
Rules Decomposition for
Distributed Context Processing

Martijn Plass

title: Rules Decomposition for Distributed Context Processing
name: Martijn J.A. Plass
student number: 9901523
chair: Architecture and Services of Networked Applications,

University of Twente
location: Twente Institute for Wireless and Mobile Communication, Enschede
graduation committee:

Dr. ir. L. Ferreira Pires (UT, ASNA)
P. Dockhorn Costa MSc (UT, ASNA)
Dr. ir. H. Benz (TI-WMC)

1

Abstract
The modification of context information or distillation of other information from context
information is called context processing. In existing context processing solutions, this is
often performed by the application of rules in a rule engine, running on a centralized
server. When working in a distributed environment, this approach is often inefficient, or
even unfeasible. Performing rules written for a system as a whole in a distributed
environment is often a complex task for the programmers of a system implementation.

This project proposes a method to transform a set of rules written for a system as a
whole into a set of rules that distribute functionality in a networked environment. Using
the network topology, the capabilities of all system parts in the network and a set of
translation rules, it is possible to divide a rule into components distributed over the
network.

This method can be automated, allowing it to be used as a tool in the development and
management of a distributed context processing environment. Potentially, this task can
even be performed in real time in a dynamically changing network.

2

Table of Contents
 1 Introduction...5

 1.1 Motivation..5
 1.2 State-of-the-Art...6
 1.3 Objectives...7
 1.4 Approach..7
 1.5 Structure of the Report..7

 2 Scenarios..8
 2.1 Scenario Elderly Home..8
 2.2 Scenario Task Outsourcing..9
 2.3 Scenario Emergency Situation..11

 3 Rule Distribution..13
 3.1 Rules...13
 3.2 Approach to Rule Distribution...13
 3.3 Rule Decomposition...14
 3.4 Use of Rule Decomposition..16

 4 Formal Definitions...18
 4.1 Rule Language...18
 4.2 System Definition...18
 4.3 Decomposition Process..19
 4.4 Examples..24

 5 Applying Rules to the Scenarios...29
 5.1 Requirements...29
 5.2 User Interactions...30
 5.3 Rules...32
 5.4 Architecture...33
 5.5 Capabilities...33
 5.6 Network Communication...34
 5.7 Rules in the Task Outsourcing Scenario and Emergency scenario....................... 35
 5.8 Middleware Architecture...35

 6 Implementation..36
 6.1 First Prototype...36
 6.2 Second Prototype...38

 7 Final Remarks..45
 7.1 Research Results and Conclusions..45
 7.2 Discussion..46
 7.3 Future Work...47

Appendix A: Elderly Home Technology...50
Appendix B: Decomposition Compiler Input...51
Glossary..55
References...56

3

Preface
This is the report of the project “Rules Decomposition for Distributed Context
Processing” performed for the Twente Institute of Wireless and Mobile Communications.
The project has been performed in the context of a masters graduation assignment for
the University of Twente, Faculty of Electrical Engineering, Mathematics and Computer
Science.

The work reported in this thesis is related to the Freeband AWARENESS project
(http://awareness.freeband.nl) in which the University of Twente and TI-WMC
participate. Freeband is sponsored by the Dutch government under contract BSIK
03025.

Acknowledgements

I would like to use this space to thank some people who have helped me during this
project. First of all I would like to thank the graduation committee, Luís Ferreira Pires,
Hartmut Benz and Patricia Dockhorn Costa, for their infinite patience in reviewing
version after version of the report, and their continuing support during the slower parts
of the project. I would also like to thank my girlfriend Danny Oude Bos for her moral
support and tireless reviewing. And lastly I would like to thank my parents and all the
other people who have pushed me on to finish this report and the other people that have
spent their valuable time reviewing it.

Enschede, July 29th, 2007
Martijn Plass

4

http://awareness.freeband.nl/
http://awareness.freeband.nl/
http://awareness.freeband.nl/

 1 Introduction
This chapter describes the motivation for the project, the objectives, the project
approach and the structure of the report.

 1.1 Motivation
In Information Technology, one branch of development is that of context-aware
computing. Context-aware applications change the way they work depending on their
users' context. Context-aware computing allows the application to react to the
environment so that what it does is more suited to the user. For instance, context-aware
computing allows a cell phone to decide not to sound its ring tone in a cinema while the
movie is being shown. Context is gathered from different sources like sensors, personal
databases and other devices, and subsequently processed and used by an application.

Context processing is the act of manipulating context information before delivering it to
the application. This processing can take several different forms. For instance, each type
of context source tends to have its own data format, which usually differs from the
application's format. This means that if an application wants to use data from a context
source that uses a different format, the data must be translated to the appropriate
format. An example of this could be the translation of a GPS location to a street address,
or the downscaling of the resolution of a video feed. Another form of processing is the
distillation of higher order context information by combining lower order context
information from multiple sources. For example, by combining a work schedule and the
known location of a user, we might be able to conclude whether or not the user is in a
meeting.

A common approach to designing and building context-aware applications is to apply
rule-based systems [13,1,14,5,10,15]. Rules are designed to describe the behaviour that
the system should have, by describing actions and under what conditions those actions
should be performed. The rules are then executed by a rule engine in the application.
The advantage of this approach is that the rules can be designed without in-depth
knowledge of the system and they can be changed after implementation without having
to make changes to the application. There are commercially available rule engine
solutions that can handle very complex rules. Some examples are mentioned in section
1.2.

Systems that are developed using the rule-driven approach usually take a centralized
form: Because everything revolves around the rule engine, the rules run on a centralized
device (Figure 1). Such systems are fairly straightforward to implement and therefore
often used. However, systems are frequently not a single device, but consist of lots of
different devices connected by a network.

Development becomes more complex when the system is a distributed network instead
of a single server. The functionality has to be divided among the devices in the network,
which is usually a task for the programmers. If the network is large and a lot of devices
have to co-operate, this task can become very complicated. That is why large distributed
systems are sometimes handled as a centralized server architecture, where all the
distributed capabilities of the devices in the network are ignored and a single device
does all the processing, even though that may be far from ideal.

If rules that are written for an abstract system can be automatically translated into rules
for a concrete, distributed system, this could potentially allow distributed systems to be
designed without a large increase in complexity. This project looks at a way to define a
method of breaking up a rule into individual components that can be assigned to devices
in a distributed system. If this process can be formally defined, it can then be
automated.

5

Systems that could benefit from this approach include:
● Sensor networks and systems that incorporate sensor networks.
● Single purpose Ad Hoc networks such as emergency services, military

applications, single-type device networks such as printers or alarm systems.
● Distributed computing applications.

In general, any distributed application that runs on a large distributed network could
benefit from our approach.

 1.2 State-of-the-Art
The practice of describing what systems should do in the form of rules has been around
for a long time. Companies designed business rules that describe their policies and
employee tasks. When those businesses became automated, the business rules were
used to design the system. One of the problems was that policies change very often,
which in the case of automation requires reprogramming computers and applications.
To avoid this, the first rule engines were developed. They allowed computers to adhere
to the business rules and could be easily changed to suit a new situation.

Currently, business rules are still used by companies to define policies and it is a
common approach to use a rule engine in a business application or framework [1, 14, 5,
10, 15]. There are not many general purpose rule engines, mostly because they are so
complex. A lot of projects use their own, proprietary rule engine that has functionality
tailored to the needs of the project.

The commercial general purpose rule engines that are in use today, such as Jess [9],
Mandarax [11], Jena [8], Arete [3] and others, all work according to the centralized
server approach. They all allow very complicated and expressive rules, but cannot
handle a distributed environment. Integrating them into a distributed network would be
the job of the programmers implementing the system.

There is a distributed version of Jess, called Djess [7], which allows rule engines running
on different devices to share rules and facts in working memory. There is a central
manager that keeps track of who is in the group of sharing rule engines. In this
approach, the rule engines are distributed, but the rule management and the rules
themselves are still the same as in a monolithic approach. Practically speaking, this is
another way of forcing a distributed system to work like a monolithic system, although it
is a much more elegant way than used in other solutions.

6

Figure 1: A rule engine on a centralized server. Context sources
deliver context information to the Server and Applications receive
context information from the Server.

Sørensen et al. describe a context-aware middleware for Ad Hoc Environments [14]. It
allows rule engines running on autonomous devices to exchange context data using a
publish-subscribe model. Potentially it can be a good basis on which to build a context-
aware distributed application, but it requires the rules for the rule engines on the
devices to be written and entered manually. For this project, we are looking for a way to
generate those rules automatically.

The project “Code Blue” handles a situation very similar to the third scenario that we
define in our project, which is an emergency situation involving medical personnel.
“Code Blue” is currently under development [6]. The main difference with our scenario
is that we focus on the dynamic nature of the network, while in Code Blue the network is
considered to be static; nodes may move around, but devices will not leave or join the
network.

 1.3 Objectives
The objectives pursued in this project have been:

● To formally define a method to translate a rule written for a high level abstract
system into rules for a distributed network.

● To design and implement a framework that supports distributed context
processing by allowing decomposition and distribution of application rules.

The framework consists of a middleware and a prototype application that uses this
middleware. The middleware handles the decomposition and appropriate distribution
and forwarding of application rules.

For the prototype application we looked at the first of the three scenarios defined in this
project, which consists of a detection system for a ward for patients with dementia (see
section 2.1). The prototype is simplified version of such a system.

 1.4 Approach
The approach used to reach the objectives is as follows:

● Three scenarios are defined that are used as a basis in this project. These
scenarios supply the requirements for the middleware.

● Existing solutions for context aware applications in a distributed environment are
examined, with solutions using rule engines in particular.

● A method for rules distribution is designed and described, followed by a formal
definition of this method.

● The rules distribution method is applied to the three scenarios: Requirements
from the scenarios are used to write rules and the effects of rules distribution on
the scenario are defined.

● The prototypes are implemented. There are two prototypes, one used as a proof
of concept and as a preparation for the second, more complex prototype that
illustrates the method for rules distribution.

 1.5 Structure of the Report
The structure of this report reflects the project approach:

● Chapter 2 gives a detailed description of the scenarios used in this project.
● Chapter 3 explains how rules can be used to describe the behaviour of a system

and how those rules can be adapted and distributed to parts of the system.
● Chapter 4 gives the formal definition of rules decomposition.
● Chapter 5 shows how the rules approach can be applied to the scenarios.
● Chapter 6 describes the prototype implementations.
● Chapter 7 evaluates and discusses the results of the project, in particular the

design and the prototypes.
The Glossary on page 55 gives a short explanation of terms used in this report.

7

 2 Scenarios
This chapter discusses the three scenarios that form the basis for the middleware
design, the requirements and the prototypes. They describe a sensor network in a home
for the elderly, a user walking around in an ad-hoc network and an emergency ad-hoc
network being formed at the site of a calamity.

Although these three scenarios describe three very distinct situations, they have a
common aspect: in all three situations devices in a network must work together to
accomplish a task relevant to the scenario. Looking at the scenarios it is possible to
identify overlapping requirements that can lead to generic functionality. These
requirements are discussed in Chapter 5.

 2.1 Scenario Elderly Home
In Enschede there is an organisation called Livio that runs several large homes for the
elderly in the region. These homes are so large that finding people who are lost in the
home can take up a lot of time, especially if they are not fully aware of their
surroundings which may happen to people suffering from dementia. Livio is looking for
new ways to automate security in their wings for demented patients to reduce the
amount of patients getting lost in the building complex and to make it easier to find
them when they do get lost.

This is an example of how the system might work in practice:

Mrs. Smith is a demented resident living in an elderly home. As
she walks along the hallways of the ward for demented residents,
the system registers her as being in an admissible area. At a
certain point in time she attempts to pass the ward's main
entranceway, which has been classified as an inadmissible area.

As she moves closer to the door, the system registers her as
being close to an inadmissible area and starts to track her exact
position and that of any caregivers or visitors closeby. When she
reaches the door, the system checks if there is a caregiver in her
immediate vicinity and when it concludes there is not, the door
lock closes.

Unfortunately, the door malfunctions and Mrs. Smith succeeds in
passing through the entranceway. The system now registers an
alarm situation and alerts all caregivers nearby with a message:
“Mrs. Smith has entered a restricted area: hallway 104b, first
floor, East wing”. As the patient moves through the building, the
alarm is updated to include the new location.

