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Abstract

Evaporating droplets have many applications within the industry and droplets evaporat-
ing in air have been extensively studied. However droplets surrounded by another liquid
have been studied less. Due to the emergence of the micro- and nanotechnology many
research groups have shown interest in the contact line dynamics of surface nanodroplets
and nanobubbles. Understanding of the contact line dynamics will be beneficial and
relevant to diverse industries. Surface droplets dissolve in four different modes: the
constant radius (CR) mode, the constant contact angle (CA) mode, the stick-slide mode
and the stick-jump mode.

In this thesis we study the dissolution of these sessile droplets both numerically and
experimentally. We employ the lattice Boltzmann model together with an evaporation
model that has been developed by Hessling et al. [1] to study the contact line dynamics
of dissolving sessile droplets on chemically patterned surfaces. At first we study a droplet
placed in the system center in still fluid, i.e. we study the classical Epstein-Plesset [2]
problem. From this benchmark we learn that the measured diffusion constant is not
equal to the actual diffusivity in the system. We find that as the distance of the droplet
to the boundary of the system increases, the measured diffusivity gets smaller. This is
due to the infinite system size assumption in the theory.

By patterning surfaces we are able to study the dissolution modes of surface droplets.
We achieve the CA mode by simulating droplets on flat surfaces with different wettability.
We simulate droplets dissolve in the CR mode, by depositing the droplet on a hydrophylic
disk, and the droplet gets pinned at the rim of the hydrophylic disk. The rest of the
surface is hydrophobic. When the droplet depins, the droplet further dissolves in the CA
mode. Thus this resembles what we call the stick-slide mode. We find that the droplets
dissolve faster in the CR mode than the CA mode. We then continue by patterning the
surface with concentric rings, which consists of hydrophylic and hydrophobic rings. We
deposit the droplet on the outer most hydrophylic ring, and find that the droplet depins
and thereafter “jumps” to the next available hydrophylic disk on the surface. This
implies that the droplet dissolve in the stick-jump mode, if there are more hydrophylic
disks on the surface.

Experimentally we prepare the samples with an chemical etching process which leads
to pyramidal hillock formation on the samples. We measure the contact angle hysteresis.
Due to random distribution of the pyramidal hillocks on the surface, the measurements
result in a large spread of the data, i.e. we do not find any consistent result between
etching time and contact angle hysteresis. On average the hysteresis does increase after
etching the samples. Furthermore from dissolution experiments we find that the droplets
solely dissolve in the stick-slide mode and the stick-jump mode. Also from this data we
do not find any consistency between pinning behaviour and etching time of the samples.

Key words: dissolving sessile droplets, contact line dynamics, lattice Boltzmann model,
surface roughness, contact angle hysteresis
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CHAPTER 1

Introduction

1.1 General Overview

Evaporating droplets in air have been studied extensively [3–6]. However systems where
the droplet is surrounded by another liquid have been studied less. These systems are
completely analogous to the liquid droplets in air systems and if both processes are
diffusion controlled, they can be solved using the same equations [7]. Applications of
evaporating droplets are found in controlling the deposition of particles on solid surfaces,
in ink-jet printing, spraying of pesticides, thin film coatings, biochemical assays, drop
wise cooling, deposition of DNA/RNA micro-arrays, and manufacture of novel optical
and electronic materials in the last decades [3, 8]. With the emergence of micro- and
nanotechnology, many research groups have also shown interest in the contact line
dynamics of surface nanodroplets and nanobubbles. These nanodroplets can for instance
spontaneously form in oil-water emulsions on solid surfaces [9]. Understanding the contact
line dynamics of surface micro- and nanodroplets will lead to a diverse set of industrially
important materials such as textile or biomedical micro- and nanofibers, powdered
solids, and topographically or chemically nanopatterned surfaces, nanoassembly, modern
biotechnology as well as micro- and nanoscale devices, with relevance in diverse industries
from biomedical to petroleum engineering [10, 11]. The wetting of structured surfaces is
also important in the area of microfluidics and microelectronics, printing and self-cleaning
materials [12, 13].

Studies on both types of systems, droplets in air and droplets surrounded by another
liquid, show that droplets dissolve in different modes with different life times [3, 5–7]. The
pinning of the three-phase contact line during the stick phases is of crucial importance for
the long (stable) life time of nanobubbles and nanodroplets [6, 14]. The pinning during
experiments is caused by chemical or physical (geometrical) heterogeneities, which are
naturally omnipresent on the surface and can be avoided to some extent only. On the
other hand surface heterogeneities need to be explicitly introduced during numerical
simulations, i.e. numerical simulations give us the opportunity to study droplets on ideal
and non-ideal surfaces. Another characteristic property of the surface heterogeneities
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2 1 Introduction

is that they enhance the contact angle hysteresis of sessile droplets. Apart from the
three modes that are known, namely: (a) the constant radius (CR) mode, (b) the
constant contact angle (CA) mode, and (c) the stick-slip mode, recently Zhang et al.
[7] and Dietrich et al. [5] have reported a new mixed mode that they have observed
experimentally for dissolving nanodroplets, namely the stick-jump mode (see fig. 1.1).
In this mode the droplet “jumps” from the contact angle at the end of the first stick
phase to a higher contact angle in a very short amount of time. Contrary to what the
name “suggests”, the droplet does not detach from the surface.

.
Figure 1.1: Schemes of the four possible dissolution modes of droplets: (a) the CR mode
(b) the CA mode (c) the stick-slide mode and (d) the stick-jump mode. Here V is the
volume of the droplet with contact angle θ, H its height and L the lateral diameter of the
droplet. Figure taken from Zhang et al. [7]

To gain a better understanding of the dissolution modes of the experimentally observed
droplets, we perform a numerical study on the contact line dynamics of droplets on flat
chemically patterned substrates surrounded by another fluid. For this purpose we employ
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the lattice Boltzmann method. The lattice Boltzmann method is a mesoscale model
which has developed into an alternative and promising numerical scheme for simulating
fluid flows [15]. The method, with addition of multiphase and multicomponent models,
is particularly successful in fluid flow applications which involve interfacial dynamics and
complex boundaries, e.g., wetting and spreading phenomena [16], foams and emulsions
[17]. The lattice Boltzmann method is based on microscopic models and mesoscopic
kinetic equations. Its fundamental idea is to construct simplified kinetic models that
incorporate the essential physics of microscopic or mesoscopic processes such that the
properties obey the desired macroscopic equations [15]. To drive the diffusion process of
the droplets during the numerical simulations, we need to incorporate a diffusion model.
An evaporation model is developed by Hessling et al. [1]. They show that the lattice
Boltzmann method extended with the Shan-Chen model follows the diffusion equation.
The droplets in the numerical study are deposited on flat chemically heterogeneous
surfaces that are immersed in a different liquid. The chemically patterned surfaces allow
us to study the dissolving droplet dynamics numerically, because with this chemical
patterning we closely mimic the different pinning sites that droplets experience from
the surface during experiments. The chemical patterning in simulations is achieved by
creating disks or rings of different wettability with the aid of the Shan-Chen model.

This research is further extended experimentally by studying the behaviour of droplets
on surfaces with physical heterogeneities. To reach this purpose, the samples are first
prepared by an anisotropic wet chemical etching process for different amounts of time.
We characterize the roughness of these samples and perform dissolution experiments on
them.

1.2 Structure and Scope

In this thesis first the relevant theory on dissolving droplets and contact angle hysteresis is
given in chapter 2. We then shed light upon the relevant theory of the lattice Boltzmann
method and the evaporation model developed by Hessling et al. [1] in chapter 3. In
chapter 4 we continue with the numerical study to understand how pinning affects the
contact line dynamics of dissolving droplets. To test the consistency of the evaporation
model [1], we perform simulations on free spherical droplets in still fluid, i.e. we study a
classical problem first solved by Epstein and Plesset [2] for bubbles. After a parametric
study on these free spherical droplets, we carry on with the dissolving droplets on
chemically patterned substrates. In practice it is difficult to observe droplets dissolving
in the CA and the CR mode, due to different pinning sites which are omnipresent on the
surface. Numerically we can achieve these modes easily, because we can create surfaces
such that droplets dissolve in these modes. We also perform simulations on droplets
dissolving in the mixed modes. When are droplets dissolving in the stick-slide mode
and when are they dissolving in the stick-jump mode? Or is the stick-jump mode not
always observed due to experimental limitations? The numerical results are compared
to analytical solutions from the theory. Finally we give the conclusions on the numerical
part at the end of chapter 4. To investigate how roughness affects the contact line
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dynamics of dissolving droplets, we also perform experiments on surfaces with roughness.
We apply this roughness by a chemical etching process. In chapter 5 we first describe
this etching process and the experimental set-ups used during the experiments. First
the set-up employed during the dissolution experiments is described, continued by the
set-up used for the measurement of contact angle hysteresis. We determine this contact
angle hysteresis implicitly by performing advancing and receding contact angle (ARCA)
measurements. Does the amount of etching time influences the roughness on the surfaces
and if so, is the hysteresis increased and can we predict if a droplet dissolves in a certain
mode base on their hysteresis? In chapter 6 we first discuss the images of the samples
taken with a Scanning Electron Microscope (SEM) and optical microscope. We then
move on to the results of the ARCA measurements, which characterize the roughness of
the samples. The results for the dissolution experiments are presented and discussed and
we give the conclusions on the experimental part at the end of chapter 6. In chapter 7 we
summarize the conclusions and compare the results of the numerical and experimental
part and some recommendations for further research follow at last.



CHAPTER 2

Theory

2.1 On contact angle hysteresis

Wetting phenomena have been studied extensively over the past decades and are
ubiquitously present in our daily lives, e.g. raindrops rolling down on windows, drops
sitting on leaves, paints, wetting of the eye, spreading of creams on the skin, etc. [18].
Wetting refers to the study of how a liquid deposited on a solid(liquid) spreads out and
three phases are involved at the contact line, e.g. it can explain us why water spreads
out on clean glass but not on a plastic sheet. Understanding wetting phenomena enables
us to modify surfaces from wettable to non-wettable or vice-versa. We call the surface
wettable if the liquid has a (strong) affinity for the solid. It is widely known that if we
place a droplet on a clean, solid surface, we can observe a contact angle θY which is
given by Youngs’ relation [19] and depicted in fig. 2.1 for a wetting and a non-wetting
fluid as

cos(θY ) =
γSV − γSL

γLV
, (2.1)

where γSV is the surface tension between the solid and vapour, γSL between the solid
and the liquid and γLV between the liquid and the vapour.

If the contact angle is smaller than 90◦, we call the surface hydrophilic (fig. 2.1(a))
and otherwise hydrophobic (fig. 2.1(b)). However, in practice the apparent contact angle
is mostly not equal to Young’s angle θY due to natural surface roughness [20]. Thus
another parameter which controls wettability is surface roughness. Surface roughness
can also be caused by defects on the surface making them a non-ideal surface. These
defects can be of chemical nature (stains, blemishes) or physical (surface irregularities).
On a non-ideal surface the static contact angle is not unique. The contact angle θ
depends on the way the system has been prepared. If we inflate a droplet, and the
contact line is not moving, θ can exceed θY . It does so until it reaches a threshold value
θA, called advancing angle, beyond which the contact line starts moving. The other
extreme is when we deflate a droplet, θ can decrease to θR, called receding angle, without

5
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substrate

γ
LV

γ
SV γ

SLθY

(a) Wetting fluid
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(b) Non-wetting fluid

Figure 2.1: Definition of the Young’s angle θY of a droplet sitting on a substrate as given
in eq. (2.1).

any shift of the contact line. If the receding angle has reached the contact line moves.
The difference in contact angle between these two limiting cases is called contact angle
hysteresis. If the defects on the surfaces are strong enough, the contact line is pinned
locally.

To model surface roughness Wenzel [21] and Cassie and Baxter [22] extended Young’s
model. Wenzel describes a state where the surface is completely covered by the liquid,
whereas Cassie and Baxter describe a state where the vapour is enclosed between the
liquid and rough surface. The transition between these two states also leads to the
earlier mentioned hysteresis phenomena.

2.2 On dissolving droplets

Nanodroplets and nanobubbles have been of keen interest of many research groups in
the recent years [6]. Surface nanodroplets are droplets at a solid-liquid interface that
have at least one dimension smaller than a micrometer [7]. Due to the lens-shape of
these droplets we can easily write down equations for the droplet’s volume V and its
contact angle θ by means of geometric equations:

V =
1

24
πH(3L2 + 4H2), (2.2)
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θ = sin−1

(
4LH

L2 + 4H2

)
, (2.3)

where L is the lateral diameter of the droplet and H its height as illustrated in fig. 2.2.

R R

L

H
θ

Figure 2.2: Geometry of a droplet sitting on a substrate with contact angle θ, height H,
lateral diameter L and radius of curvature R.

Diffusion is the random motion of molecules to a region with a lower concentration of
these molecules, i.e. a concentration gradient drives the diffusion process [23]. Due to
the diffusion process e.g. sugar mixes (dissolves) up to saturation with water, droplets
evaporate or soluble droplets dissolve in water.

