
1

Gathering Intelligence from
the Bitcoin Peer-to-Peer Network

Willem Noort
M.Sc. Thesis
August 2016

Supervisors:
Prof dr. Pieter H. Hartel

Assist.-Prof. Dr. Andreas Peter
Dhr. Remco Bloemen MSc

Dhr. Friso J. Stoffer MSc

Acknowledgments

I would like to thank my family, friends and colleagues at Coblue for their support in
the last half year. It would have been impossible to conduct this research without
them. I would also like to thank Coblue for allowing me to be a part of the team and
providing all required resources as well as a pleasant working environment with lots
of laughter and fun.

Finally I would like give a special thanks to all supervisors; Pieter, Andreas,
Remco and Friso: thank you for your critical feedback, original insights and ideas,
your daily help and your support in writing the report. It is all greatly appreciated.

iii

IV ACKNOWLEDGMENTS

Abstract

Since the introduction of the Bitcoin cryptographic currency in 2008, several inci-
dents have occurred that involve criminal activity. Investigations of law enforcement
agencies are impeded by the decentralized nature of Bitcoin. To support investi-
gations into criminal activity involving Bitcoin, analysis software such as Cointel is
developed that combine several approaches proposed in literature to allow Bitcoin
users to be tracked. In this work we propose an extension to Cointel to perform
analysis on network data that can be obtained by only observing the Bitcoin net-
work. We show that the fraction of transactions that can be associated with the IP
address used to spread the transaction increases considerably compared to avail-
able literature when other information from Cointel is integrated in the approach.
Specifically, we propose and analyze three improvements that combine diverse ap-
proaches: firstly, input co-occurrence clustering is used to create groups of transac-
tions that were likely introduced by the same Bitcoin node, secondly we analyze the
effect of establishing multiple connection to all Bitcoin nodes, and finally we propose
a method to detect nodes that have multiple IP addresses. The main limitation of
this work is that only transactions introduced by publicly reachable Bitcoin nodes
can currently be deanonymized. We also note that associating an IP address to a
transactions is only a starting point for further investigation and that educated Bitcoin
users can protect themselves from almost any network related attack.

v

VI ABSTRACT

Contents

Acknowledgments iii

Abstract v

1 Introduction 1

1.1 Bitcoin Fundamentals . 3

1.2 Bitcoin Network . 6

1.3 Definitions . 10

2 Deanonymization of Bitcoin Users 11

2.1 Transaction Graph Analysis . 12

2.2 Network Analysis . 13

2.2.1 Transaction from reachable nodes 14

2.2.2 Transactions from unreachable nodes 15

2.2.3 Other work . 16

2.3 Summary . 17

3 Approach 19

4 Bitsensory: Extending Cointel with Network Analysis 23

4.1 Cointel . 24

4.2 Features . 25

4.3 Data gathering . 26

4.4 Data processing . 27

4.5 Deployment . 28

5 Improving Support Counts using Address Clustering 29

5.1 Model . 30

5.2 Experimental results . 32

5.3 Discussion and Conclusions . 37

vii

VIII CONTENTS

6 Reducing Incorrect Observations with More Connections 39
6.1 Model of Transaction propagation . 39
6.2 Experiment . 42
6.3 Analysis and Conclusion . 43

7 Detection of Proxies to Cluster Related Nodes 45
7.1 Method . 46
7.2 Evaluation . 47
7.3 Analysis and Conclusion . 48

8 Improvement over Koshy et al. (2014) 49
8.1 Overview of the improved approach 50
8.2 Results . 51
8.3 Analysis and Conclusion . 52

9 Discussion 53
9.1 Impact . 53
9.2 Further steps . 53
9.3 Mitigating the improved approach . 54
9.4 Dependency on the propagation mechanism 54

10 Conclusion 57
10.1 Future work . 58

References 59

Appendices

A Other findings and Dead ends 63
A.1 Bloom filters . 63
A.2 Transactions from unreachable nodes 64

Chapter 1

Introduction

Bitcoin is a digital currency introduced by Nakamoto (2008) that distinguishes itself
from traditional currencies by not requiring a centralized authority to oversee trans-
actions occurring between the users of the system. Instead, all transactions are
made public and checked for validity by a network of computers running Bitcoin soft-
ware. Entities that are using the Bitcoin currency are only known by their ‘account
numbers’ called Bitcoin addresses, but further remain anonymous. The increase of
exchange rates of Bitcoin1 and the increase of available mining power2 in the last
few years indicate an increased popularity of this currency.

That Bitcoin is also being used for illicit activities is evident from several cases.
For example, before is was taken down by the FBI in 2013, the Silk Road anony-
mous marketplace mostly known for selling illegal drugs used Bitcoin for payments
(Christin, 2013). Additionally, Bitcoin is used as currency in various types of ran-
somware to receive payment for unlocking encrypted files (Kharraz et al., 2015).
The assumed anonymity of users is an important reason for criminals to favor Bit-
coin in both examples (Meiklejohn et al., 2013; Sat et al., 2016; Guadamuz and
Marsden, 2015). Law enforcements agencies aspiring to persecute criminals using
Bitcoin will first need to deanonymize the user that created suspicious transactions.

Numerous approaches have been proposed in the existing literature that can
deanonymize or otherwise reduce the privacy of Bitcoin users. Mostly these ap-
proaches can be placed in one of the following categories:

1. Blockchain analysis. Approaches in this category use the transactions in-
cluded in the blockchain (the public ledger of Bitcoin) to reduce the privacy
of Bitcoin users.

2. Network analysis. Approaches in this category analyze the propagation of
transactions over the Bitcoin network or the behavior of the participants of the

1See e.g. http://bitcoincharts.com
2See e.g. https://blockchain.info/charts/hash-rate

1

http://bitcoincharts.com/charts/bitstampUSD#tgMzm1g10zm2g25
https://blockchain.info/charts/hash-rate?timespan=all&showDataPoints=false&daysAverageString=1&show_header=true&scale=0&address=

2 CHAPTER 1. INTRODUCTION

network.

3. Leaks. Approaches in this category usually involve searching for instances
where Bitcoin users accidentally or on purpose leak their pseudonyms used in
Bitcoin.

The problem of most existing approaches is that most of them do not actually
deanonymize many Bitcoin transactions, while others are easy to mitigate. For law
enforcement agencies it can therefore be advantageous to compare several (theo-
retical) approaches to increase to probability of finding some relevant information.
The purpose of this study is therefore to find and test combinations of existing ap-
proaches that reduce the privacy of Bitcoin users. The research questions are for-
mulated as follows:

How can current methods to deanonymize Bitcoin users be com-
bined and expanded to increase the probability that a Bitcoin user can
be deanonymized?

1. What are the existing methods to deanonymize Bitcoin users?

2. Which methods can be combined?

3. What is the practical impact of combining approaches?

Coblue B.V. in Hengelo has provided the assignment and resources for this
project. Coblue currently develops Bitcoin analysis software called ‘Cointel’ to sup-
port investigations of law enforcement agencies by providing as much relevant in-
telligence about Bitcoin addresses and transactions as possible. Currently, Cointel
operates by analyzing transactions in the blockchain (the public ledger of Bitcoin)
and combining that information with leaks, similar to the work of Spagnuolo et al.
(2014). Coblue wishes to extend Cointel with a component that analyses how trans-
actions propagate over the Bitcoin network, even before they are included in the
blockchain. For the purpose of performing this research, a proof-of-concept of this
networking extension was created, called Bitsensory. An important requirement for
Bitsensory is that is must be stealthy. To this end, Bitsensory should be protocol
compliant and passive attacks are strongly preferred.

The main contribution of this work is a 70% improvement of the approach intro-
duced by Koshy et al. (2014), who links Bitcoin addresses to an IP address that was
used to introduce transactions. The Bitcoin network consists of nodes that each
connect to a few other randomly chosen nodes. If a node creates a new transac-
tion, it is shared with the connected nodes, who in turn do the same until all nodes
have learned the transaction. Koshy et al. (2014) connect to all nodes in the network

1.1. BITCOIN FUNDAMENTALS 3

to discover which node was first responsible for introducing a transaction by simply
observing which node first shares a transaction. In practice, this approach fails for
most transactions due to randomization of the order in which a new transaction is
shared with connected nodes and the small number of transactions that refer a spe-
cific Bitcoin address. We propose several improvements that increase the success
rate of this approach:

• We do not attempt to associate an IP address to a single Bitcoin address, but
to a group of Bitcoin addresses (cluster), each owned by the same entity. For
this, existing functionality of Cointel is used.

• We increase the number of connections to all nodes in the network from one to
three, to reduce the effect of the randomization when a transaction is shared
with connected nodes.

• We introduce a technique to discover which IP addresses are used by the
same entity. This is most useful when at the same time a node is reachable
from multiple IP addresses, e.g. an IPv4 and an IPv6 address.

This report is the result of a 6 months internship at Coblue. The remainder of this
chapter explains some of the fundamentals of Bitcoin and the design of the peer-to-
peer network and finally provides some definitions that are extensively used in the
remainder of this document. Chapter 2 provides an overview of existing techniques
that can be used to deanonymize Bitcoin users. In Chapter 3 we describe the se-
lected combinations and the approach that was followed to test these combinations
. In Chapter 4 we introduce Bitsensory, our prototype framework that collects and
analyzes network data. We describe and validate the proposed improvements of the
approach of Koshy et al. (2014) in Chapters 5 to 8, discuss these results in Chap-
ter 9 and the report is concluded in Chapter 10. Additionally, Appendix A includes
some other findings and some dead ends that were encountered while conducting
this research.

1.1 Bitcoin Fundamentals

In 2008 the Bitcoin cryptographic currency was introduced by Nakamoto. At the
time, several other digital currencies existed that used cryptography, but Nakamoto
introduced a new mechanism to create a network of participants in which no central
authorities exist, but where instead all participants agree on the complete history of
all transactions.

A system such as Bitcoin can be modeled as a collection of accounts and a list
of transactions that transfer value between accounts at a certain point in time. In

4 CHAPTER 1. INTRODUCTION

Transaction 1

In

In

Out

Out

Out

Transaction 2

In

In

Out

0.5 BTC

2.0 BTC

1.5 BTC

Figure 1.1: Example of how transaction can be linked: Transaction 2 uses an output
from Transaction 1 and an output from another transaction to spend 2.0
BTC in total.

Bitcoin an account is a public/private key pair identified by a hash of the public key
called a Bitcoin address. To avoid confusion with ‘IP address’, a Bitcoin address will
be indicated with the term ‘pseudonym’, as a Bitcoin address acts as a ‘pseudonym’
of a real Bitcoin user. Initially, a pseudonum does not have value on its balance,
but new value can be introduced in the system through a process called mining
(explained later in this section). A transaction is basically a statement that is crypto-
graphically signed by the sending pseudonym declaring another pseudonym the new
owner of a certain amount of Bitcoins. New transactions are collected, validated and
included in a data structure called a block through the process of mining. All blocks
reference the previous block, so a chain of blocks emerges called the blockchain.
The blockchain represents the full state of the Bitcoin system and is stored on all
running (full) clients. A pseudonym can be used to sign transactions even if it has
insufficient funds, it is sometimes necessary to choose which transaction is valid
and which invalid. Intuitively the oldest transaction should be considered valid and
to this end the position of a transaction (or more precisely the block in which the
transaction is included) in the blockchain is used as timestamp.

In the remaining parts of this section several aspects of Bitcoin are explained in
further detail:

Transaction The balance of a pseudonym is not stored explicitly, but instead a Bit-
coin transaction references previous transaction output(s) in which the value
was received. All transaction outputs may be referenced in at most one other
transaction to avoid double spending. An example of how different transactions
can be linked can be found in Figure 1.1.

A transaction output consists of a BTC amount and a script that contains the
conditions which must be fulfilled for the output amount to be spent, i.e. used
as input of another transaction. A common script allows spending the output

1.1. BITCOIN FUNDAMENTALS 5

only if a transaction that is signed by the private key that belongs to a spec-
ified pseudonym, but other script can be made such as multisig (x out of y
signatures needed).

The sum of output amounts of a transaction should be the same as the sum
of inputs. If the sum of inputs exceeds the sum of outputs, the difference is
considered a transaction fee and may be claimed by the miner that included
the transaction in the blockchain. Naturally, if the sum of outputs exceeds the
sum of inputs, the transaction is rejected.

Block After a transaction is created, it is sent to the other participant in the Bitcoin
network. Miners include the transaction in a block, which consists of a small
header and a set of transactions.

In order for the network to accept a block, the hash value (a SHA-256 hash that
is applied twice) of the block must start with some zeros as a proof-of-work
(Back, 2002). Miners accomplish this by varying a nonce field in the block
header until they find a block that meets the required difficulty (i.e. the number
of zeros the hash must start with). The required difficulty is adjusted every
2016 blocks (roughly 14 days) by the network to compensate for an increase
or decrease in mining power to ensure that new blocks are found every 10
minutes on average.

