
STORM	SURGE	MODELING
M	A	S	T	E	R	‘	S					T	H	E	S	I	S
IN	A	CLOSED	AND	SEMI-ENCLOSED	BASIN

F.	Upmeijer	BSc	
University	of	Twente



  



 

STORM SURGE MODELING IN A CLOSED AND 

SEMI-ENCLOSED BASIN 

THE INFLUENCE OF BASIN TOPOGRAPHY AND WIND DIRECTION ON THE SET-UP ALONG  

THE COAST USING 1-DH AND 3-D FLOW MODELS 

 

 

In partial fulfillment of the requirements for the degree of 

Master of Science in Water Engineering and Management 

Faculty of Engineering Technology University of Twente 

 

 

 

Author:    Frank Upmeijer BSc 

Contact:    f.upmeijer@gmail.com 

 

Date:     August 16, 2016 

Thesis defend date:  August 22, 2016 

Location:    Enschede, The Netherlands 

 

Graduation committee  

Graduation supervisor: Dr. Ir. J.S. Ribberink University of Twente 

Daily supervisors:  Dr. Ir. P.C. Roos University of Twente 

    Dr. W. Chen  University of Twente 

 

 

 

 



 

 



i 
 

Abstract 
 

Destruction due to flooding, caused by severe storms, is a serious concern along coastal areas. The 

rise or set-up of the water level induced by a storm is called a storm surge. Improved understanding 

and accurate predictions of storm surges along the coast will help reducing the negative impacts of 

coastal disasters. An important aspect of improving storm surge predictions requires physical insight 

in the influence of basin topography on the set-up along the coast of large-scale basins. 

  This study investigates the influence of the basin topography on the wind-driven response of 

large-scale coastal basins, measured in terms of the set-up at the coast, and paying particular 

attention to the role of the location of a topographic element, such as a shoal or a sand pit, relative 

to the wind direction. For this purpose, two different idealised process-based models have been used 

to simulate linearised hydrodynamics in closed and semi-enclosed rectangular basins driven by time-

periodic wind forcing: (i) an analytical 1-DH flow model and (ii) the semi-analytical 3-D flow model of 

W.L. Chen et al. (2016). The frequency response, as obtained from these models, displays in 

particular resonance peaks, which we explain by linking them to the basin dimensions, the wind 

direction as well as the influence of the function, size and location of topographic elements.  

  In general, it is found that adding topographic elements in front of the coast causes the 

resonance peaks to shift in the frequency domain, through their effect on local wave speed. 

Increasing bottom friction lowers the peaks. Furthermore, sensitivity analyses demonstrated that 

resonant frequencies strongly depend on the combination of basin topography and wind direction, 

particularly in shallow areas where bottom friction dominates the basin dynamics. 

  Subsequently, we illustrate how the frequency response is reflected in the time-dependent 

set-up generated by a single wind event. It turns out that the lower frequencies of the wind forcing 

input clearly dominate the behavior of the time-dependent set-up, relative to higher frequencies. 

This can be explained by the fact that due to the applied characteristics of a wind event, a large 

portion of the wind spectrum's energy is distributed over the lower frequencies of the spectrum. 

Moreover, this study demonstrates how to trigger optimal set-up behavior by modifying the basin 

topography for a given wind event with a certain wind speed, wind duration, ramp stage and most 

important, wind angle. 
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Chapter 1  

Introduction 
 

1.1 Storm surges in coastal basins 
Severe storms form a big threat to life and property in coastal regions, especially in low-lying densely 

populated areas which are most vulnerable to flooding. Therefore the destruction due to flooding is a 

serious concern along coastal regions. Due to sea level rise and the potential increase in heavy 

storms resulting from climate change, extreme coastal flooding events are likely to increase in the 

future (Brown et al., 2010), while the population in coastal zones is expected to increase (IPCC, 

2007). Improved understanding and accurate predictions of storm surges along the coast will help 

reducing the negative impacts of coastal disasters. 

 Over the last decades, a lot of model studies have been conducted regarding all kind of 

factors influencing a storm surge. In these studies factors have been analyzed ranging from 

characteristics of a storm, such as storm size and intensity (e.g. Irish et al., 2008; Weisberg & Zheng 

2006c), to the unique properties of a coastal basin, such as topography and geometry (e.g. Q. Chen et 

al., 2008; Guo et al., 2009). Moreover, due to a better understanding of oceanic physical processes 

together with an exponential growth of computational capacities, the complexity of hydrodynamic 

models has increased as well as the potential to predict storm surges more accurately. Although the 

basic physics of a storm surge on an open coast or in a large estuary is relatively well understood, our 

understanding of the interactions between storm surges, wind waves, tides and complex topographic 

and geographic landscapes, such as coastal basins, is still inadequate (Q. Chen et al., 2008). In the 

following paragraphs we will narrow the wide number of factors down to a final selection on which 

we  will aim our research project. 

 A storm surge, defined as a rise or set-up of surface water elevation induced by a storm, is 

mainly driven by meteorological forcing consisting of reduced atmospheric pressure and wind 

forcing. Other factors such as waves and storm-driven rainfall, which originate from these two main 

forces, have a minor contribution to the surge height and duration (Lowe et al., 2001). Furthermore, 

many studies have shown that the reduced atmospheric pressure response is inferior to the wind 

forcing response (e.g. Jones & Davies, 2007; Rego and Li, 2010). Not only the storm size and intensity, 

but also other storm characteristics, such as wind direction, appear to influence the storm surge. For 

example, studies of Guo et al. (2009) and Weisberg & Zheng (2006b) have shown that the behavior of 

the surge set-up changed drastically when wind direction changes. 

In extreme cases of flooding events, a phenomenon known as resonance may occur. A few 

examples of recent storms, causing extreme coastal flooding, that have been linked to such resonant 

conditions are typhoon Winnie at the Korean coast of the Yellow Sea and storm Xynthia in the Bay of 

Biscay. For example, Moon et al. (2003) demonstrated that the residual part, on top of the main part 

generated by enhanced tidal forcing from the spring tide, of the surge driven by Winnie can be 

explained by the resonance coupling of the natural periods of the Yellow Sea and the predominant 

period in the surge. Moreover, Bertin et al. (2012) demonstrated, through an analytical resonance 
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model and numerical experiments, that the period of the observed oscillations corresponds to the 

resonant mode of the continental shelf, by analyzing the storm surge associated with Xynthia.  

  Among the abundant literature available on the subject, a common approach consists of 

performing a hindcast of a relevant storm to analyze the physical processes responsible for the 

associated surge (e.g. Moon et al., 2003; Bertin et al., 2012). However, it is difficult to identify the 

physics from these often complex site-specific events. It requires a more systematic approach to 

attain insights in the physical processes underlying this wind-driven set-up. A good start is the semi-

analytical approach of Ponte (2010), linking the resonance properties of a basin to several types of 

resonant frequencies. More specifically, he identified resonance peaks associated with along-basin 

standing waves from his idealized 3-D flow model for elongated basins subject to periodic and 

spatially uniform wind forcing. The oscillations associated with these peaks were already investigated 

more generally by Rao (1966). His numerical study particularly demonstrated that the resonant 

frequencies strongly depend on the width and length of the basin.  

This research project elaborates on all of the literature above and particularly on the 

meantime finished PhD project of W.L. Chen (2015). Furthermore, this study will contribute to the 

understanding of the important resonance properties of closed and semi-enclosed basins and will 

give further insights in the physical processes, such as bottom friction, underlying the wind-driven 

coastal set-up. In particular, we will systematically analyze the influence of topographic basin 

elements (function, size and location) on the set-up along the coast, subject to time-periodic and 

space-uniform wind forcing in arbitrary direction.  

A more practical motivation for this study is to explain and predict the effects of large-scale 

sand measures near the coast. For example, large-scale sand mining in the North Sea, whereby most 

studies (e.g. Walstra et al., 1999) focus on the long-term morphological effects, regarding erosion 

and sedimentation processes, of this kind of coastal operations. An important and interesting 

consequential issue could be, regarding this research project, how to manage these types of large-

scale operations in such a way to avoid large and long (after sloshing) set-up along the coast?     

 

1.2 Research outline 

1.2.1 Research objective 
To make more accurate predictions of storm surges in coastal basins, it is important to study the 

underlying physical processes more specifically, based on a selected number of factors. By making 

use of idealised hydrodynamic models it is possible to study specific physical processes separately. 

Since we have experienced a lack of insight in the existing literature about the sensitivity of storm 

surges in coastal basins to basin topography and wind direction, the research objective of this study 

is formulated as: 

To carry out a systematic sensitivity analysis of the wind-driven set-up at the coastal 

boundary of a closed and semi-enclosed basin to changes in basin topography and wind 

direction induced by a spatially uniform wind forcing, through idealised process-based 

modelling. 

This study will be conducted using two process-based models: (i) an analytical 1-DH flow model and 

(ii) the semi-analytical 3-D flow model of W.L. Chen et al. (2016). An important feature of these flow 
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models is that they calculate the basin’s surface elevation in the frequency domain, instead of in the 

more conventional time domain. Induced by periodic wind forcing, the basin’s surface elevation 

response in the frequency domain is called the spectral response. 

 

1.2.2 Research questions 
The following research questions are formulated to achieve the research objective: 

1. How is a time-dependent single wind event converted in the frequency domain and how are 

its characteristics influencing the spectral representation? 

2. How do we formulate the idealised process-based hydrodynamical models suitable for 

simulation of the set-up along the basin’s coastal boundary for the closed and semi-enclosed 

basin? 

3. What are the effects of varying the bottom friction coefficient and topographic basin 

dimensions on the basin’s spectral response at the rear end of the closed and semi-enclosed 

basin, using the 1-DH flow model? 

4. What is the influence of implementing topographic elements, such as shoals and pits, and 

wind direction on the basin’s spectral response at the rear end of the closed and semi-

enclosed basin, using the 3-D flow model? 

5. How to obtain the actual response of the time-dependent set-up in the basin, induced by a 

single wind event? And how is the spectral response reflected in the time-dependent set-up? 

 

1.2.3 Methodology 
The methodology used in this study to achieve the research objective and to answer the research 

questions will be treated here in the order of the structure of this report.  

  In this study we will consider a single wind event (in the order of days) as a superposition of 

periodic wind forcings at various frequencies  , after Craig (1989) and Chen (2016). Therefore, 

periodic wind forcing will be used as the sole input force that drives both flow models. This further 

implies that we neglect atmospheric pressure forcing in this study. Such an event in the time domain 

can be converted in the frequency domain by using the well known fast Fourier transform algorithm. 

This methodology will be used to convert several wind events with various wind characteristics in the 

frequency domain to study its influence on the spectral representation of a wind event. In turn, the 

inverse Fourier transform function enables us to convert the wind signal in the frequency domain 

back in the time domain, and can also be applied to determine the accuracy of representing our wind 

event of interest in the time domain by the chosen number of Fourier modes. 

   In our study, we have adopted an idealised process-based modeling approach. This enables 

us to simplify the basin geometry and certain hydrodynamic processes, while applying solution 

techniques which are precise in mathematics. Furthermore, we have adopted a linear approach for 

both of our flow models and therefore ignore non-linear processes such as e.g. advection and tide-

surge interaction. In turn, the linearised shallow water equations are used in both flow models to 

express the hydrodynamic processes in the basin.  

  The coastal basins will be simulated in two different ways: a closed and a semi-enclosed 

basin. The closed basin representation is the more simple case, because it excludes dealing with 

complex open boundaries. The semi-enclosed basin representation does include an open boundary, 
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which better connects to simulating coastal basins in 

practice. However, the closed basin results will serve as a 

good practice to understand and interpret the basin’s 

spectral response to periodic wind forcing, regarding the 

resonance properties of the basin. Moreover, the closed 

basin representation connects to recent studies in the 

literature (e.g. Ponte, 2010 & Chen et al., 2015). 

Furthermore, our study frame consist of a rectangular 

basin with a fixed and strongly simplified geometry for the 

closed and semi-enclosed basin, applied in our models. The 

chosen basin dimensions in this study are considered to be 

roughly consistent with the rectangular-shaped geometry 

of the Southern Bight of the North Sea (shown in Figure 

1.1) and also connect to the dimensions of the closed basin 

study of W.L. Chen (2015). The dimensions of the Southern Bight are approximately: 340 km length, 

165 km width and an average basin depth of 25 m (van der Molen et al., 2004). 

  The 1-DH flow model will be used to study various 1-DH cases for a better understanding of 

the underlying physical processes of the hydrodynamics in a simplified coastal basin. This analytical 

model simulates the basin hydrodynamics in a one-dimensional depth-averaged (1-DH) manner, 

driven by a spatially uniform periodic wind forcing in along-basin direction. Because the model 

cannot simulate cross-basin dynamics, Coriolis effects are ignored as well in this study. A single step 

topography will be applied to simulate depth differences in the basin. 

  Next, the semi-analytical 3-D flow model of W.L. Chen et al. (2016) will be used to study 3-D 

cases for analyzing the spectral response behavior in a less simplified coastal basin, driven by a 

spatially uniform periodic wind forcing in arbitrary direction. Furthermore, the 3-D flow model will be 

used to simulate more complex and realistic basin topographies compared to the 1-DH model, 

whereas the basin geometry still remains strongly simplified in this study. The model is based on the 

widely adopted Finite Element Method (FEM). Relative to several other two- and three-dimensional 

finite difference/volume and finite element models that have been widely adopted and used to 

simulate hurricane-induced storm surges (W.L. Chen et al., 2013), which are mostly very time 

consuming, this 3-D flow model of Chen needs much less computation time because of its semi-

analytical approach in combination with the Fourier transform method (W.L. Chen, PhD thesis, 2015). 

And is thus suitable for idealised process-based modeling as well.   

 To determine the accuracy of the FEM model simulations, the results of the 1-DH and the 

FEM model simulations will be compared with each other for similar simplified cases in both types of 

basins. A statistical measure ('standard error of the estimate' (Lane, 2015)) is used to determine the 

goodness of fit of the 1-DH simulations with the FEM simulations. To obtain a better fit, the 1-DH 

model will be calibrated with respect to the FEM model regarding the linearised bottom friction 

coefficients of both models.  

   Finally, the basin’s response (time-dependent set-up along the coast) to a single wind event 

can be derived by multiplying the Fourier spectrum of a single wind event with the basin’s spectral 

response, obtained by the flow models. In turn, this complex product in the frequency domain can be 

converted back in the time domain by applying the inverse Fourier transform function again. An 

overview of how these methodology aspects all connect in this research project, is presented in 

Figure 1.2. 

Figure 1.1: Southern Bight of the North Sea (dark blue) in 
front of the Dutch coast (Beets et al., 1999). 
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1.3 Report outline 
The report is structured by the following chapters. 

Chapter 2: Fourier transform approach. Because the Fourier transform techniques plays such an 

important part in this study, the fundamentals of this approach are explained more in detail in this 

chapter. Furthermore, a sensitivity analysis has been conducted to study the influence of wind event 

characteristics on the spectral representation of the wind event. This will give an answer to the first 

research question.  

Chapter 3: Model formulation. The two flow models that are used in this study are formulated and 

explained further with the shallow water equations and their underlying assumptions. The semi-

analytical 3-D flow model of W.L. Chen et al. (2016) will be treated first, followed by the analytical 1-

DH flow model. Mainly, the formulation and its derivations (Appendix A) of the 1-DH model 

contributed to obtaining the solution for the spectral response of the basin’s surface elevation, which 

answers the second research question. 

Chapter 4: Results of the analytical 1-DH flow model. Several case studies have been performed 

with the 1-DH model and the results are presented in this chapter. The conducted sensitivity analyses 

give an answer to the third research question, which serves as a basis for the case studies to be 

performed using the FEM model. 

Chapter 5: Results of the semi-analytical 3-D flow model. Several case studies have been performed 

in the FEM model to study the effects of topographic elements in combination with wind direction. 

The results are presented in this chapter. The conducted sensitivity analyses give an answer to the 

fourth research question. Furthermore, the results of both models have been compared with each 

other, based on similar study cases.  

Chapter 6: Time-dependent response of the basin’s surface elevation to a single wind event. The 

insights gained from the previous chapters will be applied to illustrate some of the main effects on 

the actual time-dependent set-up in the basin, via a few study cases. These cases will be driven by a 

few different single wind events and the resulting spectral responses will be converted into the time 

domain. This way, the actual response of the basin’s elevation can be obtained to see its oscillating 

effects over time for the cases of interest. This will answer the last research question.  

Chapter 7: Discussion. Here, we discuss the main findings of this study and threat model choices and 

assumptions formulate the conclusions. 

Chapter 8: Conclusions & Recommendations. This final chapter answers the research questions of 

this research project, followed by recommendations for further study.  

 



6 
 

 

 

 

Figure 1.2: Overview of the connected methodology aspects in the research project, distinguished by the temporal (left) and spectral (right) 
representation. By following these steps (in clockwise direction, starting in the upper left corner), the actual response of the basin in the 
time domain will be required. The spectral response of the basin can be obtained by choosing one of the two models. 
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Chapter 2  

Fourier transform approach 
In this chapter we will explain how a single wind event in the time domain can be converted to the 

frequency domain and converted back to the time domain by using Fourier transform techniques. 

Section 2.1 treats the theory behind these techniques. In Section 2.2 we apply these techniques by 

converting some examples of time-dependent wind events in to the frequency domain. In addition, 

we illustrate how a wind event in the time domain is reproduced by a superposition of Fourier modes 

using the inverse Fourier transform. At the end, an exploratory sensitivity analysis will be conducted 

to study the influence of some typical wind event characteristics, such as effective duration and ramp 

stages, on the representation in the frequency domain. 

 

2.1 Temporal and spectral representation of a single wind event 
At first, the terms temporal and spectral representation will be explained. If a signal is represented 

by its value as a function of time in the time domain, we call this the temporal representation of the 

signal. If a signal is represented by its amplitude and phase as a function of frequency in the 

frequency domain, we will call this the spectral representation of the signal. It should be clear that 

these representations are just two different ways of representing the same signal. Each 

representation can be derived from the other by using Fourier transform techniques, i.e. one of the 

two representations is required to obtain both representations for any signal. The Fourier transform 

approach allows us to switch easily between the two representations.   

