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Chapter 1

Introduction

Today we have the joy of many technological assets. Maybe you are reading this on a laptop,
and downloaded this Thesis over the internet. But all these technologies have a drawback;
they make life very complex, when you exactly want to know what is happening. Even an
ordinary item such as a pencil is very complex due to our modern production processes. It
can even be claimed that not a single person on earth has the knowledge and capability to
produce a pencil identical to a store-bought pencil.[31] Knowing how the production process
of a single pencil works might not be a common thing to question. But what about knowing
how the airbags in your car work? How can a consumer, or producer as a matter of fact, know
with a 100% certainty that airbags will deploy in case of a crash or will not deploy in case of
a rare racing condition in the car computer?

Ironically enough, technology can supply a solution. Within the field of Computer Science
a lot of previous and current research is done on model checking[26]. Model checking allows
researchers to simulate a process or system, and exhaustively test for wanted or non-wanted
properties. Logically, the result of these test are as dependable as your model represents the
actual system. The best model then, would be a model representing the system down to its
last atom, allowing for every possible interaction with the model. The model of course will
become extremely large, a situation known as state space explosion.
Current research[20, 35, 17] therefore focuses on:

• Storing larger models

• Processing large models faster and smarter

• Reducing the size of models, whilst keeping the same properties

In this thesis we will focus on reducing the size of the models using bisimulation reduc-
tion[25, 29]. Bisimulation reduction allows to identify similar states that can be merged whilst
preserving certain properties of the model. These similar, or redundant states will be iden-
tified by comparing them with other states in the model using a bisimulation relation. The
bisimulation relation will identify states showing the same behavior, that therefore can be
merged. This process is called bisimulation reduction [25]. A common method to determine
the smallest model is using partition refinement[7]. We will elaborate on these techniques is
Chapter 2.

In order to use the algorithm on large models it needs to be scalable. Therefore we will be
using a framework for distributed processing that is part of Hadoop[34], called MapReduce[16].
Using this framework provides us with a robust system that automatically recovers from e.g.
hardware faults. The use of MapReduce also makes our algorithm scalable, and easily executed
at third party clusters. However, this framework will put several limitations on the design of
the algorithm, and the available data structures. It is reported that Hadoop can be slow when
using multiple iterations[4, 23].
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The main contributions of this project will be bisimulation reduction with MapReduce.
This gives us the following research question:

Research Question: To what extent is MapReduce a suitable platform
for bisimulation reduction?

In order to judge the suitability of our solution we will run several tests reducing predetermined
models. During these tests we will look at two things that can distinguish our solution opposed
to current solutions. Leading to the following subquestions:

Sub-Question 1: How much space does a MapReduce based bisimulation
reduction require w.r.t. scaling of the model size?

Sub-Question 2: How much time does a MapReduce based bisimulation
reduction require w.r.t. scaling of the model size?

This report is structured as followed: Chapter 2 explains some preliminaries like: What is
a model exactly? How can you define bisimulation reduction, and what does Hadoop do?
Chapter 3&4 contain two different bisimulation relations with their respectable implemen-
tations, more information on their implementation is given in 5. In Chapter 6 we put the
implementations to the test, and explain something about the test procedure and the used
hardware. After the experiments we will provide the Conclusions and Future work in the final
Chapter 7.

1.1 Related work

Current state of the art tools already have various sequential implementations for bisimulation
reduction[26, 13]. We will now list a brief overview of this work. The used terms and techniques
will be explained in more depth in Chapter 2. For sequential implementations the work by
Groote and Vaandrager[19] has been used which has a complexity of O(mn), where n is the
number of states and m the number of transitions. Recently an even more efficient algorithm
has been devised with a complexity of O(m(log|Act| + logn))[20]. The existing tools make
use of partition refinement [12, 25]. Partition refinement splits models in equivalent blocks
or partitions, with goal to find the coarsest partitioning of a model whilst keeping certain
properties of the model. To allow distributed partition refinement Blom and Orzan introduced
the use of signatures[8]. Signatures allow for quick identification of partitions for states with
less centralized information. Since then several tools have been developed that allow efficient
distributed bisimulation reduction, for example using mpi [26]. With the current shift to large
clusters and data analysis in the cloud on services like Amazon[30] it is possible to use large
clusters without a big investment. Current research includes using MapReduce for state space
generation [6], (limited) state space reduction[27], and model checking[5, 22, 1].
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Chapter 2

Preliminaries

2.1 Model Checking

For the last decade it has become clear that our current society depends more and more
on software, often to the point that lives can be at stake when the software does not work
correctly. At the same time, software becomes more and more complex, increasing the odds for
errors. One way to increase software quality is to use model checking. Using model checking,
a model representing for example a piece of software or a protocol is either manually designed
or automatically generated using software. This model can then be used to explore whether
certain desired properties or undesired properties hold for this model, and thus for the program
represented by the model. A way to do model checking is to generate the complete set of states
the program can be in when the model of the software is used and to check if one of those
states conflicts with predefined rules. Each state in the model represents a unique condition of
the software, and the model describes the possible relation between each of these states. The
most common problems when model checking are:

• Knowing how to model your system

• State space explosion

State space explosion describes the phenomenon that the amount of states of a model can grow
exponentially with the size of the model. State space explosion is a logical result of trying to
represent an intricate system by defining all the states a system can be in, e.g. by introducing
parallelism.

Bisimulation reduction is a well known technique to reduce this state space [25, 7]. In this
thesis we will present a new way to achieve bisimulation reduction using the Hadoop MapRe-
duce framework[11]. MapReduce is a well-established paradigm in the big data community
[16]. Using MapReduce allows for both simple scaling of an algorithm w.r.t. the amount of
machines, and migration of the algorithm to another computational cluster. Model checking is
a process that is inherently demanding on computing power and memory usage. We think that
implementing model checking algorithms using the MapReduce framework can allow users with
less computational power to evaluate large models by outsourcing the computing to parties
like Amazon EMR [21].

2.2 Labeled Transition Systems

A way to represent the state space of a model is by using Labeled Transition Systems (LTS)[2].
LTSs represent a way to describe a system by its states, (S) and all the transitions between
these states. LTSs therefore consist of all possible states S a system can be in, and all the
transitions with their actions Act between those states. We assume that there exists one special
label named τ (tau), this label describes a non-observable or silent step. This denotes that
from the outside of the model we cannot see when this step is taken. It is important to note
that having two τ -steps from the same state represent a non-deterministic step. E.g. when
reducing a state space and not respecting this property the model loses information about
branching processes.[15]
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By definition[2], a LTS can be described as a tuple

T S = (S,Act,→, i,AP)

where

• S is the set of states of the system

• Act is the set of actions

• →⊆ S ×Act× S represents the transitions (t
α−→ s where α ∈ Act and s, t ∈ S)

• i ∈ S the initial state of our system

2.2.1 Beverage machines

To illustrate matters we will be using some (simplified) models of beverage machines in this
thesis. Our beverage machine usually behaves in a predictable manner, one can supply a coin
with the action c(oin), and then select a product a(pple juice) or b(eer). After the selection a
τ -step happens in which the machine probably updates its cash registry, and hopefully it will
d(ispence) a cold beverage. The first two versions of this machine can be seen in figure 2.1 and
2.2. In chapter 4 we will introduce a more complex beverage machine to illustrate branching
bisimulation (figure 4.1).

We now have an idea of what a model and a state space is, and how to describe it. Next,
we are going to see if we can make this state space a bit smaller.

2.3 Bisimulation Reduction

To reduce the state space we will try to replace our LTS with a (much) smaller version that
has exactly the same behavior as our original LTS. So our new LTS simulates the old LTS and
visa versa, or the old LTS bi-simulates the new LTS.

A bisimulation relation R is a set of states R ⊆ S × S where both states in the relation
are said to simulate each other (bisimulation). Intuitively, given (s1, s2) ∈ R, s1 could for
example do all the actions that s2 could do and end up in a similar state as s2. The exact
same goes for the reversed situation. For a formal description of the bisimulation relation we
refer to Chapter 3.

If we have two states that can perfectly simulate the other and end up in the same (or a
similar) state, we could not distinguish both states. If we replace all these simulating states
with one state we have a reduced version of our original LTS. A common way to calculate
the reduced LTS, is by using a partitioning algorithm. We will give a short explanation of
the idea of the algorithm, more intricate descriptions are given in the respective chapters.
The partitioning algorithm states that each state is bi-similar. It then iterates, trying to find
states that are in fact not similar, partitioning the state space. The iteration terminates when
the algorithm cannot find any non bi-similar states. The termination is guaranteed, since we
cannot create more partitions than there are states. At this point the algorithm has found
the largest (or coarsest) partitions possible, therefore the result of the algorithm will be the
smallest LTS that is bisimilar to the original LTS. Figure 2.2 shows us the LTS of a beverage
machine, we enabled partition refinement to color all the (strongly) bi-similar states. After
reduction, by merging the same colored states we have the original machine shown in 2.1. The
formal definition of strong bisimulation can be found in the next chapter.

