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Abstract

In this thesis we investigate how to obtain cheap reliable networks, and how the problem of finding
them behaves. We study reliability in terms of k-edge-connectivity and k-vertex connectivity in
graphs. In these graphs, we either charge per edge or we assign power to vertices and charge per
vertex. When charging per vertex, the network can be seen as a wireless network and connections
have to be symmetric there. The goal is to minimise the sum of edge lengths, or for wireless
networks, the total power assignment. We define five problems such that they are Euclidean
functionals.

We show some properties of these functionals, also using their boundary functionals, for arbi-
trary k, dimension d, and raising edge lengths to the pth power. With these properties we show
complete convergence, as well as a bound on the longest edge in an optimal k-edge-connected
graph with high probability. We show bounds on the rates of convergence of means for all our
functionals. For the functionals associated with k-edge-connectedness we present two umbrella
theorems as extensions on a limit theorem.

One of the reasons to prove our functionals have these properties is to use partitioning algo-
rithms that rapidly compute near-optimal solutions on typical examples. To explain this perfor-
mance, we apply smoothed analysis to obtain a smoothed approximation ratio.

Mixed integer linear programs are presented for all functionals, which we use for computing
optimal solutions. Our computational results show the performance of the partitioning algorithms
when we use various numbers of partitions for k-edge-connected graphs and power assignment
graphs. These results show that solution times can be decreased greatly while only increasing the
solution values slightly if the number of partitons is chosen in the right way.

As far as we are aware, k-edge-connectivity and k-vertex-connectivity have not been studied
yet as functionals, and no partitioning algorithms have been presented for them.

1 Introduction

The design of fault tolerant networks is an important issue in todays research, due to their numer-
ous applications. The goal is to find cheap and reliable networks with some specific characteristics.
Reliability is generally expressed in terms of the connectivity of a network. Different problems all
ask for their own type of connectivity. For example, we might want to have multiple paths between
each pair of nodes to account for possible failures in a link or even a failing node. Applications for
these type of problems can be found in the design of reliable communication and transportation
networks [3, 16, 17].

Wireless ad hoc networks have also received significant attention in recent studies [7, 12,
29]. Instead of direct connections between nodes, communication takes place through single-hop
transmissions or by relaying through intermediate nodes. Here we assign a transmission power
to each node. As the transmission range is directly related to the power used by a node, the
goal is to find a fault tolerant network with minimal total power usage. Possible applications
that are being considered by researches are environmental monitoring, emergency disaster relief
where wiring is difficult, communication between mobile computers for conferencing and home
networking, wireless sensor networks, multi-hop extensions of cellular telecommunication systems,
and networks of vehicles [4, 12]. Metricom Inc’s Ricochet network and the Army Near-Term
Digital Radio network are examples of fully operational multi-hop wireless networks [29].

For both wired networks and wireless networks we study the problem of finding a cheapest
k-edge-connected network, as well as a cheapest k-vertex-connected network. We also refer to
wired networks as regular networks. The requirement for a network to be k-edge-connected is
that the network is still connected when at most k− 1 edges fail. Similarly, a network is k-vertex-
connected if it is still connected when at most k − 1 nodes fail. To illustrate these concepts, a
spanning tree is 1-edge-connected and 1-vertex-connected, and a cycle is 2-edge-connected and
2-vertex-connected. In figure 1 we can see some other examples of k-edge-connected and k-vertex-
connected graphs. In this thesis we want to find these k-edge-connected or k-vertex-connected
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graphs of minimum costs, where costs are defined as the sum of all edge lengths for regular
networks, and as the sum of the assigned power for wireless networks. We define five problems
such that they are Euclidean functionals; Finding a minimal k-edge-connected graph, finding
a minimal k-edge-connected multigraph, finding a minimal k-edge-connected power assignment
graph, finding a minimal k-vertex-connected graph, and finding a minimal k-vertex-connected
power assignment graph.

v1

v2

v3

v4

v5

v6

(a) This graphs is 2-edge-connected, as remov-
ing edges (v1, v2) and (v2, v3) would leave a dis-
connected graph. Removing less edges does not
disconnect the graph. It is 2-vertex-connected as
well, since removing v1 and v4 would disconnect
the graph. The graph cannot be disconnected by
removing less than 2 vertices.

v1

v2

v3

v4

v5

v6

(b) After removing (v3, v4) the graphs is still 2-
edge-connected, as removing only one edge will
not disconnect the graph. It is only 1-vertex-
connected though, as removing v1 would discon-
nect the graph.