One important aspect of the Fourier theory is that any smooth periodic signal can be 

represented as a sum of sinusoids. These sinusoids consist of a mixture of cosines and sines to 

represent the amplitude and phase information of the periodic signal properly. This is the so-called 

discrete Fourier series representation (e.g., see Duhamel et al., 1988). In this study we consider a 

single wind event as a periodic signal. Therefore a single wind event is defined as a signal that will be 

repeated every Trecur days, to be discussed further below in Section 2.2.1. The Fourier series is 

denoted by: 

        

 

   

    
    

      
        

    

      
                                                                        

with coefficients Am and Bm and mode number m. Thereto, B0 is irrelevant. The signal y(t) can be 

either input or output. It can represent for example wind stress regarding the forcing or surface 

elevation regarding the solution. In this chapter y(t) represents the wind stress of a single wind 

event. If we consider the periodic signal to be smooth, the infinite sum gives a perfectly accurate 

representation of the signal y(t). An approximation will be given by truncating this sum to a finite 

sum M-1. In fact y(t) is decomposed into M sinusoids with appropriate amplitude, phase and 

frequency components. These frequency components consist of integers, the so-called higher 
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harmonics (m o for m = 2, 3, 4, …), of the fundamental frequency ( o = 2π/Trecur). Eq. (2.1) now 

becomes: 

                                

   

   

                                                               

Since cosines and sines have no average term, periodic signals that have a non-zero average will have 

a constant component A0. We can derive the spectral representation of the periodic signal y(t), once 

we know the coefficients A0, Am and Bm. Instead of using integration techniques (e.g., see Weisstein 

2015) to calculate the coefficients, a more efficient algorithm will be used to compute the Fourier 

series. This algorithm is known as the fast Fourier transform (FFT) and will be used in this study to 

obtain the spectral representation of a single wind event.  

Now consider the same periodic signal y(t) again, composed of a sequence of P numbers yo, 

y1, .., yP-1. The Fourier series can be derived by transforming the signal yp into a series of complex 

numbers Ym, using the following algorithm: 

      

   

   

     
     

 
                                                                                                        

Depending on the number of modes M, each complex number Ym encodes both amplitude and phase 

of the corresponding sinusoidal component of the signal yp. The FFT-function is provided as a built-in 

function in MATLAB, which enables us to do these computations fast and easy.  

Once we have obtained the spectral representation of a single wind event in the frequency 

domain, we can present it in a graph by plotting the complex amplitude of each mode m per 

corresponding frequency m o. This shows to which extent the frequencies are being forced by the 

wind event. In upcoming chapters we will calculate the frequency response of the basin by exerting 

periodic wind forcing on the hydrodynamic systems. A periodic wind forcing is represented by a 

sinusoid of a particular frequency. A range of periodic wind forcings of various frequencies will be 

used as input vector in our hydrodynamic models. In turn, the models calculate the resulting complex 

amplification of the surface water elevation, which is the frequency response of the implemented 

wind forcing. In this report, the frequency response is also called the spectral response. To obtain the 

actual response of the basin’s elevation (ARm) to a specific wind event, the spectral representation of 

the wind event (Ym) has to be multiplied by the basin’s spectral response to unit wind forcing (SRm): 

                                                                                                                                       

Finally, to obtain the actual response (arp) of the basin in the time domain, the complex 

multiplication function ARm has to be converted back to the time domain using the inverse Fourier 

transform function: 

    
 

 
    

   

   

    
     

 
                                                                                                  

In the upcoming section, examples of single wind events in the temporal representation have been 

converted in the spectral representation. In addition, a sensitivity analysis has been conducted to 

study the influence of typical characteristics of a single wind event on its spectral representation.  
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2.2 Single wind event cases in the time and frequency domain 

2.2.1 Single wind event representation in the time domain 
In the previous section we showed that a single wind event can be represented as a signal composed 

of a superposition of many sinusoids. The fact that a single wind event is repeated over time is a 

direct consequence of using the discrete Fourier transform method to translate the signal in the 

frequency domain later on. Figure 2.1 shows an example of a wind event repeated over recurrence 

time Trecur. The forcing of the wind is denoted by the value of the wind stress. 

 

 

 

 

 

 

A wind event is considered to gradually increase (decrease) in amplitude when gaining force 

(damping out). These smoothed ramp stages are defined here as a cosine function. The duration of a 

ramp stage is denoted by Tramp. The smoothness of a wind event plays an important role in the 

spectral representation of the wind event, which we will show later in the chapter. To illustrate the 

smoothness of a wind event in the time domain, a wind event of six hours (Tevent) without ramping 

(Fig. 2.2a) is compared to a wind event of the same effective duration with smoothed ramp stages 

(Fig. 2.2b). In the latter case, the effective duration Tevent is defined as the time span between halfway 

ramp-up and halfway ramp-down of the wind event, such that the forcing area corresponds to the 

former case. In these wind events, a wind stress of 1 N m-2 is applied as maximum forcing. 

 

 

 

 

 

 

 

 

Figure 2.2: Temporal representation 
of two single wind events with the 
same Tevent (6 hrs): (a) without ramp 
stages (Tramp = 0), (b) with smoothed 
ramp stages (Tramp = 2 hours). 

Figure 2.1: Single wind event 
representation in time domain 
over period Trecur. 
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In the following section we will convert these and other examples of wind events in the frequency 

domain using the fast Fourier transform technique in MATLAB. An exploratory sensitivity analysis will 

be conducted regarding the effects of varying the durations Tramp and Tevent of single wind events. 

 

2.2.2 Single wind event representation in the frequency domain 
In Section 2.1 we explained that we can use the FFT-function in MATLAB for converting signals in 

time domain to signals in frequency domain. By using this technique, we can choose the number of 

Fourier modes to represent our wind event in the time domain. The more modes m we choose, the 

more accurate the wind event is being represented by its underlying sum of m sinusoids (also 

explained in Section 2.1). A drawback, however, is an increase in computation time when applying 

more modes. To illustrate the degree of accuracy, the wind event from the previous section (Fig. 2.2) 

is reproduced by means of a superposition of 75 and 150 modes. A recurrence time Trecur of 10 days is 

used for this wind event to connect with work of Chen (Chen et al., 2015). The original wind event 

(dotted black) is reproduced by 75 (blue) and 150 (pink) Fourier modes over a time span of 16 hours, 

shown in Figure 2.3. This clearly shows that the reproduced wind event with Tramp (Fig. 2.3b) is much 

more accurately representing the original wind event than the reproduced wind event without Tramp 

(Fig. 2.3a). Furthermore it shows that a higher accuracy can be obtained, for both ramp 

representations, by choosing more modes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Accuracy test: Original wind event (Tevent = 6 hrs) with (b) and without (a) Tramp (2 hrs), 
reproduced by a superposition of 75 (blue) and 150 (pink) Fourier modes with Trecur = 14 days.  
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Next, to illustrate the influence of duration and ramp stages on the spectral representation of a wind 

event, two effective wind event durations with various ramp stages are converted to the frequency 

domain. The durations and ramp stages will be expressed as a dimensionless fraction of Trecur. This 

means that, regardless of the value Trecur, for a fixed number of modes identical fractions for duration 

and ramp stage of a wind event will give identical Fourier spectra. A few examples of wind events 

with two different durations and four different ramp stages are converted in the frequency domain 

and shown in Figure 2.4. Of course the number of Fourier modes still influences the Fourier spectra. 

Here we have chosen the number of 300 modes, which is very accurately representing the time-

dependent wind events. The maximum magnitudes, not shown in the plots, for Figure 2.4a and 2.4b 

are 0.05 and 0.15 N m-2 respectively. First, Figure 2.4 clearly shows that ramp stages of a wind event 

in time domain influences the representation in the frequency domain. It illustrates that Tramp has a 

significant influence on the spectral representation of the wind event, especially in the tail of the 

graph. Further increasing Tramp will lower the wind amplification in the Fourier spectrum even more. 

Second, by comparing Figure 2.4a with 2.4b, it can be concluded that increasing Tevent increases the 

wind amplification in the frequency domain. Furthermore, increasing Tevent will result in more 

condensed amplification peaks in the frequency domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.4: Spectral representation of two wind events (a & b) with multiple ramp stages Tramp/Trecur (-); 
wind stress (N m-2) as a function of the dimensionless forcing frequency  / min (modes): (a) Effective wind 
event duration Tevent/Trecur of 0.025 (-) with various dimensionless values of Tramp/Trecur = 0.0025 (black), 
0.005 (blue), 0.0075 (green) and 0.01 (pink), (b) Tevent/Trecur = 0.075 (-) with the same ramp stages.       
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To illustrate the sensitivity of the spectral representation of a wind event to changes in Tevent, a series 

of single wind events with various durations have been converted to the frequency domain using 300 

modes. The several wind event cases are conducted with two ramp stages that are used in Figure 2.4 

as well: Tramp/Trecur = 0.0025 (a) & 0.01 (b) (-), presented in color plots in Figure 2.5 (next page). 

Furthermore, the effective wind event durations presented in Figure 2.4 are represented by the 

white dashed lines in Figure 2.5. Only the first 150 modes are shown to zoom in on the differences 

between the two color plots. Figure 2.5 once more illustrates how the characteristics, duration and 

smoothness of ramp stages, of a wind event influence the spectral representation of a wind event. 

These insights are valuable for interpreting spectral responses of the basin’s elevation in upcoming 

chapters.  

  Later in Chapter 6, we give more examples of single wind events, with realistic values for 

variables Tramp, Tevent, Trecur and number of frequency modes, to see their influences on the time-

dependent set-up of the basin.   

 

2.3 Summary 
By considering a single wind event and its response as a periodic signal, it allows us to easily switch 

between the between the temporal and spectral representation of both forcing and response by 

means of the Fourier transform approach. Its application will be further addressed particularly in 

Chapter 6.  

Furthermore, an exploratory sensitivity analysis has shown that the duration (Tevent) and 

smoothness (Tramp) of a wind event play an important role in the spectral representation of the wind 

event. It turns out that the spectral energy of the wind signal is distributed in more condensed peaks 

with higher amplitudes when we increase Tevent, and that increasing Tramp will lower the amplitudes, 

especially at higher frequencies. These insights are valuable for interpreting spectral responses of the 

basin’s elevation in Chapters 4, 5 and 6.      
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Figure 2.5: Wind stress (N m-2) as a function of frequency  / min (modes) (horizontal axis) and wind duration 
Tevent/Trecur (-) (vertical axis) of a single wind event: (a) Tramp/Trecur = 0.0025 (-), (b) Tramp/Trecur = 0.01 (-). The dashed 
white lines in both plots represent the wind event cases with Tevent/Trecur = 0.025 & 0.075 (-). Both plots are 
simulated with 300 modes (the first 150 modes are shown here). 
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Chapter 3 

Model formulation 
This chapter treats the formulation of the analytical 1-DH model and the semi-analytical 3-D FEM 

model of W.L. Chen et al. (2016). First, the model outline of the 3-D flow model will be treated in 

Section 3.1. Here, the hydrodynamics, boundary conditions and a short outline of the solution 

method will be given. Next, the model outline of the 1-DH flow model will be treated in Section 3.2, 

where a transition from the 3-D hydrodynamics towards the 1-DH hydrodynamics takes place. All 

underlying assumptions will be treated thoroughly. 

 

3.1 Outline of the FEM model 

3.1.1 Representation of the closed and semi-enclosed basin 
This study is focused on two different types of rectangular basins: a closed and a semi-enclosed 

basin. The closed basin consists of four closed basin boundaries where water cannot flow through. 

The semi-enclosed basin has three closed boundaries and one open boundary, where water can flow 

through, but where elevation will be fixed. The geometry of both types of basins is presented in 

Figure 3.1. 

 

 

 

 

Figure 3.1: Definition sketch of the model geometry, 

showing rectangular basins of uniform depth: top view 

of the closed (a) and semi-enclosed (b) basin, (c) side 

view in along-basin direction displaying the vertical 

profile of one component of the three-dimensional flow 

field in the closed basin (Chen et al., 2015).  

 



16 
 

Here, x and y are the along-basin and cross-basin coordinates of the rectangular basin with length L 

and width B. The open boundary in the semi-enclosed basin is located at x = 0. The topography of the 

basin can be varied in many ways. In Figure 3.1c we have presented a flat bed topography in the 

closed basin, resulting in a uniform depth h. The depth contours of the basin are modeled by the 

vertical coordinate z. The bed level is denoted by z = -h with respect to the undisturbed water level    

z = 0 and the free surface elevation z =  . An important aspect of the FEM model is that we can 

model smoothly varying topographies. These kind of topographic elements will be treated more 

thoroughly in Chapter 5. 

 

3.1.2 Shallow water equations 
Here, we will introduce the hydrodynamics to describe the processes applied in the water system of 

the FEM model. The shallow water equations, which are derived from the well known Navier-Stokes 

equations, are used to express the hydrodynamic processes. By assuming linear dynamics, based on 

the assumption  /h << 1, non-linear processes will be neglected. Conservation of momentum and 

mass is expressed by the linearised shallow water equations: 

  

  
   

  

  
 

 

  
   

  

  
                                                                                                             

  

  
   

  

  
 

 

  
   

  

  
                                                                                                             

  

  
 
  

  
 
  

  
                                                                                                                            

Here, u, v and w (m s-1) are the flow velocity components in x, y and z-direction, g is the gravitational 

acceleration (9.81 m s-2),   is the free surface elevation (m) and Kv is the uniform vertical eddy 

viscosity (m2 s-1). Horizontal mixing of momentum is neglected. Although the model can deal with 

Coriolis effects, they are neglected here to focus on other mechanisms influencing the surface 

elevation’s behavior, such as wind direction, bottom friction and topographic basin elements.  

 

3.1.3 Boundary conditions 
The model is driven by wind forcing only, while atmospheric pressure is neglected. Thereto, the 

system is forced by imposing a time-dependent wind stress at the free surface. At the bottom, a 

partial-slip condition is imposed to include bottom friction. Assuming that the vertical displacement 

of the free surface is small (rigid lid approximation), the vertical boundary conditions along with the 

kinematic boundary conditions are given by 

  
  

  
              

  

  
 
  

  
  

   
   

    
   

 

  
                                                                        

                     
  

  
 
  

  
                                                                                        

The rigid lid approximation allows the free surface condition to be imposed at z = 0 instead of at         

z =  . Bottom friction is represented by the partial-slip condition with resistance parameter s (m s-1). 
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Large s corresponds to a no-slip condition, where s = 0 corresponds to a free-slip condition. The wind 

forcing at the surface of the basin consists of the wind stress  w (kg m-1 s-2) divided by the water 

density  w (1000 kg m-3). Suggested by Wu (1982), the wind stress can be obtained by applying a 

commonly used empirical relation between wind stress and wind velocity: 

                                                                                                

with air density  a (1.2 kg m-3), dimensionless drag coefficient Cd and the vector W (m s-1) denoting 

the two-dimensional horizontal wind velocity vector 10 m above the water surface. 

 Furthermore, the horizontal boundary conditions concern the closed and semi-enclosed 

boundaries, depending on the geometry of the basin, shown in Figure 3.1. At the closed boundaries 

in the model domain, we impose a zero transport condition normal to the closed boundaries. This 

implies that there is no-normal flow at these boundaries. Therefore we require the vertical 

integration from bottom to surface of u and v to be zero at these locations: 

 

             
 

  

                      

        

           
 

  

                        

 

 
 
 

 
 

                                                                     

In the semi-enclosed basin, we assume that the open boundary is connected with the outer sea, 

represented by a huge deep water mass. This outer region effectively imposes a boundary condition 

to our domain of interest. This implies that the surface water elevation is considered to be zero at 

this open boundary, which results in the imposed Dirichlet condition:   = 0. At the closed boundaries, 

we impose no-normal flow, as in Eq. (3.8), i.e. 

 

                                           

                    
 

  

              

                       
 

  

                   

       

 
 
 

 
 

                                                         

 

3.1.4 Outline of the solution method 
The water system is forced by a time-periodic and space-uniform wind stress with angular frequency 

  (rad s-1), aligned with the x-direction. By using complex notation, the wind stress vector (  
   

,   
   

) 

in Eq. (3.4) is denoted as follows: 

   
   

    
   

 

  
                                                                                                       

where amplitude T(x), T(y) (m2 s-2) denotes the magnitude of the wind forcing (wind stress divided by 

water density). The solution to a periodic wind in an arbitrary direction is the superposition of the 

separate solutions for wind in x- and y-direction only. By assuming a dynamic equilibrium, the 

solution of the surface elevation and currents will be expressed in a time-periodic fashion as well, 

according to 
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with complex amplitudes N and U. Similar expressions hold for v and w, with complex amplitudes V 

and W. The equations will be solved numerically to find the surface elevation at particular locations 

in the basin. A complete explanation of the solution method can be found in Chen et al., 2016. 

 

3.2 Outline of the analytical 1-DH model 
The second model that we use in this study is an analytical 1-DH flow model. In this model we have 

applied a slightly modified coordinate system for mathematical convenience. Furthermore we have 

chosen a simplified basin topography. The applied single step topography is a simple but effective 

method to simulate depth differences in the basin. In this way the resonance properties of the basin 

can be studied sufficiently for the purpose of this study. Because we can simulate far more complex 

and realistic basin topographies in the 3-D model, it is not necessary to simulate more complex basin 

topographies in the 1-DH model. 

 

3.2.1 Representation of the closed and semi-enclosed basin 
Unlike the 3-D flow model, treated in the previous section, we assume one-dimensional depth-

averaged flow in the 1-DH flow model. Here, the width B of the basin is considered to be very small 

compared to the length L of the basin, i.e. B   L. This means that cross-basin flow is negligible and 

one-dimensional flow is considered in the x-direction. The geometry of both types of basins is 

presented in Figure 3.2. 

 

Here, x and y are the along-basin and cross-basin coordinates with the along-basin boundaries 

located at x = -L1 and x = L2. The open boundary in the semi-enclosed basin is located at x = -L1. To 

create depth differences in the basin, a topographic step is introduced, located at x = 0. An important 

notification here is that the basin consists of two compartments. These two compartments (1 & 2) 

generally have a different uniform water depth h1 and h2, connected by a topographic step. A flat bed 

topography is represented by setting h1 = h2. Moreover,    denotes the average depth of the basin. 

The length of compartment 1 and 2 is denoted by L1 and L2 respectively. The lengths and depths of 

the compartments can be varied in the model. A sketch of the basin topography is presented in 

Figure 3.3. 