State space reduction has several added advantages for model checking. Generating a state
space in a distributed environment (like Hadoop) allows for more memory usage compared
to using a single machine. However, exploring the generated state space in-memory will also
require a distributed model checker, since the generated state space does not fit in-memory on
a single machine. If we can reduce the state space in such a way that the state space fits on
a single (high-end) machine, conventional model checking tools can be used to do the model
checking of the generated state space. These tools are highly developed, sparing the effort of
having to implement them in a distributed manner.
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2.3.1 Signature refinement

The implementations for strong and branching bisimulation that we present in Chapter 3&4
make use of signature refinement. Signature refinement is proposed by Blom and Orzan[8]
to allow for more efficient distributed bisimulation reduction. In the algorithm proposed by
Kanellakis and Smolka the blocks for each state needs to be calculated and saved in a central
table during partitioning[25]. Signature refinement replaces these blocks by defining signatures
for each state. States with an equal signature will be assigned to the same partition. The
definition for the signature for strong bisimulation is:

sigk(s) = {(α, partk−1(t)) | s α−→ t

Where sig0(s) = ∅, partk(s) is the current partition for a given state, and k is the current
iteration for the partition refinement. As you can see given a state and its outgoing transitions
we can calculate the new signature, and thus partition for this state. In our algorithm we will
directly calculate an unique partition number by using a cryptographic hash for the partitions.

partk(s) = hash(sigk(s))

We will lose the option for monotonically increasing partition numbers, but in return all the
partitions for a given state can be calculated and assigned solely based on the outgoing transi-
tions for that state and without communication between workers. For branching bisimulation
a similar approach will be used based on the work by Blom and Pol[9].

2.4 MapReduce

During this project we developed a way to realize partition refinement using the MapReduce
framework by Hadoop. Hadoop is a framework initiated by Google to process vast amounts
of data[18, 16]. Hadoop offers a framework that handles most of the common tasks needed in
distributed implementations, as for example handling the distributed storage of data or errors
(e.g. the failure of one of the machines or nodes)[11]. Within the Hadoop-framework there
are multiple options for distributed operations, one of these options is the use of distributed
algorithms. To develop distributed algorithms, Hadoop has a framework, called MapReduce
[16, 38], MapReduce allows easy development of distributed applications. A developer can then
easily develop a distributed solution, simply by implementing the MapReduce-framework.

Once an algorithm is implemented in MapReduce it can be run on clusters of various sizes.
These clusters can be owned by the researcher, or the researcher could rent time at a large
provider like Amazon. In our research we already discovered some promising implementation
for CTL-model checking[1, 6, 5, 22]. During this thesis we will focus on algorithms for bi-
simulation reduction.
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MapReduce requires the developer to divide each distributed algorithm in two steps: the
Map and the Reduce-phase. The developer writes a function for the Map-phase that accepts a
key-value pair (〈k, v〉), and outputs another key-value pair (〈k′, v′〉). In an intermediate step all
these key-value pairs are sorted and grouped by k′. Custom sorting algorithms will even allow
us to do secondary sorts on these key-value pairs[34], we will use this in Section 3.3.1. Next,
we call the Reducer function with each key and a iteratable with the corresponding values,
which we will represent as a list in the pseudo-code (〈k′, v′[]〉). In some snippets of pseudo-
code it is important to note that we loop multiple times over all the values, since v[] is an
iteratable this is technically not possible. This is fixed either by a carefully chosen secondary
sort, guarantying the correct order of v[] or by storing the values in v[] locally. MapReduce
does not allow for communication or shared variables between reducers and mappers, however
MapReduce does offer global counters allowing users to keep track of certain statistics. In our
pseudo code counters can be identified by the COUNTER-prefix. The Reducer-function then uses
this data to output a new key-value pair, 〈k′′, v′′〉. Optionally, the result of this reducer can
now be fed to another MapReduce function, or iterate the same MapReduce function.
For example, in Listing 2.1 we have a map and reduce function. The goal of the algorithm is
to count the total of incoming edges for each state. Given that the map-function is called with
s as key and

a−→ t as value, where s
a−→ t ∈ TS. The map-function than emits (t, 1) for each

transition, since we want to count the total amount of incoming edges. After grouping on t all
these values are send to the reducer. The reducer only has to sum up all the values and emit
the amount of incoming edges together with the corresponding state.

input: transition system 〈s, (a, t)〉
temp: 〈s, 1〉
output: 〈s, count(s)〉

5 MAP(k,v)
emit(v.t,1)

REDUCE(k,v[])
emit(k,v.length)

Listing 2.1: Counting of incoming transitions per state

6



Chapter 3

Strong Bisimulation

We will present a definition for the given Bisimulation relation followed by a regular (naive)
algorithm for the sequential case. Then we show the structure of our algorithm in a flow
graph, accompanied by the pseudo code for each of the MapReduce-blocks. Ending with a
short discussion on the implementation with design choices and encountered difficulties. We
will adhere to the same structure for branching bisimulation in chapter 4.

The first bisimulation reduction algorithm we developed is for strong bisimulation.

3.1 Definition

Strong bisimulation states that two states are bi-similar if, and only if, they can execute the
same action and end up in a bi-similar state.

More formally given two transition systems[2]:

T Sδ = (Sδ,Actδ,→δ, iδ), δ = 1, 2

The strong bisimulation relation R over T Sδ is defined as R ⊆ S1 × S2

A. (i1, i2) ∈ R

B. for all (s1, s2) ∈ R it holds:

1. if s1
α−→ s′1 then there exists s2

α−→ s′2 with (s′1, s
′
2) ∈ R and α ∈ Actδ

2. if s2
α−→ s′2 then there exists s1

α−→ s′1 with (s′1, s
′
2) ∈ R and α ∈ Actδ

The above definition states that the two initial states in both transition systems need to
be bisimilar in condition A. Condition B guarantees that each pair of states (s1, s2) in R is
actually strongly bisimilar. Meaning that s1 is bisimilar to s2 if and only if each action α to
a state s′1 by s1 can be simulated by s2. s2 is not required to make the same α transition to
s′1, but it has to make a α-step to a state that is bisimilar to s′1 which can be either s′1 itself
or s′2 (given that (s′1, s

′
2) ∈ R).

7



input: transition system T S = (S,→)
output: table pi, containing the new partitions

reduce()
5 for all states s ∈ S do pi[s]:=0 end for

repeat
// compute signatures
for all states s do sig[s]:=∅ end for
for all transitions (s,α,t) ∈→ do

10 insertSig(s,α,pi[t]) end if
end for
// reassign pi according to sig
hashtable := ∅
count:=0

15 for all states s do
if not sig[s] in hashtable.keys() then

hashtable.insert(sig[s],count)
inc(count)

end if
20 end for

for all states s do
pi[s]:= hashtable.lookup(sig[s])

end for
until pi is stable

25

insertSig(t,a,ID)
if not((α,ID) ∈ sig[t]) then

sig[t]:=sig[t]
⋃
{(α,ID)}

end if

Listing 3.1: sequential implementation

3.2 Regular algorithm

In order to minimize a state space using bisimulation reduction we have to find the largest
set (R) of bisimulation relations. A way to do this, is using partition refinement [2, 25].
A simple representation of such an algorithm is given in Listing 3.1. This is a simplified
representation of the algorithm proposed by Blom and Orzan[8]. The algorithm works with
signatures represented by the variable sig, initially each state has an empty and thus equal
signature. States of equal signature will be in equal partitions, these partitions will be stored
in pi. The algorithm iteratively refines these partitions by calculating new signatures, based
on the outgoing transitions for each state. The partition numbers are unique since each new
signature is given an unique identifier by count. The algorithm terminates when the amount of
partitions (or unique signatures) stays stable. Termination is guaranteed, because the amount
of signatures will increase or stay stable for each iteration, and the total amount of unique
signatures can not exceed the total amount of states.

