John
Backus who compiled FORTRAN into IBM 704 computer in 1957.

Figure 2.9: Compiler [1]

2.3.1 Compiler Phases

As a translator from source language into another language, a compiler works in
several phases. Alfred Aho in the infamous dragon book [1], defined six phases of
a compiler. It consists of :

1. Lexical Analyzer : Reads the characters in the source program and returns
stream of tokens;

2. Syntax Analyzer : Imposes hierarchical structure on the token stream;

3. Semantic Analyzer : Ensures the declarations and statements are semanti-
cally correct;

4. Intermediate Code Generator : Generates intermediate representations of
the source program (optional);

5. Code Optimizer : Improves the source-represented code in order to produce
faster machine code (optional);

6. Code Generator : Generates target code.

For example, a program that counts a position from initial position and rate is
shown in figure 2.10. Lexical Analyzer changes the position, initial and rate into
id1, id2 and id3 respectively. Then the Syntax Analyzer produces the correct parse
tree and the Semantic Analyzer fills the parse tree with correct types. Next the
Intermediate Code Generator generates intermediate representations of the parse
tree. Furthermore, the Code Optimizer improves the intermediate representations
and finally the Code Generator generates the target code.
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Figure 2.10: Example of phases in compiling a program [1]

2.4 Cross Compiler

Cross compiler is a compiler that can generate a machine code for another platform
other than the platform where the compiler is running [10]. This approach is used
to compile a machine code for a platform that is not capable to run a compiler for
itself. The history of cross compiler dated back in 1979 when it was impossible to
compile ALGOL 68 to Z80 CPU due to insufficient memory. Then ALGOL 68 code
was compiled in other platform to generate ZCODE for Z80 CPU.

Figure 2.11: Example of cross compiler
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Nowadays, cross compiler is used to compile a machine code for embedded
processors that has no operating system or a platform with limited systems like
mobile phone. For example, An Intel CPU with Windows operating system compiles
C source code into ARM machine code for ARM CPU that has no operating system
(figure 2.11). The compiler result is not executable for the host machine (Intel CPU)
but it is executable for ARM CPU.



Chapter 3

Analysis of HW-SW Co-Design

An on-chip IJTAG dependability processor is a dedicated processor for executing a
dependability application. While executing a dependability application, the proces-
sor needs to access embedded instruments on the IJTAG network. This makes the
on-chip IJTAG dependability processor falls into Application-Specific Instruction set
Processor (ASIP) category. Hence, ASIP design methodology [2] is required as a
framework to design an on-chip IJTAG dependability processor from hardware and
software sides.

Figure 3.1: ASIP Design Methodology [2]

15
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The input of ASIP design methodology is an application and the design con-
straints. The application is a dependability application written in PDL. Section 2.1.2
explained that PDL consists of PDL level 0 and 1, hence PDL level 1 extends Tcl
scripting language that enables what programming languages can do such as math-
ematical and logical operations along with branches, loops, statements, etc. This
thesis will implements all PDL operations in PDL level 1 to be able to execute what
programming languages can do. Within PDL there are several commands that in-
stantiate retargeting. Thus, there is a previous work that proposed an on-chip retar-
geting which is referred to as retargeting engine [9]. Hence the design requirements
of an on-chip IJTAG dependability processor comprise of : enable to execute PDL
and re-use the retargeting engine as a co-processor. As for design constraints, since
the on-chip IJTAG dependability processor is a dependability system of an SoC, it
must be very reliable. Such condition can be achieved by having a simple processor
as possible that has lower probability of malfunctioning transistors.

ASIP design methodology comprises of 4 steps that cover :
1. Application Analysis : Analyze what kind of application that the processor can
do.
2. Architectural Design : Explore possible architectures using step 1 as the given
design constraints.
3. Instruction Set Generation : Generates instruction sets for an on-chip IJTAG
dependability processor.
4. Software and Hardware Synthesis : Machine code generator and processor
design.

This chapter explains the first 3 steps, meanwhile the hardware synthesis and
software synthesis will be discussed in the next chapter as hardware and software
implementations.

3.1 Application Analysis

In this thesis PDL becomes an important part because it is used to write the depend-
ability application. PDL level 1 as an extension of Tcl sciprting language can be used
to define mathematical and logical operations, along with expressions, statements,
procedure calls, branches, etc. Hence in order to execute PDL, at least the hard-
ware and software parts of an on-chip IJTAG dependability processor needs to be
able to provide those operations.

PDL also has 24 commands that is defined in the IJTAG standard (table 3.1).
However this thesis only implements iPDLLevel, iReset, iRead, iWrite, iApply, iRun-
Loop and iGetReadData commands (table 3.2). Because these 7 commands are
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Table 3.1: PDL commands [7]
Command Purpose

iPDLLevel Identify PDL level

iPrefix Specify hierarchical prefix

iReset Reset the network

iWrite Queue data to be written

iRead Queue data to be read

iScan Queue data to be scanned

iOverrideScanInterface Indicate the capture, update and broadcast behavior to be im-
posed on a list of scan interfaces

iApply Execute queued operations

iClock Specify a system clock which is required to be running

iClockOverride Override definition of system clock when it is generated on-chip

iRunLoop Issue a number of clocks

iProc Wrapper for a PDL

iCall invoke a PDL procedure

iProcsForModule Identify the module in the ICL with which subsequent iProcs are
associated

iUseProcNameSpace Use namespace for subsequent iCalls

iNote Send text to runtime

iMerge Allow merging of iCalls

iTake Disallow other merge threads from modifying a model resource

iRelease Re-allow other merge threads to modify a model resource

iState Document the current state of the network

iGetReadData Return the value from most recently applied iRead operation

iGetMiscompares Return the XOR of the value from most recently applied iRead
operation

iGetStatus Return the decimal number of iApply miscompares that have oc-
cured since the last time iGetStatus was issued

iSetFail Return the message string to the controlling program to indicate
an unexpected condition

the fundamental commands that enables to use IJTAG network. iPDLLevel com-
mand translates the PDL code depends on its level. iReset command resets the
IJTAG network. iRead and iWrite commands queue the data to be executed and
these queues are only executed when iApply command is given. iRunLoop com-
mand issues a number of clocks, it is usually used for waiting instruments to finish
its process. Finally iGetReadData command is used to fetch the data that has been
read by an iRead commands.
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From those 7 commands iRunLoop, iGetReadData and iPDLLevel commands
are only able to be executed in the software side. In the implementation of iRunLoop,
it can instantiate No Operation (NOP) instructions to make a waiting state until the
required time is fulfilled (explaied later in section 5.6). iGetReadData command
only enables the data that has just been fetched for further processing, this can be
implemented by moving the data from the retargeting engine into main processor.
Finally iPDLLevel does not need any instructions, this can be done in compiler level
to check whether the PDL level is correct. Nonetheless iReset, iWrite, iRead and
iApply require serious software implementations, but these commands also require
to be generated as instructions in the hardware side. Because these commands
interact with the retargeting engine directly.

Table 3.2: Implementation of PDL commands
Command Implemented in

iPDLLevel SW

iReset SW-HW

iWrite SW-HW

iRead SW-HW

iApply SW-HW

iRunLoop SW

iGetReadData SW

Meanwhile, the other 17 PDL commands are not going to be implemented in this
thesis with specific reasons. iPrefix, iUseProcNameSpace, iProcsForModule, and
iProc commands are not necessary because the retargeting engine substitutes the
ICL with H-Array, this also affects on the implementation of iCall command since
iProc command is not implemented. iOverrideScanInterface and iState commands
are optional because overriding and documentation are not fundamental. iTake,
iMerge and iRelease commands enable threading for parallel processing, these
commands are optional for improving the performance later. iClock and iClockOver-
ride commands are not necessary to be implemented, because this thesis assumes
to only have one clock source, the system clock. iScan is not implemented be-
cause it behaves similar to iWrite and iRead but in more detail, thus iScan can be
substitued with iWrite and iRead commands. Finally, iNote, iGetStatus, iGetMiscom-
pares and iSetFail commands behave as notification system for the user which are
not applicable since an on-chip IJTAG dependability is an embedded processor.

Thereby, the requirements to execute PDL comprise of :
1. Being able to perform common programming language ability. Such as mathe-
matical and logical operations, expressions, statements, procedure calls and branches;
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2. Being able to perform iReset, iRead, iWrite and iApply commands for retargeting
engine co-processor.
3. Being able to perform iRunLoop, iGetReadData and iPDLLevel commands in the
software side.

3.2 Architectural Design

Architectural design explores possible architecture based on the requirements of :
executing PDL and re-use retargeting engine as a co-processor. The requirements
to execute PDL has been explained on section 3.1. There are many processor
types that meet such requirements such as Intel, ARM, Power PC, LEON and MIPS
processors. Thus most of it falls under proprietary rights that requires a license to
produce, use and/or synthesize. Only the early generation of MIPS and LEON that
is available.

The only constraint of an on-chip IJTAG dependability processor is the hard-
ware design should be as simple as possible in terms of area. Compared to early
generation of MIPS, LEON processor requires vast area which does not meet the
constraint. Since the early generation of MIPS was developed in 1985, until now
researchers around the world has explored several variants from the early genera-
tion of MIPS, such as Mini MIPS [11], Fault tolerant MIPS [12] and Single cycle 32
bits MIPS [5]. From these three options Single Cycle 32 bits MIPS offers the sim-
plest architecture from the remaining options. Hence the design of an on-chip IJTAG
dependability processor is based on the architecture of Single cycle 32 bits MIPS.

Single cycle 32 bits MIPS covers what general embedded processor can do. It
can handle mathematical and logical operations, jumps, branches, load and store.
Statements are done by assigning a value to a register, while loops and procedure
calls are handled by performing jumps into a specific address. Single cycle 32 bits
MIPS is also able to integrate retargeting engine as a co-processor by following
MIPS specification [4]. This section will explains the analysis of how single cycle 32
bits MIPS can meet the design requirements without violating the constraint.

3.2.1 Fixed Point Representation

Mathematical operations in computer system sometimes deal with real number op-
erations. Usually, it is handled by a Floating Point Unit (FPU). Yet the initial design
of single cycle 32 bits MIPS [5] does not include co-processor 0 (trap and excep-
tion handler) and 1 (FPU). OpenCores.org provides an open source FPU core [13]
that can be integrated into MIPS processor. However the synthesis result in 0.18 µ
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technology shows that FPU is 70 % larger than the whole single cycle 32 bits MIPS
processor (Table 3.3). It is clear that integrating FPU is not an option for the sake
of simplicity. Hence there is another option for a processor without FPU to calculate
real numbers by changing the number representation into fixed point in the software
side.

Table 3.3: Area comparison Single Cycle 32 bits MIPS & FPU
Hardware Area µ2

Single Cycle 32 bits MIPS 193551.73

FPU [13] 331635.98

3.2.2 Software Emulated Operations

Arithmatic Logic Unit (ALU) is a digital circuit that can perform mathematical and
logical operations. It is the main building block of a processor. The ALU of modern
processors can perform complex mathematical and logical operations. In this case,
it can process complex operations extremely fast. However it consumes enormous
areas than a simple ALU that can only do add and shift operations.

Table 3.4: Single cycle 32 bits MIPS ALU support [5]

The ALU of single cycle 32 bits MIPS supports several mathematical and logical
operations [5] (Table 3.4). It supports ADD, AND, LUI, OR, SLL, SLT, SRL, SUB
and XOR operations, but it does not support for multiplication (MULT) and division
(DIV) operations. On the other hand multiplication and division are fundamental
operations and are required in several dependability applications along with square
root and power operations. There are two approaches to solve this problem. The
first approach is to implement those required operations in the ALU of single cycle
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32 bits MIPS. And the second approach is to emulate those required operations in
the software side.

Multiplication and division are complex operations. Multiplication hardware com-
prises of adders and shift registers. Divider hardware is even more complex than
multiplication hardware, because it needs to handle exclusive cases such as divi-
sion by zero and remainders. The main reason to use single cycle 32 bits MIPS
processor is that it offers the simplest processor for the hardware of dependability
system. Therefore, the second option is preferable, multiplication and division op-
erations will be emulated in the software side. This solution also applies for other
complex operations that are required such as square root and power.

3.3 Instruction Set Generation

Instruction set connects the hardware and the software sides. The software side
compiles a PDL file into a set of instructions and the hardware side executes this
set of instructions. This thesis uses MIPS instruction set from [3] [4]. However there
are PDL requirements to generate iReset, iRead, iWrite and iApply commands into
instructions that has been discussed in section 3.1 (table 3.2), therefore the MIPS
instruction set needs to be extended. Before that, MIPS instruction set must be
investigated first.

Majority of MIPS instructions fall into three categories: R-Type, I-Type and J-
Type [3]. Register-Type (R-Type) instructions are used when all the data values are
located in registers. Immediate-Type (I-Type) instructions are used when the instruc-
tions must operate with an immediate value. Finally Jump-Type (J-Type) instructions
are used to perform a jump to an address.

Figure 3.2: MIPS instruction formats [3]

Each instruction type has its own instruction format (figure 3.2). All instructions
have an opcode part on the first 6 bits of its most significant bits, where the rest
may differ for each type. With Register Destination (RD), Register Source (RS)
and Register Target (RT ), R-Type instructions can access 2 registers in register file
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simultaneously for its operations. The R-Type instructions also have a shift part
for shifting amount and a funct part for defining the function for its operations. On
the other side, I-Type allocates its least significant 16 bits to an immediate value.
Meanwhile, J-Type allocates its least significant 26 bits outside of opcode for a jump
address.

Figure 3.3: MIPS Co-Processor Type Instruction Formats [4]

Outside of R, I and J-types, MIPS processors also support another type that
is co-processor instructions. These instructions enable MIPS main processor to
command its co-processors and exchange data between them [4]. The opcode

of co-processor type is ’0100XX’ where the last two bits refer to a specific co-
processor (figure 3.3). The format of co-processor type instructions depend on its
co-processor. For example, figure 3.4 depicts how Move From Co-Processor (MFC)
instructions for co-processor 0, 1 and 2 have different formats. MFC0 moves a data
to register RT in the main processor from register RD in co-processor 0 with spe-
cific sel. MFC1 also moves a data to register RT in the main processor from register
FS in co-processor 1, this data movement is used between MIPS processor with
FPU co-processor. Nonetheless, MFC2 moves a data to register RT in the main
processor, but the implementation part in the co-processor side depends on the
co-processor designer to implement it.

Figure 3.4: MFCX instruction formats [4]

Integrating retargeting engine as a MIPS co-processor requires instruction set
design. First, retargeting engine co-processor is assigned into co-processor 2, so
that the hardware design of an on-chip IJTAG dependability processor does not alter
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general MIPS architectures that employ co-Processor 0 and 1. Since retargeting en-
gine enables write and read into an the IJTAG network, it needs to be able to move
data to and from the co-processor. From co-processor point of view there are two
sources/destinations for data movements which are main processor and memory
(figure 3.5). Move a data from co-processor to MIPS processor can be handled with
MFC instruction and move a data to co-processor from MIPS processor can be han-
dled with Move To Co-Processor (MTC) instruction. For data movements between
memory and co-processor, Store Word Co-Processor (SWC) and Load Word Co-
Processor (LWC) instructions can be used to store and load the data respectively.
In the co-processor side, a register file will be added to hold the data and to ease
data movements.

Figure 3.5: Co-Processor Data Movement

Figure 3.6: Mapping iWRITE instruction to retargeting engine

To fulfil PDL requirements the hardware needs to generate iWrite, iRead, iAp-
ply and iReset PDL commands into MIPS instructions. As explained in section 2.2,
retargeting engine requires two data (RegID and RegValue) to process an iWrite
command. In the hardware implementation, those two data requires two registers
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Figure 3.7: Mapping iREAD instruction to retargeting engine

which can be placed in RT and RD because RS has been reserved for special part
(figure 3.3). In the instruction format, iWRITE instruction takes the usual place of
RT and RD for representing RegID and RegValue (figure 3.6). Meanwhile iRead
command only requires one data (RegID), so the iREAD instruction can take usual
place of RT for representing RegID (figure 3.7). Finally iApply and iReset com-
mands need no data, so iAPPLY and iRESET instructions can be implemented by
opcode and special only. Although generating iAPPLY instruction is just simply add
a new instruction, but the real work is in the software side that will be explained in
section 5.6. Table 3.5 shows the instructions along with its formats and operations
for retargeting engine co-processor.

