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Abstract

This research investigates the feasibility of a fully GPU-based photon mapping
approach for real-time indirect diffuse illumination. Having designed and im-
plemented a prototype system that uses photon mapping to compute indirect
diffuse illumination, we evaluate it by measuring its performance under various
configurations and in different scenes. Visual image quality is assessed by com-
paring produced images with high-quality reference images, using mean squared
error and structural similarity measures. Computational costs are assessed by
measuring average frame times. In addition to this isolated evaluation, we also
compare the prototype system to other systems currently available in a num-
ber of popular game engines (relying on the same performance metrics). We
conclude that even our unoptimised prototype is capable of computing indirect
diffuse illumination in real-time, and that it is competitive with similar systems
currently available in the commercial market.
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Chapter 1

Introduction

In the domain of three-dimensional computer graphics, global illumination refers
to a group of algorithms that take into account light that is emitted directly
from light sources (direct illumination) as well as light that arrives at a surface
point via other surfaces in the scene (indirect illumination). It is an important
element of realistic computer based image synthesis, because it models physical
phenomena that we all observe in daily life. Since nearly all surfaces reflect
light, each surface therefore generates indirect illumination for nearly all other
surfaces. This interdependence between surfaces is what makes the computation
of global illumination so expensive.

Many algorithms have been developed that are able to approximate realistic
light transport closely, but these methods often take minutes or hours to render
a single image and thus are not suitable for real-time applications (for compar-
ison, a fair upper bound on acceptable frame times for real-time applications is
33 1

3 milliseconds, which would result in 30 frames per second). In recent years,
developments in both hardware and software have made dynamic global illu-
mination more feasible for real-time applications. The existing algorithms that
can compute global illumination at real-time frame rates make coarse approxi-
mations in order to achieve this. Because of this, there is currently a substantial
gap in terms of visual quality between the classic global illumination algorithms
that are used in off-line rendering and the algorithms that operate in real-time.
The current challenge for researchers in the area of real-time global illumination
is to further improve the ratio between quality and computational costs.

This research focuses on a small but crucial section of the global illumination
landscape, which is the simulation of diffuse inter-reflections between surfaces in
a scene. We ignore most other aspects that could be considered a part of global
illumination (e.g. indirect specular reflections, refractions and shadows). One
aspect that we do include in our rendering system is direct illumination (only
diffuse and specular reflections). However, direct illumination is not the focus
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of this research, we only include it because our indirect illumination algorithm
reuses some of the information that is generated for the direct illumination, and
because it allows us to better compare our results with the work of others. The
main objective of this research is to investigate the feasibility of a fully GPU-
based photon mapping approach for indirect diffuse illumination in real-time
applications. To achieve this objective, a rendering system has been designed
and implemented that is capable of computing the aforementioned components.
Our evaluation of this system concludes that even in its unoptimised form it
is capable of rendering real-time indirect diffuse illumination for simple scenes.
Moreover, in its current form its performance already seems competitive with
other dynamic global illumination systems available on the commercial mar-
ket.

1.1 Outline

While the table of contents should already provide the reader with a fair idea
of how this document is structured, we provide some additional information on
the contents of the main chapters below.

• Chapter 2 (Background) lays a theoretical basis in radiometry and briefly
discusses how light transport can be modeled. This chapter also intro-
duces the key terms and notations that are used for radiometric quantities
throughout the document.

• Chapter 3 (Related Work) discusses some of the related work published in
the real-time global illumination field. This chapter will also motivate our
choice for a photon mapping approach and clarify how our system differs
from similar systems.

• Chapter 4 (Methodology) provides information on the methods that are
used in order to complete the research objectives.

• Chapter 5 (Design and Implementation) details the design and implemen-
tation of our GPU-based photon mapping prototype.

• Chapter 6 (Evaluation) sets out the methodology and results of the per-
formance evaluation of our prototype system.

• Chapter 7 (Discussion) discusses the results reported in chapter 6.

• Chapter 8 (Conclusion) concludes the thesis and functions as a summary
of the work that was performed for this project.
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Chapter 2

Background

This chapter is intended to serve as an introduction to radiometry and light
transport for readers who have little or no background in these areas. We
introduce the problems that are addressed in this research as well as notations
and terms that are used throughout the document. Finally, we also briefly
discuss how some of the more well-established algorithms tackle light transport
simulation.

2.1 Radiometry

Radiometry deals with the measurement of electromagnetic radiation, which
includes visible light and consists of a flow of photons. It provides a set of tools
that can be used to describe light propagation and reflection. This section will
provide a very brief introduction into the field of radiometry and will serve as
a foundation for the rest of the study.

Photons exhibit properties of both particles and waves, depending on circum-
stances. In computer-based rendering, the wave-like properties are mostly ig-
nored. This means that not all physical phenomena can be successfully modelled
(e.g. the polarisation and diffraction of photons). One of the wave-like proper-
ties that cannot be fully ignored is that each photon has a specific wavelength
(or frequency), which influences the interaction with sensors such as the cones
and rods of the human eye. The fields of photometry and colorimetry focus
on the physical interactions between photons and the human sensors, and the
perception of colour. However, we will not delve further into these fields. In-
stead, we will focus on a few basic radiometric quantities, which will allow us
to formally describe distributions of light.
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2.1.1 Basic Radiometric Quantities

Radiant flux (sometimes also called radiant power, and is denoted as Φ) is equal
to the total amount of energy passing through a surface over a period of time.
Radiant flux is measured in watts, which is defined as joules per second. The
radiant flux of a light source could be measured by summating the energy of all
emitted photons in a second.

Irradiance (denoted as E) is the density of incoming radiant flux with respect
to an area. The irradiance for a surface with area A is expressed as

E =
dΦ

dA
. (2.1)

The notion of measuring radiant flux over a surface area can also be extended
to outgoing radiant flux. This quantity is called radiant exitance and is often
denoted as M .

Intensity (denoted as I) describes the directional distribution of energy. Its
definition includes the concept of a solid angle. A solid angle can perhaps most
easily be visualised as the extension of an angle to a three-dimensional sphere.
Solid angles are measured in steradians. An entire sphere subtends a solid angle
of 4π and a hemisphere subtends a solid angle of 2π. Intensity can be defined
as the density of radiant flux per solid angle ω

I =
dΦ

dω
. (2.2)

Radiance (denoted as L) combines the ideas of the previously defined quantities
and is defined as the radiant flux density with respect to both area and solid
angle

L =
d2Φ

dAprojdω
, (2.3)

where dAproj represents the projection of dA onto a plane perpendicular to the
solid angle ω (i.e. dAproj = dA| cos θ|). We can think of radiance as a measure
of energy along a single ray.

2.2 Rendering Equation and Light Transport

The rendering equation describes the distribution of radiance in a scene under
the assumption that the light has reached a state of equilibrium. The equation
was first seen in Kajiya’s study, which also introduced the path tracing algorithm
[12]. The rendering equation yields the total outgoing radiance at a point on a
surface in terms of its emission, the distribution of incident radiance arriving at
the given point, and the Bidirectional Scattering Distribution Function (BSDF)
of the surface. For now, it suffices to say that a BSDF is a function that
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describes how light is scattered from a surface. More precisely, it describes the
ratio of incident radiance that is scattered from a given direction toward another
specified direction (hence, it is called bidirectional).

We present the rendering equation below and will briefly describe each of its
terms. Keep in mind that different forms have been used for this equation. This
is only one of many. Luckily, the general idea and structure remains the same.
We write the equation in the form

Lo(x,ωo) = Le(x,ωo)

+

∫
S2

f(x,ωi,ωo)Li(x,ωi) cos θidωi,
(2.4)

where Lo(x,ωo) is the radiance leaving the surface point x along direction ωo.
The first term on the right hand side (i.e. Le(x,ωo)) is the radiance emitted
from point x along direction ωo. At a high level, we can view the second term
as the radiance scattered at point x in the direction of ωo. This second term
consists of an integral over the sphere of possible incoming directions (S2). For
each of these incoming directions, a product of three factors is calculated. The
first of these terms, f(x,ωi,ωo), is the BSDF which we have briefly touched
upon. Li(x,ωi) denotes the radiance that is incident along direction ωi. The
final term is a weakening factor, which attenuates the incoming radiance at
point x based on the angle between the incoming direction ωi and the surface
normal n (this angle is denoted as θi, the attenuation term is simply the cosine
of θi). Now that we have clarified the notation used for the rendering equation,
we can provide a clearer definition of the BSDF. As mentioned before, the BSDF
describes the ratio of incident radiance that is scattered at point x from a given
direction ωi toward another specified direction ωo. Formally, this ratio can be
described as

f(x,ωi,ωo) =
dLo(x,ωo)

Li(x,ωi) cos θidωi
. (2.5)

Note that the rendering equation is recursive; the radiance function appears on
both sides of the equation. This means that in order to evaluate the outgoing
radiance at some point x, we require the incident radiance at x from all possible
directions. Yet, the radiance incident on point x is equal to the outgoing radi-
ance of all other surfaces in the direction of x. Essentially, this means that the
incident radiance at a certain point can potentially be affected by the geometry
and material properties of any object in the scene.

Now, we introduce the reflectance equation, which is different from the ren-
dering equation in the sense that it only concerns photon reflections (i.e. the
transmittance of energy through objects is ignored). We do not show it here
because the difference can simply be expressed by replacing the BSDF with a
Bidirectional Reflectance Distribution Function (BRDF). In this study, BRDFs
are denoted by fr(x,ωi,ωo), where the subscript signifies that it only accounts
for reflections. Additionally, we use fr,d and fr,s to denote diffuse and specular
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BRDFs respectively. The change from BSDF to BRDF also means that the do-
main changes from a sphere of incoming directions to a hemisphere of directions
around surface normal n (this is denoted as H2(n) instead of S2). The integral
in the reflectance equation can be split up into several components as shown by
Jensen in [10]:

Lo,r(x,ωo) =

∫
H2(n)

fr(x,ωi,ωo)Li,l(x,ωi) cos θidωi

+

∫
H2(n)

fr,s(x,ωi,ωo)
(
Li,c(x,ωi) + Li,d(x,ωi)

)
cos θidωi

+

∫
H2(n)

fr,d(x,ωi,ωo)Li,c(x,ωi) cos θidωi

+

∫
H2(n)

fr,d(x,ωi,ωo)Li,d(x,ωi) cos θidωi.

(2.6)

We do not delve into the details of equation 2.6, as it is only included to show
that there are different components of light transport simulation and that our
research only focuses on certain parts. Each of the integrals in equation 2.6
represent these different components; they describe direct illumination, indirect
specular and glossy reflections, caustics, and indirect diffuse illumination re-
spectively. Our research focuses only on indirect diffuse illumination. Although
we also implement direct illumination for aforementioned reasons, our system
will not consider indirect specular reflections or caustics.

Analytically solving equations 2.4 or 2.6 is impossible. However, the integrals
can be evaluated numerically. There are two main approaches to the problem.
The first is a group of methods known as Monte Carlo integration, which is
widely used in ray tracing algorithms. The second group contains methods that
are based on the finite element method (e.g. radiosity). Since the latter is not
relevant to this research, our analysis only discusses the first group.

Monte Carlo methods are a group of algorithms that rely heavily on the usage of
sampling. The main idea is that a large number of random samples can be taken
to approximate the distribution of some unknown entity. In the context of light
transport, Monte Carlo integration can be used to approximate the distribution
of light in a scene by computing a weighted sum over a large number of random
samples. With sufficient samples, Monte Carlo estimation will converge to the
correct result; too few samples will introduce variance, which manifests itself as
noise in the produced image. Variance reduction techniques such as importance
sampling and Metropolis light transport can be used to attempt to make the
best use of a limited number of samples. Monte Carlo integration (as well as ray
tracing in general, including the aforementioned variance reduction methods)
is covered in great detail in [20]. In the following paragraphs we will briefly
describe the main approaches that are taken in some of the well known ray
tracing algorithms in order to help the reader understand the concepts behind
these various methods.
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In distribution ray tracing [4] we trace multiple rays from each surface point
to sample direct lighting from light sources, as well as the contribution of light
reflecting between surfaces along with other desired effects. This process of
tracing rays is recursive, meaning that if a ray is traced from one surface point
to another, multiple rays are generated and traced again from the second surface
point. This means that the number of rays will increase dramatically in just a
few reflection bounces. In order to cope with the increasing number of rays as
reflection level depth increases, the number of rays can be reduced after a few
initial levels as these rays are unlikely to have large effect sizes anyway (both
due to their diminishing intensity caused by energy absorption, and the already
high number of rays).

Path tracing – an algorithm first introduced in Kajiya’s rendering equation
paper [12] – is a variation of distribution ray tracing. The core concept is that
instead of tracing rays and generating multiple rays at each surface intersection,
a sample can be computed by evaluating the contribution of a single path along
which light may travel, starting from a pixel and ending at a light source (with
an arbitrary number of reflections in between). The result is a flattened search
space which turns the tree-like search space from distribution ray tracing into
a single path. This removes the explosiveness in terms of the number of rays
and reduces the computational costs of a single sample. However, a much larger
number of samples is needed per pixel and ensuring a good distribution of
reflection rays is considerably more difficult.

