

ii Connecting ROS to the LUNA embedded real-time framework

Summary

In this document, a report is presented showing the design, implementation and test results of

a ’bridge’ between ROS and LUNA, an embedded real-time capable framework.

Two trends can be distinguished in modern robotics: One is the need for more computational

power, used to run algorithms to process data from complex sensors. The other trend are more

mobile and energy-efficient setups. These trends seem to conflict: computational power gener-

ically comes at the cost of weight and energy efficiency.

One of the solutions is to separate computational expansive tasks, and offload them to a

resource-rich base station, while execution of tasks with strict deadlines remain close to the

robotic setup on an embedded processor.

To test this way of working, a ’bridge’ is made between the Robotic Operating System (ROS),

capable of running its many open-source algorithms and programs on a resource rich platform,

and an embedded processor running an embedded application, designed using the real-time

capable framework LUNA, developed at the Robotics and Mechatronics group of the University

of Twente. This bridge is able to configure ROS-nodes based on initialization commands issued

by the embedded application, performing runtime binding to nodes in ROS. Configuring the

system based on the embedded application, allows reuse of the bridge in other systems by

simply replacing the application.

The implementation of this ROS-LUNA bridge is verified and tested, showing correct runtime

binding and communication between the two environments. To show the usability of the

bridge a test setup with vision in the loop was made. In this test setup, camera data is send

over the network and processed in ROS. The results are send to the embedded system as set-

point for loopcontrollers, controlling the axis of a pan/tilt camera.

These tests show proper functioning of the design and implementation, and give an example

on how both environments could be used together.

It is advised to further improve and integrate the designed ROS-LUNA bridge. Mainly the inte-

gration of the bridge into TERRA would allow users to connect ROS and LUNA with more ease.

It is also recommended to analyse the effects of the delays imposed by long-range communi-

cation further, and implement more advanced controllers and a safety layer to control robotic

setups using the ROS-LUNA bridge over large distances.

W.M. van der Werff University of Twente

iii

Contents

Summary ii

1 Introduction 1

1.1 Project goals . 1

1.2 Report layout . 2

1.3 Reading order . 2

2 Paper: ’Connecting two robot-software communicating architectures: ROS and LUNA’ 3

3 Final conclusion and recommendations 23

3.1 Recommendations . 23

A Appendix 24

A.1 Introduction into CSP, LUNA and TERRA . 25

A.2 Design and implementation of the ROS-LUNA bridge 29

A.3 Tests . 35

B Additional appendices 40

B.1 Requirements . 41

B.2 Using the runtime binding publishers . 45

B.3 Using TopicListener . 46

B.4 Compiling LUNA and LUNA applications for RaMstix 48

B.5 Using ROS with TERRA . 54

B.6 Using gstreamer with the ROS-LUNA bridge . 61

Bibliography 63

Robotics and Mechatronics W.M. van der Werff

iv Connecting ROS to the LUNA embedded real-time framework

W.M. van der Werff University of Twente

2 Connecting ROS to the LUNA embedded real-time framework

between ROS and LUNA: the user should be able to use the freedom and adaptability of ROS,

while LUNA applications are linked to a precompiled LUNA library. This can be achieved by

splitting the implementation of the bridge into two parts: one part is implemented at the em-

bedded side in the LUNA framework, and the second part is implemented at the base stations’

side, in ROS. The implementation in ROS is configured through a network connection by the

LUNA application: this also allows multiple robotic setups to use the same base station. This

implementation is made in such way that it uses so called runtime binding: allowing dynamic

configuration of the bridge. This runtime binding differs from the normal way connections

are setup inside ROS: in general parts in ROS are checked during compile time and generate

header-files, which should be included in other parts of the system when communication be-

tween them is needed. The definitions in these header-files are not known in the LUNA appli-

cation, making the LUNA bridge responsible to load the definitions during runtime.

1.2 Report layout

In this report, it is explained how the implementation of the bridge implements the runtime

binding. The main body of this report is formed by a paper in chapter 2 written for the CPA

conference of 2016 2. In this paper, the design, implementation, tests and conclusions of the

ROS-LUNA bridge are presented. Separate from the conclusion and recommendations pre-

sented in paper, some additional conclusions and recommendations are given in chapter 3.

Further elaborations on the design, implementation and tests of the bridge are presented in

appendix A. Furthermore, in appendix B a set of additional appendices are given, containing

practical information on how to use the ROS-LUNA bridge and an additional overview con-

taining the derived requirements from the project proposal. Both appendix A and appendix B

contain an overview with their subsections listed.

1.3 Reading order

It is advised when the reader is not familiar with CSP, LUNA and TERRA, to read appendix A.1

first.

The preferred reading order is further: the paper in chapter 2, additional elaborations on the

design and implementation from appendix A.2, further elaborations regarding testing from ap-

pendix A.3, the conclusion and recommendations from chapter 3.

For a quick overview of the requirements and how these where achieved, refer to appendix B.1.

For details on how to use the ROS-LUNA bridge, refer to appendices B.2 through B.6.

2http://www.wotug.org/

W.M. van der Werff University of Twente

3

2 Paper: ’Connecting two robot-software communicating

architectures: ROS and LUNA’

On the next page, the paper "Connecting two robot-software communicating architectures:

ROS and LUNA" is added. This paper is written for the CPA conference (Communicating Pro-

cess Architectures) 1.

1http://www.wotug.org

Robotics and Mechatronics W.M. van der Werff

Submitted to: Communicating Process Architectures 2016

P.H. Welch et al. (Eds.)

Open Channel Publishing Ltd., 2016

© 2016 The authors and Open Channel Publishing Ltd. All rights reserved.

1

Connecting two robot-software

communicating architectures: ROS and

LUNA

W. Mathijs van der Werff and Jan F. Broenink

Robotics and Mechatronics, CTIT Institute, Faculty EEMCS,

University of Twente, The Netherlands

Abstract. Two current trends in modern robotics and other cyber-physical systems

seem to conflict: the desire for better interaction with the environment of the robot in-

creases the needed computational power to extract useful data from advanced sensors.

This conflicts with the need for energy efficiency and mobility of the setups. A solu-

tion for this conflict is to use a distribution over two parallel systems: offloading a part

of the complex and computationally expensive task to a base station, while timing-

sensitive parts remain close to the robotic setup on an embedded processor. In this

paper, a way to connect two of such systems is presented: a bridge is made between

the Robotic Operating System (ROS), a widely used open source environment with

many algorithms, and the CSP-execution engine LUNA. The bridge uses a (wireless)

network connection, and provides a generic and reconfigurable way of connecting

these two environments. The design, implementation in both environments, and tests

characterizing the bridge are described in this paper.

Keywords. CSP, LUNA, Embedded, ROS

Introduction

Modern robotics rely more and more on data from complex sensors and algorithms to per-

ceive their environment as clear as possible: algorithms like environment mapping, path plan-

ning and visual servoing rely on computational-expensive functions to retrieve the desired

information from the data of the sensors. These algorithms are generically non hard real-

time [1]: for example, when they are used as reference or as setpoint in a control loop. The

complexity increases the requirements the computing system needs to have: more memory,

more processing power and more energy are needed.

This conflicts with another trend in robotics: the need for more mobile and more energy-

efficient setups. These mobile setups, like Unmanned Aerial Vehicles (UAV), have less re-

sources at their disposal, in favour of being light-weight and energy-efficient. These devices

are generically powered by batteries and are controlled using embedded processors.

One solution to perform the complex tasks inside a modern robot, is to add dedicated

and tailored hardware to perform these complex tasks. This is expensive however, and may

not be available. Also, during development of a robotic setup, the developer needs to be able

to change the configuration easily, while replacing or modifying custom hardware is time

consuming.

Another solution is to split the system into two parts, and use two separate systems to run

the tasks. The computationally expensive tasks are offloaded to a base station, while the hard

2 W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA

real-time parts, like loop controllers, remain close to the setup on an embedded processor

(refer to figure 1). The Robotic Operating System (ROS) [2] is an open source environment.

Figure 1. System overview showing separation of tasks over two systems.

ROS is network based, allowing the already available algorithms and implementations of new

algorithms and functions to easily connect. It is therefore most suitable to be used in such a

base station. The LUNA Universal Network Architecture (LUNA) [3] is a real-time capable

framework, developed at the Robotics and Mechatronics group of the University of Twente.

This framework is capable to run real-time tasks on (embedded) processors, and is therefore

usable to implement the hard real-time tasks.

The main issue in combining code for these two systems is how both environments are

used in development: ROS gives the user the ability to easily change its configuration, but

needs to run configuration files and has to be recompiled when changes occur. With LUNA,

the user builds an application which reuses functionality from the pre-built LUNA library:

it is therefore not possible to include definitions generated by ROS, since these differ from

system to system, and even over time on the same system, and can therefore not be included in

the LUNA library. A method is needed to combine both environments using a more dynamic

approach: a method of binding the two systems during runtime is needed.

The design of a bridge between ROS and LUNA is explained in the work-in-progress

paper by Bezemer et al. [4], describing an initial design and a basic test showing proper

functioning.

In this paper, the design of the bridge is further improved and tested. First, some back-

ground information is given about LUNA, ROS, the previous version of the ROS-LUNA

bridge, and other related work. Then, in section 2, the design and design choices of the im-

proved ROS-LUNA bridge are illustrated. In section 3, tests are described and their results

analysed, which prove the proper functioning, show the performance, and demonstrate a typ-

ical use of the bridge. Finally, conclusions are drawn about the bridge in section 4.

1. Background

To place the design of the bridge into perspective, background information is given on LUNA,

the ROS, and the current version of the ROS-LUNA bridge. Also, some related work and

alternative environments is given.

1.1. LUNA

LUNA (LUNA Universal Networking Architecture) [3] is a hard real-time framework, pro-

viding support for all kinds of embedded applications. It is component based, allowing parts

that are not used to be turned off, resulting in an as low as possible footprint.

LUNA provides a CSP-execution engine, making it able to execute processes accord-

ing to the Communicating Sequential Process (CSP) algebra [5]. The CSP algebra provides

mathematical constructs for scheduling and uses rendezvous channel communication be-

4 W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA

Using these automatically generated functions makes the communication more robust.

To make the communication even more reliable, MD5 checksums of the message type are

added. These checksums are checked during runtime, when a Subscriber connects to a Pub-

lisher. This allows verification whether both the Publisher and Subscriber use the same mes-

sage definition, and thus use the same serialization/deserialization functions. This assures the

correctness of the received data. Publishers and subscribers are generically instantiated using

the message type: in C++ for example a publisher on topic ”chatter” with String from the

std msgs package is made using2:

r o s : : NodeHandle n ;

r o s : : P u b l i s h e r c h a t t e r p u b = n . a d v e r t i s e <s t d m s g s : : S t r i n g >(” c h a t t e r ” ,

1000) ;

A subscriber listening to this same topic, is instantiated with:

r o s : : S u b s c r i b e r sub = n . s u b s c r i b e (” c h a t t e r ” , 1000 , c h a t t e r C a l l b a c k) ;

In the specified callback function (”chatterCallback”), the type of the received message

should be specified:

vo id c h a t t e r C a l l b a c k (c o n s t s t d m s g s : : S t r i n g : : C o n s t P t r& msg)

{
/ / Code t o h a n d l e d a t a from t h e msg

}

When a message type changes (or a new one is added), the ROS environment should be

rebuild, to update the changes in these message classes. When a program uses a messagetype,

it should also be rebuild, to update the definitions and the checksums.

Due to the complex and reconfigurable structure of ROS, it is not capable to provide hard

real-time tasks: the timed execution of a node and the arrival of data cannot be guaranteed,

as this depends on too many unknown factors. Most of the time the system will function fast

enough however, making ROS suitable for soft real-time tasks.

The ease of use of ROS comes at the cost of more overhead, making it less suitable to

run on embedded processors: these processors tend to have less resources at their disposal, in

favor of energy consumption, weight and cost.

1.3. Combining ROS and LUNA

The work presented in Bezemer et al. [4] is already able to connect an embedded (LUNA

based) application during runtime to ROS. Runtime binding to a ROS publisher is performed

through the MessagePublisher class. This MessagePublisher class has a switch construct

to determine the variable type of the received variable from LUNA, and generates a ROS

Publisher with the corresponding message type. This allows to publish on topics with basic

message types.

Subscribing to topics is done by using the TopicListener and MessageDecoder class. The

MessageDecoder uses raw data of the message, provided by the ShapeShifter class present in

ROS. The raw data consists of a serialized version of the variable data of the message. Along

with the raw data, a message definition (a textstream containing the type and name of each

field in the message) is send. This definition is used in the MessageDecoder class to iterate

through the raw data, until the desired field inside the message definition is found, and the

correct bytes can be selected from the raw data. Since the size of a serialized variable needs

2http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(c++)

W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA 5

to be known to iterate through the raw data stream, it is only possible to listen to topics with

a message type containing standard data types, like ints, bools and strings.

A communication managing component is used to send and receive data over a TCP con-

nection, as soon as the data is made available. Calculations are presented, showing reduction

in bandwidth when multiple variables are packed into one TCP packet.

To connect the received data in LUNA to CSP, a CSP channel is modified to perform its

read and write operations through the communication managing component. This modified

channel is hardcoded to use the desired datatype of the variable.

The simple tests described indicates correct functioning of the bridge: variables are send

from a LUNA application to ROS, and values are returned and received by the LUNA appli-

cation. Since the bridge only supports basic types, it does not support the full functionality

and freedom ROS combined with LUNA could offer. When the bridge is further improved, it

could be used in all types of systems: indirectly allowing CSP constructs through the LUNA

framework to interact with the real world, by using algorithms and functions present in the

open source environment of ROS.

1.4. Related Work

Connecting different (embedded) environments is also done before in other projects.

Unity-Link [7] combines FPGA based controllers with software running on a PC, where

ROS is used as middleware. This solution to add real-time control is rather specific: it only

works when (re)configurable hardware is present in the device, while many embedded sys-

tems favor an embedded processor over programmable logic.