Table 3.5: Retargeting engine co-processor instructions
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3.4 Discussion

This chapter describes the analysis of hardware and software co-design of an on-
chip IJTAG dependability processor. It uses ASIP design methodology [2] that com-
prises of 4 steps : Application Analysis, Architectural Design, Instruction Set Gener-
ation and Software-Hardware Synthesis. This chapter only covers the first 3 steps
and leaves the last step for the implementation chapters later.

The input of ASIP design methodology is application and design constraints. In
this thesis the application is a dependability application that is written in PDL. PDL
has two levels 0 and 1. PDL level 1 is developed as an extension of Tcl that can
be used to define mathematical and logical operations, expressions, statements,
procedure calls and branches. This thesis treats all PDL commands as PDL level 1.
Within PDL there are several commands that instantiate retargeting. Thus, there is a
previous work that proposed an on-chip retargeting referred to as retargeting engine
[9]. Hence the design requirements of an on-chip IJTAG dependability processor
are : executing PDL and re-use the retargeting engine as a co-processor. There is
only one design constraint which is the hardware design must be very reliable, such
condition can be achieved by having a simple processor as possible that has lower
probability of malfunctioning transistors.

On the Application Analysis step, the requirements for PDL is explained. Since
dependability application is written in PDL, it inherits what PDL can provide. PDL
level 1 as an extension of Tcl can be used to define mathematical and logical op-
erations, expressions, statements, procedure calls and branches. Moreover PDL
has 24 PDL commands (not part of Tcl) that are IJTAG related. This thesis only
implements 7 commands which are fundamental to use IJTAG : iWrite, iRead, iAp-
ply, iReset, iRunLoop, iPDLLevel and iGetReadData commands. Hence only iWrite,
iRead, iApply and iReset commands that will be generated into instructions because
it will interact directly with the retargeting engine.

On the Architectural Design step, single cycle 32 bits MIPS processor is cho-
sen as the base of an on-chip IJTAG dependability processor, because single cycle
32 bits MIPS processor offers the simplest and open source processor architec-
ture. To meet the design constraints which are having a simple hardware design,
co-processor 0 and 1 are not included. Hence, real number operations will be com-
pensated in the software side. Complex arithmetic operations such as division, mul-
tiplication, power and square root are not implemented in the ALU, but it will be
emulated in the software side as well to keep the hardware design as simple as
possible.

Instruction Set Generation step determines instruction set for an on-chip IJTAG
dependability processor. This thesis uses MIPS instruction set [3] [4] for handling
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mathematical, logical, jumps, branches and what common processor can do. The
requirement for re-using retargeting engine co-processor also requires instruction
set design. First the retargeting engine is placed in co-processor 2 so that it does
not alter general MIPS architectures. Then it is followed with generating iWrite,
iRead, iApply and iReset commands as MIPS co-processor type instructions for IJ-
TAG related operations. Finally other co-processor instructions are added for data
movement from and to co-processor such as MFC, MTC, SWC and LWC instruc-
tions.

From those ASIP design methodology, hardware and software design require-
ments can be concluded. Hardware design requirements comprise of :
1. Implement retargeting engine as MIPS co-processor
2. Implement the co-Processor type instructions for retargeting engine co-processor.

Software design requirements comprise of :
1. Enable to translate PDL syntaxes into MIPS machine code
2. Map PDL commands into co-processor type instructions
3. Use fixed point representation
4. Compensate complex hardware operations by emulating multiplication, division,
square root and power operations in the software side.

These design requirements will be implemented separately in hardware and soft-
ware.



Chapter 4

IJTAG Dependability Processor

As explained in chapter 3, the hardware side of an on-chip IJTAG dependability pro-
cessor design based on a single cycle 32 bits MIPS [5]. The analysis on that chapter
produces hardware requirements to extend the design of a single cycle 32 bits MIPS
to :
1. Implement retargeting engine as MIPS co-processor
2. Implement the co-Processor type instructions for retargeting engine co-processor.

This chapter explains how the initial design of single cycle 32 bits MIPS is ex-
tended to achieve those previous hardware requirements. It starts with brief expla-
nation about a single cycle 32 bits MIPS. Then it is followed by hardware design and
is closed with a discussion. The result of this chapter is a hardware design of an
on-chip IJTAG dependability processor.

4.1 Single Cycle 32-bits MIPS

MIPS stands for Microprocessor without Interlocked Pipeline Stages. The research
of MIPS was started in 1981, led by John L. Hennessy. It yielded the first MIPS pro-
cessor in 1985. Nowadays, the first generation of MIPS becomes the most studied
processor that can be accessed easily in [3]. This ignites researchers around the
world to investigate and produce many variants of first generation MIPS, such as
Mini MIPS [11], Fault tolerant MIPS [12] and Single cycle 32 bits MIPS [5].

4.1.1 MIPS Stages

MIPS is a Reduced Instruction Set Computer (RISC) that suits for general proces-
sor. There are 5 operations that each instruction holds which are : Instruction
Fetch (IF); Instruction Decode (ID); Execute (EX); Memory Access (MEM); and Write
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Figure 4.1: MIPS stages [3]

Back(WB). Those stages are done in pipeline manner (figure 4.1). On the orange
highlighted clock cycle, MIPS processor executes WB for instruction 1, MEM for
instruction 2, EX for instruction 3, ID for instruction 4 and IF for instruction 5.

Single ccle 32 bits MIPS processor is a 32 bits RISC processor that preceded
modern MIPS architectures. Single cycle 32 bits MIPS executes all five stages (IF,
ID, EX, MEM and WB) in a single clock cycle (figure 4.2). In return, this architecture
can not work in high frequency clock.

Figure 4.2: Single Cycle MIPS stage [5]

4.1.2 MIPS Register

MIPS processor has 32 general purpose registers. These registers are placed in
a register file. MIPS assembly language employs a convention for use of registers.
This convention must be followed by MIPS assembly language programmers in order
to avoid unexpected behaviours of module that is written by different people. These
32 general purposes registers has its own usage [8] (table 4.1). Register $0 is hard-
wired into 0 and is not allowed for holding data. Register $at is a temporary register
that its use is limited to assembler. Register $v0 and $v1 are used to hold return
values from functions. Register $a0 - $a3 serve as arguments to functions. Register
$t0 - $t9 are used for temporary storage that is not preserved when MIPS processor
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calls subprograms. Register $s0 - $s7 are saved registers that is preserved when
MIPS processor calls subprograms. Register $k0 and $k1 are reserved by kernel
and are restricted to use. Finally register $gp, $sp, $fp and $ra are used for global
pointer, stack pointer, frame pointer and return address respectively.

Table 4.1: MIPS register [8]

Register Number Conventional Name Usage

$0 $zero Hard-wired to 0

$1 $at Assembler temporary

$2 - $3 $v0,$v1 Return values from functions

$4 - $7 $a0 - $a3 Arguments to functions

$8 - $15 $t0 - $t7 Temporary registers, not preserved by subprograms

$16 - $23 $s0 - $s7 Saved registers, preserved by subprogram

$24 - $25 $t8,$t9 More temporary data, not preserved by subprograms

$26 - $27 $k0,$k1 Reserved by kernel. Do not use

$28 $gp Global pointer

$29 $sp Stack pointer

$30 $fp Frame pointer

$31 $ra Return address

4.1.3 MIPS Co-Processor

MIPS R2000, the first generation of MIPS, is able to embed four co-processors. This
specification is still preserved until the latest model of MIPS architectures [4]. The
first two co-processors have been reserved in MIPS architectures (figure 4.3). Co-
Processor 0 handles traps, exceptions, interrupt service routines and virtual mem-
ory. Meanwhile, co-Processor 1 handles floating point operations. This configuration
leaves two more slots to put co-processors in it.

MIPS co-processors may have a register file in it. There are no strict naming
convention for register file for co-processors. Hence this thesis will use the common
register naming that is generally used in MIPS reference [4]. MIPS reference [4]
address a register in main processor with the conventional name that is shown in
table 4.1. When addressing a register in co-processor, it starts with ’CPR’ followed
by a bracket that consists of co-processor number and the register number. For
example addressing register number 9 in co-processor 3 is written :

CPR [3, $9]
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Figure 4.3: MIPS R2000 [3]

4.2 Extending Single Cycle 32 bits MIPS

Figure 4.4: Single Cycle 32 Bits MIPS [5]

Before integrating retargeting engine as a co-processor, the initial design of sin-
gle cycle 32 bits MIPS (figure 4.4) needs to be extended. According to section 3.3,
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data movements are required from and to co-processor that employ MTC, MFC,
SWC and LWC instructions. Also in section 3.3, it is known that RS part is used
for special, so the data can only be placed in RT and RD. Thus the input data to
co-processor comes from the output of Reg2, because Reg2 is connected to RT and
RD. According to section 3.3, register file will be added into the retargeting engine
co-processor, hence it needs a control signal to enable write into register file in the
co-processor RegWriteCOP2. So when an MTC2 instruction is executed the data
will pass the Reg2 into the co-processor 2 and RegWriteCOP2 signal needs to be
active (figure 4.5).

Figure 4.5: Extending for MTC

Figure 4.6: Extending for MFC

Next when a data is moved from co-processor to main processor, the main pro-
cessor will place it in the register file. Therefore a multiplexer is required that can
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choose between WriteBack, the initial path for writing to register file in main proces-
sor, and COPDataOut, the output of co-processor, with select signal COPToMain.
So that when an MFC2 instruction is executed the data will pass the COPDataOut
into RegWrite that needs active COPToMain select signal (figure 4.6).

Then when a data is stored from co-processor to data memory, it needs to be
placed into the input data of the memory. Hence a multiplexer is required that can
choose between Reg2, the initial path for writing to data memory in main processor,
and COPDataOut, the output of co-processor, with select signal COPToMem. So
that when an SWC2 instruction is executed the data will pass the COPDataOut into
the input of data memory that needs active COPToMem select signal (figure 4.7).

Figure 4.7: Extending for SWC

Figure 4.8: Extending for LWC

Finally when a data is loaded to co-processor from data memory, it needs to
be placed into the output data of the memory. MemToReg select signal needs
to be active, so that the data pass to WriteBack. However while extending the
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single cycle 32 bits MIPS for MTC2, there is an input signal RegToCOP that was
added before. So a multiplexer is required that can choose between RegToCOP

and WriteBack with select signal MainToCOP . So that when an LWC2 instruction
is executed the data will pass the WriteBack after MemToReg signal is active and
then it will pass to COPDataIn after the MainToCOP signal is active. However this
operation needs RegWriteCOP2 signal to be activated too so that writing into the
co-processor register file is able (figure 4.7).

Lastly, since there are 4 new instructions that is dedicated for the retargeting
engine co-processor (iWRITE, iREAD, iAPPLY and iRESET), then instruction signal
needs to be connected into the retargeting engine co-processor as well. Figure 4.9
shows the diagram block of an on-chip IJTAG dependability processor hardware.

Figure 4.9: IJTAG Dependability Processor Block Diagram
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4.3 Retargeting Engine Wrapper Design

Retargeting is a compulsory operation in order to access embedded instruments
on the IJTAG network. This thesis uses an on-chip retargeting engine that has
been proposed by [9] for handling the on-chip retargeting. To embed the retargeting
engine into a co-processor for single cycle 32 bits MIPS, the design of a wrapper for
retargeting engine is required which will be placed in co-processor 2 as explained in
section 3.3.

Section 2.2 explained that retargeting engine works by first receiving access re-
quests to one or more instruments. Then it starts to work when the Concurrent sig-
nal is changed from HIGH to LOW. This condition is important to be considered in
order to use the retargeting engine. According to section 3.3, these access requests
are instructions. However due to the Concurrent signal condition, connecting the re-
targeting engine directly with the instructions is not possible. For example after the
retargeting engine get an access request for writing 0b0010 to TDR3, the main pro-
cessor can not directly provide next access requests (figure 4.10). Because the main
processor needs to move the data from main processor to co-processor (explained
in section 3.3). On the other hand the retargeting engine has already interpreted it
as a start to generate scan vectors due to the change in the concurrent signal (figure
4.10). To solve this problem, it is best to put an instruction buffer in the wrapper. In
this manner the retargeting engine wrapper can send the buffered instruction as a
group of concurrent instructions into the retargeting engine when iAPPLY instruction
is received.

Figure 4.10: Concurrency problem on retargeting engine

When retargeting engine has finished accessing embedded instruments, retar-
geting engine returns ReadID and ReadValue if there is an access request for read-
ing unordered as explained in section 2.2.3. For example, the order of access re-
quests are reading from TDR5 and followed by reading from TDR3 (figure 4.11).
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Since the connection between instruments on the IJTAG network might be a com-
plex connection, the retargeting engine will generate effective scan vectors for the
access requests. However the results may return the data unordered, which in the
example is depicted by the return values of TDR3 followed by TDR5 (figure 4.11).

Figure 4.11: Retargeting Engine Returns Unordered Data

To solve the unordered returning values, the information in the instruction buffer
can be used to arrange these unordered returning values. Moreover in section 3.3
and 4.2, it has been discussed that a register file will be added to the retargeting
engine co-processor precisely in the retargeting engine wrapper. Since the returning
data will be used in the main processor later, it is better to place the data into the
wrapper register file right away. Thus wrapper controller is required to check the
returning values according to the instruction buffer and place the returning order in
the register file (figure 4.12).

Figure 4.12: Arrange The Unordered Returning Values

Summarizing the wrapper design for retargeting engine wrapper, figure 4.13
shows the block diagram of retargeting engine wrapper. It comprises of a register
file for holding the data, an instruction buffer to preserve the concurrency, a wrapper
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controller for controlling the wrapper and arranging the unordered returning values
into the wrapper register file.

Figure 4.13: Retargeting engine wrapper block diagram

Figure 4.14: Retargeting Engine wrapper flow chart

4.4 Retargeting Engine Wrapper Workflow

Consider the behavior of the retargeting engine, The works of retargeting engine
wrapper comprise of several phase. Figure 4.14 shows the flow chart of retargeting
engine wrapper, which are :
1. Initialization : reset all the variable and buffer,
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2. ReadOrder : read an incoming order and put it to buffer,
3. SendOrder : send the buffered orders into retargeting engine, if iApply order is
detected,
4. Waiting : wait the retargeting engine until it finishes accessing embedded instru-
ments,
5. ArrangeData : fetch and arrange the incoming data according to the instruction
buffer into wrapper register file.

Figure 4.15: Reading an iWrite access request

Initialization phase resets the instruction buffer and prepares for reading access
requests from the incoming instructions in instruction port. While in ReadOrder
phase, the wrapper is ready to read access requests for specific instructions. For
example figure 4.15 shows the steps of an access request for writing 0b0010 into
TDR3 starts in PDL, machine code and hardware. It starts with the main processor
sends the RegID followed by RegValue and finally followed by an iWRITE instruc-
tion. ReadOrder phase ends when there is an iAPPLY command, then it changes
to SendOrder phase. SendOrder phase sends the buffered instructions into the re-
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targeting engine, in this way access requests can be send concurrently. After all the
instructions in the instruction buffer was sent, the wrapper waits until the retargeting
engine finishes accessing the embedded instruments in the Waiting phase. When
the retargeting engine has finished, if there is no access request for reading, the
wrapper goes to the Initialization phase and sets register 1 in wrapper register file
to 1 as an acknowledge signal. However, if there is an access request for reading,
the wrapper goes to the ArrangeData phase. ArrangeData phase reads the incom-
ing data and arranges it according to the instruction buffer into wrapper register file
as explained in section 4.3 and sets register 1 in wrapper register file to 1 as an
acknowledge signal.

Other than iWRITE instruction, the hardware requirements also requires the re-
targeting engine co-processor to be able to execute iREAD, iRESET and iAPPLY. Ex-
ecuting iREAD instruction is similar to executing iWRITE instruction but without Reg-
Value. On the other hand, executing an iRESET instruction is done by forcing the
RST port to HIGH in the output of retargeting engine wrapper port. Finally execut-
ing an iAPPLY instruction is done by providing a flag for retargeting engine wrapper
controller to start sending order into the retargeting engine. It has been explained in
section 2.1.2 that accessing embedded instruments take non-deterministic of time.
In the hardware side this non-deterministic is handled by Waiting phase in wrapper
controller, so that the software side also needs to handle this condition too.