Figure 3.2: Sketches of the model geometries of the two basins: (a) top view of the closed basin, (b) top view of the semi-enclosed basin 
with open boundary at x = - L1, represented by the dashed line at the left boundary. A step location is situated at x = 0, represented by the 
dashed line at the center of the basin. The width of the basin B is assumed to be very small compared to the length L of the basin (B   L). 
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3.2.2 Shallow water equations 
In our analytical model, we assume depth-averaged flow and neglect flow in the y-direction (B   L), 

which results in our one-dimensional depth-averaged (1-DH) flow model. To obtain the 1-DH shallow 

water equations, we depth-integrate Eqs. (3.1) and (3.3) from bottom to surface of the basin with 

conditions (3.4) and (3.5) in the x-direction only. In addition, the bottom stress formulation (Eq. 3.5) 

is parameterized by replacing su at the bottom by r  . Here, we have introduced a linear bottom 

friction coefficient r (m s-1). Subsequently, the resulting 1-DH shallow water equations are denoted 

by:  

   

  
 
   

 
   

  

  
 

  
   

   
                                                                                                            

 
  

  
  

   

  
                                                                                                                                  

               
 

 
                                                                                                        

 

  

 

With depth-averaged flow    in x-direction.  

 

3.2.3 Matching and boundary conditions 
Here, it has been taken into account that the depth of the basin is uniform everywhere, except at the 

step. Therefore matching conditions, consisting of continuity of volume transport and surface water 

elevation, apply at the step location (x = 0): 

                                                                                                                           

 

Figure 3.3: Side view sketch of a single step topography in the closed basin, consisting of two compartments which can vary in depth and 
length (represented by the arrows). Coordinates x = -L1 and x = L2 represent the horizontal boundary locations. The water depths of  
compartment 1 and 2 are h1 and h2 respectively, connected by a step at x = 0. The surface elevation relative to the still water level (upper 

dashed line) is denoted by  (x,t). A flat bed case is represented by the lower dashed line, with average water depth   . A similar sketch 
applies for the semi-enclosed basin, only with an open boundary at x = -L1. 
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Since the water is bounded, no horizontal flow is imposed at the closed boundaries. The horizontal 

boundary conditions for the closed basin are given by 

                                                                                                      

In the semi-enclosed basin, we impose a zero surface elevation condition at the open boundary, as in 

the FEM model. At the closed boundary, the condition of no horizontal flow, as in Eq. (3.17), is 

imposed. The horizontal boundary conditions for the semi-enclosed basin are given by 

                                                                                         

 

3.2.4 Outline of the solution method 
The wind forcing is again assumed to be time-periodic and space-uniform and considered as an 

along-basin wind. In complex notation, this will be denoted as 

  
   

  
                                                                                                                           

By assuming a dynamic equilibrium, the solution of the differential problem will be written in a time-

periodic fashion, with complex amplitudes N and U, according to: 

                                                                                                                           

                                                                                                                            

Because the system of equations is linear, the problem can be reduced to solving the complex 

amplitudes N and U. By substitution, the amplitudes satisfy 

     
  

 
   

  

  
 
    

 
                                                                                                    

      
  

  
                                                                                                                           

By rearranging Eq. (3.22) it follows that 

         
  

  
 
    

 
                    

  

  
                                                           

A complex frictional correction factor  2 has been introduced as a function of the linear friction 

coefficient r. In absence of bottom friction, this factor is equal to one. The derived equations of 

motion (3.23 & 3.24) for this 1-DH setting can now be solved analytically for any location (x), by 

applying the matching and boundary conditions (3.16 – 3.18). 

In Chapter 4, the surface elevation at a specific location in the basin will be calculated. 

Because we are mainly interested in the behavior of the surface elevation at the coast, we have 

chosen to focus on the closed boundary at the rear end of the basin. This means that we will study 

the behavior of the surface elevation at the rear end of the basin (x = L2), and that this location will 

be our evaluation point in upcoming analyses. Before that, we first have to derive the solution at this 

point: N2(L2). The solution method is further explained in Appendix A. 
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3.3 Summary 
Two flow models will be used in this study to simulate the hydrodynamics in the basin. The 

hydrodynamic processes are expressed by the linearised shallow water equations in both models. 

While the semi-analytical 3-D model simulates both the along- and cross-basin dynamics, the 

analytical 1-DH model only simulates the along-basin dynamics based on depth-averaged flow 

velocities. However, the 1-DH model will be mainly used to better understand certain processes 

(treated in the next chapter) which play an important role in the set-up behavior of shallow coastal 

basins, subject to along-basin wind forcing. In turn, these insights will contribute to interpret the 

results of the cases in the 3-D model, and in particular the results concerning the behavior of the 

basin’s spectral response, subject to wind forcing in arbitrary direction.       

 Two types of coastal basins are considered in this study: a closed and a semi-enclosed basin. 

These rectangular basins differ from each other by a closed and an open boundary at the front of the 

basin, expressed in the boundary conditions for both models. 

 The 1-DH model can only simulate step topographies (including a flat bed), whereas the 3-D 

model can simulate several types of complex topographies. Which specific basin topographies we 

actually study will be treated in Chapters 4 and 5. 
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Chapter 4 

Results of the analytical 1-DH model 
To answer the third research question, several cases have been studied using an analytical 1-DH 

model. The underlying surface elevation solutions of this model have been derived in Appendix A.2 

and A.3.  

First we will illustrate how resonance is reflected in the spectral response of both types of 

basins by simulating simple cases in the model. At the same time, the influence of bottom friction is 

shown in the spectral response of these reference cases (Section 4.1).  

  In turn, we will study the influence of varying the topography on the basin’s spectral 

response of both types of basins by conducting two sensitivity analyses in Section 4.2. The first 

analysis focuses on the depth differences of two basin compartments in general, to study the 

influence of the basin’s depth ratio on the basin’s spectral response (Section 4.2.1). The resulting 

insights will be explained more thoroughly by highlighting specific cases in Section 4.2.2. The second 

analysis focuses on the influence of topographic elements, such as shoals and pits, on the basin’s 

spectral response (Section 4.2.3). For each case the volume of the basin remains constant by 

redistributing sand in the basin, in contrast to the cases in Section 4.2.1. All the cases, required for 

both analyses, have been simulated with different bottom friction coefficients to illustrate the 

influence of bottom friction as well. 

 

4.1 Reference flat bed case 
Resonance plays an important role in the spectral response behavior in our modeled cases. To 

illustrate the phenomenon of resonance, we will first look into the solutions of the most simple cases 

in the model: flat bed topography without bottom friction in the closed and semi-enclosed basin. The 

solutions for these cases at the rear end of the basin (x = L) are derived in Appendix A (Eqs. A.14 & 

A.24): 

           
    

   
 
       

     
                         

    

   
                                                 

                           
 

   
   

Resonance will occur if these amplitudes (           &          ) take on large values. In the closed 

basin, large values will be obtained if the term       in the denominator of the solution becomes 

very small, say       ≈ 0, whereas the enumerator attains a finite value. Since         0 if    

equals to integers of  , resonance occurs if    becomes close to integers of  . This is true only if the 

term       ≠ 1 in the enumerator. Because         1 if    equals even integers of  , resonance 

only occurs if    becomes close to odd integers of  , i.e.      , 3 , 5 … etc. The same reasoning 

can be applied to the solution of the semi-enclosed basin, resulting in occurrence of resonance if    

becomes close to odd integers of ½  , i.e.        , 3/2  , 5/2  … etc.  
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Before we plot the solutions of the flat bed cases, two scaling terms will be introduced first. The 

amplification of the surface water elevation will be expressed in terms of the dimensionless elevation 

amplitude A, defined as            . The scaling term Nref is a reference elevation which follows 

from the balance between surface elevation and wind stress. From chapter 3, the terms at the right 

hand side of the momentum equation (3.24) have to contain identical scales in order to conserve the 

balance. The required surface elevation N of the shallow water wave to balance the wind stress, 

follows from the horizontal derivative term of N. The magnitude of the horizontal derivative of N will 

be kN, due to the fact that the shallow water wave has a cosine kx behavior. Scaling term Nref is then 

derived according to: 

     
    

 
                

    

   
           

 

   
                  

    

       

                            

This so-called scaling argument gives roughly the reference elevation Nref required for a shallow 

water wave with reference depth href to balance the wind stress T(x) for a certain frequency ω. 

The forcing frequency range will be expressed in the dimensionless frequency term  / ref. 

The scaling term  ref is a reference frequency which is defined as the frequency for which the 

frictionless shallow water wavelength   equals the basin length L: 

  
     

 
                       

     

 
                                                                                         

To this end, in the flat bed topography cases, the classical resonance peaks are obtained at  / ref - 

values of odd integers of ½ in the closed basin and odd integers of ¼ in the semi-enclosed basin, 

clearly illustrated in Figure 4.1 for both types of basins. 

The solutions of the spectral response at the rear end of the basin are presented in Figure 4.1 

for the closed and semi-enclosed basin. The spectral response is represented by the amplification (A) 

as a function of a range of forcing frequencies ( / ref). To illustrate the influence of bottom friction, 

the results of a few flat bed cases with different values of the bottom friction coefficient r are 

presented in the figure. The figure shows that the blue and red peaks coincide with the classical 

resonance peaks for the closed and semi-enclosed basin respectively. Furthermore, it shows that the 

amplitudes at the resonant frequencies decrease as the friction coefficient increases. In line with 

that, extremely large resonance peaks show up in the flat bed cases without bottom friction (r = 0), 

not shown in the figure. These results apply to closed and semi-enclosed basins of arbitrary basin 

length and depth with a flat bed topography, forced by a periodic wind forcing with arbitrary wind 

stress. In upcoming sections, we will use these results as a reference case to analyze the sensitivity of 

spectral response behavior to changes in topography and bottom friction. 
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4.2 Sensitivity analysis regarding single step topography cases 
In this section we will investigate the influence of the step topography on the spectral response. To 

study the influence of topographic elements in the basin, depth and length dimensions of the basin 

regions (connected by a topographic step) will be varied in the model to simulate several topographic 

features of the basin. In each case, the bottom friction coefficient will be varied as well to study the 

influence of bottom friction. In this way the sensitivity of the spectral response of the basin’s surface 

elevation have been analyzed systematically. For each case, the closed basin results will be discussed 

first, followed by the semi-enclosed basin results. A reference basin length of 200 km is applied in all 

cases.  

 

4.2.1 Sensitivity of the spectral response to depth ratio h2/h1 
In this first sensitivity analysis we will study the depth ratio between depth h2 of compartment 2 and 

depth h1 of compartment 1 in our model. To cover a depth ratio h2/h1 ranging from 0.1 to 10, h2 is 

varied between 2 and 200 m, while h1 is kept constant to 20 m. The studied h2/h1 ratios are 

presented on a vertical log scale in Figure 4.2. The location of the topographic step will be located at 

the center of the basin, meaning L1 = L2 = 100 km.  

Model simulations have been done with three different values of the bottom friction 

coefficient, representing no bottom friction (r = 0), weak bottom friction (r = 0.0002 m s-1) and 

moderate bottom friction (r = 0.001 m s-1). Figure 4.2 shows the scaled amplification factor A as a 

function of  / ref (horizontal axis) and the depth ratio h2/h1 (logarithmic vertical axis) at the rear end 

of the basin (x = L) for three bottom friction cases (a, b, c). The reference frequency ωref is derived 

from the reference depth href = h1. Recall from Section 4.1 that the dimensionless amplification factor 

A is defined as            , with                 .  

Figure 4.1: Scaled amplification factor A as a function of dimensionless forcing frequency  / ref at the rear end of the closed 
(blue) and semi-enclosed (red) basin with flat bed topographies. Four different descending bottom friction coefficients (r = 0.001, 
0.0005, 0.0003 and 0.0002 m s-1) are represented by corresponding descending color tints (dark is strongest friction) for both 
types of basins. 
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The first case without bottom friction (Fig 4.2a) demonstrates that the classical resonance peaks 

appear at depth ratio h2/h1 = 1, indicated by the white line in the plots. At values below (above) this 

line, compartment 2 is shallower (deeper) than compartment 1. What we notice is that these 

resonance peaks shift to the left (right) when the depth ratio becomes < 1 (> 1). The explanation 

behind this behavior follows from the fact that waves in shallow water propagate more slowly than 

waves in deep water. This is also reflected in the expression for the propagation speed c of a shallow 

water wave:      . This means that the time (wave period) it takes for a wave to cover a cycle in 

the basin, increases in shallower water. The wave frequency is the reciprocal of the wave period, 

therefore the wave frequency decreases when the wave period increases. This means that the 

natural frequencies of the basin decrease (increase) when the basin becomes shallower (deeper). In 

order to get resonance, the forcing frequency should coincide with one of the natural frequencies of 

the basin. This explains that peaks will shift to the left (right), representing lower (higher) resonant 

frequencies, when h2 becomes shallower (deeper) than h1. We also notice that new peaks show up, 

which were absent for h2 = h1, due to breaking of symmetry.  

If we now compare the frictionless case with the bottom friction cases (Figs. 4.2b & c), it is 

directly seen that the amplification A damps significantly due to bottom friction. Increasing the 

friction coefficient will damp the amplification even further. Also, we see that in shallower regions 

(below the white line) bottom friction damps the amplification to a higher degree than in deeper 

regions (above the white line). This can be explained by the fact that the velocity of the waves will be 

slowed down to a higher degree in shallower regions, which leads to larger damping of amplification.  

The same sensitivity study of spectral response to depth ratio h2/h1 has been conducted for 

the semi-enclosed basin. The resulting color plots for the three bottom friction cases have been 

presented in Figure 4.3a-c. Based on these plots, a similar spectral response’s behavior of the semi-

enclosed basin to the spectral response’s behavior of the closed basin is noticed. 
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Figure 4.2: Scaled amplification factor A as a function of dimensionless forcing frequency ω/ωref (horizontal axis) and depth 
ratio h2/h1 (vertical logarithmic axis) with different bottom friction coefficients at the rear end of the closed basin (x = L): 
(a) no bottom friction (r = 0), (b) weak bottom friction (r = 0.0002 m s-1), (c) moderate bottom friction (r = 0.001 m s-1). The 
white line represents the flat bed topography (h2/h1 = 1), already shown in Fig. 4.1. In all cases, h1 = 20 m. 
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Figure 4.3: Same as Figure 4.2, but now for the semi-enclosed basin. 
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4.2.2 Step case with average basin depth equal to reference depth 

From the previous sensitivity analyses we concluded that the basin’s depth plays an important role in 

basin’s spectral response behavior due to the relation between propagation speed and water depth: 

     . In this section we elaborate further on this relation by implementing a single case in the 

model to study the influence of the effective wave speed and the effective bottom friction on the 

spectral response in shallow and deep regions in the basin.  

 In this case the average basin depth is equal to the reference depth (20 m) of the flat bed 

case. Because of the 1-DH representation of the basin, the basin volume is represented by its side 

surface (volume per meter width). The topographic step will be located at the center (L1 = L2) of the 

basin, with h1 = 10 m and h2 = 30 m. The spectral response of this case will be compared with the 

spectral response of the flat bed case, shown in Figure 4.4. A sketch of the basin topographies is 

shown to the right of the plot: flat bed (black) and step (pink) topography. A weak bottom friction 

coefficient is applied for both cases in the closed basin. 

 

Figure 4.4 shows that the peaks in this step topography case will shift to the left compared to the flat 

bed case, while the total volume in the basin remains the same. This suggests that the shallower 

region in the basin dominates the deeper region. This can be explained by the difference in  effective 

wave speed in the two cases. The effective wave speed in the flat bed case follows from       

         14.01 m s-1. The effective wave speed in the step topography case is the average of the 

sum of the wave speeds of both compartments:                      13.53 m s-1. This 

shows that the effective wave speed in the step topography case is lower than in the flat bed case. As 

already explained, due to a lower effective wave speed in the basin the natural frequencies of the 

basin decrease. Therefore resonant frequencies will be lower, meaning peaks will shift to the left.  

Furthermore, we notice from Figure 4.4 that the peaks in the step case are lower than the 

peaks in the flat bed case. This can be explained by the fact that bottom friction is dominating in the 

shallower part of the step case and therefore effectively damps the peaks to a higher degree than in 

the flat bed case. Again we will apply an heuristic approach to illustrate the difference in influence of 

Figure 4.4: Scaled amplification factor A at the rear end of the closed basin (x = L), as a function of dimensionless forcing frequency 
ω/ωref for a step topography case (h1 = 10 m, h2 = 30 m; pink) compared to the flat bed case (black). With href = 20 m and weak bottom 
friction (r = 0.0002 m s-1) for both cases. A side view of the corresponding basin topographies is presented at the upper right. 
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bottom friction on the spectral response between both cases: the bottom friction contribution is 

represented by the friction term r     h-1 of the momentum equation (3.13). For simplicity we assume 

that the depth-averaged flow velocity remains more or less the same with changing depth. Thus, for 

a constant r, the effective friction coefficient is represented by h-1. It turns out that ½ (h1
-1 + h2

-1) > 

href
-1, which indicates that the effective friction in the shallower part dominates the effective friction 

in the deeper part of the step case. This supports our observation of the lowered peaks in the step 

case. In addition, smaller peaks show up in between the classical resonance peaks due to breaking of 

symmetry in the step topography case (as already mentioned before in Section 4.2.1). 

The same case has been implemented in the semi-enclosed basin model as well, shown in 

Figure 4.5. Similar results as in the closed basin model have been found, aside from the peaks due to 

breakdown of symmetry.  

 

 

4.2.3 Sensitivity of the spectral response to the h/L ratio of shoals and pits 
In this section we will simulate topographic elements such as shoals and pits, by redistributing sand 

in the basin. This means that the volume of the basin remains constant for each case. The volume of 

the basin is represented by the side surface of our reference basin: 20 m x 200 km = 4 x 106 m2 

(volume per meter width). A fixed amount of sand will be redistributed from one compartment to 

the other. This amount of sand corresponds with the surface of the shoal and the pit design and is set 

to 5 x 105 m2 (volume per meter width). By varying the basin dimensions in the model, various shoal 

and pit cases can be simulated and studied systematically. Because of the model’s single step 

topography, only rectangular shoals and pits can be simulated. The influence of the basin topography 

distribution on the spectral response will be studied regarding the height/length ratio of the element 

(pit or shoal). The height of the element is represented by the difference between the two 

compartment depths (h2 – h1), the length of the element is represented by the length of 

compartment 2 (L2): helement = h2 – h1; Lelement = L2. 

Figures 4.6 and 4.7 present examples of shoal and pit implementations in the model. In 

Figure 4.6a, the sand is cumulated at a small length L2, which gives a relatively large shoal height. 

