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Preface

Books concerning state surveillance and their related ethical questions such as Cory
doctorow’s ’Little brother’ and ’Homeland’ as well as television series like ’Person of
Interest’ show a world where anomaly detection is used to catch criminals. Even
though these stories are still science-fiction, reality seems to catch up while keeping
it more or less secret for mankind. I am not a conspiracy thinker but mass surveil-
lance is a reason for me to question whether some organizations and governments
have or have not crossed an ethical border by their way of collecting data, what their
motivation is to do so and how much they value the privacy of people.

Both the curiosity in what is actually possible of those scenarios and the chal-
lenges associated with it motivated me to do this final project when it was proposed
to me by TNO. I have never changed my opinion about the risk of automation in
surveillance. Every person is different and might for that reason be flagged as a per-
son of interest. This does not imply any bad intention and therefore I would suggest
to always have a human in the cycle to assess the actual risk this person is.
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Summary

Security and crime prevention have always been a hot topic but with the recent rise
of the number of terrorist attacks and the subsequent fear among people made it
an important subject for police and military forces. Technological improvements of
cameras and sensor technologies prove to be helpful in minimizing risks of attacks.
Although terrors will always try to find evade devices such as metal detectors, x-rays
and cameras, mentioned technologies have the potential to reduce the number of
incidents.

Solving smaller crimes such as robberies and thefts are unfortunately daily busi-
ness for police forces as well. The high number of incidents leave lots of victims
traumatized or even wounded. Nowadays, highly populated areas will be covered
by camera surveillance but in other areas, getting away with such an offend is still
far too easy.

For both high and low impact crimes, technologies capable of detecting suspi-
cious behaviour could reduce the occurrences or provide fast response in case of an
incident. This research focusses on finding suspicious behaviour (anomalies) dur-
ing tracking people in areas which have the size of multiple city blocks to complete
city sizes, for example by detecting people using drone images or other tracking
systems.

The goal of this research is to develop and evaluate an anomaly detection tech-
niques capable to find abnormal or suspicious behaviour based on positions of peo-
ple. Similar goals have been the subject of other researches, often resulting in one
method of detection one type of anomaly. Although many methods are capable of
performing anomaly detection, most times trajectory analysis in combination with
statistical models show good results.

Part of the research is the development of anomaly detectors, capable of de-
tecting anomalies in simulated data. To evaluate the detection methods, four cases
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Summary

will be simulated: one in with no special event occurs, one with four processions,
one with four street robberies and one in with four commercial stores or banks are
robbed. Each simulation will take four simulated hours, spanning from noon till 16:00
with events occurring at 37 minutes after every hour. The events are planned on the
hour to give the people time to get to the event.

The combination of detectors and methods designed were able to detect the
offenders in all three crime related events. As for most related research, Gaussian
based models were performing best when (abnormal) speed is used as feature. The
context such as the location where a person is detected or the history of the person
is an important factor in anomaly detection, especially when we are coping with big
areas.

The detectors were tested with simulated data, this makes the results question-
able for real life situation. In the simulator people always had a goal they walked
to and did this in walking pace. Nobody was running to catch a train or as sport-
ing activity, which makes detection of running offenders fairly easy. For this reason,
detectors using different contexts were designed and evaluated as well.

Global detection works best for the simulated data due to the relatively constant
non-anomalous behaviour generated by the simulator used for this research. Mod-
els based on personal trajectories works well for outdoor events but not for indoor
incidents due to the lack of pre-event trajectories of the offender. Location based
detectors are less successful compared to global detection for both situations due
to the limited amount of training data.

Another type of detection capable of finding collective anomalies is able to reli-
able detect processions, based on the (change of) density at different locations. This
method could also use context such as the time of day to detect whether a location
is currently more crowded compared to the same time on another day.

Adding trajectory detectors based on other context such as time-of-day and col-
lective detection based on (dis)similarity of people are recommended as future work
for the designed system. Other recommendations include the evaluation of the
methods on real life data, possibly with actors playing out the events and research
on whether or not detected anomalies is suspicious behaviour according to a domain
expert.
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Chapter 1

Introduction

Due to recent terrorist attacks, all security agencies are on high alert to find suspi-
cious activities. Unfortunately no system will be able to prevent all possible threads.
In the meantime, police also has to deal with smaller crimes which can still have
significant impact on the victims. Technological innovations can be used to minimize
both high impact terrorist attack and smaller crimes.

Increased quality of cameras (for example the ARGUS-IS [1]) enables the possi-
bilities for intelligence, surveillance and reconnaissance (ISR) of wide areas. How-
ever, any operator looking at those live feeds would have no clue where to look at.
Advanced image processing techniques can be used to detect objects such as peo-
ple, vehicles etc. which increases the Situational Awareness (SA) of the operator.
For wide area surveillance where the covered area is tens of square kilometres, it
could potentially detect hundreds of objects at the same time. Since this is still too
much information for an operator to cope with, an automatic preselection of persons
of interest is required. Detecting abnormal behaviour (anomalies) in the tracked data
enables the possibility to inform the operator where to focus on.

To understand what behaviour has to be considered anomalous, this paper will
first explain the characteristics of different types of crimes and how it could be de-
tected. Relevant research and literature will be consulted to explore the possibilities
of using the behavioural aspect of the characteristics in anomaly detection. Further-
more the methods found will be part of a detector build to find anomalies in human
behaviour. This analysis is one of the methods to assist in prevention or to provide
quick response to such crimes. Other methods such as eavesdropping on commu-
nication channels enables police to understand and detect anomalous behaviour but
is not part of this research.
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1.1 Research questions

The goal of this research is to create and evaluate anomaly detectors usable for
military and surveillance SA. The detector should be able to provide extra informa-
tion on where the operator should focus attention to. Designing the visualization tool
itself is not part of the research but for demonstration purposes, a representation of
the anomalies and normal data will have to be presented.

The main research question will be as follows:

What techniques can detect anomalous behaviour of people based on
the position and trajectories in an area of multiple squared kilometres.

Calling an outlier generated by a detector an anomaly, is up to a domain expert. For
this an operator will have to understand what kind of events are detectable by what
anomaly detector. In other words, what does an outlier actually tell us in terms of
human behaviour:

How do the outliers generated by the models of a detector relate to
anomalies in human behaviour?

Due to security and privacy issues, the research has to be evaluated using simulated
data. Furthermore, a simulator can provide us anomalous events to evaluate the de-
tectors where real data with those anomalies is hard to find. We will use a simulator
provided to us by TNO, capable of generating such anomalous events. This does
mean we have to have a closer look at the events generated by the simulator:

What anomalous events can be generated with the simulator and what
do the events do?

A system has to be designed to collect the data generated by the simulator and
perform the anomaly detection. Since the ability to detect anomalous events in real
time is crucial for operators, this will have to be a requirement for the system.

How do we design an anomaly detector capable of detecting the events
in real time (online)?

2



Chapter 1. Introduction

To evaluate the models, the designed detectors are fed with the simulated data. The
results will answer the last sub-question:

How well are the previously mentioned methods able to find the gener-
ated anomalous events?

1.2 Report organization

The remainder of this report is organized as follows. Chapter 2 describes different
types of crimes and their corresponding human behaviour. In Chapter 3, relevant
research is reviewed to determine what methods and techniques could be used
to find anomalies and to answer the research question. Chapter 4 explains what
methodology and principles were used during this research. In Chapter 5 the design
of an anomaly detection (testing) framework is explained. This is used to test the
detection methods on simulated data and the results of these tests are given in
Chapter 6. Finally, Chapter 8 contains the conclusions and recommendations.
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Chapter 2

Crimes

There is usually no exactly definable characteristic for the several criminal events,
nevertheless it is possible to generalize certain characteristics to explain different
types of crimes1. This chapter will cover two types of crimes: high impact crimes,
affecting a high number of people such as terrorist attacks and low impact crimes
like pickpocketing.

2.1 High impact crimes

A drastic increase of the number of fatalities caused by terrorist attacks supports
the growing fear among people. Nine times more people died from terrorist related
incidents in 2014 compared to 2000. There is an increase of 80% from 2013 to
2014, and due to recent attacks it is unlikely this trend will be broken soon. Close
to 80% of the incidents occur in Syria, Iraq, Afghanistan, Pakistan and Nigeria but
there is an increase in other countries affected by terrorist attacks [2].

Motivations to join a terrorist organisation or perform an attack differ for the type
of organization (e.g. political, religious or ideological). However, there is a strong
correlation between the country where the attack takes place and ongoing conflicts
in or related to that country. Political instability and -terror as well as human rights
issues and suppression of religious freedoms also correlates to terrorist attacks [2].

1Statistics about the occurrences of the events in the Netherlands can be found in Appendix C.
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2.2 Low impact crimes

Although preventing terrorist attacks is a high priority of police forces, especially in
the western world more people are victimized due to low impact crimes. The amount
of occurrences is higher and therefore the number of victims too.

2.2.1 Procession and public gatherings

Processions are characterized by their collective behaviour of a big group walking
slow. Processions are in most cases and countries not considered a crime but
could potentially turn violent when riots start to form. The same holds for public
gatherings in general, especially when no announcement of the event has been
made. Research in crowd dynamics can prevent dangerous situations when large
groups of people gather [3] but to accomplish this, prior knowledge or early detection
of the forming of a crowd is needed.

2.2.2 Pickpocketing, robbery and street theft

A street theft can be done stealthy or violently depending on the type of theft. Pick-
pocketing is usually done without alerting the victim either by using stealth or dis-
tracting (a con). The offender can work alone or use a team in which one steals the
valuable object while the second person walks away with it. On the other side of the
spectrum are robberies as violent crime, which will leave the victim traumatized or
possibly wounded by confrontation or blitz attack methods. Snatch-thefts are less vi-
olent quick methods where an item is taken from the victim without the use of verbal
communication.

Half of the victims are physically attacked during a robbery and 20% left wounded.
Robberies mostly occur during the evening and night, when young adults are a good
target due to alcohol consumption and distraction. In the morning elderly people
are often targeted and children are among the victims in the afternoon, when they
go home after school. The locations most robberies occur are in urban environ-
ments, close to the victims homes. Parking lots, garages, parks, fields, playgrounds
and near public transportation are other locations where robberies often take place.
Street thefts are most common in medium density areas. In crowded areas the of-

6



Chapter 2. Crimes

fenders do have enough potential victims but they are also protecting each other.
Low density areas are also uncommon because there are less victims, so offenders
will not look for them here [4].

2.2.3 Shoplifting and commerical robbery

Shoplifting is the act of stealing products without paying for it. Since the actual
crime is committed inside the shop, this will not be detectable. However, when the
thief is caught steeling, expected detectable behaviour is having them run out of the
shop. The same behaviour is expected when a robbery of a bank, gas station or
convenience store takes place.

Shoplifting incidents occur often in the second half of the week and more when
the demands of goods are high, such as during pre-Easter, -summer and -Christmas
periods. Since shoplifters are often juveniles, non-school days and -times and loca-
tions close to schools have high amounts of shoplifting [5].

In the US, about 9% of commercial robberies were bank robberies. This percent-
age is higher in smaller cities (12%) compared to larger cities (8%) but larger cities
do have significantly more bank robberies compared to smaller cities [6]. Most bank
robberies are quick and without violence due to the compliant employees (as they
are trained to do) and initially successful and lucrative as well. However, one third of
the bank robberies are solved within a day and 60% will eventually be solved. Bank
robbers often repeat successful methods, which can also help to solve previous
robberies when offenders are caught.

Unlike to what is usually shown in films, most robbers do not use any disguise
(60%), are unarmed (72%) and are alone(80%). These non-violent amateurs tend
to commit their crime during busy hours where professionals are more likely to pick
quiet times such as opening and closing hours. Solitary robbers will not use a
getaway vehicle but escapes on foot (58%) where teams often use a car (72%).
The necessity of running is minimized by picking a target with easy access to busy
pedestrian traffic. Bank robberies have a high risk of repeated victimization, where
successful robbers go back to the same location to rob it again or because of the
vulnerability properties of the bank (easy access and escape routes, security and
prevention methods etc.) [6].
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2.2.4 Home and Vehicle Burglaries

Theft from cars is among the most often reported larcenies. Most thefts from cars
occur in the late night, early morning. Thieves, often juveniles or drug addicts, will
mostly steal car parts (stereo, airbag) or valuable personal items (wallet, phone,
laptop, etc.) to sell them and facilitate their addiction [7].