Each block starts with a special coinbase or generation transaction that has
no inputs, but outputs 12.5 new Bitcoins (as of July 2016). This is the reward
the miner receives for mining the block.

Blockchain All blocks reference the previous block, so a chain of blocks is formed
called the blockchain. Sometimes multiple valid blocks are found that reference
the same previous block: this is called a fork and occurs regularly (Decker and
Wattenhofer, 2013). When a client notices a fork, it only accepts the chain in
which the most work was performed and disregards all other chains.

The above implies that transactions are never definitely committed, as a longer
chain that does not contain the transaction can theoretically occur, but the
probability of this decreases as a transaction is confirmed by more consecu-
tive blocks. Receivers of Bitcoin payments therefore typically wait for several
confirmations before considering a transaction final.

Validation If a user independently wishes to check his current balance or whether
he has received payment, he is required to download and verify the full blockchain,
and update it regularly as new blocks are created by miners. This allows the
user to get a current list of all unspent transaction outputs. The user can now

6 CHAPTER 1. INTRODUCTION

check the balance of a certain Bitcoin address by calculating the sum of values
of all unspent transaction outputs the can be spent by that Bitcoin address.

This process of acquiring a complete list of all unspent transaction outputs is
very resource intensive in terms of networking bandwidth, storage capacity
and processing power, because it requires the validation of all previous trans-
actions. For some devices (e.g. smartphones) it is impossible to perform such
a resource intensive task, however such devices can still be capable of per-
forming a less reliable form of transaction validation by considering a transac-
tion valid if it has been included in a block that has been confirmed by at least
a certain number of succeeding blocks. This type of validation is called Sim-
plified Payment Verification (SPV) and works under the assumption that the
minority of miners would not risk including an invalid transaction in their blocks
causing it to be rejected by the rest of the network and thereby invalidating the
mining reward.

1.2 Bitcoin Network

We have already seen in the previous section Bitcoin participants need to commu-
nicate transactions and blocks with each other. More specifically, we define the
following tasks:

1. If a user wishes to spend Bitcoin, a new transaction is created that must be
shared with all miners for inclusion in a new block.

2. If a user wishes to verify whether payment has been received, he must be
notified about all blocks in the longest chain and receive new blocks when
found.

3. Miners collect transactions and share newly found blocks as quickly as possi-
ble to reduce the probability of forks.

To facilitate the above tasks participants connect to each other in compliance with
the Bitcoin protocol specification3. Currently TCP connections over IPv4, IPv6 and
Tor are supported. The Bitcoin network is a peer-to-peer network as no distinction
between server and client exists. Specifically, nodes upload and download blocks
and transactions to their neighbors.

The remainder of this section describes the Bitcoin network in context of other
peer-to-peer networks and elaborates on how transactions and blocks disseminate
to all nodes.

3see https://bitcoin.org/en/developer-reference#p2p-network for a complete overview of
the protocol.

https://bitcoin.org/en/developer-reference#p2p-network

1.2. BITCOIN NETWORK 7

Centralized Decentralized

Structured -

Tapestry

Chord

Kademlia

Unstructured

Bittorrent

Napster

Freenet

Gnutella

Bitcoin

Table 1.1: Categories of peer-to-peer networks

Peer-to-peer networks

Lua et al. (2005) published a survey on different types of peer-to-peer networks
and categorizes the discussed networks according to structure and centralization.
A peer-to-peer network can either be structured or unstructured, depending on
whether peers divide responsibility for resources among the active participants. A
peer-to-peer network is also either be centralized or decentralized, depending on
whether the network depends on a central element responsible for managing re-
sources. See Table 1.1 for a categorization of some well-known peer-to-peer net-
works.

• In the category of centralized and unstructured peer-to-peer networks, we find
file sharing applications such as Napster (Saroiu et al., 2003) and Bittorrent.
The main problem fixed in those applications is bandwidth: a central registry is
only needed for storing meta data of the resources and a list of available peers
that share them.

• In the category of decentralized and structured peer-to-peer networks, popu-
lar implementations of distributed hash tables such as Tapestry and Kademlia
are placed. These networks typically solve the problem of availability of re-
sources (which are identified by hash value). Responsibility for some resource
is shared among a subset of all participants, determined by an algorithm that
allows quick location of resources.

• The final category is both decentralized and unstructured. Network in this
category could feature anonymity such as Freenet. Performance of finding
and downloading resources in these network is typically pour compared to
other types of networks.

8 CHAPTER 1. INTRODUCTION

The Bitcoin network can be categorized as a decentralized, unstructured peer-
to-peer network. No centralized register is needed to store meta data of available
resources of online nodes, as the availability of new resources (transactions and
blocks) and online nodes is communicated to all nodes via gossip (explained later
in this section). Also, the Bitcoin network is unstructured as all nodes keep a full
copy of all transactions and blocks they consider valid and are able to upload them
to their neighbors.

One of the challenges of many peer-to-peer networks, Bitcoin included, is to
connect to nodes behind a firewall or Network Address Translators (NAT). Mostly
these nodes can only create but not accept connections. As a consequence many
unreachable nodes connect to only a few reachable nodes.

Message spreading and peer sampling

Although the Bitcoin network does not protect against attacks against the underly-
ing network, some measures have been taken to protect against malicious peers,
by introducing random timeouts for spreading messages. The method for message
dissemination and peer sampling in the Bitcoin network is an instance of a gossip
algorithm. Gossip-based protocols are widely used for dissemination of messages,
peer sampling, topology construction, resource management and distributed com-
putation (Kermarrec and van Steen, 2007). Models for gossiping are very similar
to disease spreading models and have been thoroughly studied (Haeupler et al.,
2012; Boyd et al., 2006). Gossip-based algorithms can be described and compared
according to three aspects: peer selection, exchanged data and data processing
(Kermarrec and van Steen, 2007).

Peer selection In Bitcoin, all nodes connect to 8 randomly selected nodes to com-
municate with for the duration of a session. Currently connected nodes (both
from incoming and outgoing connections) are called neighbors throughout this
document.

Data exchanged In Bitcoin, the data that is gossiped can be new transactions or
blocks and also addresses of nodes seen online recently. When a node re-
ceives a new resource (transaction or block) it does not inform its neighbors
immediately. Instead, a neighbor is periodically selected to announce newly
learned resources to. This process is called trickling. 25% of all received re-
sources, however, are spread to all neighbors immediately. This mechanism
provides some privacy to the node that first introduced a new block or transac-
tion to the network, as transactions do not necessarily follow the shortest path
between two nodes. The specific implementation of selecting a neighbor when

1.2. BITCOIN NETWORK 9

Alice Bob
inv

getdat
a

tx

Figure 1.2: Exchange of a transaction between Alice and Bob: Alice announces the
availability of a new transaction by its hash value that Bob later requests

trickling resources depends on the used client software:

Bitcoin Core 0.11 and earlier Every 100ms a random connected peer is se-
lected.

Bitcoin Core 0.12 On average every connected peer is selected once every
5 seconds implemented (as an independent Poisson process). The time
between random connected peer selection is an exponential distribution
with an average of 5 seconds divided by the total number of neighbors.

Data processing Blocks are appended to the local copy of the blockchain and
newly received transactions are added to the candidate block by miners or
presented to the user if it is considered relevant.

When a node selects a neighbor to share new resources with, the mechanism
depicted in Figure 1.2 is used. First an inventory message is sent that contains
the hash values of new resources. If the neighbor receives a hash value of an
unknown resource, it can then be requested. This is a hybrid between the push and
pull model for message dissemination common in gossiping protocols (Felber et al.,
2012). Resources are announced and shared at most once over each connection.
Addresses of recently connected peers are also spread through the network similar
to the way resources are spread, with two notable differences: addresses of recently
connected peers are sent directly instead of being announced first, and nodes select
only two of their neighbors to share the information with, instead of all. It therefore
takes much longer for an address to reach all nodes than a transaction.

Clients that perform simplified payment validation instead of full validation can
limit network traffic by announcing the pseudonyms for which they want to receive
the transactions. They do this by sending a Bloom filter (1970) to their neighbors. A
Bloom filter is a data structure similar to a hash set, solely used to test membership
of an item. It features a configurable false-positive rate which is used for in Bitcoin

10 CHAPTER 1. INTRODUCTION

SPV Client Full Node

Bloom
Filter

Filtered
Messages

Figure 1.3: Communication adjustments of an SPV Client: A Bitcoin full node ap-
plies a Bloom filter to new transaction that are announced to an SPV
client. Icons made by Freepik from http://www.flaticon.com.

for privacy. A visualization of modified communication to an SPV client can be found
in Figure 1.3.

1.3 Definitions

This section clarifies some of the used terminology in this document.
In context of Bitcoin networking a node refers to any protocol compliant partic-

ipant. Several client implementations of nodes exist, with Bitcoin Core being most
used. Connected nodes of a node are indicated as neighbors. The nodes to which
an outgoing connection is created are the entry nodes (⊆ neighbors) of the node
that created the connections.

The node responsible for introducing a transaction is called the origin node of
that particular transaction. We can observe the origin of a transaction (observed
origin), which is either a correct or an incorrect observation.

In this work, a Bitcoin address is indicated as pseudonym to avoid confusion with
IP address. A transaction is owned by the pseudonym(s) used as input. Pseudo-
nyms are in turn owned by the entity in control of the private key of the pseudonym.
A cluster is a group of pseudonyms owned by the same entity. A transactions is also
owned by the cluster that included the owning pseudonym.

Deanonymization in this work is linking a transaction, pseudonym or entity to
personally identifiable information (PII) such as an IP address.

http://www.flaticon.com

Chapter 2

Deanonymization of Bitcoin Users

As already explained in Section 1.1, all transactions are publicly available in a ‘ledger’
called the blockchain and all transactions include one or more pseudonyms at input
and output that are owned by the sender or receiver. The behavior (income and
spending) of a pseudonym is therefore completely transparent. The challenge of
deanonymizing Bitcoin users is associating pseudonyms to real-life identities such
as persons or companies. To this end, various techniques have been proposed in
literature to gather additional information about pseudonyms. This could be per-
sonally identifiable information (PII), such as online aliases, geographical data or IP
addresses used to introduce transactions to the network.

The creation of new pseudonyms is cheap and the developers of Bitcoin advise
against using a pseudonym in more than one transaction. We can therefore expect
an entity to own many pseudonyms. While the income and spending of individual
pseudonyms can simply be discovered by scanning for all related transactions in
the blockchain, it only provides a partial view of the transactions of the owner of the
pseudonym.

Currently, the available literature on the topic of deanonymization of Bitcoin users
utilizes the blockchain (e.g. Meiklejohn et al., 2013) or the peer-to-peer network
(e.g. Koshy et al., 2014) as a source of this information. The same research also
seems to prove that deanonymization of some Bitcoin users is already possible.
In the remainder of this chapter we therefore provide an overview of the existing
techniques, which can be subdivided in two main categories:

1. Analysis of the transaction graph. These techniques are mainly used to cluster
pseudonyms together that are owned by the same entity (Section 2.1).

2. Analysis of traffic from the Bitcoin peer-to-peer network. This can result in
associations between nodes in the Bitcoin network and transactions (Section
2.2).

In conformance with the requirement of Coblue to extend Cointel with a network-

11

12 CHAPTER 2. DEANONYMIZATION OF BITCOIN USERS

Figure 2.1: Cluster of Bitcoin addresses attributed to WikiLeaks, as created by
Cointel. A blue dot represents a Bitcoin address and a yellow dot a
transaction that links multiple input addresses together.

ing component, some literature that is considered most relevant for this is explored
in more detail in Sections 2.2.1 and 2.2.2.

2.1 Transaction Graph Analysis

As the blockchain contains the full history of all transactions it is possible to follow
the flow of value, by parsing all transactions included in the blockchain into a directed
transaction graph (see also Figure 1.1). This transaction graph has been used by
several researchers to help deanonymization of entities.

The most important application is ‘clustering’ of Bitcoin addresses that are owned
by the same entity. Clustering heuristics by themselves do not deanonymize an en-
tity, but in combination with other information this results in a powerful attack against
the anonymity of Bitcoin users: a cluster of Bitcoin addresses that belong to the
same entity can be used to further analyze the behavior for the owning entity. For
example, it gives a more complete overview of some person’s income and spend-
ing. Several heuristics have been proposed that use the transaction graph to cluster
addresses that belong to the same entity:

Input co-occurence Nakamoto (2008) notes that if a transaction has multiple in-
puts, the private keys used to sign the transaction are likely owned by the

2.2. NETWORK ANALYSIS 13

same entity, although in theory it is possible that different users provide inputs
of a single transaction by sending a partially signed transaction around to all
participants until it has been fully signed, and then introduce the transaction to
the network. An example of this type of clustering can be found in Figure 2.1,
where each blue dot represents a Bitcoin address that is likely owned by Wik-
iLeaks, because they have been used as input of the same transaction (yellow
dots).