Figure 4.6b shows a shoal smeared out over a greater length L2, which gives a relatively small shoal 

height. Figure 4.6a thus has a larger hshoal/Lshoal ratio than Fig 4.6b. Likewise, two different pit 

distributions are shown in Figure 4.7, where Fig 4.7a has a larger hpit/Lpit ratio than Fig 4.7b. For both 

the shoal and the pit design, h1 remains constant and is set to 22.5 m and 17.5 m respectively. 

Figure 4.5: Same as Figure 4.4, but now for the semi-enclosed basin. 
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Reference depth href is set to 20 m. In the shoal cases, h2 is varied between 2.5 and 20 m. In the latter 

case, where h2 is 20 m, the sand is completely smeared out over the basin length and the basin 

becomes a flat bed with a reference depth of 20 m. In the pit cases, h2 is varied between 20 and 37.5 

m. For each case, the length of the element (L2) follows from the surface (5 x 105 m2) divided by the 

height of the element. The height of the element is set to h2 - h1, which means that the h/L ratio of 

the pit (shoal) is positive (negative). In this way the sensitivity of the spectral response to the h/L 

ratio of a pit and shoal design can be compared in a single color plot with positive and negative h/L 

values respectively. The larger the helement/Lelement ratio, both positive and negative, the more 

cumulated the element is distributed over the basin. As already mentioned, Figures 4.6a and 4.7a 

have larger helement/Lelement ratios than Figures 4.6b and 4.7b.  

 

 

First we will present the results of the shoal and pit cases with weak bottom friction. Because the 

cases without bottom friction show similar amplification behavior as the weak bottom friction cases, 

what we have seen in Section 4.2.1 as well, the frictionless cases will not be presented anymore. The 

results are presented in Figure 4.8 for the closed (a) and semi-enclosed (b) basin, where positive 

(negative) helement/Lelement – values on the vertical axes represent the pit (shoal) cases. 

 We first notice in the color plots that wiggles appear close to the h/L ratios of zero. These 

wiggles appear due to the applied non-logarithmic vertical scale, whereby values close to zero are 

squeezed together. Applying a log scale will prevent this. What we further notice from the plots for 

both the closed and semi-enclosed basin, is that the amplification of the resonant peaks of the pit 

design decreases when the hpit/Lpit ratio increases, except for the first resonant peak in both plots. 

This tendency is to a lesser extent also present in the amplification of the resonant peaks of the shoal 

design, especially in the first resonant peak in both plots. Overall, the amplification is lower in the pit 

design than in the shoal design, given that the basin volume is constant in all cases.  

Figure 4.6: Side view sketches of the closed basin topography representing examples of shoal designs: (a) relatively large hshoal/Lshoal ratio, 
(b) relatively small hshoal/Lshoal ratio. L2 is equal to Lshoal. The still water level is represented by the dashed line and h1 = 22.5m. 

Figure 4.7: Same as Fig 4.6, but now for the pit designs. Notice that h1 (17.5 m) in the pit design < h1 (22.5 m) in the shoal design. 
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Figure 4.8: Scaled amplification factor A as a function of dimensionless forcing frequency ω/ωref (horizontal axis) 
and ratio helement/Lelement (vertical axis) at the rear end of the basin (x = L): (a) closed basin, (b) semi-enclosed 
basin. Positive (negative) ratios on the vertical axis represent pit (shoal) cases. r = 0.0002 m s-1, href = 20 m. 
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Furthermore, we notice a tendency of peaks shifting slightly to the left when the hshoal/Lshoal ratio 

increases in the shoal design, which is barely notable in the pit design. This can be explained by 

effective wave speed differences due to increased depth differences in the basin when the ratio 

increases. The effective wave speed in a step topography case with equal compartment lengths, i.e. 

L1 = L2 = 100 km, equals the average of the sum of the wave speeds in both compartments (as 

explained in the previous section). Only in these cases the compartment lengths differ. This means 

that the effective wave speed in the basin can be derived by taking the weighted average of the sum 

of the wave speeds of both compartments:                      , with   = L2/Ltot and Ltot 

denotes the total length of the basin (200 km). Here, the effective wave speed is the same in the 

closed and semi-enclosed basin for a certain case. The effective wave speeds of the shoal and pit 

cases presented in Figure 4.8 are plotted as a function of helement/Lelement in Figure 4.9. This figure 

shows that the effective wave speed decreases as helement/Lelement increases for both the shoal and the 

pit design. It also shows that the shoal design has more influence on the effective wave speed in the 

basin, which explains the larger peak shifts of the shoal design with respect to the pit design in Figure 

4.8. 

 

 

 

 

 

 

 

 

 

 

The influence of bottom friction on the spectral response of the shoal and pit cases are presented in 

Figures B.1 and B.2 in Appendix B. The cases are simulated with moderate bottom friction and 

compared with the weak bottom friction results at lower amplification values of the color axis. The 

results show that increasing bottom friction will damp the amplification, what we already concluded 

in previous sections. Also, it illustrates more clearly that peaks due to breaking of symmetry show up 

mainly in the shoal design at larger values of the hshoal/Lshoal ratio in the closed basin plots. This effect 

is barely visible in the pit design.   

 

 

 

Figure 4.9: Effective wave speed as a function of hshoal/Lshoal and hpit/Lpit for the shoal (blue line) and pit (pink line) 
cases presented in Fig. 4.8. 



34 
 

4.3 Summary 
At first, the results of our analytical 1-DH model illustrate that the reference cases in the closed and 

semi-enclosed basin display spectral response peaks which coincide with the classical resonance 

peaks for these types of basins.  

  The results further show that topographic variations in general causes these resonance peaks 

to shift in the frequency domain, through their effect on effective wave speed. This can be explained 

by the fact that waves in shallow water propagate more slowly than waves in deep water. Due to 

breaking of symmetry, new peaks show up in the spectral response of the closed basin.  

  Moreover, the results point out that the spectral response of a step topography case displays 

lower peaks at lower frequencies compared to the flat bed case with the same basin volume, for 

both the closed and the semi-enclosed basin. This is explained by the fact that the effective bottom 

friction as well as the effective wave speed of the shallower region dominates the effective bottom 

friction and the effective wave speed of the deeper region.  

  Finally we have studied the influence of topographic elements, such as shoals and pits, on 

the spectral response, by varying the height/length ratio of the element, while remaining a constant 

basin volume. In general, it turns out that the resonant peaks of the pit cases are lower than the 

shoal cases. Furthermore, the spectral responses of the shoal cases show that the peaks slightly shift 

to lower frequencies as the height/length ratio of the shoal increases, due to effective wave speed 

differences.  

  Overall, we have found that increasing bottom friction lowers the resonant peaks of the 

spectral response of all studied cases. In the next chapter we will extend the possibilities of 

simulating topographic elements and adding cross-basin dynamics in the basin by using the 3-D FEM 

model.       
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Chapter 5  

Results of the FEM model 
In  this chapter we will perform case studies of the closed and semi-enclosed basin with a strongly 

simplified geometry, but with more realistic and complex topographies compared to the 1-DH cases 

in the previous chapter, using the 3-D FEM model of W.L. Chen et al. (2016). The model settings will 

be treated in Section 5.1, regarding the model domain, grid characteristics, friction parameters and 

number of frequency modes.  

  Despite a few essential differences between the FEM model and the 1-DH model, certain 

simple cases can be simulated in a similar way by both models. To get an impression of how well the 

semi-analytical FEM model simulations match the analytical 1-DH model simulations, a comparison 

analysis will be conducted in Section 5.2 by reproducing the spectral responses of simple cases in the 

1-DH model by simulations of similar cases in the FEM model. At the same time, the bottom friction 

coefficient r of the 1-DH model will be calibrated to two different values, representing weak and 

moderate bottom friction, of the bottom friction coefficient s (and a fixed Kv value) of the FEM model 

using along-basin wind forcing in the flat bed cases of both types of basins. In turn, a few along-basin 

wind cases regarding shoal and pit implementations over the full width of both types of basins 

(Section 5.2.3) and a cross-basin wind case regarding a flat bed in the closed basin (Section 5.2.4), will 

be reproduced in the FEM model and compared with similar 1-DH cases that were simulated with the 

in Section 5.2.2 calibrated r-coefficients.      

 In Section 5.3 we will perform FEM model simulations to study the sensitivity of the location 

of a topographic element on the basin’s spectral response along the coast, subject to along- and 

cross-basin wind forcing, by varying the topographic elements over a few locations in front of the 

coast. The shoal simulations will be treated in Section 5.3.1, followed by the pit simulations in Section 

5.3.2 for both types of basins.  

 The sensitivity analysis will be further expanded in Section 5.4 by conducting similar 

simulations as in Section 5.3, subject to 30° and 60° wind angle forcing. Here the results will be 

treated relative to specific evaluation points along the coast, to see the effects of the location of the 

topographic elements on the basin’s spectral response from a different perspective. The spectral 

responses of the flat bed cases subject to the same wind angle forcing will serve as reference cases 

for a better interpretation of the results of the topographic element cases. 

 

5.1 General model settings 
Just like in the 1-DH model, the model domain consist of a rectangular basin with a length of 200 km 

and a width of 100 km. The reference depth of the basin is set to 20 m. The model domain can be 

represented by a structured or an unstructured grid in the FEM model. An example of both types of 

grids is presented in Figure 5.1. An uniformly structured grid is preferred when the model domain 

consists of a simple geometry, because of the fixed connectivity pattern of the elements (forming the 

grid). On the other hand, an unstructured grid is preferred when grid flexibility is required to increase 

resolution at local regions of the model domain, e.g. due to complex geometric and/or topographic 



36 
 

features in near-shore regions (Guo et al., 2009). This means that the grid is formed with elements of 

adaptable size, clearly illustrated in Figure 5.1b.  

 

 

 

 

 

 

 

 

 

 

In this study our simplified model domain allows us to apply a structured grid. The element size is set 

to 4 km, resulting in a set of 4581 structured triangles in the model domain. Reducing the element 

size will increase simulation time considerably.  

  Throughout this chapter we have applied multiple frequency ranges, with at least 300 modes 

per case simulation to assure a high accuracy of model simulations. For some cases, mostly in Section 

5.3 and 5.4, we have extended this range to study certain tendencies outside this range. The reason 

for this is that the strongest influence on the basin’s spectral response is found at the highest 

frequencies of the studied ranges, discussed later. These studied ranges are based on the applied 

frequency ranges in Chapter 4. The step size of these ranges were based on a percentage of the 

reference frequency  ref
1: 0.01*  ref to be precise. This resulted in a high accuracy of exciting the 

resonant frequencies by our periodic wind forcing. With M = 300-400 modes, our frequency ranges 

applied in this chapter varies between M*(0.01*  ref), with inclusion of   = 0 needed in Chapter 6 to 

define the steady response to a single wind event (transient state). By choosing 300 modes, each 

case simulation will take approximately 3 hours of computational time, with the addition that the 

closed basin simulations takes more computational time than the semi-enclosed basin simulations 

(order of half an hour). 

  The vertical eddy viscosity parameter (Kv), which adds turbulence to the system, is assumed 

uniform over the water depth in the basin and is set to a constant value over the whole domain: Kv = 

0.012 m2 s-1 (default value FEM model). In addition, the slip parameter for the simulations after 

calibration is set to s = 5 x 10-4 m s-1. Later, in Section 5.2.3 the simulations based on the default Kv 

value will be compared to 1-DH model simulations in a steady state condition, after calibrating the r 

parameter of the 1-DH model for fixed values of the s parameter in the next section. This will give an 

indication of how realistic this value is compared to the 1-DH model approach of simulating this 

                                                           
1
 See definition in Section 4.1, Eq. (4.3). 

Figure 5.1: An example of fitting a structured grid (a) and an unstructured grid (b) to a simple coastal embayment. The 
true coastline is shown in black, the model coastline in red. Note how the unstructured triangular grid can be adjusted 
so that the model coastline follows the true coastline, while the structured grid coastline is jagged – which can result in 
unrealistic flow disturbance close to the coast (C. Chen et al., 2006). 
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process. Furthermore, all FEM model simulations treated in this report are conducted with the 

default Kv value, while varying the s parameter in various cases throughout this chapter. 

 

5.2 Comparison between the FEM model and the 1-DH model 
Before we perform sensitivity analyses with cases in the FEM model, we first try to reproduce the 

spectral response simulations of suitable cases in the 1-DH model with similar cases in the FEM 

model. Because of the simplifications in the 1-DH model, the FEM model cases are not completely 

identical to the 1-DH model cases. Nevertheless, it will allow us to link the friction coefficients of 

both models: (Kv, s) vs. r. In this section, the FEM and 1-DH model simulations are calculated based 

on 300 frequency modes (M = 300).  

 

5.2.1 Flat bed topography without bottom friction 
We begin the comparison with the most simple case in both models, a flat bed topography in the 

closed and semi-enclosed basin without bottom friction. The 1-DH model settings for this case are:    

L = 200 km, h = 20 m (width of the basin is neglected) and bottom friction coefficient r = 0. The FEM 

model settings for this case are: L = 200 km, B = 100 km, h = 20 m and bottom friction coefficient s is 

set close to zero (10-10 m s-1). In both models the wind is forced in along-basin direction. The resulting 

spectral response at the rear end of the basin (x = L) of the 1-DH model case will be compared to the 

spectral response at the lower right corner of the basin (x = L, y = 0) of the FEM model case. Here we 

will use the scaled amplification factor A to plot the spectral response of both model simulations. 

Recall that           , treated already in Chapter 4. The results of the 1-DH model case (black 

peaks) and the FEM model case (pink peaks) for both the closed (a) and semi-enclosed basin (b) are 

presented in a single plot in Figure 5.2. The closed (semi-enclosed) basin results are reflected in the 

classical resonance peaks at odd integers of 0.5 (0.25) at the horizontal frequency axis. As we can see 

from the plots, both model simulations match fairly well. Due to the lack of bottom friction in these 

cases, extreme amplification of the resonant peaks occurs. The differences in peak heights between 

the model simulations do not really matter at this scale. These differences will be smaller when we 

include bottom friction, what we will see in the following sections. 
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5.2.2 Calibration of bottom friction coefficient r of the 1-DH model 
In this section, the bottom friction coefficient r of the 1-DH model will be calibrated to two fixed 

values of the bottom friction coefficient s of the FEM model. To simulate weak and moderate bottom 

friction, Chen has used in recent studies (Chen et al., 2014 & Chen et al., 2015) the following two 

coefficient values in the FEM model: s = 10-4 m s-1 (weak bottom friction) and s = 10-3 m s-1 (moderate 

bottom friction). In order to find corresponding r-values for the 1-DH model, the flat bed simulations 

in the 1-DH model have been calibrated to the flat bed simulations in the FEM model for both 

bottom friction coefficients in both types of basins. To this end, various r-values close to the 

corresponding s-values for weak and moderate bottom friction have been implemented in the 1-DH 

model to find the best fit with the FEM simulations. To determine the goodness of fit of the 1-DH 

simulations with the FEM simulations, we use the statistical measure 'standard error of the estimate' 

(Lane, 2015): 

                        
        

     
   

 
                                                                                                              

where      is the standard error of the estimate. N is the complex amplitude of the surface water 

elevation at evaluation point x = L and y = 0 of the FEM model simulation. N’ is the complex 

amplitude of the surface water elevation at evaluation point x = L of the 1-DH model simulation. The 

complex amplitudes are calculated as a function of frequency, where m is the frequency mode index 

Figure 5.2: Scaled amplification factor A as a function of dimensionless frequency  / ref of the flat bed 
topography at the rear end of the closed and semi-enclosed basin: 1-DH model results (black) versus FEM 
model results (pink). 
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and M is the total number of frequency modes. Here we will determine the goodness of fit over the 

full frequency domain, which implies that M = 300 and  min = 4.4005 x 10-6 rad s-1. One could also 

focus on a more limited number of frequency modes, e.g. a few frequency modes around a resonant 

mode, to conduct the calibration at. The smaller the value of the standard error, the better the 1-DH 

model simulations fit the FEM model simulations.  

For weak bottom friction, the best fit is found for r-values of 9.5 x 10-5 m s-1 (closed basin) 

and 9.3 x 10-5 m s-1 (semi-enclosed basin) with corresponding standard errors (    ) of 2.1 x 10-3 and          

1.8 x 10-3 respectively. If we plot the two model simulations in one graph (not shown here), the 

differences are barely visible for both the closed and the semi-enclosed basin. Therefore it can be 

stated that the simulations of both models match quite well for the weak bottom friction case in 

both types of basins. 

On the other hand, for moderate bottom friction the best fit is found for r-values of 6.5 x 10-4 

m s-1 (closed basin) and 5.9 x 10-4 m s-1 (semi-enclosed basin) with corresponding standard errors of 

1.38 x 10-2 and 1.19 x 10-2 respectively. The standard errors for moderate bottom friction are larger 

than the standard errors for weak bottom friction, which means a less good fit for the moderate 

bottom friction cases over the full frequency domain (M = 300). To visualize these differences 

between the 1-DH simulations and the FEM simulations, the absolute values of the complex 

amplitudes N and N’ for the moderate bottom friction cases in both types of basins have been 

plotted in Figure 5.3. Note that these plotted values are not the scaled version as we used to plot the 

spectral response. In order to illustrate the simulation differences between the two models more 

clearly, the 1-DH model results will be displayed in pink from now on. Figure 5.3 shows that both 

model simulations fit reasonably well.  

 

 

 

 

 

 

 

 

 

 

 

 

 

(pink), with moderate bottom friction: r = 6.5 x 10-4 (a) & 5.9 x 10-4 m s-1 (b), s = 10-3 m s-1 (a & b). 

Figure 5.3: Spectral response |N| as a function of dimensionless frequency  / ref of the flat bed topography at 
the rear end of the closed (a) and semi-enclosed (b) basin. FEM model results (black) versus 1-DH model results 
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However, when we plot the scaled amplification factor A for the same model simulations (see Figure 

5.4), we notice that the peaks of the 1-DH simulations remain (almost) constant for increasing 

frequencies in contrast to the peaks of the FEM simulations, which decrease for increasing 

frequencies. We saw this behavior of the 1-DH resonant peaks in the flat bed case already in Chapter 

4 for several bottom friction coefficients (Fig. 4.1). This is an important difference between both 

model simulations, which is possibly a consequence of featuring 1-DH versus 3-D dynamics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, the calibrated r values for the four reference cases have been presented in Table 5.1. 