Figure 1: Example graphs showing the difference between k-edge-connectedness and k-vertex-
connectedness.

Finding a cheapest k-edge-connected, or k-vertex-connected network is NP-hard [15], and so is
finding a minimal power wireless network [10]. As we still want to have reasonably good solutions
in acceptable computation time, we need to find a good approximation algorithm. Partitioning
algorithms have shown a lot of potential with similar problems [6]. In practice, partitioning
algorithms are very fast. However, in the worst case these algorithms give solutions far from the
optimum. To explain this performance, we use smoothed analysis [33]. Partitioning algorithms
divide the whole problems into smaller cells and compute optimal solutions on these. Then these
solutions are joined to obtain a solution for the whole problem. More detail can be found in
Section 4.8.

Smoothed analysis is a hybrid of worst-case and average-case analysis. Only looking at worst-
case performance often gives an analysis that is too pessimistic. Average-case analysis often
exploits very specific properties that occur with overwhelming probablity, but it does not mean
typical instances share these properties. That is why we use smoothed analysis. An adversary
specifies an instance, and this instance is then slightly randomly perturbed. This often better
explains the performance of algorithms convincingly. We refer to two recent surveys for a broader
picture [24, 34].

We prove several properties for these problems needed for smoothed analysis. With these
properties we are also able to prove several limit theorems as well as convergence theorems. We
use smoothed analysis on a partitioning algorithm and implement this algorithm. Simulations are
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done on randomly generated graphs with the partitioning algorithm and these are compared to
optimal solutions acquired by solving linear programs. The simulations show promising results in
terms of solving time.

The rest of this thesis is organised as follows. In Section 2 we give all definitions used in the
rest of this thesis. We summarise related work in Section 3. The theoretical results including
their proofs are all in Section 4, followed by the linear programs of the problems in Section 5. In
Section 6 we present a simulation study of the partitioning algorithm. Following that, we present
our conclusions in Section 7, and finish with some recommendations for future work in Section 8.

2 Problem Description

In this section we will define all important concepts used in the rest of this thesis. Although
many are defined identically in similar papers, there are some slight differences between different
fields. We define all these concepts in this thesis to make the thesis self-contained and to avoid
ambiguities caused by slightly different definitions used in the literature.

2.1 Functionals

All graphs in this paper are undirected, and we will both be considering simple graphs as well
as multigraphs. Let G = (V,E) be a graph. We assume V ⊂ Rd, where d is a constant and V
is finite. In the rest of the paper, n = |V | is the number of vertices. In Section 1 we already
mentioned edge- (vertex-)disjoint paths. We will now define these formally.

Definition 2.1 (Edge/Vertex-disjoint paths). Let G = (V,E) be a graph. Consider two paths
C1 = (u1, . . . , un) and C2 = (v1, . . . , vm) with ui, vj ∈ V and (ui−1, ui), (vi−1, vi) ∈ E. Then C1

and C2 are edge-disjoint, if they share no edge. The paths are vertex-disjoint, if they share no
common vertex (start and end vertices excluded).

We can use this definition to formally state if a graph is k-edge-connected by checking how many
edge-disjoint paths it has between each pair of vertices.

Definition 2.2 (k-edge-connected). Let G = (V,E) be a graph and k ∈ N. G is k-edge-connected
if the following holds:

• If |V | ≥ k + 1 then there exist at least k edge-disjoint paths in E between u and v for all
pairs of vertices u, v ∈ V .

• If |V | ≤ k then G is complete.

We also present an alternative definition for k-edge-connectedness based on edge cuts instead of
edge-disjoint paths. These definitions are equivalent.