Among burglaries in houses, a single family house is often an attractive target
compared to other types such as apartments, flats and semi-detached houses. This
is caused by the multiple entrances single family houses usually have, the lack or
minimized risk of witnesses due to the distance to the neighbours.

Houses on the outskirts of neighbourhood (where a burglar does not stand out)
are more likely to get burgled. For the same reason houses near busy streets have
a higher risk. Poor lightning, concealed entry points and cover are important factors,
especially because burglars commonly take the side or back door to get in. Famil-
iarity for the offender is an key aspect in their choice in deciding what house they will
go to. This can be a familiar house because it belongs to a friend or acquaintance
or because it was burgled before. Repeated victimization is not only caused by fa-
miliarity, also the presence of new valuable items (replaced since the last burglary)
and the easy access are reasons for an offender to return.

Burglaries often take place during the day, when the occupants are at work or
during the night when they are sleeping. Burglars will look for several clues to see
when the house is empty, such as accumulating mail, the lack of a car on the drive-
way, and no lights or sounds coming from the house. Routine in these clues will
suggest the owners are at work or on holiday [8].

2.2.5 Bicycle theft and grand theft auto

Despite bicycle theft being accounted for a high number of the larceny incidents (4%
in the US up to 25% in the Netherlands), few people report it to police. A Reason
not to file it is the lack of trust in the police to solve the crime, catch the thief and
return the bicycle. The main motivation for offenders to steal a bicycle is to get to
somewhere quickly (joyride) or to sell it for money. The first one mentioned often
refers to young offenders, on the other hand poor people and drug addicts steal to
trade the bike for cash [9].
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Cars are often stolen from the victim’s home (37%) and more likely from the street
than from a driveway or garage and more often at night when they are parked at
those homes, as well as the cover for the thief due to the darkness. The neighbour-
hoods with a high number of potential offenders (usually the poor neighbourhoods)
have a higher risk since thieves prefer to find a target close to their home. They
know this area and do not have to walk far to find the car. Older cars are more prone
to get stolen compared to newer cars, not only because they are more common in
poorer areas but there is also lack anti-theft security in the cars to prevent it. Stolen
cars are used for joyriding, other crimes (for example as getaway car), for reselling
or to strip car parts [7].

2.2.6 Stalking

Stalking is an ongoing event and not a single identifiable crime like the offences
mentioned before. No profile can easily be defined as there are lots of reasons why
and methods how people stalk their victim. Stalking behaviour can be complex and
can range from sending messages to following or assaulting the victim [10].
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Chapter 3

Related work

3.1 Characteristics of Anomaly Detection

Research in Anomaly Detection (AD) focuses mostly on computer network intrusion
but there are several other domains where AD is used [11], [12]. These domains
all have their unique approach but the techniques used have common grounds in all
domains.

The term anomaly and outlier are often interchangeable and will be used as
such in this work. However technically speaking there is a difference between the
two [13]:

• An anomaly is an observation or event that deviates quantitatively from what
is considered to be normal, according to a domain expert.

• An outlier is a data point that deviates quantitatively from the majority of the
data points, according to an Outlier Detection (OD) algorithm.

Therefore, the presented anomaly detectors are in fact outlier detectors until a do-
main expert agrees with it being anomalous. Any detected outlier which is not an
anomaly is considered a false positive of the detector.

An AD problem can be specified by different factors: The input data, the anomaly
type, the labels and the output [11]. Based on these factors we can compare what
technique and approach is suitable to detect what type of anomaly (see figure 3.1).
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Figure 3.1: A close look at the characteristics of the problem is a good way to find
the best AD technique for the problem.

When we are trying to evaluate multiple anomalies on the same dataset, the
problem characteristics have to be assessed for every type of anomaly (figure 3.2).
The labels as well as the output might be equal for some combination of anomalies,
especially when no labels are predefined.

The combination of multiple AD techniques is used to give a single answer on
whether an instance is an anomaly or not as can be seen in figure 3.3. This ensem-
ble can have priorities or weights on what detector is more important because of the
anomaly type it covers. Regardless of the way these weights are defined, adjusting
them according to the preferences of the operator could be preferable. Feedback on
which detector marked which instance as anomaly, and subsequently what anomaly
type was detected is important information for the operator [14].

3.1.1 Input data

The input data for an anomaly detector for suspicious human behaviour are data
instances representing a person or vehicle. These instances can be the result of a
Target Detection (TD) algorithm, a sensor network, manual input, etc. An instance
itself has different features, which are for example the position, speed, history (or
path) and type (what kind of vehicle). All features might individually, or as a com-
bination, be the input data of an outlier detection algorithm and are usually either
binary, categorical or of continuous types [11].
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Figure 3.2: Characteristics of multiple ADs

Finding the right features is one of the most important aspects of anomaly detec-
tion [15]. Finding a good representation of the data into features is often challenging
and can be the difference between a good detector and a useless one.

3.1.2 Labels

Another challenging aspect in AD is the lack of available labels of whether an in-
stance is either normal or anomalous. The datasets, in which anomalies are by
definition scarce, are usually big, therefore labelling all data as normal except those
instances that are considered anomalous by a domain expert could be a solution.
However, usually not all possible types of anomalies might exist in a dataset, can be
predicted or defined. For those cases it is not possible to use supervised learning
methods that would classify data by comparing the two different groups.

With online AD it could be possible to identify the false positives as they occur.
Although much harder, even some false negatives are detectable when an opera-
tor notices anomalies in the big set of non-anomalous people. By labelling these
incorrectly classified instance, a small shift from unsupervised to semi-supervised
classification can be made or parameters could be tweaked by the system dynami-

13



Chapter 3. Related work

Figure 3.3: Combination of three anomaly detectors with unique weights (shown as
arrows with different thickness).

cally, based on the label given by a domain expert [16].

3.1.3 Anomaly types

Anomalies can be grouped into four different types: point, contextual, spacial-temporal
and collective anomalies. They are all detectable based on different assumptions.

Point anomalies

Point anomalies are instances that are outliers based on comparing their feature
values to those of the complete dataset. They are, for example, extreme values that
should not occur in any normal circumstance and are considered the simplest type
of anomaly [11].

Contextual Anomalies

A contextual anomaly might look normal when compared to the whole dataset but is
an outlier based on its context. Any knowledge about the data is required to define
when instances share the same context. This can be a spacial distance between
objects (neighbourhood), type or size of the object, etc.

An example of the complexity of contextual anomalies can be found in [17, p.
867]: Running could be defined as anomaly since most people walk instead of run
in a normal situation. On a football field however, you will see the players often
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running. This makes the pitch as context different for the behaviour running. Now
imagine there is another event in the same stadium, for example a concert. In this
context, running is suddenly abnormal behaviour again.

A common approach to eliminate this problem is to only test instances within the
same context and test for semantic or class outliers [18]–[20]. Depending on what
features the instances have as well as the detection technique, preprocessing might
be required. However, several techniques can cope with contextual (or correlating)
features and will not need preprocessing for context reduction.

Trajectories and spacial-temporal Anomalies

The trajectory (or path) an instance took to get to its destination can be used to de-
tect anomalies as well. Instead of taking the whole path or history in consideration,
it is also possible to look at associations between moments in time. For example,
what is the likelihood of an instance going to location B if it passed A.

Collective Anomalies

The examples mentioned so far are anomalies detectable when looking at individual
instances, where the instance itself is an anomaly. For collective anomalies it is not
a single instance but a group that triggers a detector such as a crowd.

3.1.4 Output

The result of an anomaly detector could be a boolean value, specifying if some
instance is an anomaly or can be a probability or ’score’ of this instance being an
anomaly. Using the latter as indicator for the operator has both advantages and
disadvantages since a high probability does not imply a high priority but changing
the score threshold can increase or decrease the number of (false) anomalies the
operator sees.

Some anomalies such as running to catch the bus are not directly concerning
but require attention nevertheless. Proper feedback on why something is marked as
anomaly should be part of the system to decide if the anomalous person might be
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up to no good. In other words, it is important for an operator to understand on what
grounds an instance is marked as anomaly.

Negative consequences

AD has cases which can cause severe negative consequences when inappropriate
decisions are made based on the anomalies detected.

A false positive can take the attention away from a serious anomaly. As long as
the operator is able to quickly identify the alarm as false and able to focus on other
detected anomalies, the consequence is a short delay in appropriate action. This
is in most cases still better than evaluating every detected object but detrimental
nevertheless.

3.1.5 Conclusion

One single outlier detection algorithm will most likely not be able to detect all different
ways an instance can be considered anomalous. A committee of detectors, each
designed for one or multiple anomaly types is required and also provides the ability
to give feedback on what anomaly type is detected for the instance.

Detection of outliers is based on extracted features of the input data. Subse-
quently many anomaly detection methods can be used to determine what instances
are outliers. The next two sections will respectively cover different possible feature
extraction and anomaly detection methods.

3.2 Feature extraction and Preprocessing

Features for anomaly detection can come from sensor data or can be properties of
the objects. Any type of feature value can be transformed into the other types. For
example, a discrete value can be transformed into binary by using a threshold or into
categories by averaging or by Vector Quantization (VQ). A colour, which is a categor-
ical feature, can become a continuous value when the hexadecimal representation
of the colour is used.
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Extra preprocessing steps could transform features into different distributions.
For example feature x1 can be transposed into x2 where x2 = xy1 or x2 = log(x1 + y)

(for a log-normal distribution) with any chosen value of y to create a normal distribu-
tion of the data.

3.2.1 Vector Quantization

Vector quantization is a optimization method in which the data is grouped based
on their closely related or almost equal features. All points within a group can be
represented as the centre (or prototype) vector of this group, compressing the size
of the dataset [21], [22]. A simple example of Vector Quantization (VQ) is rounding of
rational numbers to integers, where values 1.9 and 2.1 are grouped together having
centroid value 2. VQ van be used as preprocessing or classification, such as the
box plot explained in 3.3.1.

3.2.2 Sparse coding

The opposite of compressing feature values is done in sparse coding. The idea is
to generate a sparse representation of the input which can reconstruct the original
data. We assume the dataset to have a set of common descriptors, of which some
combination of them generate the input. For example, images can be reconstructed
by a combination of lines [23]. The vector representation of the weights will contain
mostly zeros, and a small amount of non-zero elements for which the descriptor ac-
tually generates the input. If the set of descriptors (usually called the dictionary) is D
and the sparse vector of weights corresponding to xi is ai, the input is reconstructed
by xi = ai ·D.

If the sparse vector contains binary values, it can be presented by the indexes of
the active bits in the vector which on its turn is a compressed representation of the
dataset.

As for VQ, sparse coding is both a preprocessing method as well as a common
step within ADs. For example Artificial Neural Network (ANN) (see section 3.3.4)
and Hierarchical Temporal Memory (HTM) (section 3.3.4) make use of sparse rep-
resentations.
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3.2.3 Dimension reduction

Other preprocessing could be done by performing dimension reduction methods
[24], where minimal data loss should be acquired [25].

Combining features

Some combination of features can have a strong correlation, for example due to
their contextual property. In this case, a new feature based on the combination
of the original features (for example feature x3 = x1

x2
) can be constructed and the

distribution parameters for this new feature are to be found.

Principal Component Analysis

Principal Component Analysis (PCA), first mentioned in [26], is a method to find the
linear component or hyperplane on which the dataset fits best. The first component
represents the single direction with the most variance and the second represents
the direction of the most variance relative and orthogonal to the first component (as
can be seen in figure 3.4) [23], [24].

Figure 3.4: Principal component analysis with two feature into two components.
Left is the original data and both principal components directions drawn.
These lines become the axis in the right plot.

PCA can be extended to find a non-linear subspaces with high variance. Kernel
PCA, for example, replaces or extends the features with a number of non-linear
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features before normal PCA is applied. Another extension method is the principal
curves approach in which the first component is represented as curve instead of a
straight line, in such a way that the squared distances of the points to this curve is
minimal [27].

PCA preserves distance information for both small and large distances. For many
application this is useful and sufficient but some data structures, such as a spiral
3D distribution, require another approach. Points that are close to each other in
Euclidean distance (the blue line in figure 3.5) could actually be far if you consider
the overall structure of the dataset. For this problem, other dimension reduction
techniques such as t-SNE work better.