 No friction Weak friction Moderate friction 

s (closed & semi) [m s
-1

] 10
-10 

10
-4 

10
-3 

r (closed) [m s
-1

] 0 9.5 x 10
-5

 6.5 x 10
-4

 

r (semi) [m s
-1

] 0 9.3 x 10
-5

 5.9 x 10
-4

 
Table 5.1: Bottom friction coefficients s (FEM model) and r (1-DH model) for the closed and semi-enclosed basin simulations. 

 

5.2.3 Comparison of the roughness parameters in a steady flow condition 
As already mentioned in Section 5.1, all the FEM model simulations in this study have been done 

with a default Kv value (0.012 m2 s-1). Now that bottom friction coefficient r is calibrated for both 

types of basins, we can determine how realistic this default Kv value is. In Appendix C, we have 

Figure 5.4: Same as Fig. 5.3, but now with the scaled amplification factor A at the vertical axis.  
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expressed r with the roughness parameters in the FEM model (s, Kv) by expressing the 3-D flow 

velocity in a 1-DH flow velocity, assuming steady flow (  = 0). The result of this derivation in the 

appendix, resulted in 

  
 

 
   

  
 
 

                                                                                                                                        

Now we can calculate four different Kv values for weak and moderate bottom friction in the closed 

and semi-enclosed basin, with corresponding values for r and s presented in Table 5.1 in the previous 

section. We have presented the calculated Kv values for these four cases with h = 20 m in Table 5.2.  

 

 Weak friction Moderate friction 

Closed basin 0.019
 

0.0186
 

Semi-enclosed basin 0.0133 0.0144 
Table 5.2: Calculated Kv values for four reference cases, compared to default value: 0.012 [m2 s-1].  

 

The above results show that the default Kv value matches quite well with the 1-DH approach of the 

FEM model for the semi-enclosed basin and to a lesser extent also for the closed basin. For the 

purpose of this study, this comparison is sufficient enough to conclude that the applied default value 

for the FEM simulations is realistically representing the roughness and turbulence in both types of 

basins.  

 

5.2.4 Shoal and pit implementation over the full width of the basin 
Implementing a shoal or a pit in the basin of the 1-DH model can be considered as a shoal or pit that 

covers the full width of the basin, because the width in the 1-DH model is considered to be very 

small. A similar case can be simulated in the FEM model by implementing a shoal or a pit over the full 

width of the basin. Unlike the 1-DH model, the FEM model can implement topographic elements with 

a smooth transition of the pit (or the shoal). A pit is simulated more naturally by specifying a 

smoothed slope length in the horizontal x and y directions. A 3-D sketch of such a pit implementation 

is illustrated in Figure 5.5a, after the example of Roos et al., 2008. A 2-D sketch of the pit profile is 

shown in Figure 5.5b, c. 

  The shoal is constructed in the same way. In this study the smoothed slope length S is set to 8 

km, which is a valid integer of the chosen element size (4 km) of the FEM model. A cosine function is 

applied to simulate the smoothed slope of the shoal and the pit. We can also simulate a step 

topography in the FEM model by setting a very small slope length (i.e. Lslope = 10 m) to connect better 

to the 1-DH model simulations. In this section we compare both FEM model simulations (FEM 

smooth & FEM step) with the 1-DH model simulation for different bottom friction coefficients. 

  Moreover, the sloping bed topography in the FEM model is constructed in such a way that it 

connects with the 1-DH single step topographies that were studied in Chapter 4, clearly illustrated in 

Figure 5.7.  
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At first we implement a shoal at the rear end of the basin in the FEM model. The dimensions of the 

shoal are set to: 50 km length, 100 km width and 10 m height. The depth of the basin is set to 20 m, 

which gives a depth of 10 m at the shoal location. A top view of this shoal case is presented in Figure 

5.6a. The total slope length lies between the two dotted lines, from s+ to s-. The effective shoal length 

Lshoal is thus 50 km. A side view of this representation is presented in Figure 5.7a for the same shoal 

case. Logically, the same approach applies for the pit case, presented in Figures 5.6b and 5.7b. The 

simulations with and without smoothed slope length in the FEM model and the 1-DH model 

simulation of a shoal implementation with similar dimensions at the rear end of the basin will be 

compared to each other in a single plot. The model simulations have been done with three different 

bottom friction coefficients for each case. The calibrated values of the coefficients for the closed and 

semi-enclosed basin have been used for the 1-DH model simulations, presented in Table 5.1 (Section 

5.2.2). 

 

 

 

 

Figure 5.5: Pit geometry: (a) 3-D sketch in raster (Roos et al., 2008), (b) longitudinal pit profile, (c) lateral pit profile. The pit 
has length Lpit, width Bpit, depth Hpit and a horizontal slope length S. Note: the vertical scale has been strongly exaggerated 
with respect to the horizontal scale. 
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The scaled amplification of the spectral responses of the three model simulations are compared at 

evaluation points at the rear end of the basin: x = L (1-DH model) and x = L, y = 0 (FEM model). The 

results of the closed and semi-enclosed basin simulations with the shoal implementation are 

presented in Figures 5.8 and 5.9 respectively. Figures 5.8 and 5.9 show that the 1-DH simulations 

(pink) and the FEM step simulations (dotted black) for both types of basins match quite well for the 

cases without (a) and weak (b) bottom friction. On the other hand, the moderate bottom friction 

case (c) of both model simulations for both types of basins matches a lot less. This is consistent with 

what we already noticed in the previous subsection. Furthermore, the FEM step and FEM slope 

(cyan) simulations differ much more, especially at higher frequencies. But still they fit reasonably well 

for the cases weak (b) and moderate (c) bottom friction in both types of basins.  

Next, we implement a pit, instead of a shoal, over the full width of the basin in the FEM 

model. The dimensions of the pit are set to: 50 km length, 100 km width and 10 m height, 

implemented at the rear end of the basin. The depth of the basin is set to 20 m, which gives a depth 

of 30 m at the pit location. A top and side view of this pit case is presented in Figures 5.6b and 5.7b, 

respectively. Again the simulations in FEM will be done with (FEM slope) and without (FEM step) 

smoothed slope length (i.e. Lslope = 10 m) of the pit and compared with a similar 1-DH model 

simulation of a pit implementation at the rear end of the basin. The simulations have been done with 

the three different bottom friction coefficients, presented in Table 5.1, for both the closed and the 

semi-enclosed basin.  

Figure 5.6: Top view of the basin with shoal (a) and a pit (b) implemented over the full width of the basin. The 
area in between the dotted lines represents the slope length Lslope. These x-coordinates s+ and s- are also 
shown in the side view of Figure 5.7, where s+ = L - Lshoal + ½Lslope and s- = L - Lshoal - ½Lslope (idem for the pit case). 
Depths in the basin are indicated with 10, 20 and 30 m.  

Figure 5.7: Side view of the shoal 
(a) and pit (b) cases presented in 
Figure 5.6. 
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Figure 5.8: Scaled amplification factor A as a function of dimensionless frequency  / ref of the shoal case 
implementation at the rear end of the closed basin. 1-DH model results (pink) versus the FEM step (dotted black) 
and FEM slope (cyan) model results for different bottom friction coefficients (see Table 5.1). Note that all resonant 
peaks in (a) should reach to infinity, but due to the plotting resolution for   this is not visible for all peaks. 

Figure 5.9: Same as Fig. 5.8, but now for the semi-enclosed basin. 
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Figure 5.10: Same as Fig. 5.8, but now for the pit case implementation at the rear end of the closed basin. 

Figure 5.11: Same as Fig. 5.10, but now for the semi-enclosed basin. 
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The results of the pit implementation over the full width of the basin for both the closed and semi-

enclosed basin are presented in Figures 5.10 and 5.11 respectively. These two figures show that the 

spectral responses of the 1-DH simulations (pink) and the FEM step simulations (dotted black) match 

quite well for the cases without (a) and weak (b) bottom friction in both types of basins. On the other 

hand, the spectral responses match a lot less in the moderate bottom friction (c) cases, just like the 

shoal case simulations. Moreover, the spectral responses of the FEM step and FEM slope (cyan) 

simulations match fairly well for all three bottom friction coefficients in both types of basins, 

whereby the differences are mainly in the amplitudes of the resonant peaks. It therefore seems that 

the FEM slope simulations of the pit case match better with the 1-DH and FEM step simulations than 

the shoal cases in both types of basins.  

 

5.2.5 Cross-basin wind forcing simulations 
The wind forcing in the FEM model can be simulated in arbitrary direction. The wind forcing in the   

1-DH model can only be simulated in the along-basin x-direction, representing a wind angle of zero 

degree. However, we can simulate a cross-basin wind forcing, representing a wind angle of 90 

degrees, in the 1-DH model by turning the basin 90 degrees. This means that the length of the basin 

will be replaced by the width of the basin. This is only true for 1-DH model simulations in the flat bed 

of the closed basin. All previous model simulations have been done with along-basin wind forcing. 

Here, we will compare the modified cross-basin wind forcing simulation in the 1-DH model with the 

cross-basin wind forcing simulation in the FEM model. In both model simulations we apply a flat bed 

topography in the closed basin. The scaled amplification of the spectral responses are compared at 

evaluation points at the rear end of the basin: x = L (1-DH model) and x = L, y = 0 (FEM model). The 

model simulations for three different bottom friction coefficients have been presented in Figure 

5.12. Only the moderate bottom friction coefficient r have been recalibrated to obtain the best fit 

with the FEM model simulation. This resulted in a recalibrated r-value of 7 x 10-4 with a standard 

error of 8.5 x 10-3 over the full frequency domain for the 1-DH model. The other two bottom friction 

coefficients can be found in Table 5.1 (weak and no bottom friction). 

Figure 5.12 shows that both model simulations match quite well for all three bottom friction 

coefficients, especially in the weak bottom friction case (b) where the differences are hardly visible. 

We further notice that the resonance peaks show up at the scaled resonant frequencies 1 and 3 in 

the cross-basin wind forcing case. Recall from Chapter 4 that resonance occurs in the closed basin if 

kL becomes close to odd integers n of  . Considering zero friction, this means that resonance occurs 

if: 

                    
     

 
                                                                                                                            

The width B (100 km) of the basin equals the effective basin length in the cross-basin wind forcing 

case. Thus, the resonant frequencies will double when the effective basin length has been halved in 

this case (and  ref remains the same), which means that resonance occurs at  / ref = 1, 3, 5, … etc. 

instead of at  / ref = 0.5, 1.5, 2.5, … etc. This is in accordance with the results shown in Figure 5.12. 
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5.3 Sensitivity analysis regarding the location of topographic 

elements in the basin 
In the FEM model, topographic elements such as shoals and pits can be implemented at various 

locations in the basin. Here, we have chosen to study two different locations in front of the coastal 

boundary of the basin. This is because of the expectation of the strongest influence on the basin’s 

spectral response at these locations, compared to locations in the centre and in the front (offshore) 

of the basin.  This is also confirmed by test runs, not presented here. Furthermore, at these locations, 

shoals and pits of identical dimensions will be implemented in the domains of the closed and semi-

enclosed basin in the FEM model. All model simulations in this section will be done with along- and 

cross-basin wind forcing. The spectral responses of the shoal and pit cases will be analyzed at several 

evaluation points along the coastal boundary for both wind directions. The shoal cases will be treated 

first in Section 5.3.1, followed by the pit cases in Section 5.3.2.  

 

5.3.1 Sensitivity of the spectral response to the shoal location in the basin 
The fixed dimensions of the shoal have been set effectively to: 50 km length, 50 km width, 10 m 

height and 8 km slope length. The shoal will be implemented at two different locations in front of the 

coastal boundary of the basin, presented in Figure 5.13: the upper shoal case (a) and the central 

Figure 5.12: Scaled amplification factor A as a function of dimensionless frequency  / ref of the flat bed case at 
the rear end of the closed basin for different bottom friction coefficients (a-c). FEM model results (black) versus 
1-DH model results (pink), where cross-basin wind forcing is applied. 
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shoal case (b). The shoal locations will be studied separately, meaning that the shoal is implemented 

at one of the two locations per model simulation. 

 

 

 

 

 

 

 

 

For each shoal case simulation, the spectral response differs per evaluation point along the coastal 

boundary. In this situation, an element size of 4 km results in 49 evaluation points along the coastal 

boundary in the FEM model. The spectral response at all these 49 points will be plotted in a color 

plot to illustrate the difference in spectral response behavior. We noticed already in the 1-DH model 

simulations that the spectral response behavior in a weak bottom friction case is similar to the 

spectral response behavior in a moderate bottom friction case. Therefore we have chosen to 

perform the FEM model simulations with a single bottom friction coefficient that represents a 

coefficient in between weak and moderate bottom friction: s = 0.0005 m s-1. Due to symmetry, a 

shoal case in the lower right corner of the basin will give completely opposing results (mirror image) 

compared to a shoal case in the upper right corner (Fig. 5.13a), regarding the spectral response 

behavior along the coastal boundary. Therefore this lower shoal case will not be presented here. The 

results of the shoal cases (Fig. 5.13a & b), forced by along-basin wind, are presented in the color plots 

of Figures 5.14 and 5.15 for the closed and semi-enclosed basin respectively. The vertical axis of the 

color plots represents the y-coordinates of the 49 evaluation points along the coastal boundary          

(x = L). The bottom (top) right corner of the basin corresponds to evaluation point y = 0 (y = 100 km). 

Figures 5.14 and 5.15 demonstrate that implementation of the shoal cases have resulted in 

shifts of the resonance peaks to lower frequencies. These peak shifts increase as the frequency 

increases. This is in line with the 1-DH model results in Chapter 4. Furthermore, the color plots clearly 

show that the location of the shoal influences the spatial behavior of the spectral response along the 

coastal boundary. We notice that the peak amplitudes are highest at evaluation points near the shoal 

location, especially at the higher resonant frequencies. This is also true for the lower right shoal case 

in both types of basins, not presented here for symmetry arguments. 

 

 

 

 

 

Figure 5.13: Top view of the shoal locations (a & b) in front of the coastal boundary (x = L). The same slope 
length approach as in Figs. 5.6 & 5.7 applies here as well, meaning that the dotted lines indicate the presence 
of a smooth sloping topography between basin and shoal. 
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Figure 5.14: Scaled amplification factor A as a function of dimensionless frequency  / ref (horizontal 
axis) at 49 evaluation points (vertical axis) along the coastal boundary of the closed basin with shoal 
cases (a) & (b). Along-basin wind forcing is applied and s = 0.0005 m s-1. 

Figure 5.15: Same as Fig. 5.14, but now for the semi-enclosed basin. 
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Instead of along-basin wind forcing, the same cases have been simulated with cross-basin wind 

forcing as well. First we will present the results of the flat bed cases, forced by cross-basin wind, for 

both types of basins in Figure 5.16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We already noticed from Section 5.2.4 that in the flat bed case of the closed basin with cross-basin 

wind forcing, the classical resonance peaks are obtained at frequencies  / ref = 1 and 3. Figure 5.16b 

shows that these resonance peaks are also obtained in the flat bed case of the semi-enclosed basin 

at approximately the same frequencies (slightly higher values). Figure 5.16 further shows that the 

spatial behavior of the spectral response varies along the coastal boundary, in contrast to the flat 

bed cases forced by along-basin wind. The spatial behavior even differs per resonant peak. 

Moreover, we notice that a few new and smaller peaks emerge at other frequencies than the 

classical resonant frequencies in the semi-enclosed basin (Fig. 5.16b). Nevertheless we can conclude 

that the amplification at the center of the coastal boundary (y = 50 km) almost completely damps out 

for all simulated frequencies in both types of basins. 

 Next, the results of the shoal cases forced by cross-basin wind are presented in Figures 5.17 

and 5.18 for the closed and semi-enclosed basin. At first we notice that in these shoal cases the 

resonance peaks are shifted to lower frequencies, with larger shifts at higher frequencies. Secondly, 

Figure 5.16: Scaled amplification factor A as a function of dimensionless frequency  / ref (horizontal 
axis) at 49 evaluation points (vertical axis) along the coastal boundary of the flat bed case in the closed 
(a) and semi-enclosed (b) basin. Cross-basin wind forcing is applied and s = 0.0005 m s-1. 
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we notice that new peaks emerge right behind the classical resonance peaks in the results of both 

shoal cases, which were not (slightly) present in the results of the flat bed case of the closed (semi-

enclosed) basin. Thirdly, when we compare the results of the shoal cases with the results of the flat 

bed cases (see Fig. 5.16), we notice that the amplitudes of the shoal cases are lower than the 

amplitudes of the flat bed cases, especially at higher frequencies. In addition to that, we notice some 

deflections of the peaks in the spectral response behavior of the upper shoal cases in terms of 

amplitudes and shifts with respect to evaluation points near the shoal location. Moreover, the peaks 

in the center shoal cases show a more symmetrical behavior along the coastal boundary, because of 

its central location of the shoal. Concluding, the results show that the location of the shoal certainly 

influences the behavior of the spectral response along the coastal boundary. As already mentioned, 

due to symmetry the lower shoal cases show identical spectral response behavior as the upper shoal 

cases, only in opposite direction (mirror image). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17: Scaled amplification factor A as a function of dimensionless frequency  / ref (horizontal 
axis) at 49 evaluation points (vertical axis) along the coastal boundary of the closed basin with shoal 
cases (a) & (b). Cross-basin wind forcing is applied and s = 0.0005 m s-1. 
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5.3.2 Sensitivity of the spectral response to the pit location in the basin 
Instead of implementing a shoal at two different locations in the basin, we will now implement a pit 

at the same locations in front of the coastal boundary of the basin domain in the FEM model. The 

fixed dimensions of the pit are the same as the shoal: 58 km length, 58 km width, 10 m depth and a 

smoothed slope length of 8 km. The pit locations will be studied separately and are presented in 

Figure 5.19: the upper pit case (a) and the central pit case (b). 

 

 

 

 

 

 

The FEM model simulations have been performed with bottom friction coefficient s = 0.0005 m s-1. 

First we will present the results of the pit cases forced by along-basin wind for the closed and semi-

enclosed basin in Figures 5.20 and 5.21.  

Figure 5.18: Same as Fig. 5.17, but now for the semi-enclosed basin. 