Scholl et al [8] combine multiple devices with small resources to form a wireless sensor

network, and connect this network to ROS. These devices are programmed to use fixed data

structures in the communication to ROS. This is less useful for a bridge between ROS and

LUNA, since LUNA should be able to use more dynamic data structures. Furthermore, only

the ROS client is used, resulting in a soft real-time environment.

YARP (Yet Another Robot Platform) [9] and OROCOS (Open RObot COntrol Software)

[10], [11] are versatile robot middleware environments. Support for both hard- and soft real-

time tasks is available, and it supports an extensive way of configuring. It is less suitable for

mobile setups however: it has a larger footprint and has therefore higher requirements on the

processor.

In Einhorn et al. [12] MIRA is presented as a new middleware for robotic applications.

Through a custom implementation of so called reflection in C++, it is able to optimize the

serialization and deserialization processes in the communication between distributed parts

of the application, making it faster in terms of latency and computation time compared to

other middlewares like YARP and ROS. It lacks a large community, making it less favourable

compared to an environment like ROS. Although the middleware is able to run on different

environments, it is not designed and tested for real-time purposes, making it less suitable for

embedded controllers, and therefore also less suitable as a complete solution for a robotic

system.

In Wei et al. [13] a real-time extension is made to ROS, called RT-ROS. A multicore

system is used in this approach: one part of the cores runs a generic Linux distribution,

while simultaneously a real-time Linux distribution Nuttx is running on the other part of the

cores. The Nuttx environment is adapted, so it is able to compile ROS nodes. In this setup,

a combination of two environments is made on one processor. The used test setup uses a

multicore processor and a processor architecture (Intel Core 2 Duo) that is commonly found

in desktop PCs, and is therefore less suitable to be used in mobile robotics, limiting the

possibilities to use this approach.

6 W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA

The ROSpackage ROSSerial3 provides a method to connect embedded devices (like Ar-

duinos) to the ROS network. Runtime binding is performed through the ShapeShifter class,

or using rospy, a Python implementation of ROS. The embedded side needs to be informed

about the setup of ROS (regarding the message structure) before compilation. This is achieved

by including a special set of libraries, which are generated by a script. This increases the

overhead, which is a problem in systems with sparse resources [14]. Furthermore, each time

a message definition is added or modified, the conversion needs to be redone, which causes

the program depending on them to be recompiled. Since LUNA is a provided to the end user

a a pre-compiled library, it is therefore not possible to use ROSSerial.

2. Design of the ROS - LUNA bridge

The ROS-LUNA bridge needs to connect the CSP environment of LUNA to the topics of

ROS: allowing CSP-channel constructs (Writer/Readers) to send/receive data from an exter-

nal source located in a ROS topic. Connecting CSP channels to fields in Subscribers and

Publishers in ROS should be reusable, to allow easy integration into the TERRA tool suite.

Furthermore, support for flexible (re)configuration and versatile data types should be present,

allowing reuse of the bridge in future projects.

ROS

Complex algorithms

L
U

N
A

b
ri

d
g
e

LUNA application

Loop controllers/ CSPR
O

S
-

C
h
an

n
el

M
an

ag
er Actuators

Sensors

TCP/IP

ROS network

(User configured)
ROS-LUNA bridge

LUNA application

(User configured)
Robotic setup

Base station Embedded system

Figure 4. Global overview of the ROS-LUNA bridge.

As depicted in Figure 4, the design of the ROS-LUNA bridge is spread out over

three subsystems: an implementation in ROS (LUNA bridge), an implementation in LUNA

(ROSChannelManager), and a link over a TCP/IP network specified by a communication

protocol.

2.1. Connection management and Communication protocol

The communication protocol specifies how data is send between ROS and LUNA. A straight

forward approach is to make a TCP link between the two sides of the system for each variable,

and send each new value in a separate packet as soon as it becomes available. This would lead

to too large overhead however: TCP connections were designed to be reused, and the maxi-

mum size of a TCP packet (theoretically: 216 bytes, but is limited by the Maximum Transfer

Unit [15]. The MTU for ethernet is 1500 bytes) allows combining of variable values in one

packet. The communication protocol defines how multiple variables are serialized into one

packet, and how their values are retrieved during deserialization. Although widespread serial-

ization methods, like JSON4 could be used, it would also increase overhead and dependency

3http://wiki.ros.org/rosserial
4http://www.json.org/

W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA 7

on third party implementations. A tailored solution is preferred, which reduces overhead by

specifically supporting just the communication type of this bridge.

Variables are serialized by placing the type, name length and datalength represented by

one byte each in a buffer. In a secondary buffer the name of the variable is added, followed by

the variable value represented as byte array. Once the packet needs to be send, both buffers

are copied into the TCP packet, preceded by a headerfield, with a predefined layout. This

header identifies the type of packet, and the sizes of both buffers. These sizes are used in

deserialization: allowing to extract the two buffers from a stream of bytes. With the 3 bytes

per variable in the first buffer, the name and data are extracted from the second buffer. Using

the name, earlier registered callbacks are called, which will copy the byte array into an actual

variable using the size of the received data.

2.2. LUNA-side

Sending to, and receiving data from ROS needs to be usable with CSP constructs offered in

LUNA: this allows better integration in TERRA, allowing the end user to use the graphical

design environment to design his application. Furthermore, the way how data is send and

received is important: writing to ROS might be performed from a hard real-time task in

LUNA, and needs to be handled quickly and without locking. Reading data from ROS should

lock however: it is of no use to read data when it is not yet available. Integration is possible

by using custom code blocks, managing the sending and receiving of data, inside the model

in TERRA. Although this would have reduced the changed needed in LUNA and TERRA, it

would have been less user friendly, since the user has to copy these code blocks and re-derive

the accompanying CSP structure when new models are designed.

Since sending and receiving data has similarities with the CSP writer and reader, a cus-

tom channel type (a ROSChannel) was derived to support communication to ROS. This chan-

nel is implemented as templated class, making it possible to define the variable type of the

channel based on its connected reader or writer. Non blocking writes are performed using a

dual buffer: this assures when one buffer is used in sending data over the network, the other

one will still be usable to write to from another process. With a user specified interval, the

buffers are switched. This allows to reduce bandwidth by grouping variables, and still allows

the specification of the maximum time a value is delayed by the buffer.

ROSChannelManager LUNA application

Decode

structure

Decode

next field

Find

callback

Call callback
Wait new

TCP packet

Read buffer

Block

context

Callback

Copy data
Activate next

component

Received

TCP packet
ROSChannel’s

reader activation

Dataleft

Dataleft

Buffer empty

Buffer empty

Figure 5. Schematic representation of receiving network data combined with CSP read operations.

A block diagram of the blocking read is depicted in Figure 5. The read operations consist

either of directly copying data when it is available, or by placing a callback and blocking the

context of the reader. When data is received, the callback is called, unblocking the reader and

W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA 9

done when new message types are used, the latency introduced by using Python will only

occur during runtime. When a new publisher is made, the retrieved data is used to configure

a shapeshifter into the right format. The mapped structure of the message is used to store

received data from LUNA, and allow when all data for one message is received to serialize

the data and publish it.

When a ShapeShifter is used to receive data as subscriber, the received data will consists

of raw data (an array of bytes), containing all the data of the message. Furthermore, the

definition of the message is also received. The TopicListener implements recursive methods

to analyse this message structure, allowing the correct bytes to be selected from the raw data.

The methods determine whether a field in the structure is of basic data type (e.g. int, bool,

string etc.). When it is not a basic data type, a nested message is found, and recursion is called

on the definition of this nested message. This is repeated, until only basic types are found, or

the desired field is retrieved. From all the preceding fields, the data type is used to determine

the location in the raw message. This allows to select the correct bytes, which are then copied

and made available to be send to the LUNA application.

2.4. Overview of the ROS-LUNA bridge

Runtime Bind-

ing Publisher

R
O

S
n
et

w
o
rk

Runtime Binding

Helper Service

LUNA bridge

Topic Listener
R

O
S

C
h
an

n
el

M
an

ag
er

L
U

N
A

ap
p
li

ca
ti

o
n

Publisher
...

Publisher

Subscriber
...

Subscriber

...

...

R
O

S
C

h
an

n
el

s

(C
S

P
)

(W
ir

el
es

s)
n
et

w
o
rk

co
n
n
ec

ti
o
n

ROS network

(User configured)

ROS-LUNA bridge

ROS-side
Network

ROS-LUNA bridge

LUNA-side

LUNA application

(User configured)

Base station Embedded system

Figure 7. Block diagram of ROS-LUNA bridge.

In Figure 7 a diagram is depicted showing a schematic overview of the bridge using this

design. The ROS side adds a series of needed publishers and subscribers during runtime, al-

lowing communication to the ROS network. A Runtime Binding Helper Service is connected

as ROS service in Python, allowing the configuration of the Runtime Binding Publisher. The

LUNA side of the bridge has a series of CSP incoming (white)- and outgoing (black) ports

in the ROSChannelManager, which are able to connect to CSP channels in the LUNA appli-

cation.

Since the bridge is fully configured during runtime by the LUNA application, hard coded

configuration of the bridge is omitted: this allows to reuse the same bridge node in ROS for

different LUNA applications. The implementations allows the bridge to be almost invisible

to the user: the LUNA application is configured to connect to specific ROS nodes, and the

bridge handles this. This results in a clear connection between the algorithms the user uses in

ROS, and the CSP structures used in the LUNA application.

10 W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA

3. Testing

Two series of tests are performed on the design of the ROS-LUNA bridge. The first series

is used to show correctness and compare performance of the implementation at the ROS

side of the system. The second series uses a more complete setup, where the correctness

and performance of the bridge is shown using an actual connection between a ROS to an

embedded LUNA application through the bridge. Also, a demonstrational setup is described

and tested, showing that the bridge is possible to be used in a distributed application, by

using both platforms in an area the perform well in: at the embedded site, loop controllers are

implemented based on CSP structures, while ROS is used to perform complex algorithms,

represented by an image processing algorithm.

3.1. Test 1: Checking runtime binding

To verify the correctness and the performance of the implementation of the runtime binding

publisher (RBP), two subtests were designed and executed. The first test verifies the correct

serialization during runtime using code generation: a C++ file is generated, which contains

code to make a serialized message for each message type present on the system, both for the

generic way using a normal publisher and by using the new RBP. The resulting serialized

messages are compared, and in three separate lists saved whether the message type serialized

correctly, failed, or was unsupported (for example, when it contained an array). The list with

failed message types was used to further improve the implementation, until the failed list was

empty.

A second test was performed, to compare the different implementations of ROS Publish-

ers. A total of 5 types can be distinguished: the generic ROS Publisher in C++, the generic

ROS Publisher in Python, the RBP (both with and without prior stored knowledge about the

message type) and a simple version of runtime binding implemented in Python. The test is

done by measuring the time needed for initialization, and measuring the interval needed to

publish a message for each publisher type. Inside the published message, the intervals from

the initialization and the previous publish are stored, allowing an external subscriber node to

handle and store the timestamps. An average over 100 samples is taken to measure the time

needed for publishing. In one test, the initialization and publishing of 100 samples is repeated

50 times, using a different topic name each time. This test is repeated 10 times: running one

large test results in too many topics(10 ∗ 50 ∗ 5 = 2500) being registered at the ROS core,

resulting in the system to crash.

This test results in an average over 500 initializations and 50000 publications of each

publisher implementation.

The test is carried out on generic notebook (synopsis of specifications: Intel i5@2.53GHz,

4GB RAM, Ubuntu 15.10, ROS Jade).

The results are depicted in Figure 8. In initialization, the Runtime Binding Publisher

in C++ (RBPC++) is slowest: this is due to the call to the external Python helper node. In

RBPC++,2, this call is not needed since the messagestructure is reused from a previous call:

this results in an initialization time just a little higher compared to the generic C++ imple-

mentation. Python is also slower compared to generic C++ Publisher. The additional calls

needed to load the message modules during runtime cause the runtime binding version in

Python to also be slower compared to the generic Python implementation.

After initialization, it can be seen that both RBP C++ implementations have comparable

results for publishing: this is expected, since only the initialization changed and the normal

publish call did not. When RBP is compared to both Python implementations, it can be seen

that the RBP is faster. Compared to a generic C++ implementation, it is slower however.

This is due to additional lookups that need to happen to map the name of a variable to the

variable, which are not needed in the generic C++ publisher. From these measurements, it can

12 W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA

0

1

2

3

4

5

6

7

8

6
.8
9

5
.8
2

3
.1
9

3
.2
6

T
im

e(
m

s)

Initialization

0

100

200

300

400

500

2
6
7
.8
8

3
4
8
.3
9

3
0
0
.9
6

3
0
5
.0
3

T
im

e(
u
s)

Message delay

NormalC++

RBC++

NormalPython

RBPython

Figure 10. Performance comparison between different Subscriber types.

runtime binding implementation has less work to do in initialization: the normal subscriber

has to register its callback initialized with the correct type, while the runtime binding version

uses functions at runtime. This is visible in the measured message delays: there the normal

C++ implementation is fastest. The runtime binding C++ implementation is slowest: it has

to iterate over the description fields to find the correct data that it is listening to. The Python

implementations are faster compared to the runtime binding implementation, probably due

to optimizations. It is expected, when actual processing is done on the received data, the total

execution time of a Python node will be higher, compared to a node in C++.

No large difference are present between both implementations in Python: the runtime

binding is rather basic, adding almost no additional delays. Furthermore, Python is already an

interpreted environment, allowing easy runtime binding add just a small increase in overhead.

3.2. Test 2: complete system

To test a setup closely related to a real world application, a test setup demonstrating vision

in the loop was devised. Refer to Figure 11. It consists of a camera combined with image

processing, which will provide feedback about the state of the plant to the controller. Data

from the controller is send to a visualization node (e.g. using rqt plot) to inform the user

about the state of the system. Using the physical location of a node and whether it is real-time

or not, a mapping is performed, dividing the system over ROS and the embedded system.

