
G O S L O W : D E S I G N A N D I M P L E M E N TAT I O N O F A S C A L A B L E C A M E R A
A R R AY F O R H I G H - S P E E D I M A G I N G

cecill e . etheredge

Computer Architecture for Embedded Systems (CAES)
Faculty of Electrical Engineering, Mathematics and Computer Science

University of Twente

July, 2016

[August 25, 2016 at 17:40 – classicthesis]

A B S T R A C T

This thesis investigates the viability of using multiple low-cost compo-
nents to create something much bigger: an embedded system capable
of capturing high-speed video using a scalable and configurable array
of sensors. Various hard- and software components are designed, im-
plemented and verified as part of a new embedded system platform,
that, not only achieves high-speed imaging capabilities by using an
array of imaging sensors, but also provides a scalable and reusable
design for future camera array systems.

ii

[August 25, 2016 at 17:40 – classicthesis]

A C K N O W L E D G M E N T S

First of all, I would like to thank prof. Marco Bekooij, for his belief
in hands-on research and real-world practicality has enabled this re-
search to go forward and develop into this thesis.

Secondly, I would like to thank my family as an endless source of
optimism to explore technology, and to venture on research such as
this.

A thanks to all colleagues and folks in the CAES group. I would
like to thank Oğuz Meteer, whose countless hours of insights and ex-
perience provided the fundamentals for without this thesis would not
have been possible, and for most of his borrowed electronics involved
still have to be returned at the time of this writing.

Thanks goes out to Stephen Ecob from Silicon On Inspiration in
Australia, providing the much needed hardware building blocks on
more than one occasion and his continued support essential during
the production of the prototype. Also thanks to Alice for sourcing the
much needed BGA components in Hong Kong, and folks at Proto-
Service for providing their field expertise in the final BGA assembly.

iii

[August 25, 2016 at 17:40 – classicthesis]

C O N T E N T S

1 introduction 1

1.1 Problem definition . 2

1.2 Contributions . 3

1.3 Thesis outline . 4

2 background 6

2.1 Digital image sensors . 6

2.2 High-speed imaging . 10

2.3 Image sensor arrays . 12

3 high-level system design 14

4 hardware domain implementation 17

4.1 Sensor receiver interface 17

4.1.1 Physical signaling 17

4.1.2 Timing characteristics 21

4.1.3 FPGA implementation 24

4.2 Streaming DRAM controller 25

4.2.1 Dynamic Random-Access Memory (DRAM) . . 26

4.2.2 Access pattern predictability 28

4.2.3 DRAM protocol 29

4.2.4 Peak transfer rate 32

4.2.5 Protocol state machine 33

4.2.6 FPGA implementation 36

4.2.7 Command arbitration 37

4.3 Stream interleaver . 38

4.3.1 FPGA implementation 40

4.4 Embedded control processor 41

4.5 Sensor control interface 42

4.5.1 I2C protocol overview 43

4.5.2 Camera control interface (CCI) 43

4.5.3 FPGA implementation 44

4.5.4 Phased start . 45

4.6 Readout interface . 48

4.6.1 FPGA implementation 48

4.7 Clock domain crossing 49

5 software domain implementation 51

5.1 Embedded control . 51

5.2 Stream decoder . 53

5.2.1 Deinterleaving 54

5.2.2 Bit slip correction 54

5.2.3 Protocol layer decoder 55

5.3 Image rectification . 56

5.3.1 Mathematical models 57

5.3.2 Camera intrinsics and extrinsics 58

iv

[August 25, 2016 at 17:40 – classicthesis]

contents v

5.3.3 Rectification . 62

5.3.4 Camera calibration 62

6 dataflow analysis 65

6.1 Throughput analysis . 66

6.1.1 Scenario-aware dataflow graph 67

6.1.2 Throughput analysis 70

6.1.3 Effects on array size 71

6.2 Buffer size analysis . 71

6.2.1 Latency-rate SRDF graph 72

6.2.2 Real-world case analysis 75

7 realization and results 78

7.1 Sensor array configuration 78

7.2 Choice of hardware . 79

7.3 Synthesis results . 81

7.4 Measurement setup . 85

7.5 Experimental results . 86

8 conclusion 90

8.1 Future work . 92

i appendix 94

a sadf graph listing 95

b stroboscope program listing 98

bibliography 100

[August 25, 2016 at 17:40 – classicthesis]

L I S T O F F I G U R E S

Figure 1 Block diagram showing a simplified overview
of the processes involved in a modern color
image sensor, from incoming scene light to fi-
nal output image. 6

Figure 2 Example of a Bayer pattern encoded image (left)
and the resulting full color image after the de-
bayering process (right). 7

Figure 3 Readout architectures for conventional CCD and
CMOS sensors. Photodiodes and capacitive el-
ements are respectively colored dark green and
yellow. 8

Figure 4 Rolling shutter mechanism in action. Left shows
the shutter’s direction of movement in terms
of pixel rows. Right contains a plot of row ex-
posure over time, clearly showing the sliding
window of time. 9

Figure 5 Simplified view of two active pixels with dif-
ferent shutters in a CMOS sensor at the sili-
con level. The addition of a memory element
causes occlusion of an area of the photodiode. 10

Figure 6 Talbot’s high speed photography experiment.
A paper disc is captured at standstill (left), spin-
ning and captured with an exposure time of 10

ms (middle), and with an exposure time of 1

ms (right). Images courtesy of [VM11]. 11

Figure 7 The Stanford Multi-Camera array setup as de-
scribed in [Wil+05]. 12

Figure 8 Abstract system diagram illustrating the hard-
ware and software domain boundaries, their
high-level components and the corresponding
dataflows in the system. 14

Figure 9 Hardware domain diagram showing its vari-
ous subsystems and components. Orange in-
dicates a component external to the hardware
domain, grey is a custom subsystem imple-
mented by FPGA logic, yellow is a logic ele-
ment and green represents software. Arrows
indicate dataflows, with red representing the
capture stage, and blue representing the read-
out stage. 15

vi

[August 25, 2016 at 17:40 – classicthesis]

List of Figures vii

Figure 10 Software domain diagram showing its various
subsystems and components, including the em-
bedded control. Orange indicates a component
external to the software domain, grey is a cus-
tom subsystem implemented in software and
yellow is a specific software component. Ar-
rows indicate dataflows, with red representing
the primary video dataflow. 16

Figure 11 Standard parallel CMOS sensor interface. Data
lines D0 through DN represent the N-bit en-
coded pixels of the output image. 18

Figure 12 LVDS output circuitry: a current-mode driver
drives a differential pair line, with current flow-
ing in opposite directions. Green and red de-
note the current flow for respectively high ("one")
and low ("zero") output values. 19

Figure 13 Simplified fragment of a video data transmis-
sion using MIPI CSI-2 (top) and HiSPi (bot-
tom). LP indicates logic high and low using
single-ended signaling, while all other signals
are LVDS. Green respresents image data, all
other colors represent control words as defined
by the respective protocols. 20

Figure 14 Typical CMOS sensor layout in terms of physi-
cal pixels (left) and corresponding structure of
the image frame readout data (right), as found
in the Aptina MT9M021 CMOS sensor [Apt12b]. 21

Figure 15 Topology within a rank of DRAM devices. A
bank consists of multiple DRAMs, each of which
supplies an N-bit data word using row and
column addressing. 27

Figure 16 Common layout of a DDR3 DIMM, populated
at both sides with multiple DRAMs. The DIMM
is typically structured in such a way that each
side represents a single DRAM rank. 27

Figure 17 Simplified illustration of the pipelined DRAM
command timing in case of two BL8 write re-
quests. Green and blue indicate any commands,
addresses and data bits belonging to the same
request. 32

Figure 18 Original simplified DRAM protocol state dia-
gram as in [JED08]. Power and calibration states
have been omitted. 34

Figure 19 Redesigned DRAM state diagram optimized
for sequential burst writes. Burst-related states
are highlighted in blue. 35

[August 25, 2016 at 17:40 – classicthesis]

List of Figures viii

Figure 20 I2C data transmission using 7-bit slave address-
ing with two data words as described in [Phi03].
Grey blocks are transmissions from master to
slave, white are from slave to master and green
depends on the type of operation. Bit widths
are denoted below. 44

Figure 21 Example CCI data transmission addressing an
8-bit register using a 16-bit address. Grey blocks
are transmissions from master to slave, white
are from slave to master and green depends on
the type of operation. Bit widths are denoted
below. 44

Figure 22 Phased start with 8 sensors plotted against time.
Dark regions represent exposure duration, and
light regions represent readout duration for all
sensors. 46

Figure 23 The two different types of synchronizers used
in our system. Green and blue represent the
two different clock domains, and red acts as
stabilizing logic in between. 50

Figure 24 Simplified fragment of a video data transmis-
sion using MIPI CSI-2 (top) and HiSPi (bot-
tom). LP indicates logic high and low using
single-ended signaling, while all other signals
are LVDS. Green respresents image data, all
other colors represent control words as defined
by the respective protocols. 55

Figure 25 OpenCV Feature detection using a planar checker-
board pattern as mounted to a wall. The visual
marker in the center is not actually used in the
algorithm. 63

Figure 26 SADF graph representing the video streaming
behaviour in our system and used as a basis
for dataflow analysis. 68

Figure 27 Corresponding FSM for the Dref node in our
dataflow model, representing write and refresh
states with write as initial state. 68

Figure 28 Imaginary FSM for the Dref node in our dataflow
model, using counters to switch between states
and scenarios. 70

Figure 29 Simplified latency-rate model of our system,
with the SRDF graph at the top and the cor-
responding task graph at the bottom. Dotted
lines represent the imaginary flow of data in
the system, and are not part of the actual graph. 72

[August 25, 2016 at 17:40 – classicthesis]

List of Figures ix

Figure 30 Stages of development for the camera module
PCB, from CAD design to production to pick
and placing of SMD and BGA components. . . 80

Figure 31 Final prototype hardware, showing the five in-
dividual sensor modules (left) and the final
setup as evaluated with the modules and FPGA
hardware connected (right). 81

Figure 32 Stroboscope hardware, showing an array of 10

area LED lights driven by 10 MOSFETs and
connected to a real-time embedded system. . . 85

Figure 33 Timing characteristics of the stroboscope, strob-
ing at a 1000 Hz rate, showing two LED-driving
MOSFETs being subsequently triggered at 1ms
with an error of only 0.02%. Measured using a
4GHz logic analyzer. 86

Figure 34 Final frames as captured by four sensors of the
prototype at 240 Hz after being processed in
the software domain, ordered from top-left to
bottom-right and showing a seamlessly over-
lapping capture of the timed stroboscope lights
from sensor to sensor. Each subsequent frame
is captured by a different sensor, at different
subsequent points in time. Stroboscope lights
run from bottom left to top right in time, as
indicated by the white arrow in the first image. 87

Figure 35 Sensor timing diagram corresponding to our
four sensor prototype at 240Hz and the frames
in Figure 34. Our stroboscope LED timing is
shown on top, with each number and color
representing one of the 10 LEDs that is turned
on at that time for 1ms. Dark green represents
a single frame, or the light integrated by a sin-
gle sensor in the time domain for a single frame
exposure, i.e. the first frame captures light from
4 different strobe LEDs. Light green represents
the unavoidable time in which a sensor’s shut-
ter is closed and image data is read out to our
system. When all frames are combined, they in
fact form a continuous integration of physical
light with an exposure time and capture rate
equal to 4.2ms or 240Hz as witnessed in Fig-
ure 34. 88

Figure 36 Timing characteristics of the I2C exposure start
commands as sent to different sensors in case
of a hypothetical 1200 Hz (833us) capture rate.
Measured using a 4GHz logic analyzer. 89

[August 25, 2016 at 17:40 – classicthesis]

1
I N T R O D U C T I O N

Over the past century, the world has seen a steady increase in techno-
logical advancement in the field of digital photography. Now more
than ever, consumers rely on the availability of advanced digital cam-
eras in personal devices such as mobile phones, tablets and personal
computers to snap high resolution pictures and videos, all the while
cinematographers in the field find themselves with an ever increasing
variety of very high-end cameras. And in between these two markets,
we have witnessed the rise of an entirely new "prosumer" segment,
wielding action cameras and 4K camcorders in the lower high-end
spectrum to capture semi-professional video.

Some of the most obvious advancements in cameras can be found
in higher resolution imaging capabilities of sensors, as well as semi-
conductor production techniques that have seen vast improvements
over the years. As a result, sensors have become smaller, more capa-
ble, and cheaper to produce, and the cost of including such a sensor
of acceptable quality in a new embedded consumer product is rela-
tively low, especially in the lower segment of products. Furthermore,
some parts of these sensors have become standardized in the indus-
try, practically turning many imaging sensors and related technology
into commercial off-the-shelf components.

Though, one of the areas of videography that has seen increasing
demand but quite conservative technological innovation is the field of
high-speed imaging. With the advent of television and on-line docu-
mentary series revolving around the capture of slow motion footage,
consumers and prosumers have been voicing their interest in want-
ing to create slow motion video at home. While professional high-
speed cameras have long been available, their prices are far outside
the reach of these markets, often costing up to three orders of magni-
tude more than conventional cameras. The reason for this is quite sim-
ple: high-speed imaging puts extreme demands on an imaging sensor
and its surrounding platform in terms of bandwidth, noise and tim-
ing as we will see in this thesis, therefore raising the cost price of
a single high-speed imaging sensor into the hundreds or thousands
of dollars, let alone the required effort and expertise to design the
surrounding hardware.

Of course, this does not mean that there is no other way to pro-
vide technological innovation in this field. Taking into account that,
at the lower end, imaging sensors are becoming more standardized
and cheaper, the question arises as to whether it is now possible to
use multiple low-end sensors to achieve the same as a single high-end

1

[August 25, 2016 at 17:40 – classicthesis]

1.1 problem definition 2

sensor. This trend of combining commodity-class or low-end compo-
nents is already being applied by big players such as in the online and
cloud computing industry, and can prove to be cost-effective if the
components can be properly combined by means of a surrounding
platform of hardware and software that is scalable in the numbers.

This thesis focuses on this very idea of using multiple low-cost
components to create something much bigger: an embedded system
platform, that, not only achieves high-speed imaging capabilities by
using an array of imaging sensors, but also provides a scalable and
reusable design for future systems with increasingly larger config-
urations. Finally, a small-scale prototype based on this platform is
produced and evaluated to assess the real-world viability of such a
product.

1.1 problem definition

In order to investigate, design, implement and ultimately realize such
an embedded system platform, we set out the following objectives for
this thesis:

1. Investigate the viability of using a sensor array for high-speed
imaging applications —

a) Determine the trade-offs of using multiple sensors versus
a single sensor;

b) Identify the negative side-effects, and how to mitigate their
effect;

2. Research and design an embedded system platform that can be
used to realize a scalable array of image sensors —

a) Determine relevant hard- and software domains and de-
sign subsystems that fit within these domains;

b) Identify any respective bottlenecks in these subsystems and
how to mitigate their effect on an implementation;

3. Realize an embedded system using this platform capable of
high-speed imaging capture using a sensor array —

a) Develop a capable hardware design implementing the em-
bedded system platform;

b) Implement the software domain solutions and integrate
these with the hardware design;

c) Design and implement a hardware setup that can be used
to verify the high-speed imaging capabilities of the system;

d) Verify the high-speed imaging capabilities of the system in
a real-world setup.

[August 25, 2016 at 17:40 – classicthesis]

1.2 contributions 3

Based on these objectives, we define our research question to be the
following:

Is it viable to use an array of image sensors for high-speed imaging in
an embedded form factor, and if so, which hardware and software domain
components would be required to implement such an embedded system?

A solution is considered to be viable if the following theoretical
evaluation criteria are met:

• Capable of interfacing with at least 16 image sensors at a cap-
ture rate of 60Hz leading to an effective total capture rate of
960Hz.

• Capable of issuing phased start commands to image sensors
with a timing accuracy of at least 99%, as further explained in
Chapter 4.

These criteria are especially important as they allow the production
of a high-speed video using the system, as we will see in this thesis.

1.2 contributions

This thesis makes a major contribution in the field of sensor array
research by designing a novel embedded system platform that is con-
figurable, scalable and complete. This platform covers all necessary
aspects in hardware and software necessary in order to enable high-
speed image capture using an array of image sensors. Currently, no
other known documented solutions exist describing such an embed-
ded system.

As part of this design, this thesis introduces a number of hardware
subsystems that allow for interfacing with a varying number of image
sensors and capturing their corresponding data. This includes a novel
and specialized streaming DRAM controller specifically targeted at
writing streamed data, as well as a custom interleaver that combines
multiple streams of sensor image data into single coherent DRAM
write commands.

Building upon these hardware subsystems, this thesis also presents
corresponding software subsystems that interface with this hardware
in order to properly transform the captured image data into high-
speed video. This includes a novel HiSPI sensor protocol decoder, an
embedded control system used to configure the sensor array, and a
video streaming pipeline that includes a custom deinterleaver as well
as options for image rectification and camera calibration.

This platform effectively establishes a significant scale reduction
of all prior documented efforts into an embedded and potentially
handheld form factor. This kind of hands-on description has not been
seen before in this field of research.

[August 25, 2016 at 17:40 – classicthesis]

1.3 thesis outline 4

The platform is further solidified by the actual production of a pro-
totype, showing real-world viability and presenting future opportu-
nities to allow for an even finer product. This real-world exemplifies
the actual practical use of the sensor array as an end product, which
is often overlooked in existing research.

This thesis does not contribute any new ideas and algorithms in the
field of image rectification or distortion caused by sensor arrays, al-
though efforts are made to include current state of the art and proven
image techniques in the software domain.

1.3 thesis outline

This introductory chapter has so far introduced the reader to the
scope and outline of this thesis, as well as the problem definition
and research question.

Chapter 2 provides background information on the various topics
that are fundamental to this thesis. These topics include the use and
technical breakdown of digital imaging sensors, high-speed imaging
and camera arrays. Insight is also provided into prior efforts in the
field of high-speed imaging using camera arrays to provide perspec-
tive in how this thesis contributes to this field.

Chapter 3 describes the top-level design of the system as presented
in this thesis. It provides an overview of the system in terms of the
various subsystems that are to be implemented in one of the two
associated domains of hardware and software.

Chapter 4 deals with the relevant subsystems in the hardware do-
main, making it possible to interface with a configurable number of
sensors. This includes solutions for clock domain crossing, as well as
providing an elaborate description of the design of the sensor receiver
interface, memory controller, interleaver, embedded processor, sensor
control interface and readout interface.

Chapter 5 presents the subsystems in the software domain that
deal with transforming the raw data from the hardware domain into
useful video data. This chapter describes the sensor protocol decoder,
as well as solutions for image rectification and camera calibration.

Chapter 6 is concerned with the theoretical dataflow analysis in
which dataflow models are presented that models the primary bot-
tlenecks in the system, and analysis is performed to determine the
throughput of the system and any involved buffers while discussing
the viability of the system.

Chapter 7 describes the experimental results of this thesis. This
chapter provides insight into the real-world hardware prototype that
was produced, implementing the presented platform. A setup is used
to verify the produced video of this prototype, and timing analysis
is done to verify the timing accuracy of the hardware, and thus the
real-world viability of the platform as a whole.

[August 25, 2016 at 17:40 – classicthesis]

1.3 thesis outline 5

Finally, chapter 8 concludes this thesis by providing a brief sum-
mary of this thesis and including final thoughts on future work.

[August 25, 2016 at 17:40 – classicthesis]

2
B A C K G R O U N D

Today, our world is filled with embedded systems with wildly vary-
ing applications, often relying on the use of techniques for digital
image capture and processing. The decreasing cost of digital imag-
ing allows for more and more imaging systems to appear in different
markets, from consumer photography (e.g. digital cameras and cam-
corders), to industrial or military (e.g. product verification, surveil-
lance and biometrics) and far beyond.

2.1 digital image sensors

These digital imaging systems, such as the one presented in this the-
sis, rely on the use of image sensors. And although the basic concept
of an image sensor seems simple, e.g. to convert incident light or
image into a digital representation, the actual implementation of an
image sensor varies considerably depending on the technology that
is being used.

Figure 1 describes a simple overview of a modern color image sen-
sor. First of all, incident light from the scene is focused by optics, typi-
cally one or more lenses. This focusing, like in most imaging systems
or cameras, is necessary to ensure that a certain view of the scene
is focused onto a capturing plane behind it. The light then passes
through a color filter array (CFA) that contains a predefined pattern
of colors and is then captured and converted into the analog signal
domain by photodetectors directly behind the filter. The analog sig-
nals are ultimately processed by an on-chip analog signal processor
and converted into the digital signal domain, after which a variety of
processing techniques can be used to produce a final image.

full color imaging The photodetectors or photodiodes them-
selves are semiconductors sensitive to charged particles and photons.

Scene Imaging Optics Filter & Pixel Array Analog-to-Digital Post-Processing

Figure 1: Block diagram showing a simplified overview of the processes in-
volved in a modern color image sensor, from incoming scene light
to final output image.

6

[August 25, 2016 at 17:40 – classicthesis]

2.1 digital image sensors 7

Figure 2: Example of a Bayer pattern encoded image (left) and the resulting
full color image after the debayering process (right).

These work by absorbing particles and photons and emitting a volt-
age proportional to the indicent power, as described in [Big+06], and
are thus oblivious to color as they only describe a relation between
the amount of light and an analog signal. By placing a filter in front
that only passes light in a certain color spectrum range, they can be
utilized to only detect the amount of light of a certain color.

In practice, the color filter array that is placed in front of the pho-
todetectors often consists of a so called Bayer-pattern that only allows
a single color to pass through, making each single photodetector pixel
sensitive to a predefined color. Each of the pixels in the sensor’s out-
put image only encodes the intensity of a single specific color such
as red, green or blue. To produce a final full color image, a spatial in-
terpolation process known as demosaicing is used, which interpolates
multiple single-color pixel values to produce single full color pixels
containing respective values for red, green and blue. Demosaicing
is an active topic of research, and different interpolation techniques
currently exist, as shown in [LGZ08]. An example of a Bayer pattern
image and resulting full color image can be seen in Figure 2.

cmos and ccd sensor architecture As described in [EGE05],
the array of photodetectors introduced before varies significantly be-
tween different types of image sensors. Many of the difference arise
from the way the array is structured and read out into the analog
signal domain, also referred to as the readout architecture, and these
differences can be seen in Figure 3. Modern image sensors generally
come in two different types, complementary metal-oxide semiconductors
(CMOS) and charge-coupled devices (CCD), and although CCD-type
sensors have traditionally been associated with high quality but high
cost, recent advancements in CMOS-technology have allowed for the
introduction of lower cost CMOS-type sensors approaching the qual-
ity of their CCD-type counterparts.

In a modern CCD-type sensor, the array is typically built out of
photosensitive capacitors that passively collect and store a charge for

[August 25, 2016 at 17:40 – classicthesis]

2.1 digital image sensors 8

Horizontal CCD

V
e
rt

ic
a
l
C

C
D

(a) CCD (interline transfer).

R
o

w
 S

e
le

c
t

L
o

g
ic

Analog Signal Processing

Column Analog-to-Digital Conversion

Column MultiplexerT
im

in
g

 a
n

d
 C

o
n

tr
o

l

(b) CMOS (active pixel sensor).

Figure 3: Readout architectures for conventional CCD and CMOS sensors.
Photodiodes and capacitive elements are respectively colored dark
green and yellow.

each pixel during exposure. During readout, charge is shifted out of
the array, step by step, into horizontal and vertical CCDs and con-
verted to the analog signal domain by means of an amplifier circuit,
after which it is sampled and converted by the analog signal proces-
sor.

In a modern CMOS-type sensor, the array is typically built out of
an active pixel circuit containing a photodetector and amplifier that
produces an analog signal for each pixel while being exposed. Dur-
ing readout, the analog signals of each row of the array are selected,
sampled and integrated, one by one, before being converted by the
analog signal processor.

The cost-effectiveness of CMOS sensors arises from differences in
the manufacturing process, also described in [Fos97], where integra-
tion of a significant amount of on-chip VLSI electronics is possible
at a lower cost. This makes it possible to create single solution chip
CMOS sensors that contain very elaborate analog signal processors,
as opposed to expensive off-chip analog signal processing typically
required for CCD sensors.

On the other side, CMOS sensors suffer from a high level of fixed
pattern noise due to variations in the manufacturing process as well as
other forms of noise such as dark current noise that reduce the effective
signal-to-noise ratio (SNR) of the sensor.

In practice, CCD sensors are often seen in highly specialized mar-
kets such as astronomy and microscopy, while CMOS sensors can be
found in a much wider range of applications, including mobile and
consumer electronics, due to their low cost and good quality.

[August 25, 2016 at 17:40 – classicthesis]

2.1 digital image sensors 9

X

Y

readout

reset

rows

time

exposureexposure

Figure 4: Rolling shutter mechanism in action. Left shows the shutter’s di-
rection of movement in terms of pixel rows. Right contains a plot
of row exposure over time, clearly showing the sliding window of
time.

rolling and global shutters Like conventional film cam-
eras, image sensors also require the use of a shutter that controls the
exposure of the photodetectors. As mentioned before, each sensor
generally has two steps of action: exposure and readout. Both before
and after exposure, this shutter prevents any incident light from hav-
ing an effect on the photodetectors, such that the photodetectors are
only exposed to light for a predetermined amount of time.

Differences in the sensor’s shutter mechanism can, in some cases,
have a profound effect on the final output image of the sensor. As
opposed to film cameras, sensor shutters are often electronic and op-
erate by resetting or decharging the individual pixel circuits of the
array, but the shutter timing changes significantly depending on the
type of sensor used.

Note that the CCD sensor stores a charge for each individual pixel
during and after exposure, essentially capturing and storing a com-
plete image inside the sensor until it is read out of the array. This type
of shutter mechanism is referred to as a global shutter and in a sense
resembles that of a film camera. This mechanism differs greatly from
that of the conventional CMOS sensor. Due to the way CMOS sensors
are manufactured, only a few rows can be selected, exposed, sampled
and integrated in the entire sensor at a time. This principle is known
is a rolling shutter mechanism, and is shown in Figure 4.

The direct result of the rolling shutter is that different rows of sen-
sor pixels are only exposed at different points in time. In other words,
not all pixels in a final output image will have been captured in the
same window of time. While this shift in time simply does not matter
for scenes in which there is little movement, significant distortion ar-
tifacts will manifest themselves in the image as soon as fast moving
objects are captured.

The introduction of an effective global shutter to CMOS sensors is
one of the most sought-after features in the industry, and is an active
research topic in digital imaging. Examples of global shutter imple-
mentations are [Apt12a] and [Fur+07], in which the active circuitry of

[August 25, 2016 at 17:40 – classicthesis]

2.2 high-speed imaging 10

Photodiode

Metal layer

M
e
ta

l
la

y
e
r

(a) Rolling shutter pixel.

Photodiode

Metal layer

M
e
ta

l
la

y
e
r

Memory

(b) Global shutter pixel.