In order to see how this algorithm works we will look at our beverage machines. In figure
2.2 we can see our less optimal beverage machine, which we claimed is strongly bisimilar with
the beverage machine next to it. We will go through each iteration of our algorithm and
calculate the signatures for each iteration. In table 3.1 we show these steps. The columns
represent each state of the beverage machine. The iterations are represented by the rows. We
can see that after two iterations we can conclude that we have found the coarsest partitioning.
We reassign state numbers according to the generated signatures, then we can see that we
have created the LTS shown in figure 2.1.
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Table 3.1: Strong bisimulation reduction on the beverage machine
State 1 3 4 5 Partitions

Iteration 0 Pi 0 0 0 0 1

Iteration 1
Signature {(c,0)} {(a,0),(b,0)} {(d,0}) {(d,0)}
Pi 0 1 2 2 3

Iteration 2
Signature {(c,1)} {(a,2),(b,2)} {(d,0}) {(d,0})

Pi 0 1 2 2
3

(stable)
New States 1 2 3 3

3.3 MapReduce implementation

The MapReduce implementation is based on the work by Blom and Orzan[8] and Schätzle
et al.[32]. As stated before, the algorithm in listing 3.1 is similar to the algorithm proposed by
Blom and Orzan. For our MapReduce implementation we can not make use of a shared table
to store the variables sig or pi. For the calculation of the partition table pi a shared table
would be an easy solution. In order to be able to do distributed strong bisimulation reduction
without a shared hashtable some non-trivial problems need to be solved. In listing 3.1 on line
28 we construct a signature by creating a set of the actions and previous partition for the
target state of all the outgoing transitions, creating inductive signatures[9]. On line 15 we use
these sets to determine new partitions. Alternatively we could also store this whole set for
each state, but this would result in a gigantic blowup of the size of the model. Another way to
generate a unique partition number based on the set of states and partition numbers is the use
of a cryptographic hash. This guarantees an unique partition number, without communication
between workers during the partitioning. A disadvantage of this method is that we lose the fact
that n partitions will be numbered 0..n−1. The signatures for a given state s are thus generated
by hashing the set of all outgoing transitions being: sigk+1 = hash({(α, sigk(t))|s α−→ t ∈→}).

An overview of our algorithm is shown in the flowchart in figure 3.1. Each of the steps in the
graph are than described in subsection 3.3.2. In the flowgraph the createSigs step executes the
MapReduce version for the inside of the loop (line 7-23). The SigCount counts the signatures,
which is needed for the condition on line 24 in the sequential implementation.

3.3.1 Flowchart

In the flowchart in figure 3.1 we have outlined the developed algorithm. Between each Map
and Reduce action we have placed the submitted key-value pairs. Often the keys consist of two
values, allowing for secondary sorting on the flags supplied with the key. The most important
step in the flowchart is the BiSim-step, here we calculate the new signatures for each state. To
calculate these signatures the Mapper provides the reducer with the signature of a given state,
and all the outgoing transitions for that state. After the generation of the new signatures a
separate Map and Reduce function counts the amount of unique signatures in SigCount. If we
look at the original algorithm in listing 3.1 CreateSigs is similar to the step taken on lines 8-23,
where the use of pi is replaced with a hashing function. CountSigs represents the terminating
condition on line 24.

A further explanation for each key-value pair and MapReduce function can be found in the
next section (3.3.2).
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COUNTi+1 = UNIQUE(#s)

Figure 3.1: Flowchart - Strong Bisimulation with MapReduce
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3.3.2 Pseudo code

This section contains pseudo code for the used Mappers and Reducers for the strong bisimu-
lation reduction. Each listing starts with the expected input. The intermediary format that
is emitted by the Mapper, which will be sorted on both the state and the supplied flag, before
it is offered as input to the Reduce function. The output(s) specify the expected out for the
reducer which will be offered to another MapReduce task (except for the very last run). Along
with each listing an explanation of that step is provided, and the listing will also contain some
additional comments.

Loading the model

We read the transitions from an existing state space in the Aldebaran (*.AUT) format[26].
The use of a pre-defined format for allows our tools interoperability with already existing tools.
The Aldebaran format consists of a header containing the name of the start state, the amount
of states and the number of transitions. Each following line describes a transition, we could
state that we simply get supplied the set → from T S. Each transition is emitted with the
label ”LTS”, for each state we also emit the signature, which in the initial mapping is the
hash for an empty set. The signature for a given state s will be shorthanded #s.

input: transition system (counterk, textv) // k is not used, v contains a line of text
output: 〈t, (SIG , α, t,#t)〉 // for the signature of state t

〈s, (LTS , α, t,#t)〉 // a transition for state s

5

MAP(k,v)
#empty = []
// retrieve the transition from v
(s, α, t)← parse text(v)

10 // emit the signature for t
emit(t, (SIG , t,#empty))
// emit the transition
emit(s, (LTS , α, t,#empty))

Listing 3.2: Reading the AUT file (MAP)

Creating new signatures

All the keys will be automatically sorted on the state and have a secondary sort on the type
(SIG ,LTS). Therefore the reducer will first receive all the values with SIG for a given state,
and then all the remaining values (with LTS ). The reduce function will therefore first receive
each outgoing transition for a given key. Based on these transitions a new signature can be
calculated. The calculated signature will then be emitted for every incoming transition of this
state. This way the signature will propagate backwards through the LTS. Additionally, we
also emit the calculated signature to a separate file. It is important to note that we loop twice
over all the values, since v[] is an iteratable this is technically not possible, as stated in section
2.4. In this case this is solved by the secondary sorting on the type (SIG ,LTS ).
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input: 〈s, (α, t,#t)〉 // transition as input
temp: 〈s, (SIG , α, t,#t)〉 // for the signature of state t

〈t, (LTS , α, s)〉 // a transition for state s
output1: 〈s, (α, t,#t)〉 // transition with new signature

5 output2: 〈#s, null〉 // signature for counting

MAP(k,v)
// emit the signature for outgoing transitions from s

10 emit(k.s, (SIG , v.t, v.#t))
// emit the reversed transitions
emit(v.t, (LTS , v.α, k.s))

REDUCE(k,v[])
15 new = ∅

for v in v[] where v.type==SIG
// add the outgoing signatures to the new−set
new = new

⋃
(v.α, v.#t)

// emit the transitions with #new
20 for v in v[] where v.type==LTS

emit1(v.s, (v.α, k.t, hash(new)))
// emit our new signature for counting
emit2(hash(new), null)

Listing 3.3: CreateSigs

Statecount

The emitted signatures from listing 3.3 can now be counted. The output of the map function
is sorted and all the duplicate keys are removed. In the reducer we can therefore simply
update a global counter, counting the total of discovered states. The algorithm will compare
this counter to the old amount of sigs. When the number of signatures is not stable we will
continue to the map function in listing 3.3, according to the flowchart in figure 3.1. When the
amount of signatures s stabilized we can construct the reduced LTS.

input: 〈#new, null〉 // new signature
temp: 〈#new, null〉
output: null

5 MAP(k,v)
emit(k, null)

REDUCE(k,v[])
SIG COUNTER.inc();

Listing 3.4: CountSigs

Constructing the reduced LTS

To construct the new LTS we need to convert the original LTS consisting of the triples s
α−→ t to

a minimized LTS according to the partitions. We can achieve that by substituting the partition
numbers creating the set of triples #s

α−→ #t. For a given transition the map function will pass
the signature for that state, and all the outgoing transitions, already containing the signature
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for the destination. The reduce function will than construct #s
α−→ #t for each given transition.

To remove the duplicate transitions we have the additional task in listing 3.6.

input: 〈s, (α, t,#t)〉 // transition
temp: 〈t, (SIG ,#t)〉 // signature

〈s, (LTS , α, t,#t)〉 // transition
output: 〈#s, (α,#t)〉 // transition with signatures

5

MAP(k,v)
// emit the signature for t
emit(v.t, (SIG , v.#t))

10 // emit the transition
emit(k.s, (LTS , v.α, v.t, v.#t))

REDUCE(k,v[])
select v from v[] where v.type==SIG

15 #s = v.#t
for v in v[] where v.type==LTS

emit(#s, (v.α, v.#t))

Listing 3.5: Construct LTS

Output to AUT

Using the sorting function of MapReduce we can remove all duplicate transitions. We auto-
matically sort and remove duplicate keys between the mapper and the reducer. The result will
be the reduced transition system.

input: 〈#s, (α,#t)〉 // transition
temp: 〈(#s, α,#t), null〉 // sort by transition
output: 〈#s, (α,#t)〉 // output transition

5

MAP(k,v)
emit((k.#s, v.α, v.#t), null)

REDUCE(k,v[])
10 emit(k,null)

Listing 3.6: Compact LTS
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Chapter 4

Branching Bisimulation

4.1 Definition

Branching bisimulation is quite similar, only it preserves the branching structure of the TS
better. Internally, the system can take as many unobservable steps (τ -steps) as needed, as
long as the observable or visible steps are identical, and when the starting and the end states
of the τ -steps are in the bisimulation relation with the same state. We will write the definition
by [33] in the style used in Chapter 3. [2, 33] More formally given two transition systems:

T Sδ = (Sδ,Actδ,→δ, iδ), δ = 1, 2

The branching bisimulation relation R over T Sδ is defined as R ⊆ S1 × S2

A. (i1, i2) ∈ R

B. for all (s1, s2) ∈ R it holds:

1. if s1
α−→ s′1 then there exists s2

τ−→∗ s′′2
α−→ s′′′2

τ−→∗ s′2
with (s1, s

′′
2) ∈ R ∧ (s′1, s

′′′
2 ) ∈ R ∧ (s′1, s

′
2) ∈ R and α ∈ Actδ\{τ}

2. if s2
α−→ s′2 then there exists s1

τ−→∗ s′′1
α−→ s′′′1

τ−→∗ s′1
with (s′′1 , s2) ∈ R ∧ (s′′′1 , s

′
2) ∈ R ∧ (s′1, s

′
2) ∈ R and α ∈ Actδ\{τ}

3. if s1
τ−→ s′1 then there exists s2

τ−→∗ s′2 with (s′1, s
′
2) ∈ R

4. if s2
τ−→ s′2 then there exists s1

τ−→∗ s′1 with (s′1, s
′
2) ∈ R

The above definition states that the two initial states in both transition systems need to
be bisimilar in condition A. Condition B guarantees that each pair of states (s1, s2) in R is
branching bisimilar. This means that s1 is bisimilar to s2 if and only if each action α, where
α 6= τ , to a state s′1 by s1 can be simulated by s2, possibly by first taking an arbitrary amount
of τ -steps, then taking the α-action followed by zero or more τ -steps. The step needs to be
simulated, meaning that the transitions need to end in a bisimilar state ((s′1, s

′
2) ∈ R).