The same notebook named in test 1 is used as resource rich platform. As embedded sys-

tem, a board (called RaMstix) containing a Gumstix Overo Fire5 module with Linux 3.2.21

and Xenomai patch 2.6.3 is used. A 100MBit/s dedicated network is used in most tests,

where the notebook is configured both as DHCP server and NTP6 server, allowing time-

synchronization between the two platforms.

3.2.1. Initialization

The first part of the test is to determine whether the initialization is correct. ROS nodes are

started that will perform visualization (ROS monitor) and a node containing the image pro-

cessing (ROS imageprocessing). The ROS monitor node receives a message type containing

a Header and 3 float values. The ROS imageprocessing publishes a message type containing

5https://www.gumstix.com/
6http://www.ntp.org/

14 W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA

Figure 13. Overview of the total system, drawn in TERRA. Implementation of the CSP-based application and

distribution over systems are added for clarity.

Inside this process, a timestamp is recorded, allowing to measure the frequency of the pro-

cess, and the observation of the deviation in start time (jitter). To make synchronization of

measurement data over multiple processes easier, also a unique value is written to the output

buffer using the HRT variable out variable. The period of this process is controlled through

the first writer, which is connected to a TimerChannel. This TimerChannel is activated after

its specified period, letting the writer at the start of the process wait until the period indicates

the process should start.

The second process (SRT SENDBUFFER) is the process which controls when data

should be written to ROS. It would be possible to make this write conditional (where a con-

dition checks whether a write is needed, e.g. when there are a certain amount of variables

present in the buffer), but for simplicity a TimedChannel is used again.

The third process (with lowest priority, SRT ROS READWRITE) asynchronously re-

ceives values from ROS using two readers. These readers are connected to ROS using the

ROSChannels, and receive the X and Y position from the image processing node. The read-

ers are placed in a Parallel composition, and the received values are stored in intermediate

variables. When both readers are finished, a code block copies these intermediate variables to

the actual variables. This assures synchronized update of variables originating from the same

ROS message.

After receiving these values, the time stamp is recorded, and the same values are written

back to ROS using writers connected to the ROS monitor node. This allows the measurement

of the round-trip time.

The timestamps at the ROS side of the setup are also recorded. The time stamp when the

X and Y position are published is recorded, and the time when the ROS monitor receives a

value is monitored. Using the values and order of the data in the messages, it is possible to

determine the delays in the system. Analysing the difference in start time (∆T) between two

successive executions, allows to measure the jitter (J).

Since different frequencies are being observed, the jitter of different periods needs to be

compared relative to their period:

J = |∆T −∆T |

Jrelative = 100% ∗
J

∆T

In Table 1 the results are depicted of these jitter measurements.

W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA 15

Table 1. Jitter measured at multiple parts of the setup.

HRT task SRT send buffer SRT received notify ROS imageprocessing ROS monitor

∆T (ms) 20.0 16.0 66.7 66.7 66.6

std(∆T)(ms) 0.0635 0.0730 15.2 1.97 17.6

J(ms) 0.0530 0.0598 12.2 1.58 14.5

Jrelative 0.265% 0.373% 18.3% 2.38% 21.7%

Table 2. Delay measurements.

ROS imageprocessing
→ SRT receive notify

SRT receive notify
→ SRT send buffer

SRT send buffer
→ ROS monitor

Total
RTT

Average (ms) 15.5 13.4 2.6 31.5

Stdev (ms) 10.0 3.3 4.6 11.7

Max (ms) 76.6 15.2 26.6 89.3

Min (ms) 5.5 0.5 0.5 9.8

The results show, that the HRT task (HRT task) has the least jitter: 0.265%. The SRT

task which sends the buffer (SRT send buffer) also has has a low value for the jitter: 0.373%.

These two tasks are purely located on the embedded system inside the LUNA application, and

are activated by a TimedChannel: therefore the low jitter complies with the expectation. The

image processing (ROS imageprocessing) is running on a non real-time PC, and therefore

has higher jitter. When the data is send over the network, this jitter increases: the process that

receives the data (SRT received notify)) has a jitter of 18.3%. Sending the data back to the

ROS monitor introduces again an increase in jitter: the visualization node has a relative jitter

of 21.7%.

Both the increase in jitter when data is send over the network, and the high jitter in the

execution of the imageprocessing show the need for a combined setup, where a real-time

capable framework is used for the real-time tasks.

The delays between three different parts of the system are interesting: the delay

between publishing the results from the image processing and receiving these values

(ROS imageprocessing → SRT receive notify), the delay between receiving the values and

sending values back (SRT receive notify → SRT send buffer), and the delay between start-

ing transmission from LUNA and receiving them in the ROS monitor (SRT send buffer

→ ROS monitor). Refer to Table 2.

In this setup, there is an average round trip time of 31.5 ms. The largest part from this

delay is present in sending from the image processing node to LUNA. The second largest

delay is present between receiving and returning the values inside LUNA. This occurs due

to the buffering: data is buffered for 0.016 seconds. When data arrives at the start of this

period, it has to wait for the whole period before it is send back. The maximum delay in this

test is 15.2 ms, which is within this 16 ms period. Sending data back to ROS is faster than

receiving: on average 2.6 ms is needed to send data back. The delays have a large standard

deviation. This coincides with the measured jitter in the previous test: the deviations in the

network makes the jitter increase inside the nodes.

3.2.3. Controlling a robotic setup

In the next test, the LUNA application from the previous test was modified. The hard real-

time task was replaced with a controller, and connected to a real robotic setup. This setup,

named JIWY, is a pan/tilt camera controlled by two motors. The LUNA application executes

the controller at a rate of 100Hz, for which the controlloops where derived. The architecture

is changed, to fit the new controllers (PanPositionController and TiltPositionController) and a

W.M.van der Werff et al. / Connecting two robot-software communicating architectures: ROS and LUNA 19

about the message definition, is reusable for other embedded systems as well, without the use

of LUNA. This allows future expansion of ROS with embedded devices, when these devices

(e.g. microcontrollers) are not able to run LUNA.

References

[1] G.C Buttazzo. Hard real-time computing systems, chapter 1, pages 1–13. Springer, 3th edition, 2011.

[2] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A.Y. Ng. ROS: an

open-source Robot Operating System. In ICRA Workshop on Open Source Software, 2009.

[3] M. M. Bezemer, R. J. W. Wilterdink, and J. F. Broenink. LUNA: Hard Real-Time, Multi-Threaded,

CSP-Capable Execution Framework. In P.H. Welch, A. T. Sampson, J. B. Pedersen, J. M. Kerridge,

J. F. Broenink, and F. R. M. Barnes, editors, Communicating Process Architectures 2011, Limmerick,

volume 68 of Concurrent System Engineering Series, pages 157–175, Amsterdam, November 2011. IOS

Press BV.

[4] M. M. Bezemer and J. F. Broenink. Connecting ros to a real-time control framework for embedded

computing. In 2015 IEEE 20th Conference on Emerging Technologies and Facotry Automation, pages

1–6. IEEE, September 2015.

[5] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International, 1985.

[6] Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and A. W. Roscoe. Fdr3: a parallel

refinement checker for csp. International Journal on Software Tools for Technology Transfer, 18(2):149–

167, 2015.

[7] A. B. Lange, U. P. Schultz, and A. S. Sørensen. Unity-link: A software-gateware interface for rapid

prototyping of experimental robot controllers on fpgas. In 2013 IEEE/RSJ International Conference on

Intelligent Robots and Systems, Tokyo, Japan, November 3-7, 2013, pages 3899–3906, 2013.

[8] P. M. Scholl, M. Brachmann, S. Santini, and K. Van Laerhoven. Integrating wireless sensor nodes in the

robot operating system. In A. Koubaa and A. Khelil, editors, Cooperative Robots and Sensor Networks

2014, volume 554 of Studies in Computational Intelligence, pages 141–157. Springer Berlin Heidelberg,

2014.

[9] G. Metta, P. Fitzpatrick, and L. Natale. Yarp: yet another robot platform. Int’l J. on Advanced Robotics

Systems, 3(1):043 – 048, March 2006.

[10] H. Bruyninckx, P. Soetens, and B. Koninckx. The real-time motion control core of the Orocos project.

In Robotics and Automation, 2003. Proceedings. ICRA ’03. IEEE International Conference on, volume 2,

pages 2766 – 2771 vol.2, September 2003.

[11] H. Bruyninckx. Open robot control software: the OROCOS project. In Robotics and Automation (ICRA),

2001. IEEE International Conference on, volume 3, pages 2523 – 2528. IEEE, 2001.

[12] E. Einhorn, T. Langner, R. Stricker, C. Martin, and H. M. Gross. Mira - middleware for robotic applica-

tions. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2591–2598,

Oct 2012.

[13] Hongxing Wei, Zhenzhou Shao, Zhen Huang, Renhai Chen, Yong Guan, Jindong Tan, and Zili Shao. Rt-

ros: A real-time {ROS} architecture on multi-core processors. Future Generation Computer Systems,

56:171 – 178, 2016.

[14] André Araújo, David Portugal, Micael S. Couceiro, and Rui P. Rocha. Integrating arduino-based educa-

tional mobile robots in ros. Journal of Intelligent & Robotic Systems, 77(2):281–298, 2014.

[15] J.F. ”Kurose and K.W.” Ross. ”Computer Networking: A top down approach”, chapter 3.

[16] M. H. ten Berge, B. Orlic, and J. F. Broenink. Co-simulation of networked embedded control systems,

a csp-like process-oriented approach. In Proceedings of the IEEE Int’l Symposium on Computer Aided

Control Systems Conference, CACSD 2006, pages 434 – 439. IEEE Control Systems Society, 2006.

[17] M. C. J. Franken, S. Stramigioli, R. Reilink, C. Secchi, and A. Macchelli. Bridging the gap between

passivity and transparency. page 36. Robotics: Science and Systems V, Seattle, USA, 2009.

23

3 Final conclusion and recommendations

In this work a way to combine two different environments is proposed, implemented and

tested. ROS allows many complex algorithms to be used in soft real time, while LUNA offers

the capability to design hard real-time applications for embedded systems. The implementa-

tion of the bridge between these two environments allows versatile communication and it is

designed to be reusable in future systems.

The implementation takes the different design trajectories of ROS and LUNA into account: ROS

is a versatile environment, while LUNA applications are build using a pre-compiled library: it is

therefore not known upfront what the exact definitions in ROS are in the LUNA applications. To

work around this problem, runtime binding is implemented. This allows the LUNA application

to connect to ROS topics by just specifying the names of the message type and the name of the

topic. Using this method, also allows reusability of the bridge: the same bridge is usable when

another LUNA application connects.

3.1 Recommendations

Further optimizations are possible, to increase the usability of the ROS-LUNA bridge further.

Integration of the ROS-LUNA bridge into TERRA would allow users to define systems dis-

tributed over LUNA and ROS with more ease.

The implementation could be optimized further: the TopicListener scans each received mes-

sage until it finds the desired field, and counts how many bytes in the received data need to

be skipped to select the correct data. Optimization is possible by caching the definition: this

caching is hard to implement however, since fields with dynamic size could be present in a

message, which need to be accounted for.

Increasing the complexity of the supported ROS messages in the RuntimeBindingPublisher, by

adding support for arrays would also allow for more setups to be usable with the bridge: it

would then be possible to read camera data in the LUNA application and send the frame as

array of pixels to ROS through the bridge. This reduces needed configuration at the embedded

system: in the current setup a separate Gstreamer application needs to be started in the current

implementation. However, support for arrays also means the extension of the supported data

types in TERRA: only single values can currently be used on a channel.

Monitoring the delays introduced by long range communication should be analysed further,

and compensated for by using more advanced controllers (ten Berge et al. (2006)). Adding

safetylayers (Franken et al. (2009), Brodskiy (2014)) in the underlying structure of the ROS-

LUNA bridge allows the user to implement one type of these advanced controllers.

Robotics and Mechatronics W.M. van der Werff

24 Connecting ROS to the LUNA embedded real-time framework

A Appendix

As extension to the paper presented in chapter 2, appendices are added in this chapter to fur-

ther elaborate on the design, implementation and testing of the ROS-LUNA bridge. Further-

more, in appendix B information is added on the practical usage of the ROS-LUNA bridge.

In appendix A.1 an introduction in CSP, LUNA and TERRA is added for the novice reader in

these subjects.

In appendix A.2 additional remarks and further elaborations on the design and implementation

of the ROS-LUNA bridge are appended.

In appendix A.3 additional measurement data and tests are appended.

Furthermore, in appendix B a set of additional appendices are presented.

W.M. van der Werff University of Twente

APPENDIX A. APPENDIX 27

execution order: the readers and writers block the execution of the sequential processes until

their counter part unblocks them, indicating their data is available.