Definition 2.3 (k-edge-connected (alternative)). Let G = (V,E) be a graph and k ∈ N. Then
G is k-edge-connected for |V | ≥ k + 1 if for any edge set C ⊆ E with |C| ≤ k − 1, (V,E \ C) is
connected, and for |V | ≤ k if G is complete.

We want to present these definitions for multigraphs as well. A multigraph in this paper can have
multiple edges (u, v) between each pair of vertices, but no loops. Nuv indicates how often the edge
(u, v) appears in the graph. For multigraphs the definitions are very similar, though the difference
is that a edge (u, v) can appear in at most Nuv edge-disjoint paths.

Definition 2.4 (k-edge-connected (multigraph)). Let G = (V,E) be a multigraph and k ∈ N.
Then G is k-edge-connected if there exist at least k edge-disjoint paths in E between u and v for
all pairs of vertices u, v ∈ V .

In the same way as the alternative definition of k-edge-connectedness for simple graphs, we can
also give this alternative definition for multigraphs.
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Definition 2.5 (k-edge-connected (multigraph, alternative)). Let G = (V,E) be a multigraph and
k ∈ N. Then G is k-edge-connected if for any edge set C ⊆ E with |C| ≤ k − 1, (V,E \ C) is
connected.

Definition 2.2 and 2.3 are equivalent, as well as definition 2.4 and 2.5. This follows from Menger’s
Theorem [26]. The intuition behind this is that when we have k-edge-disjoint paths from u to v,
we can remove one edge from every path. This will disconnect the graph, while removing one from
only k−1 paths will still leave one path from u to v. Menger’s Theorem is also closely related to the
Max-Flow Min-Cut Theorem, which is actually a generalisation of Menger’s Theorem. Sometimes
we will also need that only parts of a graph have k edge-disjoint paths between them. These parts
are called locally k-edge-connected, as described in following definition.

Definition 2.6 (Locally k-edge-connected). Let G = (V,E) be a graph, u, v ∈ V , and k ∈ N.
Then u and v are locally k-edge-connected in G if there exist at least k edge-disjoint paths in E
between u and v. For U ⊂ V , we say that U is locally k-edge-connected in G if all pairs of u, v ∈ U
are locally k-edge-connected.

It follows from Definition 2.6 that if V is locally k-edge-connected in a graph G = (V,E), then G is
k-edge-connected. This is in accordance with Definition 2.2. For k-vertex-connectedness we can use
similar definitions, except that we need vertex-disjoint paths. Each pair of vertex-disjoint paths is
automatically edge-disjoint paths, as having no common vertices means having no common edges.
This shows that k-vertex-connectedness is a stronger requirement than k-vertex-connectedness.

Definition 2.7 (k-vertex-connected). Let G = (V,E) be a graph and k ∈ N.Then G is k-vertex-
connected for |V | ≥ k + 1 if there exist at least k vertex-disjoint paths in E between u and v for
all pairs of vertices u, v ∈ V , and for |V | ≤ k if G is complete.

Similar to the alternative definition we have for k-edge-connectedness, we can also define k-vertex-
connectedness by looking at vertex cuts.

Definition 2.8 (k-vertex-connected (alternative)). Let G = (V,E) be a graph and k ∈ N. Then
G is k-vertex-connected if for any vertex set K ⊆ V with |K| ≤ k − 1, (V \K,E) is connected.

Definition 2.7 and 2.8 are equivalent (by Menger’s Theorem [26] and Whitney [36]). This can be
made intuitive by the same type of reasoning as with k-edge-connectedness. Whitney presented
this result based on Menger’s Theorem. Definition 2.8 does not make the distinction of |V | ≤ k
and |V | ≥ k+ 1 as it is already implied that G is complete if |V | ≤ k+ 1 (see Lemma 4.6). There
is no use in defining k-vertex-connectedness on multigraphs, as we need vertex-disjoint paths and
not edge-disjoint paths. If a graph is k-vertex-connected, it is automatically k-edge-connected.
The converse does not hold. We also note that for k = 1 k-edge-connectedness will also be simply
referred to as connectedness. Besides regular networks, we will also be looking at wireless networks.
These are defined by assigning power to each vertex. Vertices are then connected to each other if
their power if sufficiently high. The following definition makes this formal.