If s1 takes a τ -step to s′1 then s1 and s2 are bisimilar if and only if s2 also takes zero or
more τ -steps to a state that is bisimilar to s′1.
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input: transition system T S = (S,→)
output: table pi, containing the new partitions

reduce()
5 for all states s ∈ S do pi[s]:=0 end for

repeat
// compute signatures
for all states s do sig[s]:=∅ end for
for all transitions (s,α,t) ∈→ do

10 // select all invisible steps
if not (α=τ and pi[s]=pi[t]) then

insertSig(s,α,pi[t]) end if
end for
// reassign pi according to sig

15 hashtable := ∅
count:=0
for all states s do

if not sig[s] in hashtable.keys() then
hashtable.insert(sig[s],count)

20 inc(count)
end if

end for
for all states s do

pi[s]:=hashtable.lookup(sig[s])
25 end for

until pi is stable

insertSig(t,a,ID)
if not((α,ID) ∈ sig[t]) then

30 sig[t]:=sig[t]
⋃
{(α,ID)}

for all s ∈ S such that s
τ−→ t and pi[s]=pi[t] do

insertSig(s,α,ID)
end for

end if

Listing 4.1: sequential implementation

4.2 Regular algorithm

The single threaded algorithm shown in listing 4.1 is the sequential algorithm in the work
by Blom and Orzan [7]. For each state a set is created similar as in listing 3.1 but with an
additional constraint. This constraint tells us to ignore all states that are invisible, meaning
all transitions containing a τ -step where the source and destination are in a shared partition.
This set of visible transitions is than propagated back along all invisible τ -transitions. The
moment the propagation along the invisible step is finished the signature for each state is
created based on these (propagated) sets.

In order to see how this algorithm works we will introduce a new beverage machine. In
figure 4.1 we can see our new beverage machine, which we claim is branching bisimilar with
the beverage machines we have seen before. We will go through each iteration of our algorithm
and calculate the signatures for each iteration, our steps can be seen in table 4.1. In this table
the columns represent each state of the beverage machine. The iterations are represented by
the rows. During the signature phase we create a signature for all the visible transitions. At
the transition phase you can see the exchange of the signatures between state 2 and 3. After
renumbering we will have a reduced LTS similar to machines shown in figure 2.1.
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Figure 4.1: Machine 03

4.3 MapReduce implementation

For our MapReduce implementation we needed a more elaborate scheme, allowing for the
nested loops in the original algorithm. The outer loop is similar to the original loop in the
strong bisimulation implementation. More specifically lines 7-13 correspond to the Label -step
in the flowgraph. The inner loop provides the propagation along the invisible transitions. In
the sequential implementation this happens on lines 30-32. Figure 4.2 shows this more intricate
scheme. The propagation step of the algorithm requires us to keep a set of all the states (Σs),
opposed to only passing a hash (#s) of the set.

Table 4.1: Branching bisimulation on the new beverage machine
State 1 2 3 4 5 Partitions

Iteration 0 Pi 0 0 0 0 0 1

Iteration 1
Signature {(c,0)} {(b,0)} {(a,0)} {(a,0),(b,0}) {(d,0)}
Traversed - {(a,0),(b,0}) {(a,0),(b,0}) - -
Pi 0 1 1 1 2 3

Iteration 2
Signature {(c,1)} {(b,2)} {(a,2)} {(a,2),(b,2}) {(d,0)}
Traversed - {(a,2),(b,2}) {(a,2),(b,2}) - -
Pi 0 1 1 1 2 3
New States 1 2 2 2 3
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4.3.1 Flowchart
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Figure 4.2: Flowchart - Branching Bisimulation with MapReduce
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4.3.2 Pseudo code

Reading from AUT file

A difference with branching simulation is that we have to pass the reversed transition to be
able to propagate the signature we are going to create along the invisible steps.

input: transition system counterk, textv) // we only use v, which contains our text
output: 〈t, (HASH ,#empty)〉 // pass the signature for state t

〈s, (LTS , a, t,#empty)〉 // pass the transition
〈t, (REV , s)〉 // pass the reversed transition

5

MAP(k,v)
#empty = []
// retrieve the transition from v
(s, α, t)← parse text(v)

10 // pass hash of the state
emit(t, (HASH ,#empty))
// pass the transition
emit(s, (LTS , a, t,#empty))
// pass reverse transitions for later use

15 emit(t, (REV , s))

Listing 4.2: Reading the AUT file (MAP)
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Creating new signatures

We split up our LTS in the visible and invisible part. The invisible and visible part we
respectively output with the type FWD PASS and BRA. We use all the visible transitions
for a given state to create the set sigset. This set we emit for this state and also coupled to
all the incoming transitions.

input: 〈s, (LTS , α, t,#t)〉 // the transition
temp: 〈s, (HASH ,#s)〉 // pass the hash

〈s, (LTS , a, t,#t)〉 // pass the transition
〈t, (REV , s)〉 // pass the reversed transition

5 output: 〈s, (SIG ,Σs)〉 // the signature set for s
〈s, (BRA, a, t)〉 // the visible transition
〈s, (FWD PASS , t)〉 // the invisible transition
〈r, (PAR, s,Σs)〉 // the reversed transitions

10 MAP(k,v)
// pass hash of the state
emit(t, (HASH ,#t))
// pass the transition
emit(s, (LTS , a, t,#t))

15 // pass reverse transitions for later use
emit(t, (REV , s))

REDUCE(k,v[])
// get the signature for the current state

20 select v ∈ v[] where v.type==HASH
fromsig = v.#s

// emit the invisible transitions
for v ∈ v[] where v.type==LTS ∧

(v.a == τ ∧ fromsig == v.#t)
25 emit(s, (FWD PASS , t))

// calculate the signatureset
for v ∈ v[] where v.type==LTS ∧

not (v.a == τ ∧ fromsig == v.#t)
sigset = sigset

⋃
(v.a, v.#t)

30 // emit the signatureset for this state
emit(k.s, (SIG , sigset))
// emit the visible transitions
for v ∈ v[] where v.type==LTS ∧

not (v.a == τ ∧ fromsig == v.#t)
35 emit(k.s, (BRA, v.a, v.t))

// emit the reversed transitions with the signatureset for propagation purposes
for v ∈ v[] where v.type==REV

emit(v.r, (PAR, k.s, sigset))

Listing 4.3: Creating new signatures
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First tau step

The first τ -step looks up the passed back signatures in PAR for all the transitions in FWD PASS .
We add all the new signatures to this state and pass this new set to all the propagating invisible
transitions. We count all the new signatures that are added in a global counter.

input: 〈s, (SIG ,Σs)〉 // signatureset for s
〈s, (BRA, a, t)〉 // visible transition
〈s, (FWD PASS , t)〉 // invisible transition
〈r, (PAR, s,Σs)〉 // reversed transition for propagation

5 temp: 〈s, (SIG ,Σs)〉 // signatureset for s
〈s, (BRA, a, t)〉 // visible transition
〈s, (PAR, t,Σt)〉 // invisible transition for propagation
〈s, (FWD PASS , t)〉 // invisible transition
〈s, (BWD PASS , r)〉 // reversed invisible transition

10 output: 〈s, (SIG ,Σs)〉 // signatureset for s
〈s, (BRA, a, t)〉 // visible transition
〈r, (PRE , s,Σs)〉 // invisible transition

MAP(k,v)
15 // emit the invisible transitions reversed

if (v.type==FWD PASS )
emit(v.t, (BWD PASS , k.s))

// pass through
emit(k,v)

20

REDUCE(k,v)
sigs = ∅
newsigs = ∅
// pass the visible transitions

25 for v ∈ v[] where v.type==BRA
emit(k,v)

// get the signatureset for s
select v ∈ v[] where v.type==SIG

sigs = v.Σs
30 // get all the invisible transitions

for v ∈ v[] where v.type==FWD PASS
// get the signatureset from the reversed transitions
for w ∈ v[] where v.type==PAR ∧ v.t == w.t

newsigs = newsigs
⋃

(w.Σt)
35 // emit how much new signatures we found

SIG COUNTER.inc(|newsigs\sigs|);
// add the new signatureset to the signatureset
sigs = sigs