Figure 3.5: A dataset containing values in a spiral shape when plotted. For this
situation, euclidean distance as equality measurement is not a good
method.

3.3 Outlier Detection Methods

AD can be categorized into explicit detection and deviation methods [28]. The first
group of detectors would fall within the group of supervised learning algorithms but
as mention in section 3.1.2, most of the input data will be unlabelled, therefore unsu-
pervised approaches are more common for AD. Moreover, for most anomalies it will
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not be possible to define these abnormal values without any information about the
non-anomalous or normal instances, mostly because it is unclear what an anomaly
actually is. New types of rare events will therefore be easier to detect with unsuper-
vised methods [29].

A variety of unsupervised machine learning techniques for AD will be evaluated
from the basics to more advanced methods to find ways to detect the different pos-
sible anomaly types. Many surveys cover most of the following methods as well, but
lots of variations and alternatives could be interesting for any form of AD [11], [17],
[30], [31].

The different types of unsupervised detectors are [29]:

1. Statistical methods:
The goal of statistical analysis is to find a Probability Density Function (PDF) f
for which f(x) is large when instance x is normal and f(x) small when it is an
anomaly. By using a threshold ε we can define x as anomaly when f(x) < ε.

2. Distance based methods
For this group of methods, outliers are detected by comparing the distances
among instances or clusters [11], [29].

3. Profiling methods
The profiling methods try go get an idea of what normal behaviour is for the
specific instances. Sudden unexpected changes of feature values are reasons
to flag this instance as anomaly [32].

4. Model based methods
Model based approaches detects an outlier when the instance does not agree
with a calculated model, which is generated on the normal data.

Outlier detection methods often use more than one of these principles and are
therefore not simply considered one type of detector. Hereafter a series of com-
monly used as well as less known outlier detection methods are given and explained
how they detect anomalies.
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3.3.1 Statistical methods

Box Plot

The box plot is one of the simplest statistical techniques used for AD. Univariate
or multivariate anomalies are indicated as such when they exceed the min or max
anomaly limits (whiskers) which are defined as 1.5 times the Inner Quartile Range
(IQR) and will contain about 99.3% of the values [11]. An example of a box plot can
be seen in figure 3.6.

Figure 3.6: Box plot representation of the dataset with normal data within the two
whiskers and two instances marked as anomalies. One above the top,
and one below the bottom whisker.

Gaussian (Normal) distribution

Another common statistical technique to detect outliers is by defining a Gaussian
distribution for one or multiple features. This technique assumes a normal distribu-
tion of the given features and calculates the parameters of those normal distributions
by using Maximum Likelihood Estimation (MLE). Any instance with feature values
outside of the expected range is marked as anomaly.

The distribution of a Gaussian distributed feature in the dataset is modelled as
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f(x;N (µ, σ2)). A visualization of the AD is visible in figure 3.7.

Figure 3.7: Gaussian normal distribution

Gaussian Mixture Models When this data is not evenly distributed around one
value, but around two or more instead, a Gaussian Mixture Model (GMM) can be
used [33]. These are combinations of normal distributions with each have a weight
factor, summing up to 1 [34].

Multivariate Gaussian model If a correlation between features is not obvious or
known but highly probable, a multivariate Gaussian model can be used [35]. Instead
of a distribution for each feature it will create one model for a combination of features,
having a µ vector containing the averages of all features and an N × N matrix with
the variances for all combinations of features. The resulting PDF for µ = ( 0

0 ) and
Σ = ( 0.25 0.3

0.3 1 ) is shown in Figure 3.8.

The drawbacks of this method are the computational power needed for the vari-
ance matrix and the size required for the training set whenever the feature space is
big.

Histogram

An often used non-parametric statistical method is the histogram [36]. The feature
values are split in buckets either by category or by dividing the range in equal parts.
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Figure 3.8: Multivariate Gaussian of two features with a probability threshold of 0.02

Subsequently, a histogram is generated based on the amount of data per bucket. A
histogram can look like a Gaussian distribution if the data is normally distributed or
look more like any Gaussian mixture model otherwise. It is possible to either use a
histogram as one feature of an instance or use one for the complete dataset.

A probability of any value x can be calculated by counting the values that are in
the same bin as x and divide this by the total amount of samples as follows:

f̂(x) =
1

N · h

N∑
i=1

∑
j

I(xi ∈ Binj) · I(x ∈ Binj) (3.1)

Where h is the bin size and I(x ∈ Binj) = 1 if x ∈ Binj.

Since this approach is highly depending on the bin size h, it would be preferable
to make it as small as possible. This will better capture the data but will also create
empty bins. A way to overcome this problem is making use of kernels.

Kernel Density Estimation (KDE)

A kernel function influence the area around every data point equally. Instead of look-
ing at observations that fall into a small interval containing x, as we do in histograms,
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KDE looks at observations falling into a small interval around x.

Because of its radial symmetrical and smooth function, a commonly used kernel
K(x) is the Gaussian kernel (as defined in equation 3.2) [37], [38].

K(x) =
1√
2π

exp(−1

2
x2) (3.2)

The probability of any Kernel Density Function (KDF) f̂(x) is the sum of all the
probabilities of the kernels at x:

f̂h(x) =
1

N · h

N∑
i=1

K(
x− xi
h

). (3.3)

Figure 3.9: A visualization of the use of Gaussian kernels and the resulting density
function

In this equation, h is the bandwidth of the kernel, a value specifying the distance
a data point should have influence over the surrounding feature space. The smaller
h, the better it captures local points but the data is more prone to over fitting.

Other kernels such as a uniform, triangle or Epanechnikov can also be used for
the same purpose [38].
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SVDD

The goal of Support Vector Data Descriptors (SVDDs) is to find a boundary around
the dataset which encapsulates all normal values [39], [40] defined by the function
y = θ0+θ1k1+θ2k2+θ3k3 · · · ≥ 0, where ki is a kernel with weight θi. A commonly used
kernel is again the Gaussian for which the centre location µ is called a landmark.
Data within the boundaries (for which y ≥ 0) is considered normal and data outside
(y < 0) an anomaly.

Figure 3.10: Visual representation of 3 landmarks, of which one falls outside and
two within the decision boundary.

Whenever the landmarks are placed at all data points and all corresponding θ

values are equal, this method us similar to KDE, mentioned in section 3.3.1. On the
other hand, the ability to have different locations and weights for each (Gaussian)
kernel is comparable to GMM. One important difference with those two methods
is the ability to apply negative weights (−θ) to kernels, which can make the corre-
sponding landmark fall outside the boundary (see figure 3.10).
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3.3.2 Distance based

K-Nearest Neighbors (K-NN)

A shortcoming of KDE arises when the densities of the cluster(s) vary. One fixed
distance for each instance close to a dense cluster might still contain k instances
although other instances inside this dense cluster would have significantly more
than k instances within its neighbourhood.

In those cases, K-NN can be used as an alternative. Instead of looking at the
number of neighbours within a fixed distance, this algorithm tries to find (k) closest
neighbours creating a neighbourhood of exactly k instances. The distances to those
neighbours, for example the distance to the furthest or the average distance to all
instances in the neighbourhood will be compared to find outliers.

ARTMAP

An alternative clustering method to map normal data is Adaptive Resonance Theory
(ART)MAP. When trained on non-anomalous data, it creates boxes encapsulating
the data points. Whenever a new normal instance is received, it tries to stretch the
box to capture this instance but when this data point is far away from other normal
data, a new cluster (box) is created. Data points outside of the existing boxes are
outliers based on this model.

Stochastic Outlier Selection (SOS)

SOS is a clustering structure method just like K-NN with the exception of the distance
parameter. The neighbourhood of K-NN is based on an exact number (k) neighbours
of an instance, SOS uses the distances to all instances to define the neighbourhood.
The neighbourhood has not a strict boundary as K-NN but is the variance σ in a
Gaussian distribution for which µ is the instance value [41].

Perplexity is a smooth measure for affective number of neighbours, comparable
to the k value in K-NN.
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Figure 3.11: The variances σ2
i generates the same number of neighbours (perplex-

ity) for every instances xi with a perplexity of 3.5. Fig. from [41]. The
circles are not borders like K-NN but an indication of the variance of
the Gaussian at this point.

Dissimilarity The distances between all points forms the dissimilarity matrix. Usu-
ally these are Euclidean distances but as for the other methods, this can be any
dissimilarity function. For Euclidean distances this matrix will be symmetric, so the
distance d(i, j) = d(j, i) = ||i − j|| for all instances i and j but this does not have to
be true for any dissimilarity function.

Affinity Affinity and dissimilarity are in some way opposites. The bigger the dis-
similarity the less affinity the instances have. The affinity aij of two different points i
and j is defined as:

aij = exp(−d2ij/2σ2
i ), (3.4)

in which the σi is the boundary for instance i. Due to this instance specific variance,
the affinity matrix is not symmetric any more, so the affinity of i towards j does not
have to be equal to the affinity of j to i. The diagonals are for both the dissimilarity
as for the affinity matrix defined as 0. So instances has no affinity with itself.

Binding probability The affinity matrix is not a probability distribution because the
affinities from an instance to all others do not add up to 1. Whenever we normalize
every row, and make it a probability distribution we will get a binding matrix. This

27



Chapter 3. Related work

terminology is based on the Stochastic Neighbor Graph (SNG) theory where two
vertices are connected by directed edges based on probabilities generated by the
affinity.

bij =
aij
n∑

k=1

aik

, (3.5)

where i is the row and j, k the columns in the affinity matrix.

Any SNG can be generated in which every node (data point) binds to exactly
one other node based on the binding probabilities. Nodes can have more than one
vertex connected, which makes this node a neighbour for those instances. Any node
with an in-degree of 0 is nobody’s neighbour and therefore an outlier based on this
SNG.

The number of times any instance xi is considered an outlier and the probability
of the graph g ∈ G in which this instance is an outlier determines the outlier factor
for this instance:

p(xi ∈ Coutlier) =
∑
g∈G

1{xi ∈ Coutlier|g} · p(g) (3.6)

Without looking at the SNG, we can determine this outlier factor directly from the
binding probability matrix as follows:

p(xi ∈ Coutlier) =
∏
j 6=i

(1− bji) (3.7)

This equation looks at the columns of all instances, to see what the probability is
of any other instance binding to it. When it has a high probability of being an outlier
(higher than a certain threshold), we consider it one.

Local Outlier Factor (LOF)

The LOF algorithm compares the density of the instances with the average density
of its nearest neighbours [29], [42]. As for SOS, the neighbourhood Nk(p) of an
instance p is defined by a distance k-distance(p) around the instance encapsulating
minimal k other instances (see figure 3.12).
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Figure 3.12: All possible k-distances for an instance p and the reach-dist3(i, p) for
i1, i2 and i6. The distance d(p, i1) < 3-distance(p) so the reach-
dist3(i1, p) = 3-distance(p) but d(p, i6) > 3-distnace(p) so the reach-
dist3(i6, p) = d(p, i6).

The reachable distance reach-distk(i, p) of instances i, p is equal to the k-distance(p)
if the instance i is within the neighbourhood of p or the distance from p to i otherwise:

reach-distk(i, p) = max

k-distance(p)

d(p, i)
(3.8)

Some objects in the neighbourhood of p will not have p in their neighbourhood,
since the boundary (k-distance) is individually determined. An instance p has a
high local reachability density if the object inside the neighbourhood of p have p in
their neighbourhood as well. The local reachability density of an object p is defined
as [42]

lrdk(p) = 1/

∑
j∈Nk(p)

reach-distk(p, j)

|Nk(p)|
(3.9)

As equation 3.9 shows, the ldrk(p) is based on the average reach-dist of all
objects inside the neighbourhood of p to p.

The outlier factor is a comparison between the reachability of p and all the in-
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stances in the neighbourhood of p as is defined as follows:

LOFk(p) =

∑
j∈Nk(p)

lrdk(j)
lrdk(p)

|Nk(p)|
(3.10)

K-Means Clustering

There are 5 different types of clustering (Partitional, Hierarchical, Grid-based, Model-
based and Density-based [?]) of which Partitional K-means clustering can be seen
as one of the best known classical principles [43].

K-means iteratively determines what the centroids of the clusters should be given
a value K as the number of clusters. Following a two step process where it first as-
signs all instances to the randomly placed centroids. In the second step it places
these centroids in the centre of the instances that are now part of that cluster. Con-
sequently the procedure is repeated with the new locations of the centroids until they
reached a steady location [44]–[46].