Analogous to the system of evaporating water droplets in air, surface oil droplets
dissolving in water can be studied. These oil droplets are immiscible in water. The
solubility of alcohols depends on the length of their carbon chain [24]. The OH group(s)
of alcohols is (are) polar and thus attracted to water and form(s) hydrogen bonds with
neighbouring water molecules, whereas the carbon tails are non-polar and thus repelled
by the polar water. These types of droplets do not mix with water and slowly dissolve
in the water in the quasi-steady limit where diffusion is the rate-limiting mechanism. In
this limit the diffusion equation governs the transport of molecules with a concentration
field c(r, z) around the droplet [7] as

∂c

∂t
= D∇2c, (2.4)

where r and z are the radial and vertical coordinates respectively and D is the diffusion
constant. The boundary conditions that are applicable to solve this problem are: at
the droplet-water interface the concentration is equal to the saturation concentration
cs, secondly far away from the droplet as z → ∞ the concentration field is equal to
c∞ and the no-flux condition ∂c

∂z on the surface holds. Fick’s first law also governs the
diffusive flux J = −D∇c. Approximate solutions for the dissolution of droplets in the
small contact angle regime have been first calculated by Deegan et al. [25] and Hu and
Larson [26], whereas Popov [27] has used an elegant approach to solve this problem for
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all contact angles, i.e. he has solved this problem analogous to the electric potential
around a charged lens-shaped conductor by introducing a correction factor f(θ) for the
presence of the surface (substrate). This wall correction factor is depicted in fig. 2.3.
The mass loss is given by [27]

dM

dt
= −π

2
LD(cs − c∞)f(θ), (2.5)

where

f(θ) =
sin(θ)

1 + cos(θ)
+ 4

ˆ ∞
0

1 + cosh(2θx)

sinh(2πx)
tanh[(π − θ)x]dx. (2.6)

If steady state has been reached and given that the density ρ does not change during

θ [°]
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f
(θ
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Figure 2.3: The wall correction factor f(θ) introduced by Popov [27] as a function of the
contact angle θ.

dissolution, the mass of the droplet M = ρV can be expressed in terms of its contact
angle (using equation (2.2) and (2.3)) as

M(θ) = ρ
π

8
L3 cos3(θ)− 3 cos(θ) + 2

3 sin3(θ)
= ρ

π

8
L3g(θ). (2.7)

From eq. (2.5) and (2.6) we can infer that the dissolution process timescale τ(L) is

τ(L) =
L2ρ

8Dcs
. (2.8)

A direct implication of eq. (2.5) is that droplets of the same liquid and same volume,
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but different geometries (contact angles) have different lifetimes. Another parameter
that influences the dissolution time is the undersaturation or oversaturation ζ, which is
defined as

ζ = 1− c∞
cs
. (2.9)

This quantity has a maximum value equal to 1 if water or another liquid are initially
not contaminated by the droplet’s fluid, i.e. c∞ = 0. It is equal to 0 if c∞ = cs, ζ < 0 if
the fluid is oversaturated and ζ > 0 if the fluid is undersaturated. Thus in experiments
the following cases can be studied: (i) droplets surrounded by fresh liquid which will be
contaminated by the droplet’s liquid during the experiment, (ii) droplets surrounded
by a liquid that is saturated with the droplet’s liquid, (iii) droplets surrounded by a
liquid that is oversaturated with the droplet’s liquid and (iv) droplets surrounded by a
fresh liquid which is continuously being renewed (refreshed), which guarantees c∞ = 0
apart from a transient effect in the beginning when there is still some contamination
left from the droplet’s liquid. In this thesis we explore the first case experimentally.
During the experiments, the droplet is surrounded by a large amount of fluid, which
enhances the droplet’s dissolution. In the lattice Boltzmann numerical simulations, one
could also simulate a droplet that is surrounded by a large amount of fluid, i.e. a much
larger domain is needed, such that the droplet can dissolve in the system. However this
requires more computing time. Thus in favour of computing time, we have implemented
an evaporation model. This model will be further discussed in section 3.5.

The lifetime t of dissolving droplets with an initial volume V0 depends on their
dissolution dynamics, which can be characterized by four modes. We non-dimensionalize
the droplet’s lifetime for these four modes as τ̃ = t

T , with

T =

(
3V0

2π

) 2
3 ρ

2D(cs − c∞)
. (2.10)

Picknett and Bexon [4] describe the two extreme modes that are possible: the constant
contact angle mode and the constant radius mode. A combination of these two extreme
modes is also possible. The dynamics of dissolving droplets can be characterized by four
modes:

(i) CA-mode: In this mode the contact angle remains constant, i.e. θ = θ0, while the
lateral diameter changes as [7]

L(t) =

(
L0

2 − 8(cs − c∞)D

ρ

f(θ)

3g(θ)
t

)1/2

. (2.11)

It should be mentioned that apart from the wall correction factor f(θ)
3g(θ) this solution

is the same result as it was first derived by Epstein and Plesset [2] for an individual
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bubble in the bulk. When the droplet has a hemispherical shape, eq. (2.11) is
the exact solution of Epstein and Plesset. We can find the lifetime of the droplet
dissolving in the CA mode, τ̃CA by integrating eq. (2.11) from L0 to zero [3]:

τ̃CA =

(
2(1 + cos θ0)2

sin θ0(2 + cos θ0)

) 2
3 sin θ0(2 + cos θ0)

f(θ0)(1 + cos θ0)2
. (2.12)

(ii) CR-mode: In this mode the droplet remains pinned on the surface keeping its
lateral diameter constant, i.e. L = L0, while its contact angle is changing in time
as

dθ

dt
= −4D(cs − c∞)

ρL2
(1 + cos(θ))2f(θ). (2.13)

We can find the lifetime of the droplet dissolving in the CR mode, τ̃CR, by
integrating eq. (2.13) from θ0 to θd [3]:

τ̃CR =

(
2(1 + cos θ0)2

sin θ0(2 + cos θ0)

) 2
3
ˆ θ0

θd

2

f(θ)(1 + cos θ)2
dθ. (2.14)

(iii) Stick-slide mode: Several authors [4, 25–28] mention and confirm that in practise
the evaporation or dissolution of droplets can be characterized by a mixed mode,
one of which is the stick-slide mode. As the name already implies the dissolution
process consists of “stick” phases, i.e. the contact line remains pinned (CR mode),
and “slide” phases in which the contact line depins and the droplet dissolves further
in the CA mode. These mixed modes occur when the initial contact angle θ0 of the
droplet is higher than the receding (depinning) angle θd. If the droplet reaches this
receding angle, the contact line depins [3, 5]. Stauber et al. [3] describe the lifetime
of a droplet evaporating in this mode. The key result of their work is the fact
that the lifetime of the droplet dissolving in this mode is not constrained by the
lifetimes of the droplet dissolving in the two extreme modes. The life time of the
droplet dissolving in this mode can be calculated by superposing the time of the
droplet dissolving in the CR mode (eq. (2.14)) and that of the droplet dissolving
in the CA mode (eq. (2.12)):

τ̃stick−slide =

(
2(1 + cos θ0)2

sin θ0(2 + cos θ0)

) 2
3
[ˆ θ0

θd

2

f(θ)(1 + cos θ)2
dθ +

sin θd(2 + cos θd)

f(θd)(1 + cos θd)2

]
.

(2.15)

(iv) Stick-jump mode: Recently Zhang et al. [7] mention another mixed mode in which
a droplet can dissolve. They have experimentally observed that at the moment
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of depinning (during the slide phase), the contact angle and the height of the
droplet increases, thus the droplet “jumps” from θd to θj as depicted in fig. 2.4.
From experiments [5, 7] it is clear that the duration of this jump is very short.
Dietrich et al. [5] predict the lifetime of a droplet dissolving in the stick-jump
mode, where they follow the same route as Stauber et al. [3]. The experimental
result for the contact angle θ in time for a droplet is depicted in fig. 2.4, with
initial contact angle θ0 dissolving in the stick-jump mode. From this figure it is
clear that the duration of the jump, from θd to θj , is really short, thus mass loss
can be neglected and the total dissolution time for the the stick-jump mode is
modelled as consecutive dissolutions in the CR mode. They assume that during
the jump the droplet jumps from θd to θj and returns to θd and also a different
lateral diameter L each time. The total dissolution time for a droplet dissolving in
the stick-jump mode is [5]

τ̃stick−jump =

(
2(1 + cos θj)

2

sin θj(2 + cos θj)

) 2
3

[(ˆ θj

θd

2

f(θ)(1 + cos θ)2
dθ

)
(

1−
(

sin θd(2 + cos θd)

f(θd)(1 + cos θd)2

(1 + cos θj)
2

sin θj(2 + cos θj)

) 2
3

)−1 ]
. (2.16)

Shanahan [28] has derived a theory for the maximum excess free energy δG̃ per unit
length associated with the jump from θd to θj , i.e. he has modelled the pinning of the
contact line as an energy barrier U,

δG̃ =
γL(δθ)2

4(2 + cos θj)
, (2.17)

where γ is the interfacial tension, δθ̃ = θj−θd. The contact line only depins if δG̃ exceeds
the pinning energy barrier. After the jump the lateral diameter changes with δL, and
eq. (2.17) can also be expressed in terms of δL instead of δθ. During our experiments
the starting contact angle θ0 is not equal to θd. According to Oksuz and Ebril [29], who
recently have commented on the work of Shanahan, δθ̃ should be redefined for the first
jump, taking θ0 as the equilibrium angle. Thus δθ̃ = θ0− θd and the value for the lateral
diameter L is taken just before the jumps Ld. For the first jump we can write δG̃ as

δG̃ =
γLd(θ0 − θd)2

4(2 + cos θ0)
. (2.18)

Assuming that the energy barrier U remains constant during dissolution, Shanahan [28]
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Figure 2.4: Experimental result for a 1-hexanol droplet dissolving on an etched silicon
wafer surrounded by water in a closed glass container. The droplet dissolves in the stick-jump
mode where the initial contact angle is θ0, the depinning contact angle is θd and θj is
the value the contact angle reaches during the jump phase. With a camera we record the
dissolution process and analyze these images to obtain the contact angle, lateral diameter
and height of the droplet. Experimental set-up and the image analysis are described in
chapter 5.

has shown that

δL ≈
[

4LU

γ sin2(θ0)(2 + cos(θ0))

] 1
2

. (2.19)

This enables us to compare small droplets with larger droplets. Since δL ∝ L
1
2 , we

know that δL
L ∝

1

(L)
1
2

, thus the jumps in lateral diameter are relatively larger for smaller

droplets, which makes it easier during experiments to observe the stick jump mode for
small droplets [5].



CHAPTER 3

Lattice Boltzmann theory

3.1 Introduction

Simulation of fluid flows has been frequently used in the industry as an aid to design
industrial products or constructions, e.g., cars, bridges, pumps, compressors, etc.. It also
allows us to analyze parameters which are inaccessible to experiments and determines
the impact of different physical phenomena on product performances. Depending on
the scale of the problem at hand, we can use different simulation techniques. We depict
these techniques in fig. 3.1 and discuss them in this section.

One way to model problems in the fluid dynamics domain is to solve the continuum
transport equations such as the Navier-Stokes (N-S) equations, which can be derived
by applying conservation of momentum, mass and energy for an infinitesimal volume.
It is a requirement that these three quantities are conserved locally. When solving
problems with the N-S equations, the complexity increases, because a coupled set of
partial differential equations needs to be solved iteratively. This is done by use of
finite difference or finite element methods. A domain is divided into elements or grids
containing a huge number of particles, making it suitable for macroscopic problems.
Solutions of the N-S equations can be regarded as a top-down approach, since the
pressure, density, viscosity and velocity of the flow are directly analyzed. Also the
N-S equations do not account for effects arising from molecular interactions [30], i.e.
individual interactions are not resolved, but their ensemble average is resolved correctly.

For problems which require the effects of molecular interactions, other models have
been implemented, where the transport equations have been obtained by modelling
each molecule or atom individually. These models are thus suitable for simulating
microscale problems. Within these models the particles collide with each other and
the interparticle forces must be specified. In order to obtain the correct dynamics,
the ordinary differential equations of Newton’s second law must be solved. This is
typically done in Molecular Dynamics (MD) simulations. This immediately leads us to
the drawback of this approach. For rather “large” systems, a great number of molecules
are involved. Thus the computation time is simply too large to obtain real-life timescales

13
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[30]. The strength of the MD simulations lies in microscale systems where the Knudsen
number is large.

Another way to solve the problems is using pseudo-particle approaches, which can be
grouped into off-lattice and lattice based cellular automaton approaches. These methods
pursue, unlike the N-S solvers, a bottom-up approach, i.e. the macroscopic quantities
can be computed by averaging the interaction and density of the pseudo-particles locally
[31]. The dissipative particle dynamics method is the most important off-lattice pseudo
particle approach. It uses discrete fluid portions which can freely move in space at
discrete time increments. This method can be derived from molecular dynamics by means
of coarse-graining, i.e. the pseudo-particles do not represent single atoms or molecules,
but rather clusters of atoms which carry the position and momentum of coarse-grained
fluid elements. Using such pseudo-particles lead to a substantial gain in computational
efficiency as compared to conventional molecular dynamics methods. However this
happens at the expense of a loss in microscopic detail [31]. The pseudo-particles interact
pairwise through a short-range interparticle potential and their dynamical behaviour, just
like in MD, is realized by integration of the Newtonian equations of motions. Compared
to MD simulations, with this approach longer timescales can be reached, due to the fact
that the pairwise forces between the pseudo-particles are soft-repulsive. This method
is used to simulate mesoscale problems in which both, hydrodynamic interactions and
Brownian motion are important. Another off-lattice pseudo particle method is the direct
simulation Monte Carlo method. In this method the state of the system is given by
positions and velocities of a set of pseudo-particles. In this method the positions of
these particles are updated without considering interparticle collisions at first. After
this step a fixed number of particles are randomly selected for collisions. The particular
strength of this method lies in the field of dilute gases [31].

The fictive particles in lattice gas automata can be regarded as coarse-grained groups
of molecules of which the Newtonian mechanics are not explicitly taken into account.
The fluid portions in lattice gas move at different speed and different directions on a
fixed lattice and interact locally. Boolean lattice gas has the same unit mass and the
same magnitude of the velocity vector. Motion of the particles consists of moving them
from one lattice node to their neighbour in one unit of time according to their given
unit momentum vector [31]. The main advantage of the lattice gas concept compared to
classical N-S solvers consists of its excellent numerical stability under complex geometrical
boundary conditions [31]. Due to the discrete treatment of the pseudo-particles and
the discreteness of the collision rules, Boolean lattice gas automata violate the Galilean
invariance and large fluctuations occur. To overcome these shortcomings, the lattice
Boltzmann approach has evolved [31]. The main difference between the original lattice
gas and the lattice Boltzmann method is that the former uses collision rules of the
particles, while the latter uses relaxations rules and a collision operator [31].

The lattice Boltzmann modeling, which has been used in this thesis, originates from
the theory developed for gases [30, 32], and lies in between the five previously mentioned
methods. It does not model the continuum equations directly, but it also does not
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model individual molecules as it is the case in MD simulations. It models an ensemble
of particles, which collide with each other, making it a mesoscale simulation method. It
has the advantage of both the micro- and macroscopic approaches, with manageable
computational sources. The conceptual difference with other methods, as we will see
in the coming subsections, is that it uses discrete velocities [32]. It is a technique
that can be used to simulate a wide range of fluid dynamics problems, e.g. boiling,
capillary filling, coalescence of drops, drop impact, gas solid interaction, porous media,
particle suspensions, moving contact lines, wetting on chemical heterogeneous surfaces,
corrugated surfaces [30, 32]. It is also proven [33] that the Navier-Stokes equation can
be derived from the lattice Boltzmann equation (eq. (3.4)).