Figure 5.19: Top view of the pit locations (a & b) in front of the coastal boundary (x = L). 20 m depth of the 
basin with a smooth transition (from s- to s+) to 30 m depth at the pit location. 
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Figure 5.20: Scaled amplification factor A as a function of dimensionless frequency  / ref (horizontal 
axis) at 49 evaluation points (vertical axis) along the coastal boundary of the closed basin with pit cases 
(a) & (b). Along-basin wind forcing is applied and s = 0.0005 m s-1. 

Figure 5.21: Same as Fig. 5.20, but now for the semi-enclosed basin. 
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We first notice from Figures 5.20 and 5.21 that implementation of the pit cases have resulted in 

slight shifts of the resonance peaks to higher frequencies. These peak shifts increase as the frequency 

increases. We further notice, especially at higher resonant frequencies, that peak amplitudes are 

lowest at evaluation points near the pit location, in contrast to the shoal cases where peak 

amplitudes are highest at evaluation points near the shoal location. This is also true for the lower 

right pit case in both types of basins, not presented here for symmetry arguments. 

Next, the same pit cases forced by cross-basin wind instead of along-basin wind have been 

simulated. The results of these cases in the closed and semi-enclosed basin are presented in Figures 

5.22 and 5.23. When we compare the results of the pit cases (Fig. 5.22) with the flat bed case (Fig. 

5.16a) in the closed basin, we first notice that the peak amplitudes of the pit cases are substantially 

lower than the peak amplitudes of the flat bed case. This applies to a lesser extent for the cases in 

the semi-enclosed basin. Secondly, we notice in the pit cases that peaks are shifted to higher 

frequencies with larger shifts for higher frequencies. Also, new peaks emerge around the classical 

resonance peaks, especially in the closed basin. Thirdly, when we look at the pit cases in the closed 

basin we notice a tendency of lower amplitudes at evaluation points near the pit location, especially 

at higher frequencies. However, this tendency is not observed in the pit cases of the semi-enclosed 

basin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22: Same as Fig. 5.20, but now with cross-basin wind forcing. 
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5.4 Sensitivity analysis regarding the wind direction relative to 

topographic elements in the basin 
In this section we will continue with analyzing the influence of the wind direction on the spectral 

response in earlier studied cases, such as the flat bed, shoal and pit cases. In this analysis extra 

attention is on the location of the elements relative to specific evaluation points along the coastal 

boundary. Furthermore, the focus in Section 5.3 was on along- and cross-basin wind forcing. Since we 

want to vary the wind direction, we will focus on 30° and 60° wind angle forcing in this section. We 

start by showing the influence of various wind angles on the spectral response of the flat bed cases 

at a specific evaluation point in Section 5.4.1. In turn, we will show the influence of shoal and pit 

locations with regard to the 30° and 60° wind angle forcing on the spectral response, treated in 

Sections 5.4.2 and 5.4.3.  

 

5.4.1 Sensitivity of the spectral response to wind angles in the flat bed case 
Due to symmetry, the spectral response driven by the wind with a certain angle is identical to the 

spectral response driven by the wind in opposite direction (certain angle + 180°). For example, this 

means that a wind angle of 90° results in the same spectral response as a wind angle of 270°. 

Furthermore, it appears that for wind angles between zero and 90° the spectral response at 

Figure 5.23: Same as Fig. 5.23, but now for the semi-enclosed basin. 
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evaluation point y = 25 km of a certain angle is identical to the spectral response at evaluation point  

y = 75 km of that same angle added with 90° (certain angle + 90°). This means that, for example, the 

spectral response at evaluation point y = 25 km driven by a wind angle of 45° is identical to the 

spectral response at evaluation point y = 75 km driven by a wind angle of 135°. This is true for the flat 

bed case in both types of basins. In this analysis, we will focus on the effects of wind angles between 

zero (along-basin wind) and 90° (cross-basin wind). In the previous section we already performed 

model simulations with wind angles of zero and 90°. Because of the linearity of the model, we can 

calculate the complex spectral response solution    for every angle   from the complex spectral 

response solutions of the zero and 90° wind angle cases, using the following expression: 

                                                                                                                                 

Where Nalong is the complex along-basin wind solution (0°) and Ncross is the complex cross-basin wind 

solution (90°). Subsequently, color plots will be used to illustrate the spectral response behavior at a 

specific evaluation point for various wind angles (vertical axis) ranging between zero and 90°, over a 

frequency range of 400 modes (horizontal axis). Just as in Section 5.3, bottom friction coefficient        

s = 0.0005 m s-1 is applied in all the cases in Section 5.4. The results of the flat bed cases for various 

wind angles at evaluation point y = 25 km are presented in the color plots of Figure 5.24. These color 

plots clearly show the great influence of wind direction on the spectral response behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.24: Scaled amplification factor A as a function of dimensionless frequency  / ref (horizontal 
axis) and wind angle (vertical axis), at evaluation point y = 25 km: flat bed case in the closed (a) and 
semi-enclosed (b) basin with s = 0.0005 m s-1. 
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In Section 5.3 we have already seen that the spectral response of a uniform wind in along-basin 

direction is very different than the same wind in cross-basin direction. The spectral response of wind 

angles in between zero and 90°, consists of a combination of the spectral responses for these two 

wind angles, clearly illustrated in Figure 5.24. Naturally, along-basin wind forcing has a high (low) 

contribution in the spectral response of a low-angle (high-angle) wind forcing case and vice versa for 

cross-basin wind forcing. We further notice that the spectral response in the closed basin (Fig. 5.24a) 

has a clear symmetrical behavior. This appears to be less pronounced in the semi-enclosed basin. 

That is because of the total reflection of the propagating waves at the boundaries of the closed basin, 

in contrast to the open boundary system in the semi-enclosed basin. 

 

5.4.2 Sensitivity of the spectral response to wind angles in the shoal cases 
The next step will be to compare the spectral response of two different shoal cases with the spectral 

response of the flat bed case at specific evaluation points, where we imposed wind forcing with 30° 

and 60° wind angles. Section 5.3.1 already treated the shoal cases forced by along- and cross-basin 

wind. The spectral response behavior will be analyzed at three evaluation points along the coastal 

boundary. The locations of the shoal cases together with the selected evaluation points are shown in 

Figure 5.25. 

 

 

 

 

 

 

 

We start our analysis by imposing a 30° wind angle forcing on the flat bed case and shoal cases in the 

closed basin. The resulting spectral response of the flat bed case (dotted black) and the shoal cases 

(blue and pink) are plotted in one figure for a single evaluation point. Figure 5.26 (a, b & c) shows the 

results at the three evaluation points P, Q and R respectively. First of all, the flat bed case results 

reflect the classical resonance peaks for along-basin wind at point Q and reflect a combination of the 

classical resonance peaks for along- and cross-basin wind at points P and R. Second, the results of 

both shoal cases show shifts of the resonance peaks to lower frequencies, as expected. Third, in all 

cases the resonance peaks are dominated by the along-basin wind contribution at point Q. We have 

seen already in the previous section (see Figs. 5.16-5.18) that the cross-basin wind contribution is 

close to zero in the center of the coastal boundary. In the results of the upper shoal case (blue) we 

notice that the peak amplitudes are higher at point P (near the shoal location) than at point R (away 

from the shoal location). This tendency of higher amplitudes at the evaluation point near the shoal 

location is also reflected in the results of the central shoal case (pink), but only if we compare the 

resonance peaks dominated by the along-basin wind: the peak amplitudes are higher at point Q 

(near the shoal location) than the along-basin peak amplitudes at points P and R (further away from 

the shoal location).  

Figure 5.25: Top view of the upper (a) and central (b) shoal location in front of the coastal 

boundary (x = L). Slope length of the shoals not included in the sketches. Evaluation points P, Q 

and R at respectively y = 75, 50 & 25 km. 
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Figure 5.26: Scaled amplification factor A as a function of dimensionless frequency  / ref for a flat bed case 
(dotted black line), upper shoal case (blue line) and central shoal case (pink line), at evaluation points P (a), Q 
(b) and R (c) in the closed basin. 30° wind angle forcing is applied and s = 0.0005 m s-1. 

Figure 5.27: Same as Fig. 5.26, but now with 60° wind angle forcing. 
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The results of the same cases imposed by a 60°, instead of a 30°, wind angle forcing are presented in 

Figure 5.27 (a, b & c) for evaluation points P, Q and R respectively. We first notice from the plots at 

points P and R that the amplitudes of the peaks at frequencies 1 and 3 have increased compared to 

the 30° wind angle cases (Fig. 5.26). That is because the 60° wind angle forcing is closer to cross-

basin (90°) wind forcing, whereby the cross-basin resonance peaks dominate in the 60° wind angle 

cases. This also explains why the along-basin peaks of the 60° wind angle cases are decreased at all 

evaluation points compared to the 30° wind angle cases. Furthermore, the results of the upper shoal 

case show yet again that the highest peak amplitudes are found at point P near the shoal location. 

The same applies to the results of the central shoal case, where the highest along-basin peak 

amplitudes are found at point Q near the shoal location. 

Next, we will continue with the analysis of the same cases in the semi-enclosed basin. The 

results of the cases at evaluation points P, Q and R, imposed by a 30° wind angle forcing, are 

presented in Figure 5.28. The flat bed case results (dotted black) show that the classical resonance 

peaks for along- and cross-basin wind show up at points P and R. The only notable difference in 

spectral response behavior of the flat bed case between points P and R is present at frequencies 1.25 

and 3.25, where the peak amplitudes are much higher at point R. Apparently, these differences are 

caused by the lack of symmetry in the semi-enclosed basin, because they are not present in the 

closed basin results (Fig. 5.26). When we compare the results of the upper shoal case (blue) at points 

P and R, we further notice higher peak amplitudes (except for the peak at frequency 1.25) at point P 

near the shoal location, than at point R. This tendency also applies to the central shoal case (pink), 

with higher peak amplitudes at point Q near the shoal location, compared to the lower along-basin 

peak amplitudes at points P and R. Thereby, we notice the absence of cross-basin resonance peaks in 

all three cases at point Q. 

 

 

 

 

 

Figure 5.28: Same as Fig. 5.26, but now for the semi-enclosed basin: 30° wind angle forcing is applied. 



60 
 

The results of the same cases at evaluation points P, Q and R, imposed by a 60° wind angle forcing, 

are presented in Figure 5.29. Again we notice that the cross-basin peak amplitudes at frequencies 1 

and 3 have increased at points P and R, compared to the 30° wind angle cases (Fig. 5.28). And that 

the along-basin peaks, except for the peak at frequency 1.25, of the 60° wind angle cases are 

decreased at all evaluation points, relative to the 30° wind angle cases. Figures 5.29a & c further 

show that the peak amplitudes of the upper shoal case are higher at point P near the shoal than at 

point R, except for the peak at frequency 1.25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4.3 Sensitivity of the spectral response to wind angles in the pit cases 
In this section we will do the same analysis with the pit cases instead of the shoal cases. The locations 

of the pit cases together with the evaluation points of interest are shown in Figure 5.30.  

 

 

 

 

Figure 5.29: Same as Fig. 5.28, but now with 60° wind angle forcing. 

Figure 5.30: Top view of the upper (a) and central (b) pit location in front of the coastal boundary (x = L). Slope 
length of the shoals not included in the sketches. Evaluation points P, Q and R at respectively y = 75, 50 & 25 km. 
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First we will impose a 30° wind angle forcing on the pit cases in the closed basin. The resulting 

spectral responses will be compared with the spectral response of the flat bed case with a 30° wind 

angle forcing at evaluation points P, Q and R. The results are presented in Figure 5.31. The figure 

shows that the resonance peaks of the pit cases (blue and pink) are shifted to higher frequencies, 

compared to the resonance peaks of the flat bed case (dotted black). We further notice an opposite 

effect in the upper pit case (blue), relative to the upper shoal case in the previous section: peaks are 

lower (instead of higher in the shoal case) at point P (near the pit location) than the peaks at point R 

(away from the pit location). However, this tendency does not show up in the central pit case (pink). 

Furthermore, Fig. 5.31b shows that cross-basin resonance peaks are barely present at point Q, even 

in the upper pit case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of the same cases imposed by a 60° wind angle forcing are presented in Figure 5.32. 

When we look at the results of the upper pit case, we see once more that the differences in peak 

amplitudes between point P and R are present. In addition, the cross-basin resonance peaks of all 

cases dominate at points P and R, whereas the along-basin resonance peaks dominate at point Q. 

These along-basin peaks at point Q have decreased significantly in the 60° wind angle situation, 

compared to the 30° wind angle situation (Fig. 5.31b). 

Figure 5.31: Scaled amplification factor A as a function of dimensionless frequency  / ref for a flat bed case 
(dotted black line), upper pit case (blue line) and central pit case (pink line), at evaluation points P (a), Q (b) 
and R (c) in the closed basin. 30° wind angle forcing is applied with s = 0.0005 m s-1. 
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Finally, we will discuss the results of the same cases in the semi-enclosed basin. The results of the 30° 

and 60° wind angle forcing cases are presented in Figures 5.33 and 5.34 respectively. Again we notice 

in both figures the difference in peak amplitudes of the upper pit case at points P and R: lower peak 

amplitudes at point P near the pit location, than at point R. This also applies to the results of the 

central pit case where the peak amplitudes are lower at point Q near the pit location, than at points 

P and R in both wind angle results. We further notice that the peak amplitudes of the central pit case 

at points P and R are no longer the same at all frequencies: the peak amplitudes at frequency 3.25 

are higher at point P than at point R in both wind angle cases. We noticed these differences already 

in the results of the flat bed and shoal cases in the semi-enclosed basin, particularly at frequency 

1.25, which is possibly a result of the lack of symmetry in the semi-enclosed basin. Furthermore, if we 

compare the 30° and 60° wind angle results of the upper pit case at point Q, we see some amplitude 

outliers around frequency 3.25 in the 60° wind angle case, which were absent in the 30° wind angle 

case. 

 

 

 

Figure 5.32: Same as Fig. 5.31, but now with 60° wind angle forcing. 
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Figure 5.33: Same as Fig. 5.31, but now for the semi-enclosed basin: 30° wind angle forcing is applied. 

Figure 5.34: Same as Fig. 5.33, but now with 60° wind angle forcing. 



64 
 

5.5 Summary 
At first we explained the main model settings and some underlying assumptions of the 3-D FEM 

model. Due to our simplified model domain, we have applied a structured grid composed of 

triangular elements. The model simulations in this chapter were performed with at least 300 

frequency modes (300-400) for both the closed and the semi-enclosed basins.  

  The values for the applied bottom friction coefficient s (m s-1) were s = 10-10 (assuming no 

friction), 10-4 (weak friction) and 10-3 (moderate friction) for comparison between both flow models 

and calibrating r-values for the 1-DH model in Section 5.2. In turn, a fixed value was chosen in 

between weak and moderate friction, s = 5 x 10-4, to continue the FEM simulations with for the 

conducted sensitivity analyses in sections 5.3 and 5.4. Moreover, a remarkable difference between 

the simulations of both flow models had been discovered, for the time being devoted to the fact of 

featuring the basin hydrodynamics differently in the 1-DH approach versus the 3-D approach.     

  At the same time, a default value (Kv = 0.012 (m2 s-1)) was applied to represent the vertical 

eddy viscosity in all FEM simulations. In order to give an indication of its validity, the bottom friction 

of the 1-DH model was expressed as a function of the roughness set (s, Kv) of the FEM model by 

means of expressing the 3-D velocity of the FEM model in a 1-DH flow velocity for a steady flow 

condition (derived in Appendix C). This resulted in realistic values for Kv, especially for the semi-

enclosed basin.  

  Finally, sensitivity analyses could be conducted regarding the influence of varying 

topographic elements, such as pits and shoals, in front of the evaluation points along the coast, 

subject to periodic wind forcing in various angles, on the basin’s spectral response at various 

evaluations points. Since this was a rather comprehensive study, the main findings will be treated 

briefly. As expected, the shoal and pit locations influences the spatial behavior of the spectral 

response along the basin, especially at the highest frequencies of the studied frequency range 

(M*(0.01*  ref) rad s-1) of the periodic wind forcing. Induced by cross-basin wind forcing, resonant 

peaks shift to lower (higher) frequencies when a shoal (pit) is implemented, with larger shifts at 

higher frequencies again. Moreover, new but lower peaks emerge at frequencies around the 

resonant frequencies of the shoal and pit cases, which were not (slightly) present in the flat bed case 

of the closed (semi-enclosed) basin. How these effects translates in the time-dependent response 

(set-up along the coast), will be treated in the next chapter.   
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Chapter 6  

Time-dependent response of the 

basin’s surface elevation to a single 

wind event 
In this chapter we will illustrate how the basin’s spectral response to a single wind event is obtained 

from the basin’s spectral response to periodic forcing and the wind spectrum, and how it translates 

into the basin’s time-dependent response of the surface elevation. In order to demonstrate the 

relevance and possibilities of the model approach we have selected a few examples of pit and shoal 

cases in the closed and semi-enclosed basin, forced by different wind events. Furthermore, each case 

is compared to the reference flat bed case. The basin dimensions and wind characteristics in the 

following examples are set in such a way that certain effects on the behavior of the time-dependent 

elevation are highlighted properly. The model simulations have been done with the 1-DH model 

(Section 6.1) and the FEM model (Sections 6.2 & 6.3). 

 

6.1 Flat bed case versus pit case in the 1-DH model 
The spectral response to periodic forcing, as obtained from our models in previous chapters, displays 

in particular resonance peaks with corresponding resonant frequencies at a certain evaluation point 

in the basin. In turn, when a single wind event is forced onto the basin, the wind spectrum indicates 

to what extent these resonant frequencies are excited by the wind event. In fact, the product of 

these two quantities will give the basin’s spectral response to the wind event under consideration. 

Finally, the inverse Fourier transform is applied to convert this latter spectral response in to the 

surface elevation as a function of time.   