Figure 3.13: K-means cluster analysis with two features, two clusters and a dis-
tance threshold of 2. Whenever an instance does is not within a dis-
tance 2 from a centroid, it is marked as anomaly.

The algorithm requires a value of k to be chosen a priori , which should not be a
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problem when the expected number of clusters are known and constant. However,
in other cases an extra step of determining k is required. In [45] different techniques
to evaluate the clusters are mentioned how to calculate how well the clusters are
separated.

Silhouette coefficient This evaluation method averaging the silhouette values s(i)
for all instances after the k-means algorithm divided the data into k clusters. The first
is to calculate for every instance in a cluster i ∈ A the average distance to all other
instances of the same cluster.

d(i) =
1

|A|
∑
∀j∈A

d(i, j)

This will be subtracted from the average distance to the points in its nearest
other cluster B and divided by either the max average distance to instances in A or
B, which will usually be B otherwise it might be in the wrong cluster.

s(i) =
b(i)− a(i)

max b(i), a(i)

where
b(i) =

1

|B|
∑
∀jinB

d(i, j)

The bigger s(i) and subsequently the average over all silhouette coefficients, the
better divided the clusters are.

3.3.3 Profiling based

Trajectory clustering

So far we did not explicitly take time into account, except through features. Trajectory
analysis uses historical information of an instance as input for AD.

Some of the previously mentioned methods can perform well for trajectories anal-
ysis, when the whole trajectory is considered a feature. For example Discrete Spa-
cial Distribution Representation (DSDR), which maps the paths as 2D features on a
plane, generating probability distributions of a trajectory.

31



Chapter 3. Related work

The Isolation Forest (iForest) method mentioned in [47] explains another trajec-
tory anomaly detector. It compares a sequence of key points in routes and marks an
instance as anomaly when this sequence has a different order or set of key points. A
graph representation of the sequences can also be used to detect cyclic behaviour.

Association rules

This method tries to find a relation between features. Whenever such association
exists, it is likely for B to happen if A happened if A is associated with B. These
events can occur simultaneously or in a later moment in time. Associations can also
form with more features, for example if A and B occur, there is a high probability of
C occurring some time later.

Peer Group Analysis (PGA)

PGA is an example of a profiling method where a model is fit to what is considered
a normal pattern for individual instances over a fixed time period [32]. This method
compares the individual trends to its peers, which are other instances considered
similar to the instance.

3.3.4 Model based

Linear regression

A linear regression model uses the concept of PCA and one of the statistical meth-
ods mentioned before. it tries to fit a line to the data points which would be the first
principle component in PCA. The deviation of this line is considered the anomaly
factor. More complex lines such as polynomial curves can be used as well.

Artificial Neural Networks (ANNs)

Neural networks are applicable for both supervised and unsupervised applications.
Commonly used feed-forward and feedback networks are part the first group be-
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cause those are able to adapt based on the errors produced by the network but
require labels to determine whether an instance is correctly classified. However, for
a third category of ANNs called competitive or self-organizing, there is no a priori
set of labels needed and therefore usable in unsupervised settings [48], [49].

The idea of a neural network is to mimic the brain, therefore the nodes are often
called neurons and the connections between them synapses. An ANN has each
layer of the network fully connected to the previous layer, so every neuron of the first
layer has synapses to all input features as can be seen in figure 3.14.

Figure 3.14: An example of a multi-layer Neural Network with two hidden layers and
one output node

Some ANNs can use the same mechanisms as other AD methods. For example
in [49, p. 84], the Pattern Associator Paradigm is described to find a set of input
patterns to find output patterns just like association rules do or can perform PCA
with linear Neural networks.

Part of the learning principles of a network is to adapt the weights of the con-
nections thus the strength of the synapses. One way to do this is according to
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the ”Winner takes all” mechanism as competitive learning. The idea of this is to
strengthen the synapses of the neuron that matches the input the most. This way
any new input closely related to the current will again generate the same ’winner’
neuron.

Self Organizing Maps (SOMs) A Self Organizing Map (SOM) is such a generic
technique that uses the winner takes it all principle to associate a number of neu-
rons to certain clusters in the high dimensional data. However, in this model the
winning neurons also move other neighbouring neurons into the direction of the in-
put value [27], [48]. The neurons are therefore interconnected, which generates a
neighbourhood around the winner neuron.

Hierarchical Temporal Memory (HTM)

HTM is, like ANN a learning method based on a model of the human brain. Where
ANN is a more mathematical approach, HTM tries to mimic the brain even more [50].

The model exists of a number of columns, all having connections to a random
subset (instead of all) of the input bits. These ’synapses’ have weights as well but
can either be strong or weekly connected depending on a threshold (see figure
3.15).

Figure 3.15: Representation of the relation between columns and input.

Each column contains a certain amount of cells. Those cells can be in three dif-
ferent states a any moment in time: inactive, active or predicted. Cells are mutually
connected to a subset of cells around them.
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Figure 3.16: Representation of the relation between cells within the columns with
two active and one predicted cell

Encoding The first step in the algorithm is to create a binary representation of
the input data. The data should be coherent in similarity and therefore should not
contain information in least or most significant bits. For example, a scalar encoder1

would represent the number 7 as 111000000000 instead of its binary representation
00000111. The encoder creates a number of buckets based on the min and max

values for this feature. The previous example has a range from 0 to 100 and 10

buckets (111000000000, 011100000000, 001110000000, . . . , 000000000111). This will
put values 0− 9 in the first bucket, 10− 19 in the second, etc.

Spatial pooling Whenever a new input is present, every column will be scored ac-
cording to the number of connected synapses (the weight of the synapse ≥ thresh-
old) with an active bit. Next, a subset of columns with the highest scores will be
taken and these are now considered the active columns generated by this input.

For learning purposes all weights of the synapses connected to these columns
will be increased when they had an active bit or decreased when they were linked
(either strong or weak) to a 0-bit.

1https://github.com/numenta/nupic/wiki/Encoders
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Temporal pooling For the next step we will look at the cells within the active
columns and consider two possible options. Either one of the cells is currently pre-
dicted or none of the cells is. When a cell is predicted it should become active,
otherwise all cells within the column will, which is called bursting.

Every cell can set its state predicted based on the cells it is connected to. When-
ever it becomes active at a certain moment t, it makes connections to neighbouring
cells that were active at t− 1.

A bursting column is an anomaly indicator since this is not a predicted active
column. The more columns are bursting at the same time, the more likely this input
is an anomaly. Therefore, the anomaly score is the ratio between the active and the
bursting columns.

3.3.5 Combinations of methods

Most outlier detectors use a combination of technique which works best for the input
data they have to use and the output they want to generate. For the same reason
there is no single best solution and lots of variations on the previously mentioned
methods are possible.

Outlier likelihood

Whenever any AD is detecting (false) anomalies on a frequent time interval, this can
be considered as normal behaviour of the detector. A separate AD can be trained
on this interval of detected outlier as it were a cascade or chain of ADs. The detector
will basically mark an anomaly whenever this happens on an unpredicted temporal
or spacial location.

3.4 Abnormal Behavior Detection

To understand what kind of anomalies the outlier detection methods mentioned in
the previous section can detect, we first have to look at possible types of anoma-
lies within the context of surveillance as well as other research in detecting those
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anomalies.

3.4.1 Definitions of anomalies in surveillance

Even with little information in terms of features, there is a range of possibilities to
detect outliers. Some of them can be defined in advance, these are usually the
anomalies where an operator will be looking for. Others might be invisible or hard to
detect by the human eye, but can be important nevertheless.

Speed

Speed is one of the first anomalies that come to mind. It can either be a point
anomaly when an object has an unexpected high speed or several contextual anoma-
lies, such as a pedestrian walking on the road or a bicycle riding on the pave-
ment [51].

Direction / Course

The direction of an instance can also be subject to AD. Usually this will contain a
contextual aspect as well, for example moving in the opposite direction of everybody
in the neighbourhood or moving towards an object of interest.

Positions and Paths

If one instance is following a path which does not fall within the normal tracks (gen-
erated by non-anomalous instances) it should be considered anomalous [51], [52].
These situations can either be a local point anomaly, for example when somebody’s
position does not occur in any of the normal paths like walking on the grass, or a
global anomaly when an instance makes an illegal turn.

When some instance takes a combination of paths which creates not the fastest,
easiest or most logical route, this instance is an anomaly [47]. This includes circling
a certain building or object.
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Collective anomalies

If a certain amount of instances suddenly tend to go to the same place or in the
same direction, there might be something worth looking at. The exact opposite,
when everybody is trying to avoid a certain area is also suspicious group behaviour.
Other anomalies within this category are interactions between instances and the
detection of pick pocketing, snatching or pursuing [53].

3.4.2 Detection Methods

These are examples of how other researches did anomaly detection in human be-
haviour. Most of them can be categorized into two groups: one group of detectors
using video images to capture behaviour on one crossing or square. Others try to
do anomaly detection for a wider area such as a whole city, port or waterways.

Video surveillance Different preprocessing steps are used to detect an object in
the image. This image processing step will be kept out of scope, instead we focus
on the methods used when the images are transformed into objects or targets and
with features such as the position in the image.

In [54], the motion patterns of tracked vehicles in the scene are learned from
image sequences. The probability of an observed trajectory matching the learned
motion patterns determine the abnormality score. The probability is based on a
combination of trajectory clustering and a chain of Gaussian distributions.

As for most tracking systems, [51] produces a set of tracks based on observations
where each observation is a set of features such as position and time stamp. This
detector computes transition vectors from one observation to a number of future
observations in the same track. These vectors are used to calculate a PDF as a
multivariate GMM for every location in the scene. This PDF estimates the probability
of observing an object with these features (speed, direction, etc) at this location in
the scene.

Flow vectors are used in [22] for representation of trajectories. These are trans-
formed into prototype vectors using VQ (see section 3.2.1) and a PDF of the dis-
tribution of points associated with this specific prototype vector. A preprocessing
step of re-sampling is required to prevent vectors to be densely distributed when the
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speed is low and sparsely when the object travels with a higher speed.

For better context analysis, it can be useful to generate semantic regions within
the scene. For example detecting different road segments such as pedestrian cross-
ings, traffic lights or other stopping areas, one-way streets etc. This semantic model
can be obtained by clustering trajectories based om some class (e.g. pedestrians
and cars), spacial distance and directions [55].

Motion patterns are also used in [56] to generate pattern models. They use
clustering algorithms to group different the motion patterns to reduce the number of
models by generating one model for every cluster.

The State-Based Anomaly detection by [53] requires features to be converted
into classes as a method to compare them. Speedstate (stopped, slow, medium,
high), CourseState (e.g. north, north-east, east, ) are feature used for their detection
method. The categorical feature RelationState (inFront, behind, left, . . . ) which is an
indication of their relation to the closest neighbour, is useful in detecting collective
anomalies. The actual detection is performed by a table lookup, checking if a new
state is in the normal set.

In [57], cars are tracked while crossing an intersection and their trajectories anal-
ysed for anomalies. The trajectories are preprocessed to remove errors from the
tracking first, followed by clustering to find template trajectories (which are the cluster
centroids). A Gaussian distribution is calculated for each template trajectory and tra-
jectories with a higher speed than the mean plus standard deviation are considered
anomalous. Furthermore trajectories are anomalous when they are not comparable
to any of the template trajectory.

Wide area surveillance The Automated Anomaly Detection Processor (AARP)
mentioned in [14] is designed to detect anomalies of land, sea and air targets de-
tected by Ground Moving Target indicator (GMTI) radar or sensors on Unmanned
Aerial Vehicles (UAVs). Again a sequence of observations with each observation
represented as vector containing the feature values and time of the observations is
used as input for the detector. AARP uses a SOM to generate model vectors from
the normal dataset. A GMM with the model vectors as means and the normal data
around the vector as variance is used to be able to provide feedback on what feature
triggered the anomaly detector.

An AD system for port SA is presented in [16] where a ARTMAP is used to
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cluster features (for example the speed) of a vessel according to their type and the
zone (open water, inner water, dock perimeter or dock) they are currently in. The
boundaries of each cluster can stretch whenever a new data is added. If new data
is still outside of the boundaries, it is considered an anomaly.