Finally, photon mapping [11] is an algorithm that is quite different from both
distribution ray tracing and path tracing. One of the larger differences is that
photon mapping uses forward ray tracing, that is, rays are traced starting from
the scene’s light sources (as opposed to more conventional ray tracing, in which
the tracing of rays originates from the camera). Whenever these rays intersect
a surface, a photon is created that represents the incident illumination at that
surface point (from the ray direction). After being created, the photons are
stored in a photon map, which is often implemented as a structure that allows
for efficient sampling of nearby photons (e.g. a kd-tree). The process of tracing
rays and creating photons is repeated until absorption (or another termination
criterion has been met), after which the photon map can be used to compute
indirect illumination. To shade a given surface point, the nearest photons can
be retrieved from the photon map, which can then be used to calculate the
incident indirect illumination.
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Chapter 3

Related Work

A number of varied global illumination algorithms have been examined for this
research. An approach to real-time global illumination that is not covered in
the following sections is GPU-based path tracing. The Brigade renderer [2]
showcases results from such an approach. While these results are impressive,
and path tracing seems very attractive with an eye on the more distant future,
we think that reducing variance to acceptable levels within real-time constraints
is currently not yet possible without very powerful hardware.

In this chapter we briefly go over some of the research that is most relevant
to this project. The area of real-time indirect and global illumination is still
one that is actively being researched and there is a vast body of work already
published. We have restricted our selection to publications that have gained
traction and have seen adaptations of their methods implemented in some of
the current game engines (video games are currently the largest application
domain of real-time global illumination). We also briefly cover Image Space
Photon Mapping, which is the publication that has inspired the work that is
documented in this thesis.

3.1 Reflective Shadow Maps

Reflective Shadow Maps (RSM) [7] are based on traditional shadow mapping
and are computationally the least prohibitive of the algorithms that are con-
sidered in this research. It uses the rasterisation pipeline to render the scene
from the viewpoint of each of the direct light sources with the goal to gen-
erate a set of virtual point lights (VPLs). These VPLs can then be used to
approximate single-bounce indirect illumination in the scene. The algorithm
features an importance-sampling scheme to select only the most important in-
direct light sources, and a screen-space interpolation scheme to further reduce
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computational costs.

RSM depends on the assumption that light sources have a single centre of pro-
jection. It is this assumption that allows the indirect lighting to be computed
using the rasterisation pipeline, but this also means that area light sources can-
not be supported. RSM accounts for one indirect light bounce and does not
handle self-shadowing. However, the algorithm can be extended to handle self
shadowing by treating the VPLs as shadow casting lights. But, evaluating a full
shadow map for each VPL is much too expensive. Imperfect Shadow Maps can
be used instead to greatly reduce costs [21]. Another route would be to simulate
self shadowing by using an ambient occlusion technique.

3.2 Light Propagation Volumes

Light Propagation Volumes (LPV) [13][14] is an algorithm that uses 3D grids
and spherical harmonics to represent the spatial and angular distribution of
indirect light in a scene. RSMs are used to generate a set of VPLs that are
projected onto spherical harmonic coefficients, which are in turn injected into the
LPV. The distribution of indirect light is propagated through the grid in a cell
by cell manner, and is later sampled to approximate indirect illumination.

This is a proven technique that has been used for indirect diffuse illumination
in many commercial games. However, the 3D grids that are used are a rather
coarse approximation, which introduces accuracy issues (e.g. light may appear
to leak through geometry). The algorithm accounts for one indirect light bounce,
but can possibly be extended to handle multiple bounces. Ambient occlusion
is integrated into the algorithm, and the LPV can also be used to compute
volumetric lighting.

One way to attempt to deal with the mentioned accuracy issues is to use nested
3D grids (commonly referred to as Cascaded LPVs). Doing so allows an increase
in resolution for nearby objects without increasing the resolution for objects
that are farther away. Indirect illumination may also appear to be smeared
out due to the light propagation scheme not accurately modelling diagonal light
propagation. Finally, the spherical harmonics representation and propagation
scheme does not handle glossy surfaces properly. However, the algorithm could
be extended to better handle glossy surfaces by manually marching through the
LPV along the reflection direction and correcting for the smearing caused by
the propagation scheme.

3.3 Voxel Cone Tracing

Voxel Cone Tracing [6][5] uses a sparse voxel octree to store the direct illumina-
tion in the scene. Indirect illumination can be sampled from this data structure
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by tracing cones in a fashion that is similar to final gathering. The algorithm
supports indirect diffuse and specular lighting. Similar to Light Propagation
Volumes, Voxel Cone Tracing suffers from light leaking due to the coarse ap-
proximation of the scene geometry. The authors that initially proposed the
algorithm have reported that it performs better than Light Propagation Vol-
umes, both in terms of quality and performance [6].

Voxel Cone Tracing natively supports single bounce indirect diffuse and specular
illumination. While it could theoretically support multiple light bounces by
voxelising the scene numerous times, it seems unlikely that this adaptation will
be used in real-time applications. The algorithm’s complexity and high video
memory consumption (roughly 1024 MB for the Sponza Atrium scene) appear
to be its most limiting factors.

3.4 Image Space Photon Mapping

Image Space Photon Mapping (ISPM) [17][16] is very similar to traditional
photon mapping, but uses the assumptions of point lights and a pinhole camera
to execute parts of the photon mapping algorithm in the rasterisation pipeline
of GPUs. It supports diffuse and specular lighting, but is not well suited to
handle refractive surfaces.

The photon mapping algorithm is a good candidate for the computation of
indirect illumination. The algorithm introduces bias by reusing previously com-
puted results for multiple exitant radiance computations. This bias, however,
also reduces computational time and high frequency noise, the latter being com-
mon in other unbiased Monte Carlo methods. Photon mapping converges to a
correct solution as the computational budget increases, while being able to de-
grade gracefully by trading off variance for blurring in situations where the
computational budget is restricted.

ISPM’s basis thus lies in a consistent light transport model that is able to
handle an arbitrary number of light bounces and arbitrary BSDFs. However,
since ISPM is based on shadow mapping and deferred shading, it also inherits
their limiting assumptions. It only supports a pinhole camera model, and more
importantly, only point light sources. Another limitation is that, while photons
can be traced through translucent and refractive surfaces, the radiance cannot be
properly estimated for multiple points per pixel without prohibitively expensive
depth peeling.

3.5 Contribution

The ISPM papers show that a photon mapping approach can produce convinc-
ing results in real-time. The method proposed in this research is similar to the
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work in [17][16] in the sense that deferred shading is used to compute direct illu-
mination, and photon mapping is used to compute indirect diffuse illumination.
However, our method runs entirely on the GPU, whereas ISPM performs parts
of the photon tracing process on the CPU. Therefore, our adaptation would
potentially result in an increase in performance since it should better utilise the
available graphics hardware. Performing all computational steps on the GPU
has an added benefit of requiring less data transfers between main memory and
GPU memory, which can again further increase performance. In addition, we
use compute shaders instead of the rasterisation pipeline to perform the photon
emission step, which allows for a higher degree of flexibility (e.g. photons can
be emitted from any type of light source).
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Chapter 4

Methodology

As stated earlier, the main objective of this research is to investigate the feasi-
bility of a fully GPU-based photon mapping approach for the computation of
indirect diffuse illumination in real-time applications. This chapter describes
the methods that are used to complete that objective.

In the first part of this research, we design and implement a prototype system
that uses GPU-based photon mapping to compute indirect illumination. The
design and implementation of this system is covered in chapter 5. The second
part of this research entails the feasibility investigation of the prototype system.
This is done by measuring how the system performs, both in terms of visual
quality and computational speed, under varying circumstances. In addition,
we perform a brief comparative study between our implementation and other
methods currently available in a number of game engines.

4.1 Performance Assessment

For applications whose images are intended to be viewed by humans, the best
approach for quantifying visual image quality is likely via subjective evaluation.
However, a perceptual user study is something that lies outside of the scope
of this project. Instead, we make use of quantitative measures that can – to
varying degrees of success – predict perceived image quality. The computation
of these metrics requires a reference image, which we compute using an offline
renderer that is configured to produce high quality images. One of the metrics
that we use is the mean squared error (MSE), which can be defined as

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

(
I(i, j)−K(i, j)

)2
, (4.1)
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where I is an m×n monochrome image that is used as a reference, and K is its
approximation. Since we are dealing with colour images, we compute the MSE
for each of the three colour channels and compute the average value. Alongside
the raw MSE values, we also report normalised values which are computed by
dividing the results of equation 4.1 by the range of values exhibited by the
reference image:

NRMSE =
MSE

Imax − Imin
. (4.2)

In addition to the MSE metrics, we also use structural similarity as a measure
of image quality. This is an approach to image quality assessment proposed
by Wang et al. and is reported to better predict perceived image quality [23].
Their research provides details on how a structural similarity index (SSIM) can
be computed, which can also be averaged over the image space to produce a
mean structural similarity index (MSSIM). In the evaluation of our prototype
system, we report measured MSSIM values alongside the MSE metrics. In some
cases we also provide images that show the spatial distribution of structural
similarity by directly visualising the SSIM.

Now that we have clarified how image quality is assessed, we can turn to per-
formance assessment in terms of computational speed. This is something that
is relatively straightforward and does not warrant much clarification; we simply
measure the time necessary to render a single frame over a sample set of a thou-
sand frames and report the mean and standard deviation of the given sample
set. These time measurements only include the rendering of direct illumination
(which includes a render queue), the emission and tracing of photons, and the
rendering of indirect illumination. Matters such as handling user input, updat-
ing mesh transformations, swapping the front and back buffers, or matters such
as window handling are thus not included.

4.2 Platform

The results that are reported in this thesis have all been computed on a machine
with an NVIDIA GeForce GTX 760 GPU and an Intel Core i7 860 CPU. The
operating system used is Microsoft Windows 7 64-bit. NVIDIA Optix 3.9.0 and
CUDA 7.5 is what was used to perform the photon emission and tracing steps.
OpenGL was used to perform the direct illumination and the radiance estima-
tion step. Compute shaders and shader storage buffer objects are the newest
OpenGL technologies that are used, which are core components since version
4.3. We compare our implementation to the following systems: CRYENGINE
5.1.0, Unity 5.3.4f1 Personal, and Unreal 4.11.2. We use the Mental Ray plugin
for Autodesk Maya 2016 to produce reference images with which the results of
our system, and those of the aforementioned systems, are compared.
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4.3 Shading Model

Since our system only deals with reflections, we can use a BRDF instead of a
BSDF. The focus of this research is not on BRDF models, but we do include the
one that is used in this research here for completeness. The photon mapping
parts of our system only model diffuse reflections, for which we use a simple
constant Lambertian BRDF

fr,d =
c

π
, (4.3)

where c is the surface albedo. For specular reflections we use a BRDF similar
to one that is used in Unreal 4 according to [15]. The general form is the one
used in the GGX microfacet model, proposed by Walter et al. [22]

fr,s(ωi,ωo) =
F (ωo,h)D(h)G(ωi,ωo,h)

4(n · ωi)(n · ωo)
, (4.4)

where h is the halfway vector between ωi and ωo, which is formally defined as

h =
ωi + ωo

|ωi + ωo|
. (4.5)

In equation 4.4, F is the Fresnel term that describes how light is reflected
from each microfacet, G is the geometrical attenuation factor that accounts for
the shadowing and masking of microfacets, and D is the normal distribution
function that represents the fraction of facets that are oriented in h. Each of
these functions is further defined below.

F (ωo,h) = F0 + (1− F0)(1− cos θ)5 (4.6)

Here, F0 is the specular reflectance at normal incidence, and θ is the angle of
incidence (angle between ωo and h). The normal distribution function that we
use is defined as

D(h) =
α2

π((n · h)2(α2 − 1) + 1)2
, (4.7)

where α is simply the surface roughness parameter squared (roughness ∈ [0, 1]).
Finally, the geometric attenuation factor is defined as

k =
(roughness + 1)2

8

G1(v) =
n · v

(n · v)(1− k) + k

G(ωi,ωo,h) = G1(ωi)G1(ωo).

(4.8)
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Chapter 5

Design and
Implementation

This chapter describes the design and implementation of our prototype system.
First, we provide an overview of the rendering system as a whole, and afterwards
we delve more deeply into its individual components. Since the focus of this
research is on indirect diffuse illumination, that is the component on which we
provide the most details.

5.1 Rendering Overview

The hybrid rendering system that was developed during this research calcu-
lates direct illumination and indirect diffuse illumination separately. In order
to compute the radiance at a given point due to direct illumination, we only
need to consider the material parameters of its surface and the properties of
the light sources that illuminate it (if shadows are taken into account, things
become more complicated; our research ignores direct shadows). In contrast,
if we want to compute the radiance at a point due to indirect illumination, we
need to consider the entire scene (or at least large parts of it) so that we can
account for light bouncing around and interacting with multiple surfaces. It is
because of this difference that the computation of direct illumination is much
less costly than that of indirect illumination. Figure 5.1 shows direct (diffuse
and specular) and indirect (diffuse) illumination visualised separately, as well
as a final composited render in which both can be observed.

We have already established that our system uses photon mapping to compute
indirect diffuse illumination. Direct illumination is computed separately via
deferred shading. This is a technique that decouples rendering of the scene
from the lighting process in order to avoid having to re-render the scene for
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(a) Direct Illumination

(b) Indirect Diffuse Illumination

(c) Composite Image

Figure 5.1: Images showing direct and indirect illumination separately as well as
a composite of the two. Note the specular reflections that are present in figure 5.1a
(most prominent on the ceiling) and absent in figure 5.1b. Figure 5.1b shows colour
bleeding from the red and green walls onto the other surfaces. Figure 5.1c shows a
composite of the two components, where both of these effects can be observed.
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each light pass. It does so by rendering the scene geometry once; but instead of
directly rendering it to a shaded output image, it renders certain information to
a special purpose buffer so that it can be accessed in later screen-space lighting
passes. This buffer is called a geometry-buffer (often abbreviated as G-Buffer)
and typically consists of multiple textures. The contents of the G-Buffer, as well
as its layout, varies between applications and lighting models.