Figure 5: Simplified view of two active pixels with different shutters in a
CMOS sensor at the silicon level. The addition of a memory ele-
ment causes occlusion of an area of the photodiode.

each pixel is augmented with a sample and hold or memory element
that stores the analog signal until all rows of the entire array have
been read out. Although the CMOS readout architecture still requires
a row-by-row readout, the individual pixel memory elements now
allow for the entire array to be exposed at the same time.

The difficulty of adding memory elements to the array lies in the
fact that the memory element itself introduces varying degrees of sig-
nal contamination. In Figure 5, it can be seen that the element itself
takes up physical space in the pixel array. As such, incident light can
never be fully focused on the photodiode due to optical imperfections,
and some may fall on the element as well. This stray light contami-
nates the analog signal stored in the element, and must be avoided by
covering up the element with shielding. Furthermore, as the analog
signal is stored in the element, unwanted dark current may accumu-
late during storage, requiring careful design of the underlying silicon
to decrease the negative effect on the signal-to-noise ratio.

2.2 high-speed imaging

Paramount to this thesis, the concept of high-speed imaging is best de-
scribed as the still frame capture of fast moving objects, which, when
used in the context of video, also implies an equivalently high cap-
ture frame rate. It is used to analyze real-world events that are diffi-
cult to capture with conventional digital cameras, such as automotive
crashes, ballistics, golf swings, explosions, and so on.

High-speed photography itself has a long history, which started
well before the practical invention of video. The first documented
experiments were done in the 19th century, in a time when film cam-
era shutters were still very crude and slow mechanisms, hence freez-
ing the motion of fast moving objects was difficult. As described in

[August 25, 2016 at 17:40 – classicthesis]

2.2 high-speed imaging 11

Figure 6: Talbot’s high speed photography experiment. A paper disc is cap-
tured at standstill (left), spinning and captured with an exposure
time of 10 ms (middle), and with an exposure time of 1 ms (right).
Images courtesy of [VM11].

[Ram08], these early experiments featured a setup with a fast spin-
ning paper such that the text on it was unreadable by the human eye.
However, by using an arc flash with a duration of 1/2000 of a second,
still images with sharp readable text could now be reliably produced.

Figure 6 shows a modern version of the spinning disc. In order to
capture sharp still images, the exposure of the scene’s light to the cam-
era must be minimalized: either by opening and closing the shutter
very quickly, or by using a single light source that flashes for a frac-
tion of a second. If the exposure is too long, fast moving objects in
the image will appear fuzzy and blurred due to the accumulation of
light at different positions along the object’s frame of movement.

A multitude of different high-speed imaging cameras are available
today and include not only high-end cameras for industrial and sci-
entific use, but also low-end consumer cameras, spurred by a recent
consumer and professional interest in high-speed photography. Ex-
amples include the fps1000 and Edgertronic projects, both of which
have been successfully funded and delivered through crowdfunding
platforms such as Kickstarter and feature a maximum high-speed cap-
ture rate of respectively 550 Hz and 701 Hz at 720p resolution as in
[Per15]. In comparison, high-end cameras such as the Photon Fastcam
SA series are capable of capturing rates up to 7000 Hz at a 1024x1024

resolution, shutter times in the microseconds, and are often the first
choice in scientific research dealing with physical and chemical phe-
nomena such as in [Gül+12] and [BS14]. Nevertheless, these high-end
cameras come at a high price and are often only available on a daily
rental basis, placing them out of reach for normal consumer and "pro-
sumer" markets. Despite the relatively low-end specifications of prod-
ucts such as fps1000 and Edgertronic, price tags of respectively $1500

and $5495 and successful crowdfunding campaigns have shown that
there might be an untapped market demand underneath the existing
high-end products.

[August 25, 2016 at 17:40 – classicthesis]

2.3 image sensor arrays 12

Figure 7: The Stanford Multi-Camera array setup as described in [Wil+05].

2.3 image sensor arrays

One aspect that virtually all high-speed imaging products have in
common today is that they are designed around a single high-speed
CMOS imaging sensor. Depending on the target market and cost price
of the final product, a design choice is made from a variety of high-
speed imaging sensors with different low- or high-end performance
characteristics and matching cost prices such as the CMOSIS series
([WM15]) and Sony IMX or Exmor series ([Son11]). These sensors
are often at the forefront of CMOS technology, incorporating cutting
edge technology such as back-illuminated sensors, novel global shut-
ters and capacitive storage elements to mitigate the sensitivity and
bandwidth issues that come into play when imaging at high speed
and short shutter time. This in turn demands a high sensor unit cost
price, which in turn dictate the minimum cost price of these camera
products.

Keeping in mind that conventional high-speed camera products are
thus still dependent on one or more relatively high cost components,
we investigate the possibility of using an alternative design that re-
moves the dependency on these high cost components. We consider
an alternative design that does not use a single high cost sensor, but
rather multiple low cost sensors, configured in an array, to achieve
these high-speed imaging capabilities.

One of the earliest projects involving the use of multiple cameras
in a similar field of research is [Wil+01] at Stanford University. In
this thesis, light field data is captured using an array of up to 64

custom camera boards connected by IEEE1394 bus to one or more
video processing host PCs. Here, the camera boards are custom de-
signed individual single-board computers containing a microproces-
sor, IEEE1394 chipset, MPEG2 video encoder, Xilinx Spartan FPGA
and Omnivision CMOS image sensor. A continuation of this thesis
is described in [Wil+04], in which an identical hardware setup, also
seen in Figure 7, is used for high-speed imaging and which is practi-
cally the first documented research involving a camera array for high-

[August 25, 2016 at 17:40 – classicthesis]

2.3 image sensor arrays 13

speed imaging. The camera array consists of 52 Omnivision sensors,
each capturing at a rate of 30 Hz, providing a video stream that is fur-
ther processed by two or more host PCs. The research itself is mostly
concerned with dealing with the side effects of using a camera array
for high-speed imaging, and therefore provides fundamental insights
in correcting geometric distortion, rolling shutter distortion and cam-
era timing, which we will also cover in this thesis.

Further in-depth research on this particular project at Stanford is
described in [Wil05]. Here, a number of possible applications for cam-
era arrays are researched and include synthetic aperture photography
(SAP), spatiotemporal view interpolation (SVI) and high-speed imag-
ing. While SAP and SVI are useful in the sense that they provide
image aperture manipulation and improved image quality, we focus
on the high-speed imaging research as this closely fits the scope of
this thesis. Finally, the Stanford setup is further refined in terms of
hardware and system architecture in [Wil+05], and image quality is
evaluated by comparing with a conventional digital camera showing
encouraging results.

[August 25, 2016 at 17:40 – classicthesis]

3
H I G H - L E V E L S Y S T E M D E S I G N

The purpose of the embedded system platform presented in this the-
sis is to interface with an array of image sensors in order to allow
high-speed imaging. The platform, or system, is composed of a num-
ber of novel custom hardware and software components that imple-
ment the required functionality to ultimately produce a video stream
containing high-speed images.

In this chapter, an overview of the system as a whole is presented
at increasing levels of detail. We simply begin by establishing the
different domains that make up this platform:

• Hardware domain. This domain contains all components imple-
mented in hardware, or more specifically, a reconfigurable FPGA
platform. The use of a FPGA allows for rapid design and proto-
typing, and is thus fundamental to the platform.

• Software domain. This domain contains all components imple-
mented in software. The components represent the programs
that run on CPU-based architectures either embedded in or con-
nected to the hardware domain.

In Figure 8, a system diagram can be seen describing these do-
mains and the components involved at a high and abstract level. In
this diagram, the primary dataflow is clearly illustrated and effec-
tively begins in one or more image sensors, flows through the FPGA
and RAM in the hardware domain, and ultimately ends up at the host
in the software domain. A number of secondary dataflows also exist
to ensure that the primary dataflow is controlled. Furthermore, while
the separation of hardware and software domain boundaries is gen-
erally clear, the software domain also covers a small part of software
used within the hardware domain, namely that of the embedded con-
trol processor as we will see later on in this thesis.

Figure 8: Abstract system diagram illustrating the hardware and software
domain boundaries, their high-level components and the corre-
sponding dataflows in the system.

14

[August 25, 2016 at 17:40 – classicthesis]

high-level system design 15

Figure 9: Hardware domain diagram showing its various subsystems and
components. Orange indicates a component external to the hard-
ware domain, grey is a custom subsystem implemented by FPGA
logic, yellow is a logic element and green represents software. Ar-
rows indicate dataflows, with red representing the capture stage,
and blue representing the readout stage.

hardware domain The hardware domain represents the bulk of
components in the system, and for good reason. At the highest level,
the hardware simply performs two dataflow stages: first to capture as
much raw data as possible from all image sensors, and secondly to
read out and transmit all this captured data to the software domain for
further processing. Note that these two stages do not have to occur
at the same time due to the nature of video capturing where data is
generally first captured to a storage medium, and then offloaded to
another system for further use.

The capture stage is assumed to be a unique and critical stage that
cannot be interrupted or paused, as this may lead to data corrup-
tion, making it hard real-time by definition as per [But11]. Needless
to say, the hardware domain must then provide guarantees that no
overflows ever occur in the system in order to avoid fatal data cor-
ruption. In contrast, the readout stage occurs after the capture stage
has completed, and can occur at any speed. Since it is fully off-line
and non-critical, this thesis therefore imposes no timing constraints
on this stage.

All components involved in the hardware domain can be seen in
Figure 9. As has been mentioned before, the components or subsys-
tems in this domain are implemented as FPGA logic using VHDL
or Verilog together with vendor-specific primitives. All components
are in fact custom implementations especially designed to implement
critical functionality for this platform. In Chapter 4, each of these sub-
systems is described on a functional level. Note that due to the gritty
details involved, implementation-specific details such as VHDL or
Verilog code do fall outside the scope of this paper.

Next to the FPGA logic (grey components), Figure 9 also illustrates
a number of components (in orange) that are external to the domain
but nevertheless critical to the functionality of the system. Interfaces
to these components are provided by the FPGA logic inside the hard-

[August 25, 2016 at 17:40 – classicthesis]

high-level system design 16

Figure 10: Software domain diagram showing its various subsystems and
components, including the embedded control. Orange indicates a
component external to the software domain, grey is a custom sub-
system implemented in software and yellow is a specific software
component. Arrows indicate dataflows, with red representing the
primary video dataflow.

ware domain, enabling the primary data to flow from image sensor
to the software domain.

software domain The software domain largely starts where the
hardware domain ends, implementing the necessary components in
software to produce a video stream or file containing the captured
high-speed images. It is also concerned with performing command
and control in order to set up the dataflow at various points in the
system, as well as providing auxiliary functionality such as DRAM
self-testing.

Figure 10 shows the components and subsystems that make up the
software domain. Here, all subsystems except for those in the dotted
lines represent new custom pieces of software that have been explic-
itly designed for this platform. Note that the diagram also shows a
number of components inside the hardware domain. As mentioned
before, the software domain also covers the software specially writ-
ten for the control processor that is embedded inside the hardware
domain. All subsystems except for those in this embedded part run
on a host computer and are connected to each other through a video
stream pipeline software architecture known as GStreamer. Further
details are provided in Chapter 5.

[August 25, 2016 at 17:40 – classicthesis]

4
H A R D WA R E D O M A I N I M P L E M E N TAT I O N

In the previous chapter, an overview of the system was provided that
explained the various domains involved in the design. This chapter
will focus specifically on the details of the hardware domain, as il-
lustrated in Figure 9. Recall that each of the subsystems is a custom
design specially designed to provide functionality specific to our sys-
tem. Each of the sections in this chapter will describe the background,
design choices and functional implementation of each of the subsys-
tems.

4.1 sensor receiver interface

The very first input of the entire system and thus the hardware do-
main is in fact the sensor array, consisting of a varying number of
image sensors. Each of these sensors are physically connected to the
FPGA that implements our hardware domain. We therefore require
a subsystem in our hardware domain that implements an interface
capable of capturing all raw data as physically received by the FPGA.

This section introduces a sensor receiver subsystem that interfaces
with a single image sensor. This subsystem is designed such that it
can then be instantiated multiple times, for each individual sensor,
such that all raw data coming in from the entire sensor array can be
captured.

We first provide some background on the physical signaling stan-
dards relevant to the receiver, after which the timing parameters rele-
vant to the receiver are introduced. Finally, the FPGA logic elements
necessary for the functionality of the receiver are described.

4.1.1 Physical signaling

Conventional CMOS image sensors have traditionally been equipped
with a parallel interface that utilizes simple single-ended signaling to
encode all the necessary video data. This parallel interface, which can
also be seen in Figure 11, contains a certain number of parallel data
lines with a corresponding clock and synchronization signals. Typical
configurations are 8 or 12 data lines, equivalent to the sensor’s pixel
bit resolution, where each individual line represents a single bit of
the image pixel, and full pixels are thus transmitted on every rising
edge of the corresponding pixel clock. The advantage of the parallel
interface is obvious: it allows for very simple interfacing with low
complexity receivers.

17

[August 25, 2016 at 17:40 – classicthesis]

4.1 sensor receiver interface 18

VSYNC

HSYNC

D[N:0]

PCLK

active lines

active pixels

Figure 11: Standard parallel CMOS sensor interface. Data lines D0 through
DN represent the N-bit encoded pixels of the output image.

The increase of sensor resolution, bandwidth and signal integrity
requirements have however led to the adoption of serial interfaces such
as Low Voltage Differential Signaling (LVDS). A typical differential
interface circuit can be seen in Figure 12 and shows a current-mode
driver, two equal transmission lines with opposed polarity and equal
impedance, and a comparator at the receiving end.

Although serial transmitters require a higher clock frequency, they
allow for a significant improvement in signal integrity of the overall
system due to a number of critical factors, such as:

• Common-mode noise. For differential signaling, common-mode
noise is injected on both transmission lines and is rejected at the
receiving end as only the differential value is sampled.

• Switching noise. The design of differential current-mode drivers
allows for a reduction of (simultaneous) switching noise and
ringing in the transmission lines as well as the overall system.

• Crosstalk and electromagnetic interference. Differential signal-
ing radiates less noise into the system than single-ended signal-
ing since magnetic fields are canceled out by the two transmis-
sion lines.

Because differential signaling reduces any concerns regarding noise,
it is possible to use lower voltage swings in the transmission lines,
typically 350mV for LVDS and 150mV for SubLVDS. In turn, reduc-
ing the voltage allows lowers the overall power consumption and
also allows higher data rates to be used, as data can be switched
more quickly. Furthermore, the use of current-mode drivers creates
an almost flat power consumption across frequency, such that the fre-
quency can be increased without otherwise exponentially increasing
power consumption [Gra04].

The resulting differential serial interface as implemented in an im-
age sensor typically replaces all single-ended signals of the parallel

[August 25, 2016 at 17:40 – classicthesis]

4.1 sensor receiver interface 19

DRIVER

RECEIVER

Figure 12: LVDS output circuitry: a current-mode driver drives a differential
pair line, with current flowing in opposite directions. Green and
red denote the current flow for respectively high ("one") and low
("zero") output values.

interface with just a differential clock line and only one or more dif-
ferential data "lanes" onto which all relevant data is serialized. The
number of required I/O pins per sensor are thus minimized, requir-
ing less complex board designs. The control and data signals of the
earlier parallel interface shown in Figure 11 are instead encoded as
a continuous serial stream of bits, and specific leading and trailing
bit patterns distinguish between different parts of data, as will be
explained in Section 4.1.1.

There are many varieties of LVDS on the market today, each with
different characteristics suited for certain application or vendor spe-
cific solutions. LVDS as defined in the original TIA/EIA-644 standard
is generally considered to be the most common and original specifica-
tion from which many of these implementations are derived. Varieties
include BLVDS (Bus LVDS), M-LVDS (Multipoint LVDS), SCI (Scaleable
Coherent Interface) and SLVS (Scalable Low-Voltage Signaling) and these
varieties mainly exhibit differences in electrical characteristics such as
voltage swing, common mode voltage, ground reference and output
current [Gol11].

Note that this thesis focuses solely on the use of LVDS-capable
sensors in its broadest sense, where the use of the term LVDS refers
to LVDS and any of its many derivative transmission standards.

industry-standard interfaces Increased market demand for
sensors with higher image resolution, greater color depth and faster
frame rates means that current processor-to-camera sensor interfaces
are being pushed to their limits. As far as these sensor interfaces
go, bandwidth is not the only important design choice: robustness,
cost-effectiveness and scalability are among the factors that have an
important weight, especially for mobile devices [MIP16a].

As such, the MIPI (Mobile Industry Processor Interface) Alliance was
established to develop a new industry-standard interface, and has

[August 25, 2016 at 17:40 – classicthesis]

4.1 sensor receiver interface 20

SoTSYNC PH EoT

SoFSYNC FLR CRC IDL...

SoTSYNC PH ... EoTPF

LP LPHS (Short Packet)

MIPI CSI-2

HiSPi (Streaming-SP)

HS (Long Packet) LP

Figure 13: Simplified fragment of a video data transmission using MIPI CSI-
2 (top) and HiSPi (bottom). LP indicates logic high and low using
single-ended signaling, while all other signals are LVDS. Green
respresents image data, all other colors represent control words
as defined by the respective protocols.

been rapidly replacing conventional parallel interfaces with their CSI,
CSI-2, CSI-3 (Camera Serial Interface) specifications. These CSI speci-
fications define the use of a physical communication layer and proto-
col layer capable of transporting arbitrary sensor data to the receiver
[Lim+10].

The MIPI Alliance promotes their CSI specifications as open stan-
dards, though one should note that all CSI specifications are confi-
dential. The actual degree of openness and risk of infringement for
these specifications is therefore unclear1. It is possible that this pol-
icy has indirectly resulted in the introduction of HiSPi, an alterna-
tive interface standard that is otherwise very identical to MIPI CSI-2
and designed by Aptina Imaging for use in their own line of LVDS-
capable sensors [Sem15a]. As CSI-2 (and thus HiSPI) is currently the
most commonly used standard for the class of sensors most relevant
to this thesis, we will not further elaborate on the use of CSI, CSI-3 or
any other recently introduced standards. Instead, we briefly elaborate
on the physical layers of CSI-2 and HiSPi as far as the sensor receiver
interface is concerned. In Section 5.2, we further describe the protocol
layer of these standards.

The CSI-2 and HiSPi specifications define a physical layer that spec-
ify the transmission medium, electrical circuitry and the clocking
logic used to accomodate a serial bit stream. In the case of CSI-2,
this physical layer is referred to as the D-PHY and is composed of
between one and four (generally) unidirectional data lanes and one
clock lane, capable of transmission in one of two modes known as
Low Power (LP) and High-Speed (HS) mode.

In HS mode, each lane is terminated on both the transmitter and
receiver side and is driven by a SLVS transmitter, allowing for high-
speed bursts of protocol packets. In LP mode, all lanes are instead

1 MIPI is an independent, not-for-profit corporate entity that requires an active mem-
bership for the disclosure of any of the confidential specification documents. Mem-
berships require payment of dues ranging from $4.000 to $40.000, yet any company
can apply to join [MIP16b]

[August 25, 2016 at 17:40 – classicthesis]

4.1 sensor receiver interface 21

ACTIVE PIXELS

DARK PIXELS

D
A

R
K

 P
IX

E
L

S

ACTIVE PIXEL COLUMNS

A
C

T
IV

E
 P

IX
E

L
 R

O
W

S

(a) Physical CMOS pixel layout.

ACTIVE PIXELS
(VALID IMAGE DATA)

HORIZONTAL

BLANKING

VERTICAL BLANKING HORIZONTAL/VERTICAL

BLANKING

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 ... 00 00 00 00

00 00 00 00 ... 00 00 00 00

(b) Spatial layout of image frame.

Figure 14: Typical CMOS sensor layout in terms of physical pixels (left) and
corresponding structure of the image frame readout data (right),
as found in the Aptina MT9M021 CMOS sensor [Apt12b].

driven as single-ended LVCMOS wires, allowing for control signal
transmission at decreased power consumption. HS transmissions oc-
cur in bursts, and each burst is preceded and followed by various con-
trol signals in LP mode to signify the start and end of transmission to
the receiver, while the HS transmission itself contains a synchroniza-
tion sequence of bits used to align the receiver’s deserializer to the
correct word boundary [Lim+10][Xil14].

The HiSPi standard omits the use of a single-ended low power
mode in its entirety and only uses a differential SLVS driver in the
physical layer [Sem15b], further reducing the receiver’s complexity
in case of full compatibility. An example of a data transmission for
both standards can be seen in Figure 13.

4.1.2 Timing characteristics

As explained in the previous section, image sensors with differen-
tial serial interfaces come equipped with an on-chip serializer that
transmits binary data at a certain bit rate. This bit rate, referred to as
the output serializer frequency, is fully defined by the characteristics
of the image sensor, where modern differential image sensors typi-
cally operate in the range of 100 and 1000MHz. Characteristics are
often configurable by the developer and include the image resolution,
frame rate, bit depth and others.

Since the timing of a sensor is defined by its output serializer fre-
quency, which in turn is defined by the configurable characteristics of
the sensor, insight into the sensor timing can be gathered by looking
at these characteristics in detail.

Figure 14 shows a typical physical CMOS sensor pixel layout, in
which only a smaller region contains active pixels that will actually
capture image data. Pixels outside the active region can be used for
different auxiliary purposes: so called dark pixels are used for black-

[August 25, 2016 at 17:40 – classicthesis]

4.1 sensor receiver interface 22

level calibration, while barrier pixels serve no purpose other than to sit
in between other types of pixels. This makes it necessary to define a
2D region or window of active pixels that will capture the final image.

All physical pixels within the active region are then sampled dur-
ing image readout and padded with horizontal and vertical blanking
pixels, as can be seen in Figure 14b. Both the active pixels and blank-
ing pixels make up the final image frame as it is transmitted, and the
blanking regions serve no other purpose than to ensure correct tim-
ing between the sensor capture frame rate and data transmission, as
we will see later on.

As part of this layout of sensor pixels, we can explicitly define the
following configurable characteristics or sensor parameters:

• Active pixel columns, Nactive_cols: the number of active pixels or
horizontal columns in the sensor array that are transmitted for
every row.

• Horizontal blank columns, Nblank_cols: the number of blank pix-
els or horizontal columns in the sensor array that are transmit-
ted for every row after all active columns.

• Active pixel rows, Nactive_rows: the number of active pixel rows
in the sensor array that are transmitted. Together withNactive_cols,
this defines the 2D region of active pixels.

• Vertical blank rows, Nblank_rows: the number of blank vertical
rows in the sensor array that are transmitted after all active
rows.

Note that these characteristics only describe the various imaging
regions. Obviously, each image pixel contains an amount of data, and
each image frame consisting of pixels is to be captured at a certain
exposure time, and transmitted at a certain rate and over a certain
physical interface. We thus further identify the following typical char-
acteristics or sensor parameters that directly affect sensor timing:

• Pixel bit depth, Nbit_depth: the amount of bits per pixel that en-
code the pixel’s color value.

• Serial lanes, Nlanes: the number of individual differential serial
lines used to serialize data.

• Exposure time, texposure: the time in which the (global) shutter
is opened, all pixels are exposed, sampled and integrated.

• Pixel clock, fPIXCLK: the rate at which individual pixels of a
frame are transmitted.

As soon as the layout of image frame has been defined, it is fairly
trivial to calculate the timing parameters relevant to the frame:

[August 25, 2016 at 17:40 – classicthesis]

4.1 sensor receiver interface 23

trow = (Nactive_cols +Nblank_cols)×
1

fPIXCLK

Here, trow represents the total time spent transmitting a single row
of the image frame, which can then be used for all rows:

tframe = (Nactive_rows +Nblank_rows)× trow

Where tframe is the total time spent transmitting the entire image
frame. Finally, the frame rate (in Hz) can then be calculated by adding
the actual exposure or integration time:

ffps =
1

tframe + texposure

Since the frame data is to be transmitted over the serial interface,
we calculate fSERIAL or the serial bit rate at which individual bits are
transmitted over a single serial lane:

fSERIAL =
fPIXCLK ×Nbit_depth

Nlanes
(1)

typical example As an example of the above timing calcula-
tions, we consider a 1280× 720 (720p) resolution CMOS image sensor
with the following input parameters:

• Nactive_cols = 1280pixels, Nblank_cols = 370pixels.

• Nactive_rows = 720pixels, Nblank_rows = 28pixels.

• Nbit_depth = 12 bits, Nlanes = 2 lanes.

• texposure = 3ms

• fPIXCLK = 74.25MHz

The row time trow and frame time tframe are then calculated as
follows:

trow = (1280+ 370)× 1

74.25MHz
≈ 22.22µs

tframe = (720+ 30)× trow ≈ 16.67ms

The sensor integration overlaps with the capture period in such a
way that as long as texposure < trow, ffps = trow. Since this is the

[August 25, 2016 at 17:40 – classicthesis]

4.1 sensor receiver interface 24

case in the above example, the final frame rate ffps and serial bit rate
fSERIAL are as follows:

ffps = 16.67ms = 60Hz

fSERIAL =
74.25Mhz× 12 bits

2 lanes
= 445.5MHz

As can be seen, careful balancing of the various parameters is re-
quired whenever the frame rate is expected to be at a specific final
value. As such, the input parameters in this example were tweaked
to achieve a final frame rate of 60Hz.

Since this thesis is concerned with high-speed capture, it is benefi-
cial to maximize the sensor’s capture rate ffps as well as the image
resolution through Nactive_cols and Nactive_rows. In other words,
a sensor is expected to capture as much image data as possible at
its highest possible frame rate. This is done by setting the input pixel
clock fPIXCLK to the highest possible frequency, and setting the blank-
ing pixels Nblank_cols and Nblank_rows to their minimum values.

4.1.3 FPGA implementation

Now that the timing characteristics for a single sensor have been iden-
tified, a matching FPGA logic design is necessary in order to capture
the raw sensor data coming in from the physical interface.

The required logic we have designed is fairly straightforward and
uses vendor-specific primitives to set up an interface with the physi-
cal layer. The following generic elements make up this design:

• Differential clock input or rx_clock. Buffer logic element that inter-
faces with the differential clock signal coming in from a sensor.

• Differential data input buffers or rx_data. Buffer logic element that
interfaces with a single differential DDR data lane coming in
from a sensor.

• Cross clock FIFO or rx_fifo. FIFO logic element that interfaces
with all of the above elements as input, and provides an output
in a different clock domain.

Using the elements described above and the typical 2-lane sensor
example outlined in the previous chapter, the sensor receiver logic
typically consists of a single rx_clock instance, two rx_data instances
and a single rx_fifo instance. A rx_clock instance is always necessary,
as the rising and falling edge transitions of the differential input clock
are used to sample valid data from the differential data lanes in each
rx_data instance.