A method of motion anomaly detection in ports and waterways is also proposed
in [58]. The information acquired by Automatic Identification System (AIS) messages
such as name, type, size, position, speed, etc. can are used as features. The KDE
used in this method is contextually based on where the ship departed. Trajectories
that departed from the same origin share the same model, where all measured
locations within the trajectories are used in the KDE.

Two different algorithms for AD are covered in [52]: Their research evaluated
GMM and KDE on comparable AIS data, which includes a wide range of features.
For the detectors the position (latitude and longitude) and speed vector (also split
into latitude and longitude) are used as features and to eliminate contextual prob-
lems they only use cargo or tanker vessels in the dataset. Both methods used
showed a high rate of false negatives, most likely due to the use of a grid structure.
The densities at the border of each cell are low which is counterproductive when
trying to construct PDFs for each cell individually.

AIS data of tracked vessels was again used in [34], where a grid of the area
is constructed and GMMs are used for every cell. This time, each cell has two
normal models, one univariate (’base’) model to captures the velocities in that grid
cell and a second (’extended’) bivariate model with the velocity and spacial positions
to capture the correlation between speed and position. Instead of using the regular
EM algorithm to find a predefined number of Gaussians, they use a greedy extension
which will also find how many Gaussians are needed.

In [59], [60], AIS data is used as input for ARTMAP classifiers. The correlation
between the speed and the location were used as features. However, instead of
the exact latitude and longitude positions, the locations were grouped into classes
(’port’, ’open water’ or buoy numbers).

3.4.3 Conclusion

Even with the list of possible anomaly detection methods mentioned in section 3.3,
it is remarkable to notice how most of the implementations and research on surveil-
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lance only use a small subset of those methods. One reason for this might be the
limited amount of features (dimensions) available and used for those anomaly de-
tectors. On the other hand, these methods might also be working sufficiently for the
proof of concept in those researches.

3.5 Evaluation

Whenever the data can be represented in a low dimensional feature space, visualiz-
ing the data could help to get an idea of what instances are classified as anomalies
and whether these are in fact valid. An expert in the domain of the data could be
consulted for this task [61]. Both true and false positives can be evaluated using this
approach and since the amount of anomalies should be smaller significantly than
the dataset (otherwise it is not an anomaly), this should be feasible. However, true
or false negatives are harder to detect since those instances can be hidden within
the large number of instances.

The ratio of anomalies versus normal data is an indicator as well. If half the
dataset is classified as anomaly, the detector seems to be less powerful. Knowledge
about the data can be used to score detectors based on the expected ratio.

Some detectors can be evaluated by assessing their parameters generated by
the training data. A Gaussian distribution with an unexpected high variance would in-
dicate another value distribution of this feature. The same way a clustering algorithm
could be evaluated by comparing the intra-cluster variance with the inter-cluster vari-
ance.
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Method

Literature and research on related work has given us several techniques useable for
anomaly detection within and outside of the domain of this research. Most of the
techniques require knowledge about the characteristics or are specifically made to
detect one anomaly type. This research does not focus on one single anomaly type
but rather tries to find a method to detect any given event in the dataset. A prototype
capable of detecting different anomaly types using the techniques mentioned earlier
is designed for testing and evaluation purposes, but can also be used as anomaly
detection tool outside the scope of this research.

Due to the lack of information about the dataset and the anomaly types that
should be detectable, it is not possible to find a technique by analysing the problem
characteristics as explained in Figure 3.1 and Figure 3.2. Instead of designing a
prototype to detect one specific anomaly type, we will aim to find and define an ab-
stract detection technique, which is independent of what anomaly type it should de-
tect. This technique will have different combinations of context, model and features
available to construct a detector which can detect outliers based on a preselected
combination. The anomalies this research will use for evaluation depends on the
available dataset. Any of the offences mentioned in Chapter 2 which is present in
the dataset and is the only event around the time of the offence, will be used as test
event.
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4.1 Prototype

The development of a framework for detecting anomalies in wide area data is done
iteratively. The core of the system, such as the structure of the data, should be
applicable for any detection method and is implemented first. In the following steps
the different methods were added to the framework. A reason and advantage for
designing the framework as a set of tools instead of one-method solution is to open
the possibility to test the methods on different datasets containing other anomalies,
which can require different methods and features.

4.2 Detection technique

Not all statistic outlier detection methods explained in Section 3.3 can and will be
used during this research. A selection was made based on the success of the
methods in other studies and the time available for integration of the method in the
prototype. Based on these arguments, a Gaussian, GMM, histogram, Polynomial,
and KDE are used as statistical models.

The data will be grouped based on a certain contextual aspect and for each
group a statistical model will define what behaviour is normal for this group. Groups
can be based on no context to find outliers based on everybody else, personal,
which should be able to detect changes in personal behaviour and location based
to compare people in the same area. More details about these contextual grouping
can be found in Chapter 5.

The Features can be any characteristic of somebodies behaviour. Speed, direc-
tion and location are most often the focus in other and this research.

4.3 Simulator

The open-source Intent Driven Scenario Authoring (IDSA) simulator (Figure 4.1)
used for evaluating the methods and design used in this research is provided by
TNO. The simulation represents human behaviour based on the intentions and
agenda each agent has.
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Figure 4.1: The original IDSA simulator, used to simulate walking behaviour of peo-
ple as well as (criminal) events.

Using a simulator as evaluation method has advantages and disadvantages. Be-
haviour can be designed according to specific requirements with a simulator but we
can not assume this behaviour is realistically modelling real life behaviour. By using
a simulator to generate the dataset we eventually make a detector reflect the be-
havioural model of the simulator and not the real world behaviour (see Figure 4.2).
Data generated by observations of real world behaviour would be preferred but un-
fortunately unavailable.

The designed anomaly detectors are tested by how well they fit the situation as
well as the ability to detect special anomalous events added to the simulation. These
tests are based on recordings of 4 (simulated) hours. One of the test cases has no
events at all and should contain only normal, non-anomalous data. The others test
cases have anomalous events occurring at a fixed time interval.

4.3.1 Normal data

Purely normal data, which is a simulation without any generated event, is used to
evaluate the models. The less outliers a model has, the less False Positives (FPs) it
will generate (see Table 4.1 and Figure 4.3). On the other hand, it should still be able
to detect the anomalous events thus having a high precision (which is the amount of
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Figure 4.2: Evaluation is done using a simulator which is modelled to simulate real
life behaviour. Training the detector on the simulated data will create a
representation of the simulation model. In an ideal situation the data
fed to the simulator is observed real world data, which will make the
detector model actual behaviour.
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Table 4.1: Confusion matrix of the relation between outliers and anomalies
Outlier Inlier

Anomaly TP FN
Normal FP TN

correctly detected anomalies divided by the total number of outliers found). A model
with no FP is highly unlikely but not impossible. Inspection of the actual distribution
of feature values and the PDF of the resulting model can provide insight in why a
model has or does not have FPs.

4.3.2 Simulated events

A well fitted model is important for proper anomaly detection to reduce the number
of false positives but it is even more important to find the real anomalous events.
Testing what methods are able to find the simulated events required modifications
to the simulator. Details about those changes can be found in Appendix B. It was
possible to manually add events at certain times already, but automatic extraction of
what agents in the simulator were involved in the incidents was not available outside
of the simulator.

For the tests, 4 events are generated, one every hour (12:00,13:00, 14:00 and
15:00.). These events are planned to occur 37 minutes later (at 12:37, 13:37, 14:37
and 15:37) at different locations. This will give the participating agents enough time
to arrive at the scene.

An increased number of detected anomalies at the times of the events suggests
successful detection of the anomalous people but detailed analysis on what person
is marked as anomaly is needed. The tests main goal is to evaluate the amount of
True Positives (TPs) and False Negatives (FNs) (recall), since those are related to
the detection of anomalies. Minimizing the number of FNs is more important than
having a few FPs, especially when an operator can easily notice the difference.

Some of the detectors only have information about the location of a collective
anomaly, not what agents were involved. To test the accuracy of those detectors,
the location(s) of the found anomalies is compared to the actual start of the anomaly.
False positives will increase the average distance so the smaller the distance, the
better the detector.

Since the behaviour of the test events are modelled in the simulator, we can
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Figure 4.3: A visual representation of the relation between outliers and anomalies
in terms of precision and recall.

easily see what behaviour we can expect during the event and compare these with
the actual characteristics of these events in real life. Subsequently we can decide
what detection methods are most likely to work to detect the event. Unfortunately,
some of the events were not (fully) realistically modelled, therefore their behaviour is
added to the simulation as described in Appendix B. For the same reason the three
events mentioned below (procession, street and commercial robbery) are used for
evaluation the detectors, models and designs.

Procession

A procession is modelled to have a set of agents following the same path. Each
agent participating in this event will start with a small delay creating a chain of
agents. The default procession has 30 participants, each starting 3 seconds af-
ter the previous agent. They will cover a distance of 500 meter, with an average
speed of 3 km/h.
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Pickpocketing, robbery and street theft

For the simulation, a street theft event has the offenders and victims walking to the
crime scene, use either blitz or snatch methods to obtain the item and run back
to where they came from. A default event has two victims and two offenders, all
randomly selected at the moment this event is created.

Shoplifting and commerical robbery

The main difference between commercial robberies and street thefts as test method
for this research is the location of the event. When the crime is committed inside a
building and the offenders exit the building, no historical data about them is available
since tracking was lost during this time.The default shoplifting event for the simulator
has two offenders as well, but not a simulated victim because this person is inside
during the robbery. For this reason the 4 event locations are also different from the
procession and street theft.
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Prototype

In contrast to the detectors mentioned in literature, the designed system does not
use strictly one method of detecting anomalies but is modular and easily customiz-
able. The combination of detection method, model and feature opens opportunities
to find anomalies that are not thought of before. Although not implemented, each
combination can be used as a layer, determining what detector is more prominent in
what area (see an illustration of this idea in Figure 5.1). This opens the ability to give
priority to detecting running in the city centre where detection of public gatherings
could be more important in suburbs.

Two types of anomaly detectors are implemented. The first type focuses on the
predicted distributions of features (point anomalies) where the second type looks at
the collective anomalies. Different detectors are implemented for both types, as can
be seen in Figure 5.2. This section broadly describes design choices required to

Figure 5.1: Prioritizing different detectors (represented as layers) in other areas and
neighbourhoods.
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understand how the detectors work. For more detailed information, diagrams and
algorithms used and what other detectors are (partly) realized, see Appendix A.

5.1 Trajectory detectors

The trajectory detectors are commonly seen in previous research. They are able
to perform point anomaly detection, mostly by statistical analysis. In the current
trajectory detectors they are trained with one dimensional data. The actual values
depends on the feature of the trajectory (speed, direction, etc).

5.1.1 Input

The detectors require spacial temporal input as four values namely an ID, X-position,
Y-position and the time. After more than one position for a person is received, a seg-
ment between those points, which defines the movement of this person, is created.
The sequence of these segments for one person form its path (see also Figure 5.3).
A trajectory is defined as an abstract version of both a path and segment, having a
start and end position as well as a start and end time. With these properties fea-
tures such as speed and direction are deductible, which is the input for the trajectory
detectors.

5.1.2 Detectors

The detectors each split the set of trajectories in different subsets, based on what
context they use (see Figure 5.4). The detectors keep track of the models of all
those subsets and adds new data to the correct model when provided. Anomaly
checking is done by first determining to what context the given trajectory belongs and
subsequently calculating if the feature value for the trajectory is an outlier according
to the model PDF.
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Figure 5.2: A diagram of the realized anomaly detectors, showing the relation be-
tween context (detector), feature/window and model (closed arrow) as
well as the current possible implementations for these parts of the de-
tector (open arrows).

Figure 5.3: Definitions of time points, segments and paths.
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Figure 5.4: The detectors all have models of different subsets of the trajectories.
The trajectories are divided into the subsets based on their context.

Global and personal detector

The global detector uses one of the statistical models to calculate the probability of
the trajectory based on all (non-zero) trajectories received so far. Context such as
location, time or who walked this trajectory are not relevant for this detector. The
personal detector uses one model for each individual person making it contextually
dependent on who the trajectory walked. It is therefore useful for detecting sudden
changes in behaviour. The amount of available data per person is unfortunately
limited and whenever somebody goes inside and the collected information is not
usable any more.