Deferred shading allows us to render simple bounding geometry for light sources
(the intent here is to have the geometry bound the surfaces to be shaded, not
just the light source), which means that the scene geometry does not have to be
re-rasterised for each light pass. It is of particular importance to our applica-
tion that having a G-Buffer also allows us to easily fetch geometry and material
properties of surfaces during the final shading step of our photon mapping im-
plementation.

Our system’s rendering process can be outlined as follows:

1. Render the scene accounting only for direct illumination

(a) Render scene geometry to G-Buffer

(b) Scatter light geometry for each light source and accumulate shading
results in an output texture

2. Fill photon map with indirect photons

(a) Start photon paths from light sources

(b) Trace paths throughout the scene. Create photons at the closest
intersections and store them in the photon map (exclude the first
bounce, since we are only interested in indirect illumination during
this stage)

3. Assign photons from the photon map to 2D screen-space tiles based on
their position

4. Compute indirect illumination for each pixel in the output image by sam-
pling nearby photons from the tile in which the pixel is located

5. Composite direct and indirect illumination into a final image

This overview glosses over quite a few intricacies and ignores a number of steps.
We provide more details as we delve deeper into different parts of the rendering
process in their respective sections. The computation of direct illumination (step
1) is described in more detail in the next section. How the system computes
indirect illumination (steps 2-5) is covered in section 5.3.
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5.2 Direct Illumination

As mentioned in the previous section, deferred rendering is used to compute the
direct lighting in the scene. In this section, we provide a slightly more detailed
description of how our deferred renderer implementation is designed.

In order to be able to compute shading due to direct illumination, our deferred
renderer first starts a geometry pass. In this pass, information that is required
to perform shading is written to the geometry buffer. In subsequent per-light
passes, fragment threads are only invoked for pixels that are affected by their
respective light source. These threads can access the geometry properties for
that given pixel from the G-Buffer.

The goal of the geometry pass is to store any information needed to shade a
given pixel in the G-Buffer. The contents of the G-Buffer will vary between
applications. The layout that is used in our system is visualised in figure 5.2.
Storing this information is similar to how conventional forward rendering is
done, with the exception that instead of the shader program performing shading
calculations and writing to a single output buffer, it directly writes the relevant
information to the different render targets of the G-Buffer.

In order to perform shading, the rendering system performs two passes per light
source: a stencil pass, and a light pass. The interplay between stencil and light
passes ensure that fragment threads are only invoked for fragments that are
subtended by geometry within the bounding volume of the light source. The
actual shading is performed in the light passes, which write their results into the
accumulation part of the G-Buffer (additive blending is used during the light
passes for cases where a surface is lit by multiple light sources).

Figure 5.2: Visualisation of the layout that is used for the G-Buffer. It consists of
six components; a depth-stencil buffer and five additional render targets. The labels
of the different buffers are shown in black lettering, followed by their internal OpenGL
format in grey. The graphic shows for what purposes RT0-RT4 are used and how
they are structured. Note that the light accumulation component spans the entirety
of RT0, whereas diffuse albedo and roughness only make up parts of the RT1 buffer
(RGB, and A channels respectively).
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1 // Derive l from representative point
2 vec3 R = normalize(reflect(-V, N));
3

4 vec3 centerToR = dot(L, R) * R - L;
5 vec3 representativePoint = L + centerToR *
6 clamp(LightRadius / length(centerToR), 0.0f, 1.0f);
7

8 vec3 l = normalize(representativePoint);

Listing 5.1: Representative Point Method

1 float a = roughness * roughness;
2 float aa = clamp(a + LightRadius / (2 * distance), 0.0f, 1.0f);
3 float sphereNormalization = pow(a / aa, 2);

Listing 5.2: Representative Point Normalisation

5.2.1 Area Lights

In order to achieve real-time area lighting for direct illumination, we have
adopted the representative point method proposed by Karis [15]. Although
this approach could be used for multiple types of area lights (i.e. spheres, disks
and rectangles), our system only supports sphere lights. The main idea behind
the representative point method is that the contribution of an area light is ap-
proximated by treating all of its emitted light as if it were coming from a single
representative point. The result of this approach is that the lighting pipeline
hardly differs from conventional point light computation. The only thing that
changes is the way in which the direction vector towards the light source is cal-
culated, along with an additional normalisation term to ensure that energy is
conserved.

So how do we choose this representative point? One way to do this is to choose
a point that is likely to have a large contribution to the lighting. A reasonable
approximation is to choose a point on the light source that has the smallest
angle to the reflection ray. Listing 5.1 shows how this can be computed in
GLSL code.

By using this representative point approach, we are effectively widening the
specular distribution by the sphere’s subtended angle [15]. If we want to main-
tain energy conservation, then the light’s intensity needs to be normalised for
this widening. Karis suggests the normalisation term shown in listing 5.2 for
the GGX specular BRDF [15].

5.3 Indirect Illumination

In section 5.1 we briefly described the steps that are taken in order to com-
pute indirect diffuse illumination. This section provides more details and delves
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deeper into the individual parts of the process.

The first part of the process is to trace paths throughout the scene and to deposit
indirect photons in the photon map. We use the NVIDIA Optix framework
[19] to perform ray tracing operations on the GPU. The Optix framework is
essentially a flexible ray tracing engine that is built on top of CUDA and as
such can be of excellent use to projects that require rapid prototyping of ray
tracing applications. However, the flexibility of this framework does come at a
cost. Parker et al. have reported seeing a performance penalty of around 30%
when comparing Optix to a manually optimized ray tracer [19].

The way in which we compute the radiance estimate is heavily based on the
work done by Mara et al. [16]. In their research, a number of different methods
for performing the photon density estimation have been compared in terms of
quality and performance. We use the method that seemed most promising out
of the ones examined, which is a 2D-tiled approach. After the photon tracing
stage is complete, the photons in the photon map are assigned to 2D screen
tiles. We do this by constructing a frustum for each of the tiles, which allows
us to perform intersection test between a photon’s influence sphere and a tile’s
frustum. Using this method, we can query for nearby photons in a manner that
is easily parrallelisable and translates well to GPUs. Indirect shading is then a
matter of iterating over the photons that illuminate a pixel and accumulating
their contributions.

Before we delve deeper into how the photon tracing and radiance estimation
phases are executed, we will first go over how pseudo random numbers – which
are used to sample points on light sources as well as directions in the photon
scattering process – are computed on the GPU.

5.3.1 Random Number Generation

Generating samples from a probability density function is something that lies
at the basis of all methods that take a Monte Carlo approach. We use the Tiny
Encryption Algorithm (TEA) [25] for GPU based random number generation.
The study by Zafar et al. shows that the TEA can be used as a random number
generator that satisfies all requirements of a good random number generator
[26]. In addition, the algorithm allows for a trade off in terms of speed and
quality by specifying the number of times it should iterate.

Listing 5.3 shows our implementation of the TEA, and listing 5.4 shows a func-
tion that computes a pseudo random normalised float value from a seed (which
is generated by the TEA function). Since the number of random samples will
be relatively low for our application, we use sixteen rounds for the initial seed
generation and eight rounds for the following random numbers.
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1 template<optix::uint N>
2 optix::uint2 __device__ TEA(optix::uint v0, optix::uint v1)
3 {
4 optix::uint sum = 0u;
5 for(uint i = 0; i < N; ++i)
6 {
7 sum += 0x9E3779B9;
8 v0 += ((v1 << 4) + 0xA341316C) ^ (v1 + sum) ^ ((v1 >> 5) + 0xC8013EA4);
9 v1 += ((v0 << 4) + 0xAD90777D) ^ (v0 + sum) ^ ((v0 >> 5) + 0x7E95761E);

10 }
11

12 return optix::make_uint2(v0, v1);
13 }

Listing 5.3: CUDA implementation of TEA for pseudo random number generation.

1 optix::float2 __device__ Rnd(optix::uint2& prev)
2 {
3 using namespace optix;
4

5 uint2 newSeed = TEA<8>(prev.x, prev.y);
6 prev = newSeed;
7

8 float2 xi = make_float2(newSeed.x & 0x00FFFFFF, newSeed.y & 0x00FFFFFF);
9 return xi / static_cast<float>(0x01000000);

10 }

Listing 5.4: Random number generator based on TEA.

5.3.2 Photon Tracing

As mentioned before, we use the NVIDIA Optix framework to perform ray
tracing on the GPU. The first step to our photon tracing sequence is to emit
a number of photons from the light sources in the scene. The photon emission
phase is computed in an Optix ray generation program, which serves as an entry
point for the Optix ray tracing pipeline.

5.3.2.1 Photon Emission

The photon emission kernel is responsible for initialising a payload data struc-
ture that is used throughout the path that a ray follows. This payload is acces-
sible and modifiable in following invocations of ray intersection programs. In
our case, this data structure is composed of radiant power, a seed for random
number generation, and the depth of the current ray in its path (see listing 5.5).
Initialising this structure is the first action that is performed by the photon
emission program. The radiant power is initialised with the light source’s in-
tensity divided by a factor of the number of paths that will be generated. The
seed value is initialised by calling the TEA function (shown in listing 5.3) with
the current kernel invocation’s launch index as its seed. Finally, the depth value
is set to zero.

The next step is to generate a point on a light source that can be used as the

23



1 struct RPMH_ALIGN(32) PhotonTracingPRD
2 {
3 optix::float4 power;
4 optix::uint2 seed;
5 optix::uint depth;
6 optix::uint padding;
7 };

Listing 5.5: Definition of the payload structure used during the ray tracing process.

origin for the first ray in its path. Since we are dealing with spherical area
lights, we need to be able to generate points on the surface of a sphere. In
addition, these points should ideally be spaced out uniformly over the surface
of the sphere. The Halton and Hammersley sequences are both low discrepancy
sequences that can be used in situations like this [20]. We have opted for the
Hammersley sequence since we always know how many samples need to be
generated. The two-dimensional Hammersley sequence is based on the simpler
one-dimensional van der Corput sequence, which is in turn given by the radical
inverse function in base 2. This radical inverse function can be thought of as
mirroring the binary representation of its input around the decimal point. The
floating point implementation of the radical inverse function, along with example
tables and images to make it clearer how this function works can be found in
the book by Pharr and Humphreys [20]. See listing 5.6 for an implementation
of the radical inverse function in base 2 that uses bitwise operators.

Now that we have described how the low discrepancy number sequences are
computed, we can move on to how they are used to sample points on the surface
of a sphere light. Since the numbers computed from the Hammersley sequence
are two-dimensional, it seems natural to interpret these as spherical coordinates.
However, doing so will cause the points to clump up near the poles of the sphere
and not have a uniform distribution (this is visualised in figure 5.3a). Instead,

1 float __device__ RadicalInverseUint32(optix::uint bits)
2 {
3 bits = (bits << 16u) | (bits >> 16u);
4 bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
5 bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
6 bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
7 bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
8 return ((bits >> 8) & 0xFFFFFF) / float(1 << 24);
9 }

10

11 optix::float2 __device__ Hammersley(optix::uint i, optix::uint N)
12 {
13 return optix::make_float2(float(i) / float(N), RadicalInverseUint32(i));
14 }

Listing 5.6: Function implementation that computes elements of the Hammersley
sequence using the radical inverse function.
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(a) Uncorrected Sphere Sampling
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(b) Corrected Sphere Sampling

Figure 5.3: Images showing the difference in direct interpretation of samples as
spherical coordinates (left) and the application of the correction defined in equation
5.1 (right).

we use the following correction

θ = 2πξ1

φ = cos−1(2ξ2 − 1),
(5.1)

which gives spherical coordinates representing points that do have a uniform
distribution over the unit sphere (shown in figure 5.3b)[24]. We then use the
following, which yields the Cartesian coordinates of points on the unit sphere.

u = cosφ

x =
√
1− u2 cos θ

y =
√
1− u2 sin θ

z = u

(5.2)

Since not all spherical light sources have the same dimensions as the unit sphere,
we scale the Cartesian coordinates with the light source’s radius. Adding the
light source position to the scaled sample results in the origin of the first ray
that corresponds to the sample.

After computing the ray origin for a given photon emission program invocation,
all that remains is to compute the ray’s direction and to start the ray tracing
process. To compute the ray’s direction (both in the photon emission phase and
in the photon scattering events that we will describe later) we apply importance
sampling. Since we only compute indirect diffuse lambertian scattering, impor-
tance sampling can be implemented relatively easily by using cosine weighted
sampling. Malley’s method of generating these cosine weighted points is to com-
pute points uniformly on the unit disk and to then project these onto the unit
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hemisphere [20]. Computing points uniformly on the unit disk can be done as
such:

r =
√

ξ1

θ = 2πξ2.
(5.3)

These coordinates can then be converted to Cartesian coordinates and be pro-
jected onto the unit hemisphere by computing

x = r cos θ

y = r sin θ

z =
√
1− ξ1.

(5.4)

Once the payload structure has been initialised and the ray’s origin and direction
vectors have been computed, we are ready to continue this ray’s tracing process
by invoking the rtTrace function. The entire photon emission kernel is shown
in listing 5.7.