⋃
newsigs

// emit our new signatureset
40 emit(s, (SIG , sigs))

// emit our invisible transitions with the signatureset
for v ∈ v[] where v.type==BWD PASS

emit(v.r, (PRE , k.s, sigset))

Listing 4.4: First tau step
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Propagating along tau steps

The map-function copies the invisible sets for the propagation to BWD PASS . In the reducer
we emit the visible states. We calculate the propagating signatures and pass these for the
current state, and also coupled to the invisible transitions for propagation. This step will be
repeated until no more changes in the signatures occur.

input: 〈s, (SIG ,Σs)〉 // signatureset for s
〈s, (BRA, a, t)〉 // visible transition
〈s, (PRE , t,Σt)〉 // invisible transition

temp: 〈s, (SIG ,Σs)〉 // signatureset for s
5 〈s, (BRA, a, t)〉 // visible transition

〈s, (PRE , t,Σt)〉 // invisible transition
〈s, (BWD PASS , r)〉 // reversed invisible transition for propagation

output: 〈s, (SIG ,Σs)〉 // signatureset for s
〈s, (BRA, a, t)〉 // visible transition

10 〈r, (PRE , s,Σs)〉 // invisible transition

MAP(k,v)
for v ∈ v[] where v.type==PRE

emit(v.t, (BWD PASS , k.s))
15 emit(k,v)

REDUCE(k,v)
sigs = ∅
newsigs = ∅

20 // pass the visible transitions
for v ∈ v[] where v.type==BRA

emit(k,v)
// get the signatureset for s
select v ∈ v[] where v.type==SIG

25 sigs = v.Σs
// get all the invisible transitions
for v ∈ v[] where v.type==PRE

newsigs = newsigs
⋃

(w.Σt)
// emit how much new signatures we found

30 SIG COUNTER.inc(|newsigs\sigs|);
// add the new signatureset to the signatureset
sigs = sigs

⋃
newsigs

// emit our new signatureset
emit(s, (SIG , sigs))

35 // emit our invisible transitions with the signatureset
for v ∈ v[] where v.type==BWD PASS

emit(v.r, (PRE , k.s, sigset))

Listing 4.5: Propagating along tau
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Reconstructing LTS

Based on the set of signatures for a given set we create a hash. This hash is emitted for the
state. Both the visible and the invisible transitions are emitted with the to-state as key. The
reducer retrieves the hash for a given state s. This hash is then added to all the transitions, and
the to- and from-states are flipped to recreate the original transitions with the new signatures
added.

input: 〈s, (SIG ,Σs)〉 // signatureset for s
〈s, (BRA, a, t)〉 // visible transition
〈s, (PRE , t,Σt)〉 // invisible transition

temp: 〈s, (HASH ,#s)〉 // hash for s
5 〈s, (LTS , a, r,#empty)〉 // transitions for s

output: 〈r, (LTS , a, s,#s)〉 // transitions for s

MAP(k,v)
sigset = ∅

10 // get the signatureset for s
select v ∈ v[] where v.type==SIG

sigset = v.Σs
// create a new signature for s and emit it
emit(s, (HASH , hash(sigset)))

15 // emit all visible transitions reversed
for v ∈ v[] where v.type==PRE

emit(v.t, (LTS , v.a, k.s,#empty))
// emit all invisible transitions reversed
for v ∈ v[] where v.type==BRA

20 emit(v.t, (LTS , τ, k.s,#empty))

REDUCE(k,v)
// get the signature for s
select v ∈ v[] where v.type==HASH

25 sig = v.\#s
// add the signature to the transitions and un−reverse them
for v ∈ v[] where v.type==LTS

emit(v.r, (LTS , v.a, k.s, sig))

Listing 4.6: Reconstructing LTS

Counting signatures

We emit all the signatures and after sorting we can simply count all the unique signatures.

input: 〈s, (LTS , a, t,#t)〉 // transitions
temp: 〈(#s), ) // signature for s
output: null

5 MAP(k,v)
// emit the signature
emit((#t), )

REDUCE(k,v[])
10 // count the signatures

SIG COUNTER.inc()

Listing 4.7: Counting signatures
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Constructing the LTS

To construct the new LTS is similar to the construction for the strong bisimulation: we need
to convert the original LTS consisting of the triples s

α−→ t to a minimized LTS according to
the partitions. We can achieve that by substituting the partition numbers creating the set
of triples #s

α−→ #t. For a given transition the map function will pass the signature for that
state, and all the outgoing transitions, already containing the signature for the destination.
The reduce function will then construct #s

α−→ #t for each given transition.

input: 〈s, (LTS , a, t,#t)〉 // transition for s
temp: 〈s, (HASH ,#s)〉 // signature for s

〈s, (LTS , a, t,#t)〉 // transitions for s
output: 〈(#s, a,#t), ()〉 // transition for s

5

MAP(k,v)
for v ∈ v[]

// emit the transition
emit(k,v)

10 // emit the signature for t
emit(t, (HASH ,#t))

REDUCE(k,v)
// retrieve the hash for

15 select v ∈ v[] where v.type==HASH
sig = v.\#s

// emit the transitions
for v ∈ v[] where v.type==LTS

emit((sig, v.a, v.#t), ())

Listing 4.8: Constructing the LTS

Compacting the LTS

For the compacting we can leverage MapReduce to output a list without duplicate transitions.

input: 〈(#s, a,#t), ()〉 // transition for s
temp: 〈(#s, a,#t), ()〉 // transition for s
output: 〈(#s, a,#t), ()〉 // transition for s

5 MAP(k,v)
emit(k,null)

REDUCE(k,v[])
emit(k,null)

Listing 4.9: Compacting the LTS
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Chapter 5

Implementation & Optimization

We would like to elaborate a bit on the more technical details of the code of both the algorithms.
The code as shown in the pseudo code above, along with the flow graphs should give an
impression on how to implement bisimulation reduction with MapReduce. However the actual
implementation in Java with the MapReduce framework is a bit more elaborate.

5.1 Implementation

5.1.1 File format

Reading the model requires us to have the model in a format that is readable using the
MapReduce framework. A common and simple way to read files in MapReduce is to retrieve
data from a text file. Therefore we have chosen to first format our models in the Aldebaran
format. Between each iteration however it is not recommended to use a text based file format.
Hadoop offers the use of sequence files. The sequence files can contain the key value pairs in a
binary format, which saves a lot of space. For the signature counting in the strong bisimulation
we have chosen a separate approach. To reduce the bandwidth used for the counting we output
a separate file containing only the signatures during the signature creation. In a small scale
experiment we experienced a minor speed-up of up to 2x for large models.

5.1.2 Signatures

The signatures themselves needed to have a few properties. First of all, the signatures need
to be relatively small, we achieved that by using a hashing function. However, we want to be
sure we do not have any hash collisions. A hash collision could mean that two states suddenly
could have a similar signature when they are not supposed to have that. An easy way to make
sure that collisions are virtually impossible is to use a cryptographic hash. The cryptographic
hash we chose (SHA-256) has such low chances on a hash collision, that we are safe to assume
that it will never happen. A quick calculation, assuming that SHA-256 is a proper hashing
algorithm, learns that based on the birthday problem[3] we can approximate the chance p on
a collision given n signatures to be:

p ≈ 1
2

( n

2128

)2
Meaning that when we have significantly less states than 2128 we can safely ignore collisions.
The disadvantage of using a cryptographic hash is that they are often designed to be slow
in order to prevent attacks on e.g. hashed passwords[28]. We decided that SHA-256 is still
reasonably fast with the advantage that we can be sure that we will not have hash collisions.

5.1.3 Technicalities

As you might remember, between each map and reduce phase the keys get sorted and coupled
to a list of values. As can be seen in the flowcharts in figure 3.1&4.2 we have keys that are pairs
with a type and a state. To order these keys correctly we had to rewrite a custom partitioner
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and grouper. We have written this partitioner in such a way that all key value pairs with the
same state in the key will be offered to the same reducer. However, the keys will be sorted
based on the type of the key-value pair. This way we can ensure that the values will always
arrive in a predetermined order. Otherwise we could for example not retrieve the signature of
a key before we attach it to later transitions as can be seen in listing 3.3.

If you look at listing 4.3 you can see that we output the key value pair ({PAR, r}, {s,Σs}).
The Σs however is quite a large variable. It basically is a set containing pairs with a label
and a byte array. To make sure that our value is correctly written to disk by Hadoop required
research in the data structures in Hadoop that allow this.