[August 25, 2016 at 17:40 – classicthesis]

4.2 streaming dram controller 25

The need for rx_fifo becomes clear if one assumes the likely fact
that each sensor operates as a separate unit that is completely inde-
pendent from the rest of the system. The incoming differential data
clock is therefore unrelated to any other clock and the corresponding
data has to be moved over from the sensor’s clock domain into the
system’s primary clock domain. In order to achieve this, rx_fifo is im-
plemented as a two-clock FIFO synchronizer, as explained in Section
4.7, clocking the output data safely in the system’s own primary clock
domain for further use.

The rx_clock and rx_data element implementations make use of
vendor-specific primitives due to their low-level interfacing, e.g. in
Xilinx systems, where IBUFDS differential buffer primitives and IS-
ERDES2 deserializer primitives are used to realize the sensor receiv-
ing interface in the FPGA.

The deserializer primitive deserializes the bit stream coming in
from the differential buffer primitives into words of S bits wide, typ-
ically 4 or 8 bits dependent on the FPGA vendor. The deserializer
primitive is directly connected to the write end of the rx_fifo instance,
and therefore imposes an identical FIFO word width of S and arbi-
trary depth. The read end of the rx_fifo instance is then exposed as
an output bus of S bits wide, accompanied by an enable signal that
indicates that the subsystem connected to this bus is reading from
the FIFO. To avoid unnecessary filling the FIFO after the image sen-
sor has started streaming data but before the FIFO is being read out,
the enable signal is connected to both the read enable and write enable
signals of the FIFO.

4.2 streaming dram controller

This section focuses on the design and implementation of the sys-
tem’s specialized memory controller. The controller is a novel design
in the sense that it is specifically designed to handle linear DRAM ac-
cess patterns, as opposed to conventional random access as is typical
for DRAM controllers.

In [Goo+16], it is shown that the drive behind the developments
for conventional DRAM controllers is essentially improvement of the
typical or average-case throughput. As explained in [Axe+14], con-
ventional DRAM controllers also do not provide any form of tempo-
ral isolation, e.g. their latency is largely influenced by other tasks or
history, leading to unpredictable throughput. Since our system oper-
ates in the hard real-time domain, the focus lies on improving the
worst-case behaviour instead. Combining this with the streaming na-
ture of our system dataflow as hinted in previous sections in fact
creates an ideal and fully predictable DRAM use case. The design
presented in this section leverages this behaviour in order to achieve

[August 25, 2016 at 17:40 – classicthesis]

4.2 streaming dram controller 26

optimal sustained throughput that is largely predictable as will later
be shown in Chapter 6.

4.2.1 Dynamic Random-Access Memory (DRAM)

Today, Double Data Rate Synchronous Dynamic Random Access Memory
(DDR SDRAM) is commonly used in embedded systems due to its rel-
ative low cost per bit when compared to other conventional volatile
memories such as SRAM [Kle07]. It is the de facto choice for em-
bedded system boards carrying FPGAs and System-on-Chips, fulfill-
ing the need for mebi- to gibibytes of low cost addressable memory.
Manufacturers such as Xilinx, Altera, Lattice Semiconductor provide
a variety of options to use DDR memory technology for their de-
vices, ranging from hardware memory controllers to fully synthesiz-
able memory controllers, as in [Lat15], [Alt15a] and [Geo07]. The use
of DDR SDRAM technology for our data capture memory storage
therefore seems obvious in terms of practicality.

Apart from the obvious benefits of DDR SDRAM, there is a great
variety of DDR device generations and system arrangements to choose
from when designing a memory controller. Since the number of stor-
age bits contained in a single DRAM device or chips at any given
instance is inherently limited, the use of multiple organized DRAM
devices provides a necessary degree of storage scalability in the sys-
tem. From a (traditional) memory controller’s point-of-view, these
DRAM devices are organized as follows [JNW07]:

1. Channel. A channel represents the use of split data buses, typ-
ically used to address multiple memory modules, e.g. a dual-
channel configuration that combines two 64-bit modules into a
single 128-bit data bus.

2. Rank. A set of individual DRAM devices, addressed using the
available chip select signals.

3. Bank. A set of independent memory arrays within a DRAM de-
vice, operating independently or concurrently.

4. Row. A set of "horizontal" storage cells within a DRAM device,
activated in parallel.

5. Column. A set of "vertical" storage cells within a DRAM device,
the smallest addressable unit of memory, equal to the data bus
width.

The organization levels above show that the memory topology is
quite complex and the data and address bus are typically structured
in such a way that a single row or column actually spans across multi-
ple DRAM devices, as can be seen in Figure 15.

[August 25, 2016 at 17:40 – classicthesis]

4.2 streaming dram controller 27

BANK N

BANK 5

BANK 4

BANK 3

BANK 2

BANK 1

16384 x 1024 x 8 bits

BANK

COLUMN DECODER

SENSE AMPLIFIERS

DRAM MATRIX

R
O

W
 D

E
C

O
D

E
R

OUTPUT

Figure 15: Topology within a rank of DRAM devices. A bank consists of mul-
tiple DRAMs, each of which supplies an N-bit data word using
row and column addressing.

RANK (SINGLE SIDE OF DIMM)

1
2

8
 M

iB

Figure 16: Common layout of a DDR3 DIMM, populated at both sides with
multiple DRAMs. The DIMM is typically structured in such a
way that each side represents a single DRAM rank.

These DRAM devices exist in many types ranging in capacity, num-
ber of rows or columns, but also data bus width (e.g. 4-bit, 8-bit or
16-bit). For a single rank of memory, many device configurations are
therefore possible, as long as the combined memory data bus is 64

bits.

in-line memory modules The first design choice for the mem-
ory controller is concerned with the use of in-line memory modules.
As noted before, single DRAM devices simply do not provide ade-
quate memory storage, and while the use of multiple DRAM devices
lessens this problem to a certain degree, it still does not solve the
issue of storage scalability.

This is where the use of in-line memory modules such as Dual In-
line Memory Modules (DIMMs) or Small Outline DIMMs (SO-DIMMs)
provide a solution: these are standardized boards holding a variable
number of DRAM devices and can be plugged into a matching DIMM
socket. The DIMM, as used in virtually all modern desktop comput-
ers, allows for easy replacement of DRAM devices, thus providing
a highly configurable and scalable means of memory storage. These

[August 25, 2016 at 17:40 – classicthesis]

4.2 streaming dram controller 28

modules are typically populated at both sides, with each side repre-
senting a rank of DRAM devices, as can be seen in Figure 16.

FPGA and SoC manufacturers generally provide the necessary build-
ing blocks to enable the use of DDR SDRAM devices, as seen in
[Lat15], [Alt15a] and [Geo07]. Most building blocks are however op-
timized for conventional memory use in embedded systems: mostly
random access, and addressing one or only a few on-board DRAM
chips in a single rank. As a result, support for DIMMs is often miss-
ing or otherwise undocumented, especially for the lower price class
FPGA platforms. Instead, we will choose to design a custom soft-core
DRAM controller specifically tailored to the requirements of our sys-
tem and using a virtually ideal use case.

4.2.2 Access pattern predictability

The general purpose of the DRAM controller is to provide an inter-
mediate storage facility with enough bandwidth to be able to tem-
porarily store all incoming data from the interleaver subsystem, up
until the point when all data has been consumed by the readout in-
terface. The general flow of storage in the system is therefore quite
extraordinary:

1. Data capture (streaming writes, maximum throughput)

a) Interleaver starts producing data.

b) Memory controller consumes interleaver data and linearly
writes to memory storage.

c) Maximum memory storage capacity is reached or stream
is otherwise aborted.

d) Interleaves stops producing data.

2. Data readout (streaming reads, controllable throughput)

a) Memory controller linearly reads from memory storage
and starts producing data.

b) Readout interface consumes memory controller data and
writes to external interface.

c) Maximum memory storage capacity is reached or stream
is otherwise aborted.

Throughout steps 1a to 1d, the stream of data is captured and
stored linearly (e.g. from front to back) into memory storage. Steps 2a
through 2c are concerned with the readout and transmission of the
captured data to an external interface.

Here, the distinction between the data capture and readout steps
is especially important, as they differ significantly in throughput and

[August 25, 2016 at 17:40 – classicthesis]

4.2 streaming dram controller 29

thus in bandwidth requirements. The data capture occurs as a contin-
uous data stream running at maximized throughput, where loss of
data means a loss of captured images, and must thus be avoided at
all cost. This is in stark contrast to the data readout, which is a fully
controllable and interruptible data stream that can progress with any
desired throughput.

As can be seen from the above flow, the access patterns involved
for our DRAM controller are ideal in the sense that any access always
exhibits the following characteristics:

1. Strictly increasing. The data capture case simply starts writing
from the lowest addressable DRAM word and increments by
a fixed amount until it is stopped. The readout case behaves
identical, but issues read instead of write commands.

2. Contiguous and aligned. Capture and readout always write and
read entire DRAM words and addressing contiguous DRAM
elements. This also implies that addresses are always aligned
to DRAM rows and columns. The DRAM data bus is thus al-
ways fully and optimally saturated with meaningful data, and
accesses never have to be split into two commands.

3. No interruptions. Once capture begins, no other command than
a write is ever issued until the case is fully finished. For read-
out, the same holds for read commands. No delays are to be
expected due to recovery times since write-after-read or read-
after-write cases do not happen.

All of these characteristics ensure that all access patterns for our
DRAM controller are fully predictable, making it possible to optimize
the DRAM state machine to achieve maximum throughput. No worst-
case assumptions have to be made regarding address word alignment
and potentially time consuming commands such as row precharging
or activation which would normally be the case if random access
patterns would have to be supported, as we will see below.

4.2.3 DRAM protocol

This section continues with a basic explanation of the DRAM proto-
col as it is used for virtually all modern DRAM systems including
DDR, DDR2 and DDR3 SDRAM. Since the protocol is quite complex
and elaborate, we only focus on information relevant to the memory
controller and previously described access patterns on a functional
level.

Starting off, the specification dictates the use of the following DRAM
signals, as seen from the DRAM devices, and described in [JED08]
and [JNW07]:

[August 25, 2016 at 17:40 – classicthesis]

4.2 streaming dram controller 30

• CK. Rising edge clock used to synchronize control and address
transmissions (CMD and ADDR).

• CK, CK#. Dual-edged clock used to synchronize data bus trans-
missions (DQ, DQS and DQS#).

• CMD. Command input lines (also known as RAS#, CAS# and
WE#) that define the command being issued.

• ADDR. Address selection lines, consisting of 16 address bits (A0
to A15) and 3 bank address bits (BA0 to BA2), also muxed as
op-code inputs for certain commands.

• DQ. Data input/output bus that works in both directions.

• DM. Data mask that masks input data during a write request.

• DQS, DQS#. Strobe signals indicating valid input or output on
the data bus (DQ).

• CS#. One or more chip selects that allow for external rank se-
lection on systems with multiple ranks.

All of the above signals normally use single-ended signaling, ex-
cept those denoted in bold, which use differential signaling. These
signals are used to transmit requests to the DRAM devices in a pipelined
or phased fashion as can be seen in Figure 17. The most relevant
DRAM commands are described below.

active (row activation) The purpose of the ACTIVE command
is to move data from cells in the DRAM into the sense amplifiers, and
vice versa, as illustrated in Figure 16. A row in a particular bank is
selected by means of the ADDR lines, after which the sense amplifiers
in the relevant DRAM devices are set up. This row is then active (or
open) for accesses until a PRECHARGE command is issued. The time
for a row activation is referred to as tRCD, also known as the RAS to
CAS delay.

precharge (row deactivation) The PRECHARGE command
is used to deactivate or close the open row in a particular bank or
all banks, and is typically used after all relevant accesses in the cur-
rently open row have been done. Although this command is explicit,
precharging can also be done automatically when setting up the ap-
propriate flags for a READ or WRITE command, as will be explained
below. The time for a row precharge is referred to as tRP, also known
as the RAS precharge delay. Note that whenever a write occurs be-
fore a precharge, the DRAM devices should be allowed time to re-
cover from this last write command before the precharge command
is issued. This time is fixed and known as tWR or the write recovery
time.

[August 25, 2016 at 17:40 – classicthesis]

4.2 streaming dram controller 31

read (column read) When a READ command is issued, the
DRAM device transmits the data from the column and bank as se-
lected using the ADDR lines. Internally, the DRAM device uses an
N-bit wide bus made up of sense amplifiers that each move data
from individual columns. The outputs of the sense amplifiers are fed
into a pipelined circuit consisting of read latches and a multiplexers.
This circuit allows the DRAM device to serially output multiple bits
from adjacent columns on each data bus line, effectively multiplying
the bandwidth for each individual READ request. This mechanism is
called prefetching, and is of importance when optimizing throughput
during data access.

Newer generations of DDR SDRAM devices have seen an increase
of number of prefetch bits: whereas DDR SDRAM only supported 2-
bit prefetch, DDR2 SDRAM increased this value to 4-bit, while DDR3

SDRAM supports 8-bit prefetch. Note that the prefetch bits are syn-
onymous to the burst length or the minimum number of data bits
transmitted per READ or WRITE command, and thus put an upper
bound on the respective data throughput.

Specifically, DDR3 SDRAM allows for a configurable burst length
(prefetch bits) of either 4 ("Burst Chop 4", BC4) or 8 ("Burst Length
8") bits. The length can either be selected globally, e.g. during initial-
ization, or specified on-the-fly by encoding a corresponding bit in the
ADDR lines during a READ or WRITE command. Although a 8-bit
burst access would maximize throughput, the choice for a 4-bit burst
may be convenient for systems that do not require high throughput,
as it lowers the amount of words and required logic per data access,
as will be explained in subsequent sections.

write (column write) The WRITE command functions much
like a READ command, where data is read and stored into the col-
umn and bank as selected using the ADDR lines. An example of two
8-bit write burst commands can be seen in Figure 17. In the case of an
equivalent 4-bit write burst, timing would be identical to this exam-
ple, although the highest 4 bits of each DQ sequence would simply
not be used. We assume that the actual write always takes tROW = N

cycles, where N equals the amount of bits being written, e.g. 4 or 8,
and is always delayed by DRAM parameter CWL, also known as the
CAS write latency.

refresh DRAM devices store data as electrical charge inside volatile
capacitive cells, and it is inevitable that that this charge will gradually
leak out through the memory system. To ensure proper data integrity,
all DRAM cells must be periodically restored to full charge in a pro-
cess called refreshing. During a refresh, the DRAM device initiates
an internal process in which a refresh row address register is incre-
mented and this particular refresh row is read out in all banks, which

[August 25, 2016 at 17:40 – classicthesis]

4.2 streaming dram controller 32

CK, CK#

CMD

ADDR

DQ

WRITE NOP NOP NOP NOP NOP NOPWRITE

D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7

Figure 17: Simplified illustration of the pipelined DRAM command timing
in case of two BL8 write requests. Green and blue indicate any
commands, addresses and data bits belonging to the same re-
quest.

takes tRFC (refresh command time). When the REFRESH command
is issued at the average periodic interval tREFI (refresh interval) as
required by the DRAM specification, it is guaranteed that all rows
are eventually refreshed. However, as the refreshing action obviously
stalls the memory system at a periodic interval, there is a measur-
able impact on throughput as will also be explained in subsequent
sections.

4.2.4 Peak transfer rate

Given Figure 17, it is easy to see how read and write requests are
handled in a pipelined fashion. In ideal circumstances, newly issued
commands would appear to the memory controller sequentially and
without delay, and all commands in the pipeline would be handled
according to a completely fixed schedule as illustrated in the figure
and without any interruptions. Commands would be issued once ev-
ery 4 clocks and data would be issued on every falling and rising
edge of the clock or 0.5 clocks. Assuming a standard DDR3 DRAM
bus width of 64 bits, this would effectively read or write 512 bits for
every issued read or write command. In reality, the pipeline is of-
ten stalled by events such as DRAM refreshes and row precharging,
as explained in this chapter. Nevertheless, the ideal scenario is often
used to calculate the theoretical peak transfer rate in terms of MT/s or
megatransfers per second, e.g. such as for the DDR3-600 configura-
tion which we will be using later on in our research:

DRAM clock× 2 = 300MHz× 2
= 600MT/s

The peak transfer rate can also be expressed in terms of more con-
ventional gigabits or -bytes per second units when taking the DRAM
width into account:

peak transfer rate×DRAM width = 600MT/s× 64 bits

= 37.5Gbit/s

= 4.6875GiB/s

(2)

[August 25, 2016 at 17:40 – classicthesis]

4.2 streaming dram controller 33

In practice, these peak transfer rates are far from the actual ob-
served throughput of a conventional DRAM controller due to a num-
ber of reasons.

First of all, random access means that access may not be strictly
increasing, contiguous and/or aligned. This implies that bytes that are
to be read or written may have to be spread across multiple DRAM
rows or columns, and multiple commands may in fact be required to
write the entire data to DRAM. This also means that the DRAM data
bus will often only contain a portion of useful data and a bit mask
has to be used to mask out the useless bits of data, effectively wasting
throughput.

Furthermore, DRAM protocol dictates the use of recovery timing
constraints in case of write-after-read, read-after-write or other cases
where continuous burst is not possible. A burst is always preferred,
but can only last as long as identical commands follow each other,
e.g. in the case of many subsequent WRITE commands. For random
access, no guarantees can be made about the occurrence of reads and
writes, so it must be assumed that any read may follow a write or
vice versa, and burst behaviour is less than optimal.

As explained in the previous section, our access patterns are in fact
not random at all, allowing for a specialized implementation of the
DRAM state machine.

4.2.5 Protocol state machine

The original JEDEC state machine for the DRAM protocol can be seen
in Figure 18. This state machine covers the general case of random
memory access behaviour with a clear order of commands when ac-
cessing data: a bank is activated, data is read or written, the bank is
precharged. This kind of state machine expects that the memory con-
troller is issued with distinct read or write commands, as is the case
for convential random memory access patterns.

For our memory controller, there is a specific focus on maximiz-
ing throughput for sequential burst writes. In our case, the original
state machine has been redesigned, as can be seen in Figure 19. Un-
like the JEDEC state machine, in which the idle state always assumes
that all banks are closed or precharged, this state machine contains
a number of burst-specific states in which the idle state always as-
sumes an already open and active bank. In other words, an incoming
write command can almost always be handled immediately, without
having to activate the corresponding bank, unless the write occurs in
a different (non opened) bank. Obviously, this only holds when burst
writes occur strictly sequentially, as is the case in our system.

Note that sequential burst writes are also possible with the JEDEC
state machine in Figure 18, as long as the state machine is in the
Writing state. However, in the case of continuous write burst (e.g. a

[August 25, 2016 at 17:40 – classicthesis]

4.2 streaming dram controller 34

Bank
Active

ReadingWriting

Activating

RefreshingIdle

gnidaeRgnitirW

Automatic

Sequence

Command

Sequence

Precharging

READ

READ READ

READ A

READ A

READ A

PRE, PREA

PRE, PREA PRE, PREA

WRITE

WRITE
WRITE

WRITE A

WRITE A

WRITE A

REF

ACT

Figure 18: Original simplified DRAM protocol state diagram as in [JED08].
Power and calibration states have been omitted.

long queue of burst writes), the state machine can possibly spend
so much time in the Writing state that it would violate the refresh
interval timing of the DRAM, leading to unpredictable results. The
JEDEC state machine therefore only serves as a simplified guideline,
on which the actual state machine design in Figure 19 is based.

In our state machine, the following states and associated commands
can be seen:

• Idle. Idle state in which all banks are precharged. Commands
READ and WRITE indicate non-burst reads and writes.

• Idle B. Idle state in burst mode, in which a bank is assumed
to be active. Commands READ and WRITE indicate non-burst
reads and writes, while BURST A indicates a burst write on
the currently active bank and BURST B indicates a burst write
outside the currently active bank.

• Activating R, Activating W. Activating states in case of a non-
burst read or write. This flow implies an exit of burst mode.

[August 25, 2016 at 17:40 – classicthesis]

4.2 streaming dram controller 35

READ

WRITE

Idle

READ BURST B

BURST A

WRITE

Idle
B

Precharging
R/B

Activating
R/B

Writing
B

Precharging
B

Activating
B

Precharging

Precharging
W/B

Activating
W/B

Reading

Writing

Activating
R

Activating
W

Figure 19: Redesigned DRAM state diagram optimized for sequential burst
writes. Burst-related states are highlighted in blue.

• Reading, Writing. Reading and writing state in case of a non-
burst read or write. This flow implies an exit of burst mode.

• Precharge. Precharge state after a non-burst read or write using
the auto precharge feature.

• Precharging W/B, Activating W/B. Precharging and activating
states in case of a non-burst write (write-after-burst).

• Precharging R/B, Activating R/B. Precharging and activating
states in case of a non-burst read (read-after-burst).

• Precharging B, Activating B. Precharging and activating states
in case of a burst write.

• Writing B. Writing state in case of a burst write. Returns to the
idle state immediately after completion.

Note that in the above states, auto precharge is always applied in
case of non-burst reads or writes. As such, a single non-burst read
or write command is always preceded by a bank activation and fol-
lowed by a bank precharge. Although this is not ideal in terms of
non-burst access performance, it does simplify the required DRAM
state machine logic. Rather than optimizing the performance for non-
burst access in our system, we have chosen to focus primarily on
maximizing throughput for burst access, as has been stated before.

[August 25, 2016 at 17:40 – classicthesis]

4.2 streaming dram controller 36

4.2.6 FPGA implementation

The actual FPGA implementation of the DRAM controller is com-
posed of a number of elements:

• DRAM physical layer I/O buffers. All buffer logic elements con-
cerned with interfacing to the DRAM DIMM physical layer. This
includes:

– 64 DQ I/O buffers. The DQ bus consists of 64 bidirectional
single-ended wires and requires matching I/O buffers to
interface with these, e.g. 64 IOBUFs for Xilinx platforms.

– 8 differential DQS I/O buffers. There are 8 bidirectional differ-
ential DQS strobe signals. These are to be interfaced with
matching I/O buffers, e.g. 16 IOBUFs or ISERDES2 com-
bined with 16 OSERDES2 for Xilinx platforms. Since all
DRAM timings in our implementation are known, the in-
put strobe signals can however be safely ignored.

– 8 DM I/O buffers. There are 8 bidirectional DM single-ended
data mask signals, interfaced with matching I/O buffers,
e.g. 8 IOBUFs for I/O buffers. However, since our imple-
mentation does not make use of data masking since the
entire width of the data bus always used, DM input is ig-
nored, and output is fixed to all-ones.

– 16 ADDR, 3 BA and 2 CS# output buffers. These 20 single-
ended outputs make up the complete DRAM address bus
including DIMM rank selection, and are driven by match-
ing output buffers, e.g. 20 OBUFs for Xilinx platforms.

– 3 CMD and 2 DCE output buffers. These 5 single-ended out-
puts make up the DRAM command bus, and are driven by
matching output buffers, e.g. 5 OBUFs for Xilinx platforms.

– 2 CK differential output buffers. The complete DIMM clock
net is driven by two matching differential output buffers,
e.g. 2 OSERDES2 for Xilinx platforms.

• DRAM protocol FSM. This FSM implements the state machine
logic as previously outlined in this section. The FSM’s only
stimuli for transitions are the signals from the command inter-
face when it is in either of the idle states. It is otherwise fully
self-timed, using the fixed timings as specified in the DRAM
protocol, also illustrated by the dotted lines in Figure 19.

• Command interface. This element provides the necessary logic
between the DRAM controller component I/O signals and the
idle state transitions in the FSM. As such, the DRAM controller
exposes the following signals to the rest of the system:

[August 25, 2016 at 17:40 – classicthesis]

4.2 streaming dram controller 37

– 20 address input bus signals mirroring the DRAM address
bus.

– 512 data bus I/O signals mirroring the maximum DRAM
data throughput per write command, when considering
a burst size of 8 and 64 bits per clock.

– 2 read/write strobe input signals indicating that the data and
address bus bits are valid, and a read or write command
should be issued.

– 1 ready strobe output signal indicating that any data on the
data bus is valid, e.g. after a read command, and the con-
troller is ready to issue new commands.

– 1 clock input signal tied to the system’s primary clock do-
main that is multiplied to the DRAM command clock. Need-
less to say, this requires the system’s primary clock to be
an integer division of the DRAM command clock. For the
DDR3-600 case outlined in this thesis, a clock of 150MHz
is to be used and is quadrupled to achieve a 600Mhz data
clock.

– 1 reset input signal tied to the reset inputs of all elements
inside the DRAM controller.

The above elements allow for a FPGA implementation of the spe-
cialized streaming DRAM controller as introduced in this section,
which is then connected to the arbitration subsystem described be-
low.

4.2.7 Command arbitration

The hardware domain diagram in Figure 9 of Chapter 3 shows that
the DRAM controller actually interfaces with two different subsys-
tems: the stream interleaver, and the embedded control processor.
This requires the use of an arbitration component, also referred to
as an arbiter that allows these two subsystems to exclusively issue
commands to the DRAM controller.

Our implementation of this arbiter is simply a multiplexer that mul-
tiplexes the signals from these two subsystems into a single set of sig-
nals for the DRAM controller. First, the DRAM command interface
signals outlined in the previous section are mirrored for each of the
subsystems. A simple multiplexer logic component is then added to
multiplex the input DRAM command interface signals from either
subsystem into output DRAM command interface signals, based on
a selector.

In order to select one of the two subsystems, we first assume that
the two subsystems exhibit exclusive behaviour and never access the
memory concurrently: the stream interleaver simply starts writing

[August 25, 2016 at 17:40 – classicthesis]

4.3 stream interleaver 38

captured image sensor data, ultimately finishes and is then followed
by the embedded control processor that starts a readout of the DRAM
that finally finishes when all its contents are read. Due to this exclu-
sive access behaviour, it is easy to model the multiplex selector be-
haviour in our arbiter:

1. If the stream interleaver issues a write (write strobe is high),
select the DRAM command interface signals from the stream
interleaver.

2. Otherwise, if the embedded control processor issues a read or
write (read strobe OR write strobe is high), select the DRAM
command interface signals from the embedded control proces-
sor.

Note that the above logic is very naive, but guarantees correct func-
tioning of the arbiter as long as it can be guaranteed that the stream in-
terleaver and embedded control processor never issue any commands
at the same time. As we will see in Chapter 5, we can easily enforce
this by letting the embedded control processor control the behaviour
of the stream interleaver.

4.3 stream interleaver

Our system is designed to interface with multiple sensors in order
to facilitate high-speed capture. It follows that for each of these sen-
sors, we require a sensor receiver interface as described in Section
4.1. While this sensor receiver interface covers the input for every
sensor in our system, we actually need a block of logic to combine
the raw data from all of these sensors into a single stream that can
be connected to the DRAM controller described in the previous sec-
tion. As such, all raw data coming in from the sensor receiver inter-
faces needs to be combined into a stream of DRAM write commands
by means of appropriate address bus, data bus and write strobe sig-
nals. This block of logic is also known as the interleaver, and its exact
working is dictated by the data bus width of the memory controller
Nmemory_data_width as well as the total number of sensors N and
lanes Nlanes per sensor, such that:

Nlines =
Nmemory_data_width

N×Nlanes × S
(3)

Where S represents the deserializer ratio or data bus width of the
sensor receiver interface. In our case, we assume a convenient S = 8

for our entire system to allow for effortless alignment and compati-
bility with the memory controller. Note that all sensors connected to
the interleaver are expected to have identical configurations in terms
of S, Nlanes, fSERIAL and so forth.