Change address If a payment is made, it is unlikely that the payer has inputs avail-
able that exactly match the amount of Bitcoins that is to be payed. Therefore,
many transactions include an extra output that belongs to the payer to trans-
fer the ‘change’ of the transaction back. The heuristics described below have
been proposed to detect which of the outputs of a transaction belongs to the
payer and which to the payee.

Meiklejohn et al. (2013) have used the behavior of Bitcoin wallets to generate a
new ‘shadow’ addresses, to which the change of a payment can be transferred.
So if a transaction has multiple outputs of which only one has not yet been
used in the blockchain, the new address belongs to the entity that created the
transaction. Another possibility is that one of the output amounts is a rounded
number (in either Bitcoin, or when converted to another currency) and one is
not, in which case the second output is likely the change.

Many more authors have analyzed the possibility to relate some of the pseudo-
nyms used in a transaction to the same entity, but for the purpose of this research a
basic understanding of clustering heuristics suffices.

To counter clustering heuristics completely it is necessary that the inputs and
outputs of a transaction remain unrelated. To this end, mixing protocols have been
proposed such as Coinjoin (Meiklejohn and Orlandi, 2015). Mixing involves multiple
users providing the inputs and outputs of a single transaction that is signed by all
participants, to hide which inputs and outputs are related.

2.2 Network Analysis

This section provides an overview of techniques described in literature to deanony-
mize Bitcoin users by analyzing network traffic.

The Bitcoin network itself provides no measures to protect the confidentiality or
authenticity of the communication between nodes. In a model that assumes an at-
tacker that has full control over the communication channels, such as the Dolev-Yao
model (1983), the provenance of messages is leaked, nodes can be isolated from

14 CHAPTER 2. DEANONYMIZATION OF BITCOIN USERS

the rest of the network and an attacker can even control which blocks and transac-
tions a node is aware of (Ali et al., 2015). Instead, all transferred data is considered
public, and participants are encouraged to connect through an anonymity network
such as Tor when introducing sensitive transactions. The research discussed in this
chapter assumes a less powerful attacker, who is unable to control the communi-
cation channels of other nodes, but only participates in the network in a protocol
compliant manner.

In the remainder of this chapter we describe existing methods to discover which
node was responsible for introducing a transaction to the Bitcoin network when this
node is either publicly reachable or unreachable (Sections 2.2.1 and 2.2.2 respec-
tively), that apply to most transactions. In the last section (2.2.3) other relevant
work is listed that did not achieve deanonymization of Bitcoin users, but did perform
analysis of the Bitcoin network that could be useful.

2.2.1 Transaction from reachable nodes

In 2011 security researcher Kaminski introduced the idea that if connected to all
Bitcoin nodes, “The first node to inform you of a transaction is the source of it” (2011).
This idea has since been used by several other researchers to link transactions to IP
addresses. Koshy et al. (2014) created a custom (protocol compliant) Bitcoin client
optimized to maintain many connections to other Bitcoin nodes in order to observe
the Bitcoin P2P network. During an experiment that lasted for 5 months he observed
some different relaying patterns for transactions:

• 91% of the observed transactions were relayed once by multiple nodes (Multi-
Relayer, Non-rerelayed Transactions). This is normal behavior expected from
Bitcoin clients. The author hypothesized that the first node that relayed a trans-
action is the owner of the input address of the transaction (Kaminski, 2011).

• 3% of the observed transactions were relayed by only one node (Single-Relayer
Transactions). The author hypothesized that if a transaction is only relayed by
a single node, this node must be the owner of the input addresses of that
transaction.

• 6% of the observed transactions were relayed multiple times (Multi-Relayer,
Rerelayed Transactions). As the Bitcoin protocol only allows the sender and
receiver to relay a transaction multiple times, the author hypothesized that they
relayed the transaction multiple times.

If at least 5 measurements for a single pseudonym are available (‘support count ’
of at least 5) and only one IP address is a likely candidate for an association (‘con-

2.2. NETWORK ANALYSIS 15

fidence’ of at least 50%), it is considered ‘certain’. This way, out of 3.9 million an-
alyzed transactions, several hundred Bitcoin addresses could be associated with
the IP address used to introduce the transaction. Most of these high-confidence
associations are due to anomalous (Single-Relayer and Multi-Relayer, Rerelayed)
transaction patterns. The authors therefore conclude that the followed approach
has minimal impact in practice and using an official client and avoid using the same
address in multiple transactions is sufficient to avoid detection by this attack. If an
official client is used, the second and third relaying patterns are unlikely to occur,
and by using the same address in less than 5 transactions, the attacker will never
receive sufficient confirmations to make a ‘certain’ association.

2.2.2 Transactions from unreachable nodes

Building on the research of Koshy et al. (2014), Biryukov et al. (2014) concludes
that the impact of the previous approach is further reduced when transactions are
introduced by unreachable nodes, and this could even result in false associations.
In practice many nodes are unreachable for an attacker, either due to Network Ad-
dress Translators (NATs) or Firewalls. Unreachable nodes can however still create
outgoing connections to nodes in the Bitcoin network. Consequently, transactions
created by unreachable nodes would not be associated with the correct IP, but with
one of the entry nodes.

Biryukov et al. (2014) presents a vulnerability in the Bitcoin protocol used to
create an attack that specifically targets transactions originating from unreachable
nodes. The performance of this attack is evaluated by conducting some experiments
in the Bitcoin testing network. This required the development of a custom Bitcoin
client that maintained the connections.

The vulnerability is that when reachable and unreachable nodes connect to the
network, they will send a message containing their public IP address and a recent
timestamp to the entry nodes. The entry nodes will then forward this message to
two of his neighbors. It would be possible to connect to all reachable nodes many
times to receive such messages with high probability and thus learn the IP address
of a newly connecting (unreachable) node and one of his entry nodes as explained
in Figure 2.2.

If at least 3 known entry nodes of unreachable nodes are early to announce
knowledge of a transaction, then the transaction is created by the unreachable
nodes with a high probability, even though the source node itself was not reach-
able. According to the author, this attack can be used to link 11% of all transactions
to an IP address if 50 connections can be established to all reachable nodes, at a

16 CHAPTER 2. DEANONYMIZATION OF BITCOIN USERS

Unreachable node

Entry nodes

Attacker nodes

addr

addr ad
dr

Figure 2.2: Discovering the entry nodes of an unreachable node: the unreachable
nodes forwards his IP address to an attacker node via one of his entry
nodes. The attacker learns both the IP address of the unreachable
nodes and the IP of an entry node with a certain probability. Open
connections are depicted in gray. The entry and attacker nodes will also
have connections to other nodes, but those are not depicted.

cost of about $1500 per month1. A small DOS attack could improve this to 60% of
all transactions.

2.2.3 Other work

Gervais et al. (2014) analyzed the implementation of Bloom filters used by Bitcoin
clients that perform simplified payment verification (SPV clients). It was found that
the current implementation of Bloom filters leaks 80% to 100% of the addresses a
client is interested in. Biryukov and Pustogarov (2015) have researched deanonymiza-
tion of Bitcoin users that are connecting to the network via anonymity networks such
as Tor2. One of the steps of Biryukov and Pustogarov (2015) is a technique to ‘fin-
gerprint’ clients that are connecting over Tor, so that if a node connects to the Bitcoin
network without Tor, it can be identified.

Miller et al. (2015) describe a method to discover the active connections of a
Bitcoin node by repeatedly requesting for known addresses. Responses to these
requests include for each node a timestamp to indicate its ‘freshness’. Miller et al.
(2015) observes that these timestamps are updated differently for nodes that main-
tain a connections and uses this mechanism to infer which nodes are connected.
Donet et al. (2014), Decker and Wattenhofer (2013) and Feld et al. (2014) have re-
searched the size, structure and performance of the Bitcoin network and the distribu-
tion of nodes around the world. The mechanism to discover active nodes works by
repeatedly requesting for new node addresses from nodes that are already known,
bootstrapped by some hard-coded nodes addresses.

1$1500 is needed to rent the servers needed to establish connections to the other Bitcoin nodes
2The Onion Router; see https://www.torproject.org/

https://www.torproject.org/

2.3. SUMMARY 17

2.3 Summary

We have seen in this chapter that current literature that describes methods to weaken
the privacy of Bitcoin users can be subdivided in transaction graph analysis and net-
work analysis. Methods that analyze the transaction graph use persistent data from
the blockchain, while methods that perform network analysis need (many) connec-
tions to nodes in the Bitcoin network to gather information.

Most methods described in literature do not actually deanonymize many users.
For example, methods that analyze the transaction graph to cluster pseudonyms
owned by the same entity provide a more complete view on the spendings and
income of a user, but the user remains unidentified. Analysis of network traffic
deanonymizes only a small fraction of active addresses (Koshy et al., 2014), or re-
quires so many connections that the attack likely disrupts the network and is easily
detectable (Biryukov et al., 2014). Other research does not deanonymize users at
all, but only analyses the structure and topology of the Bitcoin network.

It seems that with only a few precautions a Bitoin user can remain anonymous.
Mixing services such as Coinjoin (Meiklejohn et al., 2013) can be used to mitigate
clustering heuristics and network related attacks can be mitigated by not accepting
incoming connections or use a proxy service that hides the used IP address entirely.

When considering network related attacks, the most relevant approaches fol-
low from the intuition of Kaminski (2011) that attempts to find the first node that
has learned of a transaction, i.e. the origin node. Both Koshy et al. (2014) and
Biryukov et al. (2014) acknowledge that connecting to all nodes and listening for an-
nouncements of new transactions is imprecise. Koshy et al. (2014) attempts to work
around the problem by comparing the results of multiple (related) transactions, only
to conclude that the number of transactions that can be related is mostly insufficient.
Biryukov et al. (2014) attempts to reduce the source of imprecision for transactions
that are introduced by unreachable nodes and increases the number of data points
by considering observations from multiple neighbors of the origin.

18 CHAPTER 2. DEANONYMIZATION OF BITCOIN USERS

Chapter 3

Approach

Currently, an observer of the Bitcoin network should be able to observe which
(reachable) node first introduced a transaction, which provides at least some infor-
mation that law enforcement agencies can use in an investigation. However, Koshy
et al. (2014) showed that this information is unreliable for most ‘normal’ transac-
tions, as multiple transactions created by the same entity are needed for successful
deanonymization, which is not available for most transactions. But even if sufficient
related transactions are available, the results are not necessarily consistent. For
this, we distinguish several problems:

Not connected Biryukov et al. (2014) suggests that most of the created transac-
tions are introduced from unreachable nodes. In this case, an observer is
not connected to the origin node of a transaction, which results in wrong and
inconsistent observations of the origin of the transaction.

Wrong observation The trickling mechanism used to randomize the propagation
of transactions (see Section 1.2) can cause wrong observations if the origin
node of a transaction announces the transaction to other nodes first.

Changing IP addresses Transactions that are created by the same entity are not
necessarily introduced by the same node. This is especially true if a long time
has elapsed between the introduction of both transactions. For example, the
entity could have changed the used wallet service, or the IP address of the
used node has changed.

Multiple IP addresses or nodes A node could have multiple IP addresses. For
example, an IPv6 address and an IPv4 address. Both of these addresses can
be observed as origin of a transaction, which results in inconsistent results
when the observed origins of multiple transactions are compared.

Note that the above list is comprehensive. Without the problem of wrong obser-
vations, the origin node of a single transaction is correctly observed if connected to

19

20 CHAPTER 3. APPROACH

the origin (second and first problem respectively). Additionally, if a group of transac-
tions was introduced using one node with a single IP address, then all transactions
would have the same origin node from the perspective of an observer. Consequently,
in absence of all problems stated above, the observed origins of all transactions in
a group would be the same and corresponding to the correct origin node.

An effort to improve the current situation can involve improving the ‘support
count’, which is the likeliness that a transaction can be related to a sufficient number
of other transactions, or mitigating (one of) the above problems that can occur when
the support count is sufficient.

In order to answer the research questions stated in Chapter 1, we strive to com-
bine different types of approaches. Interestingly, to some extend, the approaches
to deanonymize transactions originating from reachable (Koshy et al., 2014) and
unreachable (Biryukov et al., 2014) nodes already do this:

• Koshy et al. (2014) use a simple form of transaction clustering to create groups
of transactions that are owned by the same entity. Specifically, all transactions
that referenced the same input pseudonym were grouped.

• Biryukov et al. (2014) use knowledge about which nodes are connected to de-
anonymize transactions first observed from the neighbors of the origin instead
of the origin itself, which is most useful when the origin itself is not reachable.

Transaction graph analysis from other research could increase the ‘support count’,
while further analysis of the structure of the Bitcoin network can improve the ‘confi-
dence’1 of an IP address when the support count is sufficient. Ideally, all mentioned
sources of information would be combined into a single approach to maximize the
impact, but for this research this proved infeasible. Partially this is the result from the
requirement of stealthiness, that limited the possibility to perform active attacks. See
Appendix A for some of the dead ends that were encountered during this research.