According to the well known Beaufort wind force scale (Saucier, 1955), a single wind event 

with a wind speed of 30 m s-1 (at 10 m height) can be considered as a storm (Beaufort force 11). From       

Eq. (3.7), it follows that this corresponds to a wind stress of 3 N m-2. First, we will consider a wind 

event that imposes a spatially uniform wind forcing of 3 N m-2 onto our reference basin in the along-

basin direction. The effective duration of the wind event is set to 6 hours with a ramp stage duration 

of 2 hours to represent the spin-up and spin-down of the forcing. The wind event has a recurrence 

time Trecur of 16.5 days, which follows from the minimum frequency (0.01 ( ref): 4.4 x 10-6 rad s-1) 

applied in the model simulations. The wind forcing will be imposed onto two separate cases in the   

1-DH model: a flat bed topography and a pit case in the closed basin with bottom friction coefficient  

r = 5 x 10-4 m s-1 in both cases. Here we have chosen for an extreme example of the pit case with 

basin dimensions: h1 = 20 m; L1 = 50 km; h2 = 40 m; L2 = 150 km. A side view of the basin’s step 

topography is presented in Figure 6.1. The results of both cases will be presented by a spectral 

representation (a, c) and a temporal representation (b, d) at the rear end of the basin, shown in 

Figure 6.2. 
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First we will focus on the flat bed case results, which are shown in the top plots of Figure 6.2. The 

pink curve of Figure 6.2a represents the basin’s spectral response to the wind event, which is a 

product of the wind spectrum (grey) and the basin’s spectral response to periodic forcing (blue). 

Here, the spectral response |N| at the evaluation point is presented by the absolute value of the 

complex amplitude of the surface elevation in meter. Figure 6.2a clearly shows that the first resonant 

peak of the basin’s spectral response (blue) is excited the most by the wind event (grey), which 

results in a large peak of the basin’s actual response (pink) at that resonant frequency. In turn, the 

basin’s actual response in the spectral representation has been converted to the temporal 

representation using the inverse Fourier transform function (Eq. 2.5), which finally resulted in the 

basin’s time-dependent response of the surface elevation to the wind event, represented by the 

black curve shown in Figure 6.2b. The grey curve in the same figure represents the original wind 

event as a function of time, simulated as a superposition of Fourier modes.  

It is important to emphasize that the basin’s actual response (pink) can be lowered 

significantly if the resonant peaks of the basin’s spectral response (blue) coincides with a trough of 

the wind spectrum (grey). We have shown in Chapter 4 that resonant peaks of the basin’s spectral 

response will shift to higher frequencies if the basin dimensions are set to a so-called pit case. Since 

we want to trigger the first resonant peak coinciding with the trough of the wind spectrum, the 

resonant peak has to shift far to the right. Therefore the pit case dimensions were set according to 

Figure 6.1. 

The results of the pit case are presented in the bottom plots of Figure 6.2. Figure 6.2c clearly 

demonstrates that the first peak of the blue curve coincides with the trough of the grey curve at the 

first resonant frequency, resulting in a significantly lowered actual response (pink) of the basin at this 

frequency. As a result, the maximum elevation in the pit case has decreased significantly relative to 

the maximum elevation in the flat bed case (see black curves in Fig. 6.2b, d). Moreover, it 

demonstrates that the sloshing in the pit case is damped out almost completely after half a day, 

whereas the sloshing period in the flat bed case takes considerably longer. 

 

 

 

 

 

 

 

Figure 6.1: Side view sketch of the closed basin’s step topography 
of the pit case in the 1-DH model. Depths are in meters, lengths in 
kilometers. Note: the vertical scale has been strongly exaggerated 
with respect to the horizontal scale. 
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6.2 Flat bed case versus shoal case in the FEM model 
In line with the previous section, we will discuss here the results of a certain case in the FEM model 

that we treated already in Chapter 5 (Section 5.4.2) in relation to the flat bed case. 

 A single wind event, with a 3 N m-2 wind stress and a 60° wind angle, will be forced upon the 

flat bed case and the central shoal case (see Figure 6.3) in the semi-enclosed basin. Recall that the 

basin dimensions are (effectively): 50 km length, 50 km width, 10 m height and a smoothed slope 

length of 8 km. The bottom friction coefficient is set to s = 5 x 10-4 m s-1 in both cases. The effective 

wind duration is set to 9 hours with a ramp stage duration of 2 hours and a recurrence time of 16.5 

days. The results of both cases will be analyzed at evaluation point y = 12.5 km. We already noticed 

from the cross-basin wind simulations in Chapter 5 (see Figs. 5.12b & 5.14b) that the resonance 

peaks of the central shoal case have been shifted to lower frequencies with slightly lower amplitudes 

compared to the flat bed case at the concerning evaluation point. Since the resonance peaks of the 

cases under consideration are dominated by the cross-basin wind contribution, this spectral 

response behavior is expected here as well. Next, we will show how this affects the time-dependent 

response of the basin’s surface elevation. 

Figure 6.2: Response of surface elevation of the flat bed case (top) and the pit case (bottom) at the rear end of the 
closed basin, forced by an along-basin wind event with an effective duration of 6 h. The plots on the left show the 
spectral representation of the wind event (grey) as well as the response to periodic forcing (blue), and the actual 
response to the wind event (pink) for both cases. The plots on the right show the temporal representation of both 
forcing (grey) and response (black) for both cases. Simulations are performed in the 1-DH model with parameter values 
as specified in main text.  
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Just as in the previous section, the results of both cases will be compared in the spectral and 

temporal representation, shown in Figure 6.4. Regarding the spectral representation, Figure 6.4c 

clearly shows that the largest resonant peak of the shoal case coincides with the second trough of 

the wind spectrum, in contrast to the resonant peak of the flat bed case (Figure 6.4a). Thereto, the 

actual basin’s response (pink curve) of the shoal case is lower than the flat bed case at that frequency 

as well. However, this difference is barely reflected in the temporal representation. After all, the 

differences between Figure 6.4b and d are not that big. The oscillating activity is almost the same in 

both cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 6.3: Top view sketch of the shoal case in the FEM 
model. The black dot indicates evaluation point y = 12.5 km. 
Depths in the basin are indicated with 10 and 20 m. Sloping 
of the bed topography not presented in this sketch (see Fig. 
5.13b for the actual sloping approach).  

Figure 6.4: Same as Fig. 6.2, but now for the flat bed case (top) and shoal case (bottom) in the semi-enclosed 
basin, simulated in the FEM model at evaluation point y = 12.5 km. Both cases are forced by a wind event with 

an effective duration of 9 h and a 60° wind angle. 
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This example clearly shows that despite constraining the largest resonant peak, the influence on the 

basin’s time-dependent elevation is limited in certain cases. It turns out that especially the behavior 

of the first resonant peak has a big influence on the magnitude of the time-dependent elevation. 

That is because the wind spectrum has the largest magnitude, and thus the strongest influence, at 

the lowest frequencies. Thus, in order to lower the basin’s time-dependent elevation significantly, 

the best result is obtained when the first resonant peak of the basin’s spectral response coincides 

with a trough of the wind spectrum. 

 

6.3 Flat bed case versus pit case in the FEM model 
In this section we will discuss an example of a pit case with a more extreme pit volume in the semi-

enclosed basin and compare its results with the flat bed case results. The bottom friction coefficient 

is set to s = 5 x 10-4 m s-1 in both cases. The pit dimensions have been set to: 108 km length, 58 km 

width, 30 m depth and a smoothed slope length of 8 km, which effectively gives a pit of 100 km 

length, 50 km width and 30 m depth. A sketch of the pit location is shown in Figure 6.5.  

A single wind event with a 3 N m-2 wind stress will be forced upon both cases. This time the 

wind event has a cross-basin wind forcing (90° wind angle) with an effective wind duration of 6.5 

hours, a ramp stage duration of 2 hours and a recurrence time of 16.5 days. The results of both cases 

will be analyzed at evaluation point y = 87.5 km and compared in the spectral and temporal 

representation, shown in Figure 6.6. 

 
 

 

 

 

 

At first, the plots of Figure 6.6a and c clearly demonstrate the difference in amplitude of the first 

dominant resonant peak of the basin’s spectral response (blue curve). The amplitude of this peak is 

much lower in the pit case than in the flat bed case. In addition to that, this peak has shifted 

significantly to a higher frequency in the pit case compared to the flat bed case. Moreover, the 

dominant resonant peak of the pit case coincides with the trough of the wind spectrum, in contrast 

to the flat bed case. Therefore, the actual response (pink curve) of the pit case is damped 

significantly, in contrast to the actual response of the flat bed case. As a result, the basin’s elevation 

of the pit case is much lower and its sloshing behavior over time a lot calmer compared to the flat 

bed case (black curves in Fig. 6.2b, d). In conclusion, the oscillating activity at the concerning 

evaluation point is a lot less in the pit case than in the flat bed case under these conditions. 

 

 

Figure 6.5: Top view sketch of the pit case in the FEM 
model. The black dot indicates evaluation point y = 87.5 km. 
Depths in the basin are indicated with 20 and 50 m. Again, 
the sloping contours left out of the figure for simplicity.  
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6.4 Summary 
The behavior of the wind driven response of the time-dependent surface elevation along the coast 

for each case treated in this chapter, have been explained mainly by the spectra, of the wind forcing 

and the basin’s spectral response to periodic wind forcing, in the frequency domain of the cases 

under consideration. Hereby, we have applied our gathered findings of the previous chapters 

regarding these spectra.     

  Furthermore, it turns out that the lower frequencies of the periodic wind forcing input clearly 

dominate the behavior of the time-dependent set-up induced by a wind event, relative to higher 

frequencies. This can be explained by the fact that due to the applied characteristics of a wind event, 

a large portion of the wind spectrum's energy is distributed over the lower frequencies of the 

spectrum, experienced already in Chapter 2.  

  Moreover, this chapter demonstrates how to trigger optimal set-up behavior by modifying 

the basin topography for a given wind event with a certain wind speed, wind duration, ramp stage 

and wind angle. 

 

Figure 6.6: Same as Fig. 6.4, but now for the pit case instead of the shoal case in the semi-enclosed basin at evaluation 
point y = 87.5 km. Both cases are forced by a wind event with an effective duration of 6.5 h in cross-basin direction. 
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Chapter 7  

Discussion 
In this chapter, some important assumptions and model choices will be discussed, together with the 

found results during this research project. First we will treat the assumptions with regard to 

excluding hydrodynamic processes in the flow models, partly due to adopting a linearised model 

approach at the start of this project (Section 7.1). Followed by the justification for the applied 

Dirichlet boundary condition at the open boundary of the semi-enclosed basin and the exclusion of 

tides (Section 7.2). Finally, we will discuss the model performance of the FEM model regarding 

accuracy and certain unclarities in the model results in Section 7.3. 

 

7.1 Hydrodynamic processes in our linearised model approach 
The model formulations of our flow models used in this study are based on the linearised shallow 

water equations. By assuming linear dynamics, non-linear processes will be neglected. This implies 

that we assume a small Froude number: 

   
 

   
                                                                                                                                            

With typical scales U for flow velocity and h for depth. As a result, the surface displacement is small 

compared to the average water depth, referred to as the rigid lid approximation. As a result, we 

neglect the non-linear processes such as advection terms and horizontal mixing of momentum. 

  Although the FEM model is suitable for simulating Coriolis effects, this process is neglected 

during this study. An important reason for this is that the 1-DH model can not simulate cross-basin 

dynamics, because of its one-dimensional nature. Another reason is the ‘negative’ experience of my 

supervisors (especially W.L. Chen) with applying the Coriolis parameter in FEM model simulations. 

Negative in a way that the Coriolis effects significantly disturbs the spectral response spectra, 

intensively applied throughout this study, which makes it a lot harder to interpret these type of 

results in the frequency domain. Therefore we have chosen to neglect this process completely in this 

study, to focus on the influence of basin topography, wind direction and bottom friction on the 

spectral and time-dependent response of the closed and semi-enclosed basin. For a comprehensive 

analysis regarding the important influences of the Coriolis effects on the basin’s spectral response, I 

will refer to the work of W.L. Chen (2015, PhD thesis).  

  Bottom friction and the vertical eddy viscosity, which adds turbulence to the system, are 

both linearly implemented in the model as well. These processes are further discussed in Section 7.3, 

regarding the influence of these parameters on the model results. Finally, both flow models are 

driven by wind forcing only, while atmospheric pressure is neglected.  
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7.2 Boundary conditions 
In the semi-enclosed basin, we assume that the sea outside our model domain effectively imposes a 

Dirichlet boundary condition at the open boundary of our model domain. This implies that the 

surface elevation is considered to be zero at this open boundary, connecting the model domain with 

the outer sea. The underlying assumption is that this outer region is large enough to absorb the 

oscillating effects at the open boundary induced by wind forcing in the coastal basin. This means that 

waves propagating outside the model domain can be seen as a outward flux with a very small 

amplitude, which barely affects the elevation of this wide and deep outer region. 

 As already mentioned, non-linear processes like tide-surge interactions are neglected in this 

study. However, tides and thus tide-surge interactions could be included in the model by imposing a 

tidal periodic signal at the open boundary condition. Because we also study closed basins, the tide 

effects have been excluded entirely.  

 

7.3 Model simulations 
In order to conduct the performed sensitivity analyses, computation time of the applied models 

needs to be manageable. Therefore, we have adopted the idealized process-based modelling 

approach in the beginning of this study. Furthermore, the applied combination of both flow models 

with the Fourier transform approach allows us to perform the required model simulations rather 

quick. 

 A comparison between the 1-DH model simulations and the FEM model simulations has been 

done in Chapter 5 by reproducing the basin’s spectral response for a few simple 1-DH cases by 

simulating similar cases in the FEM model. Because of the different model approaches of both flow 

models, the FEM model can not reproduce identical 1-DH model simulations. After all, the 1-DH 

model is based on one-dimensional depth-averaged flow, whereas the FEM model is based on three-

dimensional depth-integrated flow. Nevertheless, simulating identical cases in both models resulted 

in pretty good similarities of the spectral response behavior of both model simulations.  

  The statistical measure ‘standard error of the estimate’ is used to calibrate the bottom 

friction coefficient r of the 1-DH model. This measure determines the goodness of fit over a sample 

of frequency simulations. Here, it has been applied over the full frequency range of periodic wind 

forcing as input for both flow models. One could argue to choose a smaller frequency range to 

calculate the error and conduct the calibrations at. Namely, a specific frequency range which 

encloses a certain resonant peak. However, since the purpose for calibration was not to improve the 

accuracy of the 1-DH simulations, this more general calibration approach was used. The purpose for 

calibration was to give an indication of the accuracy of the FEM model simulations, with respect to 

the 1-DH model simulations of identical cases. This is also important with regard to future storm 

surge research in coastal basins, where this rather new FEM model is expected to be applied for as 

well. Nevertheless, it would be wise to further calibrate the FEM model parameters, (Kv, s)  in 

particular, and validate its results with real time data of coastal basins in practice. This will be further 

treated in the next chapter (Recommendations).   

  It turned out that the degree of fit decreases as the bottom friction coefficient and 

the complexity of basin topography increases. Another more striking result is that the amplification 

peaks (in its non-dimensional form) of the 1-DH simulations remain constant for increasing 

frequencies, in contrast to the peaks of the FEM simulations, which decrease for increasing 

frequencies for the reference flat bed case in both types of basins (Fig. 5.4). Unfortunately, no solid 
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explanation has been found yet for these observations other than a different approach of 

representing the vertical structure of the flow for each model. A more thorough study would be 

required to give a sound explanation for these observations.  
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Chapter 8:  

Conclusions & Recommendations 
This final chapter answers the research questions of this study, treated in Section 8.1. Subsequently, 

recommendations will be given in Section 8.2, based on the answers of the research questions and 

the discussion, presented in Chapter 7. 

 

8.1 Conclusions 
All the research questions formulated in Chapter 1 will be answered here. Each question is addressed 

in a separate chapter. The first two questions addresses the applied methods and models. The last 

three questions contribute to the objective of this study. 

1.   How is a time-dependent single wind event converted in the frequency domain and how are its 

characteristics influencing the spectral representation? 

The Fourier transform approach enables us to switch easily between the temporal and spectral 

representations. In this study we consider a single wind event as a periodic signal over time. One 

important aspect of the Fourier theory is that any smooth periodic signal can be represented as a 

sum of sinusoids. The periodic signal y(t) can then be decomposed into M sinusoids with appropriate 

amplitude, phase and frequency components, where M is the number of frequency modes. The 

resulting Fourier series (Eq. 2.2) can be solved by applying the fast Fourier transform algorithm      

(Eq. 2.3) to obtain the spectral representation of the single wind event as a function of frequency 

modes. The same method can be used to convert a signal in the frequency domain back into the time 

domain, by applying the inverse Fourier transform function (Eq. 2.5), which will come in handy later 

in Chapter 6 to convert the actual response to a single wind event into the time domain. This 

approach is treated more fully in Chapter 2, provided with examples. 

  The duration (Tevent) and smoothness (Tramp) of a wind event play an important role in the 

spectral representation of the wind event. An exploratory sensitivity analysis has been conducted 

regarding the effects of varying Tevent and Tramp. It turns out that the spectral energy of the wind signal 

is distributed in more condensed peaks with higher amplitudes when we increase Tevent. On the other 

hand, increasing Tramp will lower the amplitudes, especially at higher frequencies.  

2.   How do we formulate the model conditions in order to simulate the set-up along the basin’s 

coastal boundary for the closed and semi-enclosed basin? 

The chosen model domain consist of a rectangular basin with 200 km length and 100 km width for 

both the closed and the semi-enclosed basin. The linearised shallow water equations are applied to 

express the hydrodynamic processes in the domain. These equations will be solved either in the 3-D 

or in the 1-DH flow model, by setting appropriate boundary conditions for both models.  

In the 3-D flow model formulation, the system is forced by imposing a time-periodic and 

space-uniform wind stress at the free surface. Turbulence is represented using a spatially uniform 

vertical eddy viscosity, combined with a partial slip condition at the bed including bottom friction in a 

linearised way.  Furthermore, a zero transport condition is imposed normal to the closed boundaries 

in both types of basins, where a zero surface elevation condition is imposed at the open boundary in 
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the semi-enclosed basin. Due to the linearity of the system, we have used the complex notation to 

express the wind forcing together with the solution of the surface elevation and currents in a time-

periodic fashion, by assuming a dynamic equilibrium. 

In the 1-DH model formulation, we assume one-dimensional depth-averaged flow by 

considering the width of the basin to be very small compared to the length of the basin. The 

hydrodynamic processes are expressed by the depth-integrated shallow water equations together 

with the depth-averaged bottom stress formulation. A topographic step approach is applied to 

address topographic changes in the basin. Again, the complex notation will be used to express the 

wind forcing together with the solution of the surface elevation and currents in a one-dimensional 

time-periodic fashion. 

3.  What are the effects of varying the bottom friction coefficient and topographic basin 

dimensions on the basin’s spectral response at the rear end of the closed and semi-enclosed basin, 

using the 1-DH flow model? 

First of all, the spectral response of a basin driven by periodic wind forcing displays resonance peaks. 