In a home for the elderly with a ward for demented patients, it is unwanted but not
uncommon for a patient to wander from the ward into another part of the home, or to
escape the home and walk off alone outside. Caregivers usually notice that a patient is
missing in a timely fashion, but finding where the patient has gone off to can take a lot
of effort. Therefore, the Livio administration is looking at systems that make it less likely
that patients wander off and can reduce the time that caregivers have to spend on
locating patients. This scenario describes a possible application of such a system that is
being developed in the Freeband AWARENESS project[4].

In the scenario, a system that helps caregivers detect wandering patients is installed in
the home. The Livio administration wants the system to have two features:

8

1. Tracking people in and around the home and using this tracking information to
decide whether a patient has wandered off and to generate an alarm message to
caregivers in the ward.

2. Monitoring of the daycare room. Part of the ward is a daycare room, which is a
large recreation area where patients walk in and out all day. A caregiver must be
present in the daycare room at all times as long as there are patients present. The
administration wants an indicator to be visible somewhere in and around the
daycare room that shows if it is currently unattended or when the last caregiver
leaves the area while patients are still present.

There are five stakeholders of importance for the system (see Figure 2):
1. Patients: elderly people living in the home who have a condition that requires

them to be monitored.
2. Caregivers: trained professionals who work in the ward to provide care to the

patients.
3. Visitors: family and friends of a patient who visit on a regular basis.
4. Administrators: who maintain the system.
5. The organization: the caregiver's employer and responsible for the patients and

the system.

Figure 2: The stakeholders. The patients and visitors only
supply information to the system, the caregivers and
administration also receive information. The Livio
organization is a stakeholder in the system, but has no
direct interaction with it.

The home is divided into sections that are admissible to patients and sections that are
not. When a patient enters an inadmissible section without being guided by a caregiver
or visitor, the caregivers are warned by the system of this event. All areas outside of the
home are considered inadmissible.

The main entrance door to the ward is a special location. This door has an
electromagnetic locking mechanism, which needs to be turned on when a patient
approaches the door from inside without guidance.

 2.2 Scenario Task Outsourcing
A user with a portable device in an ad-hoc network encounters a continually changing
network environment. Making use of this network despite the changing environment is a
challenge, but if done properly it can allow the portable device to outsource
computational tasks to other devices.

9

Here is a example story board of a task being outsourced:

A security guard is doing his rounds in a modern office complex.
He has with him a PDA that allows him to watch a selection of
realtime video streams from security cameras in his vicinity. The
security cameras provide a high resolution, compressed data
stream encoded in a format that the PDA cannot use. To display
the video data, the data stream must first be converted into a
different format. Because the PDA has only limited processing
power available, the display drops video frames and shows a low
resolution image to keep up with the realtime video stream.

While the security guard is doing his rounds, he comes within
range of an access point, with a connection to a static processing
server. The task of converting the video streams is transferred to
the processing server, and the data from the cameras is directed
there as well. At the cost of a slightly longer delay, the PDA can
now display the data received from the processing server,
resulting in a high resolution image at a higher frame rate.

When the guard leaves the range of the access point, the data
stream is cut off, and the PDA resumes its own data processing.

The example is illustrated in Figure 3. When the security guard's PDA comes within
reach of an access point, it has a means of communicating with the processing server.
Once the PDA detects that the processing server has spare processing power, it
transfers its context processing tasks to the server. The video streams from the cameras
are directed through the access point and to the server, where they are converted to the
PDA's format. The resulting data is sent back through the access point to the PDA,
where it is displayed on the screen.

So, in more general terms, the user is walking in an area covered by an ad-hoc network.
One of the user's portable devices is performing tasks, but for whatever reason is not
able to perform them optimally. The device inquires on the ad-hoc network about other
devices that can help it perform one or more of those tasks, effectively 'outsourcing' the
task (illustrated in Figure 4). If the ad-hoc network has access to stable network
infrastructure such as the Internet it may try to contact known services for outsourcing.
For the purpose of this scenario, we look at context processing as a task that can be
outsourced.

10

Figure 3: Task Outsourcing example

Figure 4: Task outsourcing

An issue that arises in task outsourcing is trust. Can the application trust that the server
converts data to the proper format without changing the contents? Can the server trust
that the conversion code is safe for use? To allow this sort of distribution to happen, a
certain level of trust must be ensured.

 2.3 Scenario Emergency Situation
On the site of an emergency situation an ad-hoc network forms amongst the available
devices installed in vehicles and carried by personnel. Context processing tasks that are
performed by devices with limited resources, can move to a more powerful device as
they join the network. This allows more and more costly processing tasks to be
performed as the network grows, which results in more and more detailed information.
This information can feed medical applications that assist medical personnel in giving
aid to patients on the scene.

In reality, the scenario might happen like this:

On a busy highway, a large traffic accident has happened with
dozens of cars involved. A large amount of ambulances, police
cars and fire brigade trucks speed to the scene of the accident. In
such a calamity, the first doctors to arrive start to triage patients
instead of treating them. They place basic sensor nodes on the
casualties that monitor functions like ECG, blood pressure, et
cetera. The doctors carry PDAs that can each monitor the output
of a few sensors around them. As they move from one triage
patient to another, sensor data from the last patient cannot be
logged and is lost.

Fortunately, when ambulances arrive at the scene, the on-board
computers form an ad-hoc network with the PDAs and sensor
nodes so that the logging data can be passed on to the more
powerful computers. There all data can be stored and analyzed.

When enough doctors and paramedics arrive to start treating
patients, they can call up the known data about any patient that
has been triaged.

The sensor nodes are cheap disposable units that are used only once. When they are
applied to a person, they join the ad-hoc network and start sending out their data. The
triage doctors use their PDAs to look at a patient's vital signs and use those signs in
their evaluation of how serious the injuries are. The PDAs can store the data of some
sensor nodes, but if there is a large number of patients to be triaged, they will run out of
space, which means that data is lost.

11

When ambulances arrive at the scene, their on-board computers join the network. Those
computers have more processing power and storage capacity than the PDAs. As soon as
they join the network, they evaluate the current situation of the network, spot which
sensor nodes are not being logged and start logging the data from a subset of them.
Data from sensor nodes is grouped per person they are attached to, so that when the
doctors start treating people they have an overview of the stored sensor data to
evaluate. It is also possible that easy-to-interpret signals like ECG are automatically
monitored, and if the signal indicates a problem such as a heart attack, the sensor
immediately informs the doctors carrying a PDA.

When a new resource is introduced in the network, decisions should be made as to
which tasks should be moved to this resource. When a task is being moved, it is vital
that the stream of processed data is not interrupted or corrupted. PDAs or other mobile
devices should be able to evaluate their performance, and come to the conclusion that
tasks should be moved when the device will no longer be able to perform them (e.g.
when the device moves away from the network or when it is running out of power).

12

 3 Rule Distribution
The main issue of this project is how rules can be used to aid context processing in a
distributed environment. In this chapter we discuss a method for doing this.

In section 3.1 we explain the concept of rules. Section 3.2 explains our approach to rule
distribution. Section 3.3 explains why the decomposition process can be necessary and
how it works. Section 3.4 shows how the decomposition process can be used.

 3.1 Rules
In general, rules are used in information technology to describe a cause and effect, such
as for example: “When enough heat is applied to ice, the ice melts”. The cause is a set of
events and conditions that describe what state must hold so that the effect can happen.

In our project, we assume that rules are described by an event, a condition and an
action. Whenever an event defined in a rule occurs and the condition of the rule is true,
the corresponding action is performed. Events are generated by a system and can
represent anything that is detected. The condition checks the state of the system.
Consider the following example rule for an intelligent lightswitch:

If no-one is in the room for 5 minutes and the light is on, turn off the light.

In this rule, the event is “no-one is in the room for 5 minutes”, which would occur 5
minutes after the last person leaves the room. When this happens, the condition “Is the
light on?” is checked. If this condition is true, the action performed is “turn off the
light”.

An application rule is a rule that describes a combination of cause and effect that should
occur in a system. There can be many applications supplying rules to the system and the
set of all application rules together describe the system's behaviour.

Rules can be used in two ways: during development of a system to define what
functionality the system should have so that it can be implemented, or at runtime to
introduce or change behaviour in an existing system.

 3.2 Approach to Rule Distribution
At the highest level of abstraction, a system is a single entity that interacts with its
surroundings. The system's behaviour (or desired behaviour) can be described by a
collection of rules that are composed of a set of events, conditions and corresponding
actions. These rules are global and monolithic. They are global in the sense that they
describe the system behaviour on the highest level and abstracting from the underlying
network, and monolithic in the sense that each rule describes a distinct and unique
aspect of behaviour.

At a lower abstraction level closer to implementation, systems often consist of a network
of devices that have different capabilities (as illustrated in Figure 5). Presenting the
rules defined for the abstract system to all the parts of the network does not mean that
the system can perform them. They may not have all the functionality required to
perform the rules, even though the system as a whole might be able to.

13

For instance, a rule involving a sensor network may describe the storage of large
amounts of sensor data, but a sensor node in the network has only limited capabilities
and cannot store the amount of data required. However, there is a database in the
network that can. So in order to allow the system to perform the behaviour defined in
the rule, several devices in the network have to work together. What this means for the
global rules is that they need to be broken down and translated into sub-rules for the
different parts of the system before they can be assigned to those parts. This breaking
down and translation of rules is performed in such a way that the resulting behaviour of
the new set of rules when observed from the outside is the same as the original set of
rules. In other words, if both systems are interpreted as a black box, they are
indistinguishable. Under these conditions, we call the process of creating the new rule
set decomposition.

 3.3 Rule Decomposition
As we described in section 3.2, it may be possible that rules written for an abstract
system are not executable at a lower abstraction level in a distributed system. Rules
must be decomposed and distributed over the system parts in order to be executed.

Definition: Rule decomposition is the act of transforming a set of high level
rules for an abstract system to a new set of lower level rules for
a system closer to implementation, so that the lower level
ruleset defines the same observable behaviour as the high level
rule set.

14

Figure 5: Abstraction Levels

To illustrate why decomposition may be necessary, we use the example of a (fictitious)
shipping company:

The shipping company “Jansen” located in the Enschede harbour
has a large storage facility and ships cargo by truck from the
harbour to anywhere in Europe. The storage facility has
autonomous transport robots and a large automated
administration system. The network of computers, robots,
humans and cargo has become so large that making changes to
how the system works is now a very complex and time intensive
job. The IT department has recently decided to organize the
system so that application rules can be used to describe how the
system works.

The company has the following rule for their automated transport system:

When a customer declares that a crate is fragile, then attach a label to it and
take extra care in packaging and moving the crate.

The rule above defines behaviour that the system should adhere to. However, in reality
the system consists of a large network of devices with varying functionality; there are
powerful computers like web servers that handle orders and servers that handle
shipping information, but also autonomous robots that lift crates, truck drivers that
require specific route instructions and even simple devices like the coffee machines or
fire alarms. None of the parts of this system have all the functionality required to
perform this rule, which means that if the shipping company wants the system to
execute this behaviour, then the rule has to be decomposed into a more suitable form.

One of the problems to be tackled in this decomposition is that not every system part
may understand the concepts used in the rule. A robot picking up crates and putting
them on lorries needs to know what 'extra care' means in its context. For the robot it
may mean using a different set of grapplers, but for a truck driver it may mean driving
only across paved roads. If the system is to use this rule, then the concepts in the rule
must be translated to something that the different system parts can understand.
Furthermore, the rule as a whole may include things that are irrelevant to parts of the
system. For example, the labelling machine that has only one way of attaching labels to
a crate does not need to know about 'extra care'. The crate-moving robot may need to
know that it should read labels to see which crates require extra care, but it does not
need to know anything about how to attach labels to crates and the cafeteria coffee
machine has no need to know anything about this rule at all.

If we want to use a rule like the one above in a system, the rule must be decomposed
into separate sub-rules and translated to the specific concepts relevant to each
component of the system.

Rule decomposition can mean that the set of application rules becomes more complex.
Suppose there is a second rule in the shipping company:

If a crate becomes damaged, inform the customer.

Inspecting the system, we could conclude that the crate-moving robot has a sensor that
can detect damage and that the central administration system can look up who is the
owner of a certain crate and send communication messages to people. If we can then
find a means for the robot to contact the central administration system, it is possible to
decompose the rule into a sub-rule for the crate-moving robot and a sub-rule for the
administration system. Both sub-rules can be executed by the system parts and together
perform the behaviour that was defined by the original rule, as it can be seen in Figure
6.