4.5 Discussion

In this chapter, the hardware design of an on-chip IJTAG dependability processor
has been explained. The design based on single cycle 32 bits MIPS that has been
described in chapter 3. The hardware design aims to achieve the hardware require-
ments which are implement retargeting engine co-processor and implement the co-
processor type instructions for retargeting engine co-processor. The hardware de-
sign starts by extending the single cycle 32 bits MIPS to enable data movements
MFC2, MTC2, SWC2 and LWC2 instructions. Then it is followed by enabling the
iWRITE, iREAD, iRESET and iAPPLY in the retargeting engine co-processor.

Retargeting engine process a group of concurrent instructions. Thus it is not
suitable to connect the retargeting engine into decoded instructions directly, con-
sequently a wrapper design for retargeting engine is required. To make sure the
concurrency is preserved, instruction buffer is necessary to queue the instructions
before it goes into the retargeting engine. When the retargeting engine finishes ac-
cessing embedded instruments, it will return ReadValue and ReadID unordered as
explained in section 2.2.3. Instruction buffer can be used to arrange the unordered
returning value that requires a wrapper control. Finally the arranged returning values
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can be placed in wrapper register file that has been explained in section 3.3. The
hardware of retargeting engine wrapper comprises of a register file, an instruction
buffer, a wrapper controller and a retargeting engine.

Until this point, the hardware of an on-chip IJTAG dependability processor has
been designed. It extends single cycle 32 bits MIPS by having a retargeting engine
wrapper. Looking by how the requirements are answered, there are not much work
done for the hardware part. Regardless of the software part, the hardware design
should be suffice to execute a dependability application. Appendix A provides the
hardware design of an on-chip IJTAG dependability processor and the retargeting
engine wrapper.
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Chapter 5

PDL Cross Compiler

Chapter 3 analyzes the hardware and software co-design for an on-chip IJTAG de-
pendability processor. The results are hardware and software design requirements.
This chapter focus on building a PDL cross compiler to achieve the software require-
ments, which are :
1. Enable to translate PDL syntaxes into MIPS machine code
2. Map PDL commands into co-processor type instructions
3. Use fixed point representation
4. Compensate complex hardware operations by emulating multiplication, division,
square root and power operations in the software side.

PDL cross compiler compiles PDL scripting language into a machine code, which
in this thesis focus on MIPS machine code only. Building a PDL cross compiler
starts with an analysis on how to build a cross compiler for PDL. Then it is followed
with a brief explanation about ANTLR tool that is used as compiler framework while
building a PDL cross compiler. Afterwards it describes PDL cross compiler design
and is closed with a discussion. Additional section is added for explaining how to
use the PDL cross compiler. The result of this chapter is software design of a PDL
cross compiler.

5.1 Analysis on Building PDL Cross Compiler

PDL cross compiler translates a PDL program into MIPS machine code. According
to section 3.1, this thesis considers all PDL operations to be PDL level 1 which
extends Tcl scripting language. Tcl scripting language is designed to be interpreted
than to be compiled. An interpreter directly executes the operations specified in the
source program on inputs supplied by the user [1]. Thus the fundamental difference
is interpreter does not produce a machine code. On the other hand a compiler takes
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the whole source program and generates a machine code that behaves similar to
the source program.

Despite Tcl is designed to be interpreted than to be compiled, the needs of a
PDL program in MIPS machine code is obvious. Thus this thesis will implement
the PDL cross compiler for MIPS. Section 2.3.1 explains the phases of compiler, it
comprises of lexical analyzer, syntax analyzer, semantic analyzer, intermediate code
generator, code optimizer and code generator. Since a cross compiler is a compiler
that targets another platform, this makes the compiler phases are also applied into
the cross compiler with different target code in code generator.

There are many ways on implementing a compiler. For example before C pro-
gramming language is built with C, it was build with assembly code [14]. Why ?
because the condition in that time was impossible to use other programming lan-
guages. Nowadays there are several programming languages that can be used for
implementing a compiler. Using C programming language to build PDL cross com-
piler can be one of the option, because Tcl interpreter is also built with C [15]. Tcl
interpreter is open source, but Tcl interpreter does not generate machine code. It
is hard to adopt how Tcl interpreter works and implement an equal C code for PDL
cross compiler.

Nowadays there are many compiler frameworks such as ANTLR [16], Beaver
[17], YACC [18], etc. It can be used to generate a lexer and a parser from a
given grammar file that eases a new language to be designed without designing
a lexer and a parser from scratch. From the existing options of compiler frame-
works, ANTLR offers good documentation and tutorial. Subsequently this thesis will
use ANTLR for compiler framework to build PDL cross compiler.

5.2 ANother Tool for Language Recognition

ANother Tool for Language Recognition (ANTLR) is a parser generator. It was de-
veloped by Terrence Parr in 1989. ANTLR tool can be used to generate lexers and
parsers based on the given grammar file. An ANTLR grammar file conceives struc-
tures of a programming language. It is expressed using Extended Backus Naur-
Form (EBNF). A production rule for complex tokens can be formed by fundamental
tokens, likewise a production rule for complex syntaxes can be formed from less
complex production rules. In this way EBNF can be used to define complex pro-
gramming language grammar with scalable structure.

EBNF supports logical operations for its tokens that is represented with sym-
bols. For example ’|’ symbol denotes alteration, ’?’ symbol denotes optional (can
be none), ’+’ symbol denotes 1 or more, ’*’ symbol denotes 0 or more, etc [19]. For
example (listing 5.1), defining a NUMBER with EBNF starts with defining a DIGIT
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production rule that consists of a single number that ranges from 0 to 9. Then it is fol-
lowed with defining a NUMBER production rule that consists of at least a DIGIT .
When EBNF is used for defining a SCALAR ID, it starts with defining ALPHABET
production rule that consists of a single alphabet that ranges from lowercase a-z to
uppercase A-Z. Then it is followed with defining a SCALAR ID production rule that
starts with ALPHABET token and it can be followed with ALPHABET , DIGIT or
dash (’ ’) tokens from none to infinity.

Listing 5.1: Example of an EBNF grammar file

ALPHABET
: [a−zA−Z]
;

DIGIT
: [0−9]
;

NUMBER
: ( DIGIT ) +
;

SCALAR ID
: ALPHABET (ALPHABET | DIGIT | ’ ’ ) ∗
;

Figure 5.1: ANTLR workflow

ANTLR tool works by reading the given grammar file and produces a recognizer
(a lexer and a parser) for the given grammar [16]. Since ANTLR is developed in
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Java, it generates a lexer and a parser as a java classes (figure 5.1). With the lexer
java class, a source program can be extracted into token streams. Then using the
parser java class, the extracted token streams are formed into an Abstract Syntax
Tree (AST). Moreover ANTLR tool also generates a tree walker to walk the AST that
user can define how the AST is processed. In this way user can use the tree walker
to generate a machine code for the given source program. This approach is suitable
for developing a prototype compiler. There are several compilers have been built
using this approach : AADL [20], UDLC [21] and Gaussian Script [22].

5.3 PDL Cross Compiler Design

While developing a prototype compiler, intermediate code generator and code op-
timizer phases can be considered as optional phases. As explained in section 5.2,
ANTLR tool is a parser generator that can generate a recognizer based on the given
grammar file. The recognizer comprises of a lexer, a parser and a tree parser java
classes (figure 5.2). This makes using ANTLR tool is beneficial, especially for de-
veloping a prototype compiler. Because it leaves only the code generator phase to
be determined in TreeWalker.

Figure 5.2: Comparison of conventional compiler and compiler with ANTLR tool

Figure 5.3 depicts a workflow of PDL cross compiler using ANTLR tool. Since
the retargeting engine is used in the hardware design, the PDL cross compiler also
needs to process the H-Array. This makes the PDL cross compiler requires an H-



5.4. PDL GRAMMAR 45

Array, a PDL grammar and a PDL tree walker (figure 5.3). H-Array file is a plain text
file that contains a representation of IJTAG network. There is no specific format for
H-Array file only separate every instruments (registers) and logical connections with
new line as in figure 2.6. For PDL grammar and PDL tree walker, it will be explained
on the following sections.

Figure 5.3: PDL cross compiler workflow

5.4 PDL Grammar

Using PDL level 1 that extends of Tcl scripting language, PDL also inherits the Tcl
grammar. This makes PDL grammar consists of a PDL exclusive commands gram-
mar and a Tcl grammar. IEEE 1687 standard provides the grammar for PDL exclu-
sive commands [7]. However this thesis changes several things from PDL grammar
provided in the standard. First, section 2.1.2 explains that PDL file begins with defin-
ing PDL level within iPDLLevel command. Then it is followed with iProcsForModule
command that aims to associate the module in ICL with which subsequent iProcs.
Hence re-using the retargeting engine [9] as a co-processor makes iProcsForMod-
ule and iProcs are no longer relevant due to H-Array representation.
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Second, statements and procedure definitions are placed in the body of main
program after iPDLLevel. Most of the programming languages place statements or
procedure definitions in the body of main program. But PDL, which based in module,
places statements and procedures inside an iProc command that is specified for a
module. For example listing 5.2 shows how TopLevel module calls other modules to
perform its procedure which is defined within iProc command.

Listing 5.2: Example of a PDL script

iPDLLevel 1 −version STD 1687 2014 ;
iProcsForModule TopLevel
iProc I n i t {}
{

i C a l l BISTEngine.Generate
i C a l l Log icAna lyzer .Tes t

}

iProcsForModule BISTEngine
iProc Generate{}
{

/ / . . .
}

iProcsForModule LogicAnalyzer
iProc Test {}
{

/ / . . .
}

Without iProcsForModule and iProcs, PDL statements and procedure definitions
are placed in the body of PDL main program. Listing 5.3 shows a part of PDL gram-
mar that has been changed for this thesis. The mainProgram token is the root of
the PDL grammar, other tokens will be placed under the mainProgram token in the
AST. The mainProgram expects c IPDLLevel token which represents an IPDLLevel
command. Then it expects a statement that is represented by a statement token or
a procedure definition that is represented by a c procDef token. statementList and
procedureList are used as token collectors for statement and c procDef respec-
tively. In this manner the AST can organize which statement or procedure definition
that will be visited (walked) first.

Third, this thesis considers all PDL operations to be PDL level 1 as explained
before in section 3.1. As depicted in listing 5.3, the c iPDLLevel token comprises of
comprises of ’iPDLLevel’ token followed with a NUMBER, ’-version’ and ’STD 1687 2014’
tokens. The NUMBER token in c iPDLLevel token is used to represent the PDL level
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as in the standard [7]. Although all PDL commands are treated as PDL level 1, this
command is necessary to be included for the sake of PDL compliance.

Listing 5.3: Main Program of PDL in EBNF
grammar PDL;

mainProgram : c iPDLLevel ( s ta temen tL i s t +=statement | procedureL is t+=
c procDef ) ∗ ;

c iPDLLevel
: ’ iPDLLevel ’ number=NUMBER ’−vers ion ’ ’ STD 1687 2014 ’
;

c procDef
: ’ proc ’ procName=SCALAR ID ’{ ’ ( argumentL is t+= va rDec la ra t i on ) ∗ ’} ’ ’{ ’ (

s ta temen tL i s t +=statement ) ∗ ’} ’
;

va rDec la ra t i on
: varName=SCALAR ID
;

SCALAR ID
: ALPHABET ( ’ ’ | ALPHABET | DIGIT ) ∗
;

ALPHABET
: [ a−zA−Z ]
;

NUMBER
: ( DIGIT ) +
;

DIGIT
: [0−9]
;

According to section 3.1, there are 7 PDL commands that will be implemented
in software side. These 8 PDL exclusive commands comprise of iPDLLevel, iReset,
iWrite, iRead, iApply, iRunLoop and iGetReadData. Listing 5.4 shows PDL grammar
for those 7 PDL commands that follows the grammar that is provided in [7].

Listing 5.4: Grammar for PDL commands in EBNF [7]
c iPDLLevel
: ’ iPDLLevel ’ num=allNumber ’−vers ion ’ ’ STD 1687 2014 ’ #IPDLLevel



48 CHAPTER 5. PDL CROSS COMPILER

;

c i W r i t e
: ’ iWr i t e ’ hArray=SCALAR ID num=allNumber
;

c iRead
: ’ iRead ’ hArray=SCALAR ID (num=allNumber ) ?
;

c iGetReadData
: ’ iGetReadData ’ hArray=SCALAR ID
;

c iApp l y
: ’ iApply ’
;

c iReset
: ’ iReset ’
;

c iRunLoop
: ’ iRunLoop ’ num=allNumber ’− tck ’ #iRunLoopTck
| ’ iRunLoop ’ num=allNumber ’−sck ’ #iRunLoopSck
| ’ iRunLoop ’ ’− t ime ’ num=allNumber #iRunLoopTime
;

There are no grammar change for these 7 PDL exclusive commands. However
for iWrite, iRead and iGetReadData commands, they must refer to a TDR on H-Array
instead of ICL (figure 5.4).

Figure 5.4: Referring H-Array in PDL
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When it comes grammar for Tcl, experts always come up with fruitless debate
[23]. Because Tcl does not understand reserved keywords, every Tcl commands
can be redefined and tailored as the user wants (even if, while and for) [15]. This
Tcl behaviours are not suitable to be implemented into EBNF form (ANTLR gram-
mar file). That is why there is no grammar for Tcl available. However the needs
of PDL cross compiler is obvious, so this thesis build Tcl grammar by reverse engi-
neering the Tcl language specifications in Tcl book [15] that was written by John K.
Ousterhout, founder of Tcl.

Every built in Tcl commands have been described on [15]. Hence following the
description and the behaviour of each Tcl command, it is possible to produce the
Tcl grammar. However this thesis does not cover all of Tcl built in commands, only
the fundamental commands that is required to support PDL. The loops are only for
and while commands and the conditionals are only if, else if and else without switch
command. This thesis also does not implement string operations, since the on-chip
IJTAG dependability processor is an embedded processor that does not interact with
the user. Summarizing the PDL grammar, it has limitations that comprises of :
1. It only implements iPDLLevel, iReset, iRunLoop, iGetReadData, iApply, iWrite
and iRead.
2. It places statements and procedure definitions in the body of main program with-
out iProc and iProcsForModule.
3. It handles all PDL operations in PDL level 1.
4. It can not redefine reserved keywords (set, if, else, while, for, proc, incr, expr, pow,
sqrt, etc.)
5. The loops are only for and while commands.
6. The conditionals are only if, else if and else, without switch included.
7. No string operations.

5.5 PDL Tree Walker

The design of PDL tree walker is limited to the requirements of reading the AST, gen-
erated MIPS machine code, hardware limitations and violations of grammar. This
thesis divides the PDL tree walker into five java classes which consist of :
1. Settings.java : consists of settings and global variable initialization.
2. MyVisitor.java : is assigned for walking the AST and instantiates registerHandler,
commentHandler and errorHandler.
3. RegisterHandler.java : generates MIPS machine code
4. CommentHandler.java : generates assembly code with comment for debugging
purpose
5. ErrorHandler.java : handles violation of grammar and produce an error.
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The works in PDL cross compiler focus on Settings, MyVisitor and RegisterHan-
dler java classes. Therefore these three will be discussed in the following subsec-
tions. The works in CommentHandler and ErrorHandler java classes are very limited
and for a debugging purpose only.

5.5.1 Settings.java

Settings java class initializes global variables and necessary settings for the PDL
tree walker. It organizes input and output file, size of data memory, and fixed point
representation. However settings java class focuses in handling the fixed point rep-
resentation.

Figure 5.5: Q15.16 Fixed Point Representation

As explained in section 3.2.1, fixed point representation in the software side is
required to compensate the absence of FPU in the hardware side. This thesis im-
plements Q15.16 fixed point formats which categorizes 32 bit numbers into 1 bit of
sign, 15 bits of integer and 16 bits of fraction (figure 5.5). The fractional accuracy of
Q15.16 is 0.0000154. And the integer range of Q15.16 from -32768 to 32767.