When the code generation in TERRA is started, classes are made for each submodel and for the

mainmodel. The main code constructing the mainmodel using the submodels and the LUNA

library is depicted below. It is added to show the work done by code generation to convert a

model, making it able to use the LUNA library.
✞ ☎

MainModel : : MainModel () :

P a r a l l e l (NULL)

{

SETNAME(this , "MainModel") ;

/ / I n i t i a l i z e channels

mya_writer_to_a_readerChannel = new UnbufferedChannel<int , One2In , Out2One> () ;

myb_writer_to_b_readerChannel = new UnbufferedChannel<int , One2In , Out2One> () ;

/ / I n i t i a l i z e model o b j e c t s

myAdd_wheels = new Add_wheels : : Add_wheels () ;

SETNAME(myAdd_wheels , "Add_wheels") ;

myPaint_frame = new Paint_frame : : Paint_frame () ;

SETNAME(myPaint_frame , " Paint_frame ") ;

myWeld_frame = new Weld_frame : : Weld_frame () ;

SETNAME(myWeld_frame , "Weld_frame") ;

mya_reader = new Reader<int >(&frame , mya_writer_to_a_readerChannel) ;

SETNAME(mya_reader , " a_reader ") ;

mya_writer = new Writer<int >(&frame , mya_writer_to_a_readerChannel) ;

SETNAME(mya_writer , " a_writer ") ;

myb_reader = new Reader<int >(&painted_frame , myb_writer_to_b_readerChannel) ;

SETNAME(myb_reader , " b_reader ") ;

myb_writer = new Writer<int >(&painted_frame , myb_writer_to_b_readerChannel) ;

SETNAME(myb_writer , " b_writer ") ;

/ / Create UNIT_1_SEQUENTIAL group

myUNIT_1_SEQUENTIAL = new Sequential (

(CSPConstruct *) myWeld_frame ,

(CSPConstruct *) mya_writer ,

(CSPConstruct *) myb_reader ,

(CSPConstruct *) myAdd_wheels ,

NULL

) ;

SETNAME(myUNIT_1_SEQUENTIAL, "UNIT_1_SEQUENTIAL") ;

/ / Make UNIT_1_SEQUENTIAL r e c u r s i v e

Recursion<CSPConstruct>* myUNIT_1_SEQUENTIALRecursion = new Recursion<

CSPConstruct> (myUNIT_1_SEQUENTIAL) ;

SETNAME(myUNIT_1_SEQUENTIALRecursion , "UNIT_1_SEQUENTIAL−recursion ") ;

myUNIT_1_SEQUENTIALRecursion−>setEvaluateCondition (true) ;

/ / Create UNIT_2_SEQUENTIAL group

myUNIT_2_SEQUENTIAL = new Sequential (

(CSPConstruct *) mya_reader ,

(CSPConstruct *) myPaint_frame ,

(CSPConstruct *) myb_writer ,

NULL

) ;

SETNAME(myUNIT_2_SEQUENTIAL, "UNIT_2_SEQUENTIAL") ;

/ / Make UNIT_2_SEQUENTIAL r e c u r s i v e

Recursion<CSPConstruct>* myUNIT_2_SEQUENTIALRecursion = new Recursion<

CSPConstruct> (myUNIT_2_SEQUENTIAL) ;

SETNAME(myUNIT_2_SEQUENTIALRecursion , "UNIT_2_SEQUENTIAL−recursion ") ;

myUNIT_2_SEQUENTIALRecursion−>setEvaluateCondition (true) ;

Robotics and Mechatronics W.M. van der Werff

28 Connecting ROS to the LUNA embedded real-time framework

/ / R e g i s t e r model o b j e c t s

this−>append_child (myUNIT_1_SEQUENTIALRecursion) ;

this−>append_child (myUNIT_2_SEQUENTIALRecursion) ;

/ / protected region constructor on begin

/ / protected region constructor end

}
✝ ✆

The generated code itself is documented, allowing to read it with ease. At the start, two chan-

nels are defined. Next, the set with model objects is made: the reader and writer objects receive

the defined channels as parameter. These model objects are placed in the sequential and re-

cursive structures. Finally, both sequential constructs are added (or registered) as child to the

object being created. This object is of type parallel, making the children of the object to run in

parallel.

With TERRA and LUNA, also more advanced CSP constructs are possible. For example: Alterna-

tives, allowing the program to choose between two processes based on guards, timed execution

using a time channel, PriParallel structures indicating one process is more important than an-

other, interfacing to IO using IO channels, using submodels and importing 20-sim code. With

these features, it is possible to define many systems to control a robotic application.

W.M. van der Werff University of Twente

APPENDIX A. APPENDIX 29

A.2 Design and implementation of the ROS-LUNA bridge

Details about the design and implementation of the ROS-LUNA bridge are given in chapters

2.2 and 2.3. The design of the bridge is split in three subsystems: the communication proto-

col, the implementation in ROS, and the implementation in LUNA. As further elaboration on

the design, the serialization and deserialization processes in the communication protocol are

explained more in depth in appendix A.2.1.

The implementation in ROS is further elaborated with more in depth explanation of the run-

time binding in appendix A.2.2. A way to support the Service/Client structure with the bridge

is also presented.

Since the implementation of the LUNA side in chapter 2.2.2 was rather complete, no additional

information is given in this appendix regarding its design.

A.2.1 Communication protocol and management

Serialization and deserialization of variables

In serialization two aspects need to be accounted for: multiple variables can be present in one

stream, and the variables can be of a different type (and data size). A way to distinguish vari-

ables in such a stream is implemented, by splitting the payload of the message into two parts:

one part, named the variable description field, contains information describing the type, name

length and data size of the serialized data of each variable. The second part, the actual payload,

contains both the serialized name and data of the variable.

Serialization in the communication protocol is done by appending bytes to the variable de-

scription field: one byte containing a number representing the variable type, as declared in

the communication protocol. A second byte contains the length of the serialized name, and

a third byte contains the length of the serialized data. In the payload the name is appended,

followed by a serialized version of the data. This serialization is done by copying the data from

the variable to an array of characters.

Variable description: 7 8 8 9 8 15 ...

Ty
p

e
(i

n
t6

4)
N

am
e

le
n

gt
h

D
at

a
si

ze
Ty

p
e

(S
tr

in
g)

N
am

e
le

n
gt

h
D

at
a

si
ze

Payload: 'm' 'o' 'n' '.' 'y' 'p' 'o' 's' 0 0 0 0 0 1 226 64 'm' ‘o' 'n'

'.' 't' 'e' 'x' 't' 'T' 'h' 'i' 's' ' ' 'i' 's' ' ' 'a' ' ' 't' 'e' 's' 't'

Figure A.3: Example of serialization of variables with a variable description and a payload.

In Figure A.3 a visualization of the serialization of two variables, ''mon.ypos''(int64) and

''mon.text''(string), is given. The variable values are 123456 and "This is a test": for readability,

bytes based on a character are represented by their character, while other bytes are represented

as their decimal value.

When the serialized data is send, a predefined header structure is prepended to the variable de-

scription field and payload. This header structure contains fields indicating the type of packet

and the sizes of the field: the succeeding parts are of dynamic length, and their layout are re-

trievable by the receiver using these lengths.

Further deserialization of the actual variables is done by iterating over the variable description

field: the bytes indicating name length and data size are used to select the name and the raw

data from the payload. Once the name and data are selected, it is possible to lookup earlier

Robotics and Mechatronics W.M. van der Werff

30 Connecting ROS to the LUNA embedded real-time framework

registered callbacks, and allow these callbacks to either cast the selected data using the variable

type, or copy the raw data into an actual variable using its data size. When only the data size

is used, it will be possible to use data formats not specified in the protocol, allowing for more

flexible datatransfer at the cost of possible validation of the data type. This is not an issue when

the data types are correctly setup on both sides of the system during initialization.

A.2.2 ROS side

The ROS-side of the bridge needs to be able to subscribe to and publish message types without

knowing upfront (that is, during compile-time) what type it is: it is not known what type of mes-

sage the LUNA application is going to use. A way to determine and load the definitions during

runtime binding is needed. In chapter 2 section 3, the implementation of the runtime binding

using the TopicListener and RuntimeBindingPublisher are presented. How the TopicListener

analyses a message during runtime is further explained using an example.

TopicListener example

The message definition retrieved by the ShapeShifter class contains besides the definition of the

message type, also the definition of all the nested message types. This section of the definition

is used in a recursive function to determine the size of non-primitive types. The recursion ends

when a primitive data type is found. This recursive function also needs to keep track of the

position inside the raw data: there exist data types with dynamic sizes (for example: strings).

In ROS, these dynamic sized data types are prepended with an uint32_t containing the size of

the data type. When a dynamic field is encountered in the recursive function, the value of this

uint32_t is extracted from the location in the raw data. Keeping track of the position in the raw

data is done, by summation of the sizes of all the previously found datatypes.

As example a custom type 'NestedMessage'is decoded. The structure and data in this example

is:
✞ ☎

1 bool f i e l d _ 1 = true ;

2 TwoInt32 f i e l d _ 2 = { int32 data = 1234567;

3 int32 data2 = 7654321;} ;

4 int32 f i e l d _ 3 = 112233;
✝ ✆

The goal is to find the value of field_3 in the raw data. The MessageDecoder receives this mes-

sage from the ShapeShifter as:

Byte # 0 1 2 3 4 5 6 7 8 9 10 11 12

Byte value [001] [135] [214] [018] [000] [177] [203] [116] [000] [105] [182] [001] [000]

Table A.1: Raw data bytes from the NestedMessage.

The message also contains the format of the message (for clarity, comment fields are left out):
✞ ☎

1 bool f i e l d _ 1

2 TwoInt32 f i e l d _ 2

3 int32 f i e l d _ 3

4 ================...================

5 MSG: luna_bridge /TwoInt32

6 int32 data

7 int32 data2
✝ ✆

The message decoder analyses the format by starting with line 1: it finds field_1, of type bool .

This is a primitive type, of size 1 byte. The decoder continues, as field_1 is not the desired field.

W.M. van der Werff University of Twente

APPENDIX A. APPENDIX 31

Next, line 2 is analysed. Field_2 is found, with T woInt32 as type. This type is not a primitive

type, therefore the size is determined by calling the recursive function. This recursive function

tries to find the line which separates the message definitions ("===...==="). It then determines

whether the line after this line contains the desired type: otherwise, the next separation needs

to be found.

In this case, line 4 contains this separation, and line 5 indicates that the description is for

T woInt32. Next, the contents of the definition are analysed by the function: it finds two fields

of type i nt32: both are primitive types, and therefore their size is known.

When another nested type would have been found, the recursive function would have started

to look for the definition, until only basic data types would have been found.

In this case, the recursive function returns that the size of T woInt32 is 8 bytes (2x4). The func-

tion continues on line 3 of the messagedefinition, and finds the desired field_3 of type i nt32.

Before this field, 1+8 bytes where found: it is now known that the data corresponding to field_3

starts at byte 9, and is 4 bytes long:

[105][182][001][000]

Casting the data to an i nt32 (taking read direction into account), results in the correct value of

112233.

The position and the size of the found field are stored in the MessageDecoder. The placed call-

back is called, which allows the function that registered a Subscriber to this topic and field to

copy the values directly in a variable of the correct type, through casting or memcpy(). In the

case of the ROS-LUNA bridge, the data received from ROS is added as byte sequence as de-

scribed in section 2.1 from chapter 2: it is therefore not useful to copy the data into a variable,

but is directly added to the outputbuffer.

Robotics and Mechatronics W.M. van der Werff

32 Connecting ROS to the LUNA embedded real-time framework

RuntimeBindingPublisher

RuntimeBindingPublisher

m_message_storage: MessageStorage

m_RBPublishers: map<string,RBPublisher>

m_rb_client: ros::ServiceClient

m_helper_name: string

m_name: string

*m_nh: ros::NodeHandle

RuntimeBindingPublisher(ros::NodeHandle

*nh, string name, string helper_name)

string getName():string

setName(string name)

getHelperName(): string

setHelperName(string helper_name)

addRBPublisher(string topic_name, string

topic_type, uint32_t queue_size, bool

latch, bool delay): int

existRBPublisher(string topic_name, string

topic_type):bool

allFieldsSet(string topic_name):bool

setField(string topic_name, string

field_name, void * data, int data_length,

bool safe = false):bool

serialize(string topic_name, bool publish):

bool

getShapeShifter(string topic_name):

topic_tools::ShapeShifter

getSerializedLength(string topic_name): int

publish(string topic_name): int

getRBPublisher(string topic_name): RBPub-

lisher

MessageStorage

bool skip_statics: bool

m_basic_types: map<string, lengthData>

m_msg_var_structures: map<std::string, vec-

tor<msgVariable»

m_ss_info: map<std::string, msgSSInfo>

MessageStorage()

isBasicType(string type_name): bool

isDynamicLength(string type_name): bool

getBasicFieldLength(string type_name): int

addMessage(string message_type): int

existsMessage(string message_type): bool

existsField(string message_type, string

field_name): bool

addMessageField(string message_type, string

field_name, string field_type, string

package_name): int

existsSSInfo(string topic_type):bool

getSSInfo(string topic_type): msgSSInfo

addSSInfo(string topic_type, msgSSInfo SS-

Info)

makeMessageFieldStatic(string mes-

sage_type, string field_name,

uint64_t const_value_ptr, uint64_t

const_value_size): int

decodeMessageLayout(string mes-

sage_description, string message_name,

string package_name)

buildMessageStructure(msgFieldMap* mes-

sage_structure,vector<string>*field_order,

string message_type, string prefix, bool re-

quired): bool

Figure A.4: Classdiagrams implementating runtime binding for the publishers.

In Figure A.4 an overview of the implementation of the RuntimeBindingPublisher is given. The

RuntimeBindingPublisher provides functions to add publishers (function addRBPublisher())

using the topic name and topic type specified as string. A set function allows to set a value

in the message of an added publisher. The class has a MessageStorage object: this structure

contains functionallity to convert a received message description and convert it to a usable

map.