1 #include <optix_world.h>
2

3 #include "PhotonTracingTypes.h"
4 #include "sampling_utils.h"
5

6 using namespace optix;
7

8 rtDeclareVariable(uint, launchIndex, rtLaunchIndex, );
9 rtDeclareVariable(rtObject, topObject, , );

10

11 rtDeclareVariable(float, sceneEpsilon, , );
12 rtDeclareVariable(uint, numPaths, , );
13

14 rtDeclareVariable(float3, lightPosition, , );
15 rtDeclareVariable(float3, lightIntensity, , );
16 rtDeclareVariable(float, lightRadius, , );
17

18

19 RT_PROGRAM void PhotonEmission()
20 {
21 PhotonTracingPRD prd;
22 prd.power = make_float4(lightIntensity / float(0.01f * numPaths), 1.0f);
23 prd.seed = TEA<16>(launchIndex, launchIndex * 1664525u);
24 prd.depth = 0;
25

26 float2 xi = Hammersley(launchIndex, numPaths);
27 float3 sphereSample = lightRadius * UniformSampleUnitSphere(xi);
28 float3 rayOrigin = lightPosition + sphereSample;
29 float3 rayDirection = CosineSampleHemisphere(normalize(sphereSample), Rnd(prd.seed));
30

31 Ray ray = make_Ray(rayOrigin, rayDirection, 0, sceneEpsilon, RT_DEFAULT_MAX);
32 rtTrace(topObject, ray, prd);
33 }

Listing 5.7: Implementation of the photon emission program.
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5.3.2.2 Photon Scattering

Optix supports three different types of programs that can be invoked based
on how the ray intersects the scene. These are the closest hit, any hit, and
miss programs. In order to implement photon scattering, we do not need the
any hit or miss programs and as such only register a closest hit program that
contains our photon scatting behaviour. This is thus a program that is invoked
whenever the ray tracing system has found the closest surface with which the
ray intersects.

Since we want photons to describe light that is incident on a surface, they need to
be created and deposited in the photon map before they reflect off of the surface.
At this stage, the photon map is simply an array of structures that describe
the photon’s position, incoming power, and incident direction (see definition of
OptixPhoton in listing 5.8). In order to keep the size of this photon structure
at 32 bytes, we’ve chosen to encode the direction vector into two float values
here, and later decode the direction vector when the photon structures need
to be read. The encoding/decoding scheme we use is the Octahedral Normal
Vector (ONV) method as described by Meyer et al. and Cigolle et al. [18][3]
(it is called oct instead of ONV in the work by Cigolle et al.). We show the
implementation of the encoding function in listing 5.9 (the decoding function is
shown in listing 5.16 on page 35).

Since we are dealing with a large number of threads running in parallel, we
need a system in place that guarantees each thread is able to safely deposit
photons into the photon buffer. To achieve this we use a shared counter that
is atomically incremented whenever a thread wishes to deposit a photon. This

1 struct RPMH_ALIGN(32) OptixPhoton
2 {
3 optix::float3 position;
4 optix::float3 power;
5 optix::float2 direction;
6 };

Listing 5.8: Definition of photon during the photon tracing process.

1 float2 __device__ SignNotZero(const float2& v)
2 {
3 return make_float2((v.x >= 0.0f) ? +1.0f : -1.0f, (v.y >= 0.0f) ? +1.0f : -1.0f);
4 }
5

6 float2 __device__ ONVEncode(const float3& v)
7 {
8 float2 p = make_float2(v) * (1.0f / (abs(v.x) + abs(v.y) + abs(v.z)));
9 return (v.z <= 0.0f) ? ((1.0f - make_float2(abs(p.y), abs(p.x))) * SignNotZero(p)) : p;

10 }

Listing 5.9: Functions that encode float3 direction vectors to two floats using the
ONV method.
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counter’s old value is then used as an index for the photon buffer. When a
photon has been deposited in the photon buffer – and the maximum path depth
has not yet been reached – the kernel generates new random numbers, selects
an outgoing direction using importance sampling, attenuates the photon power
and finally updates the payload structure. After this, the ray tracing process
can continue along its path, possibly resulting in additional program invocations
and eventually resulting in the photon buffer being filled with indirect photons.
The entirety of the photon scattering program is shown in listing 5.10.

5.3.3 Radiance Estimate

The objective of the radiance estimate step is to approximate the outgoing
radiance that is directed towards the camera from a given surface. The method
applied in this research is a 2D-tiled approach based on the work of Mara et
al. [16]. We summarise the process here briefly and provide more details in the
following sections.

The screen is first divided into a number of two dimensional tiles whose bounds
are used to construct frustra. These frustra are in turn used to assign photons to
certain tiles based on whether the photons and tile frustra intersect. During the
indirect shading of a given pixel, nearby photons can be sampled by iterating
over the photons that are stored in the tile encompassing that pixel. Using the
set of nearby photons, we can approximate the indirect diffuse component of
the reflectance equation (shown in equation 2.6 on page 8). This process will be
described in more detail later on; first, we delve into how photons are assigned
to the specific tiles.

5.3.3.1 Photon Counting and Tile Insertion

For this part of the algorithm, the objective is to create a data structure that
allows us to sample photons that are spatially near to (areas of) surfaces in the
scene that are represented by pixels in the G-Buffer. The use case is that while
a given pixel is being shaded, we want to be able to iterate over a relatively
small subset of nearby photons. The research by Mara et al. [16] compares
several methods that do this in real-time, both in terms of visual quality and
performance. Based on the results of their research, we have chosen to adopt
a 2D-tiled approach. This method divides the viewport into a number of 2D-
tiles. The bounds of these tiles are used to create frustra that are used to
assign photons to the corresponding tile based on whether their influence sphere
intersects the tile’s frustum.

Most of the radiance estimate is performed using OpenGL compute shaders.
This means that the tiled photon map will consist of several shader storage
buffers. The first of these buffers, which we call the photon buffer, is the raw
set of photons that is the result of the photon tracing stage (this buffer is
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1 #include <optix_world.h>
2

3 #include "PhotonTracingTypes.h"
4 #include "sampling_utils.h"
5

6 using namespace optix;
7

8 rtBuffer<OptixPhoton> outputBuffer;
9 rtBuffer<uint> photonCountBuffer;

10

11 rtDeclareVariable(rtObject, topObject, , );
12 rtDeclareVariable(float, sceneEpsilon, , );
13 rtDeclareVariable(uint, maxPathDepth, , );
14 rtDeclareVariable(uint, maxNumPhotons, , );
15

16 rtDeclareVariable(float3, Kd, , );
17 rtDeclareVariable(float, lambertianProbability, , );
18

19 rtDeclareVariable(Ray, ray, rtCurrentRay, );
20 rtDeclareVariable(float, t_hit, rtIntersectionDistance, );
21 rtDeclareVariable(PhotonTracingPRD, prd, rtPayload, );
22

23 rtDeclareVariable(float3, shadingNormal, attribute shadingNormal, );
24 rtDeclareVariable(float3, geometricNormal, attribute geometricNormal, );
25

26 RT_PROGRAM void ClosestHit()
27 {
28 float3 hitPosition = ray.origin + t_hit * ray.direction;
29

30 // We are only interested in storing indirect photons
31 if(prd.depth > 0)
32 {
33 uint photonIndex = atomicAdd(&photonCountBuffer[0], 1);
34

35 // Break if output buffer is full
36 if(photonIndex >= maxNumPhotons) return;
37

38 // Deposit photon into output buffer
39 OptixPhoton photon;
40 photon.position = hitPosition;
41 photon.power = make_float3(prd.power);
42 photon.direction = ONVEncode(ray.direction);
43 outputBuffer[photonIndex] = photon;
44

45 // Break if maximum path depth has been reached
46 if(prd.depth >= maxPathDepth) return;
47 }
48

49 float3 omega_i = ray.direction;
50 float3 shadingNormalWS =
51 normalize(rtTransformNormal(RT_OBJECT_TO_WORLD, shadingNormal));
52 float3 geometricNormalWS =
53 normalize(rtTransformNormal(RT_OBJECT_TO_WORLD, geometricNormal));
54 float3 N = faceforward(shadingNormalWS, -omega_i, geometricNormalWS);
55

56 float2 xi = Rnd(prd.seed);
57 float3 omega_o = CosineSampleHemisphere(N, xi);
58 float3 color = make_float3(prd.power) * Kd / M_PIf / lambertianProbability;
59 prd.power = make_float4(color, 1.0f);
60

61 prd.depth++;
62

63 Ray newRay = optix::make_Ray(hitPosition, omega_o, 0, sceneEpsilon, RT_DEFAULT_MAX);
64 rtTrace(topObject, newRay, prd);
65 }

Listing 5.10: Implementation of the photon scattering process.
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currently copied from GPU memory to main memory and back to GPU memory
since we are switching from a CUDA buffer to an OpenGL buffer). The second
buffer contains indices to the photons in the photon buffer. The tiled structure
is introduced by the third buffer, which we call the tile metadata buffer. This
buffer contains elements that each represent a tile and describe where the photon
indices that belong to this tile can be found (this is achieved by keeping track of
the number of photons that intersect this tile as well as an offset into the photon
index buffer). See listing 5.11 for the GLSL declaration of these buffers.

To avoid having to over-allocate the photon index buffer, we have split the tiling
process into two phases. These two phases are very similar to one another; they
construct frusta based on tile bounds and perform intersection tests between
these and the photon’s influence spheres. The first phase, however, only counts
the number of photons that intersect a tile’s frustum and stores this information
in the tile metadata buffer. After all kernels have completed the photon counting
process, we iterate over the elements in the tile metadata buffer on the CPU,
setting the index offsets to their correct values by keeping count of the total
number of indices in all preceding tiles. At this point the photon index buffer
is allocated so that it can be populated during the tile insertion pass.

As mentioned previously, the photon counting and tile insertion kernels are very
similar to one another. Thus, we will only go through the implementation of
the tile insertion pass. Listing 5.12 partially shows the code that is used as
the tile insertion kernel. Both the photon counting and tile insertion passes

1 struct Photon
2 {
3 vec4 position;
4 vec4 power;
5 };
6

7 struct TileMetadata
8 {
9 uint offset;

10 uint numPhotons;
11 };
12

13 layout (binding = 0, std430) buffer photonBuffer
14 {
15 Photon photons[];
16 };
17

18 layout (binding = 1, std430) buffer photonIndexBuffer
19 {
20 uint photonIndices[];
21 };
22

23 layout (binding = 2, std430) buffer tileMetadataBuffer
24 {
25 TileMetadata tileMetadata[];
26 };

Listing 5.11: GLSL declaration of the buffers and their accompanying structs that
are used during the radiance estimation phase.
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1 #version 430
2 #define USE_HIGH_RES_TILES
3 include(Commons.c.glsl)
4

5 layout (binding = 0) uniform sampler2D depthStencil;
6

7 uniform uvec2 gBufferDimensions;
8 uniform mat4 projectionMatrixInv;
9 uniform mat4 viewMatrix;

10 uniform uint numPhotons;
11

12 shared uint localIndexCounter;
13 shared uint localZMin;
14 shared uint localZMax;
15

16 include(PhotonTilingUtils.c.glsl)
17

18 void main()
19 {
20 uint localIndex = gl_LocalInvocationIndex;
21 uint tileIndex = gl_WorkGroupID.x + gl_WorkGroupID.y * gl_NumWorkGroups.x;
22

23 // Initialize shared variables
24 if(localIndex == 0)
25 {
26 localIndexCounter = 0;
27 localZMin = 0xffffffff;
28 localZMax = 0;
29 }
30

31 barrier();
32 ComputeLocalDepthBounds();
33

34 barrier();
35 float zMin = uintBitsToFloat(localZMin);
36 float zMax = uintBitsToFloat(localZMax);
37 uint offset = tileMetadata[tileIndex].offset;
38

39 vec4 frustumEqn[4];
40 CreateTileFrustumEqn(frustumEqn);
41 for(uint i = localIndex; i < numPhotons; i += NUM_THREADS_PER_TILE)
42 {
43 Photon photon = photons[i];
44 vec4 photonPos = viewMatrix * vec4(photon.position.xyz, 1.0f);
45

46 if(photonPos.z + zMin < photonInfluenceRadius &&
47 -photonPos.z - zMax < photonInfluenceRadius)
48 {
49 if((SignedDistanceFromPlane(photonPos, frustumEqn[0]) < photonInfluenceRadius) &&
50 (SignedDistanceFromPlane(photonPos, frustumEqn[1]) < photonInfluenceRadius) &&
51 (SignedDistanceFromPlane(photonPos, frustumEqn[2]) < photonInfluenceRadius) &&
52 (SignedDistanceFromPlane(photonPos, frustumEqn[3]) < photonInfluenceRadius))
53 {
54 uint idx = atomicAdd(localIndexCounter, 1);
55 photonIndices[offset + idx] = i;
56 }
57 }
58 }
59 }

Listing 5.12: Implementation of the tile insertion kernel.
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are started by calling glDispatchCompute with the number of tiles in the x
and y directions as the number of work groups in the respective directions.
We use a tile size of 8 × 8, which means that each work group consists of
64 threads. Threads within a work group can communicate with each other
through shared variables, which for the most part behave as global variables
for all kernel invocation within the same work group. However, we do have to
manually initialise these shared variables and synchronise the threads so that
shared variable visibility is ensured. We synchronise the threads and ensure
shared variable visibility by calling the barrier() function at certain locations
(see lines 31 and 34). This function forces synchronisation between all kernel
invocations in the work group, meaning that execution within the work group
will not proceed until all other invocations have reached the barrier. Once the
barrier function exits, all shared variables will be visible to the other invocations
of the work group. The shared variables themselves are declared at lines 12 to
14 and are initialised by a single designated kernel invocation within the work
group at lines 24 to 29.