Due to fixed point representation, there is a slight change on the behaviour of
code generation. Generating code for A ← 7 + 9 normally can be done with 2 Add
Immediate (ADDI) instructions, which are :

A← 7 ≡ ADDI $t0, $0, 7
A← 7 + 9 ≡ ADDI $t0, $t0, 9

However Q15.16 fixed point representation implements those operations differently,
which are : Assigning a number is done by assigning the fractional part first because

A← 7 ≡ ADDI $t0, $0, 0
LUI $t0, 7

temp← 9 ≡ ADDI $t1, $0, 0
LUI $t1, 9

A← 7 + 9 ≡ ADD $t0, $t0, $t1

the ADDI instruction is only available to assign 16 bits of LSB. Then for assigning
the integer part is done by Load Upper Immediate (LUI) instruction.
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5.5.2 MyVisitor.java

MyVisitor java class walks the AST and instantiates RegisterHandler, Commen-
tHandler and ErrorHandler java classes. MyVisitor java class handles procedure
handling and executing expression that will be explained in this section.

Procedure Handling

The purpose of procedure handling is to make sure the procedure calls mapped into
correct procedures. The AST of mainProgram contains of iPDLLevel, statements
and procedure definitions. After checking the PDL Level, MyVisitor java class visits
procedure definitions first then followed by statements afterwards. Figure 5.6 depicts
how the AST places the procedure definitions before statements although procedure
definition A is placed after a statement that instantiates procedure A (listing 5.5). In
the AST, procedure A is placed on the left side of the statements. Which means
procedure definition of procedure A is visited first than the procedure A instantiation
in the statement.

Listing 5.5: AST example of PDL Procedure Definitions
iPDLLevel 1 −vers ion STD 1687 2014

set var0 [ expr [A 0 1 . . . N ] ]

proc A{arg0 arg1 . . . argN}
{

\\procedure d e f i n i t i o n o f a
}

Figure 5.6: generated AST from listing 5.5

In the generated MIPS machine code, this approach places procedure A in the
beginning of instruction list (figure 5.7). To access procedure A, the statement needs
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to make a jump instruction into an address where procedure A begins. In this case
procedure calls are always mapped to correct procedures.

Figure 5.7: Example of PDL procedure instantiation

Executing Expression

AST represents an expression as an operator that has two children on its branches.
If there are more than one operators in an expression, one or both children of the
main operator may be an operator that also has two children on its branch. These
branches can be unlimited depends on the expression. For example 6 ∗ (15 + 7− 2)

has an AST that is depicted on figure 5.8.

Figure 5.8: Example of Expression AST

Designing a compiler to handle expressions need to consider operator prece-
dences. Hence One of the advantage of using ANTLR tool is ANTLR tool supports
priority which can be used to handle operator precedences. This priority is specified
in the ANTLR grammar file. Listing 5.6 shows the PDL grammar for expression. The
top priority is parenthesis which in arithmetic and logic also mean priority. Division
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and multiplication are placed higher that addition and subtraction, because multipli-
cation and division are also prioritized than addition and subtraction in arithmetic.
Since the basic elements are variables and numbers, it is placed in the very bottom.

Listing 5.6: PDL grammar for expression in EBNF
expression
: ’ ( ’ expression ’ ) ’ #WithParenthesis
| ’ [ ’ p rocedureCal l= c p rocCa l l ’ ] ’ #ProcCal lExpress ion
| ’ sq r t ’ ’ ( ’ r i g h t =expression ’ ) ’ #Sqr t
| ’ pow ’ ’ ( ’ l e f t =expression ’ , ’ r i g h t =expression ’ ) ’ #Pow
| l e f t =expression ’ / ’ r i g h t =expression #Div
| l e f t =expression ’∗ ’ r i g h t =expression #Mult
| l e f t =expression ’− ’ r i g h t =expression #Minus
| l e f t =expression ’+ ’ r i g h t =expression #Plus
| l e f t =expression ’<< ’ r i g h t =expression # S h i f t L e f t
| l e f t =expression ’>> ’ r i g h t =expression # S h i f t R i g h t
| l e f t =expression ’ | ’ r i g h t =expression #Bi twiseOr
| l e f t =expression ’& ’ r i g h t =expression #BitwiseAnd
| l e f t =expression ’ ˆ ’ r i g h t =expression #Bi tw iseXor
| l e f t =expression ’< ’ r i g h t =expression #LowerThan
| l e f t =expression ’<= ’ r i g h t =expression #LowerThanEqual
| l e f t =expression ’> ’ r i g h t =expression #GreaterThan
| l e f t =expression ’>= ’ r i g h t =expression #GreaterThanEqual
| l e f t =expression ’== ’ r i g h t =expression #Equal
| l e f t =expression ’ ! = ’ r i g h t =expression #NotEqual
| l e f t =expression ’&& ’ r i g h t =expression #LogicalAnd
| l e f t =expression ’ | | ’ r i g h t =expression #Logica lOr
| ( tok = ’− ’ )? ’ $ ’ var= v a r i a b l e s #Var
| num=allNumber #Number
;

To simplify the view of an expression AST, one can transform it into an expression
stack. This expression stack always put the left branches first and followed with the
right branches then the operation after that. Generating code for an expression also
means to process the expression itself, in this case the expression stack. However
a complex expression may have its children as an operator with two children on
its branches. Therefore, the compiler must find an operator with two non operator
children in the AST and process it first. Because the others can not be processed,
before both of its children become two non operator children. This sequence of
process can be written as ExecuteExpressionStack algorithm (algorithm 1).

ExecuteExpressionStack algorithm aims to execute an expression stackExpStack
until the length of expression stack LExpStack equals to 1. This algorithm finds an op-
erator (ExpStack(n) = operator) with two non operator children on the expression
stack (ExpStack(n).left 6= operator and ExpStack(n).right 6= operator) and process
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it by generating an equal MIPS machine code for it. Then it substitutes the operator
and its two non operator children from the expression stack with a temporary vari-
able tempN instead. Finally decrease the length of expression stack LExpStack with
2.

Algorithm 1 Execute Expression Stack ExpStack
1: procedure EXECUTEEXPRESSIONSTACK(ExpStack)
2: LExpStack ← Length(ExpStack)

3: N ← 0

4: while LExpStack > 1 do
5: find n such that ExpStack(n) = operator and ExpStack(n).left 6=

operator and ExpStack(n).right 6= operator

6: LEFT ← ExpStack(n).left

7: RIGHT ← ExpStack(n).right

8: OP ← ExpStack(n)

9: generates code for LEFT OP RIGHT

10: substitute ExpStack(n) with tempN
11: N ← N + 1

12: LExpStack ← LExpStack − 2

13: end while
14: end procedure

Figure 5.9: Example of Expression Stack

An illustration of ExecuteExpressionStack algorithm (algorithm 1) for expression
(6 + 5) − (3 + 2) is depicted in figure 5.9. In the iteration 1 there are two operators
that have both of its children are non operators. However since process 6 + 5 is
placed more on the top than 3 + 2, then expression 6 + 5 get executed first and get
substituted with temp0. Then in the iteration 2 process 3 + 2 is executed and get
substituted with temp1, since it is the only process that has an operator with both of
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its children are non operators. In the iteration 3 there is only one operator with both
of its children are non operators that is temp0−temp1. Then it leaves only result and
the ExecuteExpressionStack algorithm is finished, because the length of expression
stack equals to 1.

5.5.3 RegisterHandler.java

RegisterHandler java class is the one that responsible in generating MIPS instruc-
tions. The generated MIPS instructions follows the MIPS instruction reference in [4],
while generating it follows the way that is explained in [3]. However MIPS architec-
ture is register based. Active variables are stored in the register file. Since register
file can only hold limited variables, the rest are stored in the data memory. When a
variable is still in the data memory or allocating a new variable that both are going to
be used, it needs to be placed in the register file. If there are no empty space in the
register file, there is a data in the register file that needs to be moved into the data
memory. This limitation requires a register scheduling to organize variables within
limited registers.

Algorithm 2 Regulates turns to use temporary register TempReg
1: procedure REGISTERSCHEDULING(var,TempReg, n, MEM )
2: if var ∈ TempReg then
3: find m such that TempReg(m).id == var.id

4: TempReg(m)← var

5: else if TempReg isfull then
6: move TempReg(n) to MEM

7: TempReg(n)← var.value

8: n← n+ 1

9: else
10: TempReg(n)← var

11: end if
12: if n == 10 then
13: n← 0

14: end if
15: end procedure

RegisterScheduling algorithm (Algorithm 2)uses round robin concept where the
oldest variable in the register file will be moved into the data memory in order another
variable is able to be placed in the register file. RegisterScheduling has a round robin
counter n that is initially 0. When a variable var is assigned to TempReg that has var
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inside, var is directly assigned into TempReg(m) where TempReg(m).id equals to
var.id without any change in round robin counter n. When a variable var is assigned
to TempReg which has empty slot, var is directly assigned into TempReg(n) (figure
5.10). However if the TempReg is fully occupied with var /∈ TempReg, TempReg(n)
is moved into the memory MEM and TempReg(n) is assigned with var. Since index
n now holds the newest member in TempReg, n is increased by 1. On the other case
if the TempReg is not fully occupied and var /∈ TempReg, var is directly assigned
to TempReg(n) and is followed by increasing counter n by 1. Afterwards since the
maximum number of available TempReg is 10, n is assigned to 0 when n reaches
10 (figure 5.11).

Figure 5.10: Example of Assigning variable to registers with empty spot

Figure 5.11: Example of Assigning variable to fully occupied registers
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5.6 Map PDL Commands to MIPS Machine Code

Mapping PDL commands into MIPS machine code is done within RegisterHandler
java class. As explained in section 3.3, the MIPS machine code includes extended
instructions for retargeting engine co-processor. Implementation of common MIPS
machine code follows [4] including implementation of MFC, MTC, SWC and LWC. It
leaves iWrite, iRead, iReset, iRunLoop, iGetReadData, iApply and iPDLLevel com-
mands. Implementation of iPDLLevel command is not explained since the PDL cross
compiler treats all PDL commands into PDL level 1.

Instantiating iWrite command requires two data. On the other hand instantiating
iRead command requires only one data. In this thesis, the data is loaded in the
main processor and is required in the co-processor. Hence it is necessary to move
the data from main processor into co-processor. For example a generated MIPS
assembly code from a PDL code that instantiates iWrite command to a temperature
sensor (tempSensor0) is shown below :

PDL MIPS Assembly
iWrite tempSensor0 0x101 ≡ ADDI $t0, $0, 257

MTC2 $t0, CPR[2, $8]
ADDI $t1, $0, 3
MTC2 $t1, CPR[2, $9]
iWRITE CPR[2,$9], CPR[2,$8]

The temperature sensor tempSensor0 has RegID that equals to 3 in the H-Array and
the RegValue 0x101 equals to 257. While PDL instantiates iWrite command, the
generated code starts with loading the RegValue (257) into the register using ADDI
instruction. Then it is followed with moving the value into the retargeting engine
co-processor using MTC instruction. Subsequently those steps are repeated once
more for RegID (3). Finally iWRITE instruction is instantiated with specific registers
for RegID and RegValue. In terms of iRead command, it only needs a RegID value
to be moved into the co-processor. Then the iREAD instruction is instantiated with
only RegID.

PDL MIPS Assembly
iRead tempSensor0 ≡ ADDI $t0, $0, 3

MTC2 $t0, CPR[2, $8]
iREAD CPR[2,$8]

iRunLoop command is used for waiting instruments to finish its process. iRun-
Loop has three type of commands, time based (’-time’), system clock based (’-sck’)
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Algorithm 3 iRunLoop MIPS instruction generation Algorithm
1: procedure IRUNLOOP(m)
2: if m > 5 then
3: rem← mmod4

4: temp[0]← 2

5: temp[1]← 3

6: temp[2]← 0

7: temp[3]← 1

8: i← 1

9: for i <= temp[rem] do
10: Generate NOP
11: i← i+ 1

12: end for
13: if rem == 0 then
14: counter ← m− 4

15: else if rem == 1 then
16: counter ← m− 5

17: else if rem == 2 then
18: counter ← m− 2

19: else
20: counter ← m− 3

21: end if
22: Generate ADDI $at, $0, counter
23: Generate BEQ $0, $at, 12
24: Generate ADDI $at, $at, −2
25: Generate ADDI $at, $at, −2
26: Generate BEQ $0, $0, −16
27: else
28: i← 1

29: for i <= m do
30: Generate NOP
31: i← i+ 1

32: end for
33: end if
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and test clock based(’-tck’). Hence this thesis only implements a single clock which
is a system clock. Therefore the implementation of system clock and test clock
based use the system clock. The implementation of system clock and test clock
based iRunLoop command instantiates an NOP (No Operation). If a big number
of clock is requested for an iRunLoop command, branches are added to make the
waiting state. Algorithm 3 explains how iRunLoop generate MIPS instruction for a
number of clock cycle m. If m is less than 5, then m number of NOP instructions
are generated. However if m is more than 5, first it needs to calculate the remain-
ing rem after m is divided by 4. Then temp variable is initialized for compensating
the remaining rem. Next temp[rem] numbers of NOP are generated. Subsequently
counter variable is initialized that will be the total number of loops. Finally loops for
MIPS instructions are generated with counter total number of loops.

Implementing time based iRunLoop command also uses algorithm 3. However
the time given needs to be divided with the system clock cycle periode to produce
total number of clock m. Then by following the algorithm 3, it will produce the result
for time based iRunLoop command.

iReset and iApply commands are independent commands that can be used any-
time. iReset command instantiates an iRESET instruction for resetting the network.
On the other hand iApply command instantiates an iAPPLY instruction to trigger the
retargetting engine co-processor. However an iApply command will be meaningful if
it was preceded with iRead, iWrite or iScan commands. After iAPPLY instruction is
given the retargeting engine starts to generate scan vectors and accessing embed-
ded instruments. Accessing embedded instruments may take non-deterministic of
time as explained in section 2.2.3. Hence the main processor needs to wait until the
retargeting engine is finished which indicated by acknowledge signal that has been
explained in section 4.4. So the implementation of iApply command instantiates
iAPPLY instruction followed by a loop that moves the acknowledge signal into main
processor and keep looping until the acknowledge signal is ready (1). Therefore
an example of reading from temperature sensor tempSensor0 with iApply is shown
below :

PDL MIPS Assembly
iRead tempSensor0 ≡ ADDI $t0, $0, 3

MTC2 $t0, CPR[2, $8]
iREAD CPR[2,$8]

iApply ≡ iAPPLY
MFC2 $at, CPR[2,$1]
BEQ 0,at, -4
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5.7 Software Emulated Fixed Point Operations

Software emulated fixed point operations are done to compensate the lack of hard-
ware. It is parts of the MyVisitor java class. Accessing the software emulated fixed
point operations are done like accessing procedure (figure 5.12). When an expres-
sion comprises of multiplication, division, square root or power operations, the main
program instantiates a jump into the specific address. Then after the operation has
finished, it jumps back to the next address on the main program.

Figure 5.12: Accessing software emulated operations

Thus this thesis implements Q15.16 fixed point representation which makes the
software emulated operations are also fixed point operations. All the solutions adopt
libfixmath.h [24], C library for 16 bits fixed point. Then it was configured for Q15.16
representation. The explanations of software emulated fixed point is available in
appendix B

5.8 How To Use PDL Cross Compiler

This section explains how to use PDL cross compiler. This tutorial uses Eclipse IDE
version Neon Milestone 3 that is available on [25]. First make sure that you have
ANTLR tool (available on [16]) and Java Developmnet Kit (available on [26]). Then
open the PDL cross Compiler Project and make sure there are two java project :
ANTLR and PDLCompiler (figure 5.13).
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Figure 5.13: PDL Cross Compiler package

Open settings.java class. Then sets input and output files. Initially the input files
are ’file.pdl’ and ’file.harray’ and the the output file is ’instruction.data’. ’file.pdl’ is
where the user can write the PDL code. ’file.harray’ is used for providing H-Array
from IJTAG network. And ’instruction.data’ is the only output file which consists of
hexadecimal streams of MIPS machine code. The output file will be used further
for simulation. Other than input and output files, there are settings for memory and
fixed point representations (figure 5.14). However it is better not to change the fixed
point representation, because the PDL cross compiler has not been tested other
than Q15.16.