Definition 2.9 (Power assignment). A power assignment PA assigns a real, positive value to all
vertices v ∈ V . The corresponding power assignment graph then contains all edges (u, v) for which
PA(u),PA(v) ≥ |(u, v)|, where |(u, v)| denotes the Euclidean distance between u and v.

Figure 2 shows an example of such a power assignment graph. Throughout this thesis we are
searching for minimal k-edge-connected and k-vertex-connected (power assignment) graphs. For
regular graphs, minimality is defined in terms of summed edge length. For power assignment
graphs minimality is defined in terms of total power. For each set of points we can get the value of
the minimal k-edge-connected and k-vertex-connected (power assignment) graph. Such a mapping
can be captured in a functional.

Definition 2.10 (Functional). An function L is called a functional if it maps a set of points
V ⊂W to a real value in R, where W can be a space of functions. When the function L is linear,
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v1 v2

v3

Figure 2: Example of a power assignment graph with the circles indicating the transmitting power
of each vertex. Only v1 and v2 reach each other, so only edge (v1, v2) is present in the graph.

it is called a linear functional. We will write L(V,R) for L(V ∪ R), and we can view L as a
function defined on pairs (V,R) where V is a finite set and R ∈ R is a d-dimensional rectangle.
Here R = R(d) is the collection of d-dimensional rectangles. When L depends on a power p, we
will write Lp instead of L.

Functionals can have some nice properties, for example being Euclidean. For the following defini-
tion we will assume V = {x1, . . . , xn} ⊂ Rd, d > 1.

Definition 2.11 (Euclidean functional,[35]). A functional L is called a Euclidean Functional if
the following properties hold:

1. Scaling, i.e. L({αx1, . . . , αxn}, αR) = αL({x1, . . . , xn}, R) for all real α > 0.

2. Translation Invariance, i.e. L({x1 + x, . . . , xn + x}, R) = L({x1, . . . , xn}, R) for all x ∈ Rd.

The following are a few examples of Euclidean functionals:

• Mapping a finite point set V to the length of a shortest Hamiltonian cycle on V , i.e. the
length of the optimal travelling salesman tour.

• Mapping a finite point set V to the length of a minimum-length perfect matching (leaving
out one vertex if n is odd) on V .

• Mapping a finite point set V to the length of a minimum-length spanning tree on V .

We can now also define minimal k-edge-connected graphs in terms of summed edge length such
that it is a functional. In this definition, we weight the Euclidean length of edges by taking it to
the power of p. We will also refer to this as pth power-weighted edges.

Definition 2.12 (MkEEp). Let d ∈ N be arbitrary and let p > 0. Then MkEEp(V,R) is the length
of a minimal k-edge-connected graph in terms of summed edge lenghts on V in d-dimensional
rectangle R with pth power-weighted edges. Thus

MkEEp(V,R) = min
X∈S

∑
e∈X
|e|p, (1)

where S is the set of k-edge-connected simple graphs on V and |e| denotes the Euclidean length of
an edge e.
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The name MkEE stems from Minimal k-Edge-connected graph with Edge costs. We are also
treating the same problem on multigraphs. For this functional we add an m to the name to
distinguish it from the version restricted to simple graphs. In this way we get MkEEm. The main
reason we also consider multigraphs is that we initially had trouble proving all useful properties for
MkEEp, and that using multigraphs would simplify these issues. Luckily, we managed to generalise
all results for both simple and multigraphs. For completeness however, we decided to still include
all results obtained for multigraphs. The definition for multigraphs is similar to Definition 2.12.

Definition 2.13 (MkEEmp). For all 0 < p < d, let MkEEmp(V,R) be the length of a minimal
k-edge-connected multigraph in terms of summed edge lengths on V in d-dimensional rectangle R
with pth power weighted edges. Thus

MkEEmp(V,R) = min
X∈S

∑
e∈X
|e|p, (2)

where S is the set of k-edge-connected multigraphs on V and |e| denotes the Euclidean length of
an edge e.