15

The examples above illustrate that in order to find the decomposition of a rule we need
to look at what capabilities the rule requires, which system parts have these capabilities
to offer, and what communication might be required to combine these capabilities into
the desired functional behaviour.

 3.4 Use of Rule Decomposition
Like we said before in section 3.1, there are two ways in which rules can be used: during
development and at runtime. Rule decomposition can also be used in these two ways.

When used during development, a general description of what the parts will be able to
do is used to decompose the rule (Figure 7). The result consists of several possible
decompositions. Each of these decompositions then gives a possible distribution of tasks
that, when implemented by the system parts, will execute the behaviour defined by the
rule. Which of these decompositions is actually used can be narrowed down further by
applying extra requirements to them. The final selection is then made by the system
designers or programmers. If there are no possible decompositions, this means the
given definition of the system does not have enough functionality to perform the rule.

When used at runtime, the already existing system parts have precisely defined
capabilities and those are used to find a decomposition of the rule (Figure 8). The
resulting decompositions give possible ways in which the rule can be executed by the
existing system parts, or when there are no possible decompositions this means that the
system cannot execute the rule in its current form.

16

Figure 7: The decomposition process during development

Figure 6: Cooperation between system parts

Because all the capabilities of the system parts are already known, it is possible to fully
automate the decomposition and distribution process, potentially allowing it to be
performed in real-time, as long as the decomposition process does not take too much
processing power.

In Figure 9 we identify the input that is needed to perform the decomposition process:

The network topology is required in order to determine what communication is possible
between the network parts. The topology can be automatically constructed, or in the
case of development, supplied manually.

We need to know what the parts of the system can do, which sensors it has, which
functions it can perform, et cetera. These capabilities are used in the decomposed rules.
They can be supplied by the programmer, or each system part may have a way of
reporting its capabilities, which would allow this to happen automatically. And finally,
we need a way of translating the abstract concepts used in the abstract rules to
concepts known to the concrete system parts. Some of these translations are common to
most systems, and others will be specific to one system. The common translations can be
supplied by a library and the specific translations must be supplied by the programmer.

17

Figure 8: Decomposition at runtime

Figure 9: Necessary input for the decomposition process

 4 Formal Definitions
This chapter provides the formal definitions for the decomposition process. In section
4.1 we introduce a formal definition of the rule language used in this project. In section
4.2 we give the formal definition of a system and in section 4.3 we formally define the
decomposition process.

 4.1 Rule Language
In this report we use a rule language to express rules. It uses the Event-Condition-Action
format:

Rule: Event  Condition → Action

In this notation, “” separates the Event and Condition statements. If the event
expression and the condition expression both evaluate to true, then the actions are
performed.

It is not required that a rule has a condition, i.e. it may be possible that the event itself is
enough to trigger an action. In such a case, the condition expression can be a simple
true statement. Because adding 'true' to each rule without a condition is not necessary
to understand the rule, it can be left out, which simplifies the rule to:

Rule: Event → Action

The rule for damaged cargo from the shipping company example in section 3.3 can be
represented in the rule language as:

R1: DamagedCargoDetected(Crate c) → InformOwner(c)

In this rule, c is a variable generated by the event. Variables are explained later in
section 4.3.1.

To allow the decomposition process to be automated, it is necessary to formally define it.
In addition to the format defined above, we also introduce a formal notation to represent
rules.

 4.2 System Definition
Before decomposition, we consider an abstract high-level system with its behaviour
defined as a set of abstract, high-level rules. In reality, when the system is implemented,
it consists of a set of system parts connected by a network, which was illustrated by
Figure 5. The implemented system is on a lower abstraction level than the abstract
system.

We give a formal definition for a system in order to use this definition in the description
of the rule decomposition process.

Definition: Any system is a directed graph consistin of a set of system
parts L and a set of edges G.

System=L ,G 

18

The definitions of these terms are given below:

Definition: The set of system parts L contains the individual system parts
that make up the nodes in the communication graph of the
system.

L⊆system parts

These system parts can be devices, but they can also be networks, groups of devices or
types of devices. If a system part is not a device but a network, group or type, the rule
set that is assigned to it by the decomposition process can be decomposed further by
another iteration of the decomposition process. In the next iteration, this system part
becomes the abstract system and the decomposed rule assigned to this system part
becomes the abstract rule.

Definition: G is the set of edges. G contains an edge between two nodes if
and only if there is a means of direct communication between
the corresponding system parts.

G⊆L×L

There is a means of direct communication between two nodes if they can communicate
with each other directly through the lower level communication protocol. For example, if
two computers are on the same IP network, they have a means of direct communication
through the TCP/IP protocol.

Edges can have constraints that include the communication properties and direction.
The properties can define the protocol, what sort of data can be sent, how expensive it is
to use the communication link, et cetera.

The abstract system in Figure 5 would be defined as L = {P} and G = {}. The
implemented system would be defined as L = {P1, P2, P3, P4, P5} and G = {(P1, P2), (P1,
P3), (P2, P3), (P3, P4), (P4, P5)}.

 4.3 Decomposition Process
We now formally define the decomposition process.

Definition: An abstract rule set R is defined as a set of rules for an
abstract system. Each rule in the set consists of terms E, C and
A where E is a logical expression containing events, C is a
logical expression containing conditions and A a list of actions.

R={Rn: E C  A}

Consider a situation in which the rule set that holds for the abstract system is not valid
for the implemented system because no single system part can execute all the abstract
rules. The decomposition process derives a new set of valid rules for each part of the
system from the abstract rule set. In Figure 10 we can see how the rule decomposition
relates to the implementation of the abstract system. The decomposition process results
in a rule Rn for each part Pn in the implemented system.

19

To perform the decomposition process, some more attributes have to be defined for the
implemented system: We need to know what capabilities parts in the system have or will
have, and how to translate concepts in the rule from concepts for the abstract system to
concepts for the implemented system. These attributes are called the properties of the
system.

 4.3.1 System Capabilities
System parts have functions they can perform that are defined as a list of capabilities.
In an existing system, these capabilities will be very precisely defined so that a resulting
decomposition can be directly assigned to the system parts, but in a system in
developmen, they will be more general and abstract; the resulting decomposition will
then tell the developer which system part should implement what functionality.

Definition: S is a mapping of capabilities to system parts that have those
capabilities. Capabilities are defined as events, conditions,
actions and functions.

capabilities=events∪conditions∪actions∪ functions
S⊆system parts×P capabilities

It is possible that multiple system parts have the same capability. Capabilities can be
four diffent things:

1) Events represent things that have happened in the system. An event may contain
information about the occurance, or it may just be a token. When we say that a
system part has the capability for an event, we mean that it has the capability to
detect such an event.

2) Conditions are generally tests of system states, or system states in the context
of event information. If a system part has a condition as a capability, it means
that it can check that condition.

3) Actions are generally system procedures that execute a task.
4) Functions are operations or calculations that can be required as part of event or

condition expressions, ranging from simple logical operations to complex tasks
and math calculations.

20

Figure 10: Abstraction Levels for Systems and Rules

Data that accompanies an event can be accessed through a variable. The variable
originates from the event and can be used in functions, conditions and actions.

The most commonly used functions are the logical operators and, or and not. They can
be used to combine events and/or conditions.

Besides logic-calculation functions, most system parts also have the capability to send
and receive messages to and from other system parts that they are connected to. Which
parts they have contact with is defined in the system definition. This capability is also
assumed to be present on all system parts unless specifically stated otherwise.

 4.3.2 Concept Translation
The abstract rules are often written without knowledge of the details of the implemented
system. Such rules use terms to describe abstract concepts that the implemented system
may not necessarily undertand. In order to decompose these rules we have to bring
these concepts to a lower level of abstraction. To do this, we need a function that
translates abstract concepts to concepts that the lower level system can handle.

Definition: T is a function that translates a set of rules to a new set of rule
sets.

T old rule set =set of new rule sets

In this definition, the rule sets are subsets of the set of all possible rules.

In the example of the lightswitch in section 3.1 the action “turn off the light” could be an
abstract concept. If the actual room contains three lamps, T will translate this concept
from “turn off the light” to “turn off lamp 1, turn off lamp 2 and turn off lamp 3”.

When T is implemented, the function is represented a set of tuples (rule, rule) where the
first rule is any of the rules from the incoming rule set and the second is rule is the new
rule that should replace it. T results in new possible rule set translations, in addition to
the original. So when the set of tuples in T is empty, then T(r) = {r}. If T contains a
single translation from r to r' then T(r) = {r, r'}.

T⊆rules×rules 

In this definition, rules is the set of all possible rules.

For example: T could define a mapping like the following example of a doorbell in a
store:

customer entering store sound bell ⇒ doormat detects person play bell sound 

We use ⇒ to distinguish between the old rule and the new rule. However, such a direct
mapping as this will not be encountered very often. Often we need a partial mapping
that only changes part of the rule, like this one for the intelligent light switch example:

∀ a∈events ,∀ b∈conditions :
a bTurn off the light ⇒ a bTurn off lamp1∧Turn off lamp 2∧Turn off lamp3

In this case, events is the set of all possible events and conditions is the set of all
possible conditions. In a similar way we can write a partial mapping for actions and
functions.

As a short-hand, we will write the above rule mapping like this:

∗ ∗Turnoff the light ⇒ ∗ ∗Turnoff lamp1∧Turnoff lamp2∧Turnoff lamp3

21

When applying a translation to a rule, the result may be more than one rule. In that
case, the mapping results in a set of rules like this:

cust.entering sound bell ⇒{doormat detects person play bell sound
doormat detects person∧store is empty send notif. tomanager}

The transformation rule to translate one concept to another can become very
complex,because all possible uses of the concept have to be addressed. As a shorthand
for such a large translation, we describe in textform how one concept can be translated
to another, like in the following example:

translate the concept Patient to the concept Tagwith
anadditional condition :hasRole Tag ,PatientRole

 4.3.3 The Decomposition Algorithm
Now that we have the definitions needed to decompose a rule set for an abstract system
to a rule set for a lower level system, we will define the algorithm. We have the
definition of the lower level system (L,G), the definition of the rule set R and the
properties of the system (S,T). The abstract rule set R is then decomposed to a valid rule
set for the implemented system.

Definition: Given a rule set R with n rules and a low level system (L,G)
with properties (S,T), the decomposition process is defined as a
function that decomposes R into Rd.

Rd=Decompose R , L ,G ,S ,T 

Decompose R , L ,G ,S ,T ={DL ,G , S ,T R0 , D L ,G ,S ,T  R1 ,... ,
D , L ,G ,S ,T Rn−1 , D , L ,G , S ,T Rn}

In this definition, T(r) is the application of the translation mappings to r. The function D
decomposes a single rule.

When implemented, D(L,G,S,T(r)) works like this:

(1) For each resulting rule set from T(r), find a match for the events, functions and
actions in the rules in the capability list S. When an event, condition, function or
action can be executed by more than one system part, this results in multiple
matchings. Each of these matchings results in a new possible decomposition rule
set.

(2) Construct a directed graph for each rule set from (1) (we explain below how a
directed graph for a rule can be constructed).

(3) For each graph, determine the required communication and find a path in (L,G)
between each pair of system parts in the required communications.

(4) For each communication path found in (3), apply sending action and receiving
event substitution in the results of (1) corresponding to the graph from (2), so
that there is a rule for each node in the path.

A pseudo-code representation of the algorithm can be found in section 6.2.3.

Step (1) can result in more than one possible decomposition. It is not required that each
of these decompositions go through the entire algorithm. If a translation from T(r) can
not be matched in (1), the decomposition is invalid. If a matching from (1) has no
possible communication path in (3), it is also invalid. Any invalid decomposition is
discarded. If there are no valid decompositions for a rule, it can not be decomposed for
this system.

22

A rule has a basic order in which it must be executed; the events and the conditions
must be true before the actions are performed. But beyond that, no execution order is
defined. To support the decomposition process, we have defined a specific order in
which a rule is executed, so that the communication choices can be made: when the
events in a rule occur, first the event expression is evaluated. If this expression holds
true, the condition expression is then evaluated. If this is also true, the actions are
executed in the order that they have been defined.

The directed graph mentioned in step (2) illustrates the flow of execution of a rule (see
example in Figure 11). It is used to determine what communication is required and how
to break up a rule when it must be partially executed on different system parts.

The graph is formed by starting with a tree graph for the event expression. The events
are the end nodes and the functions that combine them form the branches. Another tree
graph is formed for the condition expression and one for the actions. The tree graphs
are then connected; the top of the event graph connects to each end node of the
condition graph and the top of the condition graph to the bottom of the action graph.