In order to provide an answer for the research questions we decided to limit this
research to transactions that were introduced by reachable nodes. We improve the
existing approach of Koshy et al. in both the support count and the confidence of
associations between Bitcoin address and IP by integrating other approaches:

• The support count of an association is currently determined by the number of
transactions that use the same pseudonym as input. Using clustering heuris-
tics implemented in Cointel, we learn which pseudonyms are owned by the

1This term used by Koshy et al. (2014) is somewhat confusing. If for a group of related transactions
all IP addresses from which the transactions were first seen are stored, one would expect that the
IP address of the Bitcoin node that created the transactions to appear most often. In this context,
‘confidence’ is the fraction of transactions that was first observed from the most likely candidate IP.

21

same entity with a high probability, so that the support counts of individual
pseudonyms may be combined.

• The confidence of an association is currently limited by the possibility that
one of the problems occur that are listed at the beginning of this chapter. We
propose improvements that limit the possibility of ‘wrong observations’ and
mitigate the wrong observations due to nodes that have multiple IP addresses.

We proceed this work as follows:

1. We introduce Bitsensory, the framework that was created to collect and pro-
cess data from the Bitcoin network as an extension to Cointel (Chapter 4);

2. We introduce and test the impact of the improvements (Chapters 5 to 7) and

3. We test how the proposed improvements affect the original approach of Koshy
et al. (2014) (Chapter 8).

22 CHAPTER 3. APPROACH

Chapter 4

Bitsensory: Extending Cointel with
Network Analysis

The intuition of Kaminski that “when connected to all nodes, the first node to inform
you of a transaction must be the source of it” 2011 was proven unreliable in the works
of Koshy et al. (2014) and Biryukov et al. (2014). However, both approaches still re-
quire to connect to all nodes and obverse which node first announces a transaction.
Bitcoin Core was not designed to handle such a large number of connections effi-
ciently nor to measure the precise time of arrival of messages. For this reason, the
literature described in Section 2.2 either uses a modified version of Bitcoin Core or
develops a protocol compliant client from scratch. Because such specialized clients
are not yet available for Coblue, it was decided to develop a new specialized client,
Bitsensory, to collect the required data.

In this chapter we introduce Bitsensory, a protocol compliant Bitcoin client spe-
cialized in maintaining many connections to Bitcoin nodes. See Figure 4.1 for an
overview of the architecture of Bitsensory. As can be seen in this figure, Bitsen-
sory is a distributed application and split into two separate components that perform
different functions:

1. Data Gathering. This sensor application is responsible for all interactions with
other Bitcoin nodes and forwards data that is considered relevant to the second
application.

2. Data Processing. This application analyses received data and presents it to
the user.

Bitsensory is intended as an extension of Cointel, so the proposed architecture
with Bitsensory included will be discussed in Section 4.1. Next we discuss the fea-
tures of Bitsensory (Section 4.2) and the separate designs of the sensor and pro-
cessing applications (Sections 4.3 and 4.4).

23

24 CHAPTER 4. Bitsensory : EXTENDING COINTEL WITH NETWORK ANALYSIS

Figure 4.1: Overview of the Bitsensory components

4.1 Cointel

Cointel1 is software developed by Coblue to provide intelligence about transactions
useful for law enforcement agencies. Similar to Spagnuolo et al. (2014), Cointel
currently consists of two main components:

1. Scrapers search The Internet for occurrences of pseudonyms in relation to
personally identifiable information (PII) that can link the pseudonym to a real
world identity. This can be the case when, for example, a user is accepting
Bitcoin donations on their website or a pseudonym is leaked somehow2.

2. Clustering techniques described in Section 2.1 are partially implemented to
cluster pseudonyms together that belong the the same entity with high prob-
ability. Currently only input co-occurrence clustering is implemented to asso-
ciate pseudonyms that as used as input of the same transaction.

Currently, a component that performs analysis on the Bitcoin network is missing,
however the roadmap of Cointel includes an additional component that performs this
analysis. See Figure 4.2 for an overview of the envisioned architecture of Cointel
with Bitsensory included as a component that performs network analysis.

1http://www.cointel.eu/
2For example, https://www.walletexplorer.com maintains a list of Bitcoin addresses linked to

an identity

http://www.cointel.eu/
https://www.walletexplorer.com

4.2. FEATURES 25

Deanonymization
of Bitcoin Users

Transaction Graph
Analysis

Networking
Analysis

Data Gathering

Data Analysis

Bitsensory

Cointel currently

Additional
PII from Scrapers

Figure 4.2: Proposed architecture of Cointel when extended with a network analysis
component: Bitsensory.

4.2 Features

Both Koshy et al. (2014) and Biryukov et al. (2014) require an attacker to learn which
nodes first learned about a new transaction, the first node being have created the
transaction. However, the exact time at which a node learns about a new transaction
is not known. Instead, this time can be approximated by the moment a node first
announces the transaction to its neighbors using an inventory message (see Section
1.2 and Figure 1.2).

The primary feature of Bitsensory is therefore to connect to all reachable nodes
and log the exact time at which nodes announce new transactions. Additionally,
the framework can easily be extended to log other behavior of connected nodes or
perform attacks be creating new modules.

Bitsensory finally provides the following notable features:

Distributed The application can run distributed among several machines to allow
establishing an arbitrary number of connection to other nodes in the Bitcoin
network,

Latency All data received from connected nodes receive a timestamp before being
processed, for accurate logging of receive time for all observations.

Time synchronization The clocks of the machines are synchronized using NTP,
with precision in the lower millisecond. This allows comparing of observations
from multiple machines.

26 CHAPTER 4. Bitsensory : EXTENDING COINTEL WITH NETWORK ANALYSIS

Bitcoin
Network

Message
HandlerMessage
HandlerMessage
HandlerMessage
HandlerMessage
HandlerMessage
HandlerMessage
HandlerMessage
Handler

Connection
center

Network
Interface

Module
Module

Module

Module

Module
Module
Module

Module

Command
Interface

Task
Scheduler

Processing
server

Figure 4.3: Overview of the data gathering component of Bitsensory

4.3 Data gathering

The sensor application is designed to create a single connection to all reachable
nodes. It is written in Java and uses the bitcoinj3 library to parse and create
messages complaint to the Bitcoin protocol specification. The sensor application
follows a modular design and allows plugging and unplugging of modules without
restarting or otherwise losing connections. A schematic overview of the application
can be found in Figure 4.3 and its components are described below:

Connection Center This component of the sensor is responsible for establishing
TCP connections to Bitcoin nodes that are currently reachable. Once a new
packet arrives it receives a timestamp and is scheduled for processing. Tim-
ing is critical in this component, as delays will influence the accuracy of the
timestamps.

Message Handler Multiple message handlers run simultaneously to process all re-
ceived packets. For all connections the raw data stream is parsed to Bitcoin
messages in an accessible format provided by bitcoinj.

Network Interface The Network Interface is a facade4 for the entire networking
subsystem. It allows registration of callback functions in case some type of
message has been received, or the state of a connection has changed and
it provides methods to establish connections and send arbitrary Bitcoin mes-
sages to active connections.

Command Interface This component provides an interface for communication with

3https://bitcoinj.github.io/
4A single class that provides an easy to use interface to an entire subsystem. See also https:

//sourcemaking.com/design_patterns/facade

https://bitcoinj.github.io/
https://sourcemaking.com/design_patterns/facade
https://sourcemaking.com/design_patterns/facade

4.4. DATA PROCESSING 27

Sensors

Connection
HandlerConnection
HandlerConnection
HandlerConnection
HandlerConnection
HandlerConnection
HandlerConnection
HandlerConnection
Handler

Connection
center

Observation
Buffering

Module
Module

Module

Module

Module
Module
Module

Module

Figure 4.4: Overview of the data processing application

the processing server part of Bitsensory. This component also controls the
loading and unloading of modules.

Task Scheduler A simple interface that executes a callback function after a pre-
defined timeout or interval.

Modules The data gathering functionality required for Bitsensory is implemented
as separate modules in the sensor application. A module operates by calling
methods and registering callback functions on the three defined interfaces.
Modules can be easily implemented for performing attacks and experiments.

Several modules have currently been defined:

basicprotocol Ensures that a protocol compliant handshake is performed for all
new connections and that the sensor responds correctly to messages received
from other nodes.

interestset Responsible for discovering online Bitcoin nodes and maintaining con-
nections to all discovered nodes, reconnecting if necessary.

invlogging This module listens for inventory messages received from the con-
nected nodes. This information is forwarded to a data processing server.

txlogging Requests transaction data if it is still unknown when announced by an-
other node. The transaction data is stored in a database for later use.

4.4 Data processing

The processing application is designed to aggregate all observations of a transac-
tion, perform analysis and archive possibly relevant data. This application is written

28 CHAPTER 4. Bitsensory : EXTENDING COINTEL WITH NETWORK ANALYSIS

in C++ using the Qt5 framework. The processing application follows a modular de-
sign al well, where all modules receive a stream of transactions that include relevant
data that was gathered by the different sensors. See Figure 4.4 for an overview of
the processing application.

The ‘Observation Buffering’ component of the data processing application intro-
duces a delay of three minutes for all new transactions to collect all observations
of the transaction before it is processed in the modules. This ensures that every
transaction is processed only once and include all relevant observations.

Currently, the following modules have been defined:

store Responsible for storing all data of a transaction to hard disk.

nodeinfo Extracts information about Bitcoin nodes from the received transaction
observations.

4.5 Deployment

In the final setup of Bitsensory, we launched four sensors and one processing
server. After running for a few hours, the sensors have discovered all nodes in the
Bitcoin network (or at least a similar number to what is reported by several websites
that offer real-time statistics on the Bitcoin network), which was between 5200 and
5600 during this research. The processing server stores for each transaction some
details about the propagation: the first 500 nodes that announced the transaction,
combined with specific timestamps at which the transaction was reported to each
connected sensor. This data was compressed and stored, which requires a storage
capacity of between 3 and 4 Gigabyte per day.

Chapter 5

Improving Support Counts using
Address Clustering

Koshy et al. (2014) have concluded that detecting the first node that propagated a
transaction does not work reliable. For some transactions the origin node is ob-
served correctly, but for other transactions a wrong node is detected as origin. In
the absence of more information it would therefore be impossible to determine the
value of the gathered intelligence.

The above problem can be mitigated if more than one observation can be used,
for example from multiple transactions. If for the majority of transactions the same
origin was observed, it would be the correct origin for all those transaction. In order
to do this, we first need to group transactions that were created by the same en-
tity and therefore (supposedly) introduced using the same node. By analyzing the
observed origins of all transactions in a group, it is possible to make more reliable
conclusions about which node was the true origin, or conclude that the origin can
not be reliably determined.

Creation of groups of transactions requires knowledge about which transactions
are created by the same entity. In order to do this, Koshy et al. (2014) have used
the input pseudonyms of a transaction. Transactions that contain the same input
pseudonym, are grouped. This is reliable as those transactions are signed using the
same private key under the assumption that entities do not share their private keys.

Koshy et al. (2014) determined that groups in which at least five transactions are
included can be used for analysis. Unfortunately, he also concludes that the above
method of grouping transactions by input address is ineffective for creating groups
of sufficient size (for most transactions). Note that even if transactions are member
of a group with sufficient support count, deanonymization can still fail due to one of
the reasons outlined in Chapter 3.

In Section 2.1 we have seen several techniques aimed at discovering pseudo-
nyms owned by the same entity. We see an opportunity to use these techniques to

29

30 CHAPTER 5. IMPROVING SUPPORT COUNTS USING ADDRESS CLUSTERING

Pseudonym A

Pseudonym B

Pseudonym C

Transaction with
multiple inputs

Figure 5.1: Cluster activity.

create larger groups of transactions. Previous groups of transactions can be merged
if the pseudonyms used as input belong to the same entity. Of those techniques, in-
put co-occurrence clustering is available in Cointel.

In the remainder of this chapter we describe the advantage of integrating cluster-
ing heuristics in the existing approach of detecting the origin node of a transaction.
We do this by using input co-occurrence clustering to increase the sizes of transac-
tion groups. First we provide a theoretical overview of the expected effect of using
clustering heuristics, next the collection of data is described and analyzed to support
the theory. Finally, the results are discussed and conclusions are drawn.

5.1 Model

The original approach of Koshy et al. (2014) associated an IP to an individual pseudonym,
treating each pseudonym as an entity. In this section we describe the expected ef-
fect of using technology in Cointel to cluster pseudonyms and treat each cluster as
an entity instead on the support count.

Example Figure 5.1 shows an example of a cluster that consists of 3 pseudo-
nyms A,B and C. All pseudonyms own some transactions (3, 2 and 3 transactions
respectively), but none of the pseudonyms have a sufficient support count to allow
deanonymization. The transaction that references both pseudonym A and B as input
would be ignored by Koshy et al. (2014) as none of the pseudonyms is considered
the exclusive owner of the transaction. If clustering techniques are allowed that link

5.1. MODEL 31

the pseudonyms in this example to the same entity, it would then be valid to create
a single group of transactions from all transactions owned by this cluster, instead
of separate groups each pseudonym. In this example, this would result in a single
group with a support count of 9 (which is sufficient), instead of three groups with
support counts 3, 2 and 3 respectively, which is insufficient in all cases.