Figure 3.1: Various approaches, discussed in section 3.1 to computational fluid dyanmics
with their preferred range of applicability. The methods have their repsective strength at
different Knudsen numbers. Figure taken from Raabe [31].

3.2 Kinetic theory and the Boltzmann equation

Kinetic theory describes the behaviour of a dilute gas of hard spherical particles moving
at high velocities (∼300m/s). These particles travel in space and elastic collisions limit
their interactions. Due to these collisions, particles have different velocities in different
directions. If it is possible to know the position vector, x, and momentum, p, of each
particle at some instant in time, then we are able to determine the exact dynamical
state of the system. With the aid of classical mechanics we can predict all future states.
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Since we have a large amount of particles a statistical mechanics approach is needed
and appropriate, i.e. we need a particle distribution function, f(x,v,t), in phase space
to describe the system of particles [32]. The general form of the Boltzmann equation
accounts for the streaming (left part of the equation) of the particles, whereas the right
part of the equation accounts for the interparticle collisions [32, 34, 35]:

∂f

∂t
+ v · ∇xf + F · ∇pf = Ω(f), (3.1)

where f denotes the particles’ distribution function that represents the number density
of particles with velocity v at location x at time t0 , F is an external force on the
particle that is small relative to the intermolecular forces and Ω is the collision integral
that handles the collisions of the particle densities.

Bhatnagar, Gross and Krook (BGK) [36] have introduced the Single Relaxation
Time collison operator (SRT) which describes the collisions as a relaxation towards
the Maxwell-Boltzmann equilibrium distribution function feq. The characteristic time
between collisions, τ , is the rate at which the system relaxes towards the local equilibrium
feq:

ΩBGK = −1

τ
(f − feq), (3.2)

with

feq = n

(
m

2πkbT

)D/2

e

(
−m(v−u)2

2kbT

)
, (3.3)

where n, u, T are the macroscopic number density, fluid velocity, and temperature. m is
the particle mass, D is the dimension of the space and in our case this is equal to three,
and kb is the Boltzmann constant.

3.3 Lattice Boltzmann lattice

As has been mentioned briefly in section 3.1 the lattice Boltzmann method is a discrete
method, i.e. it simplifies Boltzmann’s original conceptual idea by reducing the number
of possible spatial positions to a number of lattice nodes and by allowing only certain
directions for momentum transfer (discrete velocities). The total lattice size is specified
in terms of the number of lattice nodes in each spatial direction, e.g. lx, ly and lz. In
this thesis our interest lies in the 3D behaviour of a droplet and we employ the well
known D3Q19 lattice. This implies that we have a 3D lattice (depicted in fig. 3.2) where
19 discrete velocity directions are allowed, each pointing in direction ci [37]:1 −1 0 0 0 0 1 1 1 1 −1 −1 −1 −1 0 0 0 0 0

0 0 1 −1 0 0 1 −1 0 0 1 −1 0 0 1 1 −1 −1 0
0 0 0 0 1 −1 0 0 1 −1 0 0 1 −1 1 −1 1 −1 0
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Figure 3.2: Geometry of the D3Q19 lattice with the discrete velocity directions ci. Figure
taken from Hecht and Harting [37].

If we assume that no external force is acting on the particles, the discretized Boltzmann
equation for the streaming of particles in a short amount of time ∆t is given by [16, 32,
38]

fi
σ(x + ci∆t, t+ ∆t)− fiσ(x, t) = −∆t

τσ
[fi

σ(x, t)− fiσ,eq(x, t)], (3.4)

where fi is the distribution function for a specific direction i, and since we model a two
fluid system, i.e. a multicomponent system, σ refers to each specific component of the
system (red fluid or blue fluid of the system), τσ is a relaxation time of component σ,
which is related to the kinematic viscosity [35] as νσ = cs

2(τσ − 1
2)∆t, where cs is the

speed of sound. The speed of sound in the lattice is given by cs = 1√
3

∆x
∆t .

If the distribution function fi
σ is known, we can calculate the macroscopic physical

properties. The number density at a lattice site becomes

ρσ =
19∑
i=1

fi
σ, (3.5)
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and the streaming velocity is calculated from

uσ =
1

ρσ

19∑
i=1

fi
σc. (3.6)

The equilibrium distribution function fi
σ,eq(x, t) is given by[16, 37]

fi
σ,eq(x, t) = wiρσ

[
1 +

ci · uσ

cs2
+

(ci · uσ)2

cs2
− uσ2

2cs2

]
, (3.7)

where wi is the weight that each velocity direction has,

wi =


1
18 for i = 1..6
1
36 for i = 7..18
1
3 for i = 19

.

3.4 The Shan-Chen multicomponent model

Answering the main question of this thesis requires a multicomponent and single phase
method to describe the behaviour of droplets on heterogeneous surfaces surrounded
by another immiscible fluid. To reach this purpose we implement the Shan-Chen
multicomponent model [39, 40]. This model introduces an interparticle potential that
involves nearest neighbour interactions. This potential adds an attractive or repulsive
tail to the local elastic collision. A distinct feature of this model is that it does not
conserve momentum locally at each site, but summing over the net momenta at each site
conserves the total momentum of the system. The Shan-Chen model sets the interaction
force between the fluids through a phenomenological interaction parameter. The value
of the interaction parameter between the two components, called gσσ, determines to
what extent the force between the two fluid species is attractive or repulsive; a positive
value of gσσ mimics a repulsive force, i.e. it causes the fluids to be immiscible. The
force due to the interparticle potential at each site x can be calculated from

Fσ(x) = −gσσΦσ(x)
∑
i

Φσ(x + ci)ci, (3.8)

where Φ(x) can be regarded as the so-called effective mass, where we define Φσ(x) =
1− eρσ [41]. Moreover, the interaction parameter also determines the magnitude of the
repulsive force between the two fluids and causes a surface tension between the droplet
and the surrounding fluid [16, 41].

With the Shan-Chen model we can indirectly set the contact angle of the droplet
sitting on a substrate. We then need an interaction parameter between each individual
fluid and the wall. The interaction parameter between each of the fluid species and
the wall, called gσw and gσw respectively determines the strength of the adhesive force
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between the substrate and each of the fluids separately. This adhesive force is only
present at the substrate, i.e. it is purely a local force between the fluids and the wall
[16, 30]. To ensure this, a switch function s has been included which is equal to 1 at a
solid node and 0 elsewhere:

Fσ,w(x) = −gσwΦσ(x)
∑
i

s(x + ci)ci. (3.9)

Furthermore, the wall parameters has been chosen independent of gσσ and as has been
reported by Huang et al. [16] a positive value of the wall parameter implies that we
have a non-wetting fluid, whereas a negative value indicates a wetting fluid. Thus by
simply tuning these three interaction parameters, this model allows to simulate droplets
placed on hydrophylic, hydrophobic and even super hydrophobic surfaces.

3.5 Evaporation model

As has been mentioned in section 3.4, a positive value of the fluid-fluid interaction
parameter gσσ creates a repulsive force between the two components (see eq. (3.8)).
This results in phase separation of the two fluids, i.e. each component will separate into
a denser phase (majority phase) and a lighter phase (minority phase), respectively. If
we initialize a droplet surrounded by a large amount of another fluid (large system size),
the droplet then separates into a majority phase, the droplet, and into the minority
phase. In order for us to enhance this dissolution process of the droplet, we employ a
evaporation model developed by Hessling et al. [1]. We first let the system equilibrate
and then impose the density of component σ at the boundary xH to a constant value
ρσH = mevp. If we study the density profile of the droplet’s fluid, component σ in the
system as depicted in fig. 3.3, then we see that the density is first constant and that it
decreases when passing through the interface and enters its minority phase (the majority
phase of component σ). As we can see the transition from the majority to the minority
phase is not sharp, due to the fact that we have a diffuse interface model. In case of
a shrinking droplet this specified density mevp at the evaporation (system) boundary
should be smaller than the minority density of component σ. This density gradient
drives the diffusion process in the system, i.e. component σ is forced to diffuse from the
denser phase to the evaporation boundary at xH . At the evaporation boundary the
amount of density of component σ that is turned into another component σ is equal to
the density specified at this boundary mevp. To ensure total mass conservation in the
system, the density of component σ at the evaporation boundary is set to

ρσH = ρσ(x, t− 1) + ρσ(x, t− 1)− ρσH . (3.10)

In a fluid mixture the components diffuse into each other if their mean velocities are
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Figure 3.3: Sketch of density profile of component c1 in the system, with a majority
density of 0.7 and minority density of 0.04 and mevp = 0. The substrate has a thickness of
2.

different [38]. The mass flux j of component σ in a binary system is given as [38]

jσ = ρσ(uσ − u), (3.11)

where uσ − u is the mass-averaged diffusion velocity of component σ relative to fluid
mixture velocity u, i.e. it indicates the motion of component σ relative to the local
motion of the fluid mixture. Fick’s first law describes the mass flux in a binary system
as [38]

jσ = −Dσσ∇ρσ −Dσσ∇ρσ, (3.12)

where Dσσ is the self-diffusivity term and Dσσ is the cross-diffusivity contribution.
Furthermore it is known that the diffusion in the lattice Boltzmann model is given as

D = cs
2(τ − 1

2
). (3.13)

If the fluid-fluid interaction parameter is set to zero, then the diffusion constant can be
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written as

D =
cs

2(τ − 1
2)

ρσ + ρσ
(ρσ − ρσ). (3.14)

3.6 Boundary conditions

Apart from the density that we specify at the boundaries in the evaporation model, we
also impose other boundary conditions for the simulations. All the boundaries, except for
the boundary where the substrate is positioned, are periodic. With periodic boundary
conditions the boundaries are treated as if they are attached to their opposite boundary,
i.e. they are realized by propagating the distribution function f leaving the system’s
edge on to the boundary nodes located on the opposite edge of the system [32, 37]. At
the boundary where the solid substrate is positioned in the system, we impose a no-slip
mid-plane bounce back boundary condition.

3.7 Contact angle determination

As has been stated in section 3.4, we can simulate our desired contact angles by choosing
the three parameters independently, but a fully analytic solution from which we can
calculate the contact angle is not available yet. Huang et al. [16] have used the concept
of cohesive and adhesive forces and Young’s equation (2.1) to propose an estimate for
determining the contact angle, based on equilibrium densities ρσ and ρσ:

cos(θ) =
gσw − gσw
gσσ

Φσ−Φσ
2

. (3.15)

We define ∆x = ∆t = m0 = ρ0 = 1. To test Huang’s model we have initialized a
droplet (labeled as red fluid “r”) with a density of ρr = 0.7 on a flat substrate surrounded
by an immiscible fluid (labeled as blue fluid “b”) with a density of ρb = 0.7, in a system
where lx = ly = lz = 64, gbr = 0.1.

After the system has equilibriated (t = 6000), we use the geometrical concept (fig. 2.2)
to determine the contact angle from (2.3). Since the droplet has a spherical cap shape,
we only need 3 points to determine its contact angle as depicted in fig. 3.4. The transition
from the substrate to the droplet gives rise to an error for the contact angle measurement,
therefore the height H and the lateral diameter L are measured 5∆x above the substrate.

From fig. 3.5 it is clear that we can simulate droplets on any type of surface and that
the predicted value for the contact angle from Huang and the one measured from the
simulation are in close agreement. Some error comes from the fact that we are dealing
with a diffuse interface method, which makes it difficult to determine the exact points
which we need for this simulation.
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Figure 3.4: The three points of the droplet that are needed to determine its contact angle
from the simulations.
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Figure 3.5: The contact angle measured from the simulations, marked with, ◦, and the
values predicted from Huang’s model, marked with �, as a function of the difference between
the fluid-wall interaction parameters.
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CHAPTER 4

Numerical simulations of droplet dynamics

In this part of the thesis we study the contact line dynamics of dissolving sessile droplets
numerically. For this purpose we employ the lattice Boltzmann method with an addition
of the Shan-Chen multicomponent model and an evaporation model developed by
Hessling et. al [1]. We first test the consistency of this evaporation model with a
benchmark of a free spherical droplet surrounded by still liquid. From this benchmark
we determine the diffusion constant D, which is an important parameter for us to
compare our results with theory. We then carry on with simulations on dissolving
sessile droplets. To closely model the pinning sites that droplets encounter on samples
during experiments, we apply chemical patterning on our substrates for the simulations.
We compare the results with the theory given in chapter 2. Furthermore we define
∆x = ∆t = m0 = ρ0 = 1 throughout this chapter.

4.1 A free spherical droplet in still liquid

To test the consistency of the model that has been described in 3.5, we simulate a free
droplet at rest in the center of our system. This is a classical problem which has been
reported in 1950 by Epstein and Plesset [2]. In their paper they calculate the lifetime of
a spherical isolated bubble at rest with an initial radius R0 in an infinitely extended
liquid-gas solution in which the gas concentration far away from the bubble is c∞.
Duncan and Needham [42] and Su and Needham [43] report and verify experimentally
that the Epstein and Plesset theory is also applicable to droplets instead of bubbles,
where the concentration field at the droplets interface is the saturation concentration
cs. Due to the concentration gradient in the system and given that the saturation
concentration near the droplet’s surface is higher than the concentration far from the
droplet, the droplet shrinks through the diffusion process. For a shrinking droplet with
radius R, the dynamics of its radius is given by [42]

dR

dt
= α

(
1

R
+

1√
πDt

)
, (4.1)

25
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with

α =
Dcs
ρ

(
c∞
cs
− 1

)
. (4.2)

This equation does not account for the interfacial tension γ between two fluids. The
interfacial tension defines the droplet’s radius through the Laplace equation ∆P = 2γ

R ,
where ∆P is the increased pressure inside the droplet. Duncan and Needham [42] report
that the lifetime of the droplet is not much affected if the interfacial tension is excluded,
i.e. if the Laplace pressure is neglected and the droplet dissolves mainly due to the
concentration gradient in the system. However, for the case where c∞ approaches the
saturation concentration cs, the actual lifetime of the droplet is much smaller than
the lifetime calculated from eq. (4.1). In this case the concentration gradient is then
relatively small, thus the driving force for dissolution is not the concentration gradient,
but the pressure gradient, i.e. the interfacial tension becomes significant due to the
Laplace pressure. Another consequence of the Laplace pressure is that it increases with
a smaller radius of the droplets. Thus smaller droplets have a greater Laplace pressure
and due to this a higher dissolution rate. In our simulations we choose the value of c∞
such that it is not close to the value of the saturation concentration, i.e. mevp is smaller
than the value of the density in the minority phase ρminor.