For power assignment graphs the objective changes a bit, as we want to minimise the total power
usage. For this reason the name of the functional is based on Minimal k-Edge-connected Power
assignment graph, MkEP, as each vertex has its own power.

Definition 2.14 (MkEPp). For all 0 < p < d, let MkEPp(V,R) be the value of a minimal k-edge-
connected power assignment graph in terms of summed power assignment on V in d-dimensional
rectangle R with pth power-weighted edges. Thus

MkEPp(V,R) = min
PA∈S

∑
v∈V

PA(v)p, (3)

where S is the set of power assignments with k-edge-connected power assignment graphs on V and
PA(v) denotes the power assigned to vertex v.

We do not consider a multigraph variant of the power assignment version, as it is unclear how to
obtain a larger number of edges between two nodes in a meaningful way using power assignments.
We would have to find a specific function assiging a number of edges between a pair of vertices
u and v depending on PA(u) and PA(v) in that case. This however is inconsistent with the
applications of wireless networks, and would give a rather arbitrary functional. For these reason,
we decided not to include power assignment multigraphs in the thesis.

we can define functionals for finding the minimal k-vertex-connected graphs. The name then
logically changes to Minimal k-Vertex-connected graph with Edge costs, or MkVE.

Definition 2.15 (MkVEp). For all 0 < p < d, let MkVEp(V,R) be length of a minimal k-vertex-
connected graph in terms of summed edge lengths on V in d-dimensional rectangle R with pth
power-weighted edges. Thus

MkVEp(V,R) = min
X∈S

∑
e∈X
|e|p, (4)

where S is the set of k-vertex-connected simple graphs on V and |e| denotes the Euclidean length
of an edge e.

The last functional to define is for finding the k-vertex-connected power assignment graphs, and
the name logically becomes MkVP.

Definition 2.16 (MkVPp). For all 0 < p < d, let MkVPp(V,R) be the value of a minimal
k-vertex-connected power assignment graph in terms of summed power assignment on V in d-
dimensional rectangle R with pth power-weighted edges. Thus

MkVPp(V,R) = min
PA∈S

∑
v∈V

PA(v)p, (5)
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where S is the set of power assignments with k-vertex-connected power assignment graphs on V
and PA(v) denotes the power assigned to vertex v.

As mentioned before, there is no use in defining k-vertex-connectedness on multigraphs, as we
need vertex-disjoint paths and not edge-disjoint paths.

A lot of functionals in combinatorial optimisation have a nice structure, but do not possess all
properties we want. By defining new functionals we can get functionals with the desired properties
without deviating too much from the original functional. We will call these modified functionals
boundary functionals, an idea articulated in Redmond’s thesis [30]. Roughly speaking, in these
functionals, the entire boundary of the rectangle is considered as one additional vertex that can
be used. These functionals will be used for proving certain properties Section 4. First we will give
the formal description of boundary functionals.

Definition 2.17 (Boundary functional). Let Lp be a functional with p > 0. We define its boundary
functional LpB on pairs (V,R), where V is a finite set and R ∈ R is a d-dimensional rectangle.
LpB(V,R) treats the boundary of R as a single point so that all edges joined to the boundary are
joined to one another. The boundary of R will also be refered to as ∂R.

To distinguish between a functional and its boundary functional, we will refer to the functional as
the original functional. To make sure solutions from the boundary functional are close enough to
those of the original functional, we need a slightly different definition of k-edge-connectedness on
boundary graphs.

Definition 2.18 (k-edge-connected boundary graph). Let G = (V ∪ ∂R,E) be a simple (power
assignment) boundary graph and k ∈ N. For determining if G is k-edge-connected, edges to the
boundary count as up to k independent edges. For |V | ≤ k, we allow both complete graphs, as well
as graphs where all vertices have an edge to the boundary.

In the other boundary functionals we will use the same definitions as for the original functionals.
We can now define boundary functionals for each of the original functionals considered in this
thesis.