In general, all transactions that are owned by a cluster can be grouped together
instead of only the transactions owned by a pseudonym. As additional advantage
all transactions can be used instead of only the transactions that reference a single
pseudonym at the input, as all transactions are owned by a single cluster, but not
all transactions are exclusively owned by pseudonym. Using clusters for grouping
transactions instead of addresses will increase the size of transaction groupings as a
cluster can contain transactions from multiple addresses, but all transactions owned
by an address are also owned by the same cluster.

Temporal separation of groups It would be possible not only to separate trans-
actions according to owning pseudonym or cluster, but also according to time. For
example, we can create groups of transactions that were created by a certain entity
on a certain day or in a certain month. The most important disadvantage of doing
this is the reduced size of groups, caused by the extra constraint. But doing so could
also have advantages later in the process of deanonymization, as the behavior of
an entitiy is likely more stable in the short term than in a longer term. For example,
the IP address of the node that introduces the transactions of an entity can change
over time. This could for example happen if the node is located at the home of the
owning entity1.

Experimental data is required to determine the advantage of choosing a larger
time interval over small time intervals. If we choose a smaller time interval, more
transaction groups can exist that contain transactions that belong to the same entity.
Therefore, it is possible to deanonymize the same entity multiple times later in the
process and possibly observe changes in the behavior of an entity (e.g, new IP
address).

Effectiveness of clustering over time An advantage of using clustering is that
the results can improve over time. This happens when after the time of measuring
a new transaction is created that combines existing clusters. An example is this can
be seen in Figure 5.2, where two clusters are combined due to a new transaction
that uses an input pseudonym of both clusters. Within the measuring period, the

1Most ISPs either dynamically allocate IP addresses to their customers or share addresses be-
tween customers using techniques such as Carrier grade NATs (CGN) that could result in an even
more dynamic address.

32 CHAPTER 5. IMPROVING SUPPORT COUNTS USING ADDRESS CLUSTERING

A new transaction

Figure 5.2: Merging of a cluster

Date March 1 to Junly 31, 2016 (including)
Block heights 400601 - 418877
Transactions 32.7 mln

Unique pseudonyms 34.1 mln
Unique clusters 15.6 mln

Table 5.1: Data collected to analyze influence of clustering techniques on the sup-
port count

left cluster in the figure owned four transactions (four leftmost black dots), while the
right cluster owned three (three rightmost black dots), so both transactions groups
did not have sufficient support count. At any time, a new transaction can appear
(green dot) that references a pseudonym of both clusters as input, causing them to
merge (i.e. input co-occurrence clustering). As a consequence, the transactions of
both clusters can now be added to a single group with sufficient support count of 7
(excluding the green transaction that was created after the measuring period).

In short: the time at which the clustering was performed influences the sizes of
the involved clusters and by extend the support counts of transaction groups.

5.2 Experimental results

To experimentally verify the advantage of using clustering heuristics over the method
used by Koshy et al. (2014), an experiment was conducted, which is described in
the remainder of this section. Furthermore, we explore the influence of different
intervals of time on the support counts and the influence of the moment of clustering
(i.e. whether clustering becomes more effective over time).

We collected data from real transactions included in the blockchain between
March 1 and August 1, 2016. See also Table 5.1. For each day, week and month
within this period, we created groups of transactions based on either the input

5.2. EXPERIMENTAL RESULTS 33

pseudonym, or the cluster that owned the transaction (based on clustering infor-
mation that was available at August 4, 2016.). For all these variables for creating
groups (starting date, measuring period and cluster or input address) we then cal-
culated the fraction of transactions that belonged to a group of sufficient support
count of five (further referred to as success rate).

This results in a binary experiment for all transactions created between March
1 and August 1, 2016. Success denotes that the transaction was member of a
group with at least 4 other transactions and failure denotes that the transaction was
member of a group with fewer other transactions.

34 CHAPTER 5. IMPROVING SUPPORT COUNTS USING ADDRESS CLUSTERING

2016/02/19 2016/04/19 2016/06/19
0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

Success rate of transaction grouping

with a daily interval

Clustering
No clustering

Date (YYYY/MM/DD)

%
 o

f
tr

an
sa

ct
io

ns
 i
n

a
gr

ou
p

w
it
h

su
pp

or
t

co
un

t
>

=
 5

Figure 5.3: Effectiveness of transaction grouping with clustering enabled and dis-
abled

For each day in the measuring period, Figure 5.3 shows the success rate. The
blue line (µ = 34.3%, σ = 2.36%) indicates this rate when clustering is enabled,
while the red line (µ = 21.3%, σ = 3.02%) shows the rate when clustering is dis-
abled (transactions are only grouped by input pseudonym). This figure shows an
average improvement of 13.1 percentage point (σ = 1.43 pp) when enabling input
co-occurrence clustering. The variations in both lines can be explained by consider-
ing that the graphs shows the behavior of users, which can change over time.

The results show for all time intervals a strong correlation (ρ = 0.887) between the
clustering and no clustering lines. This makes sense when considering that a cluster
consists of one or more pseudonyms. Therefore, the transaction groups created with
clustering enabled all consist of one or more groups that would have been created
if clustering was disabled. If pseudonyms own more transactions during a certain
period (higher success rate when clustering is disabled), then automatically clusters
own more transactions during the same period (higher success rate when clustering
is enabled).

5.2. EXPERIMENTAL RESULTS 35

2016/02/19 2016/04/19 2016/06/19
0

0.5

1

1.5

2

2.5

Advantage of clustering

Improvement Linear trend

Date (YYYY/MM/DD)

Fa
ct

or

Figure 5.4: Improvement of using clustering over no clustering

The data in Figure 5.3 can be used to determine the improvement of using clus-
tering techniques over the original approach used by Koshy et al. (2014). We ex-
press the advantage of using input co-occurrence clustering as a ratio between the
success rates of the first graph (Figure 5.3) as follows:

success rate clustering
success rate no clustering

(5.1)

This is a most intuitive form of expressing the advantage, because the groups
created using clustering consist of one or more groups that would have been created
without clustering. Figure 5.4 shows the above ratio for all days in the measuring
period. The figure shows an improvement with a factor between 1.5 and 2.0. We
observe an declining trend of this factor over time, which can be explained by the ex-
pected improvement in performance of clustering techniques for older transactions,
as explained earlier in this chapter.

36 CHAPTER 5. IMPROVING SUPPORT COUNTS USING ADDRESS CLUSTERING

2016/03/01 2016/04/01 2016/05/01 2016/06/01 2016/07/01
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Overview of different intervals of measuring

clustering enabled

Daily with clustering Weekly with clustering
Monthly with clustering 5 month with clustering

Date (YYYY/MM/DD)

Su
cc

es
s

ra
te

Figure 5.5: Overview of previous results with different time intervals.

Contrary to Koshy et al. (2014), the above results create a new group for each
day within the measuring period. When considering other time intervals for which
to create new groups, we see the same results as above, but with a higher success
rate. Figure 5.5 shows the influence of different time intervals for grouping on the
success rate. Choosing a larger interval, consistently results in a higher success
rate, to a maximum of more than 50% when considering all transactions created
during the 5 month period. For the intervals with clustering enabled, choosing a
weekly interval improved the success rate by an average of 7.21 pp (σ = 1.58 pp),
the monthly interval an average improvement of 12.5 pp (σ = 2.24 pp) and the 5
monthly interval an improvement of 15.9 pp (σ = 2.36 pp).

This improvement can again be explained from the merging of groups. For ex-
ample, the activity (transactions) of a certain cluster of a week consists of the activity
of that cluster of days in that week.

5.3. DISCUSSION AND CONCLUSIONS 37

5.3 Discussion and Conclusions

In this chapter we have shown that input co-occurrence clustering can be used to
group transactions together that are created by the same entity. Depending on the
used time interval this can result in a success rate of 50% of all transactions being
part of a group of sufficient size (five), which possibly allows deanonymization. This
is an improvement between 50% and 100% compared to the previous method used
by Koshy et al. (2014). When choosing a smaller time interval, the success rate is
reduced to 34% when a daily time interval is chosen.

Impact of false clusterings It is possible that clustering techniques yield false
results. The clustering heuristic used in this chapter (input co-occurrence clustering)
is only reliable under the assumption that a single entity is responsible for creating
a transaction. Notable exceptions to this assumption are Coinjoin transactions, that
are specifically intended to confuse clustering heuristics. The prevalence of this
type of transaction is not investigated in this research, as this does not impact later
deanonymization. If unrelated transactions are added to the same group, it will later
yield inconclusive results, but no false deanonymizations, as the transactions are
introduced using different nodes.

Use of other clustering heuristics Other clustering heuristics are described in
Section 2.1 and more clustering heuristics can be discovered in the future. Although
only input co-occurrence clustering is used in this chapter, the followed approach
can easily be generalized to support any heuristic. Any method that relates different
heuristics can be used and will improve the results that were already obtained here.

38 CHAPTER 5. IMPROVING SUPPORT COUNTS USING ADDRESS CLUSTERING

Chapter 6

Reducing Incorrect Observations
with More Connections

We have seen in the Chapter 5 how we can group transactions according to the
entity that created the transaction. Using Bitsensory introduced in Chapter 4, it is
possible to observe the propagation of all transactions in a group over the Bitcoin
network. Provided that none of the problems described in Chapter 3 occurs, the
observed origin node of all transactions in a group will be the same.

One of the problems described in Chapter 3 is the possibility of ‘wrong obser-
vations’. This problem can be (at least partially) attributed to the mechanism to
disseminate transactions in Bitcoin called trickling, described in Section 1.2. This
mechanism randomizes the order in which transactions are shared with neighbors,
possibly resulting in a wrong node being observed as origin.

The objective of this chapter is to reduce the possibility of these wrong observa-
tions by establishing multiple connections to all nodes in the Bitcoin network instead
of only one. In the current literature, only Biryukov et al. (2014) establishes multiple
connection to all nodes in the Bitcoin network, but the effect of this is mostly ana-
lyzed in relation to the detecting of the entry nodes of unreachable nodes instead of
the probability of correctly observing the origin of a transaction.

The remainder of this chapter describes why wrong observations occur and how
to mitigate this by establishing more connections to a node. First we provide a
theoretical model of correctness of observations, next we perform an experiment to
measure the correctness in a practical setting, and finally we draw conclusions.

6.1 Model of Transaction propagation

Types of propagation We have already seen in Section 1.2 that a node chooses
to spread all new transactions either by broadcast (25%) or by trickle (75%). To

39

40 CHAPTER 6. REDUCING INCORRECT OBSERVATIONS WITH MORE CONNECTIONS

Origin

Observer
0m

s

0ms

200
ms

a) Broadcast

Origin

Observer

200ms

400
ms10

0m
s

b) Early trickle

Origin

Observer

50
0m

s

100ms

200
ms

c) Late trickle

Figure 6.1: Example timings of different paths that a transaction can follow over the
network: a broadcast, an early trickle and a late trickle. Times in this
figure are relative to the creation time of the transaction.

avoid easy detection by analysis of broadcasts and trickles, the origin node of a
transaction shows the same behavior in this as other nodes. When the propagation
of a transaction is observed, the following situation can occur regarding what the
origin of the transaction does and what the observer observes (Figure 6.1):

• The origin broadcasts the newly created transaction, so all neighbors simulta-
neously receive the transaction (apart from networking latency). In this case
the number of connections has no influence on the observation, because the
transaction is announced simultaneously over all connections. If an observer
has multiple connections to the origin, it can observe that the transactions was
a broadcast (the transaction was announced at the same time over all connec-
tions).

• The origin performs a trickle to randomize spreading of the transaction. Be-
cause of this randomization, it is possible that the transaction reaches another
node (the ‘third node’) first that spreads it to the observer before the origin
does. The observer learns the transaction via a late trickle (case c in the fig-
ure). In this case, the transactions reaches the observer either via broadcast
or trickle, as the ‘third node’ chooses this independently of the origin.

Alternatively, the origin performs a trickle to spread its transaction, but choses
the observer as (one of) the first neighbors to announce the transaction to: an
early trickle, which is observed by the observer an a trickle.

The observer is unable to distinguish between broadcasts, early trickles and late
trickles. In fact, the observer can only find whether the observed origin of a transac-
tion has performed a broadcast or a trickle1, but the observed origin can broadcast

1An observer can distinguish if the first observation was a broadcast or a trickle when multiple
connections are established: in case of a broadcast the transaction is announced simultaneously
over all connections, but not simultaneously in case of a trickle.

6.1. MODEL OF TRANSACTION PROPAGATION 41

or trickle independent from the behavior of the actual origin of the transaction.