We first simulate droplets in a 643, a 1283 and a 2563 system, with an initial radius
of R0 = 19.2, R0 = 38.5 and R0 = 77, respectively. The distance to the evaporation
boundary is not equal in all of the system sizes. The fluid interaction parameter, gbr is
equal to 0.10. Simulations are run for three different values of mevp, namely: 0, 0.015
and 0.025. We depict the results in fig. 4.1. In order for us to test the consistency of the
model and to extract the diffusion constant, which we need in order to discuss the results
we obtain from simulations on dissolving sessile droplets, we fit our data to analytical
solutions. We therefore solve eq. (4.1) numerically with the diffusion constant D as a
fitting parameter. Here cs = ρminor, since this is the saturation concentration when
crossing the interface of the droplet and c∞ is the density specified at the evaporation
boundary, thus c∞ = mevp and ρ = ρmajor. In fig. 4.2 we give the values for the diffusion
constant obtained from the different simulations as a function of the system size. We
assume that the droplet has an interface thickness of 5 and thus give error bars in fig. 4.2
for the diffusion constant D. We notice that the simulations of the 643 system has a
larger deviation from the fit and has larger error bars. The reason for this is the fact
that the droplet is relatively small, which means that the droplet will mostly dissolve
due to the Laplace pressure, i.e. surface tension becomes significant. We notice that the
measured diffusion constant becomes smaller if we increase the system size, i.e. if we
increase the distance of the droplet to the evaporation boundary. As has been discussed
before, the Epstein-Plesset model assumes a droplet placed at the center of in infinite
system, and thus if the droplet is farther from the boundary it better approximates the
infinite system size assumption. Numerically it is difficult to simulate an infinite system,
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since this requires much more computing time. Thus the droplet dissolves much slower.
From fig. 4.2 we can also conclude that we need to make the system size larger in order
to reach convergence and to reasonably satisfy the infinite size from theory. To support
this statement, we simulate a free spherical droplet at the center in a 1283 system with
different radii, i.e. we study how the diffusion constant changes with the droplet’s
distance to the evaporation boundary. In fig. 4.3 we depict the diffusion constant as a
function of the droplet’s radius to illustrate that the diffusion constant becomes larger,
if the droplet is closer to the evaporation boundary. This plot nicely shows that indeed
we need a larger system to reach convergence, i.e. we get closer to the expected value
of 0.12 (obtained from eq. (3.13)) for the actual diffusivity. From fig. 4.2 it is clear
that the diffusion constant is not much affected for different values of mevp. This is
indeed what is expected from the theory. From fig. 4.1 it is also clear that if the droplet
becomes small, it dissolves faster, due to the Laplace pressure. These results confirm
that the evaporation model nicely describes the dynamics of the droplet and we now
show through numerical simulations that the Epstein-Plesset theory is indeed valid for
a free spherical droplet at the system’s center in still liquid.

We also study the influence for different gbr values on the equilibrated radius, Req of
the droplet and the diffusion constant in a 1283 system with an initial radius R0 of 38.5.
For values smaller than 0.10 for gbr we expect a smaller droplet, since the Shan-Chen
force between the two fluids is smaller and for higher values we expect the other way
around. In table 4.1 we give the radius for different gbr values after equilibration.
From these results it is clear that for increasing gbr value, the equilibrated radius also
increases. As has been discussed before this is expected, since the repulsive Shan-Chen
force increases. Due to this, we indeed see that the minority density decreases, with
increasing value of the fluid-fluid interaction parameter, i.e. each of the components
have been less separated into the lighter phase. It is also clear that for gbr = 0.1 the
equilibrated radius is close to the initial radius of 38.5. We have set the evaporation
density, mevp, equal to 0.015. The diffusion constants have been calculated in the same
way as has been described before. However, in case of gbr = 0.09, we had to cut off
around 20 ∼ 25% of the data, due to the fact that the distance from the droplet’s
interface to the evaporation boundary is relatively larger and thus more time is needed to
develop the density gradient in the system. Moreover the density in the minority phase
is also relatively large compared to gbr = 0.10, thus the droplet shrinks much faster.
From table 4.1 we can infer that the diffusion constant becomes larger if the fluid-fluid
interaction parameter increases. This is counter-intuitive as one would expect that the
diffusion constant becomes smaller if the repulsive force between the two species has
increased. The reason for this is the fact that the surface tension between the droplet
and the other fluid increases, if the fluid-fluid interaction parameter becomes larger.
For gbr < 0.10, the droplets are relatively small, thus the Laplace pressure becomes
significant, i.e. the diffusion process is mostly pressure driven. For gbr > 0.10, the
surface tension becomes higher, and thus might be more significant to include in the
equations than for gbr = 0.10.
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Figure 4.1: Numerical results of the Epstein-Plesset test, for three different system sizes
and two different values for mevp. From these results it is clear that the Epstein-Plesset
theory can be extended to droplets surrounded by another liquid. Duncan and Needham
[42] and Su and Needham [43] already confirmed this with their experimental work. We fit
the data to solution of eq. (4.1) to find the diffusion constant. In the 643 system the data
has a larger deviation from the fit, because the droplet is very small, thus less fluid in the
system and the droplet dissolution due to the Laplace pressure becomes significant.
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Figure 4.2: Diffusion constant obtained from shrinking droplet simulations in different
system sizes: 643, 1283 and 2563 and for three different values for the density set at the
evaporation boundary: 0, 0.015 and 0.025. The initial radius of the droplet in the three
different systems is R0 = 19.2, R0 = 38.5 and R0 = 77, respectively. We learn from this
figure that the error bars and the diffusion constant becomes smaller if we increase the
system size.
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Figure 4.3: Diffusion constants obtained for freely floating droplets with different radii
in a 1283 system and mevp = 0.015. It is clear from this figure that in order to reach
convergence, we must make the distance to the evaporation boundary larger, since the
diffusivity becomes smaller if the distance to the evaporation boundary becomes larger.
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Figure 4.4: The results for a freely floating droplet in a 1283 system for different values of
the fluid interaction parameter gbr. We have fitted the data to eq. (4.1) to find α which
gave us diffusion constant through eq. (4.2).

Table 4.1: Results for different values of the fluid interaction parameter gbr. It it clear
that the droplet radius increases as a function of gbr, because the Shan-Chen repulsive
force between the fluids becomes larger and thus the major density increases and the minor
density decreases.

gbr Req cs ρ

0.09 35.39 0.061 0.697
0.10 38.79 0.037 0.719
0.11 40.32 0.024 0.734
0.12 41.17 0.016 0.743

4.2 Different dissolution modes

4.2.1 Constant Contact Angle mode

As has been mentioned in chapter 1, it is experimentally difficult to achieve droplets
dissolving solely in the CA mode due to pinning sites on the substrate. Numerically
we can deposit droplets on completely flat surfaces, i.e. surfaces that do not have any
patterning or roughness of any kind. As has been described in sections 3.4 and 3.7, we
can achieve droplets with different contact angles on these flat surfaces with a set of
fluid-fluid interaction parameters, gbr, and fluid-wall interaction parameters, grw and
gbw.

To initialize a simulation with a droplet of the same volume, but different contact
angles θ, we need to determine the droplet’s radius of curvature R [44] from which we
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can determine the lateral diameter L and height of the droplet H (see fig. 2.2):

R =

[
Vdroplet

π
3 (2− 3 cos θ + (cos θ)3)

] 1
3

. (4.3)

H = R(1− cos θ), (4.4a)

L = 2R sin θ. (4.4b)

The system size for these runs is 256× 256× 128 and the droplet has a volume equal
to 4× 105. The following combination of parameters resulted in different contact angles
see table 4.2).

Table 4.2: The equilibrium contact angles achieved for different combinations of the
interaction parameters gbr, gbw and grw.

gbr gbw grw θ [◦]

0.10 0.01 -0.01 22 ± 4
0.10 0.005 -0.005 62 ± 2
0.10 -0.005 0.005 115 ± 2

We calculate the contact angle by determining the three points illustrated in fig. 3.4
from the simulations. Using eqs. (4.4a) and (4.4b), we then determine the contact angle.
Assuming an interface thickness of 5, we determine the error for the measured contact
angle. As can be seen from table 4.2, the largest error is obtained for a droplet with
a contact angle of 22◦. In this case the droplet has spread out to such an extent that
it is close to the boundary of the system. Some error is also caused by low resolution,
because in case of a contact angle of 22◦, the droplet is flat at its rim, and thus it
resembles a thin film of fluid.

For the CA mode simulations, we set the density at the evaporation boundary equal
to 0.015 and 0.025. The results for three different contact angles, 22◦, 62◦ and 115◦ are
depicted in fig. 4.5 respectively. From these figures it is clear that the contact angle
is not entirely constant during the entire simulation, i.e. it changes with ∼2◦. This
occurs due to the the fact that during the diffusion process the density in the system
changes. Since the change is very small and within the range of the error obtained from
measuring the contact angle, we consider the contact angle to be constant. It is also
clear from fig. 4.5 that in case of 62◦ and 115◦ the contact angle becomes smaller at the
end of the simulation. The reason for this is that there is not enough fluid left in the
system, and thus the droplet starts dissolving on its own. However, if the contact angle
is 22◦, we learn from fig. 4.5 that the contact angle becomes larger in the end. Since
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we have a small amount of fluid left in the system, the droplet becomes very flat and
thus the error in measuring the contact angle increases. We can fit the results of the
lateral diameter to an analytical solution for dissolving droplets in the constant contact
angle mode. We see that the lateral diameter deviates from the fit at the end of the
dissolution. We ascribe this also due to the fact that the droplet becomes so small that
the dissolution process is pressure driven. From [7] it is known that the lateral diameter
L shrinks during the dissolution process in the CA mode as follows:

L2(t) = L0
2 − 8Dcsζ

ρ

f(θ)

3g(θ)
t, (4.5)

where L0 is the initial lateral diameter of the droplet, ζ the undersaturation defined in
eq. (2.9), and f(θ) and g(θ) are defined in eqs. (2.6) and (2.7), respectively. We can fit
the data to the analytical function

L2(t) = L0
2 − κ(θ)t, (4.6)

and can then extract the fitting constant κ(θ) from the fit. As we can see this fitting
constant depends on the contact angle θ of the droplet. Using this fitting constant κ(θ),
we can determine the diffusion constant as

D =
ρκ(θ)3g(θ)

8csζf(θ)
. (4.7)

Taking transient effects into account, we cut off 10% of the dissolving droplet data,
i.e. when the evaporation density is specified at the system’s boundary a gradient
needs to develop in the system. The density and the saturation concentration have
been determined by measuring the major and minor density in the system. These are
measured 5∆x above the substrate, because the fluid-wall interaction parameter affects
the density near the wall. After these parameters have been determined, we are able
to find diffusion constants for the runs with eq. (4.7). The results for the diffusion
constants are given in fig. 4.6. We also compute the error for the diffusion constant.
Compared to the results obtained for the freely floating droplets in a 2563 system, the
diffusion constants for the CA mode deviate 10 ∼ 15% from the values we found for the
diffusion constant if gbr = 0.10. Some deviation is caused by the difference in density
gradient in each direction. In case of the freely floating droplet the density gradient
is homogeneous. We notice that the diffusion constant obtained from the simulations
where mevp = 0.025 are smaller than the ones obtained for mevp = 0.015. The reason
for this is the fact that the density gradient in the former is smaller, and thus closely
approximates the theoretical model of an infinite system. The theoretical model assumes
that the boundary is far away from the droplet, thus a small concentration gradient.
The measured diffusion constant for all three different contact angles and mevp = 0.015
and mevp = 0.025, are all within the range of the error bars, where the droplet with a
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contact angle of 22◦ has the largest error, because it is flat. With the measured diffusion
constants, we are able to compare the lifetime of the droplet depicted from theory with
our results from the simulations. We determine τ̃CA from the simulations by rescaling
the droplet lifetime tlife with eq. (2.10). Therefore we measure the initial volume V0 of
the droplet from the simulation, the major and minor density, we determine the time
step at which the droplet has completely dissolved (tlife) and the measured diffusivity.
Using eq. (2.12) we determine the theoretical value of τ̃CA and compare it with the
simulation results as depicted in fig. 4.7. It should be noted that we have measured the
diffusivity with an equivalent equation to fig. 4.7. We learn from fig. 4.7 that depending
on the contact angle of the droplet, the lifetime increases and then decreases again.
Furthermore the simulation data closely follows the theoretical prediction, and as is
clear from the figure the deviation from the theory is < 8%. The error is smaller if
mevp = 0.025. The reason for this might be the same as discussed before. Because the
density gradient is smaller, it better approximates the theoretical assumptions.
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Figure 4.5: Results for the contact angle θ and lateral diameter L of droplets dissolving in
the CA mode with a contact angle of 22◦, 62◦ and 115◦. The initial volume of the droplet
is 4× 105 and mevp = 0.015. Using eq. (4.7) we can determine the diffusion constant D by
fitting the lateral diameter data to eq. (4.6).
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Figure 4.6: Results for the diffusion constant from the CA mode simulations where the
initial volume of the droplet V0 = 4× 105. The results are within the same error bars range.
The diffusivity for mevp = 0.025 is smaller, because the process is slower and thus might
better approximates the theoretical assumptions for an infinite system.
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Figure 4.7: The rescaled lifetime of the droplet τ̃CA has been calculated from simulation
data: initial volume of the droplet, major and minor density, measured diffusivity and the
lifetime of the droplet. The theoretical curve is drawn with eq. (2.12). The simulation data
nicely follows the theoretical prediction.

4.2.2 Constant Radius mode

A droplet dissolving solely in the constant radius (CR) mode is, just like droplets
dissolving in the CA mode, also difficult to observe in practice. At some point the
droplet depins and starts dissolving in the CA mode in what resembles stick-slide
behaviour. This depinning effect of the droplet can be explained by the free energy of
the droplet. Assuming Young’s equation (eq. (2.1)), i.e. equilibrium, the free energy G
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of a droplet is given by [28, 29]

G = γπ
L2

4

[
2

1 + cos θ
− cos θY

]
, (4.8)

where γ is the surface tension, θ is the apparent contact angle of the droplet and θY
is the Young’s (equilibrium) angle of the droplet on a surface. A system minimizes its
free energy. Due to this, a droplet with a certain volume V favours a certain lateral
diameter Lf with its equilibrium contact angle on a specific surface.