Definition 2.19 (MkEEpB). For all 0 < p < d, let MkEEpB(V,R) be the length of a minimal
k-edge-connected boundary graph in terms of summed edge lengths on V ∪ ∂R in d-dimensional
rectangle R with pth power-weighted edges. Thus

MkEEpB(V,R) = min
X∈S

∑
e∈X
|e|p, (6)

where S is the set of k-edge-connected boundary simple graphs on V where ∂R can be used, and
|e| denotes the Euclidean length of an edge e.

Definition 2.20 (MkEEmp
B). For all 0 < p < d, let MkEEmp

B(V,R) be the length of a minimal k-
edge-connected boundary multigraph in terms of summed edge lengths on V ∪∂Rs in d-dimensional
rectangle R with pth power-weighted edge. Each vertex can have multiple edges to the boundary.
Thus

MkEEmp
B(V,R) = min

X∈S

∑
e∈X
|e|p, (7)

where S is the set of k-edge-connected boundary multigraphs on V where ∂R can be used, and |e|
denotes the Euclidean length of an edge e.

Definition 2.21 (MkEPpB). For all 0 < p < d, let MkEPpB(V,R) be the value of a minimal k-edge-
connected power assignment boundary graph in terms of summed power assignment on V ∪ ∂R in
d-dimensional rectangle R with pth power-weighted edges. Here an edge to the boundary from a
vertex v is present if PA(v) ≥ minw∈∂R |(u,w)|. Thus

MkEPpB(V,R) = min
PA∈S

∑
v∈V

PA(v)p, (8)
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where S is the set of power assignments with k-edge-connected power assignment boundary graphs
on V where ∂R can be used, and PA(v) denotes the power assigned to vertex v.

Definition 2.22 (MkVEpB). For all 0 < p < d, let MkVEpB(V,R) be the length of a minimal
k-vertex-connected boundary graph in terms of summed edge lengths on V ∪ ∂R in d-dimensional
rectangle R with pth power-weighted edges. Thus

MkVEpB(V,R) = min
X∈S

∑
e∈X
|e|p, (9)

where S is the set of k-vertex-connected boundary simple graphs on V where ∂R can be used, and
|e| denotes the Euclidean length of an edge e.

Definition 2.23 (MkVPpB). For all 0 < p < d, let MkVPpB(V,R) be the value of a minimal
k-vertex-connected power assignment boundary graph in terms of summed power assignment on
V ∪∂R in d-dimensional rectangle R with pth power weighted edges. Here an edge to the boundary
from a vertex v is present if PA(v) ≥ minw∈∂R |(u,w)|. Thus

MkVPpB(V,R) = min
PA∈S

∑
v∈V

PA(v)p, (10)

where S is the set of power assignments with k-vertex-connected power assignment boundary graphs
on V where ∂R can be used, and PA(v) denotes the power assigned to vertex v.

2.2 Properties

We have defined all functionals considered in this thesis in order to be able to look at certain
properties these functionals have. Many functionals are (approximately) subadditive. This struc-
ture expresses the self-similarity properties of the graph and is based on geometry in d dimensions
[37]. There are several ways of expressing this structure. First we introduce simple subadditivity.
Roughly speaking, this shows that the function value of a whole set is not larger than the sum of
function values of the sets in a partition of this set (with some error term).

Definition 2.24 (Simple Subadditivity). Let Lp be a functional with p > 0. Then Lp is simple
subadditive if for all finite sets U and V in [0, t]d we have

Lp(U ∪ V, [0, t]d) ≤ Lp(U, [0, t]d) + Lp(V, [0, t]d) + C1t
p (11)

where C1 = C1(d, p) is a constant possibly depending on d and p.

Simple subadditivity is often stronger than needed for proving theorems. So we introduce a form
of approximate subadditivity, called geometric subadditivity. Here the partitions of the whole set
are limited to rectangles.

Definition 2.25 (Geometric Subadditivity). Let Lp be a functional with p > 0. Then Lp is
geometric subadditive if for all finite sets V , all rectangles R ∈ R and all partitionings of R into
rectangles R1 and R2 we have

Lp(F,R) ≤ Lp(F,R1) + Lp(F,R2) + C1(diamR)p, (12)

where C1 = C1(d, p) is a finite constant.