Conservative success rate In this model, the overall success rate of correct con-
clusions about the origin of a transaction (by definition) depends on the ratio be-
tween early and late trickles. A conservative approximation of an early trickle would
be the probability that the observer was selected first to trickle, where a late trickle
is approximated as the probability of not being selected first.

From Section 1.2, we already know that the time between trickles is an indepen-
dent Poisson process, with the same rate for all neighbors. Therefore each neighbor
has the same probability of being selected first as trickle. The probability of a correct
observation from a specific origin node can then conservatively be approximated as:

0.25 + 0.75 · Connections to observer
Total connections of origin

(6.1)

Here, a broadcast (25% of all transactions) from the origin node will always result
in a correct observation, while a trickle (75% of all transactions) results in a correct
observation if the observer is trickled first.

Realistic approximation While the above formula gives a certain lower bound on
the probability of successfully observing the origin of a transaction, success rates
can be better in practice. This is mainly because of two reasons:

• Nodes that receive an announcement of a new transaction do not start propa-
gating immediately. First, some more communication is needed to fully receive
the transaction (see Figure 1.2), next the transaction is validated2 and only
thereafter it can be announced to neighbors. As a consequence, if the origin
shares a transaction with another node before it is shared with the observer, it
still takes some time before this can actually result in late trickles.

• If at some point in time, a transaction has not been announced to the ob-
server yet, but several other nodes already propagate the transaction, there is
still a chance that the observer learns the transaction from the correct origin
(early trickle) instead of another node (late trickle). This is especially true when
considering that some nodes are not reachable and therefore do not directly
contribute to late trickles.

The effect of the above reasons on the ratio between early and late trickles de-
pends in practice on various parameters, such as networking delays, validations
delays and the fraction of nodes that is reachable. Creating a model with all these

2Biryukov et al. (2014) has researched this delay and approximated it to be a typical 100ms.

42 CHAPTER 6. REDUCING INCORRECT OBSERVATIONS WITH MORE CONNECTIONS

0.0
0%

5.0
0%

10
.00

%

15
.00

%

20
.00

%

25
.00

%

30
.00

%

35
.00

%

40
.00

%

45
.00

%

50
.00

%

55
.00

%

60
.00

%

65
.00

%

70
.00

%

75
.00

%

80
.00

%

85
.00

%

90
.00

%

95
.00

%

10
0.0

0%

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Success rate of an observation

First trickle only First 2 trickles First 3 trickles First 4 trickles
First 5 trickles First 6 trickles First 7 trickles

Fraction of connections of origin to observer

Su
cc

es
s

ra
te

Figure 6.2: Approximation of the probability of a successful observation for different
network conditions. Lower latencies will result in success rates closer
to the blue line.

parameters would be overly complicated. Instead, we express these networking
conditions as an average number of trickles performed by the origin node before
another node than the origin announces the transaction to the observer:

0.25 + 0.75 · [1− (1− x)n] (6.2)

where x is the fraction of connections of the origin controlled by the observer, n
is the number of trickles an observer’s connections must be among and (1 − x)n

the probability that the observer is not among the first n trickles. This equation is
a generalization of Eq. 6.1 for n = 1. A plot of Eq 6.2 for various values of n is
depicted in Figure 6.2.

6.2 Experiment

In the previous section we have seen that the success rate of correctly observing
the origin node of a transaction likely depends on both the networking conditions
and the fraction of connections of an origin node to the observer.

6.3. ANALYSIS AND CONCLUSION 43

Fraction of total transactions of which trickles & broadcasts
Order 0 58% 62% 38%
Order 1 22% 45% 55%
Order 2 (or more) 20% 45% 55%

Table 6.1: Accuracy of observations when the connections to the attacker are∼ 15%

of the total number of connections of a node. Order 0 corresponds to
correct observations.

Number of connections 1 3
(as percentage of total connection of a node) ∼ 5 ∼ 15

Correct observation rate 38% 58%
Early/late trickle ratio 45/55 20/80

Table 6.2: Overview of results of the connection experiment

We have tested the effect of having more than a single connection to the ori-
gin node by launching a new Bitcoin node and use it to create new transactions
(n = 100). Using Bitsensory we then observed the propagation of the created trans-
actions. The results of this experiment can be found in Table 6.1, where an ‘order
0’ observation indicates a correct conclusion (due to broadcast or early trickle), an
‘order 1’ observation is when (due to late trickling) a neighbor announced the trans-
action first and an ‘order 2+’ indicates that the transaction was first announced by
another node (possibly a neighbor of a neighbor, this is also a late trickle).

From this figure and from Table 6.2, we see an overall success rate of 58% and if
the observer has about 15% of the connections of the origin (3 out of 22 connections
controlled by the observer). When only the observations from a single sensor are
considered, the success rate is reduced to 38%. When we insert these results in
Figure 6.2, we find that the results are best described by the green line, that assumes
networking conditions that allow a correct observation if the observer is among the
first four trickles.

6.3 Analysis and Conclusion

In this chapter we have seen how the number of connections to a node influences
the probability of successfully determining the origin node of a transaction. Laten-
cies in the Bitcoin network and latencies in nodes cause that an observer not nec-
essarily need to be informed first a new transaction, which reduces the number of
connections that is needed.

By introducing 100 transactions to the Bitcoin network while being connected

44 CHAPTER 6. REDUCING INCORRECT OBSERVATIONS WITH MORE CONNECTIONS

three times to all reachable nodes, we established that the observer must be among
the first four neighbors of the origin that are informed of the new transaction. Al-
though this results were obtained under optimal network conditions (negligible la-
tency between origin node and observer), the same model can be applied to all
nodes in the Bitcoin network that use the same mechanism to propagate transac-
tions3. In practice this means that when an observer controls 15% of the connections
of all nodes, it can correctly determine the origin of 50% of all transactions (this is a
conservative approximation4).

3Broadcast 25% of all transactions and randomly select the order of neighbors for the remaining
75%. This is default for all recent version of Bitcoin Core and forks.

4Assuming n ≈ 2.5 in Eq. 6.2 instead of the measured n = 4.

Chapter 7

Detection of Proxies to Cluster
Related Nodes

In previous chapters we have seen how clustering heuristics can be applied to im-
prove the number of transactions that can be related to each other (Chapter 5, or
how the problem of inaccurate observations can be reduced by establishing multi-
ple connections to all nodes in the Bitcoin network instead of only one (Chapter 6).
In this chapter we describe one of the remaining problems that was described in
Chapter 3, namely the possibility that multiple IP addresses can be simultaneously
responsible for introducing the same transaction.

If a Bitcoin node has several IP addresses, for example in a dual-stack setup,
an IPv4 and a one or more IPv6 addresses, all these addresses can be adver-
tised to the network. As a consequence, such nodes are counted multiple times in
enumerations that are performed by websites such as www.nodecounter.com and
bitnodes.21.co; the statistics about popularity of different client software can be
manipulated1 and most importantly for this research: transactions that are created
by a node that has multiple IP addresses can be first observed via any of the adver-
tised addresses. In other words: the observed origin of transactions introduced by a
node with multiple addresses, can be any of these addresses with equal probability2.
This reduces the confidence of any association that can be made.

Detection of proxy nodes can therefore increase the confidence in this specific
situation. For example, if the majority of observed origin nodes of transactions in a
group are the different IP addresses of a single node, the results would have been
inconclusive before, but no longer are if proxies can be detected.

It would have been possible to apply an existing technique to fingerprint nodes

1This is relevant in the recent discussion whether to increase the size limitation of blocks, where
running alternative clients such as Bitcoin Classic or Bitcoin XT indicates support for a block size
increase.

2Provided that an equal number of connections is established to all advertised addresses.

45

www.nodecounter.com
bitnodes.21.co

46 CHAPTER 7. DETECTION OF PROXIES TO CLUSTER RELATED NODES

across sessions described by Biryukov and Pustogarov (2015) by setting a ‘cookie’.
However this method is an active attack whereby false node addresses are planted
in the target’s address manager. Additionally, considerable effort is needed for an
attacker to read the cookie out once it has been set. Usage of this fingerprinting
technique is also easily detectable and not part of the regular behavior of a Bitcoin
client. We therefore decided to search for alternatives that would work without the
mentioned disadvantages the approach in Biryukov and Pustogarov (2015).

We have found a simple method to detect proxies that requires simultaneous
connections to all candidates, which is descried and evaluated in this chapter. The
method to detect proxies functions by creating a ‘live’ fingerprint of the recent prop-
agation behavior of all connected nodes. Nodes that have a sufficiently correspond-
ing fingerprint are considered proxies.

The remainder of this chapter is outlines as follows: first we describe the pro-
posed method of detecting proxies in more detail Next we evaluate the proposed
method and some of the parameters that can be chosen. Finally we draw conclu-
sions.

7.1 Method

We have already seen that all nodes randomly determine to perform a broadcast
(25% probability) or a trickle (75% probability) for all new transactions they receive.
We have also seen in Section 6.1 that this behavior can be detected if more than
one connection is established to a node. If a transaction was broadcast by a certain
node, all connected sensors would receive the transaction from that node at roughly
the same time, while a trickle results in a larger variation of received times.

Provided that the decision to perform a broadcast or trickle is indeed made ran-
domly, we can use these measurements as a source of randomness that is unique
to each node. Specifically, the entropy of this randomness is can be calculated using
a formula of Shannon and Weaver (1949):

H(X) = −
n∑

i=1

p(xi) log2 p(xi)

= −(0.25 · log2 0.25)− (0.75 · log2 0.75)
≈ 0.5 + 0.31 = 0.81 bit per transaction

It is also possible to calculate the probability that two different nodes show the
same behavior (both broadcasting or both trickling the transaction) for an arbitrary
transaction as follows:

0.252 + 0.752 = 0.625

7.2. EVALUATION 47

Histogram of similarity levels

Figure 7.1: Histogram of observed levels of similarity (x-axis) during a week of ob-
serving proxies.

The probability that two nodes show the same behavior for 10 randomly chosen
transactions is already less than 1% (0.62510 ≈ 0.01). It is therefore very likely that
two nodes are actually the proxies of the same node if identical behavior is shown
regarding transaction propagation.

7.2 Evaluation

To test the method used to detect proxies in a practical environment, we have imple-
mented an extension of Bitsensory. For each connected node, we would store an
512 element shift register. We randomly selected 10% of all processed transactions
and pushed the type of observation (‘not seen’, ‘insufficient connections’, ‘trickle’ or
‘broadcast’) of that transaction in the shift registers of the nodes. Periodically, all
registers were compared and if two registers showed a similarity above a certain
threshold t, the corresponding nodes were considered proxies.

To empirically determine the correct value of t, we have created a histogram of
all similarity levels above 80% that were found during a week of measuring proxies,
which is depicted in Figure 7.1. This figure shows that an 80% similarity between
fingerprints occurs often, a similarity between 90% and 95% is very uncommon and
that a similarity of 98% or more occurs more often again. The increase starting at
95% can not be explained from random broadcast/tricking behavior of nodes and is
attributed to the behavior of proxies instead. We therefore set t to 0.95.

48 CHAPTER 7. DETECTION OF PROXIES TO CLUSTER RELATED NODES

7.3 Analysis and Conclusion

Using this approach and parameter t = 0.95, we were able to continuously detect
approximately 100 nodes that are reachable via multiple IP addresses. This is a
relatively small number compared to the total number of connected nodes via IPv4
(∼ 4800) and IPv6 (∼ 600). With the current state of IPv6 deployment one would
expect few nodes to be reachable via IPv6 only, which suggests a high false-positive
rate for the followed approach. The false-negative rate of this approach is negligible.
This was measured by selecting a random sample of 25 found proxies. For all these
proxies was found that both IP addresses of the proxy are owned by the same ISP.

We expect that node clustering only provides a marginal improvement to the
original approach by Koshy et al. (2014). If, for example, all 53003 nodes would
introduce an equal number of transactions, only 1.9% of all transaction could benefit
from this method4.

Also note that this methods only detects whether a single node has multiple IP
addresses. If an entity would use multiple nodes (that have different IP addresses)
to introduce transactions, it would still result in inconsistent results.

34800 IPv4 + 600 IPv6 - 100 proxies
4Transactions from 100 of the 5300 nodes had inconsistent results due to proxies, which is ∼ 1.9%

of all nodes. In this example this also corresponds to 1.9% of al transactions.

Chapter 8

Improvement over Koshy et al. (2014)

Koshy et al. (2014) describe a method that can be used to deanonymize certain
Bitcoin users by analyzing the propagation of transactions (see Section 2.2.1). Al-
though the method largely fails for regular transactions and its impact is reduced
further by transactions originating from unreachable nodes (Biryukov et al., 2014),
improvements may be possible using results from other research.

Additionally, the data used by Koshy et al. was collected between July 2012 and
January 2013. Between then and now (June 2016) much has changed: the size of
the blockchain has increased from under 5GB to over 70GB and the Bitcoin Core
reference implementation has undergone 5 major releases that have implemented
several Bitcoin Improvement Proposals (BIPs) and soft forks1. These differences
indicate that repeating the experiment could yield different results now.