In the class’ headers some custom types are declared: this allows shorter code. The definitions

and where they are used for are listed below.
✞ ☎

/ * *

* @brief : type d e f i n i t i o n to s t o r e s t o r e the type of message with a ShapeShifter

* /

typedef struct { std : : s t r i n g type_description ; std : : s t r i n g md5; } msgSSInfo ;

/ * *

* @brief : type d e f i n i t i o n to s t o r e information about low l e v e l variables

* /

typedef struct { int64_t length ; bool dynamic ; } lengthData ;

/ * *

* @brief : type d e f i n i t i o n to s t o r e information of a f i e l d inside a message

* /

typedef struct { std : : s t r i n g field_name ; std : : s t r i n g f i e l d _ t y p e ; bool required ; std : :

s t r i n g package_prefix ; bool i s _ s t a t i c ; std : : s t r i n g const_data ; } msgVariable ;

W.M. van der Werff University of Twente

APPENDIX A. APPENDIX 33

/ * *

* @brief : type d e f i n i t i o n to s t o r e a l l f i e l d of a message

* /

typedef struct { int raw_data_length ; std : : s t r i n g type_name ; bool i s _ s e t ; bool

required ; std : : s t r i n g raw_data ; } msgField ;

/ * *

* @brief : type d e f i n i t i o n to map the name of a message to i t msgField o b j e c t

* /

typedef std : : map<std : : s tr ing , msgField> msgFieldMap ;

/ * *

* @brief : s t r u c t u r e to s t o r e data regarding a publisher added during runtime

* /

typedef struct { std : : s t r i n g topic_name ; std : : s t r i n g topic_type ; ros : : Publisher

publisher ; topic_tools : : ShapeShifter shape_shifter ; MessageStorage : :

msgFieldMap message_fields ; std : : vector<std : : s t r i n g > f ieldOrder ; } RBPublisher

;
✝ ✆

ROS services

In ROS, it is possible to use so called Services3 instead of the publish/subscribe structure. With

services, it is possible to call a function made available in an other node as a client. The client

which performs this call, will send a service message to the server: this service message is a

combination of a request and response message. The called function receives this message,

handles the data, and sends the service message with its response set back to the client. Mean-

while, the client will halt until either a time-out occurs or the response is received. Support for

the services could be implemented in two ways: either fully support both connecting to ser-

vices as client and serving clients inside the LUNA bridge and LUNA application, or by adding

a compatibility or conversion node only at the ROS side, converting implemented Publisher/-

Subscriber structures to Service/client structures.

The first option results in the fastest execution and most robust and reusable setup, but takes

longer to implement:

• Serialization/Deserialization is harder in services: normal messagetypes could use the

ShapeShifter class. For Service message there does not yet exist such a class.

• Calling a service as client, results in the clients’ process being locked, until the time-out

occurs or a response is received. The lock means, that further communication to other

topics and network communication is also halted. A way to circumvent this, is by com-

pletely rewriting the structure of the LUNA bridge node, allowing it to create separate

threads.

• Letting a ROS node call a service present in a LUNA application, needs to be handled

somehow in the CSP by a combined action of Reading and Writing data. This means

adding another new component in the LUNA library.

Furthermore, services are generically used to change or request parameters: actions carried

out incidentally. This reduces the need for fast execution: it will therefore suffice to use a con-

version node.

In figures A.5 and A.6 conversion from and to a service call is depicted. Using these conversions,

it is possible to mimic a ROS service in LUNA or to mimic a ROS client in LUNA.

Conversion from a service call to LUNA, is done by registering the service inside the conversion

node. When a ROS node performs a call on this service, the callback is called in the conversion

3http://wiki.ros.org/Services

Robotics and Mechatronics W.M. van der Werff

34 Connecting ROS to the LUNA embedded real-time framework

ROS node Converter node LUNA_bridge LUNA

application

Service

call

Wait for

response

Service

callback

Make

request

message

Publish

message

Service

response

Make

service

response

Subscribe

callback

Topic-

Listener

Runtime-

Binding-

Publisher

L
U

N
A

_
b

ri
d

g
e

R
O

S
C

h
a

n
n

e
lM

a
n

a
g

e
r

?

C++

Code

!

request

response

Figure A.5: Mimicking a service in LUNA using a conversion node in ROS.

ROS node Converter node LUNA_bridge LUNA

application
Service

callback

Processing

Service

response

Service

call

Make

service

request

Subscribe

callback

Wait for

response

Make

response

message

Publish

message

Topic-

Listener

Runtime-

Binding-

Publisher

L
U

N
A

_
b

ri
d

g
e

R
O

S
C

h
a

n
n

e
lM

a
n

a
g

e
r

!

?

C++

Code

request

response

Figure A.6: Mimicking a client in LUNA using a conversion node in ROS.

node. This callback activates a conversion, copying the data from the service request to a mes-

sage with the same format. This message is published on a topic, which the LUNA bridge is

listening to through a TopicListener. Through the LUNA bridge and ROSChannelManager, the

data of the request will be forwarded to de CSP structure in the LUNA application: in the fig-

ure, this is represented by one reader: to read more fields, more parallel readers could be used.

When the data is read, a model or C++ code executing the service functionallity is activated.

When this block is done, the results are written back to ROS, using CSP writers, connected to

the ROSChannelManager. Using the RuntimeBindingPublisher, the result is published. Inside

the converter node, this message is received using a subscriber and a callback. This callback

copies the data in the response message to the response field inside the service. Finally, the

service response is send back, allowing the client to receive the outcome of the service and

continue.

Conversion to a service call in ROS, is done in similar manner: only in this case, the LUNA

application issues a request using the RuntimeBindingPublisher, and waits for a response using

the TopicListener. The conversion node provides these topics, and convert data to and from a

service call.

W.M. van der Werff University of Twente

APPENDIX A. APPENDIX 37

Figure A.10: Image of the JIWY setup (left) connected to a RaMstix board(right).

collides with the packet of another sender. To simulate the behaviour of (wireless) networks,

and analyse the effects on the response, two tests where done.

PC PC104 PC Switch PC104

PC

Data Data

Additional traffic

Figure A.11: Simulating the influence of packetloss (left side) and additional traffic (right side) on the

response time of the initial version of the ROS-LUNA bridge.

Simulating packetloss

The first test is used to analyse the influence of packetloss, emulating a wireless network. The

test setup is depicted in the left side of Figure A.11: a connection is made between a PC (running

ROS and a luna_bridge 4 node) and a PC104 (running a LUNA application) through a 100Mbit/s

ethernet network. Data is send from the PC to the PC104. Packetloss is simulated by issuing a

command on the PC, which ill-configures the networking card, instructing it to drop packets

with a certain change. This change is configured in a range from 0% to 50 %. Command used

on the PC to configure the change of packetloss:
✞ ☎

$: sudo tc qdisc change dev eth0 root netem l o s s 1%
✝ ✆

The PC104 runs a LUNA application, which connects to the PC using the ROS-LUNA bridge.

It sends a value to ROS, and waits for a reply. The time interval between sending and receiv-

ing is measured: this gives the response time of the complete system. One part of this response

time is the delay introduced by the network, another part of the measured delay is the response

time of the ROS-LUNA bridge’s software. Keeping the software the same throughout the test,

and only sweeping the change of packetloss, allows to see the influence of just the packetloss

4The version of Bezemer and Broenink (2015) with slight modification was used

Robotics and Mechatronics W.M. van der Werff

APPENDIX A. APPENDIX 39

The results of both tests are depicted in Figure A.12. The graph on the left shows the response

time versus the configured change of packet loss. The loss of packets clearly influences the

measured response time. The graph on the right shows the response time versus the config-

ured additional traffic. The additional traffic causes no significant increase in response time

from 0 to 8MiB: some small variations are present, but are not significant. However, when

the additional traffic neared the maximum capacity of the network (100 Mbit/s, equal to 11.92

MiB/s 6). This shows that as long as the network is not near complete congestion, no increase

in response time is expected.

6MiB=MebiByte. MiB is 220
= 1048576 bytes, compared to 1000000 bytes in a normal MB.

Robotics and Mechatronics W.M. van der Werff

40 Connecting ROS to the LUNA embedded real-time framework

B Additional appendices

In this chapter, additional appendices are added. These appendices focus on the usage of the

different part of the designed ROS-LUNA bridge. Also an additional overview is giving, linking

the MoSCoW list from the project proposal to the actual implementation.

In appendix B.1, an annotated MoSCoW list is added. This list allows a quick overview on how

the set requirements are met, and were in the document this is described.

In appendix B.2 an example is given on how to use the RuntimeBindingPublisher class in ROS.

In appendix B.3 an example is given on how to use the TopicListener class in ROS.

In appendix B.4, documentation is added on how to compile LUNA for the RaMstix and how to

use it.

In appendix B.5, documentation is added on how to use ROSchannels in the current version of

TERRA.

In appendix B.6, documentation is added on how Gstreamer was used in this assignment.

W.M. van der Werff University of Twente

APPENDIX B. ADDITIONAL APPENDICES 41

B.1 Requirements

In the project proposal, a MoSCoW list was made to indicate the requirements on the then to-

be-designed bridge. Since the description of the final design is spread out over the paper and

the appendices, an overview is made below. This overview depicts an annotated MoSCoW list:

the requirements are combined with both a description in italics, and information on how the

bridge handles this requirement, also referring to sections in the paper and other appendices

where the implementation and testing is further described.

B.1.1 Annotated MoSCoW requirements

A Must have

I Versatile communication library

The bridge must have a library which can encode and decode a wide scale of variables

and messages.

Using a protocol defining the variables and fields inside messages by their name and

data size, allows support of versatile datatypes and messages. Refer to chapter 2 sec-

tion 2.1.

II Extensible communication library

The library must have programming that allows easy extension and adaptation.

Providing the option to either specify the variables’ type by using a definition in the

library or by its size, allows to extend the library with datatypes not implemented in

the communication protocol. Refer to chapter 2 section 2.1.

III LUNA side communication based on CSP structures

LUNA side of the bridge must be implemented in CSP structures, to allow verification

using formal tooling like FDR3.

The implementation using a channelmanager to convert incoming data to channels

allows CSP readers and writers to be used to communicate with ROS. Refer to chapter

2 section 2.2.

IV Compatibility with Publish/Subscribe structure

The bridge must connect the variables in LUNA with messages in ROS, and be able to

publish these messages on topics and subscribe to topics.

The implementation of runtime binding in subscribers and publishers, using the Top-

icListener and RuntimeBindingPublisher classes, allows support of Publish/Subscribe

structures in ROS based on variables of LUNA. Refer to chapter 2 section 2.3.

V Automatic configured publish/subscribe structure ROS side

The ROS side should initialize the needed Publishers and Subscribers, to reduce com-

plexity at LUNA side.

The LUNA_bridge node receives initialization commands from LUNA, and makes

Publishers and Subscribers based on these commands. This allows the LUNA ap-

plication to configure the ROS side of the setup with a simple set of commands. Refer

to chapter 2 sections 2.2, 2.3 and 3.1.

VI Independence between ROS and LUNA

Since the LUNA library must be able to work without recompiling, the changeable de-

pendencies of ROS must be omitted.

The implementation in ROS is made to perform runtime binding, based on the name

of a topic and the name of its messagetype. This circumvents the need to include

libraries from ROS in LUNA.

Robotics and Mechatronics W.M. van der Werff

42 Connecting ROS to the LUNA embedded real-time framework

VII Working test setup (using JIWY)

To demonstrate correctness and how the bridge works, a demo setup must be made,

based on JIWY.

An application distributed over ROS and LUNA was written to control a JIWY setup.

Using an setpoint generating algorithm in ROS, the controller setpoints of the con-

trollers present in LUNA are able to make the JIWY setup rotate its axes. Refer to

chapter 2 section 3.2.3.

VIII Network usage analyzed

To show network statistics like delay, bandwidth utilization, network usage should be

tracked and analysed.

No direct network statistics was added: the measurements from appendix A.3.3 indi-

cate that bandwidth and network utilization is hard to link to the performance of the

link. Measuring the delay could indicate the quality of the link. Using the ROS and

LUNA environment allows to add measurements easily by the user.

Using a writer sequentially followed by two readers in LUNA, allows the user to write a

time stamp to ROS. This time stamp is subtracted in a ROS node with the current time,

and published with the current time stamp through the bridge to the two readers. The

LUNA application should then perform an action based on the measured delays, for

example activate a failsafe option in case the link becomes weak.

B Should have

I Compatibility with Server/Client structures

The Server/Client structure allows a reply on a topic. This allows for inquiring specific

parameters from LUNA, or using ROS as computational device.

Using the conversion techniques as described in appendix A.2.2, it is possible to con-

vert client/server structures in ROS into the supported Publish/Subscribe structures.

II ROS control through bridge

It would be useful to configure ROS automatically through a LUNA app. Things like

security of the ROS system should be kept in mind.

The communication protocol supports sending commands to ROS: handling them in

ROS is not yet implemented. It would also be possible to run a separate configuration

node, which receives commands from LUNA to start new nodes or issue reconfigura-

tion commands through a terminal commands.

III Advanced network configurations

It would be useful for the user to get more advanced control over the network interface:

dynamically set send frequency of packets, port configuration, host configuration.

A submodel in the LUNA application is used to configure at which intervals data is

send from LUNA to ROS: this interval is specified by the user. In the source code, the

port and IP-address are also configured. In future integration into TERRA, these field

could be configured from the graphical user interface of TERRA.

IV Validation of timing and correctness network/ packages

TCP should guarantee correct and in order arrival op packages. Link loss and too large

delays should be checked. Should be combined with warnings to the user when prob-

lem with link is detected.

V Demo with shared network connection with high load

W.M. van der Werff University of Twente

APPENDIX B. ADDITIONAL APPENDICES 43

Instead of using the network just for the data send over the bridge, a test should be

performed where the network is also used to send large amounts of data, for example a

video feed.

The test setup containing the JIWY pan/tilt camera is used, combined with a

gstreamer pipeline sending data from the embedded system over the network to ROS.

This stream adds an additional load on the network, and allows the setup to use vision

in the loop. Refer to chapter 2 section 3.2.3

VI Tests / examples using other setups

To persuade new users to use LUNA combined with ROS, converting multiple example

setups should be useful.

Only the JIWY setup is converted to use vision in the loop in a combined system with

LUNA and ROS. A manual is written on how to combine a LUNA application with ROS

through the ROSChannels. Refer to appendix B.5.

C Could have

I TERRA integration

Integration to TERRA blocks would allow easier integration into LUNA projects of an

user. This would however take a lot of effort and time, and might be implemented in a

future project.