[August 25, 2016 at 17:40 – classicthesis]

4.3 stream interleaver 39

In Equation 3, N×Nlanes × S represents the amount of total bits
coming in from all sensor receiver interface outputs per system clock
cycle if data is available, which we will refer to as a line, otherwise
defined as:

Nline_width = N×Nlanes × S (4)

The outputs of the receiver interfaces or lines are fed into a shift reg-
ister with a capacity of Nmemory_data_width and as soon as this shift
register is saturated, a write request with its contents is dispatched
towards the memory controller.

In any case, Nlines represents the amount of lines that are required
before the shift register, or the DRAM data bus, is saturated. We thus
assume that Nlines >= 1. If this is not the case, multiple write re-
quests are instead necessary in order to store a single line of data,
which would require a different interleaving implementation and is
beyond the scope of this thesis.

If Nlines /∈N+, feeding a new complete line into the shift register
will eventually result in shifting out part of the oldest line. To avoid
loss of data in this case, data is shifted in bit-by-bit until the regis-
ter is saturated, in which case the newest line is broken up and the
remainder of bits is only shifted in after the write request has been
made, after which the entire course of action is repeated. In the end,
the shift register logic ensures that incoming data is translated into
write requests for the memory controller, such that its data bus is
always optimally saturated with data to allow maximum sustained
throughput.

The rate at which lines will flow into the interleaver is fully deter-
mined by the serial bit rate fSERIAL of the sensors. We define this rate
simply as follows:

fLINE =
fSERIAL

S
(5)

Here, fLINE is the rate at whichNlanes data words of size S appear
at the output of each sensor receiver interface, to be consumed by the
interleaver, making up a single line ofNline_width bits. For simplicity,
we assume that all sensor receiver interfaces in the system present
this data at the same time on their respective outputs, despite the fact
that in practice sensors may exhibit slight relative phase differences
in any associated clocks. All sensor data is therefore also assumed to
be consumed at the same time by the interleaver.

By combining the aforementioned equations, a relation can be es-
tablished between the line rate fLINE and the number of lines re-
quired to saturate the DRAM data bus Nlines, allowing one to cal-
culate the rate at which the interleaver will issue DRAM data write
requests:

[August 25, 2016 at 17:40 – classicthesis]

4.3 stream interleaver 40

fWRITE =
fLINE

Nlines
=
fSERIAL ×N×Nlanes

Nmemory_data_width
(6)

It is important to note that in case lines will not perfectly align
in the DRAM data bus, e.g. Nlines is a fraction, fWRITE only repre-
sents the average rate at which DRAM write requests are issued. The
worst-case rate, or the highest possible write rate, is then calculated
by explicitly substituting with bNlinesc. For all other cases, the worst-
case rate is equal to the average rate. The worst-case rate is therefore
defined as follows:

fWRITEwc
=


fLINE

bNlinesc if Nlines > 1 and Nlines /∈N+,
e.g. Nlines is a fraction larger than 1

fLINE

Nlines
otherwise

(7)

The worst-case interleaver rate fWRITEwc
is be one of the primary

factors when analyzing system throughput. As we will later describe
in Chapter 6, this is due to the fact that our system has hard real-time
requirements, making the worst case behaviour the decisive factor in
guaranteeable bandwidth as also stated in [Goo+16].

4.3.1 FPGA implementation

The VHDL or Verilog implementation of the interleaver is not bur-
dened by the use of vendor-specific primitives as it is a purely in-
ternal FPGA component that only interfaces with other components.
This section therefore attempts to explain the logic involved in the
stream interleaver implementation in a generic way.

As mentioned before, it is assumed that Nlines >= 1 such that
multiple lines are necessary in order to saturate the DRAM data bus.
Our implementation then exhibits the following functionality:

• A shift register of width Nmemory_data_width is used to shift in
bits of data from the new lines as they become available. A shift
counter is used to record the number of shifts.

• As soon as the oldest valid bit in the shift register reaches the
final bit of the shift register, e.g. in case the counter will equal
Nmemory_data_width:

– The shift counter is reset to 0.

– A DRAM write command is issued by signaling the write
strobe signal, copying the current shift register contents to
the data bus, and setting the address bus to the value of an
address counter that is incremented after each write.

[August 25, 2016 at 17:40 – classicthesis]

4.4 embedded control processor 41

– Any remaining (yet to be shifted) data in the new lines are
shifted into the shift register.

• As soon as the address counter reaches a predefined address,
e.g. the end of the available DRAM space, all input is ignored
from thereon and a done signal is set.

The above implementation ensures that new lines of raw image
data are stored strictly increasing, contiguous and aligned according to
the characteristics put forth in Section 4.2.2.

The stream interleaver also exposes a reset signal that resets the in-
ternal logic elements, and an enable signal that enables the functional-
ity of the stream interleaver. The interleaver is connected to the S-bit
wide FIFO output bus of each sensor receiver interface. The enable
signal of the interleaver is directly routed to the read enable signal
of the sensor receiver interface’s FIFO, and starts up the flow of raw
video data in the system’s primary clock domain as soon as the inter-
leaver is enabled.

4.4 embedded control processor

In our system, the presence of an embedded processor is important
as it facilitates a number of critical control functions that ensure that
the system operates correctly:

• DRAM controller configuration, notably self-testing.

• Enabling and disabling of stream interleaver and readout inter-
face.

• Sensor control interface drivers for sensor configuration and
phased start functionality.

While all of the above functionality could have been implemented
purely in hardware, the choice to move these functions over to a soft-
ware solution, also known as the embedded domain, makes it possible
to dynamically reconfigure various parameters of the system. Fur-
thermore, a software-based solution eases development and debug-
ging of the system, as the embedded control processor is also capable
of providing auxiliary debugging and output facilities. The exact im-
plementation of the above control functionality is in fact part of the
software domain, as we have explained before, and is thus further
described in Chapter 5.

To accommodate a software implementation, the system requires
an embedded processor with a straightforward means of connecting
to the other subsystems. Furthermore, as the memory controller ad-
dresses up to several gibibytes of DRAM, the processor should be
capable of conventional 32-bit memory addressing. For the sake of

[August 25, 2016 at 17:40 – classicthesis]

4.5 sensor control interface 42

software development, the availability of a well-supported C/C++
toolchain with a proper means of debugging is also a sensible re-
quirement. The presence of a memory management unit is however
not necessary, and by avoiding the use of a conventional operating
system, the processor can be kept fairly small and lightweight. The
choice for a soft-core processor therefore fits well in our system.

A variety of commonly available lightweight soft-core processors
exist today, each of which may be more or less of an obvious choice
depending on the actual platform being used to realize the system.
Given that the functionality in the embedded domain can be easily
developed on most of these processors, the specific choice of which
soft-core IP to use is to be be based on practical considerations as well
as real-time performance. The embedded processor is expected to op-
erate in real-time, issuing instructions related to system control with
minimal delay, especially those related to timing-sensitive operations,
also described beyond this section.

For Xilinx-based platforms, the use of the proprietary MicroBlaze
IP seems most straightforward, whereas one would likely prefer the
proprietary Nios II for Altera-based platforms2. In addition, there are
a number of open-source and freely available projects that provide an
alternative to the well-known proprietary soft-core processors, such
as the OpenRISC, LEON3 and the MicroBlaze-compatible MB-Lite as
described in [Dor+09] and [KL10]. The open-source nature of these
projects also allow fine tuned customization in case more functional-
ity is needed.

All of the above soft-core processors are suitable for real-time op-
eration as described in [TAK06], and thus for our system. Though,
[Axe+14] explains that the use of caches and pipelines, as imple-
mented on in all of these processors, impose instruction times that
are inherently not fixed and may vary depending on execution his-
tory. One might therefore consider a processor with a minimal or no
amount of pipeline stages as a quick indicator for a consistent latency
across instructions, suited for real-time operation. As summarized in
[TAK06], the OpenRISC, LEON3, MB-Lite, Nios II and Microblaze re-
spectively have 5, 7, 5, 6 and 3 stages each, making the Microblaze a
seemingly good choice in this case. Further instruction latency con-
sistency optimization is achieved by disabling instruction and data
caches for more consistent instruction timing, where possible.

4.5 sensor control interface

This section describes the sensor control interface, which implements
a I2C-compatible driver that interfaces with all the sensors in the sys-
tem by using a multiplexer. It also gives an overview of the I2C proto-

2 For more information on the details of the MicroBlaze and Nios II soft-core proces-
sors, refer to the respective manufacturer’s references guides [Xil08] and [Alt15b].

[August 25, 2016 at 17:40 – classicthesis]

4.5 sensor control interface 43

col itself, deemed necessary in order to understand the timing aspects
behind the phased starting of sensors.

As the MIPI CSI-2 defines a separate bidirectional I2C-compatible
control interface, we can safely assume that the CSI-2 sensors in the
market typically have indeed such an interface [MIP16a]. This also
holds for sensors with similar CSI-2 interfaces such as HiSPi as can
be seen in [Sem15a] and [Sem15b]. In this thesis, we therefore define
the presence of a I2C-compatible control interface for all sensors that
are attached to the system.

4.5.1 I2C protocol overview

The I2C protocol is a quite straightforward: the physical bus consists
of two bidirectional active wires, notably SDA (Serial Data Line) and
SCL (Serial Clock Line), connected in an open drain topology using
pull-up resistors. With this open drain design, the bus drivers in both
the master and slave devices can only ever pull the signals to a logic
low state instead of driving it to logic high, avoiding potentially dam-
aging scenarios in which multiple devices are driving opposite logic
levels [Lee09]. Any number of slaves or masters can connect to this
bus, as long as they do not interfere with each other.

A typical data write action, as initiated by the master device, can be
seen in Figure 20. This transmission starts off with a START condition,
followed by 7 address bits that describes a specific slave device on
the bus responding to this address. An extra R/W (Read/Write) bit
is used to indicate whether the master is requesting a read or write
from the slave. In any transmission, words are 8-bit long and every
8-bit word sent from the master to the slave is always followed by
an acknowledgement or ACK from slave to master. After the initial
addressing data, the transmission is followed by an arbitrary amount
of data words and is finalized by means of a STOP condition. For a
data write action, the R/W bit is low, and data words are sent from
master to slave. In case of a data read action, R/W is high and data
words are sent from slave to master instead.

4.5.2 Camera control interface (CCI)

The sensor control interface is also known as the Camera Control In-
terface (CCI), and generally consists of a half duplex, bi-directional,
two-wire serial bus that is largely compatible with the I2C bus speci-
fication as originally documented in [Phi03].

As the original I2C standard is quite elaborate, certain non-critical
features deemed unnecessary for sensor control are usually left out of
the actual CCI implementations. Support for multiple master devices,
legacy transfer rates and clock stretching is often omitted in favor of a

[August 25, 2016 at 17:40 – classicthesis]

4.5 sensor control interface 44

S
T
A

R
T

S
T

O
P

SLAVE ADDRESS

1 7 1 18

DATA

R
/W

A
C

K

1

A
C

K

118

DATA

A
C

K

Figure 20: I2C data transmission using 7-bit slave addressing with two data
words as described in [Phi03]. Grey blocks are transmissions from
master to slave, white are from slave to master and green depends
on the type of operation. Bit widths are denoted below.

S
T
A

R
T

SLAVE ADDRESS

1 7 1 18

REG ADDRESS[15:8]

R
/W

A
C

K

1

A
C

K

18

REG ADDRESS[7:0]

A
C

K

S
T

O
P

118

DATA[7:0]

A
C

K

Figure 21: Example CCI data transmission addressing an 8-bit register using
a 16-bit address. Grey blocks are transmissions from master to
slave, white are from slave to master and green depends on the
type of operation. Bit widths are denoted below.

more straightforward single master multiple slave topology running
in I2C’s Fast-mode with a maximum transfer rate of 250KHz.

Sensors are positioned on the bus as simple slave devices, control-
lable by a single master or host that sends out commands using con-
ventional 7-bit slave addressing. The actual command protocol is pur-
posely left open to allow manufacturers to implement their own set
of commands most relevant to the sensor.

The CCI specification extends the I2C data protocol with support
for registers that store either 8, 16, 32 and 64-bit wide data words, and
are accessed using 16-bit addresses that define a 64KiB register space.
An example of a CCI data operation addressing an 8-bit register can
be seen in Figure 21, and this operation differs only in the amount of
transmitted data words for the other register widths.

The register space allows for manufacturer specific sensor configu-
ration and control, and typically includes all critical timing parame-
ters such as exposure, PLL configuration and row timing, as well as
sensor resolution, test patterns, stream control and many other op-
tions as can be seen in [Sem15a][Sem15b].

4.5.3 FPGA implementation

The sensor control interface subsystem consists of a single I2C-compatible
master driver that supports the aforementioned CCI. Because the in-
terface transmits at a rate of 250 kHz in its own clock domain, logic
within the interface has to properly facilitate the crossing of clock
domains.

However, since the interface drives the SCL clocking signal as a mas-
ter, and is thus not dependent on any input clocks, the clock domain
can be generated by means of an arithmetic counter that divides the
system clock down to the appropriate output clock frequency. Using
these counters, the SCL clock domain is internally kept in phase with

[August 25, 2016 at 17:40 – classicthesis]

4.5 sensor control interface 45

the system clock and effectively does not require any of the metasta-
bility mitigation described in Section 4.7.

To accommodate the command and control of an arbitrary amount
of sensors, the master driver logic is connected to a 1-to-N multiplexer
where N is the number of sensors in the system. The multiplexer as
well as the master driver are fully controllable from the embedded
domain, such that complex sensor control sequences can be executed
from the embedded processor. More specifically, the sensor control
interface exposes a number of signals specifically designed for easy
embedded control:

• log2(N) selector signals controlling the multiplexer selector func-
tionality, where N is the total number of connected image sen-
sors. The selector signals uses a simple two’s complement inte-
ger representation.

• 1 read/write signal indicating whether the interface should issue
a read or write command.

• 7 address input bus signals corresponding to the address part of
a I2C command. This address is internally encoded and subse-
quently transmitted on the SDA output signal.

• 8 data input bus signals containing the 8-bit data in case a write
command is issued.

• 8 data output bus signals containing the 8-bit data in case a read
command is issued.

• 1 ready signal indicating whether the data bus contains valid
data and/or a new command is ready to be issued.

• 1 clock input signal tied to the system’s primary clock domain or
embedded clock domain.

• 1 reset input signal that resets all internal FPGA logic.

4.5.4 Phased start

This complex control from the embedded domain is especially nec-
essary, if we consider the requirement of high-speed video capture
for our system. In the case of high-speed capture, the system is con-
nected to multiple sensors, and these sensors will be exposing and
integrating their pixel arrays at specific moments in time. This way,
different sensors capture images in different but adjoining regions of
time, forming a continuous and temporally linear stream of images
when ultimately combined.

A visual illustration of this timing regime can be seen in Figure 22.
In this figure, each sensor is limited by a minimum readout duration

[August 25, 2016 at 17:40 – classicthesis]

4.5 sensor control interface 46

8

0 t 2t 3t 4t 5t 6t 7t 8t 9t 10t 11t 12t 13t 14t 15t 16t

7

6

5

4

3

2

1

S
E
N
S
O
R

TIME

Figure 22: Phased start with 8 sensors plotted against time. Dark regions
represent exposure duration, and light regions represent readout
duration for all sensors.

which is enforced by sensor limitations such as bandwidth. However,
the exposure duration is not limited by bandwidth, and can thus be
set at a considerably shorter duration. By using multiple sensors and
temporally adjoining their individual exposure durations, and ulti-
mately combining the images captured at those specific times in the
same order, video capture at a far higher rate than that imposed by a
single sensor’s readout duration can be achieved.

timing criteria From the figure, it follows that for every sen-
sor i, the exposure start time tiexposure_start must be configured to
coincide with the end time tjexposure_end of another sensor j, where
texposure_start is configured by means of the sensor control interface,
and texposure_end is generally defined as follows:

texposure_end = texposure_start + texposure

In an ideal system, the difference between the start and end times
is ideally 0 or otherwise minimized:

|tiexposure_start − t
j
exposure_end| = ε→ 0

If N sensors are available in the system, i and j represent two
unique sensors in such a way that the above equation holds for each
sensor i, j = [0,N) where i 6= j.

Assuming a fixed ffps for each sensor i such that ffps = fifps, and
if the images of all sensors are ultimately combined, the effective cap-
ture rate of the system can be defined as:

ffps_system = N ∗ ffps

[August 25, 2016 at 17:40 – classicthesis]

4.5 sensor control interface 47

As an example in the case of Figure 22, where N = 8 and ffps =

60Hz, the effective system capture rate is then simply:

ffps_system = 9 ∗ 60Hz = 540Hz

Recall that the research introduction in Chapter 1 introduced two
evaluation criteria, one of which stated that the timing accuracy of the
phased start must be at least 99%. The timing accuracy here refers to
the exact time period between two subsequent phased start periods,
e.g. a single unit of time t as illustrated in Figure 22. The use of one
or more clocks in the implementation of the sensor control interface
implies that t is in fact discrete and may therefore exhibit an error ε
in reference to the ideal period of t.

Recall that there are two clocks involved in the sensor control in-
terface: a system clock used to transfer command data to and from
the subsystem, and a I2C clock used to transfer command data to and
from a sensor. These two clocks have different timing effects on the
commands as they are sent to the sensor.

The system clock issues the actual commands and therefore has a
direct effect on the exact moment in time the sensor sees a new com-
mand: a new issue of a command can be delayed by a system clock
period, causing an error ε equal to the system clock period. However,
since the system clock typically operates in the tens or hundreds of
MHz, and the effect of ε only becomes significant in the order of
magnitude of ffps_system, e.g. several kHz, the effect is therefore
negligible.

The I2C clock, e.g. at 250kHz, does have a significant effect on the
command timing. Since this clock is in fact generated inside the sen-
sor control interface, we assume that this clock ideally starts at the
moment a new command is issued by the system. Needless to say,
the clock has an effect on the total time it takes for the interface to
send the command as it defines the rate at which bits can be sent.
However, since all start commands issued to sensors have an equal
bit length, the command duration is fixed and equal for every sensor.
This clock therefore does not have any effect on ε and its effect can
also be disregarded.

What is left is to ensure that the system actually issues the start
commands with minimal delay. The start commands are handled by
the sensor control driver running on the embedded processor, further
detailed in Chapter 5. The embedded processor must be (near) real-
time, ideally executing the task’s necessary instructions according to
a fixed schedule that is known a priori.

[August 25, 2016 at 17:40 – classicthesis]

4.6 readout interface 48

4.6 readout interface

On the highest level, the readout interface serves as a generic channel
between the hardware domain (or DRAM contents) and the software
domain (host), respectively containing the raw captured video data
and the corresponding components to process this data.

Our readout interface is designed in a way that connects its input to
the DRAM controller while its output is physically connected to the
software domain host by means of a data bus supported by both the
FPGA platform and the host. The implementation of the readout in-
terface then contains the signaling IP to physically interface with the
given readout data bus, while control is provided by the embedded
control processor.

The choice of data bus is arbitrary as it largely depends on the ca-
pabilities of the software domain host. In this thesis, we have chosen
to use the Serial Peripheral Interface (SPI) bus due to its simplicity and
wide support among host platforms, though its bandwidth is limited.
By using the SPI bus, the readout interface is simply exposed as four
single-ended wires on the FPGA platform carrying our hardware do-
main. These wires are then be connected to any SPI capable host,
realizing the channel between the hardware and software domains,
and allowing the software domain to download and further process
the raw video data.

4.6.1 FPGA implementation

As stated, the input is provided by the DRAM controller. The input is
in fact a data bus of Nmemory_data_width bits wide, e.g. 512-bit, that
connects directly to the DRAM controller’s data bus. Facilitating this
input is a matching 20-bit address bus that connects to the DRAM
address bus and specifies the address to read from DRAM, as well as
a read strobe signal that issues the actual DRAM read command and
the data ready signal from the DRAM controller.

As soon as the readout interface is enabled, a linearly increasing
address is put on the address bus and the read signal is strobed. It
then waits for data to appear on the input DRAM data bus and sub-
sequently forwards all data bits to the readout data bus IP, i.e. the
SPI slave controller, such that this data is then physically transmit-
ted over the readout data bus. As soon as the bus IP indicates that all
Nmemory_data_width bits have been transmitted, the entire flow is re-
peated until a predefined address such the end of the DRAM region
has been reached.

The readout interface further provides an enable, a reset and a done
signal that serve obvious purposes and are connected to the embed-
ded control processor. Control of the readout interface in terms of
enabling, disabling and resetting the FPGA logic is therefore exer-

[August 25, 2016 at 17:40 – classicthesis]

4.7 clock domain crossing 49

cised from the embedded control software, completing the readout
interface functionality.

4.7 clock domain crossing

It is clear that the datapaths and interfaces within the system span
over multiple individual hardware systems each of which have in-
dividual clocks, i.e. the sensor, FPGA, DRAM and readout interface.
Because of this, the datapaths cannot be synchronized by only a sin-
gle clock, as would be the case in an ideally synchronized hardware
design. This raises the issue of multiple clock domains and corre-
sponding clock domain crossing, which is to be addressed properly
to ensure stable signal integrity within the overall system. The use
of on-chip clock domain crossing memories is common in embed-
ded systems [Goo+05], and our platform is no exception. Here, two
assumptions are made to further clarify the definition of a clock do-
main: any two clock domains contain clocks that are unrelated for
which a clock phase relationship can not be guaranteed, and by ex-
tension, any clock domain may contain multiple clocks at different
frequencies as long as all of these clocks have a guaranteed phase
relationship.

primary clock domains In our system, a minimal number of
important clock domains can be identified that operate at a highest
frequency range, i.e. in the 10 to 1000MHz range. In our system, we
call these the primary clock domains:

• Sensor receiver interface (e.g. 700MHz).

• System logic: sensor controller, interconnect, memory controller
and embedded processor (e.g. 150MHz).

• Readout interface (e.g. 16MHz).

secondary clock domains The secondary clock domains repre-
sent those that operate at slower speeds, i.e. below 1MHz, or do not
require any strict form of data communication:

• Sensor controller and I2C interface (e.g. 250KHz).

• Sensor clock and reset logic (e.g. 27MHz).

The distinction between primary and secondary clock domains is
important as it corresponds with the complexity of the circuitry re-
quired to safely communicate data across these clock domains bound-
aries.

As described in [Gin11], the issue of clock domain crossing lies
in the metastability events that appear in digital circuits whenever

[August 25, 2016 at 17:40 – classicthesis]

4.7 clock domain crossing 50

FF1

D1 Q1

FF2

D2 Q2DATA

CLOCK

DATA

(a) Two flip-flop synchronizer.

DUAL-PORT RAM

ENABLE

WRITE POINTER

READ POINTER
CLOCK

DATA

SYNC

CLOCK

ENABLE

CMP

SYNCCMP

READY

READY

DATA

(b) Two-clock FIFO synchronizer.

Figure 23: The two different types of synchronizers used in our system.
Green and blue represent the two different clock domains, and
red acts as stabilizing logic in between.

asynchronous signals (or unrelated clocks) are used, as is the case
in our system. Transferring data across these clock domain bound-
aries requires the use of synchronizers that effectively eradicate any
metastability issues.

The two most important implementations for synchronizers in the
context of our system are the two flip-flop synchronizer and two-clock
FIFO synchronizer, as can be seen in Figure 23. Both of these are simple
and straightforward to use:

• Flip-flop sychronizer. This design allows for single bits of data to
pass through a clock domain boundary by simply chaining two
flip-flops.

• Two-clock FIFO synchronizer. This design uses a dual-port RAM
to pass entire words of data. Complex to implement, but gen-
erally available in vendor-specific HDL libraries such as those
from Altera and Xilinx.

Both of the aforementioned synchronizers are necessary. The two-
clock FIFO synchronizer is used whenever there are multiple words
of data that need to be synchronized between two different clock do-
mains at high throughput, as is the case for the sensor receiver in-
terface in which words of deserialized sensor image data are to cross
from the sensor clock domain into the system logic clock domain. The
flip-flop synchronizer is used in all other cases whenever there are
single bits or signals that need to pass between two clock domains,
e.g. used for the sensor clock and reset logic, for which signals are
generated by the system logic, but must be clocked in the sensor’s
clock domain. Note that while it is possible to use flip-flop synchro-
nizers for larger data words, this typically makes the implementation
unnecessary complex as FIFOs are commonly available in synthesis
tools and better suited in this case.

[August 25, 2016 at 17:40 – classicthesis]

5
S O F T WA R E D O M A I N I M P L E M E N TAT I O N

This chapter continues with the description of the system as it was
introduced in Chapter 3, focusing on the software domain and all
its subsystems, illustrated before in Figure 10. Most of these subsys-
tems are in fact custom software programs, implemented either on
the embedded control processor in the hardware domain, or an ex-
ternal host, and providing the off-line functionality to transform the
raw video data produced by the hardware domain. The result of this
transformation is a video file or stream containing the high-speed
images.

The stream decoder, image rectification and camera calibration as
described in this chapter are designed to be part of a video streaming
pipeline using GStreamer. The advantage of this approach is that each
of the transformation steps can simply be chained together, starting
with an input connected to the readout interface connected to the
hardware domain, and ending with an output that simply writes a
video file or stream. The entire streaming pipeline software is de-
signed to be executed on an external host that is interfaced with the
hardware domain, e.g. a conventional Linux-based computer.

The embedded control software runs on the embedded control pro-
cessor in the hardware domain instead, and is thus not part of this
video streaming pipeline. The control software is a separate subsys-
tem that contains the necessary functionality to set up and control
the video dataflow in the hardware domain, and to provide auxiliary
functionality such as a DRAM self-test program during startup of the
hardware.

5.1 embedded control

The software domain covers a small part of the hardware domain,
notably that of the embedded control processor. While the hardware
domain is concerned with the implementation of the processor, the
actual program code or software running on the processor naturally
falls within the software domain. As stated in the previous chapter,
the presence of the embedded control processor and the programs
executed by it actually play a critical role in setting up and controlling
the dataflow in the system. Its software is composed of the following
components or programs:

• DRAM controller driver.

• Stream interleaver driver.

51

[August 25, 2016 at 17:40 – classicthesis]

5.1 embedded control 52

• Sensor control drivers for sensor configuration and phased start
functionality.

• Readout functionality and interface driver.

dram controller The DRAM controller driver is fairly straight-
forward, and includes a self-testing routine and a DIMM-specific con-
figuration routine. The self-testing routine simply performs a number
of subsequent writes and reads to a predefined DRAM region, writ-
ing specific bit patterns and checking for any bit errors when reading
back the data. It is used to ensure that the DRAM is functioning cor-
rectly once after powering up the FPGA platform.