Before we construct the frustra we first determine the minimum and maximum
depth value that is present in the G-Buffer within the bounds of the tile. Each
kernel invocation can correspond to a single pixel from the G-Buffer. This means
that all we have to do is read the depth value for the given thread from the G-
Buffer and perform atomic minimum and maximum operations on the shared
variables that keep track of the lowest and highest depth values. This is done
in the ComputeLocalDepthBounds() function, of which the implementation is
shown in listing 5.13. Note that the localZMin and localZMax variables are
unsigned integers despite our depth values being stored as floats. This is due
to the fact that the atomic operations that can be used on shared variables
only support signed and unsigned integers. Thus, we reinterpret the depth
value as an unsigned integer before applying the atomic operations (see line 8 in
listing 5.13) and again reinterpret the unsigned integer as a float after we have
found the minimum and maximum values (see lines 35-36 in listing 5.12). The
uintBitsToFloat and floatBitsToUint functions preserve the floating-point
bit-level representation.

1 void ComputeLocalDepthBounds()
2 {
3 vec2 texCoord = vec2(gl_GlobalInvocationID.xy + 0.5f) / vec2(gBufferDimensions);
4 float z = texture(depthStencil, texCoord).r;
5

6 if(z != 0.0f)
7 {
8 uint linearZ = floatBitsToUint(LinearizeDepth(z));
9 atomicMin(localZMin, linearZ);

10 atomicMax(localZMax, linearZ);
11 }
12 }

Listing 5.13: Implementation of the ComputeLocalDepthBounds() function.
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The final part of the tile insertion kernel is to construct frustra based on the
tile bounds, and to perform intersection tests between them and the photon
influence spheres. Each kernel invocation creates plane equations for the four
sides of the frustum by calling the CreateTileFrustumEqn() function (see list-
ing 5.14 for the implementation details). The construction of the frustum plane
equations, as well as the methods we use for photon-tile intersection tests, are
based on the light culling methods shown in the work by Harada et al. in [9] (at
the time of writing AMD has also published code samples that show additional
examples of how this can be done).

We divide the photons over the kernel invocations by using a for-loop that starts

1 vec4 CreatePlaneEquation(vec4 v1, vec4 v2)
2 {
3 return vec4(normalize(cross(v1.xyz, v2.xyz)), 0.0f);
4 }
5

6 float SignedDistanceFromPlane(vec4 p, vec4 planeEqn)
7 {
8 return dot(planeEqn.xyz, p.xyz);
9 }

10

11 void CreateTileFrustumEqn(out vec4 frustumEqn[4])
12 {
13 uvec2 correctedWindowDimensions = gl_WorkGroupSize.xy * gl_NumWorkGroups.xy;
14 vec2 corrDim = vec2(correctedWindowDimensions);
15

16 uvec2 pMin = gl_WorkGroupSize.xy * gl_WorkGroupID.xy;
17 uvec2 pMax = gl_WorkGroupSize.xy * (gl_WorkGroupID.xy + 1);
18

19 vec4 frustum[4];
20 frustum[0] = ProjectionToView(vec4(
21 pMin.x / corrDim.x * 2.0f - 1.0f,
22 pMin.y / corrDim.y * 2.0f - 1.0f,
23 1.0f, 1.0f));
24

25 frustum[1] = ProjectionToView(vec4(
26 pMax.x / corrDim.x * 2.0f - 1.0f,
27 pMin.y / corrDim.y * 2.0f - 1.0f,
28 1.0f, 1.0f));
29

30 frustum[2] = ProjectionToView(vec4(
31 pMax.x / corrDim.x * 2.0f - 1.0f,
32 pMax.y / corrDim.y * 2.0f - 1.0f,
33 1.0f, 1.0f));
34

35 frustum[3] = ProjectionToView(vec4(
36 pMin.x / corrDim.x * 2.0f - 1.0f,
37 pMax.y / corrDim.y * 2.0f - 1.0f,
38 1.0f, 1.0f));
39

40 for(uint i = 0; i < 4; ++i)
41 {
42 frustumEqn[i] = CreatePlaneEquation(frustum[i], frustum[(i + 1) % 4]);
43 }
44 }

Listing 5.14: Implementation of functions used to create frustum plane equations
and perform distance tests.
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on the local thread index (this is the index of a thread within the work group)
and is incremented by the number of threads per tile (see line 41 in listing
5.12). Each photon’s position is then transformed into view space and a series
of tests are performed to determine if the photon’s influence sphere intersects
the frustum (lines 43-57 in listing 5.12). If a photon’s influence sphere is found
to be intersecting the frustum, we increment the shared localIndexCounter

variable and insert the photon’s index into the photon index buffer (lines 54-55
in listing 5.12).

After the photon counting and tile insertion passes have finished executing, the
photon map (which now consists of the photon buffer, the photon index buffer
and the tile metadata buffer) will be filled with the necessary information needed
to perform the indirect shading pass.

5.3.3.2 Shading Indirect Illumination

Computing the outgoing radiance at a visible surface in the scene is now rela-
tively straightforward. For a given pixel we can now determine what the corre-
sponding tile is, sample the nearby photons by iterating over the relevant parts
of the photon map, and finally perform shading for the given pixel. Seeing as
the number of photons that will be used will generally be relatively low, it is
important that the radiance estimate is filtered so that edges of the photon
influence spheres do not become discernible. There are of course multiple ways
in which this can be done, but we have chosen to use a simple cone filter as
described by Jensen [11]. This filter assigns a weight, wp, to photons based on
the distance between the photon and the surface area that is being shaded. The
photon weights are computed as

wp = 1− dp
kr

, (5.5)

where dp is the distance between the photon and the surface area being shaded,
k is a filter constant that characterises the filter, and r is the maximum distance
allowed between the photon and the surface area. The normalisation term for
this filter is 1 − 2

3k , which means that the radiance can be approximated by
computing

Lr(x,wo) ≈
∑N

p=0 fr(x,wi,wo)Φp(x,wi)wp

(1− 2
3k )πr

2
. (5.6)

Listing 5.15 shows the GLSL implementation of the radiance estimation func-
tion. The BRDF evaluation is relatively simple since we only compute the diffuse
component of indirect illumination. Most of the function revolves around iterat-
ing over the photons that are relevant for the given tile, retrieving information
from the photon buffers and transforming this data so that equation 5.6 can
be evaluated correctly. Note that the implementation looks slightly different
from equation 5.6. This is due to the filter constant k, which we have left at 1.
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1 vec3 RadianceEstimate(uint tileIndex, vec3 albedo, vec3 N, vec3 positionVS)
2 {
3 TileMetadata tile = tileMetadata[tileIndex];
4 uint indexOffset = tile.offset;
5 uint numPhotonsInTile = tile.numPhotons;
6

7 vec3 accumulation = vec3(0.0f);
8 for(unsigned int i = 0; i < numPhotonsInTile; ++i)
9 {

10 Photon photon = photons[photonIndices[indexOffset + i]];
11 vec3 photonPosition = photon.position.xyz;
12 vec3 photonPower = photon.power.xyz;
13 vec3 photonDirection = ONVDecode(vec2(photon.position.w, photon.power.w));
14

15 vec3 photonPositionVS = (viewMatrix * vec4(photonPosition, 1.0f)).xyz;
16 float dist = distance(photonPositionVS, positionVS);
17 if(dist > photonInfluenceRadius) continue;
18

19 vec3 L = -normalize(rotationMatrix * photonDirection);
20 float NdotL = clamp(dot(N, L), 0.0f, 1.0f);
21 float photonWeight = 1 - (dist / photonInfluenceRadius);
22 accumulation += photonPower * photonWeight * albedo / PI * NdotL;
23 }
24

25 accumulation /= (1.f - 2.f / 3.f) * PI * photonInfluenceRadius * photonInfluenceRadius;
26 return accumulation;
27 }

Listing 5.15: GLSL implementation of the radiance estimation function.

1 vec2 SignNotZero(vec2 v)
2 {
3 return vec2((v.x >= 0.0f) ? +1.0f : -1.0f, (v.y >= 0.0f) ? +1.0f : -1.0f);
4 }
5

6 vec3 ONVDecode(vec2 e)
7 {
8 vec3 v = vec3(e.xy, 1.0f - abs(e.x) - abs(e.y));
9 if(v.z < 0.0f) v.xy = (1.0f - abs(v.yx)) * SignNotZero(v.xy);

10 return normalize(v);
11 }

Listing 5.16: GLSL implementation of functions that decode two floats to a vec3

using the ONV method.

Additionally, we show the implementation of the ONVDecode function in listing
5.16. This function decodes two float values to a three-component float vector.
To see how the photon direction is encoded see listing 5.9 on page 27.

5.3.4 Further Approximations

The indirect illumination scheme we have described so far would still not achieve
acceptable frame rates. In order to improve performance we introduce another
approximation that exploits the low frequency nature of indirect illumination.
We simply render the indirect illumination to a low resolution render target
(we use a size that is one-fourth of the size of the G-Buffer) and sample this
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during the final pass that combines the direct and indirect illumination. Using
linear interpolation will for the most part provide good results that are nearly
identical to the radiance estimate at full resolution. However, the results will
deviate greatly around geometry edges which will in turn appear blurry. To
combat this, we use a simple edge detection scheme and recompute the radiance
estimate around these edges. This edge detection scheme is based on finding
differences in normals and positions of visible surface areas. To do this we
write these normals and positions to low resolution textures in addition to the
estimated radiance. During the final pass that combines direct and indirect
illumination, we sample the normals and positions from both the low resolution
textures and the G-Buffer (full resolution). The normals are compared using a
dot product, whereas the positions are checked using a distance function. If the
normals and positions are similar enough, we sample the indirect illumination
from the low resolution texture using linear interpolation. If either the normals
or positions differ too much we recompute the radiance estimate.

We show the implementation of the pass that renders to a low resolution texture
array in listing 5.17. The implementation is relatively simple; we read the
necessary information from the G-Buffer (lines 26-28), perform the radiance
estimate using the function that was shown in listing 5.15 (line 30), and finally
store the estimated radiance, normal and position in the low resolution texture
array (lines 32-34).

The final pass is shown in listing 5.18. This kernel reads the normals and
positions from both the G-Buffer and the low resolution texture array (lines 28-
31), evaluates whether the precomputed radiance estimate can be used (lines 33
and 36) and responds accordingly (lines 38-39, and line 43). After the indirect
illumination has been computed, we read the direct illumination from the G-
Buffer, combine it with the indirect illumination and finally write the output
back to the light accumulation part of the G-Buffer, which will be displayed at
the end of the frame.

While the approximation that was introduced in this section is generally a sub-
stantial performance increase, we should note that it does introduce a depen-
dency on scene complexity. In complex scenes with many edges (e.g. trees,
mesh fences) it could prove to be ineffective due to the radiance having to be
re-estimated for larger parts of the scene. We visualise the edges found by
this method in all of the scenes that are used in our performance evaluation,
which also includes some scenarios that are pathological for this edge detection
scheme. Finally, it should be kept in mind that our edge detection scheme is
still incomplete. While it performs reasonably well in the detection of edges
in geometry, it completely ignores edges that are caused by changes in surface
materials. This is something that could be included in our method (by checking
for similarity in material properties in addition to normals and positions), but
it is possible that at that point a more general edge detection scheme (e.g. a
Sobel operator) would be more effective.
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1 #version 430
2

3 include(Commons.c.glsl)
4

5 layout (binding = 2) uniform sampler2D RT1; // Kd + Ns
6 layout (binding = 3) uniform sampler2D RT2; // Ks + Ni
7 layout (binding = 4) uniform sampler2D RT3; // Normals
8 layout (binding = 5) uniform sampler2D RT4; // Position
9

10 layout (binding = 6) uniform writeonly image2DArray LowResTextureArray;
11

12 uniform mat4 viewMatrix;
13 uniform mat3 rotationMatrix;
14 uniform uvec2 indirectTextureDimensions;
15

16 const float PI = 3.14159265f;
17

18 include(RadianceEstimate.c.glsl)
19

20 void main()
21 {
22 uint tileIndex = gl_WorkGroupID.x + gl_WorkGroupID.y * gl_NumWorkGroups.x;
23 ivec2 imageCoord = ivec2(gl_GlobalInvocationID.xy);
24 vec2 texCoord = vec2(imageCoord + 0.5f) / vec2(indirectTextureDimensions);
25

26 vec3 albedo = texture(RT1, texCoord).rgb;
27 vec3 N = texture(RT3, texCoord).xyz;
28 vec3 positionVS = texture(RT4, texCoord).xyz;
29

30 vec3 indirectLighting = RadianceEstimate(tileIndex, albedo, N, positionVS);
31

32 imageStore(LowResTextureArray, ivec3(imageCoord, 0), vec4(indirectLighting, 1.0f));
33 imageStore(LowResTextureArray, ivec3(imageCoord, 1), vec4(N, 1.0f));
34 imageStore(LowResTextureArray, ivec3(imageCoord, 2), vec4(positionVS, 1.0f));
35 }

Listing 5.17: GLSL implementation of kernel that renders to the low resolution
texture array.