As an example, consider the following rule:

E1∧E2C1∨C2 A1 , A2

The directed graph in Figure 11 shows the flow of execution for the rule. If we then
assign system parts to perform parts of the rule, we can immediately determine what
communication is required.

Figure 11: Directed graph.

If R is the rule set before translation and Rd the rule set after, then R and Rd must have
equivalent observable behaviour. When looking at the system with the rules as a black
box, the observed behaviour should be the same before and after the translation.

The decomposition algorithm changes the contents of the rules in two positions: during
the translation phase and during the substitution of communication events and actions.
This demand for equivalency is put on both the translation table and the communication
substitution. Each translation step in the translation table must yield the same
behaviour. Because the translation table is defined by system designers, they have to
make sure this demand is met. If a translation step in the table results in non-equivalent
behaviour, then the decompositions made using that table have incorrect behaviour.

The communication substitutions can only result in equivalent behaviour if the
communication is reliable. If the communication is unreliable, the execution of a rule
can halt halfway through because a message concerning an event is not passed to
another system part. In this report, we consider communication to be reliable, for the
sake of simplicity. What the consequences of unreliable communication may be, is
discussed in chapter 7.

23

 4.4 Examples
In this section we give three examples: An example showing a simple transformation of a
rule, an example that shows alternative decompositions of a rule and an applied example
from the elderly home scenario.

 4.4.1 Simple Transformation
This example describes a simple system with two parts x and y, that can communicate
directly. Part x can detect event E and part y can perform action A. For this system, we
have a rule that describes that whenever E occurs, A should be performed. Through the
application of some simple steps, the example explains how the rule can be decomposed
so that there is a rule for x and a rule for y which only contain expressions that can be
performed locally on x and y respectively.

Figure 12: example system

For this simple example no translation is necessary, which means that T is empty. If we
represent the example above in the formal definitions, it looks like this:

The system definition:
L={x , y}
G={x , y }

The system properties definition:

S={ x ,{E } , y ,{A}}
T=∅

The rule set defininition:
R={R0}
R0 : E A (1)

Now we perform the decomposition algorithm on R so that it can be executed by the
system.

At first we should apply the translation steps in T to R, but because T is empty, we can
skip this phase and continue. Next we try to match the conditions and actions used in R
to S. This is possible, because x has capability E and y has capability A. We then rewrite
(1) to include this information:

R0
' : E x  Ay (2)

Now that we know that x and y are involved in this rule, we look at G to see if x and y
can communicate. That is possible because there is a direct path from x to y. Because
the path contains two different system parts, the result of rewriting (2) becomes a rule
set consisting of two rules: one for system part x and one for system part y:

R' '={R x ,R y} (3)

24

If we consider (2) in the context of x, we conclude that the event can be handled locally,
but the action can not. According to the path we found in G communication with y is
possible, so for Rx we rewrite the action Ay as an action S that sends communication to
part y with the event as a parameter:

Rx : E  S y E  (4)

The action Sy(E) sends a message to y concerning E.

Similarly, if we consider y we conclude that the action A can be performed locally, but
the event can not. According to the path found in G we can expect incoming
communication from x, so for Ry we replace Ex with an event R that receives
communication from x with the parameter E:

R y : Rx E A (5)

The event Rx(E) occurs when a message is received from x concerning E.

Rules (4) and (5) can be performed locally on x and y, respectively. Rule sets R and R''
describe the same observable behaviour, but where R describes the behaviour for the
whole system, R'' describes the behaviour for each system part. R'' is the decomposition
of R for this system.

 4.4.2 Transformation with Alternative
Decompositions

Consider a system with four parts connected as shown in Figure 13:
L={x , y , z , q}
G={x , z  ,  y , z  , z , q}

With the properties:

S={ x ,{E1} , y , {E2} , z ,{'∧' } , q ,{A , '∧' }}
T=∅

We want to decompose the rule set R:

R={R0}
R0 : E1∧E2 A

This example shows logic in the event clause in the form of the and ('Λ') function. From
S we conclude that both system parts z and q can perform this function. T is empty, so
the translation step does not change the rule set.

Starting the decomposition process, we can match R to S:

I :R0
' : E1x ∧z E 2 yAq

II : R0
' : E1 x∧q E 2 y Aq

25

Figure 13: Second example system

Because the and function can be executed by both z and q, two decompositions are
possible. We first look at decomposition I:

R0
' : E1x∧z E 2 y Aq

Because this rule involves several system parts that must communicate, the explanation
of how the decomposition works requires some more intermediate steps than the last
example.

First we construct a directed graph that shows the flow of execution (Figure 14).

We construct this graph to see if and what communication is required. It shows that in
order to execute Aq in the rule, the and function must be evaluated first, which depends
on the events E1 and E2. From this we can conclude that communication is required from
x to z, from y to z, and from z to q.

We can then use the same substitution with sending actions and receiving events as in
the first example to arrive at the following decomposition:

Decomposition I :
R x : E1 S zE1
R y : E2S zE2
R z: Rx E1∧Ry E2S qE1∧E 2
Rq : R zE1∧E2 A

Similarly, we can construct a tree for the second decomposition (omitted) and determine
that communication is required from x to q and from y to q. This leads to the following
end result:

Decomposition II :
Rx : E1 S zE1
R y : E2 S zE 2
R z : Rx E1 Sq E1 for pathx , z , q

Ry E2 S qE2 for path y , z , q

Rq: R zE1∧R zE2 A

We can observe from the amount of sending actions in both I and II that the first
decomposition requires less use of the network, but we can also see that the second
decomposition requires less calculation by the connecting system part z. Which of these
decompositions would be used depends on what additional requirements have been
defined for the decomposition of R.

26

Figure 14: Directed Graph

Multiple decompositions of a system can be possible because of similar capabilities
found in S or because of multiple possible translation steps in T. In the above example,
both z and q can execute the and function, so two decompositions are possible. If we
would specify that all nodes can perform the and function, that would lead to four
possible decompositions.

 4.4.3 Elderly Home Example
This example involves a simplified system for the elderly-home scenario. We assume the
availability of sensors that can detect people, a server application that can retrieve
information from a database and contact people, a database that can forward messages
and a gateway that has a connection to the sensor network and can write data into the
database. For the example we look at a rule that describes the following behaviour:

When a patient is detected in a restricted zone, close the door in that zone.

If we represent this rule in our rule language, it looks like:

Detected Patient  LocatedInPatient , RestrictedZoneCloseDoor RestrictedZone

This top-level rule describes the system's behaviour.
The system is defined as follows (Figure 15):

L = { server application, restricted sensor nodes, allowed sensor nodes, gateway,
database
}

S = { (server application, {HasRole, logic functions}),
(restricted sensor nodes, {DetectTagRestricted, CloseDoor}),
(allowed sensor nodes, {DetectTagAllowed})
}

Figure 15: Graph G. The database forms a necessary router
between the server application and the gateway, which is
imposed as a restriction by the technology used (see Appendix A).

T = {
Translate “Patient” to “tag” with an extra condition “hasRole(tag,PatientRole)”,
Detected tag  LocatedIntag , RestrictedZone∗ ⇒ DetectTagRestricted tag ∗  ,

DetectTagRestricted tag ∗ CloseDoor RestrictedZone⇒
DetectTagRestricted tag ∗ CloseDoor 

}

We can conclude from the definitions above that in this system, determining if a patient
is in a certain zone type is equivalent to them being detected by a sensor in that zone.
The sensor nodes that can detect people have no knowledge of the roles of people, which

27

means that the rule cannot be executed by a single device and decomposition is
required.

Given the definitions above, we now apply the decomposition process on the rule. First
we use the translation table T. When the translations steps are applied, the following
rule is generated:

DetectTagRestricted tag t hasRole t ,PatientRole CloseDoor 

Next we construct a tree diagram from this rule, as shown in Figure 16:

Because hasRole is a function that uses a variable t that originates from event
DetectTagRestricted, communication is required to allow the function to use t. In other
words, the result of DetectTagRestricted has to be sent to the hasRole function. If the
hasRole function then evaluates to true, the action closeDoor can be performed. As we
can see from Figure 16, this involves communication from restricted sensors to the
server application and from the server application to restricted sensors.

When the communication from the tree diagram is expressed in sending and receiving
actions, the following rule set is generated:

Restricted sensors:
DetectTagRestricted tag t  send DetectTagRestricted t  to gateway 
ReceiveCloseDoor  from gatewayCloseDoor 

Gateway:

Receive DetectTagRestricted tag t  from restricted sensor 
send DetectTagRestricted t  to database 
Receive CloseDoor  from database send Detected tag to restricted sensor

Database:

Receive DetectTagRestricted tag t  from gateway
send DetectTagRestricted t  to server application 

Receive CloseDoor  from server application send Detected tag  to gateway 
Server application:

Receive DetectTagRestricted tag t  from database hasRole t , Patient 
send CloseDoor to database 

The rules assigned to the restricted sensors are assigned to the whole group of sensors.
In this example, the decomposition ends here. In an actual implementation, further
decomposition on these rules may be required for the group of sensor nodes to arrive at
rules that can run on each individual sensor.

The resulting decomposition is not very efficient, since every time a tag is detected by a
sensor in a restricted zone, it must inform the server, because only the sensor can check
if the detected person is a patient. If the sensors had the capability to perform (part of)
the hasRole function, far less messages would have to be sent over the network.

28

Figure 16: Tree diagram

 5 Applying Rules to the Scenarios
Using the definitions from the previous chapters, it is possible to apply the rules
approach to the problems defined in the scenarios. First we discuss how rules and rule
decomposition affects the elderly home scenario, which is the basis for the prototypes.
We consider requirements, the user interactions and the rules that we can derive from
the scenario. Then we will define an architecture for the system. Following that we will
discuss how rules affects the other two scenarios. At the end of this chapter we discuss
the architecture of the middleware that supports rule decomposition.

The required system posed in the elderly-home scenario (section 2.1) can be developed
with a rules-based approach. To do this, we need to define the architecture for the
system and the abstract rules that define the system behaviour, and then decompose
those rules. The resulting rule set can then be implemented to arrive at the working
system. In this section we will discuss the requirements, user interactions, rules and
architecture. The decomposition is discussed with the implementation in chapter 6.

 5.1 Requirements
First, we consider the requirements that we can derive from the Elderly Home scenario.
The abstract rules are directly based on these requirements. The following requirements
can be identified in the scenario:

Tracking of location
The scenario defines the following system requirement:

“To track people in and around the home, to use this tracking information to
decide whether a patient has wandered off and to generate an alarm message to
caregivers in the ward.”

The main function of the system will be to determine if patients are in areas they are
allowed to be in and to track their movement if necessary. If a patient enters an area
that they are not allowed to enter without a caregiver or visitor as a guide, the system
needs to check if there is a guide and inform the caregivers with a message if there is
not. The administrators divide the building into three different types of zones, that are
used by the system. These areas consist of admissable zones (green), non-admissable
zones (red) and admissable zones close to non-admissable zones (yellow).

Daycare room

“Part of the ward is a daycare room, which is a large recreation area where
patients walk in and out all day. A caregiver must be present in the daycare room
at all times as long as there are patients present. The administration wants an
indicator to be visible somewhere in and around the daycare room that shows if it
is unattended or when the last caregiver leaves the area while patients are still
present.”

This requirement is already literally defined in the scenario. The indicator is a set of
lights placed inside and outside of the daycare room, that can be turned on and off using
an electronic switch.

Privacy

“However, since the patients are entitled to their privacy it is undesirable for the
system to constantly track the location of everyone in the ward. To support this,
location information should not be forwarded by the sensor network if a patient is
in a green zone.”

29

The system should ensure the privacy of the patients whenever possible. Interceptable
communication that contains privacy sensitive information should be kept to a minimum.
Location information of patients is considered privacy sensitive information.

Smart door

“The main entrance door to the ward is a special location. This door has an
electromagnetic locking mechanism, which needs to be turned on when a patient
approaches the door from inside without guidance.“

The system needs to provide the door with instructions to open or close the lock
depending on the proximity of patients and caregivers.

The following requirements are not explicitly stated in the scenario, but can be derived
implicitly:

Privacy exceptions
It should be possible to disable the privacy protection, in an emergency situation (e.g. a
fire) when it is highly desirable that the location of all patients can be quickly
determined. It is also possible that a patient is carrying some sort of healthsensor to
monitor a medical condition that can detect an alarm situation, if such a situation
happens then location data of this patient should be available immediately. Only certain
people should be allowed to declare an emergency situation like this, and only certain
people should have access to the location data.