Figure 5.14: PDL cross Compiler settings

Click play, after typing the PDL or set PDL file into settings.java and providing H-
Array file. The transcript will show ’done’ message if everything goes well. On the
other hand it will show error message that needs to be taken care of if there is an
error or grammar violations. Finally the output file is generated and ready to use.



62 CHAPTER 5. PDL CROSS COMPILER

5.9 Discussion

In this chapter, the design of PDL cross Compiler has been explained. PDL cross
compiler uses ANTLR tool which can be used to generate lexer, parser and tree
walker from the given grammar and user defined tree walker. This approach is suit-
able for developing prototype compiler, because it leaves the code generation step
only. the design of PDL cross compiler begins with analyzing the needs of PDL cross
compiler which are PDL grammar and PDL tree walker. The PDL grammar consists
of PDL exclusive grammar and Tcl grammar. The PDL exclusive grammar is avail-
able on IEEE 1687 standard [7]. However since there is no Tcl grammar available,
it is fulfilled with reverse engineer the Tcl commands which has been described
in Tcl book [15]. A PDL tree walker consists of five java classes : Settings.java,
MyVisitor.java, RegisterHandler.java, CommentHandler.java and ErrorHandler.java.
However this thesis focuses only on Settings.java, MyVisitor.java and RegisterHan-
dler.java. It only uses CommentHandler.java and ErrorHandler.java for testing and
debugging.

Settings.java organizes input and output files, size of data memory and fixed
point representation. Highlighted works of settings.java is fixed point representation
that uses Q15.16 fixed point representation. MyVisitor.java is assigned for walking
the AST. While walking the AST MyVisitor.java instantiates RegisterHandler.java,
CommentHandler.java and ErrorHandler.java. Highlighed works of MyVisitor.java
are procedure handler and expression execution. RegisterHandler.java generates
MIPS machine code that applies register scheduling algorithm.

In chapter 3, it has been explained that several operations to be emulated on the
software in order to keep the hardware simple such as multiplication, division, square
root and power. With Q15.16 fixed point representation makes those operations
need to be implemented on fixed point representation as well. This thesis adopted
16 bits fixed points algorithm from libfixmath [24] to implement software emulated
fixed point operations that is explained in appendix B.

Until this point, the IJTAG dependability processor and PDL cross compiler has
been designed. The user provides an H-Array file and a PDL program and com-
piles it with PDL cross compiler. Then the PDL cross compiler will produce a MIPS
machine code. Next the MIPS machine code is given into the IJTAG dependability
processor as instruction memory (figure 5.15).
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Figure 5.15: HW-SW IJTAG Dependability Processor Workflow
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Chapter 6

Experimental Results

In chapter 4 and chapter 5, the hardware an on-chip IJTAG dependability proces-
sor and the software of PDL cross compiler has been discussed. In this chapter
both works in software and hardware are combined to execute a dependability ap-
plication. The works in this chapter is divided into two parts : benchmark test and
dependability application test.

6.1 Benchmark Test

Benchmark test is an act of running a set of program to asses the performance of
an object. In our case, it is a toolchain from compiler into the processor. This thesis
uses benchmark test for verifying the correctness of the PDL toolchain (PDL cross
compiler to an on-chip IJTAG dependability processor). There are several embed-
ded processor benchmark, however only MiBench that is accessible to academic
research. MiBench is an open source embedded processor benchmark that was
developed in University of Michigan by [27]. miBench provides C code and the out-
put file for verifying the processor. Hence this thesis uses MiBench for verifying
the PDL toolchain. Since the PDL cross compiler implements Q15.16 fixed point
representation, the benchmark code is implemented in MATLAB using fixed point
representations. Then the MATLAB generated output will be a reference for further
comparison.

The workflow for the benchmark test is shown in figure 6.1. It starts with creating
equal MATLAB code for the benchmark code followed by generating the MATLAB
output file for comparison. Then equal PDL code is provided to PDL cross compiler
for generating MIPS machine code. Next this MIPS machine code is loaded into the
on-chip IJTAG dependability processor in Modelsim. In this case, ’PRINT’ instruction
and debug ports (Ack and Data) are added into the IJTAG dependability processor
for debugging purpose only. When ’PRINT $t0’ instruction is executed, the Ack port

65
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Figure 6.1: Benchmark Test Workflow

will be active and data in register $t0 are loaded into Data port. In this case, the
data can be collected from the processor into an output file. Finally, output file from
processor is compared with the data generated from MATLAB.

6.1.1 Benchmark Applications

MiBench provides several applications for benchmarking, however this thesis only
uses basic math package from MiBench for benchmarking. It comprises of square
root operation, converting degree to radian and converting radian to degree. Here is
the MATLAB code and equal PDL code :

Listing 6.1: MATLAB code for MiBench Basic Math Benchmarking
f u n c t i o n f i x = toF i x ( va l )

f i x = f i ( val ,1 ,32 ,16) ;

f u n c t i o n rad = f ixDeg2rad ( deg )
temp = toF i x (3 .1416) ∗ t oF i x ( deg ) / t oF i x (180) ;
rad = toF i x ( temp ) ;
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f u n c t i o n deg = fixRad2deg ( rad )
temp = toF i x (180) ∗ t oF i x ( rad ) / t oF i x (3 .1416) ;
deg = toF i x ( temp ) ;

f i l e I D = fopen ( ’ exp . t x t ’ , ’w ’ ) ;

%% SQRT t e s t
f o r I = 0 :0 .01 :10

f i x I = t oF i x ( I ) ;
temp = toF i x ( s q r t ( f i x I ) ) ;
Res = bin2dec ( temp . b in ) ;

%%%%%%%%%% PRINT TO FILE %%%%%%%%%%
f p r i n t f ( f i l e I D , ’%d\n ’ , Res ) ;

end

%% Angle Conversion : Deg to Rad

f o r I = 0:1:360
temp = f ixDeg2rad ( I ) ;
Res = bin2dec ( temp . b in ) ;

%%%%%%%%%% PRINT TO FILE %%%%%%%%%%
f p r i n t f ( f i l e I D , ’%d\n ’ , Res ) ;

end

%% Angle Conversion : Rad to Deg
I = toF i x ( 0 ) ;
wh i le I <= 6.2832

temp = fixRad2deg ( I ) ;
Res = bin2dec ( temp . b in ) ;

%%%%%%%%%% PRINT TO FILE %%%%%%%%%%
f p r i n t f ( f i l e I D , ’%d\n ’ , Res ) ;

end
f c l o s e ( f i l e I D ) ;

Listing 6.2: PDL code for MiBench Basic Math Benchmarking
iPDLLevel 1 −vers ion STD 1687 2014

f o r { set i 0}{ $ i <= 10}{ i n c r i 0.01}
{

p r i n t [ expr s q r t ( $ i ) ]
}

f o r { set i 0}{ $ i <= 360}{ i n c r i }
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{
p r i n t [ expr 3.1416∗ $ i /180 ]

}

f o r { set i 0}{ $ i <= 6.2832}{ i n c r i 0.0175}
{

p r i n t [ expr 180∗ $ i /3 .1416 ]
}

6.1.2 Benchmark Simulations

Error detection is accomplished by subtracting the data from MATLAB and simula-
tor output file. Table 6.1 shows the error from subtracting both output file for each
section. It shows that no error is detected for square root operation and conversion
from degree to radian. However there is an error for conversion from radian to de-
gree (figure 6.2). The maximum value of error is 0.0036 . According to the algorithm
for converting radian to degree in listing 6.1, it is a multiplication radian value with
180 and followed by a division with π. π is a an irrational number which is usually
approximated into 3.14159. This makes operation that utilize π is susceptible to error.
Focusing on the error in conversion from radian to degree on figure 6.2, it can be
observed that the error is periodical (figure 6.3). This error is not an accumulated
error and ruins the calculation. Therefore it can be concluded as a computational
error due to approximation for fixed point representation and π. Hence the IJTAG
dependability does not perform perfectly, it can only be used for basic mathematical
operations.

Figure 6.2: Result of Conversion from Rad to Degree
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Figure 6.3: Error of Conversion from Rad to Degree

Table 6.1: MiBench benchmark test error report
Section Max Error
Square Root 0

Convert Deg to Rad 0

Convert Rad to Deg 0.0036

6.2 Dependability Application Test

The dependability application, that is used for this test, is acceleration factor calcu-
lation from a temperature sensor. This work has been proposed by [28] as a part of
lifetime estimation of a circuit. Higher acceleration factor means the circuit is under
stressful condition which reduces the lifetime estimation. [28] defines an accelera-
tion factor AF as multiplication between temperature acceleration factor AFT with
voltage acceleration factor AFV :

AF = AFT × AFV
AFT = e

Ea
k

×( 1
TS

− 1
TO

)

AFV = eβ×(VS−VO)

Where Ea denotes activation energy (normally on 0.7 eV), k denotes Boltzman con-
stant (8.62 × 10−5), TS denotes stress temperature (usually on 393◦K), TO denotes
operating temperature (usually ranges from 333−393◦K), β is a constant derived ex-
perimentally (usually 3.2), VS denotes stress voltage (usually 1.1V ) and VO denotes
operating voltage (usually 1V ). Consider the specification in the acceleration factor
equation, it leaves AFT to be calculated since AFV is a constant.
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6.2.1 Dependability Application Setup

The experimental setup for executing the dependability application uses Virtex 7
VC707 Field Programable Gate Array (FPGA) evaluation board from Xilinx (figure
6.4). In order to perform the task, the hardware design needs to be synthesized
with Xilinx ISE into a bit file. Afterwards the synthesized bit file is downloaded into
the evaluation board for testing. For reading the data from FPGA, it uses chipscope
analyzer from Xilinx. This chipscope analyzer is connected to Ack and Data debug
ports. So that when ’PRINT’ instruction is executed, it raises the Ack debug port and
the data, that is going to be read, is available in the Data debug port.

Figure 6.4: Virtex 7 VC707 [6]

Figure 6.5: Abstract of Dependability Application Test IJTAG Network

In this setup, there are two dummy temperature sensors that will be accessed
(figure 6.5). Each temperature sensor is connected to 4 switches in the FPGA to
give a value into it. The switches give a value multiplied by 8 for each temperature
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sensor, so activating the switches with 0x1000 produces a value of 64◦C. Accessing
the dummy temperature sensor is done by first writing 0x101 into it. Afterwards it
is available in the next concurrent IJTAG access. The synthesis report shows that
the worst-case paths are from the clock into the co-Processor temporary buffer that
takes 16.244ns. However the Virtex 7 Datasheet [6] explains that Virtex-7 system
clock is 200MHz. Therefore clockDivider is used to make the system clock of an
on-chip IJTAG dependability processor is 50 MHz.

Figure 6.6: Dependability Application Test Setup

The overview of the setup is depicted on figure 6.6. First the acceleration fac-
tor procedure is calculated on MATLAB for specific temperature values. Afterwards
it is simulated on MATLAB and generates output file for reference. Next an equal
PDL code is compiled into MIPS machine code. Both IJTAG dependability proces-
sor design and MIPS machine code is synthesized with Xilinx ISE and generates
IJTAG dependability processor bit file. Then the generated bit file is downloaded to
Virtex 7 FPGA and the debug ports Ack and Data can be monitored by Xilinx Chip-
scope. While the Virtex 7 FPGA holds the IJTAG dependability processor bit file,
the switches can be changed to assign values for the temperature sensors. Those
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changes can be monitored in the Xilinx chipscope and compared with the MATLAB
generated reference.

The PDL for calculating acceleration factor is available in listing 6.4. This code
will execute the dependability application once. The calculation of acceleration fac-
tor is implemented as procedure. The main code begins with writing 0x101 to the
temperature sensors using iWrite commands and is followed with iApply command.
Afterwards iRunLoop command is given for waiting the temperature sensors to finish
reading the temperature. Next to fetch the temperature values, iRead commands are
added followed by iApply command. iGetReadData is used to move the data from
co-processor to the main processor for further calculation. After the temperature
values are available on the main processor, it instantiates accelerationFactor proce-
dures for calculating the acceleration factor. Finally to make the results available for
chipscope analyzer, print commands are used to trigger the chipscope for capturing
the data.

Listing 6.3: MATLAB code for Acceleration Factor Calculation
f u n c t i o n r e s u l t = accFactor ( deg )

to = deg + 273;
e = toF i x (2 .7182) ;
eaPerK = toF i x (81.20649) ;
t s = toF i x (0 .2544) ;
AFv = toF i x (1 .377) ;

r e s u l t = t oF i x ( eaPerK ∗ ( t s − t oF i x (100/ to ) ) ) ;
r e s u l t = t oF i x ( double ( e ) ˆ double ( r e s u l t ) ) ;
r e s u l t = t oF i x (AFv∗ r e s u l t ) ;

Listing 6.4: PDL code for Acceleration Factor Calculation
iPDLLevel 1 −vers ion STD 1687 2014

proc accFactor { temp}
{

set to [ expr ( $temp << 0x10 ) + 273]
set e 2.7182
set eaPerK 81.20649
set t s 0.2544
set AFv 1.377

set r e s u l t [ expr $eaPerK ∗ ( $ts −(100/ $to ) ) ]
se t r e s u l t [ expr pow( $e , $ r e s u l t ) ]
se t r e s u l t [ expr $AFv ∗ $ r e s u l t ]

r e t u r n $ r e s u l t
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}

i W r i t e TempSensor0 0x101
i W r i t e TempSensor1 0x101
iApp ly

iRead TempSensor0
iRead TempSensor1
iApp ly

set temp0 [ iGetReadData TempSensor0 ]
set AF0 [ expr [ accFactor $temp0 ] ]

se t temp1 [ iGetReadData TempSensor1 ]
set AF1 [ expr [ accFactor $temp1 ] ]

p r i n t [ expr $AF0 ]
p r i n t [ expr $AF1 ]

6.2.2 Dependability Application FPGA evaluation

Figure 6.7 shows the data captured in chipscope while the temperature sensors
are 24◦C and 32◦C. The MATLAB result for 24◦C is 0.0171 that is similar to the
FPGA result. It also the same for 32◦C, where both MATLAB and FPGA results
show 0.0352. All possibilities has been tested and it shows an equal result. It shows
that IJTAG dependability processor has successfully implemented the dependability
application for calculating acceleration factor.

Figure 6.7: Chipscope result for 24◦C and 32◦C

The synthesis report shows that the worst-case paths are from the clockDivider
into the co-Processor temporary buffer that takes 16.244ns. The area utilization for
the IJTAG dependability processor is available on table 6.2.
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Table 6.2: Synthesis Report for Area
Properties Area
Slice Registers 26,450
Slice LUTs 19,503
Occupied Slices 7,532
LUT Flip Flop Pairs 27,101

6.3 Discussion

This chapter explains two works : benchmark test and dependability application
test. Benchmark test is used for verifying the PDL toolchain (from PDL cross com-
piler into an On-Chip IJTAG dependability processor). It was done by using MiBench
open source processor benchmark [29]. From several benchmark that MiBench of-
fers, only basic math packages that are feasible and relevant with the functionality of
IJTAG dependability processor and PDL cross compiler. It comprises of calculating
square root operations, degree to radian conversion and radian to degree conver-
sion. The result shows that it has no error except radian to degree conversion. The
error is caused by division with π. Due to being an irrational number, π is approxi-
mated into 3.1416 in the fixed point representation. This makes operations that utilize
π are susceptible to errors. However the error is a periodic error (figure 6.3), this kind
of error does not get accumulated that ruins the calculations later. Therefore, this
error is acceptable.

The dependability application test evaluates the IJTAG dependability processor
to execute dependability application while accessing embedded instruments on the
IJTAG network. This thesis implements acceleration factor calculation that has been
proposed by [28], as a part of lifetime estimation of a circuit. Acceleration factor
calculation requires temperature from the temperature sensors, which in this setup
uses two temperature sensors. The setup for this test uses Virtex 7 VC707 FPGA
from Xilinx. The temperature sensor is connected into the switches, so the user
can change the value of the temperature sensor. The test begins with making equal
MATLAB and PDL code from acceleration factor equation. The MATLAB code is
simulated for reference and the PDL code is compiled into MIPS machine code.
Afterwards IJTAG dependability processor design and compiled MIPS machine code
is synthesized into a bit file that will be uploaded into the FPGA. Finally reading the
data from FPGA is done using Xilinx Chipscope Analyzer that starts capturing the
data when Ack debug port is active. The result shows that there is no error for these
dependability application tests. The timing constraints shows that the worst-case
path is from clockDivider into co-Processor temporary buffer that takes 16.244ns.