The configuration routine is used to configure the DRAM devices
on the DIMM by making use of specialized DRAM commands to set
specific timing, impedance and burst settings required for continu-
ously reliable functioning of the DRAM devices. Its implementation
simply follows best practices for DDR3 DRAM configuration and de-
pends on the DIMM module being used. For further details on the
DRAM configuration, please refer to the DRAM protocol specifica-
tion in [JED08].

stream interleaver and readout interface The drivers
for the stream interleaver and readout interfaces are quite straight-
forward. The FPGA implementation of these two subsystems contain
the conventional enable and reset signals that serve obvious purposes.
These two input signals are wired up to four corresponding output
ports on the embedded control processor, such that they are accessible
from within the software. The drivers simply implement three func-
tions: enable, disable and reset which set the respective signals of the
connected subsystem. Finally, both subsystems route their individual
done output signals to the embedded control processor, such that the
embedded control program can detect when the stream interleaver or
readout interfaces are done.

sensor control The sensor control driver interfaces with all of
the connected image sensors through the sensor control interface de-
scribed in the previous chapter. The interface subsystem signals, first
described in Section 4.5, are all connected to corresponding I/O ports
on the embedded control signal. This allows the processor to issue
read or write commands on this interface using an 7-bit address, 8-bit
data, a ready signal and an integer selector that selects the image sen-
sor to communicate with. The actual commands being sent are sensor-
specific and in compliance with the image sensor vendor’s specifi-
cation. They include commands to set the parameters described in
Chapter 4 such as image pixel regions, shutter and exposure times,
capture rate and serializer frequency, among other sensor-specific pa-
rameters. Next to commands related to configuration, capture start

[August 25, 2016 at 17:40 – classicthesis]

5.2 stream decoder 53

and stop commands are also available and allow for the phased start
functionality to be implemented.

Note that the commands related to the phased start functionality
are ideally executed in real-time with minimal instruction latency to
ensure a phased start timing accuracy of at least 99%.

program flow Each of the previous individual programs or drivers
are invoked from a main program. This is simply a single function
flashed into the soft-core processor ROM region that executes after
the system is powered on and the soft-core processor hardware is
initialized.

Excluding any soft-core specific initialization, the main program
performs the following operations in order:

1. Disable and reset stream interleaver.

2. Configure DRAM (DIMM-specific commands).

3. Self-test DRAM.

4. Configure sensors (sensor-specific commands).

5. Phase start all sensors.

6. Capture: enable stream interleaver.

7. Wait on done signal, disable stream interleaver.

8. Readout: enable readout interface.

9. Wait on done signal, disable readout interface.

For this thesis, the above program flow is simple but adequate to
perform capture of raw video data followed by readout of this data.
The program simply ends (or waits indefinitely) after the readout
has completed. A single run of the above program will produce a
raw video stream on the readout interface that is transferred to the
software domain host and is further processed as we will read in the
next section.

5.2 stream decoder

In Chapter 4, the hardware domain subsystems involved in captur-
ing the raw video data from each of the image sensors have been
described in detail, though any details on the actual structure of the
raw video data have purposely been omitted. In fact, the entire cap-
ture functionality has been explicitly designed to be impervious to
the actual content of whatever is to be captured and stored to DRAM.
Instead, the entire task of parsing, decoding or otherwise processing
this data is delegated to the software domain. Moving the processing

[August 25, 2016 at 17:40 – classicthesis]

5.2 stream decoder 54

over to the software domain aids the scalability of the platform, as
it allows for easier and faster development and the possible use of
existing software libraries for specific processing steps.

5.2.1 Deinterleaving

The first task of the stream decoder is to undo the interleaving that
was performed by the stream interleaver. Described in Chapter 4, the
purpose of the stream interleaver was to combine the available data
words from all N connected image sensors into a single DRAM write
of Nmemory_data_width bits. In effect, each available data word of S
bits from every successive image sensor is stored one after another
in DRAM, and thus also read out the same way. The deinterleav-
ing is then done in software, where each of the individual sensor
data words are split into separate streams to reconstruct the sepa-
rate streams as they were transmitted by each individual image sen-
sor. The implementation of the deinterleaving functionality is quite
straightforward: the software simply parses the entire stream of raw
data, reading S bits at a time and streaming them into N respective
separate data streams.

5.2.2 Bit slip correction

One effect of the hardware domain not knowing about the raw video
data is that the actual alignment of bits in the raw data is undefined.
Due to potential clock drift in the differential transmission from the
image sensor, data bits may appear sooner or later to the sensor re-
ceiver interface than the clock edge transitions that belong to them.
The entire data stored in the internal FIFO of the receiver interface,
whenever it is enabled, may therefore be shifted by one or more bits.

Correction of this effect is generally called bit slip, and is some-
times implemented in hardware, e.g. as part of the deserializer logic.
However, correction is only possible if there is any information avail-
able about how particular words of data should look, e.g. so called
fixed training patterns at a start of a data transmission. Without the
presence of a protocol decoder in the sensor receiver interface, it is
impossible to know if bits are out of alignment inside the hardware
domain.

In practice, the effect of bit slip can easily be corrected once a fixed
bit pattern is recognized in the raw data. Since the entirety of data
is only shifted by a maximum of S − 1 bits, the correction is done
by effectively deshifting with this exact amount. Since our protocol
decoder is only present in the software domain, the deshifting is to
be done in the software domain as well and can be integrated as part
of the protocol layer decoder, simply deshifting with the required
amount of bits before attempting to decode the protocol words.

[August 25, 2016 at 17:40 – classicthesis]

5.2 stream decoder 55

SoTSYNC PH EoT

SoFSYNC FLR CRC IDL...

SoTSYNC PH ... EoTPF

LP LPHS (Short Packet)

MIPI CSI-2

HiSPi (Streaming-SP)

HS (Long Packet) LP

Figure 24: Simplified fragment of a video data transmission using MIPI CSI-
2 (top) and HiSPi (bottom). LP indicates logic high and low using
single-ended signaling, while all other signals are LVDS. Green
respresents image data, all other colors represent control words
as defined by the respective protocols.

5.2.3 Protocol layer decoder

The protocol layer defines the necessary control data to facilitate proper
data transportation to the host or receiver. In case of CSI-2, the com-
mon concept of data packets is used: control words that describe cer-
tain synchronization events and data payload (or active image data)
are all encapsulated in packets. HiSPi omits the use of packets and
uses fixed-length words and special encoding to mark different pay-
loads. Both specifications use sync words to mark the starting bound-
aries of data, allowing the receiver to properly lock on these word
boundaries. This section provides an overview of the protocol layer
as it is defined in these standards, and of which a simplified example
can be seen in Figure 24.

mipi csi-2 interface The CSI-2 standard protocol layer is only
active during HS (High-Speed) mode, in which high-speed serial data
is actively traversing the data lanes. Each transmission consists of one
or more packets, and always begins with a SoT (Start of Transmission)
and ends with a EoT (End of Transmission) sync sequence. These are
fixed sequences of bits with a known pattern otherwise known as
sync words, allowing the receiver to correctly identify the start and
end of a transmission in a stream of bits.

The SoT is followed by at least one packet, which may either be a
Short packet or a Long packet. Long packets consist of a 32-bit packet
header followed an arbitrary length data payload and ending with
a 16-bit packet footer or checksum, and are used for transmission of
active (image) data. On the other hand, short packets are used for
synchronization events without payload and are thus only composed
of a 32-bit packet header. The packet header in itself contains a data
identifier identifying the type of packet, as well as a 16-bit word count
or data field and a 8-bit Error Correction Code (ECC) to detect errors
in the header.

[August 25, 2016 at 17:40 – classicthesis]

5.3 image rectification 56

Note that the standard uses 8-bit alignment for all data during its
transmissions, and this includes packet headers, footers and payloads.
As the bit depth of sensors is generally larger than 8-bit (e.g. 12-bit),
MIPI-CSI2 supports a variety of data encodings that pack image data
with different bit depths into the 8-bit data words. This however does
require the use of extra unpacking logic in the protocol decoder.

hispi interface The HiSPi standard can instead be seen as a
continuous stream of data, using only fixed-length words and prede-
fined bit patterns to define its data boundaries or packets. As such,
it is somewhat similar to MIPI-CSI2 in the sense that it essentially
fuses all its data packets together in a single continuous N-bit word
transmission. It operates in four different operating modes, notably
Packetized-SP, Streaming-SP, Streaming-S and ActiveStart-SP8, which
mainly control the type and order of synchronization events that are
transmitted. For our implementation we focus on the most common
mode, Streaming-SP, which simply encodes the SoF (Start of Frame),
SoL (Start of Line) and SoV (Start of Vertical Blanking Line) synchro-
nization events.

For HiSPi, all transmissions are started with a four-word sync code
consisting of an all-ones word, followed by two all-zeroes words, and
finally a word describing a synchronization event such as SoF, SoL
or SoV. In Streaming-SP mode, this is then followed by an optional
filler word, after which the actual data payload (active image line) is
located. The standard guarantees the absence of any all-zeroes words
within the payload to avoid the creation of false sync codes.

The four-word sync code is used to derive the necessary alignment
of words in the data stream, as mentioned in the previous section. As
a first step in protocol decoding, a bit-for-bit search of the sync code
is performed, and its exact bit location is used to determine the start
location and alignment of the entire data stream. If the data stream
is not aligned to bytes, the previously described bit slip or deshifting
step is then necessary to realign the data bits back to byte alignment
such that further protocol decoding can take place.

The FPGA deserializer primitives involved in interfacing with the
differential transmission line may typically have a deserialization ra-
tio S that does not match the exact word length of the image sen-
sors or HiSPi standard. For example, deserialization may occur at
S = 8 bits, while the image sensor sends words of 12 bits wide as is
common for HiSPi-capable image sensors.

5.3 image rectification

After the steps in the previous sections have been performed, a data
stream with conventional video data should be available for further
processing. In this chapter, we will describe the image rectification

[August 25, 2016 at 17:40 – classicthesis]

5.3 image rectification 57

steps that are performed in order to minimize the distortion effects
caused by the image array, using existing techniques.

5.3.1 Mathematical models

In order to understand and implement any form of image rectifi-
cation, it is necessary to first define the fundamental mathematical
models involved in camera and image processing.

We simply start off with the basic definition of a camera, as stated
in [HZ04]:

A camera is a mapping between the 3D world (object space) and a
2D image, and is quite simply represented by a matrix which
maps from homogeneous coordinates of a world point in 3-
space to homogeneous coordinates of the imaged points on the
image plane.

Note that when using a CCD or CMOS sensor, light is projected
onto a flat plane containing photosensitive sensors. The camera model
that best describes the physical properties of this kind of projection
is generally called the basic pinhole model, and mathetically describes
the central projection (projection through a single central point) onto
a plane.

basic pinhole model In the basic pinhole model, we define a
Euclidean coordinate system with its origin defined as the center of
projection C, and a plane Z which we call the image plane located
at the focal point f such that Z = f. Any point in R3 described as
X = (X, Y,Z)T is mapped into the image plane by defining a line
between this point X and the center of projection C such that the cor-
responding intersection point on the image plane can then be defined
as (fX/Z, fY/Z, f)T . Since the image plane defines a 2D space, we can
describe the model as a mapping from 3D world space in R3 to 2D
image space in R2 as follows:

(X, Y,Z)T 7→ (fX/Z, fY/Z)T (8)

euclidean space The Euclidean space has an inherent limita-
tion that needs to be resolved when dealing with projective trans-
formations. In particular, the concept of infinity poses a theoretical
challenge: consider the simple case of two 2D parallel lines in R2. As
these lines are parallel, they will never intersect. When dealing with
projective geometry, however, calculations can be drastically simpli-
fied if it is guaranteed that two lines always intersect in a single point.
To ensure this, the Euclidean space Rn is simply extended by adding

[August 25, 2016 at 17:40 – classicthesis]

5.3 image rectification 58

the notion of points at infinity, called ideal points, in which (paral-
lel) lines that would not intersect earlier will now intersect. This new
space is called projective space or Pn.

homogeneous coordinates The extension to projective space
is quite simple and made possible by the use of homogeneous coordi-
nates. As described in [Fol+94], homogeneous coordinates can be de-
fined as the extension of a given tuple of coordinates by addition of
an extra coordinate that represents the scaling of all the coordinates.
For example, consider a point in R2 as (x,y)T . The homogeneous
coordinates of this point are now defined by the vector (kx,ky,k)T ,
and it is obvious that the original point can be represented by mul-
tiple homogeneous vectors, e.g. (x,y, 1)T and (2x, 2y, 2)T . The use of
this representation is obvious when considering the case for vector
(x,y, 0)T : an equivalent original point in R2 simply does not exist,
as x/0 = y/0 = ∞. Using k = 0 for homogeneous coordinates thus
serves as a means of describing the ideal points of projective space, and
cements the use of these homogeneous in extending Euclidean space
to projective space, which holds for any dimensional extension from
Rn to Pn. Other interesting properties of homogeneous coordinates
include:

• Origin points in Euclidean space are represented as non-infinite
homogeneous coordinates, e.g. (0, 0, 1) for R2.

• Points at infinity (k = 0) in P2 form a line "at infinity".

• Points at infinity (k = 0) in P3 form a plane "at infinity".

From hereon we will explicitly denote homogeneous vectors, such
that any 3D point X = (X, Y,Z)T can also be described as the homoge-
neous vector M̃ = (kx,ky,kz,k)T = (X, Y,Z, 1)T with homogeneous
coordinate k = 1.

By using homogeneous vectors, k may change after certain matrix
multiplications. By ensuring that the vector is always scaled back to
k = 1, the so called "perspective division", which accounts for the
perspective scaling of objects in the image, is inherently taken into
account.

5.3.2 Camera intrinsics and extrinsics

Going back to the basic pinhole model, we can now generally de-
scribe the operation of a projective camera as a linear mapping using
homogeneous coordinates:

[August 25, 2016 at 17:40 – classicthesis]

5.3 image rectification 59

xy
w

 = P


X

Y

Z

W

 (9)

or even more compact as:

x = PX (10)

Where P is a 3× 4 matrix called the camera matrix and describes
the basic pinhole model using central projection, or the relationship
between any arbitrary 3D point X and its projection on the image
plane x.

The camera matrix contains all information on the camera’s param-
eters, and these parameters are generally split into two convenient
groups:

• Instrinsic parameters describing the internal geometric proper-
ties of the camera such as focal length, principal point coordi-
nates, image scaling and skew.

• Extrinsic parameters describing the external orientation of the
camera, including its translation and rotation.

The explicit distinction between the internal and external proper-
ties of the camera makes sense, as it allows for the further decompo-
sition of the camera matrix into the product of two separate matrices
for these properties:

P = K[R t] (11)

Where matrix K is a 3×3matrix describing the intrinsic parameters
of the camera, R is a 3 × 3 rotation matrix describing the extrinsic
rotation of the camera, and t is the translation vector describing the
position of the world origin in camera coordinates. t can be further
decomposed to make use of the homogeneous center of projection we
have defined earlier:

t = −RC̃ (12)

Note that in Equation 11, P has been written as a block matrix
for convience, where R and t represent a left-to-right concatenation
columns of matrix P.

[August 25, 2016 at 17:40 – classicthesis]

5.3 image rectification 60

intrinsic matrix The camera intrinsic matrix can be broken
down into a number of individual internal parameters that will gener-
ally vary between different types of cameras. As we will see later on,
the variation of these internal parameters are certain to cause a degree
of unwanted distortion in captured images, making the decomposi-
tion into individual parameters very important. We therefore use the
intrinsic matrix form for K as described in [Zha00]:

K =

α γ x0

0 β y0

0 0 1

 (13)

Where x0 and y0 are the coordinates of the principal point or the
origin of coordinates in the image plane, α and β are the scale factors
in the two axes x and y of the image plane, and γ is the skew coefficient
of these two image axes. More specifically:

• The principal point x̃ = (x0,y0)T is simply the point at which the
principal ray, or the ray that is perpendicular to the image plane
and passes through the center of projection C, intersects with
the image plane. This intersection point is otherwise interpreted
as the origin of coordinates in the image plane of the camera.
The principal point is a 2D point in image space and is described
in terms of the two image plane axes x and y.

• The scale factors α and β describe the amount of scaling applied
to the two image plane axes x and y. Whereas the most simple
basic pinhole model assumes equal scales along both of these
axes, in practice, this scaling varies among different cameras.
Examples include sensors with non-square pixels, the use of
anamorphic lenses or distortion due to fabrication flaws in the
sensors and lenses.

• The skew coefficient γ defines the skew of the image plane in
terms of the deviation of the normal perpendicular angle be-
tween the two image plane axes x and y. γ is ideally 0, but skew
can be introduced by non-perpendicular mounting of lenses in
relation to the sensor. Since this is a problem that can be avoided
in practice, we will assume that from here on γ = 0.

homography Rotation matrix R and translation vector t repre-
sent the extrinsic parameters or orientation of the camera. Using the
rotation matrix, the projection transformations in Equations 10 and 11

can be simplified even further when assuming that the image plane
Z noted earlier is located at 0:

[August 25, 2016 at 17:40 – classicthesis]

5.3 image rectification 61

x̃ =

xy
1

 = K[r1 r2 r3 t]


X

Y

0

1

 = K[r1 r2 t]

XY
1

 (14)

Where ri represent the individual columns of the rotation matrix
R. Note that the third column of this matrix is removed from the
equation due to the fact that Z = 0. A new matrix can then be defined:

H = K[r1 r2 t] (15)

Here, H is a 3× 3 matrix called the homography matrix and describes
the relationship between an arbitrary 3D point X and its projection on
the image plane x at Z = 0.

intrinsic lens distortion One important intrinsic parameter
that is still missing from the aforementioned intrinsic matrix is lens
distortion. As mentioned in [Bou08], this lens distortion is defined
as a number of image distortion coefficients ki describing the radial
and tangential lens distortion parameters of the lens mounted in the
camera.

To model this type of distortion, Equation 14 is rewritten as follows:

x̃ =

xy
1

 = K[r1 r2 t]

Xd

Yd

1

 (16)

Where Xd and Yd the distorted counterparts of coordinates X and
Y, also defined as:

Xd

Yd

1

 = (1+ k1 · r2 + k2 · r4 + k5 · r6)

XY
1

+ dx (17)

And dx is the so called tangential distortion vector defined by:

dx =

(
2k3 ·X · Y + k4(r2 + 2X2)

k3(r
2 + 2Y2) + 2k4 ·X · Y

)

Here, X and Y are the homogeneous coordinates from Equation 17,
ki are the lens distortion coefficients and r2 = X2 + Y2 describes the
radial relationship that accounts for the radial distortion. In [Bou08]

[August 25, 2016 at 17:40 – classicthesis]

5.3 image rectification 62

and [Zha00] it is established that the lens distortion is dominated by
only the first two coefficients k1 and k2.

For convenience, we will define the relation from a 3D point X to
its projection x on the image plane as the function x̃(K,k1,k2,R, t, X)
where all parameters correspond to the aforementioned definitions.

5.3.3 Rectification

As shown, any camera is inherently bound by its intrinsic and ex-
trinsic parameters. These parameters obviously manifest themselves
in the images taken by the sensor of that camera by means of influ-
ence on the projection. Thus, the ultimate goal of image rectification
is to ensure that all parameters are constrained, such that the images
conform to an expected projection transformation.

In practice, this means that image rectification is essentially retroac-
tive, where already existing images are corrected in such a way that
any unwanted influence of the parameters on the projection of these
images is made undone through the following general steps:

1. Estimation of all intrinsic and extrinsic parameters of the cam-
era, also called camera calibration.

2. Calculation of a mapping function describing the difference be-
tween a projection transformation with the expected and actual
parameters. This function maps a distorted image to an undis-
torted ideal image.

3. Remapping of all images with the correct parameters using the
aforementioned mapping.

The result of the image rectification on existing images taken by the
camera is a reprojected set of those images that match as closely as
possible to the expected intrinsic and extrinsic parameters. Note that
due to the nature of the parameters, separate mapping functions will
exist for both intrinsic and extrinsic parameters.

5.3.4 Camera calibration

The process of camera calibration that we use was first described in
[Zha99] and involves estimating the intrinsic and extrinsic camera
parameters that have been described in the previous section. This
camera calibration is performed using the following general steps:

1. Initial estimation of the intrinsic and extrinsic parameters, as
further described in [Zha99].

2. Refinement of all parameters by minimizing the difference be-
tween a set of known points on the image plane, and a set of

[August 25, 2016 at 17:40 – classicthesis]

5.3 image rectification 63

(a) Raw grayscale input image. (b) Output image with internal corners
marked in color.

Figure 25: OpenCV Feature detection using a planar checkerboard pattern
as mounted to a wall. The visual marker in the center is not actu-
ally used in the algorithm.

projected points on the image plane using the estimated param-
eters.

In the above steps, it is important to note the need for a set of known
points on the image plane. These known points are typically gathered
by capturing a number of camera images containing a checkerboard
pattern. This pattern is assumed to lie on the image plane at Z = 0,
and a feature detection algorithm such as in [HS88] is used to deduce
the 2D points that correspond to the internal corners of the checker-
board. A visual example of this algorithm can be seen in Figure 25,
in which the colored points represent the known 2D points on the
image plane.

The known points are then used in the following refinement algo-
rithm, which uses n checkerboard images and m known points on
the image plane as input:

n∑
i=1

m∑
j=1

||xij − x̃(K,k1,k2,Ri, ti, Xj)||
2 (18)

Where x̃(K,k1,k2,R, t, X) is the earlier defined projection function,
xij is a known point on the image plane for each internal chessboard
corner on each image and Xj corresponds to the 3D point for each
of these corners. Note that Xj is independent of the image i, since
for each image different extrinsics Ri and ti are assumed, and all Xj

points are thus reduced to a general precalculated set of 3D points
corresponding to the checkerboard pattern at Z = 0.

Equation 18 effectively projects a point Xj using a set of camera pa-
rameters and determines the difference, or reprojection error, between
this projected point and an already known point. Ideally, the two
points are identical and the reprojection error is simply zero, rep-
resenting an ideal projection function. In practice, the error is not

[August 25, 2016 at 17:40 – classicthesis]

5.3 image rectification 64

zero but is minimized by adjusting camera parameters K, k1, k2, Ri

and ti. This minimization is generally done using the well established
Levenberg-Marquardt algorithm as described in [Mor78]. The result
is a set of camera parameters that correspond as closely as possible to
the observable distortion in the checkerboard images captured by the
camera, and thus approximate the actual parameters of that camera
as closely as possible.

[August 25, 2016 at 17:40 – classicthesis]

6
D ATA F L O W A N A LY S I S

In Chapter 1, the evaluation criteria for this thesis were introduced.
Recall that the first criterion states that the system must be capable of
interfacing with at least 16 image sensors with a capture rate of 60Hz.
This very criterion imposes a very real constraint on the minimal
throughput that the system must sustain in order to interface with
all of these sensors and to capture and store all their respective data
properly in memory. In this chapter, we will discuss the theoretical
analysis that serves to give an evaluation indication for this particular
criterion, and investigate the required buffer size in case 16 image
sensors are interfaced with our system.

Chapter 3 first described the two essential dataflow stages in the
hardware domain: capture and readout, respectively capturing the raw
data from the connected image sensors followed by subsequent stor-
age and the transmission of this captured data to the software domain
for further off-line processing. Remember that timing constraints are
imposed on the capture stage, as it is a stream of data that is to be
captured without interruptions that would otherwise lead to data cor-
ruption. It is therefore this critical capture stage that must be analyzed
in order to make any claims about the throughput of our system, and
in turn, the viability of our platform.

The previous chapters have made it clear how the dataflow within
this capture stage is set up, as also illustrated before in Figure 9: data
starts flowing from the image sensors, into the sensor receiver inter-
faces, followed by the stream interleaver, and finally ending up in
the DRAM controller. The throughput of all components before the
DRAM controller is essentially fixed and predictable, as these compo-
nents simply process data at the rate at which the image sensors are
sending without any external interruptions or influences whenever
they are enabled. The DRAM controller is however dependent on ex-
ternal DRAM devices which exhibit their own timing and throughput
constraints, implying that the DRAM controller throughput is in fact
restricted. We therefore identify the primary bottleneck in the sys-
tem to be the the streaming throughput of the DRAM controller, or
the maximum rate at which data can be stored in DRAM. Moreover,
since the DRAM controller is not always available to write, a queue
mechanism must be put into place to temporarily buffer the requests
while the DRAM is not available.

Correct functioning of the system therefore requires a guarantee
that none of the FIFOs involved in communicating the raw data from
the image sensors into the DRAM controller experience any buffer

65

[August 25, 2016 at 17:40 – classicthesis]

6.1 throughput analysis 66

overflows due to limited consumption of data by the DRAM con-
troller, as such an event would lead to a diminishing integrity of all
data and data corruption. In this sense, we observe that our system
is hard real-time as described in [But11] and [Goo+16] since missing
any deadlines involved in the sensor dataflow will lead to total loss
of system usefulness in the worst case.

Real-time analysis of the system allows us to verify whether the
maximum sustained throughput of the system, or specifically the
DRAM controller as is, is high enough to interface with at least 16
image sensors streaming at 60Hz without causing overflows in the
system, and get an indication of the FIFO size required to sustain
such a dataflow.

In Section 4.2, we have described our specialized DRAM controller
design. With regard to the maximum sustained throughput of this
DRAM memory controller, DRAM writes can only occur when the
DRAM controller state machine is in a state where a write request
can be handled. There are various possible scenarios in which this
is not the case and write commands can only be handled after the
controller returns to such a state: immediately after DRAM initiali-
sation, during a DRAM read request, a periodic DRAM refresh, or
when precharging and activating a new DRAM row. The only scenar-
ios that are really relevant during the sustained DRAM burst writes
of our capture stage are the DRAM refresh and precharge and acti-
vation of rows, since they can simply not be avoided, even during
sustained writes. Moreover, these two scenarios will cause a signif-
icant delay of DRAM writes whenever they occur, diminishing the
maximum sustained throughput of the DRAM controller as a whole,
and thus are to be modelled accordingly in our dataflow analysis.

6.1 throughput analysis

By performing timing analysis of the system’s critical components,
one gains information on the overall throughput of the system, which
in turn allows verification of the given evaluation criteria. As such, the
relevant components involved are to be modelled so that a suitable
analysis method can be applied, and there are various ways to do so
as we will see below.

Previous work in [Goo+16], [AG11] shows that worst-case timing
analysis of DRAM controllers integrated in real-time embedded sys-
tems is an active field of research. Here, an effort is made to model
these controllers in terms of memory patterns, or small predictable se-
quences of DRAM commands, that accurately model different sce-
narios such as read-after-write, write-after-read and refresh that are
common in conventional DRAM controllers. The analysis is tackled
by formulating the behaviour as a scheduling problem, choosing a
scheduling algorithm and evaluating the quality of this algorithm in

[August 25, 2016 at 17:40 – classicthesis]

6.1 throughput analysis 67

terms of worst case performance. In [Kim+15], a similar approach is
presented that also prioritizes different levels of criticality in access.
Though this prior research proves to be very useful for typical DRAM
use scenarios, our case is atypical in the sense that there exists only a
single write access pattern for our critical stage, reducing the analy-
sis to a much simpler and predictable problem without the need for
scheduling algorithms or prioritization.