5.2 Potential Optimizations

Designing the branching bisimulation algorithm we thought about some worst case scenarios.
A possible scenario is that we might get very long invisible tau steps, which requires a lot
of iterations. Observing that iterations are quite expensive with our algorithm, we tried to
devise a solution. Our proposed solution was to try and cut some of these long tau steps in
pieces. We decided to focus at states that have both visible and invisible outgoing transitions.
By simply ignoring all the invisible steps for these states we could stop the propagation of
long tau steps. Our conjecture was, that in subsequent iterations these signatures would still
propagate and thus the branching bisimulation would still be correct. However this suspicion
proved wrong. As a counter example we will take the beverage machine from figure 4.1. When
we would ignore the silent steps in state 2 and 3 they would be split up after the first iteration.
This is a coarser partition than what should be allowed, because state 2,3&4 belong to the
same partition. Therefore we will not further pursue this option.

Discussing the previous optimization, another possible optimization came up. It would of
course be allowed to make our partition less coarse, if done the correct way. A possibility is
to not use all the possible labels in the calculation of a signature. As long as our last (and
stabilizing) refinement does use all the labels. While propagating along the silent steps we
could keep track which labels are still propagating. Labels that take a long time to propagate
could be ignored for that round. In later rounds the long tau chains responsible for this
behavior might been broken up and allow for a faster propagation off the labels.

A different approach is to use the transitive closure for all the (non-branching) tau-steps.
This would prevent the massive amount of inner iterations, since all the signatures propagate
at once. The time-complexity for n states is O(log(n)). However, in the worst case the required
space could be up to O(n2) [24]. We have done a small scale experiment and calculated the
transitive closure for a subset of models. On average the required space for the transitive
closure was in excess of 100 times the amount of non-branching tau-steps. Therefore we
concluded that the use of the full transitive closure for the propagation along the tau-steps is
not a promising optimization.
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Chapter 6

Experiments

We have benchmarked both of our algorithms. To run the models we needed a cluster of several
computers to run this on. Luckily we were in the position to make use of the CTIT-cluster of
the University of Twente. We have benchmarked both the strong and branching bisimulation
algorithms on a set of models. This set of models describes several protocols and models suited
for benchmarking. The size of the models varied from small to very large. The smallest model
only has 289 states and 1224 transitions. The largest model available has 7.041.674.929 states,
this is already beyond the maximal value of an unsigned 32 bit integer which can be maximal
232 − 1 (4.294.967.295).

6.1 Experimental setup

For our setup we have used the cluster of CTIT. This cluster consists of 44 nodes for the calcula-
tion of our MapReduce tasks. The nodes each have a single Opteron 4386 processor and 64GB
of memory. Our main program runs on a central node, from where it offers the MapReduce
tasks for processing by the cluster. This main program also logs our benchmark information.
We keep track of information relevant about the model like the amount of signatures after
each iteration. We also keep track of the time spend for each iteration.

6.1.1 Models

Our models are part of the VLTS-benchmark[14]. The state space is converted using LTSmin[10]
to the Aldebaran format. The Aldebaran format is very suitable to read with MapReduce since
it is a plain text file containing each transition on a separate line. For the larger models this
is a serious drawback, since the files will get too large for storing as a simple text file. Since
for larger models we can therefore not use the Aldebaran format we looked at other formats
offered by LTSmin. We eventually decided on using the ”.dir” format, which is an uncom-
pressed variant of the Generic Container Format used by LTSmin[10]. We have developed a
separate program that can load these uncompressed state spaces and convert them directly
to the sequence file format we already use internally in our algorithm. We have added the
lift 7-model, which is similar to cwi 2165 8723 (lift 5) and cwi 33949 165318 (lift 6), except
for the size of the model. This allows us for easy comparison on the scaling of the algorithm
with respect to the state space. The VLTS-benchmark also includes vasy 40 60, a model that
has a state space specifically designed to require a lot of transitions with 20002 transitions for
strong bisimulation reduction. The full information on all the models can be found in table
8.1.

6.1.2 Results

By looking at the metrics for several models we quickly could deduce a few crucial facts about
model checking with hadoop. The execution time for each iteration of a given model is roughly
similar. This can be explained by the fact that for each iteration we pass the whole transition
system as supplied at the start of the reduction process. Since we cannot know how the coarsest
partition looks like there is no possibility to prune duplicate transitions before the final coarsest
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partition is found. This can be easily shown by defining a LTS where there exist two labels,
a and b. Initially all the states belong to one single partition. Now we could merge all the
duplicate transitions we would have a lot of a-transitions going from this single partition to this
same partition. It is easy to see that without knowing the final (coarsest) partitioning we might
merge a lot of transitions that in the final LTS should be separate transitions. The similar
calculation times per iteration therefore tells us that the main time spend in each iteration is
corresponding to the amount of transitions of our original model. An advantage of this is that
with a single execution of the algorithm we still can have a statistically fair estimation of the
execution time for each transition, by taking the average of the time spend for each iteration
of a given model. In the tables below you can see the average execution time for a iteration on
a given model, together with the standard deviation over this set. The small deviation tells us
that data-throughput is the main bottleneck for our implementation, and we thus have a fair
approximation. Taking the average for the MapReduce part of the algorithm also has another
advantage. Since the cluster is shared with other users the scheduler may schedule some other
tasks for other users in between our execution. In the averaging the incidental interleaving for
other tasks is therefore ignored.

6.2 Strong bisimulation

We ran our bisimulation algorithm for the whole suite, increasing the size of the model for
each run. In table 6.1 the results for these runs can be viewed. Each row starts with the model
name and the amount of states for the given model, we than have the averaged time for each
”BiSim”-action (see figure 3.1). The column ”Sig” contains the time used for each signature
counting. The last three columns show the total amount of iterations used for the calculation,
the cumulative time for the reduction of the model, and the amount of states in the reduced
model.

6.2.1 Results

When we look at our table we can see that the time spent in signature counting takes slightly
less time than the signature creation. However, the time needed per iteration does scale with
the amount of initial transitions. We can explain the difference by looking at the amount of
data that is transferred for the signature calculation opposed to the signature counting. For
the signature counting we read and write for each transition a single signature in the mapping
phase. The reducer only counts the amount of signatures. The signature creation for each
transition we read and write the whole transition, and all the incoming transitions for that
transition. We can conclude that we have to transfer more than twice the amount of data.

We now want to have a more detailed look at how our algorithm scales. In order to
create a clear picture we have decided to plot the initial amount of transitions against the
time spend per iteration. We have chosen for the initial amount of transitions because it is a
clear indicator of the model size. Since the total time spend on calculation increases with the
amount of iterations needed for the reduction we can not do a fair comparison between the
models. Therefore a clearer indication of scalability is the time needed per iteration. Figure
6.1 shows this in two figures. The first figure shows us all the models on a logarithmic scale
for both axis allowing for the larger models to fit within the frame. The second figure shows
us the models with less than 108 transitions.

6.2.2 Conclusion

From the figures we can see that up to 10 million transitions the execution time per iteration
is not increasing exponentially. We can also see that the minimum time per iteration is around
30 seconds, probably this has to do with the startup costs for each MapReduce phase. Above
107 transitions the amount of transitions per second we process seems to be increasing. Our
second figure shows a close-up for all the models with less than 108 transitions. We indeed see
a linear increase in this lower region.
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model name transitions BiSim Sig Iterations Time Reduced
cwi_1_2 2387 27± 3s 24± 4s 27 0:23:35 1132
cwi_142_925 925.429 34± 5s 22± 3s 16 0:15:41 3410
cwi_214_684 684.419 26± 1s 22± 0s 86 1:08:02 77.292
cwi_2165_8723 8.723.465 34± 1s 23± 0s 66 1:03:57 31.906
cwi_2416_17605 17.605.592 44± 3s 23± 1s 42 0:49:35 95.610
cwi_3_14 14.552 24± 1s 21± 0s 61 0:45:33 62
cwi_33949_165318 165.318.222 176± 21s 33± 2s 91 5:23:22 122.035
cwi_371_641 641.565 26± 1s 23± 1s 73 0:59:25 33.994
cwi_566_3984 3.984.157 28± 1s 23± 0s 16 0:15:04 15.518
cwi_7838_59101 59.101.007 101± 11s 26± 1s 94 3:23:45 966.470
lift7 2.875.174.785 1751± 472s 102± 15s 120 53:29:21 441.015
vasy_0_1 1224 24± 0s 21± 0s 5 0:03:48 9
vasy_10_56 56.156 24± 1s 21± 0s 33 0:24:46 2112
vasy_11026_24660 24.660.513 59± 4s 29± 2s 50 1:15:24 882.341
vasy_1112_5290 5.290.860 33± 0s 28± 3s 4 0:05:10 265
vasy_116_368 368.569 25± 1s 22± 1s 29 0:22:43 116.456
vasy_12323_27667 27.667.803 62± 7s 30± 2s 35 0:55:59 996.774
vasy_1_4 4464 23± 1s 21± 0s 7 0:05:11 28
vasy_157_297 297.000 25± 1s 22± 0s 27 0:21:12 4289
vasy_164_1619 1.619.204 26± 1s 22± 2s 6 0:05:19 1136
vasy_166_651 651.168 25± 1s 22± 1s 10 0:08:01 83.436
vasy_18_73 73.043 24± 1s 21± 0s 22 0:16:26 4087
vasy_25_25 25.216 24± 0s 21± 0s 2 0:01:32 25.217
vasy_2581_11442 11.442.382 38± 2s 23± 0s 21 0:22:58 2.581.374
vasy_386_1171 1.171.872 26± 1s 22± 1s 8 0:06:48 113
vasy_4220_13944 13.944.372 39± 2s 25± 1s 39 0:43:25 1.356.477
vasy_4338_15666 15.666.588 42± 2s 23± 0s 21 0:24:22 2.581.374
vasy_52_318 318.126 26± 1s 21± 0s 15 0:11:44 8142
vasy_574_13561 13.561.040 42± 3s 23± 0s 5 0:06:54 3577
vasy_5_9 9676 23± 0s 21± 1s 5 0:03:45 145
vasy_6020_19353 19.353.474 49± 4s 26± 8s 9 0:13:36 7168
vasy_6120_11031 11.031.292 37± 2s 25± 1s 21 0:23:29 5199
vasy_65_2621 2.621.480 28± 1s 22± 1s 4 0:03:54 65.536
vasy_66_1302 1.302.664 25± 1s 21± 0s 4 0:03:25 66.929
vasy_69_520 520.633 25± 0s 22± 1s 12 0:09:27 69.754
vasy_720_390 390.999 26± 0s 21± 1s 5 0:04:00 3292
vasy_8082_42933 42.933.110 73± 8s 25± 1s 10 0:18:05 408
vasy_8_24 24.411 23± 1s 21± 1s 14 0:10:25 416
vasy_83_325 325.584 25± 1s 21± 1s 10 0:07:50 83.436
vasy_8_38 38.424 24± 1s 21± 1s 5 0:03:48 219