Furthermore, we would like to compare the results of Koshy et al. (2014) for regu-
lar transactions2 with the improvements explained in the previous chapters enabled:

1. Bitsensory establishes 4 connections to all reachable nodes in the Bitcoin net-
work to determine the origin node of all transaction submitted within a certain
period. As concluded in Chapter 6, 15% to 20% of the connections of a node
most be controlled by the observer to allow a conservative 50% of all transac-
tions to be linked to the correct origin. We therefore conservatively expect that
4 connections is sufficient for nodes that have 27 neighbors.

2. Using the input co-occurrence clustering heuristic that is available in Cointel,
transactions are grouped that are created by the same entity. Compared to the
approach that was followed by Koshy et al., Chapter 5 shows that 50% to 100%
more transactions are in a group of sufficient size to allow deanonymization.

1A forward incompatible protocol update: previously valid behavior becomes invalid after the up-
date. The opposite is a hard fork which is a backward incompatible protocol update: previously
invalid behavior becomes valid.

2Koshy et al. (2014) has also deanonymized transactions by detecting some anomalies in trans-
action propagation, which was ignored during this research.

49

50 CHAPTER 8. IMPROVEMENT OVER KOSHY ET AL. (2014)

IP address count
54.236.xxx.xxx 5
4.15.xxx.xxx 2
46.166.xxx.xxx 1
5.135.xxx.xxx 1
85.25.xxx.xxx 1

Table 8.1: Example of candidate origin nodes of a transaction group containing 10
transactions.

3. If a node has multiple IP addresses, they can be detected according to the
method described in Chapter 7. This prevents inconsistent observations of the
origin of transactions introduced by that node.

The remainder of this chapter is structured as follows: Section 8.1 describes how
the approach of Koshy et al. (2014) is adjusted to integrate the above improvements,
and Section 8.2 compares the impact of the original and improved approach.

8.1 Overview of the improved approach

Using the improvements described in the previous chapters, the approach of Koshy
et al. (2014) can be improved, which is described in this section. Note that we
only attempt to deanonymize ‘regular’ transactions described as ‘Multi-Relayer, Non-
rerelayed transactions’ in Section 2.2.1.

The remainder of this sections is a step-by-step description of the improved ap-
proach:

Step 1: Data gathering Using Bitsensory we establish 4 connections to all reach-
able nodes in the Bitcoin network. This will improve the reliability of all obser-
vations compared to the single connection that was established in the original
approach. To simulate a situation in which only one connection was estab-
lished to all nodes, we randomly select one observation per transaction per
node when these results are compared to Koshy et al. (2014).

Step 2: Grouping Clustering techniques are used to determine the owning entity
of the received transactions, as described in Chapter 5. All transactions are
grouped according to owning entity. Groups of transactions that have an insuf-
ficient size (support count lower than 5) are discarded.

Step 3: Determining confidence Using the data that was gathered by Bitsensory,
the origin nodes of the transactions are in a group are determined and counted

8.2. RESULTS 51

Date June 1st to June 7th (including)
Number of transactions 1.4 million
Addresses referenced 1.8 million

Number of clusters 800,000

Table 8.2: Data used to test the impact of the proposed improvements

(see Table 8.1 for a real example). If one of the nodes is responsible for intro-
ducing at least 50% of all transactions in the group, the association between
entity and node is considered ‘certain’3. In this step we consider IP addresses
that belong to the same node as a single IP address (Section 7).

8.2 Results

In this section real data from the Bitcoin network is analyzed to test how many iden-
tities can be deanonymized using the original approach of Koshy et al. (2014) and
compare this to the improved approach as described in the previous section.

The data that was used for this analysis includes the observations of all transac-
tions included in blocks between July 1st and 7th 2016 (See Table 8.2 of an overview
of the used data). The results of this analysis can be found in Table 8.3. For both
the original and the improved approach, we show the number of pseudonyms and
clusters to which an IP address could be associated.

In several cases multiple pseudonyms owned by the entity could be linked to an
IP address. Mostly these pseudonyms were linked to the same IP, but for 6 clusters
not all pseudonyms were linked to the same IP and not included in these results.

For both approaches we have also calculated the fraction of transactions that
could be associated to a deanonymized pseudonym or cluster. For the original
approach we considered transactions deanonymized that used a deanonymized
pseudonym as (only) input4, and for the improved approach we considered all trans-
actions that were owned by a deanonymized cluster.

For the improved approach, the IP address that was linked to a cluster was found
either by grouping transactions by input address (original) or by grouping all trans-
actions from that cluster.

Overall, we observe an improvement of 70% of deanonymized clusters when all

3This is the same as in Koshy et al. (2014).
4By only considering transactions deanonymized that reference a Bitcoin address to which an IP

could be related, the original results of Koshy et al. (2014) are best represented for this new dataset.
It would however be possible to apply clustering afterwards which would increase the fraction of
deanonymized transactions to 3.1%.

52 CHAPTER 8. IMPROVEMENT OVER KOSHY ET AL. (2014)

Original Improved
pseudonyms deanonymized 340 −→ 485

association by considering complete clusters 0 419

association by considering pseudonyms 272 347

overlap 0 304 -
Clusters deanonymized 272 −→ 462

Fraction of transactions deanonymized 0.6% −→ 4.1%

Table 8.3: Results overview

improvements are enabled compared to the original approach and an almost 7 times
increase in number of deanonymized transactions.

8.3 Analysis and Conclusion

This chapter show that the results from earlier chapters can be successfully applied
to improve an existing approach of Koshy et al. (2014) to deanonymize entities.
In this example we have shown how 70% more entities could be deanonymized
and that almost 7 times more transactions could be attributed to the denonymized
entities.

An important limitation however, is that this experiment could only be conducted
using data of one week. Consequently, it is impossible to analyze if these results
fluctuate over time.

Chapter 9

Discussion

9.1 Impact

Previous chapters have described an improvement of the approach of Koshy et al.
(2014) that allows a powerful observer to link some transactions to an IP address.
This section places this result in the context of the activity of the full Bitcoin network
and compares it to other approaches.

The number of clusters that was deanonymized during the experiment is neg-
ligible compared to the total number of active clusters (462 out of 800,000), but if
only clusters are considered that have a sufficient support count (≥ 5), this fraction
improves to 4% (462 out of 11519). This and the fact that 4.1% of all transactions
was owned by an deanonymized cluster suggests that active Bitcoin users can be
deanonymized with a propability up to 4%.

These results further improve over time if clustering heuristics increase the sup-
port count. If, for example, two clusters are merged after some time because a new
transaction links them together, the support count of both clusters can be added in
retrospect. Adding new clustering heuristics will have a similar effect. Unfortunately,
these effects could not be reliably measured within the limited time of this research.

If the improved approach of Koshy et al. (2014) is compared to Biryukov et al.
(2014) (Section 2.2.2), we find that the improved approach deanonymizes less trans-
actions (4% instead of 11%), but at a much lower cost (4 connections to all reachable
nodes instead of 50).

9.2 Further steps

The most valuable information that can be obtained by analyzing Bitcoin network
data are IP addresses from which transactions were introduced. After an IP address
has been found, further steps need to be taken to relate this IP address to a person

53

54 CHAPTER 9. DISCUSSION

or an organization (something a law enforcement agency should be able to do).
The resulting identity could then either be the owner of a pseudonym, or a third
party that is trusted, e.g. a wallet service. Consequently, finding the IP address
that was responsible for introducing suspicious transactions is only a first step in an
investigation.

9.3 Mitigating the improved approach

For an educated user it is simple to mitigate all network related attacks by not being
part of the Bitcoin network when submitting transactions. As an alternative to run-
ning a Bitcoin client, several online wallets provide a transaction submission form1,
that can be used if these wallets can be trusted to protect the privacy of the submit-
ter. Also, users could connect to nodes that are reachable as a hidden service in the
Tor network2, to anonymously post transactions.

However, both these methods introduce other weaknesses: in case of a submis-
sion form, the other party must be trusted to protect the privacy of the user and the
anonymity provided by Tor is not perfect (e.g. Shmatikov and Wang, 2006; Danezis,
2003; Zhu et al., 2010). Therefore, completely mitigating risks related to introducing
sensitive transactions may not be possible.

Users can verify that a transaction was successfully introduced to the network
by running a regular Bitcoin client to check if transaction have been included in the
blockchain, without risk of deanonymization.

9.4 Dependency on the propagation mechanism

As a final remark, we would like to point out that both the model to calculate the
required number of connections (Chapter 6) and the method to find proxies (Chapter
7) depend on a specific mechanism that to propagate transactions. Two aspects play
an important role in this research:

1. Broadcasts and trickles with a 25% and 75% probability respectively. For
the method to detect proxies, it is only important that different methods to prop-
agate transactions can be distinguished by an observer. It would be beneficial
for the method to know the probability that each method occurs in order to

1e.g. https://blockr.io/tx/push, https://live.blockcypher.com/btc/pushtx/ or https:

//blockchain.info/nl/pushtx
2Bitcoin Core has extensive support for Tor; see https://github.com/bitcoin/bitcoin/blob/

master/doc/tor.md and https://bitnodes.21.co/dashboard/?days=90#nodes for the number of
hidden services.

https://blockr.io/tx/push
https://live.blockcypher.com/btc/pushtx/
https://blockchain.info/nl/pushtx
https://blockchain.info/nl/pushtx
https://github.com/bitcoin/bitcoin/blob/master/doc/tor.md
https://github.com/bitcoin/bitcoin/blob/master/doc/tor.md
https://bitnodes.21.co/dashboard/?days=90#nodes

9.4. DEPENDENCY ON THE PROPAGATION MECHANISM 55

calculate how much entropy is collected for each transaction, but this is not a
requirement as long as a lower bound on the entropy per transaction can be
determined. A possible change in probabilities of broadcasts or trickles does
not fundamentally affect the approach. Entirely disabling either broadcasts or
trickles is unlikely to occur as both mechanisms are needed to provide quick
propagation of transactions on the one side, and privacy to the other side.

2. Random selection of neighbors when trickling. The model that describes
how many connections are needed currently assumes that each neighbor has
an equal probability of being chosen next to share a transaction. Another
distribution of this would not affect the model much as long as the probability
of the observer being chosen next can be calculated.

In short, we do not expect that the propagation behavior will change fundamen-
tally, but if it does, the improvements described in Chapters 6 and 7 can most likely
be easily adjusted.

56 CHAPTER 9. DISCUSSION

Chapter 10

Conclusion

Combining different attacks on the privacy of Bitcoin users is an important step for
law enforcement agencies to increase the probability of deanonymizing suspicious
transactions. This work shows how some approaches can be combined to create a
passive attack that is able to deanonymize almost 7 times more transactions than a
similar attack that is described in literature.

In this work we have shown how a proposal to deanonymize Bitcoin users,
namely by detecting from which IP address a transaction was introduced, can be
improved. This attack required an observer to connect to all Bitcoin nodes and ob-
serve for each transaction which node was first to start sharing that transaction with
other participants in the network. In practice this approach was found inaccurate
(Koshy et al., 2014; Biryukov et al., 2014) for several reasons. Firstly, in practice it
is not possible to connect to all Bitcoin nodes, e.g. not all nodes accept incoming
connections. Secondly, due to randomization in the propagation of transactions, it
is possible that the first observation is not from the origin of the transaction. The
observations of multiple transactions that were created by the same entity can be
combined and analyzed to reduce the impact of the above problems, but is hindered
by entities that switch nodes and nodes that are reachable via multiple IP addresses.

We have systematically shown that some of these problems can be reduced by
combining several approaches. To this end we developed Bitsensory, a piece of
software that can observe the propagation of transactions over the Bitcoin network.
Firstly, we showed that establishing multiple connections to all nodes positively in-
fluences the quality of observations. Secondly we showed that transaction graph
analysis improves the number of transactions of the same entity that can be com-
pared. Finally we showed how nodes with multiple IP addresses can be detected.

Not all problems have been reduced in this (and other) work, but Bitcoin users
may expect that the used IP address could be discovered by an observer. This may
be valuable information for law enforcement agencies, although users can still hide
their real IP address by using Tor or a wallet service.

57

58 CHAPTER 10. CONCLUSION

10.1 Future work

Unfortunately, we were unable to integrate some of the research of Biryukov et al.
(2014) in our approach. This research describes how transactions introduced by
unreachable nodes can be deanonymized by ascertaining the neighbors of those
nodes. The main reason was that this attack is not stealthy. Some research has
already been conducted to make this approach more suitable, which can be found
in Appendix A.2. Another method to deanonymize transaction from unreachable
nodes, can be found by performing a Sybil attack on the Bitcoin network. By dom-
inating the set of reachable nodes (currently only about 5500), an attacker could
convince unreachable nodes to connect to the attacker, instead of the other way
around. Such an attack also requires more research.