The aforementioned research mostly depends on the use of pro-
grammatic numerical algorithms for the calculation of worst-case la-
tency and throughput. In [Li+16] however, a Timed Automata (TA)
model is presented that is used to perform analysis using a set of
graph-based models. These models structure the DRAM controller
behaviour in terms of a fairly complete set of templates that repre-
sent the read and write commands as well as most of the internal
states of the controller that influence the worst-case throughput. The
templates include behaviour imposed by read-after-write and write-
after-read scenarios, as well as low-level DRAM timing such as row
precharging and activation. The use of the TA model not only pro-
vides a more compelling visual overview of the system, but it also
permits the use of existing analysis and verification tools such as the
Uppaal model checker [Beh+06].

A different but similar type of DRAM controllers model for real-
time embedded systems is discussed in [LBW09]. Here, a Synchronous
Dataflow Graph (SDF) is used to model the non-uniform access latency
of contemporary DRAM controllers. The SDF graph, first described in
[LM87], has proven useful for rapid prototyping and implementation
of relatively simple stream-based embedded systems such as DSPs
[SB00], further aided by the availability of analysis tools such as SDF3

as described in [SGB06].
The two aforementioned tools greatly benefit the practical use of

timing analysis, as they avoid the need to resort to purely program-
matic numerical methods. The capabilities of the tools play an impor-
tant role in deciding a suitable type of model for analysis of our own
system. While both tools have been briefly evaluated, limitations in
the execution time analysis capabilities in Uppaal have led us to be-
lieve that the SDF3 tool, together with a suitable SDF graph, would
be most suitable for the analysis in this thesis.

6.1.1 Scenario-aware dataflow graph

Our first model serves as an approximation for throughput analy-
sis and uses the FSM-based Scenario-Aware Dataflow (FSM-SADF)
graph as described in [Siy+11]. The FSM-SADF graph allows us to
properly express the different scenarios of the DRAM controller, where
the controller can either be in a state where it can accept writes (e.g.
the idle state), or in a state where it is refreshing and unresponsive.

[August 25, 2016 at 17:40 – classicthesis]

6.1 throughput analysis 68

Ksrc

Kram

Ksrc2Kram
1

Krow
Kram2Krow 64

Krow2Kram(64) 64

Kcnt

Dref

Kcnt2Dref

1
1

Dref2Kram(117*WRITE) 1

Dref2Kcnt(WRITE)

1
1

Figure 26: SADF graph representing the video streaming behaviour in our
system and used as a basis for dataflow analysis.

WRITE REFRESH

Figure 27: Corresponding FSM for the Dref node in our dataflow model,
representing write and refresh states with write as initial state.

In order to perform a straightforward dataflow analysis, it is essen-
tial to make the dataflow model as simple as possible. We therefore
follow these rules that approximate the critical behaviour of our sys-
tem dataflow:

• The DRAM controller is the main subject of the dataflow model,
as it is the primary bottleneck in the system.

• Nodes in the model exhibit different execution times.

• Cycles in the model are executed at a frequency equal to that of
the DRAM controller, specifically 150MHz or 6.67ns according
to DDR3-600 operation.

• A single DRAM write command is assumed to take 2 cycles,
equal to the execution time of Kram. A token produced by Kram
therefore represents one issue of a DRAM write command.

• Only the DRAM burst write behaviour is modelled, as it repre-
sents the critical flow of data in the system.

• The input to the DRAM controller is modelled as a single con-
solidated node Ksrc. In reality, Ksrc represents all image sen-
sors, sensor receiver interfaces and the stream interleaver com-
ponents as they stream into a single input from the DRAM con-
troller’s perspective.

[August 25, 2016 at 17:40 – classicthesis]

6.1 throughput analysis 69

• Tokens from Ksrc represent DRAM write commands, e.g. writ-
ing a single row of data.

• DRAM row precharging and activation is modelled as an event
that occurs every 64 cycles or writes by means of a separate
Krow node.

• Krow produces and consumes 64 tokens at a time with an ex-
ecution time of 14 cycles, effectively delaying the execution of
Kram every 64 tokens.

• The DRAM controller operates in two scenarios: WRITE, in which
it accepts write commands, and REFRESH, in which it is unre-
sponsive to commands.

• The DRAM scenarios are included in Kram such that commands
(tokens) from Ksrc are stalled in the graph whenever the RE-
FRESH scenario is active.

• DRAM controller scenarios in Kram are changed by control to-
kens sent from Dref.

• DRAM refresh is modelled as an event that occurs every 117

cycles, and takes 4 cycles of time. Kcnt models a counter that
counts to 117, initiates the REFRESH scenario in Dref, counts
to 4, and initiates the WRITE scenario in Dref. Together, these
two nodes trigger the scenario transitions in Kram by means of
control tokens.

• The throughput of Ksrc represents the maximum sustained through-
put of the system.

The dataflow analysis occurs somewhat backwards: if we can de-
rive the throughput of Ksrc using SDF3, we will know the throughput
at which DRAM write commands can be handled by the system as
modelled using the SADF graph. Here, SDF3 can provide us with
the throughput of any node in the graph by performing numerical
analysis.

In the model, the refresh functionality is implemented using sce-
narios. This is necessary due to the fact that the refresh must occur
completely independent and decoupled from any other functionality
in the system, e.g. its interval is purely time-based and not dependent
on writes. Both the refresh interval and duration could therefore not
be properly modelled as a single node connected to Kram (e.g. similar
to the action of Krow). Note that refresh occurs no matter what and
regardless of the state the DRAM controller is in. This decoupling
action is achieved by the use of SADF scenarios.

One thing that does not follow from the model in Figure 26 are the
execution times for each of the nodes (kernels), which are as follows:

[August 25, 2016 at 17:40 – classicthesis]

6.1 throughput analysis 70

WRITE
i < 1170

i := i + 1

w

REFRESH
r < 39

r := r + 1

r := 0

i := 0

r

Figure 28: Imaginary FSM for the Dref node in our dataflow model, using
counters to switch between states and scenarios.

• Ksrc: 1 cycle.

• Kram: 2 cycles in WRITE scenario, none in REFRESH scenario.

• Krow: 14 cycles.

• Kcnt: 117 cycles in WRITE scenario, 4 in REFRESH scenario.

In the above rules, adjustments have been made to work around
limitations of the SDF3 toolkit. In reality, the DRAM refresh tREFI
occurs every 1170 cycles with a duration tRFC of 39 cycles, but this
number has been divided by 10 to avoid state explosion such that the
model could be calculated.

Also, due to limitations in the expressiveness of SADF graphs, the
behaviour of node Dref, and by extension Kcnt, is somewhat convo-
luted. Ideally, we would like to model the FSM in Dref using counters,
as can be seen in Figure 28, avoiding the need for a separate node
Kcnt. Here, i and r respectively represent the counters for tREFI and
tRFC. However, expressing such counters in a FSM and any subse-
quent state unfolding is currently not supported in the SDF3 toolkit.
An even more fitting model might have been possible by using Timed
Automata, however the Uppaal tool in its current state lacks the execu-
tion time analysis functionality that we require for proper throughput
analysis.

6.1.2 Throughput analysis

The actual XML data corresponding to the SADF in Figure 26 can be
found in Appendix A. Throughput analysis of this graph using the
SDF3 toolkit yields a throughput of 0.450704 tokens per time unit of
6.67ns, or effectively a maximum DRAM write frequency fWRITE of
0.450704× 150MHz ≈ 67.6MHz. Considering the fact that 512 bits
are written for every DRAM write command, we can then estimate
the theoretical maximum sustained throughput of the DRAM con-
troller as modelled using this SADF graph:

fWRITE ×Nmemory_data_width = 67.6MHz× 512 bits

≈ 33.8Gbit/s

≈ 4.23GiB/s

[August 25, 2016 at 17:40 – classicthesis]

6.2 buffer size analysis 71

We can now compare these analyzed values to the theoretical peak
transfer rate for DDR3-600 as earlier calculated in Equation 2 in Chap-
ter 4:

peak transfer rate×DRAM width = 600MT/s× 64 bits

= 37.5Gbit/s

= 4.6875GiB/s

As one would expect, we can see that the overhead caused by
DRAM refresh, row precharge and row activation times indeed have
a significant effect on the theoretical maximum throughput of the
DRAM, reducing the throughput to approximately 90% of the theo-
retical peak transfer rate as modelled by our SADF graph.

6.1.3 Effects on array size

Knowing the theoretical maximum throughput or fWRITE as derived
from our previous dataflow analysis, we can plug this throughput
into a rewrited form of our earlier Equation 6 to retrieve an estimation
of the maximum sensor array size that we can support:

N =

⌊
Nmemory_data_width × fWRITE

Nlanes × fSERIAL

⌋

=

⌊
512 bits× 67.6MHz
2× 445.5MHz

⌋
= 38 sensors

Here, we have assumed a DRAM controller operating at DDR3-600,
as well as a 445.5MHz serial bit rate and 2 lane configuration for all
sensors identical to our real-world prototype described in the next
chapter, yielding a maximum amount of 38 sensors purely based on
the theoretical maximum throughput of the DRAM controller and not
taking into account other factors such as FPGA resource or physical
hardware constraints and interleaver limitations. Given the above fig-
ures, our first evaluation criterion in fact looks to have been satisfied:
using the given DRAM controller, our model indicates that our sys-
tem is capable of interfacing with at least 16 (38) image sensors at a
capture rate of 60Hz.

6.2 buffer size analysis

In Section 4.1, we have outlined the timing characteristics of a single
sensor: a sensor simply streams at the fixed rate at which it is config-
ured to stream. The data of two or more of these sensors are then fed

[August 25, 2016 at 17:40 – classicthesis]

6.2 buffer size analysis 72

v1

u1 u2

11

v

α

2,1

11

v2,2

11

1
1

11

Figure 29: Simplified latency-rate model of our system, with the SRDF
graph at the top and the corresponding task graph at the bottom.
Dotted lines represent the imaginary flow of data in the system,
and are not part of the actual graph.

into the interleaver, as explained in Section 4.3, simply combining the
data such that the DRAM controller data bus is maximally saturated.
Next to throughput, we are also especially interested in estimating
the size of any FIFO buffers involved in this critical flow.

Recall that during the capture phase, data is flowing from the sen-
sors into the sensor receiver interfaces, the stream interleaver and
finally into the DRAM controller. While sensors will always be trans-
mitting data, the DRAM controller may not always be immediately
available to write data. This means that a certain degree of buffering
is required before the DRAM controller. While the sensor receiver in-
terfaces already contain a FIFO to provide safe clock domain crossing
of data, for this model, we will assume that our stream interleaver
contains a FIFO that acts as a buffering mechanism for DRAM writes
whenever the DRAM controller is not ready to accept data. It is criti-
cal that the FIFO is large enough such that an overflow never occurs,
as this could lead to corruption of data.

6.2.1 Latency-rate SRDF graph

In order to make an estimation of the FIFO size, we have chosen to
make use of latency-rate analysis, introduced in [WBS07]. This analy-
sis makes use of Single-Rate Data-Flow (SRDF) graphs, also known as
Homogeneous Synchronous Data-Flow (HSDF) graphs, as described
in [LM87], in which the latency and rate are modelled as separate
nodes. This type of analysis is especially suited for streaming systems
such as the one presented in this thesis.

Figure 29 shows the simplified model used for the latency-rate anal-
ysis of our system. Task u1, also known as the source, represents all
the components in the system before the DRAM controller, while task
u2 represents the DRAM controller. The FIFO in between represents

[August 25, 2016 at 17:40 – classicthesis]

6.2 buffer size analysis 73

the FIFO in the stream interleaver for which we are analyzing the
size.

From the figure, it follows that the actors v1, v2,1 and v2,2 corre-
spond to their task graph equivalents u1 and u2. In particular, actors
v2,1 and v2,2 respectively represent the average latency and rate of the
DRAM controller for our latency-rate analysis. Furthermore, α holds
the amount of tokens and corresponds to the FIFO’s size.

The above general model can be used to calculate α once the firing
durations for all SRDF actors v1, v2,1 and v2,2 have been determined.
For simplicity, we will assume that the time units of these firing dura-
tions are in fact cycles corresponding to system frequency fSYSTEM,
e.g. at 150Mhz. These firing durations, from hereon referred to as ρv1

,
ρv2,1 and ρv2,2 can then be derived directly using our earlier equations
as they directly correspond to component rates in our system.

First of all, ρv1
simply corresponds to the average rate at which

the stream interleaver will be issuing write commands to the DRAM
controller

ρv1
=

⌊
fSYSTEM

fWRITE

⌋
Next, the rate actor v2,2 represents the average rate at which the

DRAM controller can perform DRAM write commands. Recall that
DRAM writes are occasionally stalled by either DRAM refresh or a
row precharge and activation events, which respectively occur at an
interval of tREFI and every 64 DRAM writes, the duration of which
are specified by variables tRFC, tROW , tCWL, tWR, tRP and tRCD

as first introduced in Section 4.2. We calculate the overall average
duration of the DRAM refresh events:

rREFRESH =
tRFC
tREFI

Then, in order to calculate the overall average duration of the row
precharge and activation events, we first calculate the exact duration
tPREACT of a row precharge and activation event after a DRAM write:

tPREACT = tROW + tCWL + tWR + tRP + tRCD

Here, tROW , tCWL tWR equal the amount of time it takes for the
previous DRAM write command to finish, due to any potential burst-
ing action, while tRP and tRCD equal the actual precharge and acti-
vation times.

Next to the event duration, we require the event interval. Since we
assume that the event occurs after every 64 writes, the interval is as
follows:

[August 25, 2016 at 17:40 – classicthesis]

6.2 buffer size analysis 74

tPREACTI = 64× ρv1

Note that here, ρv1
is used to indicate the actual average duration

of a write. Now that we know the interval and duration, we can de-
termine the overall average duration:

rPREACT =
tPREACT

tPREACTI

Knowing the overall average durations of the events that will influ-
ence the DRAM write duration, we can calculate the average duration
of a DRAM write, or the average DRAM write rate corresponding to
actor v2,2, using the normal DRAM write duration tROW and taking
all these factors in account:

ρv2,2 = tROW + rPREACT + rREFRESH

= tROW +
tROW + tCWL + tWR + tRP + tRCD

64× ρv1

+
tRFC
tREFI

We are now left with calculating the maximum latency as mod-
elled by actor v2,1. For this latency, we assume the maximum possi-
ble amount of time spent waiting for the DRAM controller to finish a
write when it is maximally stalled, which is the case whenever a write
is stalled by both a refresh event and a row precharge and activation
event:

θ = tROW + tRFC + tPREACT

The firing duration of actor v2,1, which in fact excludes any time
spent waiting in the modelled FIFO, can then be calculated by sub-
tracting the firing duration ρv2,2 which is accounted for by actor v2,2:

ρv2,1 = θ− ρv2,2

= tROW + tRFC + tPREACT − ρv2,2

Now that the firing durations ρ for all actors are known, it is pos-
sible to determine the amount of tokens α on the edge between v2,2

and v1 representing the FIFO size. In order to do this, we use the
Maximum Cycle Mean (MCM) equation as in [Bac+01]:

µ = max
c∈C

∑
v∈V(c) ρv∑
e∈E(c) δe

[August 25, 2016 at 17:40 – classicthesis]

6.2 buffer size analysis 75

Where C is the set of directed simple cycles in our SRDF graph,
V(c) is the set of actors on the cycle c, E(c) is the set of edges on the
cycle c, and δe represents the number of tokens on the edge e.

Taking all three cycles in our SRDF graph into account, the MCM
for our particular model is then calculated as follows using three
terms:

µ = max
(
ρv1

1
,
ρv2,2

1
,
ρv1

+ ρv2,1 + ρv2,2

α

)
The MCM is equal to the inverse of the throughput of the graph.

Since our throughput must be at least enough for the sensors to write,
we must constrain the upper bound of the MCM. We require a guar-
antee that the source actor v1 must always write at its own firing rate,
and thus must not be delayed by anything else in the graph. The
MCM may therefore not exceed ρv1

, to avoid loss or corruption of
data:

µ < ρv1

Using this constraint, we can simply solve for α by rewriting the
last dominant term of the MCM:

ρv1
+ ρv2,1 + ρv2,2

α
< ρv1

=⇒ α =

⌈
ρv1

+ ρv2,1 + ρv2,2

ρv1

⌉
(19)

The above equation naturally assumes that DRAM writes can actu-
ally be handled at the rate they are issued in the first case, e.g. the
average duration of a DRAM write or ρv2,2 is in fact lower than the
write rate or ρv1

. The value for α is then assumed as the required
FIFO size.

6.2.2 Real-world case analysis

To get an indication of the required FIFO size or α for a real-world
case, we will consider an implementation of our system that uses our
earlier established minimum of 16 sensors, but is otherwise identical
to our real-world prototype described in Chapter 7. By using actual
timing values from our prototype, and using 16 sensors, we in fact
calculate a realistic FIFO size requirement for a scaled up prototype.

The known parameters and variables for this case are as follows:

[August 25, 2016 at 17:40 – classicthesis]

6.2 buffer size analysis 76

N = 16 sensors

S = 8 bits

Nmemory_data_width = 512 bits

Nlanes = 2 lanes

fSERIAL = 445.5MHz

fSYSTEM = 150MHz

tWR = 3 cycles (write recovery)

tRP = 3 cycles (row precharge)

tRCD = 3 cycles (row activate)

tROW = 2 cycles (row write)

tCWL = 2 cycles (CAS write latency)

tREFI = 1170 cycles (refresh interval)

tRFC = 39 cycles (refresh duration)

Note that any cycle-based values are clocked at the system fre-
quency fSYSTEM. The write rate is then calculated using Equation
6:

fWRITE =
fSERIAL ×N×Nlanes

Nmemory_data_width

=
445.5MHz× 16× 2

512

≈ 27.84MHz

We then calculate the row precharge and activation duration using
our known values:

tPREACT = tROW + tCWL + tWR + tRP + tRCD

= 2+ 3+ 3+ 3+ 3

= 14 cycles

Using all of the above values, we determine the firing durations for
all our SRDF actors:

[August 25, 2016 at 17:40 – classicthesis]

6.2 buffer size analysis 77

ρv1
=

⌊
fSYSTEM

fWRITE

⌋
=

⌊
150MHz
27.84MHz

⌋
= b5.39c

= 5 cycles

ρv2,2 = tROW +
tPREACT

64× ρv1

+
tRFC
tREFI

= 2 cycles +
14 cycles
320 cycles

+
39 cycles
1170 cycles

≈ 2.077 cycles

ρv2,1 = tROW + tRFC + tPREACT − ρv2,2

= 2+ 39+ 14− 2.077

≈ 52.923 cycles

Using the rewritten form of the last term in the MCM in Equation
19, we calculate α:

α =

⌈
ρv1

+ ρv2,1 + ρv2,2

ρv1

⌉
=

⌈
5+ 52.923+ 2.077

5

⌉
= d12e

= 12

Our model therefore indicates that a FIFO size of α = 12, accommo-
dating 12writes, is required for 16 sensors, when considering average
latency-rate characteristics. As we will see in the next chapter, this or-
der of FIFO size is quite small in terms of FPGA resources and shows
that the FIFO is not a significant factor in terms of FPGA resources re-
quired in order to implement our system using an identical or similar
configuration in the real-world.

[August 25, 2016 at 17:40 – classicthesis]

7
R E A L I Z AT I O N A N D R E S U LT S

Up until this point, we have presented our embedded system plat-
form from a mostly theoretical point of view. This theory would just
remain theory if it was not for an actual practical realization of the
platform. In this chapter, we will introduce the very first prototype
that has been produced according to the design outlined in this thesis.
As we will see, this very prototype allows us to perform all-important
measurements that will verify the evaluation criteria that are essential
in demonstrating the viability of the platform as a high-speed imag-
ing solution.

This first version of the prototype has been designed to support
only a small amount of image sensors to make up the sensor array,
such that the platform could be evaluated in the real world at a rela-
tively low cost. By producing a small scale array, measuring its perfor-
mance and combining this with the theoretical analysis that we have
done in the previous chapters, enough proof is gathered to come to
a conclusion regarding the viability of the platform even at bigger
scale.

Note that we have not been able to implement the image rectifica-
tion steps in the software domain due to time restrictions. The image
rectification was not deemed necessary for the performance evalu-
ation of the prototype, and any evaluation of its effectiveness was
therefore omitted from this chapter.

7.1 sensor array configuration

Our first prototype has been designed to interface with up to 5 image
sensors. For these image sensors, the following features were deemed
necessary:

• Conventional 720p (1280 x 720) resolution.

• 60Hz capture rate.

• MIPI CSI-2 or HiSPi standard compatibility.

• Relative low cost per unit, below $20USD.

Today, many low cost image sensors implementing these features
are produced by vendors such as Omnivision, Sony, Samsung and
ON Semiconductor and are widely used in mobile phones, tablets
and other embedded systems. Unfortunately, these image sensors
nearly always contain a rolling shutter. The downsides of the rolling

78

[August 25, 2016 at 17:40 – classicthesis]

7.2 choice of hardware 79

shutter have been discussed before in Chapter 2, and led us to strongly
prefer the use of global shutters in this first prototype to avoid any
distortion caused by the rolling shutter.

Currently, only a few image sensors exist that are low cost, imple-
ment the above features and contain a global shutter. For our proto-
type, we have chosen to use the Aptina MT9M021, a HiSPI compatible
BGA sensor from Aptina Imaging Corporation.

Although our choice of sensor would logically require the use of
the HiSPi protocol in our system, we would like to note that a real-
ization using MIPI CSI-2 would be very similar, despite the fact that
the MIPI CSI-2 specification would initially seem to require support
of both the High Speed (HS) and Low Power (LP) modes on the phys-
ical lanes.

As noted before, fully supporting MIPI CSI-2’s LP mode assumes
that the receiver is capable of receiving both single-ended and LVDS
signals on the same wires or otherwise using split I/O pins, which
would lead to considerable extra (physical) complexity in our system.
Whereas HiSPi omits single-ended signaling entirely, and is thus fully
supported on our system, CSI-2 can actually be supported by im-
plementing a receiver that is not fully compatible but is otherwise
capable of receiving all necessary protocol packets. This is done by
purposely omitting the LP mode signals and only connecting to the
LVDS signals in HS mode. Additionally, some sensors may also pro-
vide the option to permanently stay in HS mode as to accommodate
this behaviour on the transmitter side [Xil14].

7.2 choice of hardware

We have chosen for a hardware board containing a Xilinx Spartan 6

FPGA, based on a number of reasons. First of all, our choice of sensor
dictates the use of the HiSPi standard, requiring a FPGA that can
provide differential I/O signaling according to this standard. HiSPi
uses the SubLVDS signaling standard, limiting the choice of FPGA to
those that support SubLVDS. These include the Xilinx 7-series FPGAs
such as the Artix and Zynq families, as well as some older series
including the Spartan 6.

Secondly, the differential I/O and SERDES functionality supported
by the FPGA must have enough available bandwidth to support at
least 5 sensors streaming at 720p with a rate of 60Hz.

Thirdly, the inclusion of the DRAM controller in our design re-
quires the presence of a physical DDR3 DIMM interface. Modern
FPGA boards typically contain one or more DDR3 devices and FPGA
vendors often supply proprietary DRAM IP primitives to interface
with these devices. It is fairly uncommon to implement a custom
DRAM controller, especially since the supplied IP typically provides
enough support for conventional memory needs. It is therefore equally

[August 25, 2016 at 17:40 – classicthesis]

7.2 choice of hardware 80

(a) CAD design. (b) Post production. (c) Post pick and place.

Figure 30: Stages of development for the camera module PCB, from CAD
design to production to pick and placing of SMD and BGA com-
ponents.

uncommon to find a FPGA board that contains a DDR3 DIMM inter-
face considering that this interface requires up to 240 I/O pins to be
routed to the FPGA.

Our hardware board was provided by Silicon On Inspiration and
contains a XC6SLX25 Xilinx Spartan 6 FPGA in FGG484 package and
-2 speed grade along with a fully routed DDR3 DIMM socket and
a number of expansion slots supporting differential signaling. The
DDR3 DIMM socket allows us to physically interface the DRAM con-
troller with the external DRAM devices, and the extension slots en-
abled a modular approach to interface the image sensors to the FPGA.

For this purpose, three custom PCBs were specifically designed
and assembled to contain up to 2 of our BGA image sensors per
board along with the appropriate SMD power and decoupling com-
ponents. The assembled PCBs were then connected to the main FPGA
board, realizing the interface between the image sensors and the hard-
ware domain. Figure 30 shows the different phases of PCB production
along with the final product.

For our embedded control processor, we have chosen to use the
latest Microblaze IP soft-core from Xilinx. In the configuration of the
Microblaze, we have enabled the use of Local Memory Bus (LMB) for
internal core memory to enforce single-cycle latency for any instruc-
tion and stack accesses in our embedded control program. Further-
more, the core was configured without instruction and data caches,
and with a smaller 3-stage pipeline by enabling area optimization to
ensure a better latency consistency across instructions.

The final prototype can be seen in Figure 31 and shows the assem-
bled PCBs containing the 5 image sensors and optical lenses along
with the FPGA board fitted with a 2GiB Corsair DDR3-1033 UDIMM
module, making up the complete prototype product.

[August 25, 2016 at 17:40 – classicthesis]

7.3 synthesis results 81

Figure 31: Final prototype hardware, showing the five individual sensor
modules (left) and the final setup as evaluated with the modules
and FPGA hardware connected (right).

7.3 synthesis results

Synthesis of all hardware domain subsystems has been accomplished
by using Xilinx ISE 14.7 configured for the Xilinx Spartan 6 (XC6SLX25)
FPGA target device present in the prototype. For these devices, FPGA
device resource utilization is quantified in terms of slices, slice regis-
ters, and vendor-specific primitives including LUTs, LUTRAMs, BRAMs
and such.

Table 1 shows the map synthesis results for our VHDL/Verilog im-
plementation of the entire hardware domain. Note that in this imple-
mentation, two i2c_master entities are present instead of one due to
a synthesis error, and the arbiter has been implemented as a separate
entity from the actual DRAM controller logic in drac, though none of
this affects the actual performance or requirements of our system.