Table 6.1: Results for the strong bisimulation

6.3 Branching bisimulation

We ran our branching bisimulation algorithm for the same models as for the strong bisimu-
lation. We sorted the models based on the iterations needed for the strong bisimulation. In
table 6.2 the results for these runs can be viewed. Each row starts similar to the set-up in
table 6.1, with the model name and the amount of transitions for the given model, we than
have the averaged time for each ”LABEL”-action (see figure 4.2). The column ”tau” contains
the average time over all the tau-steps, and the column ”build” is the time taken for actual
signature generation. The last three columns show the total amount of iterations used for the
calculation, the cumulative time for the reduction of the model, and the amount of states in
the reduced model.
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(a) Logarithmic plot (b) Linear plot (under 108)

Figure 6.1: Iteration-times vs state space for Strong bisimulation

6.3.1 Results

When we look at our table we can see result quite similar to that shown for strong bisimulation.
In general the ”label”-step takes the most time, this is when the signature sets are created and
a lot of tuples are passed. During the ”tau”-steps we have a large signature set that slowly
grows. This set is not trivially small, so we infer that the time spent is in part because of the
traversal of and read/write-operations on this large set. The ”build”-step has to read this large
signature set, but only has to write one hash for each set, which might explain the quicker
iterations by the ”build”-step. Overall time is significantly higher than the strong bisimulation
implementation, which is not surprising given the addition of several tau-steps. Using tables
6.1,6.2 and 8.1 we can focus on few models that have zero τ -transitions. In theory given the
absence of τ -transitions, the strong and branching implementation should give the same result.
Moreover, since the branching implementation always executes one (unnecessary) τ -step we
should expect the branching implementation to take twice as long as the strong implemen-
tation. If we look at models vasy 0 1, vasy 1112 5290,vasy 25 25,vasy 574 13561, and
vasy 65 2621 we can indeed see that there is a factor 2 between the total execution time for
branching and strong bisimulation for these models.

6.3.2 Conclusion

From the figures we can see that for branching bisimulation up to 1 million transitions the
execution time per iteration a linear fit can be made. We can also see that the minimum
time per iteration is still around 30 seconds. Since this was also the case with the strong
bisimulation reduction we are strengthened in our conjecture this has to do with the startup
costs for each MapReduce Job. Above 106 transitions the amount of transitions per second
we process seems to be increasing. Our second figure shows a close-up for all the models with
less than 107 transitions. We indeed see a linear increase in this lower region.

6.4 Additional experiments

To check the speedup using a single file in sequential file-format vs the Aldebaran file-format
we ran the lift5 model (cwi 2165 8723) from both formats for comparison. We found that
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model name transitions calc tau build Iterations (tau) Time Reduced
cwi_1_2 2387 27± 2s 27± 2s 27± 2s 8(128) 1:07:38 67
cwi_142_925 925.429 29± 1s 29± 2s 29± 2s 6(30) 0:22:58 23
cwi_214_684 684.419 29± 2s 29± 2s 29± 1s 18(840) 7:00:02 478
cwi_2165_8723 8.723.465 34± 2s 31± 2s 31± 3s 14(696) 6:20:39 4256
cwi_2416_17605 17.605.592 34± 0s 35± 3s 32± 2s 2(51) 0:34:22 730
cwi_3_14 14.552 27± 0s 27± 2s 27± 0s 2(122) 0:57:08 2
cwi_33949_165318 165.318.222 113± 3s 85± 5s 70± 3s 16(1080) 26:39:44 12.463
cwi_371_641 641.565 29± 1s 29± 2s 28± 2s 6(195) 1:40:50 2134
cwi_566_3984 3.984.157 31± 0s 31± 2s 29± 2s 6(33) 0:26:41 198
cwi_7838_59101 59.101.007 84± 5s 59± 3s 51± 3s 46(2016) 35:06:43 62.031
vasy_0_1 1224 24± 2s 27± 0s 27± 0s 5(5) 0:08:58 9
vasy_10_56 56.156 28± 2s 27± 2s 27± 3s 33(42) 1:02:34 2112
vasy_11026_24660 24.660.513 46± 2s 43± 2s 38± 2s 44(201) 3:52:30 775.618
vasy_1112_5290 5.290.860 31± 3s 31± 2s 30± 2s 4(4) 0:09:14 265
vasy_116_368 368.569 29± 2s 29± 2s 28± 2s 17(406) 3:31:49 22.398
vasy_12323_27667 27.667.803 48± 2s 44± 2s 38± 2s 31(149) 2:53:32 876.944
vasy_1_4 4464 28± 0s 25± 3s 27± 0s 2(2) 0:03:38 4
vasy_157_297 297.000 29± 3s 28± 3s 29± 1s 21(63) 0:58:04 3038
vasy_164_1619 1.619.204 29± 1s 29± 2s 28± 2s 5(7) 0:10:41 992
vasy_166_651 651.168 29± 4s 29± 2s 29± 2s 6(18) 0:16:43 42.195
vasy_18_73 73.043 28± 3s 27± 2s 28± 2s 14(81) 0:54:48 2326
vasy_25_25 25.216 27± 0s 27± 0s 27± 0s 2(2) 0:03:42 25.217
vasy_2581_11442 11.442.382 36± 2s 33± 2s 32± 2s 14(56) 0:53:17 704.737
vasy_386_1171 1.171.872 29± 1s 29± 1s 29± 0s 5(20) 0:16:57 71
vasy_4220_13944 13.944.372 37± 3s 34± 2s 32± 2s 27(124) 1:54:49 1.186.266
vasy_4338_15666 15.666.588 38± 1s 34± 2s 34± 2s 14(56) 0:57:11 704.737
vasy_52_318 318.126 29± 0s 26± 3s 29± 2s 4(11) 0:10:33 66
vasy_574_13561 13.561.040 37± 3s 31± 2s 32± 2s 5(5) 0:12:19 3577
vasy_5_9 9676 25± 4s 27± 2s 27± 0s 5(10) 0:11:13 112
vasy_6020_19353 19.353.474 42± 0s 39± 3s 37± 0s 2(12) 0:12:51 256
vasy_6120_11031 11.031.292 36± 1s 34± 2s 32± 3s 16(64) 1:03:25 2505
vasy_65_2621 2.621.480 29± 2s 29± 0s 29± 0s 4(4) 0:08:25 65.536
vasy_66_1302 1.302.664 29± 0s 29± 2s 26± 2s 3(7) 0:07:47 51.128
vasy_69_520 520.633 29± 2s 29± 2s 28± 3s 12(24) 0:27:25 69.753
vasy_720_390 390.999 29± 3s 29± 4s 27± 3s 5(5) 0:08:45 3292
vasy_8082_42933 42.933.110 63± 1s 52± 2s 40± 2s 6(18) 0:30:21 290
vasy_8_24 24.411 27± 2s 27± 1s 27± 0s 10(62) 0:41:29 170
vasy_83_325 325.584 29± 1s 28± 3s 29± 2s 6(18) 0:16:43 42.195
vasy_8_38 38.424 28± 2s 27± 2s 27± 0s 5(5) 0:08:56 193

Table 6.2: Results for the branching bisimulation

both the implementations took respectively 129 and 140 seconds for the first iteration (where
the model is loaded). We attribute the lack of difference between the two implementations to
the fact that both files are not offered in a split form to Hadoop, but instead are both a single
big file.