Technology
To make this system work, a technology is required that is able to track people in the
home with a minimum amount of invasiveness. Practice has shown that a technology
with too much invasiveness such as a bracelet or an ankle strap is not accepted by the
patients and they will then spend a lot of time trying to remove such technology.

One possible technology, which is the technology used in the prototypes, is that of
sensor networks and is described in Appendix A.

Status messages
Depending on the technology used, indication messages need to be sent to
administrators when a sensor or tag that is running on batteries expects to be
unavailable soon, because e.g. its power is low.

 5.2 User Interactions
This section discusses interactions that users can have with the system. We use those to
identify some technology-related requirements for the system.

Figure 17: Patient interactions.

Patient interactions with the system (Figure 17):
• The system registers that a patient walks around carrying a tag.

The system should be able to connect one or more tag signatures with a patient. The
relation may not always be one-to-one, a patient can have several tags and may not be
carrying all of them with him. The tags that are not with the patient should not be
included in the location approximation.

30

• The system registers that a patient enters a green area.
• The system registers that a patient enters a yellow area.
• The system registers that a patient enters a red area.

The system should be able to determine in what type of area a patient is moving, and
depending on the situation, track the location or take certain actions.

Caregiver interactions with the system (Figure 18):
• The system registers that a caregiver walks around carrying a tag and a mobile

receiving device.
• A caregiver receives a warning message that a patient has entered a red area

unsupervised.
• A caregiver receives a warning message that there is no caregiver in the daycare

room.
The system should be able to track the location of a caregiver and send messages to
them.

Visitor interactions with the system (Figure 19):
• The system registers that a visitor walks around carrying a tag.

A patient guided by a registered visitor should not trip an alarm when entering a red
zone. This requires the system to keep track of the location of visitors.

Administrator interactions with the system (Figure 20):
• An administrator changes the list of patients.
• An administrator changes the placement or classification of an area (green,

yellow or red).
New patients move into the ward as older patients pass away or move to other wards.
The system should allow changing the list of patients and propagate this change to the
whole system. The system should also allow changing the placement or the classification
of areas and propagate this change to all the nodes in the network.

31

Figure 18: Caregiver interactions.

Figure 19: Visitor interactions.

Figure 20: Administrator interactions.

Door lock interactions with the system (Figure 21):
• The system tells the door lock to close.
• The system tells the door lock to open.

The door lock on the ward entrance door can be triggered electronically, the system
needs to tell it when to open or close.

Indicator light interactions with the system (Figure 22):
• The system tells the indicator lights to turn on.
• The system tells the indicator lights to turn off.

The indicator light in and around the daycare area can be triggered electronically, the
system needs to tell the lights to turn on or off.

 5.3 Rules
The requirements can be used to derive a set of rules that define the system's required
functionality.

The following rules have been defined regarding the location tracking requirement:

When a patient enters a red zone and that patient is not guided, sound an
alarm to all caregivers.

When a patient enters a yellow zone with a door and that patient is not
guided, lock that door.

Regarding the daycare indicator requirement:

When a patient is in the daycare room without a caregiver present, turn on
the indicator.

When a caregiver enters the daycare room and the indicator is on, turn off
the indicator.

Regarding the system administration:

When an administrator changes the zones or the patient list, update the
proper definitions in the system.

The privacy requirement does not translate into a set of rules, but rather into a
requirement for the rule decomposition. When the sensor network sends detection

32

Figure 21: Door lock interactions.

Figure 22: Indicator light interactions.

messages about a tag out to the gateway, this is personal information that can be
intercepted. So if possible, the decomposition that has the minimal amount of message
exchanges concerning location sent via the sensor network should be selected.

 5.4 Architecture
Figure 23 shows the interaction of people and 3rd party components with the system and
identifies four internal system parts:

1) A sensor network detects tags belonging to patients, visitors and caregivers. The
nodes in the network can send data to the gateway.

2) The gateway can process data from the sensor network and enter it into the
database, or act on data that is in the database.

3) The database can inform the server and the gateway when new data has arrived,
and it can store data entries.

4) The server can read from the database, perform complex calculations and send
messages to the caregivers. The server also has an interface for system
administration.

Figure 23: Elderly-home system architecture. The dotted lines show incoming
events, the solid lines show outgoing events.

 5.5 Capabilities
Table 1 describes the capablities of the system parts in the elderly-home system
architecture. This table is used to define the properties for the prototypes in chapter 6.

33

Server processing capabilities:
– can translate patient info to tagIDs and back
– can retrieve a tag's location
– can match a location to a zone
– can perform extensive generic calculations

communication capabilities:
– can contact caregivers by telephone
– can store or retrieve data from the database

Sensor Network processing capabilities:
– can detect a tag
– can interface with a device attached to the

node (limited to on/off commands)
– can perform limited calculations

communication capabilities:
– can communicate with other sensor nodes
– can communicate with the gateway

Gateway processing capabilities:
– can calculate the position of a tag based on

detection reports by nodes
communication capabilities:

– can communicate with sensor nodes
– can store or retrieve data from the database

Database processing capabilities:
– standard issue relational database functionality
communication capabilities:
– can inform the gateway or the server when new

data has been entered
Table 1: System capabilities

 5.6 Network Communication
The system architecture also shows the communication links in the system. We can also
define some constraints for those communication links:

Server – database connection
Standard database connection allows the execution of queries and retrieval of results,
with the addition of messages from the database that inform the server that there is new
data. High bandwidth, low cost.

Gateway – database connection
Identical to the Server – database connection. High bandwidth, low cost.

Gateway – sensor node connection
The gateway is connected to one sensor node via a serial link. Random sensors can send
messages to the gateway by sending a message to the gateway sensor-node which relays
it through the serial link. The gateway can send messages to random sensors by
attaching a destination adress to a message and sending it to the gateway sensor-node.
Low bandwidth, low cost.

Sensor node Ad Hoc network
Allows communication between all the sensor nodes in the network. Communication
between nodes costs battery power, so it is costly. Low bandwidth, High cost.

Looking at these constraints, we can conclude that the high cost of communication in
the ad hoc network means that communication between nodes should be kept to a
minimum. This requirement influences which rule decomposition is chosen from the
decomposition results in chapter 6.

34

 5.7 Rules in the Task Outsourcing Scenario and
Emergency scenario

The main difference between the rules approach in the Elderly Home scenario and the
other two scenarios is network dynamics. In the Elderly Home scenario, the list of
participating nodes is fairly static, only occasionally a new system part is introduced. In
the Task Outsourcing scenario and the Emergency scenario the list of system parts is
very dynamic.

In the task outsourcing scenario, as the user moves from place to place, devices join and
leave the network. Devices joining the network may bring along their own list of
capabilities and translation rules, which should be considered when redecomposing a
rule.

In the emergency scenario, the network topology is also dynamic, but in contrast to the
roaming scenario, the network only becomes more complex, while the capabilities stay
largely the same (there may be more devices that can do the same task) and it may be
necessary to re-evaluate what task is performed on what device when new devices join
the network.

 5.8 Middleware Architecture
Figure 24 shows the middleware architecture concerning rules distribution. The
“Decomposition and distribution assignment” consists of the decomposition compiler
tool and processes the results from the compiler. The “Transport and Deployment” layer
handles the distribution of the decomposed rules to the system parts.

Figure 24: Overview of the first prototype's main middleware functionality.

This architecture is only relevant to the runtime use of decomposition. During
development, the decomposed rules are used in the implementation of the software, and
not distributed to the parts directly. With runtime use, the decomposition tool can either
be run from a central point that generates the decomposed tools which are then
distributed, or can be distributed in the network itself. In this case, decomposition is
performed to generate rules when necessary (e.g. in real-time).

35

 6 Implementation
Two prototypes have been built in this project. The first prototype is a proof of concept
to show that rules decomposition can result in correct behaviour. It also provides the
development environment for the second prototype. In the second prototype focus is on
a decomposition compiler that can automatically decompose a rule when given a system
definition and system properties.

This chapter first briefly discusses the first prototype in section 6.1, followed by the
second prototype in section 6.2.

 6.1 First Prototype
The first prototype is based on the Elderly Home Scenario (section 2.1), and is a proof of
concept for our rules decomposition approach. This prototype also prepared a
development environment for the second prototype.

 6.1.1 Requirements
The main requirement of the first prototype is that it should demonstrate that a program
using decomposed rules functions according to the behaviour defined by the orginal,
non-decomposed rules.

Other requirements for the prototype implementation are the following:
– Simulate the sensor node network using the already existing simulator
– Translate the decomposed rules for the server application to code that can be

understood by the rule engine.
– Translate the decomposed rules for the sensor nodes to PLT-scheme code [12] that

the simulator can use.

The sensor network simulator was developed in the Smart Surroundings project [13]. It
simulates a sensor network on a low level, using the same compiled binaries as the ones
the actual nodes use.

 6.1.2 Prototype Rule
The first prototype implements one rule:

When a patient is detected in a red zone, then sound an alarm.

This rule can be represented in our rule language as:

DetectedInZone Patient , Red UpdateAlarmPatient 

 6.1.3 System Definition
The formal definition of the system (L,G) looks like this:
L = { sensor nodes, gateway, database, server application }

G = { (sensor nodes, gateway),
(gateway, database),
(database, server application)
}

36

 6.1.4 Properties
The capabilities are based on Table 1 in section 5.5. In the first prototype, the sensor
nodes have very limited capability. They can only detect the presence of a tag and relay
this information to the gateway.
The gateway has the capability to perform calculations and store information in the
database.
The server application can perform calculations, has access to the database, can relay
information to the users of the system and incorporates a rule engine incorporated that
can perform logical reasoning based on supplied data on demand.

S = { (sensor nodes, {detect tag}),
(gateway, {calculate location}),
(server application, {match location to zone, update alarm})
}

The system is schematically displayed in Figure 25.

Figure 26 shows the information model for the prototype. A person is either a Patient, a
Caregiver or a Visitor. Each person has a number of tags, and the person has one
location in a zone. Each zone can have any number of sensor nodes, and each node can
detect any amount of tags. A node can also have devices attached to it, which it can
manipulate (such as the electric lock or the indicator light).

T includes translations that convert the abstract concept of a patient to a person with a
tag and an assigned role as a patient. It also translates the abstract concept of a person
being in a zone to a person having a location that falls within the boundaries of a defined
zone.

37

Figure 26: The information model for the elderly-home scenario

Figure 25: The system for the first prototype.

 6.1.5 Rule Decomposition
The rule from section 6.1.2 was manually decomposed, and results in four rules:

Sensor nodes:
Detected tag  send Detected tag to gateway 

Gateway:

Receive Detected tag  from sensor nodes
send Locationtag ,CalculateLocation tag to database

Database:
Receive Locationtag , location from gateway Send Locationtag ,location  to server 

Server:

Receive Location tag , location from database  InZone  location , red 
UpdateAlarm GetPersonInfotag  , location 

An alternative decomposition would be for the gateway to do no processing and to just
store all data from the sensor network into the database and then let the server
application do the location approximation. To arrive at this decomposition, the capability
to calculate positional data should be added to the server. However, this decomposition
is undesirable for the prototype: Besides the fact that this decomposition would result in
a traditional architecture using a centralized server where all the work is done, the
solution is also very inefficient in this situation. It forwards all detection data from the
sensors straight to the server, while in the above solution, the gateway only needs to
forward location data when the location has actually changed.

 6.1.6 Result
A working environment was developed for this prototype. It includes the simulator, a
java application that can control the simulator, an SQL database and java environments
for the gateway, server and user interface.

The implementation of the decomposition from section 6.1.5 shows the behaviour as
defined in the original rule, which shows that the decomposition process can work.

The gateway approximates tag location by determining which nodes heard the tag in the
last 5 seconds, and averaging the locations of these nodes. Interestingly, the accuracy
and response-time of the location is comparable to a current commercial solution,
though admittedly that commercial solution is still under development.

 6.2 Second Prototype
The second prototype centers around the implementation of a tool to automate rule
decomposition. To demonstrate that the tool works, a set of rules is decomposed using
the tool and the resulting rules are implemented in the working environment of the first
prototype.

 6.2.1 Requirements
The second prototype makes use of the development environment created for the first
prototype to demonstrate that rules decomposed using the process described in this
report display the required behaviour when implemented.