No direct integration into TERRA was yet feasible due to time related matters: devel-

oping for TERRA requires time to get acquainted with the development tools. Using

the manuals presented in chapters B.4 and B.5 will allow someone already familiar

with TERRA development to integrate the implementation in LUNA into the code

generation and interface of TERRA.

II Graphical bridge configuration interface for user

Although the bridge can be configured using code, for setting up experiments it might

be useful to have an GUI, where most important settings could be changed to the bridge.

Future extensions of TERRA would allow the user to design the structure of both the

ROS algorithms and its connections to the LUNA application. This reduced the need

for an additional graphical interface.

III Graphical message decoding interface for user

When changes are made to either ROS or to LUNA, it might cause names to change. A

GUI which allows to see unconnected nodes of the same type, and configure a layer in

between these nodes is useful.

In ROS, there are already commandline options present to connect and reroute top-

ics. Combined with graphical tools like rqt, allows the user to graphically see the

structure in ROS, reducing the need for an additional interface.

IV Graphical interface for network analysis

For verification and adaptations in the settings of the network connection, it would be

useful for the user to have the state of the network accessible in an interface.

Since it was chosen to let the user implement network analysis himself by letting him

measure delays using CSP structures and a ROS node, no interface was made to show

the network state.

V Compatibility with actionlib structure(Service/Client with program state feedback)

The Server/Client structure is extended in the actionlib library, which allows for pre-

emption, and state messages. Extending the ROS-LUNA bridge to also support action-

lib, would make the usage of a ROS system for its resources (just like accessing a su-

Robotics and Mechatronics W.M. van der Werff

44 Connecting ROS to the LUNA embedded real-time framework

per computer to perform computational expensive tasks) better. Using the same sort

of conversion techniques presented in appendix A.2.2 to convert Service structures

could be used to convert actionlib structures.

VI Fully compilable code

To make the ROS side more efficient, it would be useful to derive a full implementation

in C++. This will take time, since versatile communication is easily implemented in

interpreted languages, but are harder C++.

Using the implementation of runtime binding in the TopicListener and RuntimeBind-

ingPublisher allows almost a full implementation in C++. Only during initialization

of the Runtime Binding Publisher, a connection is made to a Python node. Once a

message type received from this node is analysed, its cached version is used, making

the implementation faster. Refer to chapter 2 sections 2.3 and 3.1.

VII Demo with ported ROS code to LUNA

Some effort is put into making a real-time library for ROS by others. Some of the appli-

cations that use this library, could be ported to use LUNA instead, and connect to ROS

through the bridge.

In the assignment, all effort was put into the bridge itself. No time was put into con-

verting code of others.

D Won’t have

I Verification of ROS message generation at LUNA side

A check during LUNA application compile time (or in case of using TERRA: code gen-

eration time), to check whether messages are complete, is useful. Sophisticated tricks

would be needed to perform these verifications, without making the LUNA library de-

pend on ROS. No effort was put into implementation: although it would be possible to

extend TERRA to import message definition, and let it verify the correct configuration

of the initialization commands.

II Tests connecting other platforms to LUNA

Some other environments have a bridge to ROS: for example, Matlab has an interface.

Also other platforms could directly be accessed through a bridge based on the ROS-

LUNA bridge. This is out of the scope of this assignment.

No other platforms were combined with the LUNA and ROS bridge.

W.M. van der Werff University of Twente

APPENDIX B. ADDITIONAL APPENDICES 45

B.2 Using the runtime binding publishers

The RuntimeBindingPublisher class allows to add publishers during runtime, by specifying the

name of the publisher and the topic type as string. The generated publisher will bind to this

topic during runtime.

Setting fields in the message of these publishers is also done by using just the name of the field.

B.2.1 Example

For clarification, a codelisting is presented below, demonstrating code to generate a publisher

during runtime. A topic jiwy_setpoint is created, with topic type luna_bridge/jiwy_position.

This message consists of a standard Header structure (containing a sequence number and a

timestamp), alongside two doubles representing the x and y rotation of the JIWY setup.
✞ ☎

/ / Include the runtime binding

#include " luna_bridge / RuntimeBindingPublisher . h"

using namespace runtime_binding ;

/ / Small program to show runtime binding

int main(int argc , char ** argv)

{

/ / I n i t ROS

ros : : i n i t (argc , argv , " r l b _ h e l p e r _ t e s t e r ") ;

/ / Make a Node Handle , needed f o r ROS

ros : : NodeHandle nh ;

/ / A rate of 100Hz should be enough

ros : : Rate loop_rate (100) ;

ROS_INFO(" S t a r t i n g RuntimeBinding Publisher t e s t . Make sure a ’ helper ’ node i s

running as node ’ rlb_helper ’ ! ") ;

/ / Make the actual o b j e c t that can perform runtime binding !

/ / The RBP i s going to connect to a python node c al l e d ’ r lb_helper ’

RuntimeBindingPublisher RBP(&nh , "rlb_RBP" , " rlb_helper ") ;

/ / Example : we want to have a publisher with topic ’ j iwy_setpoint ’ and type ’

luna_bridge / j iwy_posit ion ’

std : : s t r i n g desired_topic_name=" jiwy_setpoint " ;

std : : s t r i n g desired_topic_type=" luna_bridge / jiwy_position " ;

/ / Create the publisher with b u f f e r s i z e 1 and latching enabled

RBP . addRBPublisher (desired_topic_name , desired_topic_type , 1 , true , f a l s e) ;

/ / Define the data to be send

double xpos =0.12345;

double ypos =0.2468;

uint32_t sequence =1;

/ / get the timestamp

ros : : Time timestamp = ros : : Time : : now() ;

/ / Other f i e l d s w i l l automatically be s e t to 0 ’ s

/ / Set the data inside the RBP, using a ptr to each variable and t h e i r s i z e s

RBP . s e t F i e l d (desired_topic_name , "xpos" , (void *)&xpos , s i z e o f (xpos) , true) ;

RBP . s e t F i e l d (desired_topic_name , "ypos" , (void *)&ypos , s i z e o f (ypos) , true) ;

RBP . s e t F i e l d (desired_topic_name , "header . seq" , (void *)&sequence , s i z e o f (sequence) ,

true) ;

RBP . s e t F i e l d (desired_topic_name , "header . stamp" , (void *)×tamp , 8 , true) ;

/ / Publish the message !

RBP . publish (desired_topic_name) ;

/ / Publishing the next message i s as simple as repeating a l l the s e t commands

with new data

}
✝ ✆

Robotics and Mechatronics W.M. van der Werff

46 Connecting ROS to the LUNA embedded real-time framework

When this example is run, data will be published on the jiwy_setpoint topic. Visualization of the

data is possible, by adding a subscriber to this topic. This is simply done by using the build-in

rostopic echo command:
✞ ☎

>$: rostopic echo j iwy_setpoint

header :

seq : 1

stamp :

secs : 1467233508

nsecs : 426700937

frame_id : ’ ’

xpos : 0.12345

ypos : 0.2468
✝ ✆

The output of the rostopic echo shows the received message, as set in the example code.

B.3 Using TopicListener

The TopicListener class allows to listen to fields inside a topic, without knowing their type up-

front. A code listing on how a callback can be placed on such a field is listed below.
✞ ☎

#include " luna_bridge / TopicListener . h"

#include " ros / ros . h"

using namespace luna_bridge ;

void callback (TopicListener * l i s t e n e r)

{

/ / The referenced l i s t e n e r contains the ptr to the desired data , copy i t .

double xpos =0;

int desired_data_size =8;

i f (l i s t e n e r −>getDataSize () ==desired_data_size)

{

/ / Found and desired s i z e s coincide !

memcpy(&xpos , (void *) l i s t e n e r −>getDataPtr () , 8) ; / / A c a st could also be

used

ROS_INFO(" Received xpos [%0.9 f] " , xpos) ;

/ / Normally , the callback contains more advanced options , e . g . allowing to

copy data to the network buffer

} else {

ROS_ERROR("Found a f i e l d with wrong s i z e ! desired [%d] vs received [%d] " ,

desired_data_size , l i s t e n e r −>getDataSize ()) ;

}

}

int main(int argc , char ** argv)

{

/ / I n i t ROS node

ros : : i n i t (argc , argv , " j i w y _ s e t p o i n t _ l i s t e n e r ") ;

/ / Make a Node Handler

ros : : NodeHandle nh ;

/ / Make the t o p i c l i s t e n e r , l e t i t l i s t e n to the xpos value

TopicListener * l i s t e n e r = new TopicListener (nh , " j iwy_setpoint " , "xpos" ,&

callback) ; / / s td : : bind(&TopicListenerExample : : callback , this , std : :

placeholders : : _1)) ;

/ / Spin ros , as the callback takes care of the r e s t

ros : : spin () ;

return 0 ;

}
✝ ✆

The registered callback is called, as soon as the registered field xpos is found. The TopicListener

contains a pointer to the found position in the raw data. and the size of the data. This pointer

and the found size are used to copy the data to a variable.

W.M. van der Werff University of Twente

APPENDIX B. ADDITIONAL APPENDICES 47

With the example code of appendix B.2 still running, executing this code snippet will result in:
✞ ☎

>$: rosrun luna_bridge exampleopicListener

[INFO] [1467238709.451963128]: Received xpos [0.123450000]
✝ ✆

This shows that the correct value is decoded..

Robotics and Mechatronics W.M. van der Werff

48 Connecting ROS to the LUNA embedded real-time framework

B.4 Compiling LUNA and LUNA applications for RaMstix

When LUNA needs to run on a device with Linux as operating system, a patch should be applied

to the kernel to make it real-time. This patch is called Xenomai1 . The current image present

on the RaMstix is patched with Xenomai version 2.6.3. The kernel version is a bit old however:

this causes problems when normal crosscompiling is done. Also, the code generation of TERRA

is currently mainly used to generate code for QNX. Although a large part of the functionality is

present in the code generation for Xenomai, some fixes need to be applied to the generated

code to make it work. This appendix explains the steps taken to make LUNA applications run

on the RaMstix, running Linux kernel 3.2.21 with Xenomai 2.6.3.

B.4.1 Prerequisites

• It is expected that the user already has TERRA setup correctly and has the LUNA source

(located at ~/LUNA/LUNA).

• It is expected the install occurs on a Ubuntu system (or inside a Ubuntu VM). Other op-

erating systems might work as well, but are not tested.

• It is also expected that cross compile tools are setup correctly. When this is not the case,

some of the compile commands will fail, and indicate which part of the cross compiler is

not installed. (Needed are: binutils-arm-linux-gnueabi gcc-arm-linux-gnueabi g++-arm-

linux-gnueabi).

B.4.2 Downloads

• Download Xenomai version 2.6.3 from http://download.gna.org/xenomai/

stable/.

• Download Xenomai version 2.6.2.1 from http://download.gna.org/xenomai/

stable/.

• Download Linux kernel 3.2.21 from https://www.kernel.org/pub/linux/

kernel/v3.x/.

The second download is needed, since Xenomai version 2.6.3 does not have a patch for kernel

3.2.21, while the RaMstix still runs Xenomai 2.6.3 and kernel 3.2.21. This is fixed by taking the

interrupt pipeline patch (ipipe) from Xenomai 2.6.2.1 and add it to Xenomai 2.6.3. This is not

ideal, but no other fix is present at this time.

B.4.3 Directory structure setup

• A couple of directories need to be created, execute in a terminal:
✞ ☎

$: sudo mkdir /opt/xenomai−2.6.3

$: sudo chown YOUR_USERNAME /opt/xenomai−2.6.3

$: mkdir /opt/xenomai−2.6.3/ build

$: mkdir /opt/xenomai−2.6.3/ staging

$: mkdir /opt/xenomai−2.6.3/ kernel

$: mkdir /opt/xenomai−2.6.3/ src
✝ ✆

• For quick reference to these directories, execute:
✞ ☎

$: export build_root =/opt/xenomai−2.6.3/ build

$: export staging_dir =/opt/xenomai−2.6.3/ staging

$: export l inux_tree =/opt/xenomai−2.6.3/ kernel

$: export xenomai_root=/opt/xenomai−2.6.3/ src
✝ ✆

1http://www.xenomai.org/

W.M. van der Werff University of Twente

APPENDIX B. ADDITIONAL APPENDICES 49

• Extract the contents of the downloaded xenomai-2.6.3 archive to $xenomai_root

– Note: the contents of the archive should be directly in $xenomai_root , not in-

side a subfolder.

• Extract the contents of the downloaded kernel-3.2.21 archive to $linux_tree.

– Note: the contents of the archive should be directly in $linux_tree , not inside

a subfolder.

• Open the archive of the downloaded Xenomai-2.6.2.1 archive, extract file xenomai-2.

6.2.1/ksrc/arch/arm/patches/ipipe-core-3.2.21-arm-4.patch to

directory $xenomai_root/ksrc/arch/arm/patches/.

B.4.4 Patching the kernel

Change directory to $xenomai_root and run the kernel patch script:

✞ ☎

$: cd $xenomai_root

$: s c r i p t s /prepare−kernel . sh −−arch=arm −−l inux=$linux_tree
✝ ✆

• The script should suggest the correct ipipe patch (/opt/xenomai-2.6.3/src/

ksrc/arch/arm/patches/ipipe-core-3.2.21-arm-4.patch)

B.4.5 Preparing the kernel build

• Change directory to $linux_tree
✞ ☎

$: cd $linux_tree
✝ ✆

• Copy the correct initial configuration for the processortype:
✞ ☎

$: cp arch /arm/ configs /omap2plus_defconfig . config
✝ ✆

• Run the configuration script:
✞ ☎

$: make ARCH=arm CROSS_COMPILE=arm−linux−gnueabi− menuconfig
✝ ✆

• A menuconfig tool will be opened in the terminal. This allows to easily set some options:

– Goto System Type âĂŤ> TI OMAP2/3/4 Specific Features.

– Select Typical OMAP configuration, TI OMAP3 and Gumstix Overo Board.