Finally the hardware and software designs for IJTAG dependability processor
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successfully executes the dependability application. Although there are some errors
and limitations that has been discussed in chapter 4 and chapter 5, it has success-
fully executed the dependability application for calculating acceleration factor. The
next chapter will conclude all the work and provides future work that can be done
to improve the on-chip IJTAG dependability processor and PDL cross compiler. The
setup environment is available in appendix C
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Chapter 7

Conclusions & Future Works

7.1 Conclusions

In this thesis the design of an on-chip IJTAG dependability processor has been pro-
posed for executing dependability application. The works can be categorized into
two parts : hardware and software parts. The hardware part expands the design of
single cycle 32 bit MIPS processor [5] with integrating retargeting engine [9] as its
co-processor. The reason of using single cycle 32 bits MIPS is to make the hard-
ware as simple as possible. Therefore real number operations are compensated
with fixed point representation in the software side along with complex hardware
operations.

The software part starts with designing PDL cross compiler for MIPS that has not
been proposed before. The PDL cross compiler is built using ANTLR tool [16] which
is suitable for designing a prototype compiler, because it leaves code generation
step to handle. In order to do use ANTLR tool, PDL grammar and PDL tree walker is
required. PDL grammar consists of PDL exclusive grammar (available on [7]) and Tcl
grammar that is built by reverse engineering the Tcl Book [15] due to no Tcl grammar
availability [23]. The PDL tree walker walks the AST and generates MIPS machine
code out of it. PDL tree walker organizes fixed point representation, procedure
handling, instantiating self loop, register scheduling and execute expressions. The
software uses Q15.16 fixed point representation to compensate the absence of FPU
in the hardware side. Software emulated fixed point operations are implemented by
adopting libfixmath.h [24] for Q15.16 fixed point representation. Despite the fact
that there is no PDL cross compiler available, this thesis successfully implements
a compiler for PDL with ANTLR tool. This thesis also provides Tcl grammar that is
also unavailable by reverse engineering the Tcl Book.

Having complete design of IJTAG dependability processor from hardware and
hardware parts. Then it needs to be evaluated to do its main purpose which is to ex-
ecute dependability application. Before that the complete toolchain from PDL cross
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compiler to an on-chip IJTAG dependability processor design needs to be verified
with a benchmark test. Basic math packages from MiBench [29] is used for the
benchmark test, because MiBench offers open source benchmarking for embedded
processor. The benchmark tests consist of calculating square root operations, de-
gree to radian conversion and radian to degree conversion. After that the complete
toolchain is evaluated to execute a dependability application. This thesis uses accel-
eration factor calculation [28] for the dependability application test. The setup uses
Virtex 7 VC707 FPGA from Xilinx and chipscope analyzer to monitor the output. The
test shows that the IJTAG dependability processor has successfully executed the de-
pendability application for acceleration factor calculation. It is verified by comparing
the MATLAB and FPGA results. It can be concluded that the design of the on-chip
IJTAG dependability processor is suitable to execute the dependability application
using the IJTAG network. This solution will eases reliability engineers for developing
dependability application, because increasing number of connected embedded in-
struments on the IJTAG network will not alter the dependability hardware. Only the
software side that needs to be configured to fit the IJTAG network.

7.2 Future Works

There are several improvements that can be done to improve the on-chip IJTAG
dependability processor. Those improvements are :

1. Test for different processor

2. Implement the rest of PDL commands

3. Improve the PDL cross compiler to be able to target other machine

4. Improve the PDL cross compiler to be able to use or to emulate C library for
re-usability

5. Implement optimize code phase in PDL cross compiler

6. Use register allocation algorithm such as register coloring for optimum use of
registers

7. Add complex number handler if necessary
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Appendix A

An On-Chip IJTAG Dependability
Processor

A.1 IJTAG Dependability Processor

-------------------------------------------------------------------------------

-- Processor.vhd

--

-- Top Level entity of the single cycle MIPS processor

--

-------------------------------------------------------------------------------

-- Mochammad Fadhli Zakiy

-- University of Twente

-- 2016

-------------------------------------------------------------------------------

-- Design based on :

-- 1. http://chris.sagedy.com/projects/ecec490_fa08/

-- 2. Computer Organization and Design. Patterson & Hennessy

-- 3. MIPS Architecture for Programmers Volume II-A: The MIPS Instruction Set

-- Manual. 2015

-------------------------------------------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

use work.ConstantsPkg.all;

use work.ComponentsPkg.all;

entity Processor is
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generic (

InstructionMemContents : T_MemoryArray := (others => (others => ’0’));

DataMemContents : T_MemoryArray := (others => (others => ’0’))

);

port (

in_Clock : in std_logic;

in_Reset : in std_logic;

in_SO : in std_logic;

out_SI : out std_logic;

out_RST : out std_logic;

out_Sel : out std_logic;

out_CE : out std_logic;

out_SE : out std_logic;

out_UE : out std_logic;

out_TCK : out std_logic

);

end Processor;

architecture structural of Processor is

-- Processor

signal PC : std_logic_vector(31 downto 0) := (others => ’0’);

signal memAddress : std_logic_vector(31 downto 0);

-- Instruction Memory

signal Instruction : std_logic_vector(31 downto 0);

-- Instruction Decoder

signal Opcode : std_logic_vector(5 downto 0);

signal RS : std_logic_vector(4 downto 0);

signal RT : std_logic_vector(4 downto 0);

signal RD : std_logic_vector(4 downto 0);

signal Shamt : std_logic_vector(4 downto 0);

signal Funct : std_logic_vector(5 downto 0);

signal IAddress : std_logic_vector(15 downto 0);

signal JAddress : std_logic_vector(25 downto 0);

-- Controller

signal RegDst : std_logic;
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signal Branch : std_logic;

signal MemRead : std_logic;

signal MemWrite : std_logic;

signal ALUOp : std_logic_vector(3 downto 0);

signal MemtoReg : std_logic;

signal ALUSrc : std_logic_vector(1 downto 0);

signal RegWriteMain : std_logic;

signal RegWriteCOP : std_logic;

signal Jump : std_logic;

signal RegJump : std_logic;

signal DsttoSrc : std_logic_vector(1 downto 0);

signal MaintoCOP : std_logic;

signal COPtoMem : std_logic;

signal COPtoReg : std_logic;

signal RegtoCOP : std_logic;

signal Ack : std_logic;

-- Co-Processor Selector

signal Sel0 : std_logic;

signal Sel1 : std_logic;

signal Sel2 : std_logic;

signal Sel3 : std_logic;

-- Register File : Main Processor

signal WriteRegMain : std_logic_vector(4 downto 0);

signal ReadReg1 : std_logic_vector(4 downto 0);

signal ReadDataMain1 : std_logic_vector(31 downto 0);

signal ReadDataMain2 : std_logic_vector(31 downto 0);

signal WriteBackData : std_logic_vector(31 downto 0);

signal WriteBackCommon : std_logic_vector(31 downto 0);

signal WriteBackMain : std_logic_vector(31 downto 0);

-- Register File Common

signal RegDataCOP : std_logic_vector(31 downto 0);

signal DataOutCOP2 : std_logic_vector(31 downto 0);

-- Sign Extender

signal ExtendedAddressMain : std_logic_vector(31 downto 0);

signal ExtendedShift : std_logic_vector(31 downto 0);
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signal ExtendedAddressCOP : std_logic_vector(31 downto 0);

-- ALU

signal InputA : std_logic_vector(31 downto 0);

signal InputB : std_logic_vector(31 downto 0);

signal ALUResult : std_logic_vector(31 downto 0);

signal ZeroFlag : std_logic;

-- Data Memory

signal MemoryData : std_logic_vector(31 downto 0);

signal MemDataIn : std_logic_vector(31 downto 0);

begin

memAddress <= "00000000000000000000000"& ALUResult(memLength+1 downto 0);

-----------------------------------------------------------------------------

-- Instantiate the instruction memory.

-----------------------------------------------------------------------------

InstructionMemory : Memory

generic map (

DefaultContents => InstructionMemContents

)

port map (

in_Clock => in_Clock,

in_Reset => in_Reset,

in_Address => PC,

in_Data => (others => ’0’),

in_WriteEn => ’0’,

in_ReadEn => ’1’,

out_Data => Instruction

);

-----------------------------------------------------------------------------

-- Instantiate the instruction decoder.

-----------------------------------------------------------------------------

InstructionDecode : InstructionDecoder

port map (

in_Instruction => Instruction,
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out_Opcode => Opcode,

out_RS => RS,

out_RT => RT,

out_RD => RD,

out_Shamt => Shamt,

out_Funct => Funct,

out_IAddress => IAddress,

out_JAddress => JAddress

);

-----------------------------------------------------------------------------

-- Instantiate the main control block.

-----------------------------------------------------------------------------

Control : Controller

port map (

in_Opcode => Opcode,

in_Funct => Funct,

in_Format => RS,

debug_Ack => Ack,

out_RegDst => RegDst,

out_Branch => Branch,

out_MemRead => MemRead,

out_MemWrite => MemWrite,

out_ALUOp => ALUOp,

out_MemtoReg => MemtoReg,

out_ALUSrc => ALUSrc,

out_RegWriteMain => RegWriteMain,

out_RegWriteCOP => RegWriteCOP,

out_Jump => Jump,

out_RegJump => RegJump,

out_DsttoSrc => DsttoSrc,

out_MaintoCOP => MaintoCOP,

out_COPtoMem => COPtoMem,

out_COPtoReg => COPtoReg,

out_RegtoCOP => RegtoCOP

);

-----------------------------------------------------------------------------

-- Instantiate the register file.
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-----------------------------------------------------------------------------

WriteRegMainMux : Mux2to1

generic map (

data => 5

)

port map (

in_Data0 => RT,

in_Data1 => RD,

out_Data => WriteRegMain,

Sel => RegDst

);

WriteBackDataMux : Mux2to1

generic map (

data => 32

)

port map (

in_Data0 => ALUResult,

in_Data1 => MemoryData,

out_Data => WriteBackData,

Sel => MemtoReg

);

WriteBackCommonMux : Mux2to1

generic map (

data => 32

)

port map (

in_Data0 => WriteBackData,

in_Data1 => RegDataCOP,

out_Data => WriteBackCommon,

Sel => COPtoReg

);

WriteBackMainMux : Mux2to1

generic map (

data => 32

)
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port map (

in_Data0 => WriteBackCommon,

in_Data1 => ReadDataMain2,

out_Data => WriteBackMain,

Sel => RegtoCOP

);

ReadReg1Mux : Mux4to1

generic map (

data => 5

)

port map (

in_Data00 => RS,

in_Data01 => RT,

in_Data10 => RD,

in_Data11 => RS,

out_Data => ReadReg1,

Sel => DsttoSrc

);

SelMux : Decoder2to4

port map (

in_Sel => Opcode(1 downto 0),

out_Data0 => Sel0,

out_Data1 => Sel1,

out_Data2 => Sel2,

out_Data3 => Sel3

);

RegFileMain : RegisterFile

port map (

in_Clock => in_Clock,

in_Reset => in_Reset,

in_ReadReg1 => ReadReg1,

in_ReadReg2 => RT,

in_WriteReg => WriteRegMain,

in_Data => WriteBackMain,

in_WriteEn => RegWriteMain,

out_Data1 => ReadDataMain1,
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out_Data2 => ReadDataMain2

);

-----------------------------------------------------------------------------

-- Instantiate the Co-Processor(s)

-----------------------------------------------------------------------------

COP2 : CoProcessor2

port map (

in_Clock => in_Clock,

in_Reset => in_Reset,

in_Instr => Instruction,

in_Data => WriteBackMain,

in_Reg => WriteRegMain,

in_MTC => MaintoCOP,

in_RWC => RegWriteCOP,

in_Sel => Sel2,

in_SO => in_SO,

out_Data => DataOutCOP2,

out_SI => out_SI,

out_RST => out_RST,

out_Sel => out_Sel,

out_CE => out_CE,

out_SE => out_SE,

out_UE => out_UE,

out_TCK => out_TCK

);

-----------------------------------------------------------------------------

-- Instantiate the sign extender 16 to 32.

-----------------------------------------------------------------------------

SignExtend16to32 : SignExtender

generic map (

InputWidth => 16,

OutputWidth => 32

)

port map (

in_Data => IAddress,

out_Data => ExtendedAddressMain
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);

-----------------------------------------------------------------------------

-- Instantiate the sign extender 11 to 32.

-----------------------------------------------------------------------------

SignExtend11to32 : SignExtender

generic map (

InputWidth => 11,

OutputWidth => 32

)

port map (

in_Data => IAddress(10 downto 0),

out_Data => ExtendedAddressCOP

);

-----------------------------------------------------------------------------

-- Instantiate the sign extender 5 to 32.

-----------------------------------------------------------------------------

ExtendedShift <= "000000000000000000000000000" & IAddress(10 downto 6);

-----------------------------------------------------------------------------

-- Instantiate the ALU.

-----------------------------------------------------------------------------

InputA <= ReadDataMain1;

InputBMux : Mux4to1

generic map (

data => 32

)

port map (

in_Data00 => ReadDataMain2,

in_Data01 => ExtendedAddressCOP,

in_Data10 => ExtendedAddressMain,

in_Data11 => ExtendedShift,

out_Data => InputB,

Sel => ALUSrc

);

ALU : ALU32
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port map (

in_Operation => ALUOp,

in_A => InputA,

in_B => InputB,

out_Result => ALUResult,

out_Zero => ZeroFlag

);

-----------------------------------------------------------------------------

-- Instantiate data memory.

-----------------------------------------------------------------------------

MemDataInMux : Mux2to1

generic map (

data => 32

)

port map (

in_Data0 => ReadDataMain2,

in_Data1 => RegDataCOP,

out_Data => MemDataIn,

Sel => COPtoMem

);

RegDataCOPMux : Mux4to1

generic map (

data => 32

)

port map (

in_Data00 => (others => ’0’),

in_Data01 => (others => ’0’),

in_Data10 => DataOutCOP2,

in_Data11 => (others => ’0’),

out_Data => RegDataCOP,

Sel => Opcode(1 downto 0)

);

DataMemory : Memory

generic map (

DefaultContents => DataMemContents

)
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port map (

in_Clock => in_Clock,

in_Reset => in_Reset,

in_Address => memAddress,

in_Data => MemDataIn,

in_WriteEn => MemWrite,

in_ReadEn => MemRead,

out_Data => MemoryData

);

-----------------------------------------------------------------------------

-- Update the program counter.