The free energy of a sessile droplet on a hydrophilic surface is less than the free
energy of the same sessile droplet on a hydrophobic surface, thus the droplet sits on
the hydrophilic surface. Therefore we initialize our system as follows: a droplet with a
certain volume V has been deposited on a hydrophilic disk with diameter Ldisk. The
disk is part of a hydrophobic surface, i.e. we have patterned the substrate with a
hydrophilic disk and a hydrophobic part. We study two types of systems: system A has
a hydrophilic disk with a contact angle of 30◦ and the hydrophobic part of the surface
has a contact angle of 115◦. System B has a hydrophilic disk with a contact angle of 60◦

and the hydrophobic part of the surface also has a contact angle of 115◦. As already has
been mentioned the droplet prefers to sit on this hydrophilic disk with its equilibrium
contact angle. But since its volume is chosen such that Lf > Ldisk, it does not reach
this equilibrium contact angle. This causes the droplet to pin on this disk with an
apparent contact angle θ. This apparent contact angle is higher than its equilibrium
contact angle on the hydrophilic disk θY,philic and smaller than its equilibrium contact
angle on the hydrophobic part of the surface θY,phobic. If we let the droplet dissolve in
the system, its volume decreases. It minimizes its free energy by decreasing the apparent
contact angle. At some point the apparent contact angle is equal to the equilibrium
contact angle. From eq. (4.8) it follows that if the apparent angle reaches the value of
the equilibrium contact angle, the droplet can reduce its free energy by decreasing its
lateral diameter, thus the droplet depins and starts dissolving in the CA mode, i.e. it is
energetically more favourable for the droplet to dissolve in the CA mode than to stay
pinned. It is important for the simulations to choose the droplet’s volume wisely, such
that Lf > Ldisk, in order for the droplet to dissolve in CR mode.

Apart from the two different systems A and B, we also vary the hydrophilic disk
diameter, Ldisk = 96, 112, 130 and 210 and the droplet’s initial volume V0. Also for these
simulations, we use a 256× 256× 128 system. The results for the contact angle θ, lateral
diameter L and height H as a function of time are depicted in fig. 4.8 for both systems
A and B. The disk diameter is equal to 96 and the initial volume is V0 = 2

3π(48)3. From
these plots it is clear that the droplet does not solely dissolve in the CR mode. This is
expected, because as can be seen from these plots, the droplet reaches its corresponding
equilibrium contact angle and starts dissolving in the CA mode, thus minimizing its
free energy. This phenomenon, where the droplet’s dynamics switches from one mode to
the other, has also been reported by Bao et al. [45] for growing droplets. They study
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the growth of femtoliter droplets through solvent exchange. These droplets nucleate
on chemically patterned substrates and start growing in the CA mode until they get
pinned. At this moment the growing mode of the droplet changes to the CR mode. This
is indeed what we observe for all of the CR mode simulations on shrinking droplets. We
are limited here by system size to let the droplet dissolve entirely or for longer time
in the CR mode. From figs. 4.8(e) and 4.8(f) it is clear that the height of the droplet
decreases faster in the CR mode than in the CA mode. This indicates that droplets
dissolves faster in the CR mode. To illustrate this, we give the normalized volume as
a function of time for dissolving sessile droplets both in system A and system B on a
hydrophilic disk with diameter Ld = 112 and three different initial volumes V0 in fig. 4.9.
As has been discussed already, the droplet stays longer pinned in system A than in
system B due to the smaller equilibrium contact angle in system A. Thus from fig. 4.9
it is clear that droplet dissolves faster in the CR mode, i.e. the volume of the droplet
decreases relatively slower in the CA mode than in the CR mode. This explains why
the height of the droplet changes faster in the CR mode than in the CA mode. We
determine with eqs. (4.3) and (4.4b) the apparent initial contact angle θ0. We depict
the results in fig. 4.10(a) where we give the droplet’s apparent initial contact angle θ0

as a function of their initial volume V0 on disks with varying diameters. As expected,
increasing the droplet’s initial volume V0 on a disk with the same diameter Ld, leads to
higher initial contact angles. Stauber et al. [3] report that identical droplets dissolve
faster in the CR mode than in the CA mode if θ0 < 148◦. From figure fig. 4.10(a) it
is clear that our initial contact angles meet this criterion, thus our results in fig. 4.9
are consistent. Moreover from this figure it is also clear that the dissolution rate of the
droplet is enhanced for smaller initial contact angles on the disk. In fig. 4.10(b) we
depict the change in the droplet’s interfacial energy with respect to their initial volume
V0 on a particular disk. If we compare the initial free energy of the droplet with the
free energy at the moment of depinning from the disk, than we infer from fig. 4.10(b)
that the difference in free energy ∆G

γ becomes larger if we increase the droplet’s initial
volume on a disk of same diameter. This is expected, because the depinning angle and
the disk diameter are constant, but the droplet’s initial contact angle is different.

The results for the decreasing contact angle in time has been compared to the analytical
equation (see eq. (2.13)). We solve this differential equation numerically, where the
diffusion constant has been used as a fitting parameter to the numerical data. In table 4.3
we list the obtained values for the diffusion constant D. It is clear from these results,
that the diffusion constant becomes larger, if we increase the volume of the droplet
on a disk with the same diameter. The reason for this is, as discussed before, that
the distance of the droplet’s interface to the evaporation boundary decreases. This is
consistent with our findings in section 4.1, where we explicitly show with fig. 4.3 that the
diffusion constant becomes larger if the droplet is closer to the evaporation boundary.

Using eq. (2.14), we theoretically predict τ̃CR with the initial and depinning contact
angle. We determine the time of depinning of the droplet td from the simulations.
Assuming an interface thickness of 5, the moment of depinning is determined when the
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lateral diameter of the droplet L = Ld − 10. We then rescale td with eq. (2.10). In
order to do this we use the diffusion constants determined from the fits of the CR mode
results, the initial volume of the droplet and the major and minor density. We depict
the results for system A in fig. 4.11(a) and for system B in fig. 4.11(b). Again from
these two figures it is clear that the droplet stays longer pinned on a disk in system A
than in B. Our results are comparable with the predicted values from the theory, but
also here it should be noted that the diffusivity is measured from an equivalent equation
to eq. (2.14). The theoretical curve in figs. 4.11(a) and 4.11(b) is drawn by measuring
the initial and depinning contact angle from the simulation. We determine τ̃CR with a
constant lateral diameter, but as we learn from figs. 4.8(c) and 4.8(d) it is not entirely
constant. We can also learn from figs. 4.11(a) and 4.11(b) that equally sized droplets
dissolve longer in the CR mode on a disk with a smaller diameter, due to its larger
initial contact angle θ0. Moreover droplets with different volume, but deposited on the
same disk, dissolve longer in the CR mode if the droplet’s volume is larger compared to
the others.

After the droplet has depinned, it dissolves further in the CA mode. Since this
resembles the stick-slide behaviour, we determine from eq. (2.15) τ̃stick−slide theoretically.
We then rescale the total lifetime tlife of the droplet from the simulations with eq. (2.10).
We follow the same route for this as we did for τ̃CR. The results for system A are
depicted in fig. 4.11(c) and fig. 4.11(d). As we can see the results in system B deviate
more from theory than the results from system A. An explanation for this is that the
diffusion constant obtained from the CR mode is different when the droplet dissolves in
the CA mode. If the droplet dissolves in the CA mode, the distance to the evaporation
boundary changes and thus measured diffusivity becomes smaller. This explains that
the results in system A are more comparable to the theory than in system B, i.e. the
droplet dissolve longer in the CR mode in system A than in system B. This also explains,
why τ̃stick−slide for the large droplet which is very close to the boundary, deviates from
the theoretical curve in system A. If we compare the results of system B to system A,
then we infer that the droplet has a longer lifetime in system B. As already discussed,
and as supported by the work of Stauber et al. [3], identical droplets dissolve slower in
the CA mode than in the CR mode. Since the droplet in system B depins earlier than
an identical droplet in system A, it dissolves longer in the CA mode and therefore has a
longer lifetime.
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Figure 4.8: CR mode simulations of droplets in system A and B on a hydrophilic disk
with diameter Ld = 96, volume V0 = 2

3π(48)3 and mevp = 0.015. We give the change in
contact angle θ, the lateral diameter L and height H of the droplet in time. Fitting the
data of the contact angle to eq. (2.14) gives us the diffusion constant D.
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learn that the droplet dissolves faster in the CR mode than in the CA mode. Furthermore,
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Figure 4.10: The apparent initial contact angle θ0 has been measured, and the difference
in interfacial energy ∆G

γ between the beginning and the moment when the droplet depins
has been calculated as a function of the initial volume of the droplet. The open symbols
correspond to the results obtained with system A and closed symbols depict the results of
system B. We learn from this figure that the initial contact angle of the droplet becomes
larger if we increase its volume and also the change in interfacial energy becomes larger.
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Figure 4.11: τ̃CR and τ̃stick−slide are calculated from the simulations as a function of the
initial volume of the droplet. The open symbols correspond to the results obtained with
system A and closed symbols depict the results of system B. The results are compared with
the theory (solid line). We learn that droplets stay pinned for a longer time in system A
than in system B. We see that the calculated values of τ̃CR matches the theoretical curve.
However, this theoretical curve is drawn with depinning contact angles which we measure
from the simulations. It is also clear that the values for τ̃stick−slide in system B has a large
deviation from the theoretical curve, because the measured diffusion constant changes when
the dissolution mode changes from CR to CA. However the data of system A matches the
theoretical curve, except for the large droplet which is close to the boundary.
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Table 4.3: Diffusion Constant determined from the CR mode simulations. The disk
diameter and volume of the droplet are varied, whereas mevp = 0.015.

System Volume Ld D

A 2
3π(48)3 96 0.18 ±10%

B 2
3π(48)3 96 0.16 ±10%

A 400×103 96 0.19 ±10%
B 400×103 96 0.16 ±10%
A 2

3π(48)3 112 0.18 ±10%
B 2

3π(48)3 112 0.13 ±10%
A 400×103 112 0.20 ±10%
B 400×103 112 0.18 ±10%
A 2

3π(64)3 112 0.21 ±10%
B 2

3π(64)3 112 0.20 ±10%
A 400×103 130 0.20 ±10%
B 400×103 130 0.16 ±10%
A 2

3π(64)3 130 0.21 ±10%
B 2

3π(64)3 130 0.19 ±10%
A 1176×103 130 0.24 ±10%
B 1176×103 130 0.23 ±10%
A 2

3π(100)3 210 0.32 ±10%
B 2

3π(100)3 210 0.30 ±10%

4.2.3 Mixed mode

In section 4.2.2 we have studied droplets dissolving in the CR mode. However, as we
have seen the droplets do not dissolve solely in the CR mode. They rather switch from
dissolving in the CR mode to dissolving in the CA mode. This already resembles one of
the mix modes, namely the stick-slide mode. For these simulations the droplets have
been deposited on surfaces with just one hydrophilic disk and the rest of the surface being
hydrophobic. The droplet thus encounters only one pinning site on the surface. Dietrich
et al.[5] mention in their work that the other mixed mode which has been observed
in experiments, the stick-jump mode, can be related to spatial variation in surface
roughness and pinning sites. To study the dissolution dynamics of the stick-jump mode
numerically, we need to add more pinning sites on the surface. Therefore we pattern
the surface with concentric rings which have been centered in the system’s center on the
surface. We use different configurations of hydrophylic and hydrophobic rings. We start
with a hydrophilic ring and then switch to a hydrophobic ring consecutively. The last
ring is hydrophylic, while the remaining surface is hydrophobic. The spacing between
the rings is 15. The different configurations are: 30◦ − 115◦, 30◦ − 145◦, 60◦ − 115◦ and
60◦ − 145◦. We simulate droplets on two systems: in system C (see fig. 4.12(a)) the
last ring has an outer radius of 75 and in system D (see fig. 4.12(b)) the last ring has a
radius of 105. A schematic sketch of these two systems and the ring configuration on
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the surface is given in fig. 4.12.
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Figure 4.12: Sketch of the substrate. Concentric rings are centered at the system’s center.
The dark rings correspond to the hydrophylic rings , while the other rings and surface are
hydrophobic.

We initialize the droplet by depositing it on the last ring. Since the ring is hydrophilic
and the wall hydrophobic the droplet gets pinned on the last ring. From fig. 4.13 we
infer that the droplet dissolves in the stick-jump mode. In this figure we give the contact
angle θ, lateral diameter L and height H as a function of time. We already discussed in
section 4.2.2 with the aid of eq. (4.8) the reason why the droplet stays pinned on the
ring. After it reaches its equilibrium angle corresponding to the ring, the droplet will
depin. When the droplet depins, it moves to the next available hydrophilic ring. At
the moment the droplet passes through the hydrophobic ring, the contact angle jumps
and the droplet moves to the next available hydrophilic ring and it pins there. If we
compare fig. 4.13(a) with fig. 4.13(b), then we infer that the contact angle of the droplet
jumps to higher values in the 60◦ − 115◦ than in the 30◦ − 115◦. The reason for this
might be the pinning strength acting on the droplet, i.e. the droplet experiences a larger
pinning force in the 30◦ − 115◦ configuration. We fit the numerical data for the contact
angle as a function of time to the analytical solution of eq. (2.13), just as we did for
the results of the CR mode. We find values for the diffusion constant, which we list
in table 4.4. From these results we see that the measured diffusion constant changes
during the simulation. The reason for this is that the gradient changes as the droplet is
dissolving and the distance to the evaporation boundary becomes larger. The diffusion
constants are similar to those that are obtained from the CR mode simulations. Also for
the larger droplets, system D simulations, we get similar high values for the diffusion
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constant D as the ones we obtained for the large droplet CR mode simulations. We also

compute the energy barrier δG̃
γ using eq. (2.18) and give the results for the different

jumps in table 4.4. For droplets on the 30◦−115◦ and 30◦−145◦ configuration in system
C, the energy barrier becomes smaller, because the lateral diameter becomes smaller.
However, for the 60◦ − 115◦ and 60◦ − 145◦ configurations, the energy barrier increases.
The reason for this is that the contact angle jumps to a higher value, compared to the
initial contact angle θ0. This is also the reason why the barrier becomes larger in system
D.