38

An additional piece of software is introduced: the compiler. The compiler decomposes
rules for a given system and displays the possible decompositions for the user. We then
manually pick a decomposition, implement the decomposed rules and check to see if the
system's behaviour is what we expected.

Requirements for the second prototype:
– Decomposition compiler that decomposes abstract rules into lower level rules.
– Implement the decomposition generated by the compiler that puts more functionality

at sensor nodes compared to the first prototype

 6.2.2 Compiler Design
The compiler applies the decomposition algorithm to a given rule and system. As input,
the compiler requires 3 parameters:

1) The rule to decompose R.
2) The system definition (L,G).
3) The system properties (S,T).

These paramters are supplied in the form of XML documents. The XML-schema
definition for these files can be found in Appendix B. To decompose a set of rules, the
tool has to be called for each rule separately.

The compiler returns a numbered set of possible decompositions of the rule, ordered by
system part. If a rule cannot be decomposed because a capability cannot be matched or
a communication path cannot be found, it returns with an error for that decomposition.

A simple example that demonstrates how the tool can be used is shown in Figure 27.
We assume the following parameters:

R0=E C  A
L={x , y }
G={x , y}
S={ x ,{E ,C } , y , {A}}

Figure 27: Example system
The XML representation of this example can be found in Appendix B.

Using the tool on the above rule results in the following decomposition:
Rx :E CSendC to y
Ry :ReceiveC from xA

Appendix B also contains a second, more elaborate example.

 6.2.3 Algorithm
The compiler implements the algorithm defined in Chapter 5. In pseudo code, the
algorithm looks as follows:

39

read rule data, system data, property data
initialize finished decomposition set as empty, initialize ...

... possible decomposition set as empty
add rule to possible decomposition set
loop

find matchings of translation steps to entries in ...
... possible decomposition set

if any exist and step has not been marked as applied
apply translation
add result to possible decomposition list
mark step as applied for the found matching
continue with next loop run

end if
if no matching unapplied translation steps exist

break loop
end if

end loop
for each element of possible decomposition set as n

get list of rule mappings of n to capability list as k
if any parts of rule cannot be mapped to capability list

discard n
continue with next possible decomposition

end if
for each element of k as m

try to find communication paths for m
if all paths exists

generate communication rules for m
add generated rules to finished decompositions

end if
if not all paths exist

discard m
end if

end for
end for

At the end of the algorithm, the finished decomposition set will contain all possible
decompositions of this rule.

 6.2.4 Decomposition
The rule used in the second prototype which was decomposed using the compiler tool, is
the following:

Detected  patient , zone  isYellow  zone CloseDoor  zone 

The rule is rather simple, but even then the resulting decomposition is quite long as we
show in this section.

The system is identical to the one used in the first prototype, namely:
L = { sensor nodes, gateway, database, server }

G = { (sensor nodes, gateway),
(gateway, database),
(database, server)
}

We use two different system properties to arrive at a different decomposition using the
same rule and the same system definition. The translation table remains the same, we
only change the capability list to get to the different decompositions.

40

T = {
Detected  patient , zone ∗ ∗ ⇒ Detected tag , zone ∗∧isPatient tag  ∗  ,

Detected tag , zone  isYellow  zone ∧∗ ∗ ⇒
Detected tag  inYellowZone LocationOf tag ∧∗ ∗  ,

∗ ∗ CloseDoor  zone⇒∗ ∗ ∧isInZoneZoneOf LocationOf tag CloseDoor 
}

After applying T, the rule looks like:

Detected tag inYellowZone LocationOf tag ∧isPatient tag ∧
isInZone ZoneOf LocationOf tag CloseDoor 

First Decomposition

For the first decomposition, we use the following capability list:
S = { (sensor nodes, {Detected, isInZone, CloseDoor}),

(gateway, {LocationOf}),
(server, {isPatient, inYellowZone, ZoneOf})
}

Using these paremeters, the tool results in the decomposed rule set discussed below.

When the sensor nodes detects the Detected event, it will send both a notice about this
and the encountered tag data on to the gateway. When a sensor node receives a token
message from the gateway that a tag was found that is a patient and was in a yellow
zone, the node will check if it is in the zone of that tag and if that is true, it will perform
the CloseDoor action.

Sensor Nodes:
Detected tag  Send Detected  tag  to gateway 
Detected tag  Send tag  to gateway 

Receive isPatient tag ∧inYellowZone ZoneOf LocationOf tag  from gateway∧
ReceiveZoneOf LocationOf tag  from gateway 
isPatient tag ∧inYellowZone ZoneOf LocationOf tag ∧
isInZone ZoneOf  LocationOf tag CloseDoor


The gateway has four rules. When it receives notice of the Detected event happening, it
will forward that to the database. When it receives tag data, the location of this tag is
calculated and forwarded to the database. If it receives ZoneOf data about a tag from
the database it forwards it to the sensor nodes. And finally, if it receives a token
message that a tag is a patient and is in a yellow zone, it will also forward that to the
sensor nodes.

Gateway:
ReceiveDetected tag  fromsensor nodes Send Detected tag  todatabase 
Receivetag  from sensor nodes Send  LocationOf tag to database 

Receive ZoneOf  LocationOf tag  fromdatabase
Send ZoneOf LocationOf tag to sensor nodes 

Receive isPatient tag ∧inYellowZone ZoneOf LocationOf tag  fromdatabase
Send isPatient tag ∧inYellowZone ZoneOf LocationOf tag to sensor nodes 

41

The database has four forwarding rules, it will send the Detected event and location data
to the server and it will send ZoneOf and token messages that a tag is a patient and is in
a yellow zone to the server.
Database:
ReceiveDetected tag  from gateway Send Detected tag to server 
ReceiveLocationOf tag  from gateway Send LocationOf tag to server 

Receive ZoneOf  LocationOf tag  from server
Send ZoneOf LocationOf tag to gateway 

Receive isPatient tag ∧inYellowZone ZoneOf LocationOf tag  from server
Send isPatient tag ∧inYellowZone ZoneOf LocationOf tag to gateway 

The server has two rules. Firstly, when it receives a message that a Detected event has
happened for a tag together with location data for that tag, it will check if that tag is a
patient and if it is currently in a yellow zone. If this is true, a token message that
respresents this is sent to the database. Secondly, if it receives location data for a tag, it
will calculate the zone that tag is in, and send that to the database.

Server:

Receive Detected tag  fromdatabase∧Receive LocationOf tag  fromdatabase 
isPatient tag ∧inYellowZoneZoneOf LocationOf tag 
Send isPatient tag ∧inYellowZone ZoneOf LocationOf tag to database 

Receive LocationOf tag  from database
Send ZoneOf LocationOf tag to database

Second Decomposition
In the second capability list the isPatient capability is assigned to the sensor nodes:
S = { (sensor nodes, {Detected, isPatient, IsInZone, CloseDoor}),

(gateway, {LocationOf}),
(database, {}*),
(server, {inYellowZone, ZoneOf})
}

Using these parameters, the tool results in a decomposition that is almost identical to
the one above, except that the isPatient functionality is shifted to the sensor nodes using
forwarding rules. This occurs because the tool does not reason about what happens in
the messages. We present below that decomposition, but manually optimized using one
observation: If we know that a tag is not a patient (if isPatient(tag) is false), then we can
stop evaluating the rule. The difference between this decomposition and the first is
discussed in the next section.

A sensor node will detect the event Detected when it happens. When it does, it checks if
this tag belongs to a patient and if that is true, it sends both a token to indicate this and
the tag data to the gateway. If it receives a token message from the gateway that
indicates that the patient is also in a yellow zone, it will check if the sensor node is in the
zone of that location and if that is true, it will perform the CloseDoor action.

Sensor Nodes:
Detected tag   isPatient tag Send isPatient tag to gateway 
Detected tag   isPatient tag Send tag to gateway 

Receive isPatient tag ∧inYellowZoneZoneOf LocationOf  tag  from gateway∧
ReceiveZoneOf LocationOf  tag  from gateway 
 isPatienttag ∧inYellowZoneZoneOf LocationOf tag ∧
isInZoneZoneOf LocationOf  tag CloseDoor 

42

The gateway has four rules. If it receives a token message that indicates that the a
patient has been detected, it will forward it to the database. If it receives tag data, it
calculates the location of that tag and forwards the result to the database. If it receives
ZoneOf data from the database it is forwarded to the sensor nodes and if it receives a
token message that a tag is in a yellow zone it will do the same.

Gateway:
ReceiveisPatient tag  from sensor nodes Send isPatient tag  todatabase 
Receivetag  from sensor nodes Send  LocationOf tag to database 

Receive ZoneOf  LocationOf tag  fromdatabase
Send ZoneOf LocationOf tag to sensor nodes 

Receive isPatient tag ∧inYellowZone ZoneOf LocationOf tag  fromdatabase
Send isPatient tag ∧inYellowZone ZoneOf LocationOf tag to sensor nodes 

The database has four forwarding rules similar to the first decomposition.

Database:
ReceiveisPatient tag  from gateway Send isPatient tag to server 
ReceiveLocationOf tag  from gateway Send LocationOf tag to server 

Receive ZoneOf  LocationOf tag  from server
Send ZoneOf LocationOf tag to gateway 

Receive isPatient tag ∧inYellowZone ZoneOf LocationOf tag  from server
Send isPatient tag ∧inYellowZone ZoneOf LocationOf tag to gateway 

When the server receives a token message that a patient has been detected and location
data about the tag of that patient, it will calculate if that location is in a yellow zone and
send the results back to the database. If the server receives location data from the
database it will send the zone of that location back.

Server:

Receive isPatient tag  from database∧Receive LocationOf tag  from database 
isPatient tag ∧inYellowZoneZoneOf LocationOf tag 
Send isPatient tag ∧inYellowZone ZoneOf LocationOf tag to database 

Receive LocationOf tag  from database
Send ZoneOf LocationOf tag to database

 6.2.5 Observations
In this report we chose to present the two decompositions separately so that the
decomposition differences caused by the different capabilities can be easily identified,
but in practice both of these possible decompositions can be achieved in a single use of
the tool by adding the 'isPatient' functionality at both the sensor nodes and the server.

We obtained two decompositions because there are two places where the 'isPatient'
function can be performed. In practice, the logic functions ('Λ') also have to be assigned
to the sensor nodes and the server. This results in a total of 8 different possible
decompositions, which vary depending on where the two 'Λ' functions are performed.
Two of those correspond to the ones presented above, we chose not to discuss the
remaining decompositions in this report.

43

The two decompositions look very similar, but their performance is very different. When
these two rule decompositions are implemented in the work environment from the first
prototype, we observe that in the second decomposition the network traffic is reduced
considerably, because sensor nodes will not start executing the rule for people who are
not patients.

The network traffic could be reduced even further if a sensor also knows if it is in a
yellow zone, which means sensor in other zones will not report detection. To arrive to
this decomposition, another translation rule could be added that translates the zone
check to a check if the sensor is in a yellow zone.

There is also room for improvement in the decomposition compiler, sometimes there are
two rules on one system part to receive a message and forward it, and these rules could
be combined into one rule that does those things at the same time.

44

 7 Final Remarks
This chapter discusses the results of this project. First we discuss the results of the
research questions in section 7.1. Next we discuss various issues and problems of the
project in section 7.2. Finally we discuss possible future work on rules decomposition in
section 7.3.

 7.1 Research Results and Conclusions
Literature study shows that there are numerous solutions for context-aware application
framework. Some solutions are designed for decentralized Ad Hoc networks, but there
are none that allow the use of high abstraction rules to be performed in a distributed
manner. Once the gap from high abstraction to low abstraction is bridged, some existing
solutions can be used to perform the lower level rules in a distributed environment.

The two objectives of this project were:

1) To formally define a method to translate a rule written for a high level abstract
system into rules for a distributed network.

2) To design and implement a framework that supports distributed context
processing by allowing decomposition and distribution of application rules.

We defined the method for 1) in Chapter 4. The design for 2) was given in Chapter 5.
The framework was partially implemented, the decomposition tool works (see Chapter
6), but the distribution of decomposed rules still has to be done manually.

The definition of the decomposition process and the implementation of the tool can be
the basis for the development of a method to fully automate the distribution of an
abstract rule over a distributed environment.

Rule decomposition used when developing a system with a distributed architecture can
significantly speed up the development, because the designers and programmers do not
have to take into account the distributed nature of the system. The designers can define
rules that state what they want the abstract system to do, the programmers define how
abstract concepts translate to practice and then the decomposition tool provides
possible assignments of which devices should implement what functionality.