In this table, it can be seen that the Microblaze entity takes up
the most resources in terms of slices, LUTs, as well as LUTRAM and
BRAM memory primitives. This is makes sense, as the softcore pro-
cessor is generally a quite large general purpose core as has been
discussed before. The DRAM controller takes up significant slice reg-
ister resources, which is only logical due to the wide data bus of
512 bits, and the high amount of required I/O signaling to and from
the DIMM device and any associated pipelining logic necessary to
meet Xilinx ISE timing constraints. The stream interleaver also uses
a considerable amount of resources due to the buffering action. The
map report shows that the FIFO here has been modelled as a set of
primitives consisting of LUTs and/or registers instead of any mem-
ory primitives such as LUTRAM or BRAM. This is by design, as the
stream interleaver was modelled as a large shift register. Finally, the
sensor receiver, control and readout interfaces take up only small to
moderate amounts of FPGA resources, and these resources also vary
somewhat depending on their exact location in the FPGA. Here, the
rx_data entity that contains the cross-clock FIFO has been fully im-

[August 25, 2016 at 17:40 – classicthesis]

7.3 synthesis results 82

Entity Slices Slice Reg LUTs LUTRAM BRAM BUFG PLL

Sensor receiver interface

rx_clk 0 0 0 0 0 1 0

rx_data* 13-24 18-28 31-43 0 0 0 0

Sensor control interface

i2c_master* 36-44 61-94 81-119 0 0 0 0

i2c_muxer 3 0 9 0 0 0 0

Streaming DRAM controller

arbiter 366 1134 430 0 0 0 0

drac 427 2078 774 129 0 4 1

Stream interleaver

interleaver 353 1548 726 0 0 0 0

Embedded control processor

microblaze 713 851 830 119 32 1 0

Readout interface

spi_readout 180 561 377 0 0 0 0

spi_slave 15 30 28 1 0 0 0

Table 1: Map results generated using Xilinx ISE 14.7 for each of the entities
in the final VHDL/Verilog implementation. Entities denoted with
* represent multiple instances, for which the minimum and maxi-
mum results are specified.

plemented using LUTs and registers instead of LUTRAM or BRAM
memory primitives, as the former do not provide support for multi-
ple clocks.

Table 2 shows the place and route results in Xilinx ISE 14.7 for the
total implementation, and includes all previously described entities
as well as a few non-essential auxiliary entities that have been used to
aid development. The results show that the overall utilization for this
specific target device is generally low, e.g. virtually half of the device
is left unused. Exceptions are the use of RAM primitives, as used by
the Microblaze core, but these resources do not change whenever the
amount of sensors in our system is changed.

Note that these results show that, first of all, there is a clear limi-
tation on the use of primitives related to IOBs and (differential) I/O
signaling, most notably ISERDES2 and IODELAY2 which are used for
the sensor receiver interfaces, despite the fact that even this package
has several hundred of these available. Secondly, the number of BUFG
primitives is limited: in our package, only 16 of these are available.
Considering a single rx_clk instance uses a single BUFG, this would
imply a maximum of 16 sensors for this particular Spartan 6 device.
However, a single rx_clk can in fact be used to interface with multi-
ple sensors, if one takes care to ensure that all of these sensors are
driven by same input clock such that their internal PLLs are in sync,
and that all of the differential sensor data lines are length matched

[August 25, 2016 at 17:40 – classicthesis]

7.3 synthesis results 83

Resource Total usage Total available Utilization

Slice Registers 7186 30064 23%

Slice LUT logic 3276 15032 27%

Slice LUT memory 249 3664 6%

Bonded IOB 155 266 58%

PLL_ADV 1 2 50%

BUFPLL 4 8 50%

OLOGIC2/OSERDES2 125 272 45%

IODELAY2 108 272 29%

ILOGIC2/ISERDES2 81 272 29%

DCM/DCM_CLKGEN 1 4 25%

BUFG 7 16 43%

BUFIO2/BUFIO2_2CLK 4 32 12%

RAMB16BWER 32 52 61%

RAMB8BWER 4 104 3%

Table 2: Place and Route results generated using Xilinx ISE 14.7 for the total
FPGA implementation, including all entities in our design and non-
essential auxiliary entities for development purposes.

on the PCB, such that all resulting data lines are in fact in sync and
effectively clocked by the same single differential clock. For our pro-
totype, this strategy was used and only two rx_clk entities were used
to successfully clock four sensors.

The exact amount of these primitives depends on the package of
the target device: larger Spartan 6 packages or similar devices will
have many more of these primitives available.

Finally, Table 3 shows all relevant clock nets in the FPGA imple-
mentation, providing an insight in the actual present clock domains
as earlier described in this thesis. Here, ext_clk is the only clock that
does not directly relate to any clock domains, as it is the external
crystal oscillator input that drives the internal PLL.

Recall that in Section 4.7, all primary and secondary clock domains
have been described. Using Table 3, we can compare the results of the
actual implementation to the earlier discussed clock domains:

• Primary clock domains

– Sensor receiver interface

* rx_ioclk differential I/O clocks, external frequency.

* rx_gclk internal clocks, external frequency.

– System logic: sensor controller, interconnect, memory con-
troller and embedded processor

* ck150 clock, 150MHz frequency.

* ck50 clock, 50MHz frequency, Microblaze core.

[August 25, 2016 at 17:40 – classicthesis]

7.3 synthesis results 84

Clock net Resource Locked Fanout

ext_clk BUFGMUX No 7

ck150 BUFGMUX No 1603

ck50 BUFGMUX No 364

ck27 BUFGMUX No 4

rx_gclk_br BUFGMUX No 106

rx_gclk_bl BUFGMUX No 102

drac_ck600_1 Local - 100

drac_ck600_0 Local - 100

drac_ck600_180_1 Local - 22

drac_ck600_180_0 Local - 26

spi_sck Local - 9

rx_ioclk_p_bl Local - 16

rx_ioclk_n_bl Local - 16

rx_ioclk_p_br Local - 16

rx_ioclk_n_br Local - 16

Table 3: Place and Route results generated using Xilinx ISE 14.7 for the total
FPGA implementation, showing all relevant clock nets.

* drac clocks, 600MHz frequency, DRAM controller.

– Readout interface

* spi_sck clock, external frequency.

• Secondary clock domains

– Sensor controller and I2C interface

* (Unlisted), 250KHz frequency.

– Sensor clock and reset logic

* ck27 clock, 25MHz frequency.

For the primary system logic clock domain, an additional 50MHz
clock is present for the Microblaze core, as this core does not synthe-
size properly for our Spartan 6 target device at the system clock of
150MHz. In order to solve this issue, a dedicated Microblaze clock
was derived by simply dividing the system clock down to 50MHz,
retaining the same phase relationship and clock domain. A number
of 600MHz clocks are also available in this domain to facilitate proper
signaling with the external DRAM devices on the DIMM.

Furthermore, the sensor controller and I2C interface clock domain
is not visible in the results, likely due to the fact that the clock gener-
ated from these components is only in the KHz range and is therefore
invisible in clock report generated by Xilinx ISE.

[August 25, 2016 at 17:40 – classicthesis]

7.4 measurement setup 85

Figure 32: Stroboscope hardware, showing an array of 10 area LED lights
driven by 10 MOSFETs and connected to a real-time embedded
system.

7.4 measurement setup

In order to provide a proper evaluation of our prototype, we require
the use of additional hardware that can measure the performance
aspects. First and foremost, we are interested in knowing whether
the prototype can produce video at all using its image sensors at the
given resolution and capture rate. Since we know from analysis that
the DRAM controller is theoretically capable of interfacing with at
least 38 sensors in terms of bandwidth, scalability is technically not
an issue, and the use of 5 sensors should not pose any problems.
However, correct and compliant functioning of the DRAM controller
is especially important, and the production of a valid video stream
would demonstrate a correct design and implementation of not only
the DRAM controller but also all other subsystems included in our
platform.

Secondly, we would like to show that the produced video in fact
contains images that are to be expected from a high-speed video. Re-
call that a high-speed video produced with a sensor array requires a
strict timing regime that imposes the exact point in time at which the
sensors must start their exposure, and requires a maximum bound on
shutter or exposure duration. If this timing is not accurate, a video
produced using these sensors will not exhibit linear and consistent
temporal effects that we expect from a video, e.g. every frame must
exhibit the same lapse of time.

In order to demonstrate this, we have designed an additional piece
of hardware which we will refer to as a stroboscope. This hardware
can be seen in Figure 32 and consists of an array of 10 InGaN-based
LEDs driven by MOSFETs connected to a BeagleBone Black real-time

[August 25, 2016 at 17:40 – classicthesis]

7.5 experimental results 86

Figure 33: Timing characteristics of the stroboscope, strobing at a 1000 Hz
rate, showing two LED-driving MOSFETs being subsequently
triggered at 1ms with an error of only 0.02%. Measured using
a 4GHz logic analyzer.

embedded system. This embedded system contains a Texas Instru-
ments AM3358 Sitara ARM processor and includes a special Pro-
grammable Real-time Unit SubSystem (PRUSS) that executes single-
cycle, uncached, unpipelined instructions with fully predictable and
fixed instruction timing (5ns for most instructions). The relevant real-
time assembly code toggling the LEDs can be found in Appendix B.

In the stroboscope, every subsequent LED lights up for a prede-
fined amount of time, and by pointing our sensor array prototype to
this stroboscope, LEDs are then captured by the sensors. In the re-
sulting video, temporal information can be derived from every frame
in the produced video simply by looking at which LEDs are illumi-
nated. Since the exposure duration is longer than the LED light du-
ration, multiple LEDs are in fact captured by a single sensor frame.
For the purpose of this thesis, we will fix the stroboscope LED light
duration to 1ms, so that we can easily quantify the exposure time of
a particular frame by simply counting the LEDs that have lighted up.
Finally, as succeeding video frames are actually captured by different
image sensors, they must show a consistent lighting pattern of subse-
quent stroboscope LEDs, proving that the phased start functionality
is accurate, as we will show in the next section.

7.5 experimental results

In this section, we will discuss the experimental measurements and
results related to the final prototype and its setup. We have used
an Acute TL-2018E logic analyzer with a 4GHz sample rate for any
digital signal measurements.

Before proceeding with any measurements related to the actual
functionality of the prototype, it is important to ensure that the strobo-
scope setup itself is in fact accurate. In this sense, a number of factors
contribute to the accuracy of the stroboscope beyond the real-time
program itself: the slew rate of the embedded system I/O pins, the
switching speed of the MOSFETs driving the LEDs, and the rise time of
the actual LEDs. Fortunately, all of these except the LED rise time can
be evaluated by simply measuring the MOSFET outputs with a logic

[August 25, 2016 at 17:40 – classicthesis]

7.5 experimental results 87

Figure 34: Final frames as captured by four sensors of the prototype at 240

Hz after being processed in the software domain, ordered from
top-left to bottom-right and showing a seamlessly overlapping
capture of the timed stroboscope lights from sensor to sensor.
Each subsequent frame is captured by a different sensor, at differ-
ent subsequent points in time. Stroboscope lights run from bot-
tom left to top right in time, as indicated by the white arrow in
the first image.

analyzer. In [Uch+00] though, it is shown that common white InGaN-
based LEDs exhibit a rise time in the order of several hundreds of ns.
Since this is much lower than the stroboscope’s frequency order of
magnitude, we consider the effect of the LED rise time to be insignifi-
cant and we can thus evaluate the accuracy of the stroboscope purely
by means of the analyzer measurements. These logic analyzer mea-
surements can be seen in Figure 33, showing two subsequent LEDs
in the array being driven at virtually exact intervals and durations of
1ms as we expected.

Knowing that the stroboscope does indeed flash at 1ms intervals,
we proceeded with producing an actual video of the stroboscope us-
ing our prototype. Unfortunately, one of the five sensors failed during
this process and was no longer responsive. The prototype was then
reconfigured to capture with four sensors at 60Hz each, or a total
capture rate of 4× 60 = 240Hz and a matching exposure duration of
1/240 ≈ 4.2ms.

To produce the video, the prototype (hardware domain) was pow-
ered on and the capture phase was immediately initiated, capturing
and storing 32MiB worth of video data in DRAM, after which the
readout phase was started and all video data was transferred to the
software domain, in this case hosted by an embedded Raspberry Pi
device, using SPI. In the software domain, the earlier described steps
of deinterleaving, bitslip correction and protocol decoding were per-

[August 25, 2016 at 17:40 – classicthesis]

7.5 experimental results 88

A B C D E F G H I J0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J0 1 2 3 4 5 6 7 8 9 A B C D E F G0 1 2 3 4 5 6

0 4.2 8.3 12.5 16.6 20.8 25.0 29.2 33.3 37.5 41.7 45.8 50.0 54.2 58.3 62.5 66.6

4

3

2

1

S
E

N
S

O
R

TIME (ms)

STROBE LEDs
frame

Figure 35: Sensor timing diagram corresponding to our four sensor proto-
type at 240Hz and the frames in Figure 34. Our stroboscope LED
timing is shown on top, with each number and color represent-
ing one of the 10 LEDs that is turned on at that time for 1ms.
Dark green represents a single frame, or the light integrated by a
single sensor in the time domain for a single frame exposure, i.e.
the first frame captures light from 4 different strobe LEDs. Light
green represents the unavoidable time in which a sensor’s shut-
ter is closed and image data is read out to our system. When all
frames are combined, they in fact form a continuous integration
of physical light with an exposure time and capture rate equal to
4.2ms or 240Hz as witnessed in Figure 34.

formed using GStreamer, and a raw video file was ultimately pro-
duced containing all captured image frames from all subsequent sen-
sors in order.

The individual frames of the produced video at 240Hz can be seen
in Figure 34. Note that each subsequent frame here is captured by a
different sensor, at subsequent points in time, as explained before in
Section 4.5, and illustrated here again in Figure 35. This figure also
contains the timing of the stroboscope LED lights.

By effectively summing up each LED’s physical light contribution
in each single frame, we can see that the exposure duration of 4.2ms
is in fact correct: we can see approximately 4.2 LEDs being lit in each
frame, when accounting for the percentage of light of each individ-
ual LED. This means that the physical light of each of these LEDs has
been integrated for a duration of 4.2ms for each individual sensor.
Secondly, it can be seen that the stroboscope lights in fact follow each
other precisely in each successive frame, and there are no inconsisten-
cies or gaps in between the frames when looking at the lit LEDs. If at
least one sensor would not start its exposure 4.2ms after the previous
sensor ended its exposure, e.g. due to timing inaccuracy, the LEDs in
subsequent frames would not show consistent light contribution, in-
dicating that physical light was either lost in between frames, or was
captured twice by two successive sensors. Since this is not the case,
we can conclude that the exposure duration as well as the phased
start functionality does indeed function correctly at a rate of 240Hz.

[August 25, 2016 at 17:40 – classicthesis]

7.5 experimental results 89

Figure 36: Timing characteristics of the I2C exposure start commands as sent
to different sensors in case of a hypothetical 1200 Hz (833us) cap-
ture rate. Measured using a 4GHz logic analyzer.

Though, recall that the second evaluation criterion requires that the
timing of the phased start functionality must be at least 99%. While
this criterion has been verified in theory before, measurements of
the prototype should show that the criterion also holds in the real
world. For this purpose, we have done a separate run in which we
reconfigured our embedded control processor to send out I2C phased
start commands at an interval of 1200Hz. Despite lacking the sensors
to create a video at this rate, we could nevertheless measure the exact
moment of time at which the I2C commands appeared at the image
sensors. These measurements can be seen in Figure 36 and show a
maximum error ε of 0.8ns or less than 0.1% (of 1/1200 ≈ 833ns)
and thus far below the 1% error tolerance imposed by evaluation
criterion. Even so, the measured ε was higher than expected and is
likely attributed to an improper implementation of the I2C master
driver not resetting the bus clock for every issued command.

[August 25, 2016 at 17:40 – classicthesis]

8
C O N C L U S I O N

The first objective of this thesis was to investigate the concept of us-
ing an image sensor array for high-speed imaging by means of an
embedded system. The viability of such a sensor array setup was al-
ready described in [Wil+01], [Wil+04] and [Wil05], though at a much
larger non-embedded scale. Here, various trade-offs and side effects
of using an array of sensors for high-speed imaging have also been
investigated.

Building upon this knowledge and explicitly targeting an embed-
ded size factor, an embedded system platform has been designed
to realize an image sensor array at a much smaller integrated form
factor. Designing such a platform required a multi-domain approach,
covering extensive design and implementation of subsystems in hard-
ware as well as software. As such, the presented hardware domain in-
cludes a sensor receiver interface, dedicated DDR3 DRAM controller,
interleaver, embedded processor, sensor control interface and readout
interface, and functions as a standalone embedded system. Here, the
presence of multiple unsynchronized clock domains required the use
of cross domain clocking techniques to ensure signal integrity. The
DRAM controller has been specifically designed with linear video
streaming in mind, and has made use of the burst writing capabili-
ties of DDR3 in order to maximize throughput. The embedded system
has been designed to communicate individual sensor commands us-
ing the sensor control interface and to implement auxiliary functions
to control the flow of the entire system. Finally, the readout interface
has been included to provide a means of streaming any captured raw
sensor data into the software domain.

The software domain, on the other hand, exists as a means of trans-
forming any raw data from the hardware domain into usable infor-
mation such as a video stream, and includes a sensor protocol de-
coder, image rectification and camera calibration algorithms as part
of a video streaming pipeline. The sensor protocol decoder has been
designed to decode raw HiSPI protocol data and perform debayer
color reconstruction, such that a useable video data can be produced.
The image rectification and camera calibration algorithms are then
used to mitigate the distortion effects as introduced by the physical
distance and characteristic differences of the sensors in the array.

To determine the scalability of the platform in terms of number of
image sensors in the array, primary bottlenecks of the system have
been identified, modelled as part of a SADF graph and analyzed us-
ing real-time dataflow analysis. This resulted in a worst-case estima-

90

[August 25, 2016 at 17:40 – classicthesis]

conclusion 91

tion of the maximum sustained throughput of the primary bottleneck
in the system, being the DRAM controller. The estimation indicated
that up to 38 sensors could theoretically be interfaced with the DRAM
controller, though not taking into account physical and resource limi-
tations.

The highlight of this thesis is the actual real-world realization of the
presented platform. A custom made embedded system prototype has
been produced, fully implementing the hardware domain and con-
sisting of a custom FPGA board containing a Xilinx Spartan 6 and a
2GiB DDR3 DIMM module. Three custom made camera boards have
been produced, containing a total of five Aptina MT9M021 image sen-
sors that plug into the main FPGA board, representing a small-scale
version of the sensor array and implementing the presented platform.
Sensors with global shutters have been chosen to prevent the distor-
tion effects of a rolling shutter and to reduce the required complexity
of the rectification algorithms in the software domain.

To verify the high-speed capabilities of the prototype, a custom stro-
boscope setup has been produced consisting of 10 area LEDs driven
by an independent real-time embedded system. Signal timing mea-
surements have been performed using a high frequency logic ana-
lyzer to verify that the stroboscope setup was accurate.

Signal timing measurements have also been done on the proto-
type to verify accurate timing of the I2C sensor control interface com-
mands. Finally, a video capture of the stroboscope using four sensors
at 60Hz has been performed, resulting in a video with a combined
capture rate of 240Hz. This capture rate in this video has been veri-
fied by careful examination of the video data.

We have set out two evaluation criteria to verify whether the pre-
sented embedded system platform would be a viable solution for
high-speed imaging using an array of image sensors. Both of these
evaluation criteria have been satisfied, not only from a theoretical
stance as proven by means of dataflow analysis, but also from a prac-
tical perspective, as has been demonstrated by our prototype albeit
with a small amount of sensors. Theoretical dataflow analysis of the
system was made possible by first modelling our system as a FSM-
SADF graph, approximating the dataflow of our system in terms of
throughput. Problems have been encountered during dataflow analy-
sis related to the existing FSM-SADF and similar graph models and
software tools in particular. Limitations of model expressiveness led
to a model that did resemble the behaviour of our DRAM controller,
but not in an exact manner. Despite these problems however, it was
possible to work around these issues and generate results to show the
viability of our platform. This model indicates that our DRAM con-
troller is capable of providing a maximum sustained throughput of
4.23GiB/s, corresponding to 90% of the theoretical peak transfer rate
of our DDR3 devices. Our system is therefore capable of interfacing

[August 25, 2016 at 17:40 – classicthesis]

8.1 future work 92

with at least 16, and possibly up to 38 image sensors at a capture rate
of 60Hz using its current DRAM configuration. Further analysis was
done by constructing a simplified latency-rate SRDF graph modelling
the FIFO buffering mechanism as part of the system’s dataflow. Using
variables associated with our real-world prototype, and by using the
earlier criterion target of 16 image sensors, it was possible to work
out a required FIFO size of 12. This relatively small FIFO size shows
that FIFOs are not a significant factor in terms of FPGA resources re-
quired in order to implement our system. We can therefore conclude
that our platform is indeed viable.

8.1 future work

Although the DRAM controller presented in this thesis has been shown
to be capable of relatively high sustained throughput, we would also
like to investigate the use of dual- or possibly quad-channel DRAM
configurations that could effectively double or quadruple the through-
put. This would potentially allow for even larger sensor arrays, if
suitable embedded systems hardware could be found to interface
with these components. Furthermore, the use of more modern DRAM
technology such as DDR4 or possibly different storage media such as
SATA or PCIe SSDs could open up other potential benefits for our
platform.

As far as the dataflow analysis is concerned, the expressiveness of
the FSM-SADF model and associated tools unfortunately prevented
one-to-one modelling of our DRAM controller functionality, leading
to an unnecessarily convoluted model. For one, issues related to state-
space explosion due to the large number of cycles involved in mod-
elling the DRAM controller behaviour prevent reasonable and straight-
forward analysis. In the future, we would like to see a type of model
and software tools that would allow a one-to-one mapping of our im-
plementation to allow for a more exact analysis. This not only holds
for FSM-SADF, as current TA model tools also lack proper dataflow
analysis functionality. These tools could be extended to include such
functionality, such that TA models could in fact be used to model
critical parts of our system. Either would benefit the practical use of
theoretical dataflow analysis for real-world hardware.

We would also like to improve our current design prototype by re-
ducing its form factor even further while employing a larger array
of up to 16 sensors, using a fully standalone single-board computer
design containing a more modern FPGA such as the Xilinx Artix
family. This would allow for a capture rate of 960Hz, comparable
to other commercially available high-speed cameras in the lower end
spectrum, and without the need of any external hardware, such that
further evaluations of the produced high-speed video could be inves-
tigated.

[August 25, 2016 at 17:40 – classicthesis]

8.1 future work 93

Despite the fact that we have described the image distortion ef-
fects involved with using a sensor array and provided insight in how
to mitigate these in our software domain, we have not been able to
implement any of the OpenCV algorithms into the video streaming
pipeline of the software domain due to timing constraints. As these
algorithms are widely used in the industry and are known to per-
form quite well, the choice was made to skip the implementation as
it would not have contributed to the actual verification of the embed-
ded system platform as outlined in this thesis. In a future iteration
of the embedded system platform we would like to integrate these
algorithms into the video streaming pipeline.

Though we have presented a platform to make use of image sensor
arrays and have covered the viability of using image sensor arrays
for high-speed photography, we believe that the use of sensor arrays
versus single sensor systems reaches far beyond the results or any
benefits presented in this thesis so far. First of all, we have shown
the inherently high amount of scalability and flexibility of a sensor
array, as implementations easily vary in terms of types and amounts
of sensors. This system does not only support a varying amount of
sensors, but also different types of sensors, which may prove to be
useful in yet to be found cases. An image sensor array could therefore
provide new possibilities not only in high-speed video capture, but
also for very high-resolution video capture (e.g. microscopy), plenop-
tic video capture (e.g. digital refocusing), full-spectrum video capture
(e.g. using an array with a combination of IR, UV and no filters), low
noise video capture (e.g. stochastic analysis using multiple sensors,
same scenery) or other cases where a single-sensor approach would
be cost-prohibitive or simply not possible, all while building upon
the platform and components presented in this thesis. We would like
to investigate these possibilities in the future.

[August 25, 2016 at 17:40 – classicthesis]

Part I

A P P E N D I X

[August 25, 2016 at 17:40 – classicthesis]

A
S A D F G R A P H L I S T I N G

In Chapter 6, a SADF graph was introduced to perform dataflow
throughput analysis using the SDF3 toolkit.

Here, the full XML data representing this SADF graph is provided
according to SDF3’s SADF XML specification.

Due to limitations of the toolkit, some token amounts had to be
scaled down by a factor of 10 to avoid state space explosion. To com-
pensate for this, executions times have also been scaled appropriately
to mitigate any effects on the dataflow analysis results.

<?xml version="1.0" encoding="UTF-8"?>

<sdf3 type="sadf" version="1.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="uri:sadf" xsi:schemaLocation="uri:sadf

http://www.es.ele.tue.nl/sadf/sdf3-sadf.xsd">

<sadf name="goslow">

<structure>

<!-- Source -->

<kernel name="Ksrc"/>

<!-- DRAM write / refresh logic -->

<kernel name="Kram"/>

<!-- DRAM row precharge logic -->

<kernel name="Krow"/>

<channel name="Ksrc2Kram" source="Ksrc" destination="Kram"

type="data"/>

<channel name="Kram2Krow" source="Kram" destination="Krow"

type="data"/>

<channel name="Krow2Kram" source="Krow" destination="Kram"

type="data"/>

<!-- DRAM refresh counter logic -->

<kernel name="Kcnt"/>

<!-- DRAM simplified state machine (detector) -->

<detector name="Dref"/>

<channel name="Kcnt2Dref" source="Kcnt" destination="Dref"

type="data"/>

<channel name="Dref2Kram" source="Dref" destination="Kram"

type="control"/>

<channel name="Dref2Kcnt" source="Dref" destination="Kcnt"

type="control"/>

</structure>

<properties>

95

[August 25, 2016 at 17:40 - classicthesis]

sadf graph listing 96

<!-- Output throughput for the source kernel after analysis

will indicate the maximum throughput that can be sustained

here -->

<kernel_properties kernel="Ksrc">

<scenario name="SRC">

<produce channel="Ksrc2Kram" tokens="1"/>

<!-- Assume maximum throughput for the source -->

</scenario>

</kernel_properties>

<kernel_properties kernel="Kram">

<scenario name="WRITE">

<!-- Source data is consumed, colums are produced -->

<consume channel="Ksrc2Kram" tokens="1"/>

<consume channel="Krow2Kram" tokens="1"/>

<produce channel="Kram2Krow" tokens="1"/>

<profile execution_time="2"/> <!-- DRAM write time: 2

clocks @ 150 MHz -->

</scenario>

<scenario name="REFRESH">

<!-- Nothing is done during a REFRESH scenario -->

</scenario>

</kernel_properties>

<kernel_properties kernel="Krow">

<scenario name="PRECHARGE">

<consume channel="Kram2Krow" tokens="64"/>

<produce channel="Krow2Kram" tokens="64"/>

<!-- DRAM write recovery + precharge + active time: 14

clocks @ 150 MHz -->

<profile execution_time="14"/>

</scenario>

</kernel_properties>

<!-- Buffer size should be unbounded, but SDF3 suffers from

state space explosion, so set it "big enough" (e.g. such

that the throughput does not change when increasing) -->

<channel_properties channel="Ksrc2Kram" buffer_size="100"/>

<!-- 64 columns are written before a PRECHARGE is done -->

<channel_properties channel="Krow2Kram"

number_of_initial_tokens="64"/>

<!-- REFRESH counter logic -->

<kernel_properties kernel="Kcnt">

<scenario name="WRITE">

<produce channel="Kcnt2Dref" tokens="1"/>

<!-- DRAM refresh interval: 1170 / 10 clocks interval, so

it takes 117 clocks to produce a data token -->

<profile execution_time="117"/>

</scenario>

<scenario name="REFRESH">

[August 25, 2016 at 17:40 - classicthesis]

sadf graph listing 97

<produce channel="Kcnt2Dref" tokens="1"/>

<!-- DRAM refresh time: 39 clocks / 10 = 260.13 ns / 10

(division by 10 due to SDF3 state space explosion) -->

<profile execution_time="4"/>

</scenario>

</kernel_properties>

<detector_properties detector="Dref">

<subscenario name="WRITE">

<!-- After 117 clocks, produce 117 WRITE control tokens

for Kram -->

<!-- Move Kcnt to REFRESH scenario -->

<consume channel="Kcnt2Dref" tokens="1"/>

<produce channel="Dref2Kram" tokens="117" value="WRITE"/>

<produce channel="Dref2Kcnt" tokens="1" value="REFRESH"/>

</subscenario>

<subscenario name="REFRESH">

<!-- After 4 clocks, move Kram to REFRESH scenario -->

<!-- Move Kcnt to WRITE scenario -->

<consume channel="Kcnt2Dref" tokens="1"/>

<produce channel="Dref2Kram" tokens="1" value="REFRESH"/>

<produce channel="Dref2Kcnt" tokens="1" value="WRITE"/>

</subscenario>

<!-- Deterministic FSM: WRITE -> REFRESH, and REFRESH ->

WRITE (transition is done when all subscenario conditions

are met) -->

<markov_chain initial_state="WRITE">

<state name="WRITE" subscenario="WRITE">

<transition destination="REFRESH"/>

</state>

<state name="REFRESH" subscenario="REFRESH">

<transition destination="WRITE"/>

</state>

</markov_chain>

</detector_properties>

<!-- refresh interval time divded by 10 (normally 1170) to

correct above refresh time division by 10 -->

<channel_properties channel="Dref2Kram" buffer_size="117"

initial_tokens="117 * WRITE"/>

<channel_properties channel="Dref2Kcnt" buffer_size="1"

initial_tokens="1 * WRITE"/>

<channel_properties channel="Kcnt2Dref" buffer_size="117"/>

</properties>

</sadf>

</sdf3>

[August 25, 2016 at 17:40 – classicthesis]

B
S T R O B O S C O P E P R O G R A M L I S T I N G

In Chapter 6, a real-time stroboscope hardware setup was described
which was used to evaluate the timing characteristics of the camera
array prototype.