37



1 #version 430
2

3 #define USE_HIGH_RES_TILES
4 include(Commons.c.glsl)
5

6 layout (binding = 1, rgba32f) uniform image2D RT0;
7

8 layout (binding = 2) uniform sampler2D RT1; // Kd + Ns
9 layout (binding = 3) uniform sampler2D RT2; // Ks + Ni

10 layout (binding = 4) uniform sampler2D RT3; // Normals
11 layout (binding = 5) uniform sampler2D RT4; // Position
12 layout (binding = 6) uniform sampler2DArray LowResTextureArray;
13

14 uniform mat4 viewMatrix;
15 uniform mat3 rotationMatrix;
16 uniform uvec2 gBufferDimensions;
17

18 const float PI = 3.14159265f;
19

20 include(RadianceEstimate.c.glsl)
21

22 void main()
23 {
24 uint tileIndex = gl_WorkGroupID.x + gl_WorkGroupID.y * gl_NumWorkGroups.x;
25 ivec2 imageCoord = ivec2(gl_GlobalInvocationID.xy);
26 vec2 texCoord = vec2(imageCoord + 0.5f) / vec2(gBufferDimensions);
27

28 vec3 N = texture(RT3, texCoord).xyz;
29 vec3 positionVS = texture(RT4, texCoord).xyz;
30 vec3 lowResNormal = texture(LowResTextureArray, vec3(texCoord, 1)).xyz;
31 vec3 lowResPositionVS = texture(LowResTextureArray, vec3(texCoord, 2)).xyz;
32

33 float positionDiff = distance(positionVS, lowResPositionVS);
34

35 vec4 indirect = vec4(0.0f, 0.0f, 0.0f, 1.0f);
36 if(dot(N, lowResNormal) < 0.99f || positionDiff > 0.01f)
37 {
38 vec3 albedo = texture(RT1, texCoord).rgb;
39 indirect.xyz = RadianceEstimate(tileIndex, albedo, N, positionVS);
40 }
41 else
42 {
43 indirect = texture(LowResTextureArray, vec3(texCoord, 0));
44 }
45

46 vec4 direct = imageLoad(RT0, imageCoord);
47 imageStore(RT0, imageCoord, direct + indirect);
48 }

Listing 5.18: GLSL implementation of kernel that combines the direct and indirect
illumination and writes this to the render target that will be displayed.
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Chapter 6

Evaluation

The evaluation of our prototype system is performed in three parts. During this
evaluation, we use a number of objective measures to assess the performance of
our system in terms of visual quality and computational speed (these metrics
have already been discussed in chapter 4). The first two parts of the evaluation
focus on our system in isolation. First, we measure how our system performs
during the rendering of a simple scene while certain system parameters are
varied. Thereafter, we test how computational costs change as scene complexity
is varied. In the third and final part, we perform a brief comparative study
between our prototype implementation and other systems currently available in
game engines.

6.1 Parameter Scaling

The rendering parameters that are most impactful on the performance of our
system are the total number of photons, and the photon influence radius. The
number of photons that are stored in the photon map are indirectly specified via
the total number of photon paths that are initiated. We make this distinction
because, if a photon path never intersects any scene geometry, it will not result in
any stored photons. Since we only compute single-bounce indirect illumination,
the number of stored photons will always be lower than the number of initiated
photon paths. Whenever we report the number of photon paths, we also report
the actual number of stored photons in brackets for completeness.

For this part of the evaluation we use a simple scene that is often used to
showcase indirect illumination. The Cornell box scene consists of a box that is
open on one side (front). The left and right sides are coloured red and green
respectively, while the remaining sides (top, bottom and back) are a light shade
of gray; this is ideal for the demonstration of colour bleeding that is caused by
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indirect diffuse illumination. An additional two boxes are placed in the centre
of the scene. Lighting is provided by a single light source that is positioned near
the centre of the ceiling. A few renders of this scene are shown in figure 6.1.
Figure 6.1a shows the reference image that is used for the quality assessment
of the images produced by our system (later on in the evaluation we use the
same reference image in comparing our system with others). The edge detection
scheme that was mentioned in section 5.3.4 is visualised in figure 6.1c. Note how
edges only make up a small portion of the scene, making this an ideal scenario
for our down-sampling and interpolation scheme.

The first step in evaluating our system is to have it render the Cornell box
scene in various configurations. As mentioned before, we vary the number of
photon paths and the photon influence radius. For each configuration, we mea-
sure a number of metrics as described in chapter 4 (mean frame time, MSE,
and MSSIM). The results of these measurements are shown in table 6.1. For
the mean frame time (column 3) and MSE metrics (columns 5 and 6) a lower
score is better, whereas the opposite is true for the MSSIM metric. The table
is structured so that increments in the number of photons paths are grouped
together. Within each of these groups, the photon influence radius is varied
with each table row. We observe that within each group, the measured image
quality increases as the photon influence radius is increased, up to a certain
point. Increasing the radius beyond this point results in degradation of image
quality despite further increases in computational costs. For all measured pho-
ton path configurations, this point seems to lie around a photon influence radius
of 1.5 (for both the MSE and MSSIM metrics). This is something that is to
be expected, since large photon radii will cause illumination to be smeared out
across larger areas and can additionally introduce inaccuracies in the form of
light leaking through geometry.

The measurements from table 6.1 also show that increasing the number of pho-
tons apparently does not always increase visual quality (according the metrics
that were used). An example of this can be seen in the measurements that use
a photon radius of 1.0; where using a photon count of 3588 yields images of a
higher measured quality than the configuration that uses 5350 photons. These
observations are further reinforced by the fact that – across all measurements
– the best MSE and MSSIM scores are measured with configurations that use
703 and 3588 photons respectively (both with a photon radius of 1.5). However,
it does appear that an increased photon count results in higher image quality
when dealing with a relatively small photon radius. This is something that can
be observed across the rows with a radius of 0.25; those with higher photon
counts consistently score better in terms of measured image quality.

In general we can see that when the number of photons or the photon influence
radius (or both) is increased, computational costs also rise. We also observe
some form of diminishing returns on visual quality; initial increases in quality
come cheaply in terms of computational costs, but these costs increase more
rapidly as visual quality is increased further. The observations made in the
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(a) High quality reference image of the Cornell box scene. This image was rendered using
Mental Ray configured to use 5 million photons, allow multiple indirect bounces, and use final
gathering. Render time: 18 minutes and 49 seconds.

(b) Sample render of the Cornell box scene
created by our prototype system. This im-
age was rendered using 1,000 photon paths
(707 stored photons) and a photon influence
radius of 1.0. Render time: 11.3 milliseconds.

(c) Visualisation of identified edges in the
Conell box scene. Yellow areas are those for
which the down-sampling scheme is deemed
to be inappropriate and for which the radi-
ance estimate is thus recomputed.

Figure 6.1: Renders of the Cornell box scene at 1920×1080 using different rendering
methods.
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Performance Metrics Image Quality Metrics

Photon paths Radius µ (ms) σ (ms) MSE NRMSE MSSIM

500 (341) 0.25 5.4 0.08 902.23 0.1458 0.8621

500 (341) 0.50 5.9 0.05 401.95 0.0973 0.9269

500 (341) 1.00 7.9 0.51 196.09 0.0680 0.9569

500 (341) 1.50 10.9 0.51 160.79 0.0616 0.9646

500 (341) 2.00 13.4 0.38 193.16 0.0675 0.9623

1000 (703) 0.25 5.9 0.08 664.16 0.1251 0.8846

1000 (703) 0.50 6.9 0.12 330.95 0.0883 0.9386

1000 (703) 1.00 11.3 2.24 167.09 0.0627 0.9607

1000 (703) 1.50 16.9 0.34 139.55 0.0573 0.9659

1000 (703) 2.00 22.4 0.30 174.40 0.0641 0.9640

2500 (1778) 0.25 7.2 0.08 502.37 0.1088 0.9122

2500 (1778) 0.50 10.0 1.17 332.16 0.0885 0.9449

2500 (1778) 1.00 20.5 0.36 186.43 0.0663 0.9610

2500 (1778) 1.50 34.6 0.36 143.30 0.0581 0.9661

2500 (1778) 2.00 48.7 2.40 168.71 0.0631 0.9646

5000 (3588) 0.25 9.3 0.09 456.98 0.1038 0.9264

5000 (3588) 0.50 15.1 0.28 329.30 0.0881 0.9491

5000 (3588) 1.00 35.9 0.91 182.96 0.0657 0.9632

5000 (3588) 1.50 64.3 0.28 140.13 0.0575 0.9668

5000 (3588) 2.00 92.7 0.48 165.68 0.0625 0.9649

7500 (5350) 0.25 11.6 0.10 453.26 0.1033 0.9341

7500 (5350) 0.50 20.2 0.69 351.10 0.0910 0.9479

7500 (5350) 1.00 51.6 0.45 200.58 0.0688 0.9619

7500 (5350) 1.50 94.4 0.51 147.34 0.0589 0.9660

7500 (5350) 2.00 136.8 0.61 166.60 0.0627 0.9645

Table 6.1: Measurement results of the first parameter scaling test. Rendering config-
urations are listed in the first two columns, with the number of initiated photon paths
shown in the first column (total number of stored photons is shown in brackets) and
the photon influence radius shown in the second. Table rows are grouped based on
the first column, and sorted within those groups based on the photon influence radius.
Measurements are shown in columns 3 to 7.
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previous paragraphs also indicate that the impact that the two parameters have
on system performance differs considerably between the two. This is something
we explore further in the following part of this evaluation.

6.1.1 Fixed Computational Budget

The measurements in this part of the evaluation are performed similarly to
those in the preceding part. The only change is that the system parameters
are chosen so that images are produced at similar speeds. The objective of this
test is to measure how different distributions of the two parameters compare in
terms of visual quality when the computational budget is fixed. To test this,
we perform measurements using photon influence radii that range from 0.25 to
2.0 in increments of 0.25 and adjust the number of photon paths so that an
arbitrary targeted mean frame time is achieved. We used a photon path count
of 1000 with a photon radius of 1.0 as the baseline configuration, which was
measured to have a mean frame time of 11.4 milliseconds. Each of the other
configurations is selected to have similar computational costs.

The results of this test are shown in table 6.2. Here, we observe that quality
consistently improves as the photon radius is increased (and thus, the number
of photons is decreased), up to a certain point. Where this point lies is different
for the two image quality metrics; the lowest measured MSE is produced by

Performance Metrics Image Quality Metrics

Photon paths Radius µ (ms) σ (ms) MSE NRMSE MSSIM

7000 (4980) 0.25 11.5 0.18 446.30 0.1026 0.9345

2900 (2083) 0.50 11.3 0.52 364.15 0.0926 0.9428

1600 (1125) 0.75 11.4 0.60 266.94 0.0793 0.9515

1000 (703) 1.00 11.4 0.35 167.09 0.0627 0.9607

700 (491) 1.25 11.4 0.56 167.58 0.0628 0.9631

525 (357) 1.50 11.3 0.50 168.22 0.0630 0.9631

425 (286) 1.75 11.4 0.30 177.14 0.0646 0.9641

350 (241) 2.00 11.3 0.82 169.59 0.0632 0.9629

Table 6.2: Measurement results of the parameter scaling test with a soft cap on
computational budget. Rendering configurations are listed in the first two columns,
with the number of photon paths shown in the first column (total number of stored
photons is shown in brackets) and the photon influence radius shown in the second.
Rows are sorted by the photon radius parameter in an ascending order. Measurements
are shown in columns 3 to 7.
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the configuration with a radius of 1.0, while the highest MSSIM value is mea-
sured with the configuration that uses a radius of 1.75. The fact that there is
a drop off in quality when the radius is increased too much is not surprising,
since we have made similar observations in the previous test. The explanation
for this observation is the same; excessively large photon radii will cause illumi-
nation to be spread out across larger areas and result in degradation of visual
quality.

The images that accompany the measurements in table 6.2 are shown in figure
A.1 in the appendix on page 60. These images visually demonstrate the effects of
varying the photon radius setting (and proportional changes in the total number
of photons). In the images with a relatively small photon radius, individual
photons can be distinguished. This gives the images a splotchy appearance. On
the other extreme, using a very high photon radius causes illumination to be
smeared out further over larger areas, which can result in less pronounced colour
bleeding. This can be observed by comparing figure A.1d with figure A.1h; the
indirect illumination on the ceiling is hardly noticeable in the latter, while it is
much more pronounced in the former. Additionally, we show absolute differences
between the images of figure A.1 and the reference image (figure 6.1a) in figure
A.2. This can be thought of as a visualisation of the spatial distribution of errors
in the images that were produced by our system. We observe that increasing the
photon radius spreads out the distribution of errors, which is consistent with our
earlier observations on different photon radii. This same effect can be observed
in the direct visualisations of the measured structural similarity indices, which
are shown in figure A.3.

Table 6.2 suggests that there is a relation between the photon radius, the number
of stored photons, and the associated computational costs (which is in this
case kept relatively constant). To explore this relation further, we have fit a
number of estimators to the measurements of table 6.2 using the Levenberg-
Marquardt algorithm. This investigation includes a linear estimator N = c

r ,
and two quadratic estimators: N = c

r2 , and N = c1
r + c2

r2 . For all of these
equations, N represents the estimated number of photons, r the photon radius,
and c some constants that are optimised to minimise the errors between the
measured data and the estimators. The estimator functions are plotted against
the measurements from table 6.2 in figure 6.2 (the optimal values found for c are
also shown in this chart). We had expected the number of photons to behave
quadratically with respect to the photon radius, since the area of a sphere (or
disk) is also quadratic with respect to its radius. While the estimator that most
closely fits the measured data is a quadratic equation, it does have a different
form than the definition of the area of a sphere. We are currently lacking an
explanation for why this is the case. We have also not performed any additional
measurements to test how well these estimators can predict newly obtained
data.

In order to gain more insight into what parts of the system are computationally
the most expensive, we have performed another series of measurements where
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Figure 6.2: Plots of estimator equations compared to the measurements from table
6.2. The definition of the linear estimator is N = c

r
. The two quadratic estimators are

defined as N = c
r2

and N = c1
r
+ c2

r2
. N represents the estimated number of photons,

r the associated photon radius, and c represents the constants that are shown in the
legend above.

the total frame times are further divided into three categories: direct illumina-
tion, photon tracing and radiance estimate. Direct illumination entails filling
the G-Buffer with geometry data, as well as performing shading due to direct
illumination. Photon tracing is performed by the Optix framework. However,
since the radiance estimate is performed in OpenGL compute shaders, we in-
clude the transfer of the photon buffer to main memory into the photon tracing
category. Transferring the photon buffer back to GPU memory so that it can
be used by the OpenGL compute shaders is included in the radiance estimate
category. Everything that was covered in sections 5.3.3 (Radiance Estimate)
and 5.3.4 (Further Approximations) is also included in the radiance estimate
category.