4.2 Different dissolution modes 45

t ×10
5

0 1 2 3 4 5

θ
 [
°
]

20

40

60

80

100

120

(a) Contact angle

t ×10
5

0 1 2 3 4 5 6

θ
 [
°
]

50

60

70

80

90

100

110

(b) Contact angle

t ×10
5

0 1 2 3 4 5

L

0

50

100

150

200

250

(c) Lateral diameter

t ×10
5

0 1 2 3 4 5 6

L

0

50

100

150

200

250

(d) Lateral diameter

t ×10
5

0 1 2 3 4 5

H

0

20

40

60

80

100

(e) Height

t ×10
5

0 1 2 3 4 5 6

H

0

20

40

60

80

100

(f) Height

Figure 4.13: Stick-jump mode simulations of droplets in system D on a 30◦ − 115◦ and
60◦ − 115◦ configuration with V0 = 2

3π(100)3 and mevp = 0.015. We give the change in
contact angle θ, the lateral diameter L and height H of the droplet in time. The left part of
the figure depicts the result of a 30◦ − 115◦ configuration, while the right side of the figure
depicts the result of a 60◦ − 115◦ configurations. We learn from this figure, that when the
droplet depins from one hydrophylic ring to quickly move to another hydrophylic ring, the
droplet its height and contact angle rapidly increases, thus the droplet “jumps”.
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Table 4.4: Diffusion constant determined from the stick-jump mode simulations and δG̃
γ .

We learn that the diffusion constant becomes smaller if it is farther from the boundary.

System Volume D1 D2 D3
δG̃
γ 1

δG̃
γ 2

δG̃
γ 3

C 30-115 2
3π(70)3 0.22 ±10% 0.18 ±10% 7.98 3.67

D 30-115 2
3π(100)3 0.35 ±10% 0.22 ±10% 0.17 ±10% 11.31 3.45 5.78

C 30-145 2
3π(70)3 0.21 ±10% 0.17 ±10% 7.31 3.67

C 60-115 2
3π(70)3 0.21 ±10% 0.17 ±10% 0.42 3.36

D 60-115 2
3π(100)3 0.33 ±10% 0.22 ±10% 0.17 ±10% 0.82 4.43 4.42

C 60-145 2
3π(70)3 0.21 ±10% 0.19 ±10% 0.66 4.74

4.3 Conclusions

We use the lattice Boltzmann model to study the contact line dynamics of dissolnving
sessile droplets numerically. Therefore we employ the evaporation model which has been
developed by Hessling et al. [1]. To test the consistency of this model we start with
a benchmark of a classical problem, the Epstein-Plesset problem [2]. We start with a
free spherical droplet in the system center surrounded by a liquid at rest. We simulate
the droplets in three different system sizes: 643, 1283 and 2563, and keep the fluid-fluid
interaction parameter gbr = 0.10 constant. We fit our numerical data to eq. (4.1) to
find the diffusion constant. We find that the diffusion constant becomes smaller if we
increase the system size. We then continue to simulate droplets with different radii in a
1283 system, and also from these results it is clear that the diffusion constant becomes
smaller and closer to the actual diffusivity of 0.12, if the droplet is farther away from the
system’s boundary. In the theory one assumes an infinite system, i.e. a system where the
boundary is relatively far away from the droplet. Thus this explains why the measured
diffusivity becomes smaller and closer to the actual value of 0.12 of the diffusivity, if
the droplet has a larger distance to the system’s boundary. This also implies that
the theoretical equations are not applicable to a finite system. We then continue to
study the influence of the fluid-fluid interaction parameter gbr on the equilibrated radius
and the diffusion constant. As expected the equilibrated radius increases due to the
larger repulsive force from the Shan-Chen model. One would expect that due to this
increasing repulsive force, the diffusion constant would become smaller. However, from
our results we conclude that the diffusion constant becomes larger. The reason for this
is the fact that the surface tension between the droplet and the other fluid increases, if
the fluid-fluid interaction parameter becomes larger. For gbr < 0.10, the droplets are
relatively small, thus the Laplace pressure becomes significant, i.e. the diffusion process
is mostly pressure driven. For gbr > 0.10, the surface tension becomes higher, and thus
might be more significant to include in the equations than for gbr = 0.10. Also since the
equations are based on infinite system size assumption, we do not perceive the expected
trend between the diffusivity and the fluid-fluid interaction parameter gbr.

To study the contact line dynamics of sessile droplets, we deposit droplets on chemically
patterned surfaces in a 256× 256× 128 system. For the constant contact angle (CA)
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mode, we deposit droplets on flat substrates. We fit the results of the lateral diameter
to eq. (4.6) and find the diffusion constant. Also here in the end the numerical data
deviates from the analytical solution, because there is not much fluid left in the system
and the droplet becomes so small, such that the diffusion process is mostly pressure
driven, i.e. surface tension becomes significant due to the Laplace pressure. We compare
the lifetime of the droplet with the theory. We do so using eq. (2.12), for which we
need the initial volume V0 of the droplet, the measured diffusivity, the major and minor
density and the time step at which the droplet has completely dissolved. However, a
critical remark on this comparison is the fact that we use the measured diffusivity that
has been obtained from an equation (see eq. (4.6)) equivalent to eq. (2.12). For the
constant radius (CR) mode we pattern the substrate with a hydrophilic disk on an
hydrophobic surface. We initialize the droplet on a hydrophilic disk where the droplet
gets pinned. When the droplet’s volume becomes so small, such that it is energetically
more favourable for the droplet to keep its contact angle constant than to keep its lateral
diameter constant, the droplet depins, i.e. the droplet switches from dissolving in the
CR mode to the CA mode. This resembles the stick-slide mode. We vary the volume
of the droplet and the diameter of the hydrophylic disk. Furthermore we define two
systems: system A has a hydrophylic disk with a contact angle of 30◦ and system B has
a hydrophylic disk with a contact angle of 60◦. In both systems the other part of the
surface is hydrophobic with a contact angle of 115◦. We find that the initial contact
angle and the change in interfacial energy becomes larger if we keep the hydrophilic
disk diameter constant and increase the volume of the droplet. We solve eq. (2.13)
numerically and fit this solution to the data of the contact angle and find the diffusion
constant from it. We compare the lifetime of the droplet to theory, and find that the
lifetime closely follows the theoretical values. Again here we use the measured diffusivity
from eq. (2.13) to an equivalent equation to determine the lifetime of the droplet. We
find that droplet dissolves longer in the CR mode in system A than in system B. We also
show that droplet dissolves faster in the CR mode than in the CA mode. However, for
the stick-slide mode we find that the lifetime of the droplet dissolving in system B does
not match the theoretical curve, because the measured diffusion constant changes, when
the droplet switches from the CR to the CA mode. The measured diffusion constant
changes, as already discussed, due to the fact that the droplet gets further away from
the evaporation boundary and thus the measured diffusion constant becomes smaller.
However, in system A the lifetime of the droplet dissolving in the stick-slide mode does
match with the theory, because the droplet does not dissolve for a long time in the CA
mode, thus the measured diffusivity is not much affected. However, for the droplet that
is very close to the evaporation boundary, the droplet dissolves for a relatively longer
time in the CA mode, because there is relatively more fluid in system A. This affects the
measured diffusivity, which is why the lifetime of the droplet deviates from the theory.
We continue to add more pinning sites on the surface, i.e. we pattern the surface with
hydrophylic and hydrophobic concentric rings. We find that the droplet jumps between
the hydrophilic rings. This implies that if the droplets encounters more hydrophylic
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disks, it “jumps” to the next energetically favourable position on the surface.



CHAPTER 5

Experimental Aspects

In the numerical part of this thesis, we have simulated droplets on chemical heterogeneous
surfaces, i.e. surfaces that are patterned with different wettabilities. In this part of the
thesis we explore the behaviour of dissolving droplets on rough surfaces. We prepare the
samples by a chemical etching process. As mentioned in chapter 2 , surface roughness
causes hysteresis. Therefore we perform ARCA (advancing and receding contact angle)
measurements to determine contact angle hysteresis. In addition we perform dissolution
experiments to characterize the different modes of dissolution and we measure the
droplet its contact angle, height and lateral diameter.

5.1 Sample preparation

In order to study the influence of surface roughness on the behaviour of dissolving
droplets, we first need to prepare samples, i.e. we need to apply roughness on the wafers.
For this purpose we use an anisotropic wet chemical etching process. This process of
surface roughening is easy and of low cost and provides rather rough surfaces without
damaging the bulk structure of the material [46]. The anisotropy of this process refers
to the difference of the etch rate at different surface sites, i.e. it is slower in certain
directions than other orientations. The chemical reaction for silicon oxide in non-fluoride
aqueous solutions which describes this wet chemical etching process with water, is [46]:

SiO2 + 2H2O = Si(OH)4 (5.1)

The reaction with water happens in three steps as depicted in fig. 5.1, namely
adsorption, activated complex formation and hydrolysis [46]. The etching leads to the
removal of silicon atoms as Si(OH)4.

To prepare our samples we use ammonium hydroxide, (NH4OH), due to its mild
toxicity and compatibility for working in our laboratory conditions[46]. Subsequently
the steps listed below have been followed to prepare samples:

49
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Figure 5.1: The three steps of the chemical etching process for silicon oxide in nonfluoride
aqueous solutions. Figure taken from Colak [46]

• first we mark the polished silicon wafers and insonicate them in methanol for 15
minutes

• we rinse the wafers with Milli-Q water and dry them with pressurized nitrogen gas

• then mix three parts of sulphuric acid (H2SO4) with one part of hydrogen peroxide
(H2O2) and individually place wafers in this solution, called piranha, for 10 minutes

• hereafter we rinse the wafers with water at room temperature, then place the
wafer in a beaker with hot water in the ultrasonic bath for 15 minutes. After this
step we dry the wafers with pressurized nitrogen gas

• for the chemical etching process we mix one part of NH4OH with 5 parts of water
at a temperature of 80 ◦C. Wafers have been placed for varying amount of time
(tetch) in this aqueous solution (see table 5.1)

• again we rinse the wafers with Milli-Q water and dry them with pressurized
nitrogen gas

• hereafter we place the wafers in a vacuum desiccator to coat them with mo-
noethylperfluorodecyldimethylchlorosilane (PFDDMCS) via chemical vapour de-
position

• we insonicate the wafers submerged in chloroform for 15 minutes and then dry
them with pressurized nitrogen gas

• hereafter we anneal the wafers for one hour in an oven at 100 ◦C

• and finally we cut the wafers into samples of ∼2 cm2.
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Table 5.1: Various etching times for each wafer

Wafer tetch(min.)

1 0

2 0.5

3 1.0

4 2.0

5 3.0

6 4.0

7 5.0

8 6.0

9 7.0

10 8.0

11 9.0

Prior to each experiment described in section 5.2, we insonicate the samples submerged
in acetone for 10 minutes and after that dry them with pressurized nitrogen gas. To
study the influence of the chemical etching process on the surface of the wafers, we
have scanned the samples with a Scanning Electron Microscope (SEM) and an optical
microscope. Our observations have been depicted in section 6.1.

We have also performed ARCA and dissolution experiments on glass and silicon
samples with nanopancakes on them. Nanoimprint lithography (NIL) has been used to
create holes. The size of these dots is around 300∼350 nm.

5.2 Experimental set-up

5.2.1 Droplet dissolution set-up

To study the droplet dissolution behaviour on these rough samples we use a customized
set-up, which is schematically depicted in fig. 5.2. After cleaning the sample, we place it
at the bottom of a cubic glass container filled with 0.1L of Milli-Q water. Beforehand
the Milli-Q water has been stored in a clean glass flask to reach room temperature.
In this manner we study the case where we initially have fresh water, i.e. c∞ = 0.
During the experiment the droplet dissolves and the water gets contaminated with
1-hexanol (C6H140) during the experiment. This implies that c∞ changes, slowing down
the dissolution process [7]. The container has been positioned between the light source
and the PCO.pixelfly camera, 1392x1040 pixel. Since the difference in the refractive
index between water and alcohol is small, we have used a parallel monochromatic light
source for illumination, which provides better contrast than standard diffusive (white)
light. This is a big advantage, because it eases the detection of the droplet.

The 1-hexanol liquid which has been used during these experiments is supplied by
Sigma-Aldrich and is of 99% purity. As the name already implies 1-hexanol is an alcohol
with a chain of six carbon atoms and the number in the name stand for the position of
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the OH-group in the chain, thus for 1-hexanol the OH group is connected to the first
carbon atom. The properties of 1-hexanol are: ρ = 814 kg/m3, cs = 6.13 kg/m3 [47]
and D = 0.830.10−9 m2/s [48].

After the container with the sample at its bottom has been positioned on the stage
of the set-up, we can deposit 1-hexanol droplets on the sample. We dispense these
droplets via glass syringes with stainless steel needles (Hamilton 100 µL) mounted in
a motorized syringe pump. Beforehand the syringe and needle have been rinsed a few
times with acetone, then disassembled, dried with nitrogen gas and then reassembled.
Hereafter we rinse the syringe with 1-hexanol, since we want to deposit droplets of this
fluid on the samples. We set the syringe pump to the desired volume of the droplet. As
a precaution that there are no air bubbles within the droplet, a tiny bit of 1-hexanol has
been manually drained from the syringe, before depositing the droplet on the sample.
After the droplet has been deposited on the sample we start recording the experiment
with the camera. After a few images we retract the needle from the container and
cover the top of the container with a lid. Since we can measure the outer diameter
of the needle, the first image with the needle serves as calibration for image analysis,
i.e. we want to convert our experimental data from pixels to real physical units. The
camera takes pictures with a frequency of 1 Hz and after the experiment these images
are analyzed with a MATLAB code (see section 5.3).

1 2
7

3

4

5

6

Figure 5.2: Schematic illustration of the experimental set-up:1. droplet sitting on 2. the
substrate, 3. cubic glass container has been filled with water, 4. syringe filled with the
droplet fluid has been attached to a pump, 5. light source with red parallel beam, 6. camera
with lens and 7. the stage on which the container has been positioned.

After each experiment there might be residue of 1-hexanol and/or other (non)polar
contaminants. Therefore we clean the container thoroughly with ethanol and rinse it
with Milli-Q water. And we repeat the process described above before conducting a new
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experiment.