– Deselect all other configurations.

• Exit the menuconfig tool, and save the configuration upon exit.

B.4.6 Building the kernel

• Make the kernel:
✞ ☎

$: make ARCH=arm CROSS_COMPILE=arm−linux−gnueabi− modules
✝ ✆

– Note: the command might fail with "fatal error:linux/compiler-gcc5.h: No

such file or directory". This is caused by the cross compiler being too new (version

5 instead of 4) for this old kernel. The proposed fix is to either revert back to an

older compiler, or to apply a small fix by copyinglinux/compiler-gcc4.h into

linux/compiler-gcc5.h:

Robotics and Mechatronics W.M. van der Werff

50 Connecting ROS to the LUNA embedded real-time framework

✞ ☎

$: cp include / linux /compiler−gcc4 . h include / linux /compiler−gcc5 . h
✝ ✆

– Execute the make command again.

– Note: another error might occur, indicating "/opt/xenomai-2.6.3/

kernel/arch/arm/include/asm/ftrace.h:51 : multiple definitions of

’return_address’"2. The proposed fix is:

* Open /opt/xenomai-2.6.3/kernel/arch/arm/include/asm/

ftrace.h

* Change the line:
✞ ☎

extern inline void * return_address (unsigned int l e v e l)
✝ ✆

into:
✞ ☎

s t a t i c inline void * return_address (unsigned int l e v e l)
✝ ✆

* Save the file.

* Open the file arch/arm/kernel/return_address.c.

* Delete or comment out the section:
✞ ☎

void * return_address (unsigned int l e v e l)

{

return NULL;

}
✝ ✆

* Save the file.

* Execute the make command again.

B.4.7 Building Xenomai

• Change directory to $build_root:
✞ ☎

$: cd $build_root
✝ ✆

• Configure thebuild and start building:
✞ ☎

$: $xenomai_root/ configure CFLAGS="−march=armv7−a" LDFLAGS="−march=armv7−a"

−−build=i86−pc−linux−gnu −−host=arm−linux−gnueabi

$: make DESTDIR=$staging_dig i n s t a l l
✝ ✆

• Note: after some time, your sudo password is requested.

• After completion, this will result in a Xenomai build usable with LUNA.

B.4.8 Crosscompiling LUNA

• LUNA expects the path to the build Xenomai to be present in $XENOMAI_DIR:
✞ ☎

$: export XENOMAI_DIR=$staging_dir
✝ ✆

• Change the directory to the LUNA source and start the menuconfig, e.g.:
✞ ☎

$: cd ~/LUNA/LUNA

$: make menuconfig
✝ ✆

2https://github.com/zanezam/boeffla-kernel-cm-bacon/commit/

ef4fea130eeb70eff4f3a549fd3f6e9b11437550

W.M. van der Werff University of Twente

APPENDIX B. ADDITIONAL APPENDICES 51

• Due to the old kernel used on the RaMstix, cross compiled programs might run into an

error, indicating CXXABI on the RaMstix is too old: the cross compiled programs used

functionality not yet implemented in the CXXABI present on the RaMstix’ OS. The newer

CXXABI implements safety measures allowing bufferoverflows to be found more easily.

This functionality needs to be disabled to make LUNA applications work on the RaMstix.

– In the menuconfig, select Advanced configuration options > Additional Compiler

Commands.

– Set the field to:
✞ ☎

$: −fno−caller−saves −U_FORTIFY_SOURCE −D_FORTIFY_SOURCE=0
✝ ✆

– Use exit to return to the root of the menu.

• Some other options need to be set:

– Enter Target System.

– Select "xenomai-arm-v7" as target system.

– Use exit to return to the root of the. menuconfig

– Enter Target Images.

– Enable Install Local and set its configuration to ~/LUNA/LUNA/bin.

– Use exit to return to the root of the menuconfig.

– Enter Advanced configuration options.

– Enable Target Options and enter its submenu.

– Select "Use software floating point by default".

– Make sure Target Optimizations is set to:
✞ ☎

−Os −pipe −march=armv7−a −mcpu=cortex−a8 −f t r e e−vectorize −f t r e e−

vectorizer−verbose=3 −fdump−tree−vect −mfpu=neon
✝ ✆

– Use exit to return to the root of the menuconfig.

– Make sure the correct settings are present under Core, Debug, High-level and Net-

working for your project.

– Exit menuconfig and save upon exit.

– Build LUNA:
✞ ☎

$: make V=s
✝ ✆

– Note: an error might occur indicating "bash: arm-linux-gnueabi-gcc-ar: command

not found". This is fixable by making a link and restarting make:
✞ ☎

$: sudo ln / usr /arm−linux−gnueabi/bin/ ar / usr / l ocal /bin/arm−linux−

gnueabi−gcc−ar

$: make V=s
✝ ✆

– This should result in a compiled LUNA library.

B.4.9 Configuring TERRA

• Start TERRA.

• Configure TERRA so it will generate code for Xenomai using the just build LUNA library:

– Open Window -> Preferences.

Robotics and Mechatronics W.M. van der Werff

52 Connecting ROS to the LUNA embedded real-time framework

– Select TERRA -> LUNA in the dialog.

– Select "Xenomai" under Target platform.

– Set "Binary location" to the directory libLUNA.a was created for Xenomai, e.g. ~/

LUNA/LUNA/bin/luna-xenomai-arm-v7-Posix/lib/.

– Set "Header files location" to the directory the header files were created for Xeno-

mai, e.g. ~/LUNA/LUNA/bin/luna-xenomai-arm-v7-Posix/include/.

– Save the settings by pressing Ok.

– (Re)Generate the code for your whole project: the archm file and all the submodels.

B.4.10 Adapting generated csode

• Some fixes need to be applied to the generated code, to make it work after crosscompil-

ing:

– The crosscompiling should include C/C++ libraries statically: this prevents prob-

lems with compatibility on the older kernel.

– Open the Makefile of the archm model or the main cspm model. This file is located

in the generated directory.

– Add in the protected region underneath Compiler/Linker flags:
✞ ☎

LDFLAGS+=−s t a t i c−l i b s t d c ++ −s t a t i c−l ibgcc
✝ ✆

– Save the file.

– Open the MainModel.cpp file of the archm or main cspm file (located in src).

– Add beneath the SETNAME(this,"YOUR_APPLICATIONNAME") function:
✞ ☎

OSScheduler : : Instance ()−>setSchedulerPolicy (FIFO) ;
✝ ✆

– This instructs Xenomai to use a real-time scheduler. Otherwise (amongst others)

timer channels will fail.

– Note: this last fix is applied outside of a protected region. When codegeneration is

run again, this fix needs to be reapplied.

B.4.11 Compiling the LUNA application

• Return to the terminal again.

• Change directory to the root of your TERRA project.

• Run:
✞ ☎

$: make clean

$: make
✝ ✆

• Binaries and libraries will appear in bin/ and lib/ inside the project folder after suc-

cessful compilation of the project.

• Use for example scp to copy both directories to the RaMstix (assuming an ssh server is

running).

W.M. van der Werff University of Twente

APPENDIX B. ADDITIONAL APPENDICES 53

B.4.12 Additional notes on executing the LUNA application on the RaMstix

• It is useful to add an entry to /etc/hosts pointing "roshost" to the current IP of the

system running ROS.

• Some large applications seem to have startup problems, ending in an error mentioning

a "RealTime Signal 36". This is not yet debugged. However running the applications in

GDB seems to work fine.

• Since the threading model is based on Posix, context switches are expensive. This causes

performance degradation when many threads are used in large programs.

• Standard stack size for each pthread seems to be 8MB on many systems. Since each CSP

component is implemented using one pthread, it may issue problems with the 256MB

RAM present on the RaMstix. It is advised to set the thread-size to a smaller value when

this happens, for example:
✞ ☎

$: ulimit −s 512
✝ ✆

Note: for normal users it is only possible to decrease the stacksize.

Robotics and Mechatronics W.M. van der Werff

54 Connecting ROS to the LUNA embedded real-time framework

B.5 Using ROS with TERRA

The current version of TERRA does not have graphical object and codegeneration for the con-

nections to ROS. While TERRA is still in development, this feature will be added. In the mean-

time the connection to ROS could be used by applying some tricks. These tricks are explained

by using a simple example setup modeled in TERRA, and adapting its generated code so the

ROSChannels of LUNA could be used. In the step by step explanation it is expected that the

user has some experience with TERRA.

B.5.1 Global steps

Globally, the workflow is:

• Model the system in an archm file, using submodels both the LUNA part of the applica-

tion and for the representation of the nodes located in ROS.

• Generate code.

• Remove the ROS submodels, adapt and replace the channels between ROS and LUNA

submodels by ROSChannels in the generated code.

B.5.2 Making and changing an example application

The sample application will connect to a Publisher node in ROS (ROS_pub). When a value from

this topic is received in LUNA, it is send back to ROS to a Subscriber (ROS_sub). Both ROS topics

have std_msgs/Int32 as their messagetype. This messagetype contains one field named "data",

of type int32.

Make a model for the embedded (LUNA) application

• Create if desired a new TERRA project.

• Make one csp model, containing the actual LUNA application, named "LUNA_app.cspm".

In this case, it is a simple structure: a sequential Reader and Writer, receiving/writing

data from ROS.

• Add an incoming and outgoing port in LUNA_app.

• Add a CSP Reader and Writer in a sequential structure (Reader -> Writer).

• Connect the ports to the Reader and Writer.

• Give the Reader and Writer a name(e.g. valueReader and valueWriter)

• Add a unit with data type integer, and add a variable "value" with this unittype.

• Set the variable in the Reader and Writer to "value".

• Group the Reader and Writer, and make the group recursive.

• Give the incoming and outgoing ports recognizable names, e.g. value_in_port and

value_out_port. These portnames will appear in the generated code which needs adap-

tion.

• Make the diagram Shareable and set the name to LUNA_app, so the model is usable with

the archm. Refer to figure B.1.

• Execute the code generation.

W.M. van der Werff University of Twente

APPENDIX B. ADDITIONAL APPENDICES 55

Figure B.1: Structure of the application to be run on the embedded system.

Make a model for buffer control

• Make a second csp model, named "Buffer_send.cspm". This model will periodically call

the function that sends the buffered data to ROS.

• Add a unit with datatype "time period" inside the model, and add a variable "timer" with

this unit.

• Add a Writer and an incomming port, and connect them with an channel.

• Name the Writer and incomming port(e.g. timeWriter and timePort), and set the variable

in the writer to the timer variable.

• Place a C++ Code Block in a sequential construct after the Writer, and name the c++ block

(e.g. "send").

• Group the writer and c++ code block, and make the group recursive.

• Make the diagram shareable, set the component name to "Buffer_send", and generate

code.

• Open the generated cpp file of the C++ block (e.g. Buffer_send/src/send.cpp).

• Add in the "protected region additional headers":
✞ ☎

#include " ros−channels /ROSChannelManager . h"

using namespace LUNA: : ROS;
✝ ✆

• Add inside the "protected region execute code":
✞ ☎

ROSChannelManager : : Instance ()−>sendPacket () ;
✝ ✆

• Save and close the file. Refer to figure B.2.

Robotics and Mechatronics W.M. van der Werff

56 Connecting ROS to the LUNA embedded real-time framework

Figure B.2: Structure of the outgoing buffer controller.

Make a model representing ROS publisher node

• Make a cspm model representing the ROS publisher, named "ROS_publ.cspm". This

model will only be used to allow code generation (providing the start of a channel in

TERRA), and will be removed from the generated code.

• Add a unit with the same definition used in LUNA_app and add variable of this type.

• Add a Writer, set the variable and give it a name (e.g. tbrWriter).

• Add an incoming port, and connect it to the Writer with a channel. Give the port a recog-

nizable name, e.g. data_port.

• Make the diagram shareable, set the component name to "ROS_publ", and generate

code. Refer to figure B.3.

Figure B.3: Model representation of the ROS publisher node.

Make a model representing ROS subscriber node

• Make a cspm model representing the ROS subscriber, named "ROS_sub.cspm". This

model will again only be used to allow code generation (providing the end of a channel

in TERRA), and will be removed from the generated code.

• Add a unit with the same definition used in LUNA_app and a variable of this type.

• Add a Reader, set the variable and give it a name (e.g. tbrReader).

• Add a port, set it to outgoing, and connect it to the Reader with a channel. Give the port

a recognizable name, e.g. data_port.

• Make the diagram shareable, set the component name to "ROS_sub", and generate code.

Refer to figure B.4.

W.M. van der Werff University of Twente

APPENDIX B. ADDITIONAL APPENDICES 57

Figure B.4: Model representation of the ROS subscriber node.

Make an architecture model

• Make an architecture model, named "application.archm".

• Add the four previously made cspm files as external models, and set their names to the

name of the model.

• Connect the port of ROS_publ("data_port") to the port of LUNA_app(value_in_port).

• Connect the port of ROS_sub("data_port") to the port of LUNA_app ("value_out_port").

• Add a Periodic Timer Port, and connect it to the port of Buffer_send.

• Give the Periodic Timer Port a name, and set its interval. This interval specifies the fre-

quency at which data will be send back to ROS: inside this interval, data written to ROS

will be buffered. This interval is a trade of between latency, processing time needed to

start sending data, and the size of the buffer. In many cases, a frequency between 30 and

60 Hz should suffice. Refer to figure B.5.

• Generate code from the archm model.

Figure B.5: Architecture model to combine the parts of the application.

Adapt generated code

After the modelling, the generated code needs to be adapted to implement the actual

ROSChannels.

Mainmodel.cpp

• Open the MainModel.cpp of the code generation of the archm model (located in

application/src).

Robotics and Mechatronics W.M. van der Werff

58 Connecting ROS to the LUNA embedded real-time framework

• Delete the initialization of both ROS nodes(probably named "myROS_publ" and "my-

ROS_sub") and their SETNAME calls, which are located somewhere beneath the line "Ini-

tialize model objects".