Figure 6.3 shows the measured distributions of computational costs in a stacked
bar graph. This graph shows that the largest amount of time is spent in the
photon tracing stage, followed by the radiance estimate stage. Direct illumina-
tion is computationally the least expensive category by a rather large margin. It
can be observed that the two leftmost configurations deviate more strongly from
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Figure 6.3: Stacked bar graph showing the distribution of computational costs for
various rendering parameter configurations. The x-axis shows each configuration sep-
arately, labelled by the number of photon paths (photon influence radius is shown in
brackets).

the rest in terms of their distribution (note the considerable jump in direct illu-
mination costs between the first and second configuration, and the higher costs
in terms of the radiance estimate step). We currently lack an explanation for
this. However, since the standard deviations for the two leftmost configurations
are also considerably different from the rest, it is possible that these differences
are a result of inconsistent measuring environments. This is something that has
not been further investigated in this research. Additionally, the fact that pho-
ton tracing costs remain relatively constant between the tested configurations
seems to indicate that the variable costs with regard to the number of photons
is lower than we initially expected. We expected that the configurations with
a high photon count would spend significantly more time in the photon tracing
step, but this is not observable in these measurements. It is possible that the
photon tracing step is dominated by some form of fixed costs. However, this is
also something we do not investigate further, since the Optix framework does
not offer suitable options for further profiling.
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6.2 Scene Complexity

The second part in the evaluation of our system is to investigate how its perfor-
mance is affected by scene complexity. The following tests are set up similarly to
the preceding tests. However, the measurements are only performed on compu-
tational costs. We measure average frame times for a number of configurations,
and simply repeat this process for a variety of scenes.

The first few scenes are variations of the Cornell box scene that was also used
during the previous tests. The first variation replaces the two central boxes
with a model of a happy Buddha statue. This models consists of 1,087,451
triangles, which is a significant increase from the 20 triangles that were used to
represent the two boxes in the first scene. The second scene variation contains
a complex hairball mesh that consists of 2,880,000 triangles and features high-
frequency detail. This object subtends a larger portion of the output image and
is a pathological scenario for our down-sampling and edge detection scheme.
The Cornell box scenes are ideal because of their simplicity and how well-suited
they are for demonstrating indirect illumination. However, since the images
that were rendered with this scene contain large black borders where nothing
is computed (due the rectangular shape not matching particularly well with
modern screen resolutions), we include a different scene that does fully subtend
the output images. This scene models a conference room scene and consists of
331,187 triangles.

Sample renders of the aforementioned scenes are depicted in figure 6.4, along
with the corresponding visualisations of our edge detection method. The Cornell
scenes are each illuminated by a single light source at the top of the scene, near
the middle of the ceiling (light sources are visualised as white spheres in these
images). The conference room scene is illuminated by four light sources that
are specifically placed to dramatise the effects of colour bleeding. One of these
light sources is located in one of the red chairs, causing primarily red indirect
illumination that is most notable on the central part of the ceiling. Another
light is placed in front of the green board and two more are placed next to
the yellowish structure on the far side of the room (causing mostly green and
yellowish indirect illumination respectively).

In terms of our down-sampling scheme, we can observe that the scene in figure
6.4a is close to a best-case scenario, the scene in figure 6.4c is closer to a worst-
case scenario, and the scene shown in figure 6.4b lies somewhere in between. The
conference room scene (figure 6.4d) exposes a limitation in our current edge
detection scheme. In section 5.3.4 we noted that our edge detection scheme
is incomplete since it only considers positions and normals, and thus ignores
changes in material properties. The effects of this can be observed in figure
6.4d; the top border of the green board is not fully recognised as an edge,
resulting in a blurry border in the final output image (this may be difficult to
see in these relatively small images).
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(a) Cornell box scene: two boxes

(b) Cornell box scene: happy Buddha

(c) Cornell box scene: AO hairball

(d) Conference room scene

Figure 6.4: Renders of various scenes (left) alongside their corresponding edge de-
tection visualisations (right). The images of the Cornell box scenes use a 1,000 photon
paths with a radius of 1.0. For the images of the conference room scene, we use the
same number of photon paths, but the radius is set to 2.0.
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The measured average rendering times and associated standard deviations are
shown in tables B.1 to B.4, which can be found on pages 63 to 64 in the appendix.
These tables are structured in a matrix-like fashion, where each cell represents
time measurements made using the corresponding parameters (the number of
photon paths and the photon radii are shown along the left-hand side and the top
respectively). Within each of the tables we see familiar results. Computational
costs increase as either of the two parameters are increased. More interesting are
the results we can extract by comparing the measurements across the different
scenes.

Comparing the measurements for the Cornell box scenes shows us that compu-
tational costs increase across all configurations as scene complexity is increased.
Furthermore, it seems that the ratios between the measured average frame
times of different configurations remain similar between the different Cornell
box scenes. We also measured the distribution of costs for the different Cornell
box scenes using the same parameter configuration for each variation. This is
visualised in figure B.1 on page 65. In this graph we observe that costs increase
proportionally between the photon tracing and radiance estimate stages as scene
complexity is increased.

In the measured frame times for the conference room scene, we observe that
computational cost are considerably higher at the lowest settings, but increase
much less rapidly compared to the Cornell box scenes. The first part is explained
by the higher “effective” resolution used in the conference room scene. While
image resolution is factually the same for every configuration tested in this
research, the Cornell box scenes do not fully subtend the output images, and
as a result contain areas for which no computations need to be performed.
The conference room scene does fully subtend the output image and is thus
a more realistic indication of practical performance. The fact that increasing
the rendering settings has a smaller effect on performance than we observed in
the Cornell box scenes, is a result of the scene simply being larger. Since the
distance between the camera and most of the scene geometry is greater in the
conference room scene, a larger increase in photon radius is needed to trigger
a similar increase in costs. The main conclusion from table B.4 is that our
system is able to produce images of slightly more complex scenes, whilst still
achieving real-time frame rates with an image resolution of 1920 × 1080. The
configuration with a 1,000 photon paths and a radius of 2.0 has a mean frame
time of 25.2 milliseconds, which can be translated to 39.7 frames per second
(the image corresponding to this configuration is shown in figure 6.4d).

6.3 System Comparison

The final part of the evaluation is a brief comparative study between our imple-
mented prototype system, and other systems currently available in some of the
most popular game engines. First, we perform a qualitative analysis of images
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produced by the different rendering systems. Next, we make use of quantita-
tive measures to compare the systems more objectively. Similar to the previous
tests, we make use of a high quality reference image to perform the comparisons.
This reference image is the same one that was used for the parameter scaling
tests described in section 6.1. Our comparison only considers a single image for
each of the rendering systems. In an attempt to make this comparison as fair
as possible, we have attempted to configure each system so that their output
image is as similar as possible to the reference image. We acknowledge that the
manual configuration (and selection of scenes) of the different rendering systems
introduces human bias to this comparison, but we are unaware of any feasible
alternatives. The images produced by the rendering systems, along with the
reference image, are shown in figure 6.5. The absolute differences and struc-
tural similarity indices between the reference image and the output images are
shown in figures C.1 and C.2 respectively (pages 66 and 67).

6.3.1 Qualitative analysis

Comparing the image made with our prototype system to the reference image,
we observe that our system makes a relatively coarse approximation. The image
produced by our system seems fairly similar to the reference image, but some of
the more subtle nuances and finer details are lacking. The soft indirect shadows
(cast by the two central boxes) that can be seen in the reference image are
completely absent. The red and green shading on the front of the tall box is also
something that is not observable in the image produced by our system. However,
it is unsurprising that these types of fine detail are lost in the approximations
that are made. We are, after all, using a large photon radius, and only compute
single-bounce indirect illumination. Illumination seems more evenly distributed
in the reference image, while we observe (circular) areas with higher intensity
in the middle of each of the four surrounding surfaces in the image produced
by our system. This could be the result of a suboptimal photon distribution, or
it could also be caused by differences in shading models (or by a combination
of both). Overall, our system seems to approximate the reference image fairly
successfully. Our system is unable to capture fine details in the configuration
that was used, but this is only natural; substantial concessions need to be made
in order to produce these images at real-time frame rates.

Figure 6.5c shows the Cornell box scene illuminated using CryEngine’s Sparse
Voxel Octree Total Illumination (SVOTI). This experimental solution seems to
build upon the work of Crassin et al. [6]. SVOTI seems to be more flexible than
our system in the sense that it also supports indirect specular illumination (note
that this is not shown in this comparison). In addition, this method supports
dynamic objects. However, this does require rebuilding the SVO representation
on frames where geometry is updated (similar to how the acceleration structure
that our system uses would also need to be updated to reflect changes in ge-
ometry). Nevertheless, since this comparison (or any other tests performed in
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(a) High quality reference image of the Cornell box scene. This image was rendered using
Mental Ray configured to use 5 million photons, allow multiple indirect bounces, and use final
gathering. Render time: 18 minutes and 49 seconds.

(b) Our prototype implementation. Render
time: 13.2 ms

(c) CryEngine (SVOTI). Render time: 17.2
ms

(d) Unity (Enlighten). Render time: 0.2 ms (e) Unreal (LPV). Render time: 8.5 ms

Figure 6.5: Renders of the Cornell box scene at 1920×1080 using different rendering
methods.
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this research) does not make use of dynamic geometry, this is not something
we have investigated. The illumination computed via SVOTI differs from both
figure 6.5a and figure 6.5b. While the red wall and the colour bleeding seen on
the floor is more similar to the reference image than the image produced by our
system, there are some other areas where it differs more than our system. The
colour bleeding on the ceiling in figure 6.5c is most intense in the corners, which
is not the case in the reference image. In addition, the boxes exhibit stronger
colour bleeding on their sides, and the sides that face toward the viewer show
light-grey shading that is not present in the reference image. Finally, the green
wall shows a dark area along the bottom edge, as well as a darker triangle (split
along the wall’s diagonal). We are unsure what is causing the green wall to
be illuminated this way. Perhaps it is an issue caused by malformed geometry
(even though the same geometry does not produce similar artefacts in the other
systems).

Unity does not offer a truly dynamic global illumination solution, instead they
use middle-ware (called Enlighten) that offers something between static and
dynamic global illumination. Implementation details on Enlighten have not
been made public. However, it is presumable that their solution is based on
radiosity. Enlighten pre-computes a number of things for static geometry, this
then allows the static geometry to enjoy global illumination with dynamic light
sources. Dynamic geometry is however not included in the global illumination;
it can receive indirect illumination from static geometry via light probes, but
it can never contribute to the global illumination. The pre-computation step,
along with the fact that Enlighten runs on the CPU, allows it to enjoy a very
small footprint in terms of graphical computation costs. However, since it runs
on the CPU, it does take up resources that are normally used for other matters,
which can potentially result in update delays. Additionally, running parts of
the graphics pipeline on the CPU inherently introduces overhead and latency.
Figure 6.5d shows how Enlighten performs in this comparison. In terms of
visual quality, the results are also fairly similar to the reference image. There
are still some observable differences however. The largest difference seems to
be the shading of the two central boxes; the colour bleeding on the sides seems
much brighter than the reference image, and the front is also illuminated more
strongly. Enlighten does manage to capture the indirect shadows cast by the
two central boxes (none of the other systems do), but its effect is made much
more noticeable and intense.

The image produced by the Unreal implementation of LPVs is shown in figure
6.5e. Unreal also offers static light baking as well as Enlighten, but LPVs is the
only dynamic global illumination solution that is offered. This is a somewhat
older method that has been applied in a fair number of games. The image
shown in figure 6.5e differs greatly from any of the preceding images. However,
it is not clear to what degree this can be attributed to the algorithm itself.
The scene that was used for this part of the comparison is significantly different
from the others; instead of having a single point light near the ceiling, the
scene features two directional shadow-casting lights (one pointing precisely to
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the left, the other to the right), simply because those are the only light types
that are supported. Visually, there is not much that can be said about these
results, except that there is some form of colour bleeding and that shadows are
included.

6.3.2 Quantitative Analysis

In this part of the comparison, we examine both computational costs and ob-
jective measures of visual image quality. In terms of computational costs, we no
longer measure averages across a fixed number of frames, since we rely on the
internal profiling tools provided by the various game engines. The same visual
quality metrics that have been used throughout the evaluation are computed
for the images shown in figure 6.5 and are shown in table 6.3 (along with the
measured frame times).

These results show that – in the configurations that were used – our system
produces images around 30% faster than CryEngine’s SVOTI implementation,
but approximately 55% slower than Unreal’s LPVs implementation. The run-
time footprint of Enlighten is much lower than the other methods, but only has
limited support for dynamic scenes. The pre-computation step for Unity’s con-
figuration took about 5 minutes and the data takes up around 180 megabytes
(both of these can be reduced or increased, but doing so will also affect image
quality). In terms of computational costs, LPVs appears to be the least ex-
pensive of the dynamic global illumination methods that we investigated. It is
likely that this method was actually faster than the measured 8.5 milliseconds,
since the frame times hardly changed when we disabled global illumination via
LPVs.