Increasing bottom friction lowers the resonance peaks. The sensitivity analysis of the basin’s depth 

ratio h2/h1 has shown that the classical resonance peaks shift to lower (higher) frequencies when the 

depth ratio becomes < 1 (> 1), which follows from the fact that waves in shallow water propagate 

more slowly than waves in deep water. Furthermore, new resonant peaks show up in the spectral 

response due to breaking of symmetry of the propagating waves caused by topographic differences 

in the basin. In addition, bottom friction damps the amplification in shallower regions to a higher 

degree than in deeper regions. This can be explained by the fact that the effective friction coefficient 

is higher in shallower regions, which leads to larger damping of amplification. 

The comparison between the reference flat bed case and a topographic step case, with the 

same average basin depth, demonstrates that the effective wave speed in the step case is lower than 

in the flat bed case, whereby peaks shift to lower frequencies. This implies that the shallower region 

dominates the deeper region of the step case, in terms of influence on the spectral response 

behavior. The sensitivity analysis of the h/L ratio of the shoal and pit designs has shown that 

redistributing sand into a pit design results in lower resonant peaks, particularly for high hpit/Lpit 

ratios, compared to redistributing sand into a shoal design, given that the basin volume remains 

constant in all studied cases. All the cases in both the shoal and the pit design have a lower effective 

wave speed compared to the reference flat bed case. Moreover, the shoal design dominates the pit 

design in terms of shifting peaks to lower frequencies. After all, as the helement/Lelement ratio increases, 

the effective wave speed in the shoal design decreases more rapidly than in the pit design. 

  Finally, the results in Chapter 4 show that the semi-enclosed basin simulations in the 1-DH 

model exhibit many similarities with the closed basin simulations, regarding the spectral response 

behavior. 

4.   What is the influence of implementing topographic elements, such as pits and shoals, and wind 

direction on the basin’s spectral response at the rear end of the closed and semi-enclosed basin, 

using the 3-D flow model? 

At first, the results in Chapter 5 show that the size and location of a topographic element, such as a 

shoal or a pit, strongly influences the spectral response behavior along the coastal boundary of a 

basin. Induced by along-basin wind forcing, the resonant peaks of the spectral response shift to lower 

(higher) frequencies when a shoal (pit) is implemented in front of the coastal boundary at the rear 

end of the basin. These peak shifts increase as the frequency increases, which is in line with the 1-DH 
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model results in Chapter 4. Furthermore, the location of the shoal and pit influences the spatial 

behavior of the spectral response along the coastal boundary. Resonant peaks are highest (lowest) at 

evaluation points near the shoal (pit) location, particularly at higher resonant frequencies. This is true 

for both types of basins. 

Induced by cross-basin wind forcing, resonant peaks shift to lower (higher) frequencies when 

a shoal (pit) is implemented, with larger shifts at higher frequencies. Moreover, new but lower peaks 

emerge at frequencies around the resonant frequencies of the shoal and pit cases, which were not 

(slightly) present in the flat bed case of the closed (semi-enclosed) basin. Compared to the reference 

flat bed case, the resonant peaks are lower in all the shoal and pit cases (varied at different locations 

in front of the basin), particularly at higher frequencies. The peaks are even lower in the pit cases 

than in the shoal cases.  

In this linear approach of simulating wind forcing, the spectral response initiated by a 

spatially uniform wind stress in a certain wind direction is a combination of spectral response 

contributions by the along-basin and cross-basin wind forcing. To this end, along-basin wind forcing 

has a high (low) contribution in the spectral response of a low-angle (high-angle) wind forcing case 

and vice versa for cross-basin wind forcing. Therefore, varying wind direction in the studied cases 

show similar results to the addressed along- and cross-basin wind forcing cases, proportional to the 

wind angle contribution of both cases. Concluding, the most substantial influences on the spectral 

response behavior take place at the higher frequencies of the spectrum in all studied cases of 

Chapter 5. This will have consequences for the actual influences on the basin’s response to a single 

wind event, treated in the next question. 

5.   How to obtain the actual response of the time-dependent set-up in the basin, induced by a 

single wind event? And how is the spectral response reflected in the time-dependent set-up? 

The spectral response to periodic forcing, as obtained from our models, displays in particular the 

resonant frequencies of the basin. When a single wind event is forced onto the basin, the wind 

spectrum indicates to what extent these resonant frequencies are excited by the wind event. The 

product of these two quantities will give the basin’s spectral response to the wind event under 

consideration. Subsequently, the inverse Fourier transform function (Eq. 2.5) will be applied to 

convert the latter response into the actual response of the time-dependent set-up in the basin. 

The sensitivity analysis in Chapter 2 already demonstrated that for various single wind 

events, a large portion of the wind spectrum's energy is distributed over the lower frequencies of the 

spectrum. Therefore, the basin’s spectral response will be excited the most at these lower 

frequencies by the wind event under consideration. This implies that the lowest frequencies of the 

basin’s spectral response influence the basin’s actual response to a single wind event the strongest. 

Moreover, it turns out that the basin’s actual response can be lowered significantly when the 

resonant peaks of the basin’s spectral response coincides with a trough of the wind spectrum. In 

turn, gained insights about the sensitivity of the spectral response to certain basin specifications, 

obtained from the sensitivity analyses in Chapter 4 and 5, enables us to modify the topographic 

dimensions in such a way that particularly the first resonant peak of the basin’s spectral response 

coincides with a trough of the wind spectrum for a given wind event blowing in a certain direction.  

Finally, examples of a few cases, with various topographic elements and various wind angles of 

several events, in Chapter 6 have shown that applying the gained insights of this method properly 

can yield a major reduction of the oscillating activity of the basin’s surface elevation over time. 
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8.2 Recommendations 
In Chapter 7 we already referred to recommendations for further improvement of the accuracy of 

FEM model simulations. To this end, it would be recommended to calibrate and validate on the basis 

of real time data of existing coastal basins, and in particular coastal basins that are frequently subject 

to severe storms and/or wind events, such as for example the Bay of Bengal along the coast of 

Bangladesh (e.g. Dube et al., 2009). Thus, validation based on real time data in favor of existing or 

analytical models, at which this study and its conducted results are based on. However, the fact 

remains that such a model is mostly easy in use and can generate lots of data. My personal 

experience is that it helped me a lot with understanding the complex matter, simply by the fact that I 

could generate fast and lots of data to focus on uncertainties in the model results (trial and error). 

This obviously depends on your research goal, where in this research project a better understanding 

of processes by (sometimes strongly) simplifying these processes through de imposed conditions on 

the flow model. Therefore I recommend a very clear goal and a systematic plan of approach 

beforehand, when there is the possibility to generate a lot of data in little time.    

  Furthermore, there are lots of possibilities to study further with these types of flow models 

(FEM model) which needs relatively little computation time. Some general ideas are first of all 

implementing and varying more complex geometries of the basin. After all, the FEM model is highly 

suitable for this approach because it can deal with both structured grids as well as unstructured 

grids. In this study we have applied the structured grid of the FEM model, because of the strongly 

simplified considered geometry of the basins. Second, the size of topographic elements can be varied 

in many ways: in width, length and/or depth; in volume relative to the basin’s volume (regarding the 

small sensitivity study conducted in Section 4.2.3); even in combination with several complex 

geometries (which was also a serious consideration prior to this study) and many more I would say. 

Finally, inclusion of more (non-linear) processes such as tide, Coriolis effects and advection. But that 

perhaps entails too much complexity, resulting in an exponential increase in computation time 

(expectation), losing its big advantage of the applied modeling approach, namely little computation 

time. Therefore it is very important to figure out beforehand what the real purpose is of applying the 

FEM model in future study.   

  That brings me to mention that the basin’s spectral response results of this research project 

perhaps predominates the basin’s time dependent response, which means there is an opportunity 

for future studies to elaborate further on the latter response. However I recommend for follow up 

studies with regard to the just mentioned possibilities for these flow models, to look for challenging 

real time case studies. Further simulations of random cases to trigger the optimal conditions in a 

basin will not directly meets to a certain need of better safety in high risk areas for example. A more 

specific example would be to assess in advance the common wind events of a high-risk coastal area 

in practice. And mainly focus on wind event duration and angle is my suggestion for a challenging 

case study. Since these two wind characteristics influence the Fourier wind spectra the strongest and 

therefore probably also basin’s time-dependent set-up. Probably, because this mainly depends on 

the basin’s resonant frequency response, whether these frequencies will be excited by the wind 

event or not. And like I showed in this study, these resonant frequencies depend on a lot of factors, 

such as the basin dimensions (geometry, topography). Yet again, that was not the goal of this study 

but it is just a general recommendation for further research. A win win situation I would say.         
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Appendix A  

Solution method of the analytical 1-

DH model 
 

A.1 Outline of the solution method 
From the hydrodynamics in Section 3.2.2, the linearised depth-averaged shallow water equations 

(3.13 & 3.14) can be solved by introducing complex amplitudes, under the assumptions of a dynamic 

equilibrium and a linear system of equations. In this way the problem is reduced to solving for the 

complex amplitudes of the currents and the surface water elevation. Recall that these amplitudes 

satisfy 

      
  

  
                                                                                                                           

            
  

  
 
    

 
                    

  

  
                                                           

Subsequently, the differential problem can be expressed as a single equation for amplitude N only, 

by applying some straightforward differential operations. Take the space derivative of Eq. (3.24) and 

multiply with h. Multiply Eq. (3.23) with     . Then the summation of these two equations will form 

the single equation for complex amplitude N, which is given by 

   

   
                                                                                                                                 

Because the basin is divided in two compartments due to the single step topography, the solution for 

N will be separated per compartment as well. This results in two general solutions to the Helmholtz 

Eq. (A.1) for compartment 1 and 2, denoted with subscripts 1 and 2: 

                                                                                                                  

                                                                                                                    

          
 

    
                

  

   
                                                                  

 

A.2 Solution for the closed basin 
In this single step topography setting, next to the horizontal boundary conditions, two extra 

continuity conditions apply at the interface (x = 0). Continuity of volume transport is expressed as 

U1h1 = U2h2  at x = 0. Continuity of surface elevation is expressed as N1 = N2 at x = 0. The subscripts 
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refer to the concerning compartments of the basin. Together with the horizontal boundary 

conditions the following four conditions apply for amplitude N: 

                         
   
  

 
    

   
                            

   
  

 
    

   
                                                         

 
   
  

 
  
  

   
  

                                                                                                 

The expressions of N1 and N2 in Eqs. (A.2) & (A.3) in Section A.1 can now be further solved with these 

four conditions. Therefore coefficients A1, A2, B1 and B2 have to derived. Substituting the first 

boundary condition at x = -L1 in the equation of N1 gives 

    
    

                  
                                                                                    

Substituting the second boundary condition at x = L2 gives 

                                          
    

                  
                                                                     

Substituting the first matching condition at x = 0 gives 

   
      
      

                                                                                                                                

From the second matching condition it follows that A1 = A2. Substituting Eqs. (A.7) and (A.8) in          

Eq. (A.9) will give 

   
    

       
 

                       

                                              
                                

                                  
      
      

   

The derived solution for A1 can now be substituted in Eq. (A.8). Notice that A1 = A2, which gives 

   
               

       
 

                       

                                              
                    

                
    

                  
  

To find the full solution of N2(L2), the derived coefficients A2 and B2 will be substituted in Eq. (A.3). 

This results in 
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In turn, the solutions for the flat bed case with and without bottom friction will be derived from this 

expression (A.12). 

Flat bed with bottom friction 
The solution for the flat bed case with bottom friction can be obtained by substituting L2 = 0 in 

expression (A.12), leaving L1 capturing the basin length L: 

           
    

    
 
        

      
                                                                                                   

This solution (A.13) has been used in Section 4.1 (Fig. 4.1) to illustrate the influence of bottom 

friction on the spectral response behavior of the flat bed in the closed basin. 

Flat bed without bottom friction 
The frictionless expression can now easily be obtained by substituting   = 1 in expression (A.13), 

which gives 

           
    

   
 
       

     
                                                                                                       

This solution (A.14) has been used in Section 4.1 to obtain the classical resonance properties of the 

closed basin. 

 

A.3 Solution for the semi-enclosed basin 
The boundary and matching conditions that apply in the semi-enclosed basin are: 

                                        
   
  

 
    

   
                                                                

   
  

 
  
  

   
  

                                                                                                      

These conditions will now be used to solve the amplitude of the surface elevation at the right basin 

boundary N2(L2). The expressions for N1 and N2 are given by Eqs. (A.2 & A.3) in Section A.1. The 

coefficients A1, A2, B1 and B2 will now be different than the coefficients for the closed basin case in 

the previous Section. Therefore these coefficients have to be derived again. Substituting the first 

boundary condition at x = -L1 in the equation of N1 gives 

   
  

           
                                                                                                                               

Substituting the second boundary condition at x = L2 gives 

                 
    

                  
                                                                           

Substituting the first matching condition at x = 0 gives 
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From the second matching condition it follows that A1 = A2. Substituting Eqs. (A.17) and (A.18) in          

Eq. (A.19) will give 

   
    

       
 

                       

                          
                  

      
      

                                  

The derived solution for A1 can now be substituted in Eq. (4.9). Notice that A1 = A2, which gives 

   
               

       
 

                       

                          
  

    

                  
               

To find the full solution of N2(L2), the derived coefficients A2 and B2 will be substituted in Eq. (A.3). 

This results in 

           
    

       
 
                       

 
 
                      

                                               
                

In turn, the solutions for the flat bed case with and without bottom friction will be derived from this 

expression (A.22). 

Flat bed with bottom friction 
The solution for the flat bed case with bottom friction can be obtained by substituting L2 = 0 in 

expression (A.22), leaving L1 capturing the basin length L:  

         
    

    
                                                                                                                             

This solution (A.23) has been used in Section 4.1 (Fig. 4.1) to illustrate the influence of bottom 

friction on the spectral response behavior of the flat bed in the semi-enclosed basin. 

Flat bed without bottom friction 
The frictionless expression can now easily be obtained by substituting   = 1 in expression (A.23), 

which gives 

         
    

   
                                                                                                                                 

This solution (A.24) has been used in Section 4.1 to obtain the classical resonance properties of the 

semi-enclosed basin. 
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Appendix B  

1-DH model simulations 
In this appendix we will present some results of the pit and shoal cases which are referred to in 

Chapter 4. The influence of bottom friction on the spectral response of the shoal and pit cases, 

treated in Section 4.2.3, are presented in Figures B.1 (closed basin) and B.2 (semi-enclosed basin). 

 Here, the focus is not on the sensitivity of the h/L ratio of the element, but on the differences 

in spectral response behavior between weak (a) and moderate (b) bottom friction.  
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 Figure B.1: Scaled amplification factor A as a function of dimensionless forcing frequency ω/ωref (horizontal 
axis) and ratio helement/Lelement (vertical axis) at the rear end of the closed basin (x = L) for two bottom friction 
coefficients: (a) r = 0.0002 m s-1, (b) r = 0.001 m s-1. Positive (negative) ratios on the vertical axis represent pit 
(shoal) cases. 
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 Figure B.2: Same as Fig. B.1, but now for the semi-enclosed basin. 
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Appendix C 

Relation between roughness 

coefficients for the 1-DH & 3-D flow 

models 
To give an indication of the validity of the applied roughness parameters in the FEM model, we  

would like to express the linearised bottom friction coefficient r (m s-1) of the 1-DH flow model in the 

set (s, Kv) representing the linearised bottom friction s (m s-1) and vertical eddy viscosity Kv (m
2 s-1) of 

the 3-D FEM model. We do this by considering a steady uniform flow in both models, meaning   (rad 

s-1) of the periodic wind forcing is zero. For simplicity, we will apply a modified coordinate system for 

this comparison, relative to the coordinate system we use in all other analyses of this study. This 

means that the bottom of the basin is set at z = 0 and the still water level of the surface water 

elevation z = h (instead of at z = -h and z = 0, respectively).    

 

C.1 Derivation of u(z) for the 3-D flow model 
First we will derive the along-basin flow velocity      for the 3-D flow model in this simplified case. 

Since we consider a steady uniform flow, this implies 

 

  
                                  

           

  
   

  

  
                                                                       

which means 

 

  
     

  

  
                                                                                                                                          

For simplicity, the horizontal shear stress from bottom to surface  (z) in the basin will now be 

expressed as 

        

  

  
                                                                                                                         

At the surface (z = h): 

                                                                                                                                    

Also boundary condition (3.4) from Chapter 3 applies at the surface 

  

  
 

  
   

                                                                                                                                           

In turn, taking the primitive of Eq. (C.5) gives 
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with constant  . To find  , we state at the bottom (z = 0): 

                                                                                                                                  

Also, the partial-slip condition (3.5) for Chapter 3 applies at the bottom. Because the shear stress 

does not vary over depth in this situation, we can express the flow velocity at the bottom    as a 

function of the bed shear stress    ánd the wind shear stress   . This means that we can combine 

Eqs. (3.5) & (C.3), which results in  

  

  

  
                                                                                                                          

 
  
 

                                                                                                                                              

Furthermore, since      , from Eq. (C.9) we then find 

                         
  
   

                                                                                                    

Finally, the along-basin flow velocity      can now be obtained by substitution of Eqs. (C.7) & (C.10) 

in Eq. (C.6): 

     
  
 

 
 

  
 

 

 
                                                                                                                                

  

 

C.2 Expression for bottom friction coefficient r in roughness 

coefficients s and  Kv 
Next, we have to depth-average Eq. (C.11) to connect the 3-D flow model with the 1-DH model 

approach, which expresses the along-basin flow velocity as a depth-averaged flow. Recall from 

Chapter 3 (Eq. (3.15)) that depth-averaging means 

      
 

 
                                                                                                                                    

 

 

 

Notice that in contrast to the time-dependent periodic flow velocity (dynamic condition) of both flow 

models, we have a steady flow here (expressed as t and   = 0). To continue with the derivation, 

depth-averaging Eq. (C.11) results in 

      
  
 

 
 

  
 

 

 
                                                                                                                               

 

Since      , Eq. (C.12) becomes 
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From the 1-DH model approach, we also use 

 
  
 

                                                                                                                                             

Eventually, we can express r in s and Kv by combining Eqs. (C.13 & C.14), such that we find 

  
 

 
   

  
 
 

                                                                                                                                        

Although this relation is derived for steady uniform flow, it will be used for unsteady flow in Section 

5.2.3 to provide some guidance for the applied roughness coefficients (s, Kv) in the FEM model. 
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