Finally some of the results in this work can be investigated further. Figure 5.3,
shows some interesting (periodic) fluctuations in the success rates that could not be
entirely explained. Also, the results when detecting proxies suggest that not all prox-
ies have been found yet by the described method. Choosing different parameters,
or other improvements can result in the detection of more proxies.

Bibliography

Ali, S., Clarke, D., and McCorry, P. (2015). Bitcoin: Perils of an unregulated global
p2p currency. In Proceedings of the 23rd International Workshop on Security
Protocols, pages 283–293.

Back, A. (2002). Hashcash - a denial of service counter-measure. retrieved from
http://www.hashcash.org/papers/hashcash.pdf March 2016.

Biryukov, A., Khovratovich, D., and Pustogarov, I. (2014). Deanonymisation of clients
in bitcoin p2p network. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 15–29. ACM.

Biryukov, A. and Pustogarov, I. (2015). Bitcoin over tor isn’t a good idea. In 2015
IEEE Symposium on Security and Privacy, pages 122–134. IEEE.

Bloom, B. (1970). Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426.

Boyd, S., Ghosh, A., Prabhakar, B., and Shah, D. (2006). Randomized gossip algo-
rithms. IEEE Transactions on Information Theory, 52(6):2508–2530.

Christin, N. (2013). Traveling the silk road: A measurement analysis of a large
anonymous online marketplace. In Proceedings of the 22nd international confer-
ence on World Wide Web, pages 213–224. ACM.

Danezis, G. (2003). Statistical disclosure attacks: Traffic confirmation in open
environments. IFIP Advances in Information and Communication Technology,
122:421–426.

Decker, C. and Wattenhofer, R. (2013). Information propagation in the bitcoin net-
work. In 2013 IEEE Thirteenth International Conference on Peer-to-Peer Comput-
ing (P2P), pages 1–10. IEEE.

Dolev, D. and Yao, A. (1983). On the security of public key protocols. IEEE Transac-
tions on Information Theory, 29(2):198–208.

59

http://www.hashcash.org/papers/hashcash.pdf

60 BIBLIOGRAPHY

Donet, J., Prez-Sol, C., and Herrera-Joancomart, J. (2014). The bitcoin p2p network.
In International Conference on Financial Cryptography and Data Security, pages
87–102. Springer.

Felber, P., Kermarrec, A.-M., Leonini, L., Rivire, E., and Voulgaris, S. (2012).
Pulp: An adaptive gossip-based dissemination protocol for multi-source message
streams. Peer-to-Peer Networking and Applications, 5(1):74–91.

Feld, S., Schnfeld, M., and Werner, M. (2014). Analyzing the deployment of bitcoin’s
P2P network under an as-level perspective. Procedia Computer Science, 32:1121
– 1126.

Gervais, A., Karame, G., Gruber, D., and Capkun, S. (2014). On the privacy pro-
visions of bloom filters in lightweight bitcoin clients. In Proceedings of the 30th
Annual Computer Security Applications Conference, pages 326–335. ACM.

Guadamuz, A. and Marsden, C. (2015). Blockchains and bitcoin: Regulatory re-
sponses to cryptocurrencies. First Monday, 20(12).

Haeupler, B., Pandurangan, G., Peleg, D., Rajaraman, R., and Sun, Z. (2012). Dis-
covery through gossip. In Proceedings of the Twenty-fourth Annual ACM Sympo-
sium on Parallelism in Algorithms and Architectures, SPAA ’12, pages 140–149.
ACM.

Kaminski, D. (2011). Black ops of tcp/ip. http://www.slideshare.net/dakami/

black-ops-of-tcpip-2011-black-hat-usa-2011. Accessed: March 2016.

Kermarrec, A.-M. and van Steen, M. (2007). Gossiping in distributed systems. ACM
SIGOPS Operating Systems Review, 41(5):2–7.

Kharraz, A., Robertson, W., Balzarotti, D., Bilge, L., and Kirda, E. (2015). Cutting
the gordian knot: A look under the hood of ransomware attacks. In Proceedings
of 12th International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 3–24. Springer.

Koshy, P., Koshy, D., and McDaniel, P. (2014). An analysis of anonymity in bitcoin
using p2p network traffic. In Proceedings of the 17th Conference on Financial
Cryptography and Data Security, pages 469–485.

Lua, E., Crowcroft, J., Pias, M., Sharma, R., and Lim, S. (2005). A survey and com-
parison of peer-to-peer overlay network schemes. IEEE Communications Surveys
and Tutorials, 7(2):72–93.

http://www.slideshare.net/dakami/black-ops-of-tcpip-2011-black-hat-usa-2011
http://www.slideshare.net/dakami/black-ops-of-tcpip-2011-black-hat-usa-2011

BIBLIOGRAPHY 61

Meiklejohn, S. and Orlandi, C. (2015). Privacy-enhancing overlays in bitcoin. In In-
ternational Conference on Financial Cryptography and Data Security, pages 127–
141. Springer.

Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G. M.,
and Savage, S. (2013). A fistful of bitcoins: characterizing payments among men
with no names. In Proceedings of the 2013 conference on Internet measurement
conference, pages 127–140. ACM.

Miller, A., Litton, J., Pachulski, A., Gupta, N., Levin, D., Spring, N., and Bhattachar-
jee, B. (2015). Discovering bitcoins public topology and influential nodes.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.

Saroiu, S., Gummadi, K., and Gribble, S. (2003). Measuring and analyzing the
characteristics of napster and gnutella hosts. Multimedia Systems, 9(2):170–184.

Sat, D., Krylov, G., Evgenyevich, K., Bezverbnyi, Kasatkin, A., and Kornev, I. (2016).
Investigation of money laundering methods through cryptocurrency. Journal of
Theoretical and Applied Information Technology, 83(2):244–254.

Shannon, C. and Weaver, W. (1949). The Matematical Theory of Communication.
University of Illinois Press.

Shmatikov, V. and Wang, M. . (2006). Timing analysis in low-latency mix networks:
Attacks and defenses. In Computer Security ESORICS 2006, pages 18–33.
Springer.

Spagnuolo, M., Maggi, F., and Zanero, S. (2014). Bitiodine: Extracting intelligence
from the bitcoin network. In Proceedings of the 18th Conference on Financial
Cryptography and Data Security, pages 457–468. Springer Berlin Heidelberg.

Zhu, Y., Fu, X., Graham, B., Bettati, R., and Zhao, W. (2010). Correlation-based
traffic analysis attacks on anonymity networks. IEEE Transactions on Parallel and
Distributed Systems, 21(7):954–967.

62 BIBLIOGRAPHY

Appendix A

Other findings and Dead ends

While conducting this research we have encountered several dead ends, an overview
of which is provided in this appendix.

A.1 Bloom filters

As already mentioned in Section 2.2.3, Gervais et al. explored the privacy provisions
of Bloom filters in the context of Bitcoin SPV clients. Some vulnerabilities were
found: SPV clients usually reinitialize their Bloom filter when a new session starts,
so different Bloom filters may be acquired. Depending on how many Bloom filter
were acquired, the following was discovered:

• If a single Bloom filter was received to which fewer than 20 pseudonyms were
added, about 80% of these pseudonyms can be recovered;

• If multiple Bloom filters containing the same pseudonyms were received, (al-
most) all pseudonyms can be recovered, irrespective of how many were added
to the filter, by looking at pseudonyms that reported membership in all received
Bloom filters.

The use of this attack in practice is not discussed in Gervais et al. (2014). It
therefore remained unclear what the exact cost and impact of performing the attack
is. If, for example, an SPV client would accept incoming connections, the cost will be
low as an attacker can connect to the SPV client to acquire a Bloom filter. If the client
however does not accept incoming connections, the cost will be much higher, as an
attacker would then needs to run many reachable Bitcoin nodes and hope an SPV
client will connect to one of them (a sybil attack). Contrary to what was indicated
by Gervais et al. (2014), some reachable nodes actually presented a Bloom filter
when Bitsensory attempted to connect. Further research indicated that this filter

63

64 APPENDIX A. OTHER FINDINGS AND DEAD ENDS

17%

38% 18%

10%

12%

5%

Number of entry nodes in first 10 observations

0
1
2
3
4
5

Figure A.1: Number of entry nodes in top 10 of early observations

would match on any pseudonym and is only used by the Bitcoin XT client to speed
up propagation of blocks1.

A.2 Transactions from unreachable nodes

As the majority of transaction are not introduced from reachable nodes, Biryukov
et al. (2014) proposed an attack to discover the entry nodes of an unreachable node
and relate transaction first observed from multiple entry nodes to the unreachable
node (see Section 2.2.2 and Figure 2.2). This approach currently has a few weak-
nesses that can possibly limit the impact: the success of this attack depends on an
unreachable node announcing its public IP address the network via connected entry
nodes. This mechanism, however, is only useful for nodes that also accept incom-
ing connections. Simply disabling this announcement for unreachable nodes would
stop the attack, without further consequences for the reachability of the network.
Disabling this announcement is already possible in recent versions of Bitcoin Core
by unchecking the ‘Accept incoming connections’ option in settings.

Another weakness is that Biryukov et al. (2014) requires to establish 50 con-
nections to all reachable nodes in order to achieve deanonymization of 11% of all
transactions, however, doing so would damage the overall reachability of the Bit-
coin network and the attack would be easily observable. For ethical and practical
reasons we did therefore not consider doing this. Instead, we performed some re-
search regarding the viability of this approach with the limitation of a maximum of 4
connections to all Bitcoin servers. Unfortunately, the proposals described here were

1https://www.reddit.com/r/btc/comments/42k7ka/all_about_thin_blocks_in_xt/

https://www.reddit.com/r/btc/comments/42k7ka/all_about_thin_blocks_in_xt/

A.2. TRANSACTIONS FROM UNREACHABLE NODES 65

not tested sufficiently during the limited time of this research, so it is left for further
research.

1. Where Biryukov et al. (2014) managed to “catch” a sufficient number of 3 entry
nodes or more that were used to introduce a transaction in 77% of all transac-
tions, Bitsensory only caught sufficient entry nodes in 27% of all transactions
during an experiment in which 100 transactions were created by an unreach-
able node (see also Figure A.1). In order to compensate for this, we propose to
use observations from multiple transactions that were created during the same
session. As shown in Table A.1, 5 transactions will suffice, but the number of
entry nodes that can be reliably detected increases when more transactions
are available.

2. To allow discovering the entry nodes of an unreachable Bitcoin node, we pro-
pose to reverse the process of discovering the entry nodes of an unreachable
Bitcoin client: for a given set of entry nodes that belong to the same entity
with a high probability we see which unreachable Bitcoin client has most likely
connected to those set of nodes by analyzing address messages. Instead of
limiting propagation of ADDR messages as done by Biryukov et al. (2014), we
look at the timestamp of a received address message. If the message is older
than a few seconds, we disregard it.

The probability of receiving at least n correct addresses for a given entry set
of 8 nodes:

binompdf(m, 8, n)

where m is the probability of receiving the relevant ADDR message instead of
another connected node:

m = 2 · number of connections from attacker
total number of connections

As an alternative to detecting the entry nodes of unreachable Bitcoin nodes, it
would also be possible to conduct a sybil attack to increase the probability that
an unreachable node connects to an attacker’s node.

66 APPENDIX A. OTHER FINDINGS AND DEAD ENDS

Number of transactions
1 2 5 10 20 50 100

First 1 observation 0.75 1.54 3.14 5.16 6.23 7.44 8
First 2 observation 1.1 2.22 4.34 4.8 6.61 7.84 8
First 3 observation 1.35 2.53 3.87 4.55 6.78 7.89 8
First 5 observation 1.51 2.83 3.02 4.84 6.97 7.82 8

First 10 observation 1.62 1.47 2.69 5.14 6.68 7.89 8

Table A.1: Number of transaction needed to discover sufficient entry nodes (aver-
ages)

	Acknowledgments
	Abstract
	Introduction
	Bitcoin Fundamentals
	Bitcoin Network
	Definitions

	Deanonymization of Bitcoin Users
	Transaction Graph Analysis
	Network Analysis
	Transaction from reachable nodes
	Transactions from unreachable nodes
	Other work

	Summary

	Approach
	Bitsensory: Extending Cointel with Network Analysis
	Cointel
	Features
	Data gathering
	Data processing
	Deployment

	Improving Support Counts using Address Clustering
	Model
	Experimental results
	Discussion and Conclusions

	Reducing Incorrect Observations with More Connections
	Model of Transaction propagation
	Experiment
	Analysis and Conclusion

	Detection of Proxies to Cluster Related Nodes
	Method
	Evaluation
	Analysis and Conclusion

	Improvement over koshy2014analysis
	Overview of the improved approach
	Results
	Analysis and Conclusion

	Discussion
	Impact
	Further steps
	Mitigating the improved approach
	Dependency on the propagation mechanism

	Conclusion
	Future work

	References
	Other findings and Dead ends
	Bloom filters
	Transactions from unreachable nodes