The computed image quality metrics are shown on the right-hand side of ta-
ble 6.3, and the absolute differences and structural similarity indices are also
visualised in figures C.1 and C.2. According to these measurements, our sys-
tem produces images that are most similar to the reference image, followed

Image Quality Metrics

System Frame Time (ms) MSE NRMSE MSSIM

Prototype Implementation 13.2 140.40 0.0575 0.9648

CryEngine (SVOTI) 17.2 579.38 0.1168 0.8990

Unity (Enlighten) 0.2 406.25 0.0978 0.9398

Unreal (LPV) 8.5 3589.49 0.2908 0.8461

Table 6.3: Measured frame time and image quality metrics for the images shown in
figures 6.5b-6.5e.
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by Unity’s usage of Enlighten, CryEngine’s SVOTI, and Unreal’s LPVs, in de-
scending order of similarity. It is unclear whether this ordering would remain
the same if each system was given a fixed computational budget, as opposed to
the quality driven set-up that is used in this comparison.

Finally, we do want to note that this comparison has a number of issues, and we
consider it to be incomplete. The first issue is that a simple scene such as the
Cornell box scene is very favourable for our down-sampling scheme described
in section 5.3.4. We have measured the effects of increasing scene complexity
on the performance of our system in section 6.2, but to what degree the other
systems behave similarly is unclear at this point. Secondly, even though we
have examined systems that are intended for dynamic global illumination, the
comparison and tests that have been executed feature no dynamic lighting or
geometry at all. It is likely that this will prove to be a hurdle for our system,
since moving light sources or geometry will cause photons to move around and
possibly result in flickering. This aspect is not investigated in this research and
thus remains something to be explored in the future.
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Chapter 7

Discussion

Now that the design, implementation and evaluation of our prototype system
has been covered, we can proceed with the discussion of our research results.
The performed analyses indicate that our prototype can fairly successfully ap-
proximate indirect illumination, for restricted scenes, at real-time frame rates
(using hardware that could be classified as low to mid-range). Subtle nuances
that can be observed in high-quality reference images are lost due to approx-
imation, but it is possible that these can be reintroduced to some degree as
the implementation is optimised or if more computational power is otherwise
made available. The performed comparative study indicates that our system is
competitive with other methods currently available in some of the more popular
game engines (higher visual quality for similar computational costs).

Moreover, our current implementation is far from optimised. NVIDIA has re-
ported Optix (which we use to perform photon tracing) performing 25-35%
slower than a hand-optimised domain-specific ray tracer [19]. It seems reason-
able that we can expect a similar increase in performance in the photon tracing
stage should we implement a manually optimised ray tracer. Doing so would
also likely reduce frame times by an additional 1-2 milliseconds, since our sys-
tem now performs unnecessary data transfers between main memory and GPU
memory, which can be eliminated if it would adhere to a single technology. The
fact that performance can still be improved considerably, and that our system
already seems competitive with the other compared methods, further indicates
that a GPU-based photon mapping approach is not only feasible for real-time
indirect diffuse illumination but also promising and worthy of further research
and development.

More modern graphics APIs such as Vulkan and Direct3D 12 are a hot topic in
the computer graphics field. Since these technologies allow developers to take
more direct control of graphics hardware with less overhead, it is likely this can
result in some form of performance increase for applications that transition to
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these newer APIs. To what degree our system could benefit from these newer
technologies is currently unclear since the majority of work is already performed
in compute-like shaders.

A photon mapping approach inherently exhibits a number of problems. First
of all, it requires human input in order to render images at acceptable quality
and performance. In the simple scenes that were shown in this research, this
was a matter of tweaking the number of photons and their influence radius.
In larger scenes, getting an acceptable distribution of photons will become a
larger problem; certain areas will be more important for a given image, likely
requiring a higher photon density than areas of lesser importance. While there
are methods for importance driven photon map generation, it is unclear to us
at this point if these can be employed within real-time constraints.

Another problem that merits further attention is that flickering can become an
issue in dynamic scenes where the photon count and radius is relatively low.
Increasing these parameters allows for a reasonable reduction in flickering, but
of course this further increases computational costs. Additionally, as we have
shown in the evaluation of our system, increasing the photon radius to high
levels can also lead to loss of precision and introduce additional inaccuracies.
Optimising the system for efficiency will allow for better image and animation
quality. However, there might also be other more worthwhile changes that could
be implemented to greater effect. Our system is a relatively straightforward and
bare-bones implementation of the photon mapping algorithm. There is a vast
amount of literature focused on photon mapping, which could be used to improve
and expand our system in a wide variety of ways.

Since we use deferred shading, we inherit its limitations as well. The largest
one being that it is ill-suited for dealing with translucent surfaces. Photons
can be traced through surfaces without problems. However, the G-Buffer only
contains geometry data for a single depth layer per pixel, meaning that our
current prototype can also only perform the radiance estimate for that same
depth layer. Shading indirect illumination for translucent surfaces could be
introduced by performing this in some form of separate forward rendering step.
Whether or not something like this is preferential to the entire replacement of
deferred shading in our system remains to be seen.

Aside from the limitations of our prototype implementation, it is also necessary
to consider the shortcomings of this research itself. First and foremost is the
methodology used in the evaluation of our system, particularly the comparative
study between our prototype and other systems. The qualitative comparison
is performed by ourselves, which raises obvious objections. Our quantitative
comparison relies on the usage of automatic image quality metrics that approx-
imate perceived image quality (to varying degrees of success). Despite this, the
quantitative comparison is not wholly objective; human bias is introduced via
the configuration of rendering systems and the selection of scenes. We therefore
ask readers to be extra critical in this regard.
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Another shortcoming is that while this research is focused on dynamic indirect
illumination, we have not included dynamic elements in the scenes that were
used during the evaluation of our system. The only aspect of our system that
is directly influenced by dynamic elements is the acceleration structure that is
constructed and used by Optix to trace photon paths. This structure needs
to be updated to reflect any changes in geometry. The degree in which the
introduction of dynamic elements affects computational costs will depend on
scene structure and the nature of the dynamics. Anecdotally, it may be noted
that introducing rotation of the two boxes around the middle of the Cornell
box scene (using the same configuration that was used to produce the image
in figure 6.5b) resulted in an increase in the average render time of around
one millisecond. However, since we do not have implementation details on the
acceleration structure that is used, nor have the tools needed to properly profile
the Optix framework, this is not something we can investigate rigorously or
fairly at this point.
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Chapter 8

Conclusion

The main objective of this research was to investigate the feasibility of a fully
GPU-based photon mapping approach for indirect diffuse illumination in real-
time applications. We have designed and implemented a relatively bare-bones
implementation of the photon mapping algorithm that is computed entirely on
the GPU. The evaluation of our prototype indicates that it is indeed capable
of computing approximate real-time indirect diffuse illumination for restricted
scenes. There is a considerable difference in visual image quality when com-
paring our prototype to rendering systems that do not have a restricted com-
putational budget, but this is to be expected. The comparison of our system
with other dynamic real-time indirect illumination systems, concludes that our
currently unoptimised prototype already produces images of higher measured
image quality at similar computational costs. Given the fact that there is still
much room for improvement, our approach seems promising and worthy of fur-
ther research. Since our system is based on the photon mapping algorithm, it
will be able to converge to correct solutions as more computational power is
made available. However, the implemented method of photon mapping does
exhibit a number of limitations that need to be taken into consideration in any
future research or applications.

58



Appendix A

Parameter Scaling
Images
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(a) Photon paths: 7000, Radius: 0.25 (b) Photon paths: 2900, Radius: 0.5

(c) Photon paths: 1600, Radius: 0.75 (d) Photon paths: 1000, Radius: 1.00

(e) Photon paths: 700, Radius: 1.25 (f) Photon paths: 525, Radius: 1.50

(g) Photon paths: 425, Radius: 1.75 (h) Photon paths: 350, Radius: 2.00

Figure A.1: Rendered images accompanying the measurements shown in table 6.2
on page 43.
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(a) Photon paths: 7000, Radius: 0.25 (b) Photon paths: 2900, Radius: 0.5

(c) Photon paths: 1600, Radius: 0.75 (d) Photon paths: 1000, Radius: 1.00

(e) Photon paths: 700, Radius: 1.25 (f) Photon paths: 525, Radius: 1.50

(g) Photon paths: 425, Radius: 1.75 (h) Photon paths: 350, Radius: 2.00

Figure A.2: Absolute differences between the images shown in figure A.1 and the
reference image shown in figure 6.1a (shown on page 41). Darker areas are closer to
the reference image.
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(a) Photon paths: 7000, Radius: 0.25 (b) Photon paths: 2900, Radius: 0.5

(c) Photon paths: 1600, Radius: 0.75 (d) Photon paths: 1000, Radius: 1.00

(e) Photon paths: 700, Radius: 1.25 (f) Photon paths: 525, Radius: 1.50

(g) Photon paths: 425, Radius: 1.75 (h) Photon paths: 350, Radius: 2.00

Figure A.3: Visualisation of structural similarity between the images shown in figure
A.1 and the reference image shown in figure 6.1a (shown on page 41). Lighter areas
have a higher structural similarity index.
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Appendix B

Scene Complexity
Measurements

Photon Influence Radius

Photon paths 0.25 0.5 1.0 1.5 2.0

500 (341) 5.4 (0.08) 5.9 (0.05) 7.9 (0.51) 10.9 (0.51) 13.4 (0.38)

1000 (707) 5.9 (0.08) 6.9 (0.12) 11.3 (2.24) 16.9 (0.34) 22.4 (0.30)

2500 (1776) 7.2 (0.08) 10.0 (1.17) 20.5 (0.36) 34.6 (0.36) 48.7 (2.40)

5000 (3566) 9.3 (0.09) 15.1 (0.28) 35.9 (0.91) 64.3 (0.28) 92.7 (0.48)

7500 (5339) 11.6 (0.10) 20.2 (0.69) 51.6 (0.45) 94.4 (0.51) 136.8 (0.61)

Table B.1: Average rendering times in milliseconds, measured over 1,000 frames, for
the Cornell box scene with two boxes in the centre (standard deviation is shown in
brackets).
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Photon Influence Radius

Photon paths 0.25 0.5 1.0 1.5 2.0

500 (335) 6.3 (0.07) 6.8 (0.08) 9.1 (0.08) 12.6 (0.40) 14.9 (0.29)

1000 (705) 6.8 (0.07) 7.9 (0.09) 13.1 (0.37) 20.0 (0.29) 25.1 (0.94)

2500 (1759) 8.2 (0.12) 11.5 (0.35) 23.7 (0.26) 41.2 (1.40) 53.9 (0.83)

5000 (3548) 10.7 (0.10) 16.9 (0.28) 41.8 (0.22) 77.1 (0.41) 103.3 (0.37)

7500 (5313) 13.2 (0.10) 22.5 (0.15) 60.0 (0.25) 113.5 (4.39) 152.1 (0.37)

Table B.2: Average rendering times in milliseconds, measured over 1,000 frames, for
the Cornell box scene with the happy Buddha mesh in the centre (standard deviation
is shown in brackets).

Photon Influence Radius

Photon paths 0.25 0.5 1.0 1.5 2.0

500 (360) 8.7 (0.07) 9.9 (0.07) 14.5 (1.20) 19.3 (0.31) 22.1 (1.21)

1000 (737) 9.1 (0.08) 11.4 (0.08) 20.5 (0.17) 30.5 (0.08) 36.3 (0.34)

2500 (1867) 11.7 (0.09) 17.7 (0.26) 40.4 (0.30) 65.9 (0.27) 80.8 (1.83)

5000 (3754) 15.5 (0.14) 27.6 (0.39) 73.5 (1.44) 125.1 (1.34) 155.2 (0.43)

7500 (5614) 19.5 (0.21) 37.2 (0.30) 105.9 (0.89) 183.3 (0.40) 228.6 (2.48)

Table B.3: Average rendering times in milliseconds, measured over 1,000 frames,
for the Cornell box scene with the hairball mesh in the centre (standard deviation is
shown in brackets).

Photon Influence Radius

Photon paths 0.25 0.5 1.0 1.5 2.0

500 (497) 14.0 (0.23) 14.5 (0.28) 15.4 (0.28) 16.9 (0.23) 19.5 (0.52)

1000 (996) 14.6 (0.28) 15.0 (0.25) 17.1 (0.24) 20.2 (0.23) 25.2 (0.25)

2500 (2496) 16.2 (0.24) 17.7 (0.18) 23.2 (0.24) 31.6 (0.42) 43.9 (0.30)

5000 (4996) 18.3 (0.24) 21.6 (0.27) 32.7 (0.58) 48.6 (0.30) 73.7 (0.41)

7500 (7496) 20.3 (0.17) 25.4 (0.30) 42.7 (0.32) 67.8 (1.91) 105.8 (1.13)

Table B.4: Average rendering times in milliseconds, measured over 1,000 frames, for
the conference room scene (standard deviation is shown in brackets).
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Figure B.1: Stacked bar graph showing the distribution of computational costs for
the Cornell box scenes using 1,000 photon paths and a photon influence radius of 1.0.
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Appendix C

System Comparison
Images

(a) Our system (b) CryEngine (SVOTI)

(c) Unity (Enlighten) (d) Unreal (LPV)

Figure C.1: Absolute differences between the images shown in figures 6.5b-6.5e and
the reference image shown in figure 6.5a on page 51. Darker areas are closer to the
reference image.
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(a) Our system (b) CryEngine (SVOTI)

(c) Unity (Enlighten) (d) Unreal (LPV)

Figure C.2: Visualisation of structural similarity between the images shown in figures
6.5b-6.5e and the reference image shown in figure 6.5a on page 51. Lighter areas have
a higher structural similarity index.
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