• Delete the same ROS nodes’ objects from the parallelGroup.

• In the destructor, remove also the delete commands for these ROS nodes (located be-

neath "Destroy model objects").

• Find the channel connecting the port of the ROS_publ ("data_port") to the port of

LUNA_application (value_in_port). This channel is probably named:
✞ ☎

myROS_publdata_port_to_LUNA_appvalue_in_portChannel
✝ ✆

• Notice the occurence of the port names in the channel.

• This channel should implement a subscriber in ROS: it is going to listen to the data field

inside the ROS_publ topic. Replace the declaration of the new Unbuffered channel with

a declaration of a new ROSChannel:
✞ ☎

new ROSChannel<int > ("ROS_pub" , " data " ,1 , ChannelsProtocol : : NodeTypes : :

SUBSCRIBER) ;
✝ ✆

The template indicates the datattype. The first argument the topic this subscriber needs

to connect to. The second argument represent the name of the field inside the topic.

The third parameter indicates the length of the buffer: currently only 1 is tested. The last

argument indicates that this channel is a subscriber in ROS. This is indicated by using the

enumeration provided in the ChannelsProtocol.

• Generically, this needs to be done for each channel connecting a CSP Reader to a ROS

topic

• Find the channel connecting the port of the ROS_sub to the outgoing port of LUNA_app

(value_out_port). This is probably named:
✞ ☎

myLUNA_appvalue_out_port_to_ROS_subdata_portChannel
✝ ✆

• This channel should implement a publisher in ROS: it is going to add data in a message,

and when the message is completed, it is going to be published on the specified ROS

topic. This also means, that when a messagetype consisting of multiple fields a channel

needs to be made for each field.

• Replace the UnbufferedChannel generation with a ROSChannel, indicating the name of

the ROS publisher we are making, and the field this channel writes to:
✞ ☎

new ROSChannel<int > ("ROS_publ" , " data " ,1 , ChannelsProtocol : : NodeTypes : :

PUBLISHER) ;
✝ ✆

• In this example, the messagetype only consists of the data field, so only one channel

needs to be converted.

• After these adoptions of the generated code, some additional code needs to be added:

the code contains instructions for the bridge to be set up correctly.

• First, a connections should be made. Place the following code below

SETNAME(this,"MainModel");:

W.M. van der Werff University of Twente

APPENDIX B. ADDITIONAL APPENDICES 59

✞ ☎

int status = ROSChannelManager : : Instance ()−>connectToROS (" roshost " ,

LUNA_BRIDGE_DEFAULT_PORT) ;

i f (status ! = SUCCESS)

{

switch (status)

{

case LUNA_ERROR_1:

LOG(LUNA: : LOG_ERROR, " Inval id socket \n") ;

break ;

case LUNA_ERROR_2:

LOG(LUNA: : LOG_ERROR, "Could not set hostname\n") ;

break ;

case LUNA_ERROR_3:

case LUNA_ERROR_4:

/ / Error already printed by ROSChannelManager

break ;

default :

LOG(LUNA: : LOG_ERROR, " luna_bridge − System error : %s (%d) \n" ,

s t r e r r o r (status) , status) ;

break ;

}

}
✝ ✆

• Note: in connectToROS, "roshost" is either the IP address of the ROS host, or the name

specified in /etc/hosts. LUNA_BRIDGE_DEFAULT_PORT is the default port(12345)

the LUNA bridge is listening to.

• Next, code instructing the ChannelManager to setup callbacks and send instructions to

ROS for configuration, needs to be added: For sending data to ROS, per topic:
✞ ☎

ROSChannelManager : : Instance ()−>connectToTopic ("ROS_sub" , "std_msgs/ Int32 "

, ChannelsProtocol : : NodeTypes : : PUBLISHER, " ") ;
✝ ✆

For each channel receiving data from ROS:
✞ ☎

ROSChannelManager : : Instance ()−>connectToTopic ("ROS_publ" , " data " ,

ChannelsProtocol : : NodeTypes : : SUBSCRIBER, " ") ;
✝ ✆

In both cases should the first argument coincide with the arguments provided by their

declared ROSChannels. The second argument of the topics data is written to define the

messagetype (prepended with the package the message is in) in ROS. The second argu-

ment for the channels receiving data from ROS specify the field inside the topic which

should be listened to.

• In the header’s protected region, add the following includes and namespace usages:
✞ ☎

#include " ros−channels /ROSChannel . h"

#include <unistd . h>

#include "csp/CSP . h"

#include "debug/Debug . h"

#include " i n t e r f a c e s /LunaError . h"

#include " ros−channels / ChannelsProtocol . h"

#include " ros−channels /ROSChannelManager . h"

#include " scheduler /OSScheduler . h"

#include " threading /OSThread . h"

#include " threading /Runnable . h"

#include " threadblocker /OSThreadBlocker . h"

using namespace LUNA;

using namespace LUNA: : CSP ;

Robotics and Mechatronics W.M. van der Werff

60 Connecting ROS to the LUNA embedded real-time framework

using namespace LUNA: : CSP : : ROS;

using namespace LUNA: : ROS;

using namespace LUNA: : Threading ;
✝ ✆

MainModel.h

• Next, open the MainModel.h from the application.archm (application/include/

MainModel.h).

• Find the definitions of the ROS models (below "Model objects"), and delete them.

• Find the definitions of the channels(below "Channel definitions") connecting LUNA to

ROS, and change their datatype from UnbufferedChannel to the ROSChannel. Also

change the template instruction to correspond with the declarations made inside the

MainModel.cpp. Change:
✞ ☎

UnbufferedChannel<int , One2In , Out2One> *
myLUNA_appvalue_out_port_to_ROS_subdata_portChannel ;

UnbufferedChannel<int , One2In , Out2One> *
myROS_publdata_port_to_LUNA_appvalue_in_portChannel ;

✝ ✆

to:
✞ ☎

ROSChannel<int > * myLUNA_appvalue_out_port_to_ROS_subdata_portChannel ;

ROSChannel<int > * myROS_publdata_port_to_LUNA_appvalue_in_portChannel ;
✝ ✆

• Below the #includes, add:
✞ ☎

#include " ros−channels /ROSChannel . h"

using namespace LUNA;

using namespace LUNA: : CSP ;

using namespace LUNA: : CSP : : ROS;

using namespace LUNA: : ROS;

using namespace LUNA: : Threading ;
✝ ✆

Compile

When done correctly, it will now be possible to completely make the application by running

make inside the folder of the project:
✞ ☎

$: make clean

$: make
✝ ✆

Some of the applied changes needed to be made outside of protected regions. This means,

that when the structure of the archm changes and/or code generation is executed again, these

changes are lost, and need to be made again.

Additional notes

• The bridge is tested using RaMstix, with LUNA compiled for Xenomai 2.6.3

• QNX support is not fully tested: Initial implementations were tested using QNX6.5 on a

PC104, using a QNX6.6 compiler. The LUNA bridge contains code which is not supported

in the compiler used in QNX6.5. Although forward compatibility should be achievable

with some tricks between QNX6.5 and 6.6, problems occured when IO ports needed to

be used: an error occured, indicating a thread malfunctioning due to too large thread-

name. The threadname seemed to be set to random values, indicating the possibility of

a bufferflow somewhere, overwriting part of the threadname. It was therefore decided to

move on to the RaMstix platform.

W.M. van der Werff University of Twente

APPENDIX B. ADDITIONAL APPENDICES 61

B.6 Using gstreamer with the ROS-LUNA bridge

The demo setup for the ROS-LUNA bridge uses vision in the loop. The camera, present in

the JIWY setup, is connected to the RaMstix, while the image processing runs in ROS on the

resource-rich platform. The camera data needs to be streamed between the two systems.

Gstreamer is an application most suitable for this purpose. Gstreamer has two main versions:

the older 0.10 and the newer 1.0. Since the Linux image on the RaMstix does not support ver-

sion 1.0, version 0.10 is used.

B.6.1 RaMstix side

To stream the camera data from the RaMstix to the PC:
✞ ☎

$: sudo gst−launch−0.10 −v −e v4l2src device =/dev/ video0 ! ’ video /x−raw−yuv , width

=160 , height =120 ’ ! ffmpegcolorspace ! jpegenc ! image/ jpeg , width=160 , height

=120 , framerate =30/1 ! rtpjpegpay ! udpsink host=roshost port=5000
✝ ✆

Some notes:

• A modified version of UDP (named Real-time Transport Protocol, or RTP3) is used to send

the data: this protocol is designed to deliver video or audio data over IP networks.

• The gstreamer pipeline is processed by the processor: the size of the images sent influ-

ences the processor load. It was determined that a image size of 160x120 (or qqvga) has

a typical load of 15-20% on the processor, leaving enough processing power for other

processes.

• Higher resolutions might be achievable when processing the pipeline is partly imple-

mented in the hardware, but no effort was put into realization since qqvga resolutions

was good enough for the demosetup.

• In /etc/hosts an entry was made for roshost, linking it to the IP of the system running

ROS.

• It might be that some of the bins (parts of the pipeline) are not available on the RaM-

stix: these need to be installed, for example using apt-get. Make sure these plugins are

installed:

– gstreamer0.10-ffmpeg

– gstreamer0.10-plugins-bad

– gstreamer0.10-plugins-base

– gstreamer0.10-plugins-good

– gstreamer0.10-plugins-ugly

– gstreamer0.10-tools

– gstreamer0.10-x

– libgstreamer-plugins-base0.10-0

– libgstreamer0.10-0

Additionally, some tests used a video file (/home/ram/R_L-B-movie3.m4v, encoded as

mpeg2) as source. The command to stream a video file is:
✞ ☎

$: gst−launch−0.10 −v −e f i l e s r c location =/home/ram/R_L−B−movie3 .m4v ! mpeg2dec !

ffmpegcolorspace ! jpegenc ! image/ jpeg , width=160 , height =120 , framerate =30/1 !

rtpjpegpay ! udpsink host=roshost port=5000
✝ ✆

3http://www.networksorcery.com/enp/protocol/rtp.htm

Robotics and Mechatronics W.M. van der Werff

62 Connecting ROS to the LUNA embedded real-time framework

The video is only streamed once: to achieve a repeated stream, a bash script could be created

containing the gstreamer pipe in a loop:
✞ ☎

while :

do

gst−launch−0.10 −v −e f i l e s r c location =/home/ram/R_L−B−movie3 .m4v ! mpeg2dec !

ffmpegcolorspace ! jpegenc ! image/ jpeg , width=160 , height =120 , framerate =30/1 !

rtpjpegpay ! udpsink host=roshost port=5000

done
✝ ✆

B.6.2 PC side

On the PC, the stream needs to be received and converted back to actual images. This could be

done by using the gstreamer plugins inside the image processing. Another, easier way, is to use

a video4linux2 (v4l2) sink as destination in a receiving gstreamer pipeline. This creates a virtual

camera device on the PC, allowing other programs to interface more easily to the camera data.

Before the v4l2-sink is usable, it needs to be initialized (also make sure v4l2loopback-utils is

installed).
✞ ☎

$: sudo modprobe −r v4l2loopback

$: l s /dev/ video *
$: sudo modprobe v4l2loopback

$: l s /dev/ video *
✝ ✆

Using this sequence of commands, results in the kernel loading the v4l2loopback device. It also

prints two lines containing available camera devices: one before the module was loaded, the

other one afterwards. This is the device that is usable in for example OpenCV or in a webcam

application. The camera device needs to be connected to the stream. The gstreamer pipeline

is:
✞ ☎

$: gst−launch−0.10 −v −e udpsrc port=5000 ! application /x−rtp , encoding−name=JPEG ,

width=160 , height =120 , payload=26 ! rtpjpegdepay ! jpegdec ! queue !

ffmpegcolorspace ! v4l2sink device =/dev/ video1
✝ ✆

This connects the stream to dev/video1

W.M. van der Werff University of Twente

63

Bibliography

ten Berge, M. H., B. Orlic and J. F. Broenink (2006), Co-Simulation of Networked Embedded

Control Systems, a CSP-like process-oriented approach, in Proceedings of the IEEE Int’l

Symposium on Computer Aided Control Systems Conference, CACSD 2006, IEEE Control

Systems Society, pp. 434 – 439, ISBN 0-7803-9797-5,

doi:10.1109/CACSD-CCA-ISIC.2006.4776685.

http://doc.utwente.nl/57680/

Bezemer, M. M. and J. F. Broenink (2015), Connecting ROS to a real-time control framework for

embedded computing, in 2015 IEEE 20th Conference on Emerging Technologies and Facotry

Automation, IEEE, pp. 1–6, ISBN 978-1-4673-7928-1.

Bezemer, M. M., R. J. W. Wilterdink and J. F. Broenink (2011), LUNA: Hard Real-Time,

Multi-Threaded, CSP-Capable Execution Framework, in Communicating Process

Architectures 2011, Limmerick, volume 68 of Concurrent System Engineering Series, Eds.

P. Welch, A. T. Sampson, J. B. Pedersen, J. M. Kerridge, J. F. Broenink and F. R. M. Barnes, IOS

Press BV, Amsterdam, pp. 157–175, ISBN 978-1-60750-773-4, ISSN 1383-7575,

doi:10.3233/978-1-60750-774-1-157.

http://wotug.org/papers/CPA-2011/Bezemer11/Bezemer11.pdf

Brodskiy, Y. (2014), Robust autonomy for interactive robots, Ph.D. thesis, University of Twente,

Enschede.

Buttazzo, G. (2011), Hard real-time computing systems, Springer, chapter 1, pp. 1–13, 3th

edition, ISBN 978-1-4614-0675-4.

Franken, M. C. J., S. Stramigioli, R. Reilink, C. Secchi and A. Macchelli (2009), Bridging the gap

between passivity and transparency, Robotics: Science and Systems V, Seattle, USA, p. 36.

Robotics and Mechatronics W.M. van der Werff