The stroboscope consists of an array of 10 area LEDs, driven by 10

MOSFETs and connected to a BeagleBone Black real-time embedded
system. This embedded system contains a Texas Instruments AM3358

Sitara ARM processor and includes a special Programmable Real-
time Unit SubSystem (PRUSS) that executes single-cycle, uncached,
unpipelined instructions with fully predictable and fixed instruction
timing (5ns for most instructions), also described in [Kim+15].

To ensure accurate LED trigger times, a real-time PRU program
was created in the TI PRUSS assembly language, exhibiting strict tim-
ing and triggering the MOSFETs through dedicated I/O pins. The
assembly code listing can be seen below.

// *
// * PRU_strobo.p

// *
#define LEDS 10

#define SLEEP_HZ 2

#define R30_LED_CARRY (LEDS)

#define R30_LED_BITS ((1 << (LEDS)) - 1)

#define LED_PREPARE_CYCLES 5

#define SLEEP_LOOP_CYCLES 50

#define CLOCK 200000000 // 200 MHz

#define SLEEP_CYCLES (((CLOCK / SLEEP_LOOP_CYCLES) / SLEEP_HZ)

- LED_PREPARE_CYCLES)

.origin 0

.entrypoint START

START:

// Reset R30 (output)

MOV r30, 0

// Initialize registers

MOV r2, 1

MOV r4, R30_LED_BITS

LED_CYCLE:

// Move shift register to R30 (output)

98

[August 25, 2016 at 17:40 - classicthesis]

stroboscope program listing 99

MOV r30, r2

// Busy-loop sleep routine

MOV r1, SLEEP_CYCLES

SLEEP_LOOP:

SUB r1, r1, 1

QBNE SLEEP_LOOP, r1, 0

LED_PREPARE:

// Left-shift shift register by 1

lsl r2, r2, 1

// Carry (N+1)th bit back to LSB

lsr r3, r2, R30_LED_CARRY

and r2, r2, r4

or r2, r2, r3

// Loop endlessly

JMP LED_CYCLE

DONE:

// Reset R30 (output)

MOV r30, 0

// Halt

HALT

[August 25, 2016 at 17:40 – classicthesis]

B I B L I O G R A P H Y

[AG11] Benny Akesson and Kees Goossens. Memory Controllers
for Real-Time Embedded Systems: Predictable and Composable
Real-Time Systems. 1st. Springer Publishing Company, In-
corporated, 2011. isbn: 144198206X, 9781441982063.

[Alt15a] Altera Corporation. External Memory Interface Handbook Vol-
ume 1: Altera Memory Solution Overview and Design Flow.
2015.

[Alt15b] Altera Corporation. Nios II Classic Processor Reference Guide.
2015.

[Apt12a] Aptina Imaging Corporation. Global Shutter Pixel Technolo-
gies and CMOS Image Sensors - A Powerful Combination. 2012.

[Apt12b] Aptina Imaging Corporation. MT9M021/MT9M031 Devel-
oper Guide. 2012.

[Axe+14] Philip Axer et al. “Building Timing Predictable Embed-
ded Systems.” In: ACM Trans. Embed. Comput. Syst. 13.4
(Mar. 2014), 82:1–82:37. issn: 1539-9087. doi: 10 . 1145 /

2560033. url: http://doi.acm.org/10.1145/2560033.

[Bac+01] François Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-
Pierre Quadrat. Synchronization and linearity: an algebra for
discrete event systems. 2001.

[Beh+06] G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P.
Petterson, Wang Yi, and M. Hendriks. “UPPAAL 4.0.” In:
Third International Conference on the Quantitative Evaluation
of Systems - (QEST’06). 2006, pp. 125–126. doi: 10.1109/
QEST.2006.59.

[Big+06] M. Bigas, E. Cabruja, J. Forest, and J. Salvi. “Review of
{CMOS} image sensors.” In: Microelectronics Journal 37.5
(2006), pp. 433 –451. issn: 0026-2692.

[BS14] Gregor Bloch and Thomas Sattelmayer. “Effects of turbu-
lence and secondary flows on subcooled flow boiling.”
In: Heat and Mass Transfer 50.3 (2014), pp. 427–435. issn:
1432-1181. doi: 10.1007/s00231-014-1301-9. url: http:
//dx.doi.org/10.1007/s00231-014-1301-9.

[Bou08] J. Y. Bouguet. Camera calibration toolbox for Matlab. 2008.
url: http://www.vision.caltech.edu/bouguetj/calib\
_doc/.

100

[August 25, 2016 at 17:40 – classicthesis]

http://dx.doi.org/10.1145/2560033
http://dx.doi.org/10.1145/2560033
http://doi.acm.org/10.1145/2560033
http://dx.doi.org/10.1109/QEST.2006.59
http://dx.doi.org/10.1109/QEST.2006.59
http://dx.doi.org/10.1007/s00231-014-1301-9
http://dx.doi.org/10.1007/s00231-014-1301-9
http://dx.doi.org/10.1007/s00231-014-1301-9
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/

Bibliography 101

[But11] Giorgio C. Buttazzo. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications. 3rd. Springer
Publishing Company, Incorporated, 2011. isbn: 1461406757,
9781461406754.

[Dor+09] Taho Dorta, Jaime Jiménez, José Luis Martín, Unai Bidarte,
and Armando Astarloa. “Overview of FPGA-Based Mul-
tiprocessor Systems.” In: Proceedings of the 2009 Interna-
tional Conference on Reconfigurable Computing and FPGAs.
RECONFIG ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 273–278. isbn: 978-0-7695-3917-1. doi:
10.1109/ReConFig.2009.15. url: http://dx.doi.org/10.
1109/ReConFig.2009.15.

[EGE05] A. El Gamal and H. Eltoukhy. “CMOS image sensors.” In:
Circuits and Devices Magazine, IEEE 21.3 (2005), pp. 6–20.
issn: 8755-3996. doi: 10.1109/MCD.2005.1438751.

[Fol+94] James D. Foley, Richard L. Phillips, John F. Hughes, An-
dries van Dam, and Steven K. Feiner. Introduction to Com-
puter Graphics. Boston, MA, USA: Addison-Wesley Long-
man Publishing Co., Inc., 1994. isbn: 0201609215.

[Fos97] E.R. Fossum. “CMOS image sensors: electronic camera-
on-a-chip.” In: Electron Devices, IEEE Transactions on 44.10

(1997), pp. 1689–1698. issn: 0018-9383. doi: 10.1109/16.
628824.

[Fur+07] M. Furuta, Y. Nishikawa, T. Inoue, and Shoji Kawahito. “A
High-Speed, High-Sensitivity Digital CMOS Image Sen-
sor With a Global Shutter and 12-bit Column-Parallel Cyclic
A/D Converters.” In: Solid-State Circuits, IEEE Journal of
42.4 (2007), pp. 766–774. issn: 0018-9200. doi: 10.1109/
JSSC.2007.891655.

[Geo07] Maria George. Memory Interface Application Notes Overview.
Xilinx, Inc., 2007.

[Gin11] Ran Ginosar. “Metastability and Synchronizers: A Tuto-
rial.” In: IEEE Design and Test of Computers 28.5 (2011),
pp. 23–35. issn: 0740-7475.

[Gol11] John Goldie. The Many Flavors of LVDS. Texas Instruments
Inc., 2011.

[Goo+05] Kees Goossens, Om Prakash Gangwal, Jens Röover, and
A.P. Niranjan. “Interconnect and Memory Organization in
SOCs for Advanced Set-Top Boxes and TV.” In: Interconnect-
Centric Design for Advanced SoC and NoC. Ed. by Jari Nurmi,
Hannu Tenhunen, Jouni Isoaho, and Axel Jantsch. Boston,
MA: Springer US, 2005, pp. 399–423. isbn: 978-1-4020-7836-
1. doi: 10.1007/1-4020-7836-6_15. url: http://dx.doi.
org/10.1007/1-4020-7836-6_15.

[August 25, 2016 at 17:40 – classicthesis]

http://dx.doi.org/10.1109/ReConFig.2009.15
http://dx.doi.org/10.1109/ReConFig.2009.15
http://dx.doi.org/10.1109/ReConFig.2009.15
http://dx.doi.org/10.1109/MCD.2005.1438751
http://dx.doi.org/10.1109/16.628824
http://dx.doi.org/10.1109/16.628824
http://dx.doi.org/10.1109/JSSC.2007.891655
http://dx.doi.org/10.1109/JSSC.2007.891655
http://dx.doi.org/10.1007/1-4020-7836-6_15
http://dx.doi.org/10.1007/1-4020-7836-6_15
http://dx.doi.org/10.1007/1-4020-7836-6_15

Bibliography 102

[Goo+16] S. Goossens, K. Chandrasekar, B. Akesson, and K. Goossens.
“Power/Performance Trade-Offs in Real-Time SDRAM Com-
mand Scheduling.” In: IEEE Transactions on Computers 65.6
(2016), pp. 1882–1895. issn: 0018-9340. doi: 10.1109/TC.
2015.2458859.

[Gra04] T. Granberg. Handbook of Digital Techniques for High-speed
Design: Design Examples, Signaling and Memory Technolo-
gies, Fiber Optics, Modeling and Simulation to Ensure Signal
Integrity. Prentice Hall Signal Integrity Library. Prentice
Hall PTR, 2004. isbn: 9780131422919.

[Gül+12] U. Gülan, B. Lüthi, M. Holzner, A. Liberzon, and W. Kinzel-
bach. “5th European Conference of the International Fed-
eration for Medical and Biological Engineering: 14–18 Septem-
ber 2011, Budapest, Hungary.” In: ed. by Ákos Jobbágy.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. Chap. Ex-
perimental Analysis of the Lagrangian Flow Field in an
Ascending Aorta by Particle Tracking Velocimetry, pp. 595–
598. isbn: 978-3-642-23508-5. doi: 10.1007/978- 3- 642-
23508-5_154. url: http://dx.doi.org/10.1007/978-3-
642-23508-5_154.

[HS88] Chris Harris and Mike Stephens. “A combined corner and
edge detector.” In: In Proc. of Fourth Alvey Vision Conference.
1988, pp. 147–151.

[HZ04] R. I. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Second. Cambridge University Press,
ISBN: 0521540518, 2004.

[JED08] JEDEC Solid State Technology Association. JEDEC Stan-
dard, DDR3 SDRAM, JESD79-3C. 2008.

[JNW07] Bruce Jacob, Spencer Ng, and David Wang. Memory Sys-
tems: Cache, DRAM, Disk. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc., 2007. isbn: 0123797519, 9780123797513.

[Kim+15] H. Kim, D. Broman, E. A. Lee, M. Zimmer, A. Shrivastava,
and J. Oh. “A predictable and command-level priority-
based DRAM controller for mixed-criticality systems.” In:
21st IEEE Real-Time and Embedded Technology and Applica-
tions Symposium. 2015, pp. 317–326. doi: 10.1109/RTAS.
2015.7108455.

[Kle07] Dean A. Klein. “The Future of Memory and Storage: Clos-
ing the Gaps.” In: Microsoft WinHEC 2007 (2007).

[KL10] Tamar Kranenburg and Rene van Leuken. “MB-LITE: A
Robust, Light-weight Soft-core Implementation of the Mi-
croBlaze Architecture.” In: Proceedings of the Conference on
Design, Automation and Test in Europe. DATE ’10. Dresden,
Germany: European Design and Automation Association,

[August 25, 2016 at 17:40 – classicthesis]

http://dx.doi.org/10.1109/TC.2015.2458859
http://dx.doi.org/10.1109/TC.2015.2458859
http://dx.doi.org/10.1007/978-3-642-23508-5_154
http://dx.doi.org/10.1007/978-3-642-23508-5_154
http://dx.doi.org/10.1007/978-3-642-23508-5_154
http://dx.doi.org/10.1007/978-3-642-23508-5_154
http://dx.doi.org/10.1109/RTAS.2015.7108455
http://dx.doi.org/10.1109/RTAS.2015.7108455

Bibliography 103

2010, pp. 997–1000. isbn: 978-3-9810801-6-2. url: http://
dl.acm.org/citation.cfm?id=1870926.1871169.

[Lat15] Lattice Semiconductor Corporation. DDR & DDR2 SDRAM
Controller for MachXO2 PLD Family IP Cores User Guide.
2015.

[LBW09] D. Lee, S. S. Bhattacharyya, and W. Wolf. “High-Performance
Buffer Mapping to Exploit DRAM Concurrency in Multi-
processor DSP Systems.” In: 2009 IEEE/IFIP International
Symposium on Rapid System Prototyping. 2009, pp. 137–144.
doi: 10.1109/RSP.2009.34.

[LM87] E. A. Lee and D. G. Messerschmitt. “Synchronous data
flow.” In: Proceedings of the IEEE 75.9 (1987), pp. 1235–1245.
issn: 0018-9219. doi: 10.1109/PROC.1987.13876.

[Lee09] F. Leens. “An introduction to I2C and SPI protocols.” In:
Instrumentation Measurement Magazine, IEEE 12.1 (2009),
pp. 8–13. issn: 1094-6969. doi: 10.1109/MIM.2009.4762946.

[LGZ08] Image demosaicing: a systematic survey. Vol. 6822. 2008, 68221J–
68221J–15. doi: 10.1117/12.766768.

[Li+16] Y. Li, B. Akesson, K. Lampka, and K. Goossens. “Mod-
eling and Verification of Dynamic Command Scheduling
for Real-Time Memory Controllers.” In: 2016 IEEE Real-
Time and Embedded Technology and Applications Symposium
(RTAS). 2016, pp. 1–12. doi: 10.1109/RTAS.2016.7461341.

[Lim+10] Kyusam Lim, Gye Su Kim, Suki Kim, and Kwang-Hyun
Baek. “A multi-lane MIPI CSI receiver for mobile cam-
era applications.” In: Consumer Electronics, IEEE Transac-
tions on 56.3 (2010), pp. 1185–1190. issn: 0098-3063. doi:
10.1109/TCE.2010.5606244.

[MIP16a] MIPI Alliance, Inc. Camera Interface Specifications. 2016. url:
http://mipi.org/specifications/camera-interface.

[MIP16b] MIPI Alliance, Inc. Frequently Asked Questions. 2016. url:
http : / / mipi . org / about - mipi / frequently - asked -

questions.

[Mor78] Jorge Moré. “The Levenberg-Marquardt algorithm: Imple-
mentation and theory.” In: Numerical Analysis. Ed. by G. A.
Watson. Vol. 630. Lecture Notes in Mathematics. Springer
Berlin Heidelberg, 1978. Chap. 10, pp. 105–116. isbn: 978-
3-540-08538-6. doi: 10.1007/bfb0067700.

[Per15] T. S. Perry. “Sanstreak lowers the cost of high-speed pho-
tography [ResourcesStartups].” In: IEEE Spectrum 52.3
(2015), pp. 27–27. issn: 0018-9235. doi: 10.1109/MSPEC.
2015.7049433.

[Phi03] Philips Semiconductors. The I2C-bus specification. 2003.

[August 25, 2016 at 17:40 – classicthesis]

http://dl.acm.org/citation.cfm?id=1870926.1871169
http://dl.acm.org/citation.cfm?id=1870926.1871169
http://dx.doi.org/10.1109/RSP.2009.34
http://dx.doi.org/10.1109/PROC.1987.13876
http://dx.doi.org/10.1109/MIM.2009.4762946
http://dx.doi.org/10.1117/12.766768
http://dx.doi.org/10.1109/RTAS.2016.7461341
http://dx.doi.org/10.1109/TCE.2010.5606244
http://mipi.org/specifications/camera-interface
http://mipi.org/about-mipi/frequently-asked-questions
http://mipi.org/about-mipi/frequently-asked-questions
http://dx.doi.org/10.1007/bfb0067700
http://dx.doi.org/10.1109/MSPEC.2015.7049433
http://dx.doi.org/10.1109/MSPEC.2015.7049433

Bibliography 104

[Ram08] Chitra Ramalingam. “Stopping time: Henry Fox Talbot
and the origins of freeze-frame photography.” In: Endeav-
our 32.3 (2008), pp. 86 –93. issn: 0160-9327.

[Sem15a] Semiconductor Components Industries, LLC. AR0141CS
Datasheet, Rev. D - 1/4-Inch Digital Image Sensor. 2015.

[Sem15b] Semiconductor Components Industries, LLC. AR0330 Datasheet,
Rev. U - 1/3-Inch CMOS Digital Image Sensor. 2015.

[Siy+11] F. Siyoum, M. Geilen, O. Moreira, R. Nas, and H. Corpo-
raal. “Analyzing synchronous dataflow scenarios for dy-
namic software-defined radio applications.” In: System on
Chip (SoC), 2011 International Symposium on. 2011, pp. 14–
21. doi: 10.1109/ISSOC.2011.6089222.

[Son11] Sony Corporation. Advantage of the CMOS Sensor. 2011.

[SB00] Sundararajan Sriram and Shuvra S. Bhattacharyya. Em-
bedded Multiprocessors: Scheduling and Synchronization. 1st.
New York, NY, USA: Marcel Dekker, Inc., 2000. isbn: 0824793188.

[SGB06] Sander Stuijk, Marc Geilen, and Twan Basten. “SDF3 :

SDFForFree.” In: 2010 10th International Conference on Ap-
plication of Concurrency to System Design 0 (2006), pp. 276–
278. issn: 1550-4808. doi: http://doi.ieeecomputersociety.
org/10.1109/ACSD.2006.23.

[TAK06] J. G. Tong, I. D. L. Anderson, and M. A. S. Khalid. “Soft-
Core Processors for Embedded Systems.” In: 2006 Interna-
tional Conference on Microelectronics. 2006, pp. 170–173. doi:
10.1109/ICM.2006.373294.

[Uch+00] Yuji Uchida, Tatsumi Setomoto, Tsunemasa Taguchi, Yoshi-
nori Nakagawa, and Kazuto Miyazaki. Characteristics of
high-efficiency InGaN-based white LED lighting. 2000. doi:
10.1117/12.389397. url: http://dx.doi.org/10.1117/
12.389397.

[VM11] Michael Vollmer and Klaus-Peter Möllmann. “High speed
and slow motion: the technology of modern high speed
cameras.” In: Physics Education 46.2 (2011), p. 191.

[WBS07] Maarten H. Wiggers, Marco J. G. Bekooij, and Gerard J. M.
Smit. “Modelling Run-time Arbitration by Latency-rate
Servers in Dataflow Graphs.” In: Proceedingsof the 10th In-
ternational Workshop on Software &Amp; Compilers for Em-
bedded Systems. SCOPES ’07. Nice, France: ACM, 2007, pp. 11–
22. doi: 10.1145/1269843.1269846. url: http://doi.acm.
org/10.1145/1269843.1269846.

[August 25, 2016 at 17:40 – classicthesis]

http://dx.doi.org/10.1109/ISSOC.2011.6089222
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ACSD.2006.23
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ACSD.2006.23
http://dx.doi.org/10.1109/ICM.2006.373294
http://dx.doi.org/10.1117/12.389397
http://dx.doi.org/10.1117/12.389397
http://dx.doi.org/10.1117/12.389397
http://dx.doi.org/10.1145/1269843.1269846
http://doi.acm.org/10.1145/1269843.1269846
http://doi.acm.org/10.1145/1269843.1269846

Bibliography 105

[Wil+04] B. Wilburn, N. Joshi, V. Vaish, M. Levoy, and M. Horowitz.
“High-speed videography using a dense camera array.” In:
Computer Vision and Pattern Recognition, 2004. CVPR 2004.
Proceedings of the 2004 IEEE Computer Society Conference on.
Vol. 2. 2004, II–294–II–301 Vol.2. doi: 10.1109/CVPR.2004.
1315176.

[Wil+01] Bennett S. Wilburn, Michal Smulski, Hsiao-Heng K. Lee,
and Mark A. Horowitz. Light field video camera. 2001. doi:
10.1117/12.451074. url: http://dx.doi.org/10.1117/
12.451074.

[Wil05] Bennett Wilburn. “High-performance Imaging Using Ar-
rays of Inexpensive Cameras.” AAI3153705. PhD thesis.
Stanford, CA, USA, 2005. isbn: 0-496-13789-1.

[Wil+05] Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville
Talvala, Emilio Antunez, Adam Barth, Andrew Adams,
Mark Horowitz, and Marc Levoy. “High Performance Imag-
ing Using Large Camera Arrays.” In: ACM SIGGRAPH
2005 Papers. SIGGRAPH ’05. Los Angeles, California: ACM,
2005, pp. 765–776. doi: 10.1145/1186822.1073259. url:
http://doi.acm.org/10.1145/1186822.1073259.

[WM15] Xu Wu and Guy Meynants. High speed global shutter image
sensors for professional applications. 2015. doi: 10.1117/12.
2179227. url: http://dx.doi.org/10.1117/12.2179227.

[Xil08] Xilinx, Inc. UG081 (v9.0) - MicroBlaze Processor Reference
Guide. 2008.

[Xil14] Xilinx, Inc. XAPP864 - D-PHY Solutions. 2014.

[Zha99] Zhengyou Zhang. “Flexible camera calibration by view-
ing a plane from unknown orientations.” In: Computer Vi-
sion, 1999. The Proceedings of the Seventh IEEE International
Conference on. Vol. 1. 1999, 666–673 vol.1. doi: 10.1109/
ICCV.1999.791289.

[Zha00] Zhengyou Zhang. “A Flexible New Technique for Cam-
era Calibration.” In: IEEE Trans. Pattern Anal. Mach. In-
tell. 22.11 (Nov. 2000), pp. 1330–1334. issn: 0162-8828. doi:
10.1109/34.888718.

[August 25, 2016 at 17:40 – classicthesis]

http://dx.doi.org/10.1109/CVPR.2004.1315176
http://dx.doi.org/10.1109/CVPR.2004.1315176
http://dx.doi.org/10.1117/12.451074
http://dx.doi.org/10.1117/12.451074
http://dx.doi.org/10.1117/12.451074
http://dx.doi.org/10.1145/1186822.1073259
http://doi.acm.org/10.1145/1186822.1073259
http://dx.doi.org/10.1117/12.2179227
http://dx.doi.org/10.1117/12.2179227
http://dx.doi.org/10.1117/12.2179227
http://dx.doi.org/10.1109/ICCV.1999.791289
http://dx.doi.org/10.1109/ICCV.1999.791289
http://dx.doi.org/10.1109/34.888718

	Abstract
	Acknowledgments
	Contents
	List of Figures
	1 Introduction
	1.1 Problem definition
	1.2 Contributions
	1.3 Thesis outline

	2 Background
	2.1 Digital image sensors
	2.2 High-speed imaging
	2.3 Image sensor arrays

	3 High-level system design
	4 Hardware domain implementation
	4.1 Sensor receiver interface
	4.1.1 Physical signaling
	4.1.2 Timing characteristics
	4.1.3 FPGA implementation

	4.2 Streaming DRAM controller
	4.2.1 Dynamic Random-Access Memory (DRAM)
	4.2.2 Access pattern predictability
	4.2.3 DRAM protocol
	4.2.4 Peak transfer rate
	4.2.5 Protocol state machine
	4.2.6 FPGA implementation
	4.2.7 Command arbitration

	4.3 Stream interleaver
	4.3.1 FPGA implementation

	4.4 Embedded control processor
	4.5 Sensor control interface
	4.5.1 I2C protocol overview
	4.5.2 Camera control interface (CCI)
	4.5.3 FPGA implementation
	4.5.4 Phased start

	4.6 Readout interface
	4.6.1 FPGA implementation

	4.7 Clock domain crossing

	5 Software domain implementation
	5.1 Embedded control
	5.2 Stream decoder
	5.2.1 Deinterleaving
	5.2.2 Bit slip correction
	5.2.3 Protocol layer decoder

	5.3 Image rectification
	5.3.1 Mathematical models
	5.3.2 Camera intrinsics and extrinsics
	5.3.3 Rectification
	5.3.4 Camera calibration

	6 Dataflow analysis
	6.1 Throughput analysis
	6.1.1 Scenario-aware dataflow graph
	6.1.2 Throughput analysis
	6.1.3 Effects on array size

	6.2 Buffer size analysis
	6.2.1 Latency-rate SRDF graph
	6.2.2 Real-world case analysis

	7 Realization and results
	7.1 Sensor array configuration
	7.2 Choice of hardware
	7.3 Synthesis results
	7.4 Measurement setup
	7.5 Experimental results

	8 Conclusion
	8.1 Future work

	Appendix
	A SADF graph listing
	B Stroboscope program listing
	Bibliography