Vertex & edge detector

An graph representation of the points and trajectories (called vertices and edges)
are constructed to capture multiple trajectories at the same spacial location. These
edges are comparable with the model vectors mentioned in Chapter 3 and repre-
sents the roads in the scene. Consequently an edge is the collection of trajectories
with the same vertices as begin and end point. More details on how the graph is
generated can be found in Appendix A.
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Figure 5.5: A visual representation of the mapping from trajectories to edges.

Trajectory type Feature Feature value
All Trajectories Speed Meter per second
All Trajectories Angle Radials
Only Path Detour Meters
Only Path Normalized detour Ratio
All Trajectories Time of day Seconds since midnight

Table 5.1: Examples of features

5.1.3 Models

The implemented models determine the probability of a feature value based on the
set of trained trajectories with the same context. These features can be the speed,
orientation, length or any other property that can be extrapolated from a trajectory
between two points. Examples of these features can be seen in Table 5.1.

5.1.4 Trajectory anomalies

The combination of a Gaussian model, personal detector and the speed as fea-
ture tries to find individuals who suddenly changed their speed due to an event. A
persons speed could well be normally distributed since everybody has their own
preferable walking speed but crowded areas where the speed is lower or points of
interest, such as a street full of shops can cause outliers according to this model.

For the shopping street scenario, an edge detector modelling speed as Gaussian
distributed would be a good alternative to detect anomalies in the street. The edge
detector creates a model of everybody in that particular street. People running in a
street where the usual walking speed is much lower will be outliers and marked as
anomalies.

The ability to combine all feature based anomaly detectors with all implemented
models and features opens the possibility to detect anomalies that are not thought
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of before.

5.2 Collective detectors

Apart from looking at individual trajectory features, a collective model represents the
location of the objects and their relation to each other at one moment in time. The
densities at a number of successive time frames are compared in a moving window
to determine what locations show collective anomalous behaviour.

5.2.1 Input

The input for collective detectors are frames instead of trajectories. Frames are
measurements received at or about the same time thus represents the locations of
people at one moment in time.

5.2.2 Detectors

The detectors determine the collective representation and context. For example
a density detector will, as the name suggests, compare the amount of people in
different areas. For this detector an area will be anomalous or not, not an individ-
ual person. Neighbourhood or dissimilarity detectors are personal and not location
based, they evaluate for example what their distance to the k people closest to them
is and either compare this to other people’s neighbourhoods or take the change in
the personal neighbourhoods over time.

5.2.3 Windows

Time windows are used for evaluating changes over time, either by determining the
maximal value (density, neighbourhood boundary distance, etc.), the increase or
decrease or even frequency if desired. Anomalies are detected when the outcome
of a window passes a given threshold.
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5.2.4 Collective anomalies

Using this approach, it is to find locations where within a certain amount of time
(decided by the window size), the density changes due to people coming together or
running away. Last mentioned scenario could occur when people witness somebody
caring a weapon or bomb.
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Chapter 6

Results

This chapter will cover the performed tests and their results. For both statistical and
collective anomaly detectors, two types of tests were performed. One to analyse
how well the models are able to capture the normal data and another to check if
simulated events are detectable.

6.1 Normal models

The 4 hour simulation without any generated events has in total 952609 segments
for 18230 agents (fictional people). Since this simulation only contained normal
agents and no events were present, the less false positive anomalies detected, the
better the model fits the normal data.

6.1.1 Statistical models

We can inspect how well the models capture the data visually. In Figure 6.1 we
can see the distribution of the global speed and all probability density functions
generated by the same data.

Apart from minor differences, all probability density models (Figure 6.1b-e) fit the
actual distribution (Figure 6.1a) well. This results in near zero anomalies detected
for the models, based on global detection, as can be seen in Figure 6.2. Detectors
based on different context show less well fitting models up to about 35% false pos-
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(a) Actual distribution (a) Gaussian distribution (b) Gaussian mixture model (k = 2)

(c) Histogram density estimation (bins = 100) (d) Polynomial fit (degree = 15) (e) Kernel density estimation (h = 0.05)

Figure 6.1: The different distribution models of all speeds over 4h.

Figure 6.2: Percentage of the anomalies found in normal data for features speed
(left) and direction (right), with for all a threshold of 0.01

itives for a Gaussian distribution for global detection of the direction of trajectories.
This result is not surprising because it would be very unlikely to have every person
in a city walking only in one direction.

The peak close to zero is caused by people standing still. They are excluded
from the test set for Figure 6.2 to only test the moving trajectories. Detection based
on people standing still can both be done by trajectory or collective detection where
another feature such as location is used to look at whether people stand still on
unusual places.

Figures 6.3 & 6.4 show the same false positives as Figure 6.2, but now measured
over time. This shows how some combinations are adjusting to the new data and
improve their statistical model according to the data where others are getting worse
because the data distributed ideally for the model.
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Figure 6.3: Percentage of the anomalies found in normal data based on histogram
models over time. Left is based on feature speed and right on direction,
with for all a threshold of 0.01

Figure 6.4: Percentage of the anomalies found in normal data based on Gaussian
models over time. Left is based on feature speed and right on direction,
with for all a threshold of 0.01
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6.1.2 Collective models

The collective models require different testing. Instead of comparing trajectory fea-
tures, this technique uses the locations of every person with each new measure-
ment1. Therefore the tests are done in chronological ordering, as if the data is
acquired and analysed in real time.

The first test will do this by adding the frames in series. After a frame has
been added the models are updated and the anomalies are calculated for 4 dif-
ferent thresholds. What percentage of the scene will be marked as anomaly can be
seen in Figure 6.5.

Figure 6.5: The anomalies found based on three different thresholds. All use a
window size of 30 frames. The vertical line represents the snapshot
visible in Figure 6.6.

To give a more detailed view in what is tested, one frame taken during this test
is shown in Figure 6.6. Left is the actual position of the simulated agents and right
the areas where the densities changed more than 0.0025 in the last 30 frames. By
comparing this with the dotted line in Figure 6.5, we can see the anomalous cells
currently covers about 0.25% of the whole area.

The relatively high anomaly peek in the first minute of Figure 6.5 is again due to
the start-up of the test. This case the reason is not the lack of data to generate a

1Technically, the combination of time and location could be expressed as context and feature of a
trajectory as well. More research on whether the trajectory detection technique is able to replace the
collective detection technique can be done (see Chapter 9)
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Figure 6.6: Left: The densities of one frame using KDE. The greener the area, the
denser it is. The blue dots indicate the location of people in this frame.
Right:The anomalies found using a 30-frames window and a threshold
of 0.0025. The red areas are the locations where the density changed
more than 0.0025 in the last 30 frames.

reliable model but the simulated data has everybody starting at a limited number of
places at the same time. Therefore these peaks are not false positives but actual
anomalies generated by this test setup. After the people are doing what their agenda
tells them to do the number of anomalies decreases.

6.2 Simulated events

6.2.1 Procession

Detecting of a procession would therefore be expected to work best using a col-
lective anomaly detection approach. Especially when a dense group of people is
walking, the density in an area changes significantly. Spikes in Figure 6.7 show the
increase in anomalous areas at the times of the events. Whether the spikes are ac-
tually detecting the correct location is measured by averaging the distances between
the anomalous locations and the starting location at the time of the event.

Figure 6.8 & Table6.1 show how a higher threshold will mark a smaller area close
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Figure 6.7: The anomalies found based on four different thresholds. All use a win-
dow size of 30 frames.

Figure 6.8: The distances to the event of anomalies found based on four different
thresholds. All use a window size of 30 frames.

to the origin of the event as anomalous, but will take more time to detect the anomaly.
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Threshold 12:37 13:37 14:37 15:37 Score
ε = 0.0025 652,69 573,56 552,00 363,47 504,95
ε = 0.005 405,52 355,23 392,41 332,18 364,37
ε = 0.0075 275,32 239,96 313,35 360,16 315,40
ε = 0.01 198,67 177,31 295,12 348,05 274,02

Table 6.1: The average distances from all locations marked as anomaly to the start-
ing location of the event for the 30 frames after the event starts.

6.2.2 Pickpocketing, robbery and street theft

The event repeats 4 times with each 2 offenders. The maximal number of successful
detection for the detectors is therefore 8 agents.

The plots in Figure 6.9 and colour map in Figure 6.10 show how the different
detectors and models respond to the 4 theft events. The most successful detectors
will not mark the offenders as anomalies before the event takes place (at 0) and
detect all 8 shortly after. How long they keep marking the agents as anomalies
depends on when the offenders ’blend in’ or go inside.

Figure 6.9: The anomalies found in the different events for 4 detectors and 5 meth-
ods, based on the feature speed.
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Figure 6.10: The accumulated anomalies found for 4 detectors and 5 methods,
based on the feature speed, shown as colour map.

6.2.3 Shoplifting and commerical robbery

As for pickpocketing, the test event repeats 4 times with each 2 randomly selected
offenders. The maximal number of successful detection for the detectors is therefore
8 agents. Figure 6.11 shows when the offenders are detected as anomalies for the
four different events. In Figure 6.12, these events are combined to show the total
detected offenders for the different combination of detector and model.
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Figure 6.11: The anomalies found in the different events for 4 detectors and 5 meth-
ods, based on the feature speed.

Figure 6.12: The accumulated anomalies found for 4 detectors and 5 methods,
based on the feature speed, shown as colour map.
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Discussion

7.1 Model sizes

The comparison of the combinations between detector and method (Figure 6.2)
shows big difference in success. False positives are rarely seen in the global de-
tector but high in for example the personal detector. One important reason for the
high number of anomalies in personal detection is the limited amount of data. For
every person, the first trajectory is an anomaly because no model for this person ex-
ists. This is even worse for the models that require multiple trajectories with different
feature values such as the Polynomial model. Table 7.1 shows this the combination
of number of models and trajectories per model for the different detectors based on
the same data set used for testing. The higher the number of models and the lower
the number of trajectories per model, the higher likeliness of false positives.

An important question that has to be answered based on these findings is what to
do with these ’empty models’. A solution for this problem is to use models only when
they contain enough data to be considered reliable. Until then, the global detector

Detector Models Average Standard Deviation
Global Detector 1 952609 0
Personal Detector 18230 52.26 168.79
Vertex Detector 9888 96.34 181.16
Edge Detector (if directed) 34156 27.89 65.39
Edge Detector (if undirected) 24511 38.86 85.05

Table 7.1: The amount of models per detector and trajectories per model in the data
set.
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Figure 7.1: Anomalies found using a personal detector with Gaussian models. The
map shows how the high peeks in both graphs are caused by newly
detected agents.

can work as an initial model. Either by switching from global to personal detection
when the models contain sufficient amount of data or by initializing the personal
model with the same parameters as a global model and re-estimating parameters
when new data is added to the personal model.

Figure 7.1 shows the difference between considering trajectories of newly de-
tected people an anomaly compared to ignoring anomalies due to invalid (empty)
models. The amount of false positives caused by invalid models shows a repetitive
pattern. Every minute it has a spike, suggesting the simulator adds the new agents
every minute and not evenly distributed across time.
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7.2 Order of training and detection

One of the solutions for this problem is to add any newly received data to the model
before checking whether it is an anomaly. This will increase the validity of the model
but will also have unwanted false negatives since the exact value you are testing is
used in training. There are actually several options on what order training and testing
are done, as well as whether an anomaly should be added to the model or not. In
general we have to ask the question if and when should an anomaly be added to the
model? The options are:

1. First add a trajectory to the model, then check if it is an outlier.

2. First add a trajectory to the model, then check if it is an outlier. If it is an
anomaly, remove it from a model.

3. First add a trajectory to the model, then check if it is an outlier and ask feedback
from the user whether this is an anomaly. Subsequently remove it if it is an
anomaly according to the domain specialist.

4. First detect if the trajectory is an outlier, subsequently add it to the model.

5. First detect if the trajectory is an outlier, then leave it out of the model.

6. First detect if the trajectory is an outlier, ask feedback from the domain spe-
cialist whether this is an anomaly and if it is, leave it out of the model.

Ideally, the domain specialist would select whether the outlier is an anomaly or
not but not all situations would have this possibility. The cases where lots of outliers
are detected would benefit but will require a lot of error checking by the operator.
Some situations would also not immediately give a clear answer on whether it is an
anomaly or not. It could require eyes on the ground and review of the outlier, which
would only be possible when there are a small number of outliers.