5.2.2 ARCA set-up

In this part of the experiment we examine two systems: sessile water droplets in air and
sessile 1-hexanol droplets in water. To measure their advancing and receding contact
angle (ARCA) we use the SCA20 software. We replace the camera of the set-up described
in section 5.2 with the CCD camera, while the rest of the set-up remains unchanged.
The experiments with 1-hexanol droplets in water have been conducted within the glass
container and the same glass syringe (Hamilton 100 µL) has been used. However, for
the water droplets we use a different glass syringe (Hamilton 500 µL) and for this set of
experiments we place the samples on the stage of the set-up, thus we have a system of
water droplets in air. We perform the ARCA measurements with the SCA20 software,
which is supplied by the OCA instruments from Dataphysics to determine contact angles.
The software detects the droplet’s profile through bright-dark difference (contrast). The
contact angle has been determined by a tangent leaning to the droplet’s curve at the so
called “three-phase contact point” (see fig. 5.3).

Figure 5.3: Profile extraction of the droplet to determine the dynamic contact angle by
the SCA20 software during the ARCA measurement.

We start the experiment and the syringe pump automatically dispenses liquid to
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and reverse dispenses liquid from the droplet, i.e. when we inflate the droplet the
interface advances along the sample (advancing angle) and when we deflate the droplet
the interface recedes on the sample (receding angle). Due to dynamic tracking of the
software it is possible to measure the advancing and receding angle (see fig. 5.4), from
which the surface hysteresis has been calculated.

Figure 5.4: Dynamic tracking of the droplet’s contact angle during the ARCA measurement
by the SCA20 software.

5.3 Image analysis

As has been stated before, the images have been analysed with MATLAB. The aim is to
find the geometric properties of the droplet at any instant in time during the experiment.
The code subsequently does the following:

• first of all the user should specify the left and right contact point of the droplet.
The line connecting those two points is the baseline of the droplet

• secondly the points on the droplet’s edge have been detected by means of the
intensity gradient, i.e. the transition from dark (droplet) to light (surrounding
medium) causes a large gradient in intensity. If this gradient is higher than the
specified threshold, the code detects points on the droplet’s edge. Unfortunately
also points in the centre of the droplet are detected, but those points are discarded
to fit a circle through the actual edge of the droplet

• the gradients have been used again to detect fit points, but now along the lines
normal to the fitted circle. We use a three point parabolic assumption to find the
inflection point of the intensity gradient with sub-pixel accuracy. This assumption
also makes this detection independent of the light intensities of the image.

• these fit points have been used to fit a new circle. The information of this circle
determines our droplet parameters in which we are interested (see eq. (2.3)).



CHAPTER 6

Experimental Results and Discussion

6.1 Images of the wafers

We use a Scanning Electron Microscope (ZEISS MERLIN HR-SEM) and an optical
microscope (LEICA DM2500 MH) to image different samples from each wafer. From the
images in figs. 6.1 and 6.2 we learn that pyramidal hillocks with different sizes randomly
distributed on the wafers appear. The etching time of wafer numbers are according
to table 5.1. These hillocks only appear if the following four conditions are satisfied
simultaneously [49]: (i) existence of a micromasking agent which stabilizes the apex
atom/s, (ii) a fast downward motion of the floor surface, (iii) stable edges and (iv) very
stable pyramidal facets. If any of these conditions fail, the pyramidal hillocks do not
form. If the stabilizing condition is not present, shallow round pits may appear on the
surface. Due to this, pyramidal hillocks and shallow round pits never appear together
on a surface [50]. The density of the hillocks on the surface decreases with an increasing
concentration of the etchant and the density increases with increasing temperature of
the etching process [49, 50]. The inhomogeneous sizes of the pyramidal hillocks indicates
that the they form continuously during the etching process [50]. Compared to Colak
[46] we do observe pyramidal hillocks for every amount of etching time. However, from
fig. 6.1 it is clear that this depends on which part of the surface we image. As has been
stated already, the temperature and concentration are important parameters for the
formation pyramidal hillocks. During the etching process the temperature changes from
65 ◦C in the beginning to 85 ◦C in the end. It is rather difficult to keep the temperature
constant during the etchant process, because it rises during the process. When pouring
NH4OH to water at 80 ◦C, the temperature first drops and then gradually increases.
In case of wafer 7 the temperature rose above 80 ◦C. On the contrary to what Colak [46]
has reported, the wafers that have been etched for 4 minutes (see figs. 6.1(b) and 6.1(c))
and 5 minutes (see figs. 6.1(d) to 6.1(f)) do show extensive hillock formation. The reason
for this being during the etching process a lot of bubbles start appearing, which in this
case can be hydrogen bubbles. It has been reported that hydrogen bubbles induces
the formation of hillocks on the evolving surface by serving as a micromask before

55
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detachment [50]. Also the concentration may be different during all of the processes, but
not significant. In conclusion the temperature is difficult to control during the process
and gives different texture to each wafer. Thus the amount of etching time is not the
only parameter that determines the pyramidal hillock density. This problem may be
solved by heating up the water above 80 ◦C, which will bring it closer to 80 ◦C after
pouring the NH4OH to the water.

(a) Wafer 1 (tetch = 0 min) (b) Wafer 6 (tetch = 4 min)

(c) Wafer 6 (tetch = 4 min) (d) Wafer 7 (tetch = 5 min) sample 1

(e) Wafer 7 (tetch = 5 min) sample 1 (f) Wafer 7 (tetch = 5 min) sample 2
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(g) Wafer 8 (tetch = 6 min) sample 1 (h) Wafer 8 (tetch = 6 min) sample 2

(i) Wafer 8 (tetch = 6 min) sample 2 (j) Wafer 9 (tetch = 7 min) sample 1

(k) Wafer 9 (tetch = 7 min) sample 2 (l) Wafer 9 (tetch = 7 min) sample 2
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(m) Wafer 10 (tetch = 8 min) sample 1 (n) Wafer 10 (tetch = 8 min) sample 2

(o) Wafer 10 (tetch = 8 min) sample 2 (p) Wafer 11 (tetch = 9 min) sample 1

(q) Wafer 11 (tetch = 9 min) sample 2 (r) Wafer 11 (tetch = 9 min) sample 2

Figure 6.1: Scanning Electron Microscope (SEM) images with different magnification of
different samples from wafers with different etching times tetch.
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(a) Wafer 1 (tetch = 0 min) (b) Wafer 2 (tetch = 0.5 min)

(c) Wafer 3 (tetch = 1 min) (d) Wafer 4 (tetch = 2 min)

(e) Wafer 5 (tetch = 3 min) (f) Wafer 11 (tetch = 9 min)

Figure 6.2: Images of the etched samples taken with an optical microscope with a water
immersed objective with a 63x magnification.
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6.2 ARCA experiments

We perform ARCA measurements on three different samples of each wafer. On each
sample we measure the advancing and receding contact angle on three different positions,
i.e. we measure nine contact angles on each wafer. As has been stated already in
section 5.2.2 we perform the ARCA measurements in two systems: (i) water-air system
and (ii) hexanol-water system. In fig. 6.3 we depict the results of the advancing contact
angle, the receding contact angle and the hysteresis as a function of the amount of
etching time for the different wafers. From this figure we can infer that due to the
randomly distributed pyramidal hillocks, we have large spread in the data. Furthermore
we learn from the same figure that the etching process enhances hysteresis, because
the average hysteresis increases for the etched wafers compared to our unetched wafer.
The advancing angle θA and receding angle θR that have been measured are not equal
for both systems due to the different surface tensions in both systems. It is has been
reported [12, 51, 52] that the contact angle hysteresis increases with the surface defect
density until it reaches a critical value for the defect density. This critical value depends
on the surface tension between the droplet and surrounding fluid, the size of the defect
and the range of deformation of the contact line. Above this critical value the hysteresis
starts decreasing. The reason for this being the fact that at low defect density the contact
line is individually pinned by the defects, whereas at a higher defect concentration an
overlap in deformation of the contact line occurs which leads to a collective effect in
pinning of the contact line [12, 51, 52]. As we can infer from fig. 6.1 the roughness
on our wafers is inhomogeneous. This implies that the hysteresis depends on which
part of the sample the experiment has been performed. A consequence of this varying
roughness is the large variation in the hysteresis measurements (see fig. 6.3). It is
therefore difficult to state on which wafer the droplet experiences the largest hysteresis.
If we first consider the hexanol droplet in water system, then it is plausible that wafer
11 (tetch = 9 minutes) does not have the largest hysteresis due to high defect density
on some parts of this wafer as depicted in figs. 6.1(q) and 6.1(r), i.e. this sample is
fully covered with pyramidal hillocks. However, if we study the images (see figs. 6.1(m)
to 6.1(o)) and ARCA results of sample 10 than one would expect small hysteresis, due
to the lower surface defect density compared to wafer 11. This seems to be true for the
hexanol-water system, but not for the water-air system, where it also has a large spread
in the measurements. This is not odd, because it is significant to mention that not all
samples of each wafer have been scanned and that just a part of each sample has been
imaged. Moreover, the three spots on the samples on which the ARCA measurements
have been performed are different for both systems. It is rather difficult to perform the
experiments on the exact same spots, because these spots have not been marked.

In fig. 6.4 we plot the hysteresis that has been measured in the water-air system as a
function of the hysteresis measured in the hexanol-water system. For the etched wafers
it is clear that the hysteresis for the water droplet in air system increases as a function
of the hysteresis measured for the hexanol droplet in water system until it reaches a
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plateau. This implies that the hysteresis is independent of the amount of etching time
after one minute. For the samples prepared with nanopancakes the hysteresis for the
silicon wafers drops, whereas it increases for the glass samples.

θ
A

[°
]

40

60

80

100

θ
R

[°
]

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9

θ
A

-
θ

R
[°

]

10

20

30

40

t
etch

[min]

Figure 6.3: The ARCA measurements for two systems, namely: waterdroplets in air,
marked with ×, and the hexanol droplets in water, marked with ◦, as a function of ethcing
time of the wafers tetch.



62 6 Experimental Results and Discussion

(θ
A

- θ
R

)
hw

 [°]
10 12 14 16 18 20 22 24

(θ
A

- 
θ

R
) w

a [
°
]

10

20

30

40

1

67 8 910 112
3

45

(θ
A

- θ
R

)
hw

 [°]
22 24 26 28 30 32 34 36 38 40

(θ
A

- 
θ

R
) w

a [
°
]

20

25

30

35

glass
silicon

Figure 6.4: The average contact angle hysteresis measured in the water-air system (wa)
as a function of the average hysteresis measured in the hexanol-water system (hw). The top
plot correspond to measurements performed on the etched wafers and the bottom figure
corresponds to the measurements performed on the samples prepared with nanopancakes.

6.3 Dissolution experiments

Dissolution experiments have been performed on three different samples from each
wafer. We only observe the stick-slide and stick-jump mode during these experiments.
This is in agreement with our expectation, because we have prepared the samples with
roughness (physical heterogeneities). In practice usually the mixed modes have been
observed due to the heterogeneities which are omnipresent on samples. In fig. 6.5 we
depict the initial contact angle θ0, the depinning contact angle θd and the difference
between these two angles as a function of the average hysteresis of the wafers. We
directly learn from this figure that more droplets dissolve in the the stick-slide mode
than in the stick-jump mode. For wafers with low contact angle hysteresis only the
stick-slide mode has been observed. The reason for these observations might be the
pinning strength of the pyramidal hillocks on the droplet and also the low density of
pyramidal hillocks on the surface. If we first consider fig. 6.5 then it is clear that the
initial contact angle θ0 is smaller on the etched samples than the unetched sample. In
some cases the difference between θ0 on the etched samples and the unetched samples
is rather small and in some rather large. It should be noted that the initial contact
angle also depends on the way the droplet has been deposited on the sample. Wenzel’s
model suggests that surface roughness enhances the wettability of the surface, i.e. the
initial contact angles are smaller on etched samples than on unetched samples. The
angle at which the droplet starts depinning on etched samples is smaller than on the
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reference wafer. From section 6.1 it is already clear that we have a spatial variation of
surface roughness on etched samples. This leads to a difference in pinning force on the
droplet, which results in varying depinning contact angles on the wafers. The wafer that
is etched the longest, have less spatial variation, giving comparable depinning contact
angles and more droplets that dissolve in the stick slide mode. We depict θj and the
difference between this contact angle and the depinning contact angle as a function of
the hysteresis for the stick-jump mode in fig. 6.6. In some cases the difference between
θj and θd is small. This might be due to the low surface defect density and different
pinning strength of the contact line by the pyramidal hillocks. In fig. 6.7 the time, t, at
which the droplet depins for the first time is presented as a function of the hysteresis.
This time is normalized by the lifetime of the droplet tlife as tnorm = t

tlife
. We already

know from eq. (2.5) that the dissolution time of the droplet also depends on its contact
angle, i.e. the wall correction factor accounts for this. In their work Zhang et al. [7]
have shown that droplets with same size and contact angle have different lifetimes due
to the pinning strength at different pinning sites.

From these results we infer that we are unable to predict in which of the dissolution
dynamic mode the droplets dissolve. We ascribe these observations to the pyramid
shape of the structures on the wafers (see fig. 6.8). Apparently the size of the pyramidal
hillocks does not effect the pinning strength, but it rather depends on the inclination
of the planes. This implies that rougher substrates (a larger density of pyramidal
hillocks) and/or substrates with larger pyramidal hillocks, do not exert larger pinning
strengths on the droplet. Another reason for our observations are the fact that the
droplet experiences different pinning strengths due to non-uniformity of the surface
roughness.

Furthermore we have conducted measurements on both glass and silicon samples
patterned with dots (nanopancakes). The dots have a diameter of 300 nm and 350
nm and the spacing between the dots is 300 nm and 350 nm respectively. These dots
have been created with nanoimprint litography. The experiments which have been
performed on glass and silicon samples with nanopancakes gave only droplets dissolving
in the stick-jump mode as a result (see figs. 6.9 to 6.11). It should be noted that after
performing the ARCA experiments on the silicon samples, they shattered into small
pieces during insonication. For the dissolution experiments the silicon samples have
therefore been rinsed thoroughly with ethanol and acetone. The glass samples have been
cleaned in the exact same way as the samples of the etched wafers. The glass samples
have an intrinsic roughness. However in most cases the initial contact angle, θ0 and the
depinning contact angle, θd, of the silicon samples and glass samples are comparable.
This implies that the contact line experiences a comparable pinning force due to the
nanopancakes.