 7.1.1 Reflection on Approach
Research study:
In the last 10 years, a very large amount of documentation has been written about
context-aware applications. A good portion of the documentation deals with rules but
only a few about rules in a distributed environment. Finding the relevant material took
more time than was anticipated. Better preparation and search starting points could
have saved some time.

Formal definition:
Defining a formal definition for something that has not been defined before, such as the
decomposition process, takes a lot of time. Flaws in the initial definitions were quickly
found when problems occured in the prototype implementation, which demanded
revisiting the definitions. This was to be expected, since it was an iterative process.

Prototype:
The simulator of the sensor network iwas not a finished product, so it required a lot of
work to prepare it for the prototype. Preparing the simulator took a lot of time because
the simulator was written using a Python/Scheme combination, which was unknown to
us at the time. Unfortunately this could not be avoided, because there was no alternative
for this simulator.

45

The graphical user interface that showed the working of the prototype was simple to
implement, because there was a ready-made solution available from WMC (writing one
from scratch would have taken a lot of time).

 7.2 Discussion
During the work done on this project, several issues came forward.

 7.2.1 Realtime Decomposition
Is rule decomposition used at real-time practical? For scenarios like the Task
Outsourcing scenario and the Emergency scenario, the rules are so simple that the only
thing that is actually done is a redistribution of tasks, which does not necessarily require
the use of rules. Rule decomposition only becomes really useful when more complex
rules are decomposed.

If rule decomposition is used in realtime, the process must be performed fast enough.
We expect that abstract rules will generally only have a limited size and use a limited
range of expressions, but if the rule is very complex and the network is very large, the
decomposition process can take up a large amount of processing to complete.
Furthermore, information about the network topology and the capabilities has to be
collected, which in the case of a dynamic wireless network can take some time. This
means that there may be a limit to the complexity and size of rules and networks for
real-time decomposition.

 7.2.2 Alternative Use of Decomposition
In the definition of the decomposition process, we stated that there is a direct
communication between two nodes if they can talk directly to each other through lower
level communication protocols. This keeps the lower level routing information out of the
decomposition process and makes it less complex. However, in certain situations it
might be desirably to consider the lower level routing in the decomposition.

For instance, in an ad-hoc mesh network, including the routing means that it is directly
visible how much the sending of a message will cost depending in the system parts
involved. This can influence which decomposition is used, for instance to prefer
decompositions with the minimal amount of communication routing. However, including
this information may make the resulting rules practically unreadable by humans, which
is not suitable for development.

 7.2.3 Problems and Limitations
There are some practical problems and limitations that can be identified in the
decomposition process.

As was mentioned in section 4.3, in this report we assume that communication is
reliable. When communication is unreliable, it may happen that a message about an
event is not delivered, and a rule decomposition is not executed. In this situation, the
decomposition is not observably equivalent to the original rule. If the system allows it,
redundancy may be introduced to improve reliability and depending on the system
requirements the system may be able to cope with rules that have only fired half-way
through, for instance by allowing roll-backs of actions that have already been taken.

The amount of possible decompositions from a single rule can be extremely large,
depending on the system and the properties. In the case of a large distributed
architecture with a lot of system parts that can perform exactly the same capabilities
and the rule should only be executed once, the number of decompositions grows as a
factor of the amount of system parts and capabilities. If all system parts should have the
same behaviour, a solution is not to work with all instances of that type of system part,

46

but with the type instead.

The prototypes mix types of system parts (sensor nodes) with instances of system parts
(gateway, database and server). Mixing types and instances of types together in an
architecture can complicate the implementation of rules. A system part that has a rule
that tells it to listen to a message from a type of system part, would need a separate rule
for each instance of that type when implemented (see Figure 28). If that is a large group
of instances, like for example in a sensor network, this could mean hundreds or
thousands of rules. A possible solution to this problem is to have the message source
disregarded in the case of a device type sending a message to someplace else. By doing
this, the implementation would only require one rule which triggered by a message
being received from an unknown source. This imposes natural limitations on the
functionality of rules, because this would make it impossible to return a message back to
the sender or to consider who sent it.

A general problem for rule execution is timing. When a rule says that it should be
triggered when event E1 and E2 happen, what does that mean if these events are not
synchronized? How large should the window of acceptance for E2 be after E1 is received?
Should old event data be thrown away? This problem only arises for events and not for
conditions, because in our approach the conditions are only evaluated when the event
clause becomes true, which makes the condition statement inherently synchronized.

The timing problem also leads to another complication: when a rule uses several
different events and those events are forwarded to several different devices, what
happens when two identical events happen right after each other? Latency in the
network may cause results from the second event to overtake the first, possible
hampering the rule execution. How can this be avoided?

 7.3 Future Work
There are several ways in which work can continue following this project.

 7.3.1 Project Continuation
The formal definition of the decomposition process given in this report is probably not
entirely correct, from a mathematical viewpoint. Especially the translation function

47

Figure 28: Mixing types and instances.

notation used is not type correct, and the definition will probably have to be changed to
allow an actual proof of equivalency.

Prototypes have been built for the Elderly-Home scenario (section 2.1). The remaining
two scenarios, the Task Outsourcing scenario (section 2.2) and the Emergency scenario
(section 2.3), can be worked out in detail and be prototyped to investigate the
decomposition process in real-time use.

The timing and repetition issues mentioned above should be solved. Possible solutions
could include timestamps and sequence numbers. Currently, timing issues are simply
ignored.

The methods and problems of mixing types and instances should also be better defined.
The prototypes use a sensor node type, but work around the typing problem by treating
all sensor nodes as a single system and assuming that there will be a further
decomposition iteration for the sensor nodes (this was done manually in our prototype,
which was not a complex task because the rules were simple).

 7.3.2 Decomposition Tool
Translations:
The decomposition tool does not currently implement the algorithm defined in section
6.2.3 completely, because it does not allow the full expressiveness of the translations.
Translations can be represented in the implementation by using Xpath [17]. An X-Path
query can be defined that matches the parts of the rule that should be replaced, and
pointers to those XML elements can be used to replace them and add new expressions.

Common translations that are often used can be gathered together in a standard library.
Are there enough 'common' translations? This depends on what kind of functionality is
used in the rules that are decomposed. Research needs to be performed to assert if the
idea of a standard library of common translations is useful.

Optimization:
A lot of optimization could be added to the current decomposition process. For complex
rules, the tool generates a lot of rules for system parts that are slightly different in
context but have the same content. These rules could be combined in a single rule.

The process should also do some reasoning about the content of the rule. As we
mentioned in section 6.2.4, the second decomposition presented was not what the tool
actually returned, but it was optimized manually. If the tool reasoned about the fact that
if the isPatient(tag) condition fails, the rest of the rule would not have to be evaluated,
then the tool would return the optimized decomposition.

The tool could also swap the order of logic in the rule that results from translation
before distributing, because the order of logic does not have a functional impact, but can
have a tremendous impact on the amount of messages sent. For instance, in the second
decomposition of the second prototype (in section 6.2.4), if the order of the “and”
functions was swapped, the system would be forced to send twice as many messages,
because it would first check if the location is in a yellow zone on the server, send that
result to the sensor nodes, check if it is a patient there, then send that back to the
server, etc. If the tool has the power to swap logic around to arrive at the most optimal
order of execution, this means that the user does not have to think about ordering the
logic expressions.

The tool could also preselect the presented decompositions. The tool now presents all
decompositions of a rule, even though some of them may be clearly undesirable. Using
message statistics and evaluation of how far rules are partially executed before it is
concluded that the logic expressions will not evaluate to true, can lead to automatic
detection of the most efficient decomposition.

48

Further Automation:
In the case of development use, the functionality can also be extended so that the tool
translates the resulting decomposed rules directly into code or pseudo-code local to the
system part, automating the programmers' work.

There are architectures for distributed rule engines, such as mentioned in Chapter 1.
The decomposition tool can be made to export rules in a format that can be directly
entered into those rule engines. Theoretically, this could lead to the full automation of
rule distribution.

 7.3.3 Parallel Use of Capabilities
A possible branch from the decomposition process is one that uses capabilities in
parallel.

When several system parts have the same capability, currently the decomposition result
of a rule that uses that capability consists of multiple possible decompositions, one for
each system part that has the capability. In each of those decompositions only one of the
capabilities is used. In some situations, it might be possible to have all these system
parts performing this capability in parallel, potentially increasing efficiency. However,
the capability must be suitable for parallel execution and parallel execution on separate
system parts generates timing and synchronization problems that must be solved.

49

Appendix A: Elderly Home Technology
In section 2.1, we stated that a technology is needed that can track people in the home.
The technology chosen for the prototype was a sensor network consisting of light duty
sensor nodes (tags), heavy duty sensor nodes (sensors) and gateway systems to link the
sensor network to a wired network (gateways). The sensor network used in the
prototype consists of μ-nodes from Ambient Systems [1].

The complete system involves a number of different devices:
• The tags are small sensor nodes that have limited functionality and are small enough

to be carried by people without being noticed. The tags are capable of reading a
sensor and perform multi-hop routing, but to conserve power they are usually limited
to acting as a locator beacon.

• The sensors are larger sensor nodes with a more powerful power supply and more
functionality than the tags and are usually fixed to one position. The sensors form a
multi-hop mesh network that covers the whole building. There is one sensor with
extra functionality, which is connected to the main entrance door to the wing which
has a magnetic lock that the sensor controls (See chapter 2.1.1)

• The gateways are devices that link the sensor network with the server application on
a wired network.

• The data from the sensor network is written to a relational database, and only
through this database can applications communicate with the sensor network. A
database with extended functionality is available that can inform interested parties
when new data is written into a table.

In different pieces of clothing of each patient tags will be embedded, so that a patient
will always carry at least one tag at any given time, although this can never be 100%
guaranteed. Each caregiver carries a tag and a mobile device that is capable of
receiving messages from the server application and alerting the user. Certain visitors
who help with the care of a patient are given a tag as well.

The sensors indicate which tag signals they detect within their range. The gateway
combines the data from the sensors to extrapolate the location a tag is in at some
moment in time.

There is a separate dedicated sensor on the entrance door, which has an interface to
open or close the magnetic lock on the door. When the sensor receives the command to
open or close the lock, it will use this interface to do so.

50

Appendix B: Decomposition Compiler Input
The decomposition compiler takes input from one or more XML files. The required input
consists of the rule, a system definition and the system properties.

The XML files for the example in section 6.2.2 are given below.

The rule definition.
<rule>

<on>
<event> E </event>

</on>
<if>

<condition> C </condition>
</if>
<then>

<action> A </action>
</then>

</rule>

The system definition.
<system>

<systempartlist>
<systempart> x </systempart>
<systempart> y </systempart>

</systempartlist>
<communicationgraph>

<communicationedge>
<from> x </from>
<to> y </to>

</communicationedge>
<communicationedge>

<from> y </from>
<to> x </to>

</communicationedge>
</communicationgraph>

</system>

The system properties definition.
<systemproperties>

<capabilitylist>
<capability systempart="x"> E </capability>
<capability systempart="x"> C </capability>
<capability systempart="y"> A </capability>

</capabilitylist>
</systemproperties>

A second, more elaborate example that explains decomposition compiler usage is the
following:

R0=E1∧E2 C A
L={v ,w , x , y , z}
G={v ,w , v , x ,x , z  , z , y }
S={v , {'∧' } ,w , {E1} , x ,{C } , y , {A , E2} , z ,{E2}}

51

The XML files for this example are:
<rule>

<on>
<and>

<event> E1 </event>
<event> E2 </event>

</and>
</on>
<if>

<condition> C </condition>
</if>
<then>

<action> A </action>
</then>

</rule>

<system>
<systempartlist>

<systempart> x </systempart>
<systempart> y </systempart>
<systempart> z </systempart>
<systempart> v </systempart>
<systempart> w </systempart>

</systempartlist>
<communicationgraph>

<communicationedge>
<from> w </from>
<to> v </to>

</communicationedge>
<communicationedge>

<from> v </from>
<to> w </to>

</communicationedge>
<communicationedge>

<from> x </from>
<to> v </to>

</communicationedge>
<communicationedge>

<from> v </from>
<to> x </to>

</communicationedge>
<communicationedge>

<from> x </from>
<to> z </to>

</communicationedge>
<communicationedge>

<from> z </from>
<to> x </to>

</communicationedge>
<communicationedge>

<from> z </from>
<to> y </to>

</communicationedge>
<communicationedge>

<from> y </from>
<to> z </to>

</communicationedge>
</communicationgraph>

</system>

<systemproperties>
<capabilitylist>

<capability systempart="w"> E1 </capability>
<capability systempart="v"> and </capability>
<capability systempart="z"> E2 </capability>
<capability systempart="x"> C </capability>
<capability systempart="y"> A </capability>
<capability systempart="y"> E2 </capability>