The options where outliers are not used would make the model most accurate
but will be hard to accomplish. For example, in the beginning the models will mark
every first trajectory as outlier because it has no data yet. Since it is an outlier it will
not be added to the model and the same problem will arise for the next trajectory.
For these situations it would make more sense to first add them until a stable model
is created and subsequently remove the outliers.
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7.3 Simulator

After some events, agents kept standing still at the event location. However, it is
more likely to have offenders and/or victims run in if these situations occur in real
life. Whether this behaviour is indeed what happens is open for discussion. Other
testing parameters such as the locations of the generated events are picked at ran-
dom. Whether these locations are plausible for the events and how much it matters
what location the event has, is debatable. Some events, such as a demonstration,
more likely start at an important square compared to a small alley somewhere in the
area. During testing these locations are not prioritized and all events have a unique
location to make the tests independent. For example, the collective densities will
already be high before the second test starts if they occur at the same location, a
relatively small increase caused by the event will not be detected.

Since several tests are done based on the speed of the agents, their speed
should represent a realistic representation of real live situations. Modifications to
the simulator were required to accomplish this (see Appendix B), but whether the
resulting speeds are in fact a likely representation will remain questionable.

As mentioned earlier, agents are spawning at a fixed rate, namely every minute.
Furthermore they only spawn at a limited number of places when the simulator is
started. later they do have a better and more widely spread distribution.
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Conclusions

8.1 Outliers vs anomalies

The characteristics of crimes are often hard to define. Not every person running out
of a bank committed a robbery, instead he might be running to catch the train. Run-
ning out of a bank has therefore no direct relation to robbing the bank. On the other
site, if other people (for example police officers) were witnessing the situation, they
might want to question the person why he runs out of a bank. This behaviour is in
this case perceived as abnormal or suspicious. Other suspicious looking behaviour
includes suddenly running away from somebody and this person can be perceived
as offender (of a street theft) or potential victim of something the other person did.

Research on what other behaviour people and specifically domain specialist such
as police officers or security camera operators perceive as suspicious is needed
to find more characteristics of anomalous behaviour. The two examples mentioned
above are, as well as characteristics of a procession were used during this research.
They are defined as follows:

Street robbery The offenders walk towards the victims and start running after the
offence.

Commercial robbery The offenders walk inside a store and run away after the of-
fence.

Procession The participants come together at one location and start walking the
same route.
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Examples of the events mentioned in Chapter 2 and how they might be detected
are listed in Tables 8.1 & 8.2. Some events could be detected using different combi-
nations of detectors, features and models. Some of these techniques will also detect
anomalous events that are uncommon but are not a crime. For example, a personal
detector checking for the detour somebody took to get a bicycle, can detect if a thief
is looking for a one to steel but will also detect if somebody simply forgot where his
bicycle was parked.

The tables also show detectors not yet fully realized in the current prototype. See
future work (Section 9 and Section A.5) for more details on what these detectors
should do.

Detector Feature Example of detectable events
Global Speed Running
Edge Speed Shoplifting and commercial robbery
Edge Direction Walking against traffic
Edge Direction Pickpocketing
Personal Speed Street theft
Vertex Speed Stalking
Vertex End-location Burglary
Personal Detour Bicycle theft

Table 8.1: Examples of anomaly types using trajectories

Detector window Anomaly type
Collective density Density increase Rally or demonstration
Collective density Density decrease Terrorist spotted
Collective dissimilarity Repetition Pickpocketing
Collective dissimilarity Distance + Variance Stalking

Table 8.2: Examples of collective anomaly types

8.2 Detection technique

The techniques used in this research for detecting anomalies has proven to work for
both trajectories and collective behaviour. The different anomaly characteristics can
be translated into a context-model-feature combination which can detect a certain
specific anomaly type.

Context based grouping of trajectories (which will create one model for each
group) works well, as long as the groups contain enough training data for a valid
and reliable model. Some models require more data and therefore more start-up
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time than others but not all contexts can be properly trained by extending the start-
up time. Some contexts such as personal context (or anything that is related to time)
have a short lifespan, making the model unreliable for a significant part of the time
the context exists. The different ways features are distributed requires the possibility
to choose from different models. A Gaussian model works well for a feature like
speed but will not be able to model the distribution of the directions, for example.

Collective detection is a slightly different technique where spacial models are
constructed at a fixed frame rate. This method has proven to work well when models
are compared over time to detect changes like the density (crowdedness) of people.

8.3 Simulatable events

Currently, the simulator was able to provide three types of events interesting for
anomaly detection: A procession, street robbery and a commercial robbery. The
simulator is able to perform more events, such as a police arrest but for anomaly
detection as tool to find criminal activity an arrest is less useful since in this case,
the police already found the offender.

To answer the question on how well the methods mentioned in this research are
able to find the generated anomalous events, we will look at those individually and
compare the different detectors.

8.3.1 Street robbery using trajectory detection

The distinct characteristics of this event are well detectable for global analysis of
all trajectories. The speed of the fleeing offenders is considered an outlier for all
models except the polynomial fit function.

Detectors based on personal context work best with the Gaussian model and
GMM. The KDE and polynomial model do show an increased detection rate after
the event but only half as strong as the Gaussian model. Where the histogram did
work well without context (Global detection), it seems to fail for personal detection.
GMM shows successful detection but the offenders will not be marked as anomalies
as long as they are in a single Gaussian model. This is caused by the adaptation of
the models, they consider both the walking and running behaviour as normal.
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Edge detectors do not capture this event well. A small increase in successful
detection is visible but less profound as the global and personal detectors do. KDE
is the exception in this situation since it did not capture any anomaly during the
events.

Vertex detection performs better than edge detection, most likely because the
models are better trained because more people crossed these vertices compared to
the same edges as the offender did.

8.3.2 Commercial robbery using trajectory detection

Global detection based on speed is for this event also the method of choice. Com-
pared to the street robbery we can notice some small differences but these are
caused by the randomness of the simulator, the people picked as offenders and
their final destination.

As expected does the personal detector a bad job in detecting the events. The
offender has an ’empty model’ (no information about what normal behaviour is for
this person), therefore the running speed is considered normal quickly after exiting
the building.

Although not as good as for the global models do the Gaussian an GMM work in
vertex detection as well. The other models seem to work bad for the test simulation.
This is most likely caused by insufficient data for the vertices the offenders pass.
Not enough people passed these hubs to generate a reliable model. On the other
hand, an edge connects two vertices but the edge detector does perform better for
these methods.

One of the first noticeable things is the lack of false positives before the event
takes place. The actual reason for this is the loss of tracking during the event. In
other words, there is no information about the offender before the event. The detec-
tion of the anomalous person is also slightly later compared to the street robbery.
This is caused by the time it takes for the offender to go outside after the offense
but a delay could also be caused by empty or still invalid models, for example in
personal detection.
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8.3.3 Procession using collective detection

Detecting the procession using collective detection methods works well. All 4 thresh-
olds show anomalies just after the events (Figure 6.7) but the delay is longer for a
higher threshold (Figure 6.8). On the other hand, the detection of the higher thresh-
olds is more accurate (Table 6.1). Deciding what threshold is optimal depends on
the priority of the operator, whether he prefers speed above accuracy or not.
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Recommendations and future work

To be able to detect different crimes, distinguishing characteristics of those crimes
need to be found. For example, in this research the assumption is made that of-
fenders will flee (run) after they committed the crime. However, as explained in
Chapter 2, this is not always the case. Research on what behavioural patterns are
typical for the types of crimes will be required to be sure you are simulating and
detecting criminal behaviour. Based on the characteristics, the context, feature and
model can be chosen and proven to detect the crime related to those characteristics.

In this research, the focus was on detecting anomalies in wide areas, but different
parts of this area will require other priorities what anomalies should be detected.
Small use cases are recommended for the individual crimes to better find the correct
parameters and threshold values. Subsequently they can be combined to detect
anomalies on a larger scale.

The implemented methods were tested using simulated data and therefore we
can not assume the simulation is fully correct. Conclusions on whether the pre-
sented methods would also work in real life situations can only be tested with actual
tracking data. This would require sufficient background checks and cause other
complications due to the classified data. For this reason the simulation was the best
alternative test method. Another way to collect data without the simulator is by act-
ing out the different situations (in a small controlled environment). Use cases for the
individual events will have to be predefined based on the characteristics typical for
the crime as well. Real life tracking situations will also entail false input, for example
wrongly detected objects or missing data. This is not included or simulated in this
research but can cause an anomaly detector to classify incorrectly.
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In those situations where people can be labelled as anomaly, either because
they are simulated or acting, the method used during this research can be used in
a neural network for example. The inputs for the first layer would be the set of tra-
jectories, context, model (including parameters) and feature and the outcome would
be a list on anomalous trajectories. The rest of the layers could be a detector again,
with another combination of context, model and feature or be like the ensemble from
Figure 3.3 and Figure 5.1.

Throughout the research, assumptions were made of what the anomalies are.
Whether these are actually anomalies a domain expert would be interested in was
not taken into account. Research on what the anomalies are and which of them are
not relevant for an operator or domain expert, would be recommended.

Although this research did include anomaly detection methods used in other do-
mains, another detailed analysis of what context, models and features work well for
those situation can benefit research in anomaly detection for defence and surveil-
lance purposes.

The time necessary to implement all mentioned techniques was unfortunately
longer than the available time for the research. The design of the current detectors
can be used as framework and enables the implementation of alternative methods
both for variations on current implementations such as other statistical methods as
for new areas like using multiple dimensional statistical methods to find correlations.

Currently a distinction is made between trajectory and collective detection but
they are in fact more similar than it looks. The collective detection method cre-
ates a model for every frame, which is subsequently compared to earlier frames.
If those time frames are seen as the contextual property of a trajectory and the
end position of the trajectory as feature, the trajectory detection method would be
able to detect the same anomalies. However, two aspects of the collective detec-
tion are not yet possible in trajectory detection which is why this research makes a
distinction between the two techniques. The trajectory detection should be able to
compare models of different contexts to detect the changes over time and the two-
dimensional aspect of collective detection has to be translated into a multivariate
feature distribution where currently only one-dimensional PDFs were used.

Another recommended new detector would be one that uses graph and shortest
path theory to detect whether a person did not take the optimal path. This detector
will most likely not be able to work with the current statistical models or basic feature
extraction. Either the model will need to keep track of and be able to calculate the
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fastest route or the detour has to be calculated during feature extraction. Other
suggestions and already partly realized detectors are explained in Appendix A.
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Appendix A

Design & implementation

Research can conclude whether a method works for a specific task in anomaly
detection, but sometimes more information on how the system works is required
for reproducibility and understandability. Therefore this appendix will demonstrate
some of the core design choices made during this research. Requirements such as
near real time analysis are not only beneficial to keep the testing time as short as
possible, it also creates the possibility to use (part of) the system for live anomaly
detection. Examples of design choices made to increase detection speed can be
found in graph search and allocation as well as GPU processing.

A.1 Data structure

The data received about the positions of people, is collected into a dataset. This
dataset can be persistent, in which all previously received data is kept or buffered,
which works as first in first out (FIFO) throwing away data after a while. The persis-
tent data is usable for testing but will quickly take up memory, therefore the buffered
dataset is more applicable when the detector has to run for a longer time.

The dataset keeps track of received data and turns it into the structure visible
in Figure A.1. As explained in Chapter 5, two data points from the same person
will create a segment and contiguous segments for a path. For both the received
positional data (called a time-point) and the segment between the time-points, a
graph representation is constructed. In this graph, a group of closely related time-
points is generalized to a vertex and segments to edges of the graph. Finally, a
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Figure A.1: Key aspects of the dataset model

Table A.1: The time it takes for a four hour simulation to load for different quad-tree
parameters

items per cell
1 2 5 10 15 20 25 30

Max depth of tree

5 169651 171367 171861 170985 172937 169437 170148 169204
10 76953 79422 90727 89695 94232 102915 106555 111391
15 77029 79056 82960 93877 98741 103706 105507 112402
20 77372 79609 84156 91508 96153 104449 108446 111597

frame is the collection of time-points received at the same time.