We have ran a small benchmark on the speedup for using smaller key-value pairs in the
signature counting for the strong bisimulation. As stated in subsection 5.1.1 the use of smaller
key-value pairs led to a maximum 2x-speedup.

In figure 7.1 we have plotted the execution time for branching and strong bisimulation for
the lift-models. We have done this both for our implementation and the existing distributed
bisimulation reduction implemented in LTSmin[26] using a similar algorithm[8, 9].
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(a) Logerithmic plot (b) Linear plot (under 107)

Figure 6.2: Iteration-times vs state space for Branching bisimulation

32



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In Chapter 3 we introduced an algorithm for strong bisimulation reduction using MapReduce.
The algorithm is based on the work by Blom and Orzan. We have studied the distributed
strategy used by Blom and Orzan and created an algorithm without the need for central
tables. We have introduced the use of cryptographic hashes for the calculation of partitions
to circumvent the lack of communication between workers. In Chapter 4 we have introduced
Branching bisimulation and created an additional algorithm to allow Branching bisimulation
with MapReduce. The differences in complexity of these implementations can be seen when
comparing figure 3.1 and 4.2. The resulting algorithms were benchmarked on the CTIT cluster
using the VLTS-benchmark set[14]. The resulting reduced models validated in both cases
against models that are reduced with the existing toolset LTSmin[26]. From all the metrics
we have compiled two tables (tabel 6.1&6.2) and created two graphs showing the scaling of
time versus the state space (figure 6.1&6.2).

During our experiments we saw that the execution-time for a MapReduce job takes a
relatively long time. We have estimated that there is a startup cost for each job of circa 30
seconds. This means that the reduction of transition systems that need a lot of iterations
can be very high. Extreme cases such as the vasy 40 60 which take over 20.000 iterations
therefore could not be benchmarked within an acceptable time-frame. Each iteration all of
our data is passed over the disk. Therefore it is not unreasonable to see a factor 10-100 slow
down compared to a mpi-based implementation (e.g. LTSmin). From our experiments we
have concluded that the separate iteration times of our algorithm scale linearly up to 108

transitions for strong bisimulation and 107 for branching bisimulation. On larger models the
iteration time increases exponentially, therefore we where not able to benchmark our largest
model (lift8).

7.2 Comparison with existing tools

We have taken the MapReduce benchmark for the lift5, lift6 and lift7-model and compared
it with the execution time for the existing distributed implementation in LTSmin. The results
are shown in figure 7.1. Note that the vertical axis is logarithmic. Here we can clearly see
the price of the (slow) iteration in MapReduce, showing a factor 100 between the MapReduce
implementation and an existing state-of-the-art tool. Based on this graph our conjecture is
that our MapReduce implementation will not be a viable alternative for existing tools, given
our current framework.

7.3 Hadoop and MapReduce as a Programming Paradigm
for Model Checking

In two recent papers Banhos Filho and Yero and Hinkka, Lehto, and Heljanko proposed that
both Hadoop and Spark[37] are indeed not suited for tasks that require a great amount of iter-
ations[4, 23]. Therefore we feel safe to conclude that at the moment frameworks implementing
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MapReduce are not a suitable platform for high-iterative tasks, even with solutions optimized
for iterative tasks[36]. Since a lot of model checking algorithms have an iterative nature[2] these
are not suited for MapReduce. Bisimulation reduction (e.g. strong, branching, weak) is a great
example. But also algorithms using least fix point or greatest fix point calculations, such as
Computational Tree Logic (CTL) or Linear Temporal Logic (LTL)[2]. A model checking tech-
nique that is a possibility is the exploration of large state spaces. However, creation of large
state spaces that will not fit on a researchers machine have limited value, since we concluded
that bisimulation reduction or full fledged checkers using LTL or CTL is not feasible using
MapReduce. However, by severely restricting oneself, it could be possible to check properties
written in First Order Logic[2] that do not require large amounts of iterations.

We conclude that MapReduce could be a valuable paradigm for model checking tools, given
that:

• The overhead per iteration is very low.

• Map-tasks are able to merge input streams, allowing us to temporally ”park” data.

• Additionally central data structures are allowed to prevent large data-throughputs.

7.4 Future Work

The availability and accessibility of commercial clusters such as Amazon EC2 is an exciting
development. Researchers not possessing access to large clusters can now run very CPU- or
memory-intensive tasks at a relatively low cost. With model checking we have chosen a field
that uses intensive tasks and vast amounts of data. The choice for MapReduce could open
possibilities for algorithms that are easily scalable and deployed on third party clusters. During
our research we found that the performance of MapReduce in Hadoop is heavily bound by the
overhead on separate iterations. Since most algorithms in model checking are dependent on
iterative processes we can therefore advice that the use of MapReduce is promising, given that
the future frameworks offer less time-expensive iterations.
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Figure 7.1: LTSmin vs MapReduce for lift models
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model name states transitions tau-transitions labels
branchingfactor
avg [min-max]

deadlocks livelocks deterministic

cwi_1_2 1.952 2.387 2.215 26 1,22 [1-16] - - -
cwi_142_925 142.472 925.429 862.298 7 6,50 [0-9] X - -
cwi_214_684 214.202 684.419 550.611 5 3,20 [0-7] X X -
cwi_2165_8723 2.165.446 8.723.465 3.830.225 26 4,03 [1-14] - X -
cwi_2416_17605 2.416.632 17.605.592 17.490.904 15 7,29 [0-14] X X -
cwi_3_14 3.996 14.552 14.551 2 3,64 [0-6] X - -
cwi_33949_165318 33.949.609 165.318.222 74.133.306 31 4,87 [1-17] - X -
cwi_371_641 371.804 641.565 445.600 61 1,73 [1-25] - X -
cwi_566_3984 566.64 3.984.157 3.666.614 11 7,03 [0-10] X - -
cwi_7838_59101 7.838.608 59.101.007 22.842.122 20 7,54 [3-13] - X -
lift_7 501.505.138 2.875.174.785 NB 36 NB - X -
vasy_0_1 289 1.224 0 2 4,24 [4-8] - - -
vasy_1_4 1.183 4.464 1.213 6 3,77 [2-5] - - -
vasy_10_56 10.849 56.156 2.680 12 5,18 [4-6] - - X
vasy_11026_24660 11.026.932 24.660.513 2.748.559 119 2,24 [0-13] X - -
vasy_1112_5290 1.112.490 5.290.860 0 23 4,76 [3-6] - - X
vasy_116_368 116.456 368.569 263.296 21 3,16 [1-8] - - -
vasy_12323_27667 12.323.703 27.667.803 3.153.502 119 2,25 [0-13] X - -
vasy_157_297 157.604 297 31.798 235 1,88 [0-48] X - X
vasy_164_1619 164.865 1.619.204 109.910 37 9,82 [1-16] - - -
vasy_166_651 166.464 651.168 91.392 211 3,91 [0-96] X - -
vasy_18_73 18.746 73.043 39.217 17 3,90 [1-6] - - -
vasy_25_25 25.217 25.216 0 25.216 1,00 [0-1] X - X
vasy_2581_11442 2.581.374 11.442.382 2.508.518 223 4,43 [0-97] X - -
vasy_386_1171 386.496 1.171.872 122.976 73 3,03 [1-38] - - -
vasy_40_60 40.006 60.007 20.003 3 1,50 [1-2] - - X
vasy_4220_13944 4.220.790 13.944.372 2.546.649 223 3,30 [0-97] X - -
vasy_4338_15666 4.338.672 15.666.588 3.127.116 223 3,61 [0-97] X - -
vasy_5_9 5.486 9.676 2.094 31 1,76 [0-6] X - -
vasy_52_318 52.268 318.126 130.752 17 6,09 [1-17] - X -
vasy_574_13561 574.057 13.561.040 0 141 23,62 [1-64] - - X
vasy_6020_19353 6.020.550 19.353.474 17.526.144 511 3,21 [2-260] - X -
vasy_6120_11031 6.120.718 11.031.292 3.152.976 125 1,80 [0-16] X - -
vasy_65_2621 65.537 2.621.480 0 72 40,00 [40-40] - - X
vasy_66_1302 66.929 1.302.664 117.866 81 19,46 [2-42] - - -
vasy_69_520 69.754 520.633 1 135 7,46 [0-35] X - -
vasy_720_390 720.247 390.999 1 49 0,54 [0-39] X - X
vasy_8_24 8.879 24.411 8.534 11 2,75 [1-5] - - -
vasy_8_38 8.921 38.424 2.916 81 4,31 [0-10] X - X
vasy_8082_42933 8.082.905 42.933.110 2.535.944 211 5,31 [0-48] X - X
vasy_83_325 83.436 325.584 45.696 211 3,90 [0-96] X - -

Table 8.1: Models used during experimentation [14]
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