</capabilitylist>
</systemproperties>

This gives the following results:
Decomposition 0:
v: and(Receive E1 from w, Receive E2 from x) * true -> Send and(E1, E2) to
x

52

w: E1 * true -> Send E1 to v
x: Receive and(E1, E2) from v * C -> Send C to z
x: Receive E2 from z * true -> Send E2 to v
y: Receive C from z * true -> A
z: Receive C from x * true -> Send C to y
z: E2 * true -> Send E2 to x
Decomposition 1:
v: and(Receive E1 from w, Receive E2 from x) * true -> Send and(E1, E2) to
x
w: E1 * true -> Send E1 to v
x: Receive and(E1, E2) from v * C -> Send C to z
x: Receive E2 from z * true -> Send E2 to v
y: Receive C from z * true -> A
y: E2 * true -> Send E2 to z
z: Receive C from x * true -> Send C to y
z: Receive E2 from y * true -> Send E2 to x

The XML schema definitions for the decomposition tool input are given below.
Schema for rule:
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:simpleType name="condition">
 <xs:restriction base="xs:string">
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="event">
 <xs:restriction base="xs:string">
 </xs:restriction>
 <xs:attribute name="variable" type="xs:string" use="required"/>
 <xs:attribute name="type" type="xs:string" use="required"/>
 </xs:simpleType>
 <xs:simpleType name="variable">
 <xs:restriction base="xs:string">
 </xs:restriction>
 <xs:attribute name="type" type="xs:string" use="required"/>
 <xs:attribute name="source" type="xs:string" use="required"/>
 </xs:simpleType>
 <xs:complexType name="conditionfunction">
 <xs:sequence>
 <xs:choice>
 <xs:element name="condition" type="condition"/>
 <xs:element name="function" type="function"/>
 <xs:element name="variable" type="variable"/>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="type" type="xs:string"/>
 </xs:complexType>
 <xs:complexType name="eventfunction">
 <xs:sequence>
 <xs:choice>
 <xs:element name="event" type="event"/>
 <xs:element name="function" type="function"/>
 <xs:element name="variable" type="variable"/>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="type" type="xs:string"/>
 </xs:complexType>
<xs:element name="rule">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = “events” >

 <xs:choice>
 <xs:element name = “function” type = “eventfunction” />
 <xs:element name = “event” type = “event” />
 </xs:choice>

 </xs:element>
 <xs:choice>
 <xs:element name = “conditions” >

 <xs:choice>
 <xs:element name = “function” type = “conditionfunction” />
 <xs:element name = “condition” type = “condition” />

53

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

 </xs:choice>
 </xs:element>
 </xs:choice>
 <xs:element name = “actions” >
 <xs:element name="action" type="xs:string"
 minOccurs="1" maxOccurs="unbounded"/>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>
Schema for system:
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name=”system”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name = “systempartlist” >

 <xs:element name = “systempart” type = “xs:string”
 minOccurs="1" maxOccurs="unbounded"/>
 </xs:element>
 <xs:element name = “communicationgraph” >

 <xs:element name = “communicationedge”
 minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>
 <xs:sequence>
 <xs:element name = “from” type = “xs:string”/>
 <xs:element name = “to” type = “xs:string”/>
 <xs:choice>
 <xs:element name = “constraints” type = “xs:string”/>
 </xs:choice>
 </xs:sequence>

 </xs:complexType>
 </xs:element>

 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>
Schema for properties:
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name=”systemproperties”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name = “capabilitylist” >

 <xs:element name = “capability” type = “xs:string”
 minOccurs="0" maxOccurs="unbounded">
 <xs:attribute name="systempart" type="xs:string" use="required"/>
 </xs:element>
 </xs:element>
 <xs:element name = “translationtable” >

 <xs:element name = “translation”
 minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>
 <xs:sequence>
 <xs:element name = “from” type = “xs:string”/>
 <xs:element name = “to” type = “xs:string”/>
 </xs:sequence>

 </xs:complexType>
 </xs:element>

 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

54

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

Glossary
Abstraction level The abstraction level of a system or a rule indicates how

far the system or rule has been abstracted from an
actual implementation. For a system, the lowest
abstraction level is a direct one-to-one representation of
the implementation. The highest abstraction level is the
system as a single entity providing all the system's
outside services. The abstraction level of a rule is the
same as that of the system for which it defines the
behaviour.

Ad Hoc network A network between devices using wireless technology
that is formed on an Ad Hoc (on the moment) basis using
devices that are in immediate vicinity of each other.

Architecture The structure of a system, comprised of its components,
the properties of the components and the relationships
between the components.

Context-Aware application An application that can change its function based on
context information about itself, its user, the device it is
running on and/or other aspects of its environment.

Context information Information about an entity that is not necessary for
execution of a task, but allows the task to be performed
in way more suitable to the user.

Context processing The act of applying an algorithm to data originating from
a context data source such as a GPS receiver, so that an
application can make use of the data. Alternatively, the
act of distilling higher level context data from several
sources of lower level context data.

Decomposition A transformation and division of a rule set for an
abstract system into components in a rule set for a
system at a lower abstraction level. See the definition in
section 3.3.

Distribution Not on a single device; non-centralized. A Distributed
Architecture is one that consists of a number of
cooperating devices that all have a role in the behaviour.
A Distributed Environment is an environment with a
number of inter-connected devices. Distributed
Computing consists of performing parts of a task on
separate devices that communicate with each other.

Middleware Software that connects distributed software components
and/or applications and supplies common functionality to
these components and applications.

Rule A business or application rule defines behaviour for a
system. See the definition in section 3.1.

Rule engine A piece of software that can execute rules based on a set
of facts based on data.

System behaviour The observable interactions that a system has with its
surrounding environment.

55

References
[1] Ambient Systems products, http://www.ambient-systems.net/ambient/products-

system.htm, visited July 2007
[2] Amigo project website, Ambient Intelligence for the networked home

environment, http://www.hitech-projects.com/euprojects/amigo/, visited July 2007
[3] Arete, “an Open Source Java Rule Engine”,

https://wiki.umn.edu/twiki/bin/view/Arete, visited July 2007
[4] Awareness Project website, Freeband Communication,

http://www.freeband.nl/project.cfm?id=494&language=en, visited July 2007
[5] Biegel and Cahill, “A framework for developing mobile, context-aware

applications”, Pervasive Computing and Communications, 2004
[6] Code Blue project website, “CodeBlue: Wireless Sensor Networks for Medical

Care”, http://www.eecs.harvard.edu/~mdw/proj/codeblue/, visited July 2007
[7] Cabitza, Dal Seno, “DJess – A Knowledge-Sharing Middleware to Deploy

Distributed Inference Systems”, Transactions on engineering, Computing and
Technology v4 February 2005

[8] Jena, “a Java framework for building Semantic Web applications”,
http://jena.sourceforge.net/, visited July 2007

[9] Jess, “The Rule Engine for the Java platform”, http://herzberg.ca.sandia.gov/jess/,
visited July 2007

[10] Jiang et al, “Siren: Context-aware Computing for Firefighting”, Proceedings of
The Second International Conference on Pervasive Computing, 2004

[11] Mandarax, “An open source java class library for deduction rules”,
http://mandarax.sourceforge.net/, visited July 2007

[12] PLT Scheme “PLT Scheme is an umbrella name for a family of implementations of
the Scheme programming language.“http://www.plt-scheme.org/, visited July 2007

[13] Smart Surroundings project website, University of Twente,
http://wwwes.cs.utwente.nl/smartsurroundings/, visited July 2007

[14] Sørensen et al, “A Context-Aware Middleware for Applications in Mobile Ad
Hoc Environments”, Computing Department, Lancaster University, 2004

[15] Tao Gu, Hung Keng Pung, Da Qing Zhang, "Toward an OSGi-Based Infrastructure
for Context-Aware Applications," IEEE Pervasive Computing, 2004

[16] Morgan, “Business Rules and Information Systems: Aligning IT with Business
Goals”, Addison-Wesley Professional, 2002

[17] XPath, “language for addressing parts of an XML document“,
http://www.w3.org/TR/xpath, visited July 2007

56

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://wwwes.cs.utwente.nl/smartsurroundings/
http://wwwes.cs.utwente.nl/smartsurroundings/
http://wwwes.cs.utwente.nl/smartsurroundings/
http://www.plt-scheme.org/
http://www.plt-scheme.org/
http://www.plt-scheme.org/
http://mandarax.sourceforge.net/
http://mandarax.sourceforge.net/
http://mandarax.sourceforge.net/
http://herzberg.ca.sandia.gov/jess/
http://herzberg.ca.sandia.gov/jess/
http://herzberg.ca.sandia.gov/jess/
http://jena.sourceforge.net/
http://jena.sourceforge.net/
http://jena.sourceforge.net/
http://www.eecs.harvard.edu/~mdw/proj/codeblue/
http://www.eecs.harvard.edu/~mdw/proj/codeblue/
http://www.eecs.harvard.edu/~mdw/proj/codeblue/
http://www.freeband.nl/project.cfm?id=494&language=en
http://www.freeband.nl/project.cfm?id=494&language=en
http://www.freeband.nl/project.cfm?id=494&language=en
https://wiki.umn.edu/twiki/bin/view/Arete
https://wiki.umn.edu/twiki/bin/view/Arete
https://wiki.umn.edu/twiki/bin/view/Arete
http://www.hitech-projects.com/euprojects/amigo/
http://www.hitech-projects.com/euprojects/amigo/
http://www.hitech-projects.com/euprojects/amigo/
http://www.ambient-systems.net/ambient/products-system.htm
http://www.ambient-systems.net/ambient/products-system.htm
http://www.ambient-systems.net/ambient/products-system.htm
http://www.ambient-systems.net/ambient/products-system.htm
http://www.ambient-systems.net/ambient/products-system.htm
http://www.ambient-systems.net/ambient/products-system.htm

	 1 Introduction
	 1.1 Motivation
	 1.2 State-of-the-Art
	 1.3 Objectives
	 1.4 Approach
	 1.5 Structure of the Report

	 2 Scenarios
	 2.1 Scenario Elderly Home
	 2.2 Scenario Task Outsourcing
	 2.3 Scenario Emergency Situation

	 3 Rule Distribution
	 3.1 Rules
	 3.2 Approach to Rule Distribution
	 3.3 Rule Decomposition
	 3.4 Use of Rule Decomposition

	 4 Formal Definitions
	 4.1 Rule Language
	 4.2 System Definition
	 4.3 Decomposition Process
	 4.3.1 System Capabilities
	 4.3.2 Concept Translation
	 4.3.3 The Decomposition Algorithm

	 4.4 Examples
	 4.4.1 Simple Transformation
	 4.4.2 Transformation with Alternative Decompositions
	 4.4.3 Elderly Home Example

	 5 Applying Rules to the Scenarios
	 5.1 Requirements
	 5.2 User Interactions
	 5.3 Rules
	 5.4 Architecture
	 5.5 Capabilities
	 5.6 Network Communication
	 5.7 Rules in the Task Outsourcing Scenario and Emergency scenario
	 5.8 Middleware Architecture

	 6 Implementation
	 6.1 First Prototype
	 6.1.1 Requirements
	 6.1.2 Prototype Rule
	 6.1.3 System Definition
	 6.1.4 Properties
	 6.1.5 Rule Decomposition
	 6.1.6 Result

	 6.2 Second Prototype
	 6.2.1 Requirements
	 6.2.2 Compiler Design
	 6.2.3 Algorithm
	 6.2.4 Decomposition
	 6.2.5 Observations

	 7 Final Remarks
	 7.1 Research Results and Conclusions
	 7.1.1 Reflection on Approach

	 7.2 Discussion
	 7.2.1 Realtime Decomposition
	 7.2.2 Alternative Use of Decomposition
	 7.2.3 Problems and Limitations

	 7.3 Future Work
	 7.3.1 Project Continuation
	 7.3.2 Decomposition Tool
	 7.3.3 Parallel Use of Capabilities

	Appendix A: Elderly Home Technology
	Appendix B: Decomposition Compiler Input
	Glossary
	References