A.2 Graphs

To create the graph, a quad-tree is used to find already existing vertices close to a
newly received measurement. Whenever there are existing vertices close to the new
data point, it is mapped to the one closest to the data point, otherwise a new vertex
is added at this location. The graph has two important parameters: the maximal
amount of points in a cell before it is split into four new cells, and the maximal
depth of the tree. Picking the right parameters is crucial for optimal performance.
The surface plot in Figure A.2 shows how the combination of the two parameters
influence the time it takes to load the complete 4 hour test set. Keep in mind the
maximum amount of items per cell is only kept as long as the particular cell is not at
the maximum depth. Since every level of the tree is of degree 4, the amount of leave
nodes is 4d. If the points would be evenly spread in space, the quad tree would be
able to hold 4d ×max items points without breaking the maximal items per cell rule.
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Figure A.2: The time it takes for a four hour simulation to load for different quad-tree
parameters
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By the high peek for low depth trees we can conclude that using a tree is pre-
ferred above having to go through all the items to find the nearest neighbours. On
the other hand, having a low number of items per cell would cause a lot of overhead
when cells have to be divided into four new cells. However, this splitting of cells is
quicker for cells with less items compared to a high number of items per cell. Not
taken into account here is the memory it takes for the different combination of pa-
rameters. The deeper the tree the more memory is required which should be kept
in mind if memory is scarce.

A.3 GPU

Real time detection is key to the anomalies within the context of this research. If
detectors are not able to calculate the anomalies in time, one of three options should
be implemented in the design, based on what causes the delay:

• Data is added when available but the actual anomalies detection of the data
is only done when computing power is available. Alerts of anomalies will be
delayed by this method.

• Data is added when available but the models are updated once computing
power is available. Anomaly detection is done based on old data, which can
cause errors in detection.

• Data is only added when possible. Detectors are updated and detection is
done subsequently. This will cause data loss and can both train invalid data of
cause errors in detection.

To minimize the risk of delays caused by updating the detectors or detecting
anomalies, GPU processing is used in the current design. Methods where inde-
pendent calculations are required, such as calculating values for each cell in a grid,
speeds up both updating and detection algorithms up to ten times.
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A.4 Detector algorythms

A.4.1 Density based using KDE

One type of collective detectors uses a grid to determine a density for each cell in
the grid individually. Currently the only implemented approach uses the principle of
KDE. For each cell the euclidean distances to the different locations of people is
calculated. Using a Gaussian kernel placed on top of this location, the densities are
computed and added together. The result is a matrix with for each cell the density
estimation.

Using the GPU to simultaneously compute the different rows of the grid optimizes
this algorithm which makes the complexity for each row gridx×N and in total gridx×
gridy ×N .

Windows to detect an increase or decrease in density compute the difference
between the newest and oldest frame. A third window compares the minimal and
maximal values for each grid cell over all frames and is able to detect differences in
densities, regardless of whether this is an increase or decrease.

A.4.2 Neighborhood based using SOS

The second collective detector type calculates the relation between the points. Algo-
rithms using this principle are for example K-NN or SOS. As explained in Chapter 3,
SOS has a less strict boundary of exactly k neighbours, but rather has a perplexity
h making points either more or less effective neighbours.

Stochastic Outlier Selection

The iterative process used in SOS computes the variances for each point to reach
a fixed number of neighbours and the affinity and binding between them. After
the initial dissimilarity matrix is calculated, the power of GPU processing can be
used to find the affinity, binding probability, perplexity and variances for each point
individually.
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To reduce the number of iterations required to find the desired perplexity, a binary
search is used. Initially the algorithm computes the perplexity for a variance which
is in the middle of a given upper and lower boundary. If the computed perplexity is
bigger than the required perplexity, the upper bound is set to the variance just used,
otherwise the lower boundary is adjusted to the centre variance. After adjusting
the boundaries the algorithm is repeated until either the perplexity is found or the
maximum number of iterations is reached.

Computing the distance between points in an N -size dataset will require N ×N
calculations. The individual rows of the affinity matrix are computed simultaneously,
but still require another N computations each. The same holds to normalize all
values in the row, generating the binding matrix and again to calculate the perplexity
of this point. An iteration of the algorithm after the dissimilarity matrix has been
computed is therefore 3×N ×N .

A.5 Recommendations

The current detectors are designed to cope with reading new positions as a live
stream but, due to the possibility of evaluation and reproducibility, optimized for read-
ing positions from file. This can be read at once or as a stream as well but real time
detection is not an issue in these situations. Even though most methods were able
to process (adding data to models and anomaly detection) in time, a highly sug-
gested modification would be to implement streaming principles such as reactive
programming1 [62].

Recommended additions to the toolbox are primarily detectors for other context
such as time as well as more types of collective detectors. See Figure A.3 for how
these and other recommendations would relate to the already implemented methods
and detectors.

1http://reactivex.io/
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Figure A.3: A diagram of the implemented and suggested anomaly detectors.
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Appendix B

Simulator modifications

Two reasons for changes in the simulator: mandatory changes for testing purposes
and bug fixes. All bugs mentioned are either reported to and fixed by TNO, or tem-
porary local fixes (hacks) until a better solution is found.

B.1 Export positions

The positions of the agents in the simulator had to be made available for external
use such as for the designed detectors. Two methods are added to the simulator
to provide this export function. One method writes the positions of all agents to a
file, the other streams the positions over a network connection. The first method
is mostly used during the research where the last mentioned works well for demo
purposes.

To prevent slowing the simulator down, both export methods use a producer-
consumer like implementation. If saving the positions cannot be done in real time
this will buffer the positions before writing them to file or socket.

B.2 Variation in speed

The simulator had build-in methods to have agents travel with speeds based on
gender and age. Unfortunately the actual speed of the agents was hard-coded at 4

3.6
.
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Figure B.1: Histograms of the speed of the agents in the simulator. Left: All agents
have the same speed. Right: The speed is based on gender and age.

Figure B.1 shows how using the build-in method created a more realistic distribution
of walking speeds. Note how these histograms differ from the one generated in the
detectors. This is due to the sampling of positions. If the position of an agent is
sampled while it follows a curve, the distance travelled according to the sampled
data is shorter than the real travelled distance. The time taken to travel stays the
same resulting in a lower speed in sampled data.

B.3 Simulated events

Simulated events such as street theft and shoplifting were modelled to have the
offenders (and victims) walk towards the crime scene. Followed by the crime (which
is purely a change or role for the agents). The behaviour following this crime was
simulated only when the ”come to aid” or ”arrest” events were used. In those cases
either the offenders or victims went to a location where they would meet police or
medical personnel. Although these simulations are working fine, one situation was
missing: The offenders were walking away like nothing happened. For anomaly
detectors, such behaviour is seen as normal and unlikely.

For both street theft and shoplifting, additional running behaviour was added to
the simulation. The offenders were modelled to run back to the location they came
from, before continuing there routine behaviour.
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Statistics

C.1 Theft incidents
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Table C.1: Statistics on Dutch Theft incidents.
2012 2013 2014 2015

Vermogensdelicten totaal

Aantal delicten per 100 inwoners 20,2 21,2 20 18,9

Melding en aangifte

Melding

in % ondervonden delicten

46,2 45,1 45 43,7

Aangifte
Aangifte totaal 36,9 36,3 36,3 34,7
Aangifte via procesverbaal 25,1 24,3 24 22,1
Aangifte via internet 11,9 12 12,4 12,7

(Poging tot) inbraak
(Poging tot) inbraak

per 100 inwoners

3,9 4,1 3,9 3,6
Poging tot inbraak 2,4 2,5 2,4 2,2
Inbraak 1,5 1,6 1,5 1,4

Fietsdiefstal

Aantal delicten 5 5,5 5,6 5,7

Plaats voorval Geografische lokatie

In eigen buurt

in % ondervonden delicten

55,7 55,5 55,7 57,9
Ergens anders in woonplaats 33,9 32,8 33,9 31,1
Ergens anders in Nederland 8,1 8,7 8,5 8,7
Onbekend 2,4 3 1,9 2,4

Autodiefstal per 100 inwoners 0,2 0,2 0,2 0,2

Diefstal uit of vanaf auto

Aantal delicten 3,6 3,4 3 2,9

Plaats voorval Geografische lokatie

In eigen buurt

in % ondervonden delicten

80,4 80 80,1 81,6
Ergens anders in woonplaats 7,7 8,1 6,8 7,6
Ergens anders in Nederland 7,5 7,5 7,8 5,8
Onbekend 4,4 4,4 5,3 5,1

Diefstal andere voertuigen per 100 inwoners 0,8 1 0,9 0,9

(Poging tot) zakkenrollerij, beroving

(Poging tot) zakkenrollerij, beroving 2,1 2,3 2,1 1,8

Plaats voorval

Geografische lokatie

In eigen buurt

in % ondervonden delicten

26,8 30,4 30,2 30,6
Ergens anders in woonplaats 37,7 36 35,8 35,8
Ergens anders in Nederland 29,6 29,7 30,2 31,1
Onbekend 3,4 3,3 3,5 4,1

Pleegplek

Thuis 2,9 4,4 5 4,1
In een horecagelegenheid 15,1 13,4 12,4 14,4
In openbaar vervoer 6,8 8,1 7,5 9,1
Op straat 26,2 26,3 29,2 27,5
Op werk 4,3 4,7 4,5 4
Op school 4,9 3,4 2,9 3,8
In een winkel 20 21,1 20,8 18,5
Ergens anders 16,5 15,3 14,2 14,4

Poging tot zakkenrollerij

per 100 inwoners

0,4 0,6 0,5 0,5
Zakkenrollerij 1,5 1,5 1,4 1,2
Poging tot beroving 0,1 0,1 0,1 0,1
Beroving 0,1 0,1 0,1 0,1

Overige diefstal

Aantal delicten 4,5 4,7 4,3 3,8

Plaats voorval

Geografische lokatie

In eigen buurt

in % ondervonden delicten

55,6 56,6 58,2 55,4
Ergens anders in woonplaats 23,8 22,6 22,2 25,5
Ergens anders in Nederland 17,1 17,9 16,9 16,1
Onbekend 5,6 5,9 5,5 5,4

Pleegplek

Thuis 37,1 38,1 37,5 37,7
In een horecagelegenheid 7,4 6,9 5,8 7,1
Op straat 12,5 13,1 15,1 12,8
Op werk 5,9 5,1 4,9 5,7
Op school 7,2 6,8 6,2 6,1
In een winkel 2,4 2,2 2,3 1,6
Ergens anders 21,9 22 22,7 23,7

c©Centraal Bureau voor de Statistiek

Table C.2: Age of offenders (per 10.000 inhabitants) in The Netherlands in 2015
Totaal verdachten 12 tot 18 jaar 25 tot 45 jaar 25 tot 45 jaar 45 tot 65 jaar 65 jaar of ouder

Totaal verdachten van misdrijven 113 178 253 156 75 21

Verdachten van vermogensmisdrijven

Totaal vermogensmisdrijven 40 97 85 49 25 8
Diefstal/verduistering en inbraak 33 83 68 39 21 7
Diefstal van fiets 3 9 6 3 1 0
Diefstal van bromfiets/snorfiets 1 7 3 0 0 .
Diefstal van personenauto 1 1 2 1 0 .
Diefstal uit/vanaf personenauto 1 2 4 1 0 0
Straatroof 1 5 4 1 0 .
Zakkenrollerij 0 1 1 0 0 0
Winkeldiefstal 15 39 20 17 13 6
Diefstal/inbraak uit woning 3 6 11 4 1 0
Diefstal/inbraak uit schuur/garage 1 2 1 1 0 0

Verdachten vernieling en openbare orde

Totaal vernieling en openbare orde 16 43 47 18 6 1
Vernieling en beschadiging 7 18 17 9 3 1
Vernieling aan auto 2 3 5 3 1 0
Openbare orde misdrijven 7 22 24 6 2 0
Openlijke geweldpleging 5 20 18 3 1 0
Brandstichting 1 3 1 1 0 0

Verdachten van Geweldsmisdrijven

Totaal geweldsmisdrijven 33 39 67 51 24 5
Mishandeling 21 27 46 32 14 3
Bedreiging en stalking 10 10 17 16 8 1
Seksueel misdrijf 2 3 3 3 2 1

Verdachten van verkeersmisdrijven
Totaal verkeersmisdrijven 21 6 48 33 16 6
Verlaten plaats ongeval 4 1 9 6 3 3
Rijden onder invloed 16 3 37 26 12 3

Verdachten van drugsmisdrijven 10 8 27 17 5 1
Verdachten van vuurwapenmisdrijven 3 7 10 4 1 0

c©Centraal Bureau voor de Statistiek
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