We have also calculated the energy barrier δG̃ (see fig. 6.12) associated with the
experiments where the stick-jump mode has been observed, using eq. (2.18). For the
etched samples the results may be different due to the size of the pyramidal hillocks.
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For larger pyramidal hillocks more energy is required for the droplet to make the jump.
For the samples prepared with nanopancakes the energy barrier is for some experiments
of the same order of magnitude and for some it is not. The reason for this might be
that the pancakes exerts different pinning forces on the droplet and in case of the silicon
wafers there might be some leftover dust particles.
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Figure 6.5: Measured initial contact angle (top figure), depinning contact angle (middle
figure) and the difference between these two angles (bottom figure) as a function of the
average hysteresis of the wafers on which the dissolution experiments are performed. Here
the experiments in which the droplets dissolved in the stick-slide mode are marked with ×,
and the droplets that dissolved in the stick-jump mode are marked with ◦.



6.3 Dissolution experiments 65

θ
j
[°

]

0

20

40

10 12 14 16 18 20 22 24

θ
j
-

θ
d

[°
]

0

1

2

3

4

(θ
A

- θ
R

)
hw

[°]

Figure 6.6: θj and the difference between this angle and the depinning angle θd as a
function of the average hysteresis of the wafers on which the dissolution experiments are
performed.
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Figure 6.7: The time t at which the droplet first depins and the the normalized time tnorm
are plotted as a function of the average hysteresis of the wafers on which the dissolution
experiments are performed. Here the experiments in which the droplets dissolved in the
stick-slide mode are marked with ×, and the droplets that dissolved in the stick-jump mode
are marked with ◦.
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Figure 6.8: Crosssection of different sizes of pyramidal hillocks with same inclination α
on which the contact line is pinned.
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Figure 6.9: Measured initial contact angle (top figure), depinning contact angle (middle
figure) and the difference between these two angles (bottom figure) as a function of the
average hysteresis of the samples. Here the experiments performed on the silicon samples
are marked with ×, and the experiments performed on the glass samples are marked with
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Figure 6.10: θj and the difference between this angle and the depinning angle θd as a
function of the average hysteresis of the samples. Here the experiments performed on the
silicon samples are marked with ×, and the experiments performed on the glass samples are
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Figure 6.11: The time t at which the droplet first depins and the the normalized time
tnorm are plotted as a function of the average hysteresis of the samples. Here the experiments
performed on the silicon samples are marked with ×, and the experiments performed on
the glass samples are marked with �.
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6.4 Conclusions

In order to study the effect of physical heterogeneities on the contact line dynamics of
dissolving sessile droplets, we apply an anisotropic wet chemical etching process. We
place silicon wafers in an non-fluoride aqueous solution of water at a temperature of
80 ◦C with NH4OH as an etchant. This etching process leads to the removal of silicon
atoms as Si(OH)4 after silicon oxide has reacted with water. We vary the total amount
of etching time tetch between 30 seconds and 9 minutes. We image different samples
from the etched silicon wafers with a Scanning Electron Microscope (SEM) and an
optical microscope. We compare these images to the images of an unetched wafer and
we infer that this etching process has led to formation of pyramidal hillocks on the
surface. Furthermore we find that these pyramidal hillocks are randomly distributed
on the surface. The wafer that has been etched the longest (tetch = 9 minutes), has
the largest pyramidal hillock structures. However, for all the wafers it is clear that the
density of the pyramidal hillocks depends on which sample from the wafer has been
imaged. The reason for this is two fold: during the etching process the temperature
varies, i.e. when pouring the NH4OH to the hot water the temperature first drops and
during the etching process the temperature rises again. The hillock formation increases
when the temperature rises. Another reason is that during the process bubbles starts
appearing. It is plausible that these bubbles are hydrogen bubbles, which induces the
formation of these hillocks.

We know that surface roughness enhances contact angle hysteresis. Therefore we
measure the advancing and receding contact angle (ARCA) of droplets on the surfaces,
from which we can determine the contact angle hysteresis. For these hysteresis mea-
surements we examine two systems: sessile water droplets in air and sessile 1-hexanol
droplets in water. The ARCA measurements are conducted using SCA20 software,
which detects the droplet’s profile through contrast and it draws a tangent leaning to
the droplet’s curve at the “three-phase contact point”. From this the dynamic contact
angle of the droplet has been measured. We perform these ARCA measurements on
three different samples of each wafer. We conduct these ARCA measurement at three
different positions on each sample, i.e. we have nine measurements on each wafer. We
find that on average the hysteresis increases for the etched wafers compared to the
unetched wafers. However, the data shows a large spread and inconsistency due to the
spatial variation of the pyramidal hillocks. Therefore it is difficult to state how the
amount of etching time influences the contact angle hysteresis. The wafer that has been
etched the longest, tetch = 9 minutes does not necessarily has the largest contact angle
hysteresis, because it has been reported [12, 51, 52] that the hysteresis increases until it
reaches a critical value for the defect density. In our case there is a spatial variation in
the density of the pyramidal hillocks.

We continue with experiments on dissolving sessile droplets. We deposit 1-hexanol
droplets on samples of each of the wafers. We use three different samples form each
wafer. Water surrounds the droplet and we close the container filled with water and
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the sample at its bottom with a lid. We use a parallel monochromatic light source
for illumination, and record the dissolution process with a PCO.pixelfly camera. We
analyze the images taken by the camera with a MATLAB code, and determine the
lateral diameter L, the height H and the contact angle θ of the droplet. We find that
the droplets dissolve in the stick-slide mode and the stick-jump mode. For wafers with
low contact angle hysteresis, presumably with a small pyramidal hillock density, the
droplets dissolve solely in the stick-slide mode. The reason for this are relatively weak
pinning sites on the surface or the lack of pinning sites on the surface. We find that
the initial contact angle θ0 is smaller for the etched wafer than the unetched wafers. In
some cases it becomes considerably small. This is in agreement with Wenzel’s model,
which suggest that surface roughness enhances the wettability of the surface. However
it should be noted that θ0 is also dependent on the way of deposition of the droplet.
Furthermore we find that the contact angle at which the droplet depins also becomes
smaller for the etched wafers compared to the unetched wafers. However, the results of
the depinning contact angle θd are also inconsistent compared to the amount of etching
time, due to the spatial variation of the pyramidal hillocks. This causes a difference in
pinning force, and thus a variation in depinning angles. For droplets dissolving in the
stick-jump mode the difference between θd and the contact angle it jumps to right after
depinning, θj , is small in some cases. The reason for this is two fold: low surface defect
density and different pinning strength of the contact line by the pyramidal hillocks.
These results imply that we are not able to predict in which mode the droplet dissolves
as a function of the etching time or at which angle the droplet depins. We think that the
size of the pyramidal hillocks does not effect the pinning force, but it rather depends on
the inclination of these planes, i.e. substrates covered with a larger density of pyramidal
hillocks and/or substrates with larger pyramidal hillocks, do not exert larger pinning
strengths on the droplet. For the glass and silicon samples covered with nanopancakes,
we find that the droplets dissolve solely in the stick-jump mode.



CHAPTER 7

Conclusions and Recommendations

Our main interest is in the contact line dynamics of dissolving sessile droplets. Therefore
we perform an experimental and numerical study on dissolving droplets surrounded by
another fluid and deposited on (patterned) substrates.

We employ the lattice Boltzmann model and the evaporation model from Hessling et al.
[1] to study the contact line dynamics of sessile droplets numerically. From the benchmark
of the free spherical droplet in the system center surrounded by still liquid, we conclude
that the system size affects the measured diffusion constants. The measured diffusion
constant becomes smaller if we increase the distance to the evaporation boundary. This
originates from the infinite system assumption in the theory. We also find that the
diffusion constant becomes larger if the fluid-fluid interaction parameter gbr increases.
However, one would expect that the diffusion constant becomes smaller, because the
repulsive force between the fluids from the Shan-Chen model becomes larger with
increasing gbr. An explanation for this is the fact that surface tension is neglected and
the fact that the system size affects the results of the measured diffusivity. We are able
to simulate the droplets dissolving in different modes by patterning the surfaces: the
constant contact angle (CA) mode, partly the constant radius (CR) mode, the stick-slide
mode and the stick-jump mode. For the CA mode we use flat surfaces, for the CR
and stick-slide mode we use a hydrophobic surface with one hydrophylic disk and for
the stick-jump mode we use a configuration where we switch between hydrophylic and
hydrophobic rings. We fit our data to analytical solutions to find the diffusion constant.
At the end of the simulation the data deviates from the analytical solution, due to the
fact that the droplet becomes so small that the surface tension becomes significant. We
find that the lifetime of the droplet matches the theory and that the droplet dissolve
faster in the CR mode than in the CA mode. From all of the simulations it is clear that
in order to reach convergence for the measured diffusivity in the system, we need to use
larger systems for the simulations. Larger system sizes will better match the infinite
system assumption. Another solution is to find analytical equations that explicitly
account for the system size, from which we can find the diffusivity in the system. This

71



72 7 Conclusions and Recommendations

will make it possible to study the evaporation of droplets in finite systems. Also if we
increase the system size, it will be possible to simulate droplets which dissolve for a
longer time in the CR mode, i.e. we can simulate larger droplets such that there is
enough fluid in the system for the droplet to dissolve in the CR mode. To improve the
results for the dissolving sessile droplets, it would be good to use a spherical evaporation
boundary instead of a flat plane. This would result in a homogeneous density gradient
in the system.

In the numerical part we study droplets on chemically patterned surfaces, whereas for
the experimental part we study the dynamics of sessile droplets on surfaces with physical
heterogeneities. We apply an anisotropic chemical etching process for this purpose.
The chemical etching process results in pyramidal hillocks randomly distributed on the
samples of each wafer. We measure the advancing and receding contact angle (ARCA)
on three different spots on three different samples from each wafer. We study two
systems: water droplets in air and 1-hexanol droplets in water. It is difficult to compare
the results of these two systems, since they have not been performed on the exact same
positions on the samples. This can be solved in the future by cutting the samples in such
a shape that is recognizable in which area one should measure the hysteresis or mark
the spots at the back of each sample or one should consider another method to apply
roughness on the surface for more reproducible results. We have seen that the amount
of etching time did not influence the depinning contact angle of the dissolving droplets
during the experiment. We conclude that the depinning contact angle rather depends on
the inclination angle of the pyramidal surface than the size of these pyramidal hillocks.

In the experiments we observe that the surface droplets dissolve in the stick-slide
and the stick-jump mode. Moreover, we find that for surfaces with low contact angle
hysteresis, presumably covered with low pyramidal hillock density, the droplets only
dissolve in the stick-slide mode. In general we know from our numerical results, that if
there are more hydrophylic disks on the surface the droplet “jumps” to the next available
hydrophylic position on the surface and thus dissolves in the stick-jump mode. This
implies that we observe the stick-slide mode in experiments only if the droplet does not
encounter other pinning sites on the surface. We indeed find with our simulations, that
the droplet dissolves in the stick-slide mode if our surface only has one hydrophylic disk.
Another reason why we do not always observe the stick-jump mode in experiments, is
due to optical limitations, i.e. the jumps might be too small to observe it with optical
instruments.

A more systematic numerical study can be performed on the behaviour of dissolving
droplets on surfaces covered with e.g., pyramidal hillocks or other randomly distributed
physical heterogeneities. For this a LB3D approach can be used with an addition of
the Shan-Chen model and evaporation model developed by Hessling et al. [1]. With
the numerical simulations we can for instance confirm if the depinning contact angle
depends on the size of these pyramidal hillocks. But this also gives us the opportunity to
study the dynamics of dissolving surface droplets on other geometries than flat surfaces.
Moreover, by adding surfaces roughness in a controlled way in both experiments and
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numerical simulations, which is of course more complicated in the former, we can study
the influence of pinning sites on droplets and bubbles. With this we can confirm the
theory of Lohse and Zhang [14] that explains the stabilizing effect by pinning sites on
nanobubbles. Also other chemical patterns can be added to the surfaces to study the
bottom view of the droplet when it depins in the stick-slide or stick-jump mode. We
are then able to view in which way the contact line retracts during the jump phase.
We have studied the dissolution of single droplets, but we know that systems where
droplets are surrounded by neighbouring droplets are of equal importance and relevance.
Laghezza et al. [53] have studied such systems both numerically and experimentally.
We can extend their work by adding convection in the system. This would give us
insight in how natural convection will influence the lifetime in a neighbouring droplet
system. But first it is important to test the applicability of scaling relations given by
Dietrich et al. [54] for droplets dissolving through natural convection and diffusion. We
have studied systems of single fluid droplets. We can extend our work in the future by
studying binary or multicomponent droplets. It is especially interesting how the contact
line dynamics and lifetime of binary or multicomponent droplets will change compare to
single fluid droplets. For instance, how will the depinning contact angle of the droplet
change with composition of the droplet?
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[13] David Quéré: ‘Surface wetting: Model droplets’. In: Nature Materials (2004),
vol. 3(2): pp. 79–80 (cit. on p. 1).

[14] Detlef Lohse, Xuehua Zhang, et al.: ‘Pinning and gas oversaturation imply
stable single surface nanobubbles’. In: Physical Review E (2015), vol. 91(3):
p. 031003 (cit. on pp. 1, 73).

[15] Shiyi Chen and Gary D Doolen: ‘Lattice Boltzmann method for fluid flows’.
In: Annual review of fluid mechanics (1998), vol. 30(1): pp. 329–364 (cit. on p. 3).

[16] Haibo Huang, Daniel T Thorne Jr, Marcel G Schaap, and Michael
C Sukop: ‘Proposed approximation for contact angles in Shan-and-Chen-type
multicomponent multiphase lattice Boltzmann models’. In: Physical Review E
(2007), vol. 76(6): p. 066701 (cit. on pp. 3, 17–19, 21).

[17] Roberto Benzi, Mauro Sbragaglia, Sauro Succi, Massimo Bernaschi,
and Sergio Chibbaro: ‘Mesoscopic lattice Boltzmann modeling of soft-glassy
systems: theory and simulations’. In: The Journal of Chemical Physics (2009), vol.
131(10): p. 104903 (cit. on p. 3).

[18] Pierre-Gilles De Gennes, Françoise Brochard-Wyart, and David Quéré:
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