-----------------------------------------------------------------------------

ThePC : ProgramCounter

port map(

in_Clock => in_Clock,

in_Reset => in_Reset,

in_Opcode => Opcode,

in_Jump => Jump,

in_RegJump => RegJump,

in_Branch => Branch,

in_ZeroFlag => ZeroFlag,

in_JAddress => JAddress,

in_ExtAddress => ExtendedAddressMain,

in_ALUResult => ALUResult,

out_PC => PC

);

end structural;

A.2 Retargeting Engine Co-Processor

-------------------------------------------------------------------------------

-- Retargeting Engine CoProcessor.vhd

--

-- Co-Processor for Retargeting Engine. The Only Co-Processor that connected

-- with IJTAG interface

--
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-------------------------------------------------------------------------------

-- Mochammad Fadhli Zakiy

-- University of Twente

-- 2016

-------------------------------------------------------------------------------

-- Design based on :

-- 1. http://chris.sagedy.com/projects/ecec490_fa08/

-- 2. Computer Organization and Design. Patterson & Hennessy

-- 3. MIPS Architecture for Programmers Volume II-A: The MIPS Instruction Set

-- Manual. 2015

-------------------------------------------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

use work.ConstantsPkg.all;

use work.ComponentsPkg.all;

entity CoProcessor2 is

generic(

MaxConcurrent : integer := 10

);

port (

in_Clock : in std_logic;

in_Reset : in std_logic;

in_Instr : in std_logic_vector(31 downto 0);

in_Data : in std_logic_vector(31 downto 0);

in_Reg : in std_logic_vector(4 downto 0);

in_MTC : in std_logic;

in_RWC : in std_logic;

in_Sel : in std_logic;

in_SO : in std_logic;

out_Data : out std_logic_vector(31 downto 0);

out_SI : out std_logic;

out_RST : out std_logic;

out_Sel : out std_logic;

out_CE : out std_logic;

out_SE : out std_logic;

out_UE : out std_logic;
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out_TCK : out std_logic

);

end CoProcessor2;

architecture behavioral of CoProcessor2 is

-- Co-Processor State

type T_CommandQueue is array(MaxConcurrent-1 downto 0)

of std_logic_vector (64 downto 0);

type T_DataOutQueue is array(31 downto 0)

of std_logic_vector (63 downto 0);

type state_type is (readOrder, sendOrder, working, getData, sendData);

signal state : state_type;

signal CommandQueue : T_CommandQueue;

signal DataOutQueue : T_DataOutQueue;

-- Instruction Decoder

signal Opcode : std_logic_vector(5 downto 0);

signal Format : std_logic_vector(4 downto 0);

signal RT : std_logic_vector(4 downto 0);

signal RD : std_logic_vector(4 downto 0);

signal Shamt : std_logic_vector(4 downto 0);

signal Funct : std_logic_vector(5 downto 0);

signal IAddress : std_logic_vector(15 downto 0);

signal JAddress : std_logic_vector(25 downto 0);

-- Co-Processor signal

signal command : std_logic_vector(4 downto 0);

signal Data1 : std_logic_vector(31 downto 0);

signal Data2 : std_logic_vector(31 downto 0);

signal RegOut : std_logic_vector(4 downto 0);

signal WriteEnable : std_logic;

signal DataOut : std_logic_vector(31 downto 0);

-- Register signal

signal WriteRegCOP2 : std_logic_vector(4 downto 0);

signal WriteBackCOP2 : std_logic_vector(31 downto 0);

signal RegWriteCOP2 : std_logic;
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-- Retargeting Engine signal

signal RegValue : std_logic_vector(31 downto 0);

signal RegId : std_logic_vector(31 downto 0);

signal Concurrent : std_logic;

signal ReadWrite : std_logic;

signal ReadValue : std_logic_vector(31 downto 0);

signal ReadId : std_logic_vector(31 downto 0);

signal RequestedId : std_logic_vector(31 downto 0);

signal error : std_logic;

signal ACK : std_logic;

-- IJTAG signal

signal SO : std_logic;

signal SI : std_logic;

signal RST : std_logic;

signal Sel : std_logic;

signal CE : std_logic;

signal SE : std_logic;

signal UE : std_logic;

signal TCK : std_logic;

begin

out_Data <= Data1;

-----------------------------------------------------------------------------

-- Instantiate the instruction decoder.

-----------------------------------------------------------------------------

InstructionDecode2 : InstructionDecoder

port map (

in_Instruction => in_Instr,

out_Opcode => Opcode,

out_RS => Format,

out_RT => RT,

out_RD => RD,

out_Shamt => Shamt,

out_Funct => Funct,

out_IAddress => IAddress,

out_JAddress => JAddress
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);

-----------------------------------------------------------------------------

-- Instantiate the register file for COP 2

-----------------------------------------------------------------------------

RegWriteCOP2 <= (in_RWC AND in_Sel) OR WriteEnable;

RegFileCOP2 : RegisterFile

port map (

in_Clock => in_Clock,

in_Reset => in_Reset,

in_ReadReg1 => RT,

in_ReadReg2 => RD,

in_WriteReg => WriteRegCOP2,

in_Data => WriteBackCOP2,

in_WriteEn => RegWriteCOP2,

out_Data1 => Data1,

out_Data2 => Data2

);

WriteRegCOP2Mux : Mux2to1

generic map (

data => 5

)

port map (

in_Data0 => in_Reg,

in_Data1 => RegOut,

out_Data => WriteRegCOP2,

Sel => WriteEnable

);

WriteBackCOP2Mux : Mux2to1

generic map (

data => 32

)

port map (

in_Data0 => DataOut,

in_Data1 => in_Data,

out_Data => WriteBackCOP2,
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Sel => in_MTC

);

-----------------------------------------------------------------------------

-- Instantiate Retargeting Engine

-----------------------------------------------------------------------------

Retargeting : RetargetingEngine

port map (

in_Clock => in_Clock,

in_Reset => in_Reset,

in_RegValue => RegValue,

in_RegId => RegId,

in_Concurrent => Concurrent,

in_ReadWrite => ReadWrite,

in_SO => SO,

out_ReadValue => ReadValue,

out_ReadId => ReadId,

out_RequestedId => RequestedId,

out_error => error,

out_ACK => ACK,

out_SI => SI,

out_RST => RST,

out_Sel => Sel,

out_CE => CE,

out_SE => SE,

out_UE => UE,

out_TCK => TCK

);

-----------------------------------------------------------------------------

-- Co-Processor 2 State Machine

-----------------------------------------------------------------------------

stateMachine:process(in_Clock, in_Reset, Format)

variable commandCounter : integer := 0;

variable totalRead : integer range 0 to 31 := 0;

variable readCounter : integer range 0 to 31 := 0;

variable sendCounter : integer range 0 to 31 := 0;

variable workCounter : integer := 0;

variable I : integer range 0 to 31 := 0;
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begin

if(in_Reset=’1’) then

RegValue <= (others => ’0’);

RegId <= (others => ’0’);

ReadWrite <= ’0’;

Concurrent <= ’0’;

WriteEnable<= ’0’;

RegOut <= (others => ’0’);

DataOut <= (others => ’0’);

state <= readOrder;

commandCounter := 0;

totalRead := 0;

readCounter := 0;

sendCounter := 0;

workCounter := 0;

elsif(rising_edge(in_Clock)) then

if (state = readOrder) then

RegValue <= (others => ’0’);

RegId <= (others => ’0’);

ReadWrite <= ’0’;

Concurrent <= ’0’;

WriteEnable <= ’0’;

RegOut <= (others => ’0’);

DataOut <= (others => ’0’);

if (in_Sel = ’1’) then

case Format is

when FORMAT_IWRITE =>

CommandQueue(commandCounter) <= Format(0) & Data1 & Data2;

state <= readOrder;

commandCounter := commandCounter + 1;

when FORMAT_IREAD =>

CommandQueue(commandCounter) <= Format(0) & Data1 & Data2;

DataOutQueue(readCounter) <= Data1 & x"00000000";
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state <= readOrder;

commandCounter := commandCounter + 1;

readCounter := readCounter + 1;

when FORMAT_IAPPLY =>

RegValue <= CommandQueue(workCounter)(31 downto 0);

RegId <= CommandQueue(workCounter)(63 downto 32);

ReadWrite <= CommandQueue(workCounter)(64);

Concurrent <= ’1’;

state <= sendOrder;

workCounter := workCounter + 1;

totalRead := readCounter;

when FORMAT_IRESET =>

state <= readOrder;

commandCounter := 0;

totalRead := 0;

readCounter := 0;

sendCounter := 0;

workCounter := 0;

when others =>

state <= readOrder;

end case;

else

state <= readOrder;

end if;

elsif (state = sendOrder) then

WriteEnable <= ’0’;

RegOut <= (others => ’0’);

DataOut <= (others => ’0’);

if(workCounter < commandCounter) then

RegValue <= CommandQueue(workCounter)(31 downto 0);

RegId <= CommandQueue(workCounter)(63 downto 32);

ReadWrite <= CommandQueue(workCounter)(64);
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Concurrent <= ’1’;

state <= sendOrder;

workCounter := workCounter + 1;

else

RegValue <= (others => ’0’);

RegId <= (others => ’0’);

ReadWrite <= ’0’;

Concurrent <= ’0’;

state <= working;

workCounter := 0;

commandCounter := 0;

end if;

elsif (state = working) then

RegValue <= (others => ’0’);

RegId <= (others => ’0’);

ReadWrite <= ’0’;

Concurrent <= ’0’;

WriteEnable <= ’0’;

RegOut <= (others => ’0’);

DataOut <= (others => ’0’);

if(ACK =’1’) then

if (readCounter > 0) then

state <= getData;

else

WriteEnable <= ’1’;

RegOut <= "00001";

DataOut <= x"00000001";

state <= readOrder;

end if;

end if;

elsif (state = getData) then

RegValue <= (others => ’0’);

RegId <= (others => ’0’);

ReadWrite <= ’0’;

Concurrent <= ’0’;
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WriteEnable <= ’0’;

RegOut <= (others => ’0’);

DataOut <= (others => ’0’);

for I in 0 to 31 loop

if (ReadId = DataOutQueue(I)(63 downto 32)) then

DataOutQueue(I)(31 downto 0) <= ReadValue;

end if;

end loop;

if(readCounter = 1) then

state <= sendData;

else

state <= getData;

readCounter := readCounter - 1;

end if;

else

if (sendCounter < totalRead) then

RegValue <= (others => ’0’);

RegId <= (others => ’0’);

ReadWrite <= ’0’;

Concurrent <= ’0’;

RegOut <= std_logic_vector(to_unsigned(sendCounter + 8, 5));

DataOut <= DataOutQueue(sendCounter)(31 downto 0);

WriteEnable <= ’1’;

state <= sendData;

sendCounter := sendCounter + 1;

else

RegValue <= (others => ’0’);

RegId <= (others => ’0’);

ReadWrite <= ’0’;

Concurrent <= ’0’;

RegOut <= "00001";

DataOut <= x"00000001";

WriteEnable <= ’1’;

state <= readOrder;
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sendCounter := 0;

readCounter := 0;

end if;

end if;

end if;

end process;

end behavioral;
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Appendix B

Software Emulated Fixed Point
Operations

B.1 Emulated Fixed Point Multiplication

In order to emulate fixed point multiplication operation, one must understand how
the multiplication works. Multiplication of two 32 bits numbers will produce a 64 bits
number (figure B.1). Hardware multiplication usually divides this 64 bits number into
two 32 bits numbers: HI and LO. However this 64 bits number can be truncated
into a 32 bits number by taking 16 bits LSB of HI and put it is as the MSB of the
result. Then followed with taking 16 bits MSB of LO and put it as the LSB of the
result. This solution is restricted for small numbers only. Multiplication that produces
more than 16 bits integer will be truncated into 16 bits integer that produce incorrect
result.

Figure B.1: Hardware multiplication concept

Full fixed point multiplication algorithm can be seen on algorithm 4. It begins with
assigning the multiplier m and multiplicand n into positive values. It will raise the
negM and/or negN flags into 1 respectively if the multiplier m and/or multiplicand n

105
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are negative values. negR flags are raised to 1 if either negM or negN flags are
raised. Then the algorithm moves to calculate AC, AD, CB and BD by using a
MultiplicationLoop algorithm. Next AD CB is calculated from addition of AD and
CB, this AD CB is an intersect value of HI and LO. Because HI is an addition
between AC and 16 bits MSB of AD CB. On the other hand LI is an addition
between BD and 16 bits LSB of AD CB. Addition between BD and 16 bits LSB
of AD CB might produce an overflow which increases the value of HI. Since HI

and LO are represented separately, so if the value of LO is less than 0 (overflow
detected), the value of HI is increased by 1. Truncating the HI and LO into a 32
bits number by taking 16 bits LSB of HI then put it is as the MSB of the result and
taking 16 bits LSB of LO then put it is as the MSB of the result. Back to negR flag, if
it is raised then the result is turned to negative value. Finally the result of fixed point
multiplication is ready. These steps are depicted on figure B.2.

Figure B.2: Example of Expression AST
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Algorithm 4 Fixed Point Multiplication Algorithm
1: procedure MULTIPLICATIONLOOP(m,n)
2: result← 0

3: while m do
4: if m & 1 then
5: result← result+ n

6: end if
7: n← n << 1

8: m← m >> 1

9: end while
10: return result
11: end procedure
12: procedure FIXEDPOINTMULTIPLICATION(m,n)
13: result← 0

14: negM ← 0

15: negN ← 0

16: negR← 0

17: if m < 0 then
18: negM ← 1

19: m← −m
20: end if
21: if n < 0 then
22: negN ← 1

23: n← −n
24: end if
25: negR← negM ⊕ negN
26: A← (m >> 16) & 65535

27: B ← m >> & 65535

28: C ← (n >> 16) & 65535

29: D ← n & 65535

30: AC ← MultiplicationLoop(A,C)
31: AD ← MultiplicationLoop(A,D)
32: CB ← MultiplicationLoop(C,B)
33: BD ← MultiplicationLoop(B,D)
34: AD CB ← AD + CB

35: HI ← AC + ((AD CB >> 16) & 65536)

36: LO ← BD + (AD CB << 16)
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37: if LO < 0 then
38: HI ← HI + 1

39: end if
40: result← (HI << 16) | (LO >> 16)

41: if negR then
42: result← −result
43: end if
44: return result
45: end procedure

B.2 Emulated Fixed Point Division

In order to emulate fixed point division operation, one must understand how it works.
Full fixed point division algorithm can be seen on algorithm 5. It begins with checking
the denominator b. If b is 0, it should return errors. However on this thesis, the
ErrorHandler java class has not been developed perfectly, so it will return 0 instead.
Then the algorithm moves to assign bitF lag with 0x10000 which is the first integer bit
on Q15.16 fixed point representation. This bitF lag will be used for detecting whether
a is still available for division. Next the algorithm moves to assign the numerator a
and denominator b into positive values. It will raise the negA and/or negB flags into
1 respectively if the numerator a and/or denominator b are negative values. negR

flags are raised to 1 if either negA or negB flags are raised. Then the algorithm
shifts b to left by 1 bit and shifts bitF lag to left by 1 bit when the value of b is less
than a. This operations are necessary to make the values of b and a divisible. If b
has became negative and the value of a is bigger than equal to b, then try to set a as
subtraction of a with b and sets result with or operation between result with bitF lag.
And followed with shifting b value to right by 1 bit and shifting bitF lag to right by 1 bit.
Next while bitwise and operation between bitF lag and a is not 0 and the value of a is
bigger than equal to b, then try to set a as subtraction of a with b and sets result with
or operation between result with bitF lag. And followed with shifting a value to left
by 1 bit and shifting bitF lag to right by 1 bit. Back to negR flag, if it is raised then the
result is turned to negative value. Finally the result of fixed point division is ready.

B.3 Emulated Fixed Point Square Root

In order to emulate fixed point square root operation, one must understand how it
works. Full fixed point square root algorithm can be seen on algorithm 6. It begins
with assigning the value of HI with 0 and the value of LO to radicand x. Due
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Algorithm 5 Fixed Point Division Algorithm
1: procedure FIXEDPOINTDIVISION(a,b)
2: result← 0

3: negA← 0

4: negB ← 0

5: negR← 0

6: bitF lag ← 0x10000
7: if b == 0 then
8: return result
9: end if

10: if a < 0 then
11: negA← 1

12: a← −a
13: end if
14: if b < 0 then
15: negB ← 1

16: b← −b
17: end if
18: negR← negA⊕ negB
19: while b < a do
20: b← b << 1

21: bitF lag ← bitF lag << 1

22: end while
23: if b & 0x80000000 then
24: if a >= b then
25: result← result | bitF lag
26: a← a− b
27: end if
28: b← b >> 1

29: bitF lag ← bitF lag >> 1

30: end if
31: while bitF lag && a do
32: if a >= b then
33: result← result | bitF lag
34: a← a− b
35: end if
36: a← a << 1

37: bitF lag ← bitF lag >> 1

38: end while
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39: if negR then
40: result← −result
41: end if
42: return result
43: end procedure

to Q15.16 fixed point representation, wordLength is assigned with 32 and frac is
assigned with 16. If the radicand x is less than 0, it should return complex value on
the end. However on this thesis, there is no complex number representation yet.
Therefore handling complex number will return 0 instead. Next for i starts from 0 to i
is less than 24 (wordLength− (frac >> 1)) do square root calculation. Square root
calculation comprises of :
1. assigning HI with addition of shifted HI value to the left by 2 bits with 2 bits MSB
of LO,
2. assigning LO with shifted LO value to the left by 2 bits,
3. assigning result with shifted result value to the left by 1 bit,
4. assigning div with addition of shifted result value to the left by 1 bit with 1,
5. assigning HI with subtraction of HI with div and assigning result with addition
of result with 1 if the value of HI is bigger than equal to the value of div,
6. Lastly, assigning i with addition of i with 1.
Finally the result of fixed point square root is ready.

B.4 Emulated Fixed Point Power

In order to emulate fixed point power operation, one must understand how it works.
Full fixed point power algorithm can be seen on algorithm 7. It begins with assigning
the value of result with 0x10000, due to Q15.16 fixed point representation. If the
power y is less than 0, y is turned into negative value and negR flag is raised to 1.
Then the algorithm moves to assign powReal with shifted y to right by 16 for get rid
of the fractional part and assigning temp with the value of base x. Then while the
value of powReal is not zero do the power operation for integer part which comprises
of :
1. assigning result with fixed point multiplication between result and temp, if the and
bitwise operation between powReal and 1 is not 0,
2. assigning powReal with shifted powReal to left by 1 bit,
3. assigning temp with fixed point multiplication between temp and temp.
After that the algorithm moves to assign powFrac with shifted y to left by 16 for
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Algorithm 6 Fixed Point Square Root Algorithm
1: procedure FIXEDPOINTSQUAREROOT(x)
2: result← 0

3: HI ← 0

4: LO ← x

5: wordLength← 32

6: frac← 16

7: if x < 0 then
8: return result
9: end if

10: i← 0

11: for i < wordLength− (frac >> 1) do
12: HI ← (HI << 2) + ((LO >> 30) & 3)

13: LO ← LO << 2

14: result← result << 1

15: div ← (result << 1) + 1

16: if HI >= div then
17: HI ← HI − div
18: result← result+ 1

19: end if
20: i← i+ 1

21: end for
22: return result
23: end procedure
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getting rid of the integer part and assigning temp with fixed point operation of base
x. Then while the value of powFrac is not zero do the power operation for fractional
part which comprises of :
1. assigning result with fixed point multiplication between result and temp, if the and
bitwise operation between powFrac and 0x80000000 is not 0,
2. assigning powFrac with shifted powReal to right by 1 bit,
3. assigning temp with fixed point square root of temp.
Back to negR flag, if it is raised then the result is assigned with fixed point division
between 0x10000 and result. Because negative value of y on the beginning means
a division between 1 with result.Finally the result of fixed point power is ready.
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Algorithm 7 Fixed Point Power Algorithm
1: procedure FIXEDPOINTPOWER(x,y)
2: result← 0x10000
3: negR← 0

4: if y < 0 then
5: y ← −y
6: negR← 1

7: end if
8: powReal← y >> 16

9: temp← x

10: while powReal do
11: if powReal & 1 then
12: result← FixedPointMultiplication(result,temp)
13: end if
14: powReal← powReal >> 1

15: temp← FixedPointMultiplication(temp,temp)
16: end while
17: powFrac← y << 16

18: temp← FixedPointSquareRoot(temp)
19: while powFrac do
20: if powFrac & 0x80000000 then
21: result← FixedPointMultiplication(result,temp)
22: end if
23: powFrac← powFrac << 1

24: temp← FixedPointSquareRoot(temp)
25: end while
26: if negR then
27: result← FixedPointDivision(0x10000,result)
28: end if
29: return result
30: end procedure
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Appendix C

Setup Environment

C.1 XilinxTopLevel

-------------------------------------------------------------------------------

-- xilinxTopLevel.vhd

--

-- Testbench for 32 bits PDL-MIPS processor for xilinx

--

-------------------------------------------------------------------------------

-- Mochammad Fadhli Zakiy

-- University of Twente

-- 2016

-------------------------------------------------------------------------------

-- Design based on :

-- 1. http://chris.sagedy.com/projects/ecec490_fa08/

-- 2. Computer Organization and Design. Patterson & Hennessy

-- 3. MIPS Architecture for Programmers Volume II-A: The MIPS Instruction Set

-- Manual. 2015

-------------------------------------------------------------------------------

LIBRARY IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

use work.ComponentsPkg.all;

use work.ConstantsPkg.all;

use std.textio.all;

use IEEE.std_logic_textio.all;

Library UNISIM;

use UNISIM.vcomponents.all;

115
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entity xilinxTopLevel is

port

(

clock_n : IN std_logic;

clock_p : IN std_logic;

in_Reset : IN std_logic;

in_temp0 : IN std_logic_vector(3 downto 0);

in_temp1 : IN std_logic_vector(3 downto 0);

);

end xilinxTopLevel;

architecture test of xilinxTopLevel is

-----------------------------------------------------------------------------

-- Component instantiation

-----------------------------------------------------------------------------

component ICON

PORT (

CONTROL0 : INOUT STD_LOGIC_VECTOR(35 DOWNTO 0));

end component;

component ILA

PORT (

CONTROL : INOUT STD_LOGIC_VECTOR(35 DOWNTO 0);

CLK : IN STD_LOGIC;

TRIG0 : IN STD_LOGIC_VECTOR(0 DOWNTO 0);

TRIG1 : IN STD_LOGIC_VECTOR(31 DOWNTO 0);

TRIG2 : IN STD_LOGIC_VECTOR(31 DOWNTO 0);

TRIG3 : IN STD_LOGIC_VECTOR(31 DOWNTO 0);

TRIG4 : IN STD_LOGIC_VECTOR(31 DOWNTO 0);

TRIG5 : IN STD_LOGIC_VECTOR(31 DOWNTO 0);

TRIG6 : IN STD_LOGIC_VECTOR(31 DOWNTO 0));

end component;

-----------------------------------------------------------------------------

-- Function

-----------------------------------------------------------------------------

impure function InitRomFromFile (RomFileName : in string)
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return T_MemoryArray is

FILE romfile : text is in RomFileName;

variable RomFileLine1 : line;

variable RomFileLine2 : line;

variable RomFileLine3 : line;

variable RomFileLine4 : line;

variable rom : T_MemoryArray;

variable mem1 : std_logic_vector(31 downto 0);

variable mem2 : std_logic_vector(31 downto 0);

variable mem3 : std_logic_vector(31 downto 0);

variable mem4 : std_logic_vector(31 downto 0);

begin

for i in T_MemoryArray’range loop

readline(romfile, RomFileLine1);

readline(romfile, RomFileLine2);

readline(romfile, RomFileLine3);

readline(romfile, RomFileLine4);

hread(RomFileLine1, mem1);

hread(RomFileLine2, mem2);

hread(RomFileLine3, mem3);

hread(RomFileLine4, mem4);

rom(i):=mem4&mem3&mem2&mem1;

end loop;

return rom;

end function;

-----------------------------------------------------------------------------

-- Signal instantiation

-----------------------------------------------------------------------------

-- keep unoptimized for memory signal

attribute keep : string;

-- memory instantiation

signal InstructionMemContents : T_MemoryArray := InitRomFromFile

("instruction.data");

signal DataMemContents : T_MemoryArray := InitRomFromFile

("memory.data");

-- keep memory
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attribute keep of InstructionMemContents : signal is "true";

attribute keep of DataMemContents : signal is "true";

-- clock

signal diffClock : std_logic;

signal sysClock : std_logic;

-- IJTAG Interface

signal SO : std_logic;

signal SI : std_logic;

signal RST : std_logic;

signal Sel : std_logic;

signal CE : std_logic;

signal SE : std_logic;

signal UE : std_logic;

signal TCK : std_logic;

-- Debug Interface

signal CONTROL0 : STD_LOGIC_VECTOR(35 DOWNTO 0);

Signal TRIG0 : STD_LOGIC_VECTOR(0 DOWNTO 0);

Signal TRIG1 : STD_LOGIC_VECTOR(31 DOWNTO 0);

Signal TRIG2 : STD_LOGIC_VECTOR(31 DOWNTO 0);

Signal TRIG3 : STD_LOGIC_VECTOR(31 DOWNTO 0);

Signal TRIG4 : STD_LOGIC_VECTOR(31 DOWNTO 0);

Signal TRIG5 : STD_LOGIC_VECTOR(31 DOWNTO 0);

Signal TRIG6 : STD_LOGIC_VECTOR(31 DOWNTO 0);

-- Debug Signal

signal sigAck : STD_LOGIC;

signal sigData : STD_LOGIC_VECTOR(31 DOWNTO 0);

signal sigInst : STD_LOGIC_VECTOR(31 DOWNTO 0);

signal sigPC : STD_LOGIC_VECTOR(31 DOWNTO 0);

signal sigA : STD_LOGIC_VECTOR(31 DOWNTO 0);

signal sigB : STD_LOGIC_VECTOR(31 DOWNTO 0);

signal sigALU : STD_LOGIC_VECTOR(31 DOWNTO 0);

begin

TRIG0(0) <= sigAck;



C.1. XILINXTOPLEVEL 119

TRIG1 <= sigData;

TRIG2 <= sigInst;

TRIG3 <= sigPC;

TRIG4 <= sigA;

TRIG5 <= sigB;

TRIG6 <= sigALU;

-----------------------------------------------------------------------------

-- Instantiate clock

-----------------------------------------------------------------------------

IBUFDS_inst : IBUFDS

generic map (

DIFF_TERM => FALSE,

IBUF_LOW_PWR => TRUE,

IOSTANDARD => "DEFAULT")

port map (

O => diffClock,

I => clock_p,

IB => clock_n

);

-----------------------------------------------------------------------------

-- Instantiate Clock Divider

-----------------------------------------------------------------------------

theClockDiv : ClockDiv

generic map (

divider => 2

)

port map (

in_Clock => diffClock,

in_Reset => in_Reset,

out_Clock => sysClock

);

-----------------------------------------------------------------------------

-- Instantiate ICON

-----------------------------------------------------------------------------

ICON_inst : ICON

port map (
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CONTROL0 => CONTROL0

);

-----------------------------------------------------------------------------

-- Instantiate ILA

-----------------------------------------------------------------------------

ILA_inst : ILA

port map (

CONTROL => CONTROL0,

CLK => sysClock,

TRIG0 => TRIG0,

TRIG1 => TRIG1,

TRIG2 => TRIG2,

TRIG3 => TRIG3,

TRIG4 => TRIG4,

TRIG5 => TRIG5,

TRIG6 => TRIG6

);

-----------------------------------------------------------------------------

-- Instantiate the processor.

-----------------------------------------------------------------------------

MIPS_Processor : DebugProcessor

generic map (

InstructionMemContents => InstructionMemContents,

DataMemContents => DataMemContents

)

port map (

in_Clock => sysClock,

in_Reset => in_Reset,

in_SO => SO,

in_temp0 => in_temp0,

in_temp1 => in_temp1,

debug_Ack => sigAck,

debug_Data => sigData,

debug_Inst => sigInst,

debug_PC => sigPC,

debug_A => sigA,

debug_B => sigB,
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debug_ALU => sigALU,

out_SI => SI,

out_RST => RST,

out_Sel => Sel,

out_CE => CE,

out_SE => SE,

out_UE => UE,

out_TCK => TCK

);

end test;

C.2 Xilinx Top Level UCF

# PlanAhead Generated physical constraints

NET "clock_n" LOC = E18;

NET "clock_p" LOC = E19;

NET "in_Reset" LOC = AV39;

NET "in_temp0[0]" LOC = AV30;

NET "in_temp0[1]" LOC = AY33;

NET "in_temp0[2]" LOC = BA31;

NET "in_temp0[3]" LOC = BA32;

NET "in_temp1[0]" LOC = AW30;

NET "in_temp1[1]" LOC = AY30;

NET "in_temp1[2]" LOC = BA30;

NET "in_temp1[3]" LOC = BB31;

NET "Data[0]" LOC = AM22;

NET "Data[1]" LOC = AL22;

NET "Data[2]" LOC = AJ20;

NET "Data[3]" LOC = AJ21;

NET "Data[4]" LOC = AM21;

NET "Data[5]" LOC = AL21;

NET "Data[6]" LOC = AK22;

NET "Data[7]" LOC = AJ22;

NET "Data[8]" LOC = AL20;

NET "Data[9]" LOC = AK20;

NET "Data[10]" LOC = AK23;

NET "Data[11]" LOC = AJ23;
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NET "Data[12]" LOC = AN21;

NET "Data[13]" LOC = AP22;

NET "Data[14]" LOC = AP23;

NET "Data[15]" LOC = AN23;

NET "Data[16]" LOC = AM23;

NET "Data[17]" LOC = AN24;

NET "Data[18]" LOC = AY24;

NET "Data[19]" LOC = BB22;

NET "Data[20]" LOC = BA22;

NET "Data[21]" LOC = BA25;

NET "Data[22]" LOC = AY25;

NET "Data[23]" LOC = AY22;

NET "Data[24]" LOC = AY23;

NET "Data[25]" LOC = AV24;

NET "Data[26]" LOC = AU24;

NET "Data[27]" LOC = AW21;

NET "Data[28]" LOC = AV21;

NET "Data[29]" LOC = AT24;

NET "Data[30]" LOC = AR24;

NET "Data[31]" LOC = AU21;

NET "Ack" LOC = AT21;

# PlanAhead Generated IO constraints

NET "clock_n" IOSTANDARD = LVDS;

NET "clock_p" IOSTANDARD = LVDS;

NET "in_Reset" IOSTANDARD = LVCMOS18;

NET "in_temp0[0]" IOSTANDARD = LVCMOS18;

NET "in_temp0[1]" IOSTANDARD = LVCMOS18;

NET "in_temp0[2]" IOSTANDARD = LVCMOS18;

NET "in_temp0[3]" IOSTANDARD = LVCMOS18;

NET "in_temp1[0]" IOSTANDARD = LVCMOS18;

NET "in_temp1[1]" IOSTANDARD = LVCMOS18;

NET "in_temp1[2]" IOSTANDARD = LVCMOS18;

NET "in_temp1[3]" IOSTANDARD = LVCMOS18;

NET "Data[0]" IOSTANDARD = LVCMOS18;

NET "Data[1]" IOSTANDARD = LVCMOS18;

NET "Data[2]" IOSTANDARD = LVCMOS18;

NET "Data[3]" IOSTANDARD = LVCMOS18;
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NET "Data[4]" IOSTANDARD = LVCMOS18;

NET "Data[5]" IOSTANDARD = LVCMOS18;

NET "Data[6]" IOSTANDARD = LVCMOS18;

NET "Data[7]" IOSTANDARD = LVCMOS18;

NET "Data[8]" IOSTANDARD = LVCMOS18;

NET "Data[9]" IOSTANDARD = LVCMOS18;

NET "Data[10]" IOSTANDARD = LVCMOS18;

NET "Data[11]" IOSTANDARD = LVCMOS18;

NET "Data[12]" IOSTANDARD = LVCMOS18;

NET "Data[13]" IOSTANDARD = LVCMOS18;

NET "Data[14]" IOSTANDARD = LVCMOS18;

NET "Data[15]" IOSTANDARD = LVCMOS18;

NET "Data[16]" IOSTANDARD = LVCMOS18;

NET "Data[17]" IOSTANDARD = LVCMOS18;

NET "Data[18]" IOSTANDARD = LVCMOS18;

NET "Data[19]" IOSTANDARD = LVCMOS18;

NET "Data[20]" IOSTANDARD = LVCMOS18;

NET "Data[21]" IOSTANDARD = LVCMOS18;

NET "Data[22]" IOSTANDARD = LVCMOS18;

NET "Data[23]" IOSTANDARD = LVCMOS18;

NET "Data[24]" IOSTANDARD = LVCMOS18;

NET "Data[25]" IOSTANDARD = LVCMOS18;

NET "Data[26]" IOSTANDARD = LVCMOS18;

NET "Data[27]" IOSTANDARD = LVCMOS18;

NET "Data[28]" IOSTANDARD = LVCMOS18;

NET "Data[29]" IOSTANDARD = LVCMOS18;

NET "Data[30]" IOSTANDARD = LVCMOS18;

NET "Data[31]" IOSTANDARD = LVCMOS18;

NET "Ack" IOSTANDARD = LVCMOS18;

NET "in_Reset" CLOCK_DEDICATED_ROUTE = FALSE;
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