If a functional is simple subadditive, it implies it is also geometric subadditive. We can also look
at a property that works the other way around, called superadditivity. Roughly speaking, this
shows that the function value of a whole set is not lower.

Definition 2.26 (Superadditivity). Let Lp be a functional with p > 0. Then Lp is superadditive
if for all finite sets V , all rectangles R ∈ R and all partitionings of R into rectangles R1 and R2

we have

Lp(F,R) ≥ Lp(F,R1) + Lp(F,R2). (13)
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Note that (13) does not include an error term. If a functional would be both subadditive and
superadditive, it would become nearly additive in the sense that

Lp(F,R) ≈ Lp(F,R1) + Lp(F,R2). (14)

This would be ideal to show that the global graph length can be approximated by the sum
of the lengths of local components. Unfortunately most subadditive functionals do not satisfy
superadditivity relation (13). Fortunately, boundary functionals are often superadditive, and this
is the reason why we have introduced them. As we cannot directly show near additivity, we want
to show that the original functional and the boundary functional are not too far from each other.
This is made exact in the following definition.

Definition 2.27 (Pointwise Closeness). Fix 1 ≤ p < d. Let Lp be a functional and LpB its
boundary functional. Then Lp and LpB are pointwise close if for all finite sets V we have

|Lp(V, [0, 1]d)− LpB(V, [0, 1]d)| = o(|V |(d−p)/d). (15)

Pointwise closeness is usually sufficient for most approximation purposes, but there is also a
second, weaker way to measure closeness. This is called closeness in mean and is sufficient for
finding asymptotics and rates of convergence of means.

Definition 2.28 (Closeness in Mean). Fix 1 ≤ p < d. Let Lp be a functional and LpB its boundary
functional. Let Ui, i ≥ 1 be independent uniformly distributed variables with values in [0, 1]d.
Then Lp and LpB are close if

|E[Lp({U1, . . . , Un}, [0, 1]d)]− E[LpB({U1, . . . , Un}, [0, 1]d)]| = o(n(d−p)/d). (16)

The last important property of functionals we will address in this thesis is smoothness. This
describes how strong the variations of a functional are if vertices are added or deleted. Smooth
functionals behave a lot more predictable and therefore it plays an important role in many limit
theories.

Definition 2.29 (Smoothness). Fix 0 < p < d. Let Lp be a (boundary) functional. Then Lp is
smooth if for all finite sets U and V we have

|Lp(U ∪ V, [0, 1]d)− Lp(U, [0, 1]d)| = O(|V |(d−p)/d). (17)

Similar to closeness in mean, we can also define smoothness in mean. Though we will not use it
in this thesis, we define it here for completeness in the same way as in Yukich [37].

Definition 2.30 (Smoothess in Mean). Fix p > 0 and d ≥ 2. Let Lp be a functional. Let Ui,
i ≥ 1 be independent uniformly distributed variables with values in [0, 1]d. Then Lp is smooth in
mean if there exists a constant γ < 1/2 such that for all n ≥ 1 and 0 ≤ k ≤ n/‘2 we have

|E[Lp({U1, . . . , Un}, [0, 1]d)− Lp({U1, . . . , Un±k}, [0, 1]d)]| = Ckn−p/d+γ , (18)

where C = C(p, d) is a constant.

2.3 Convergence

There is also a definition we need to indicate the convergence of our functionals. This is known
as complete convergence. This form of convergence indicates that the function values are nicely
concentrated around its mean, without jumps that are too large.

Definition 2.31 (Complete Convergence). Let Xn, n ≥ 1 be a sequence of random variables.
Then Xn converges completely (c.c.) to a constant C if and only if for all ε > 0 we have

∞∑
n=1

P [|Xn − C| > ε] <∞ (19)
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3 Related Work

There is more need for reliable communication and transportation networks as well as reliable
wireless sensor and radio networks [3, 4, 12, 16]. As it was known that MkEEp, MkEEmp, MkEPp,
MkVEp and MkVPp are NP-hard [10, 15], a lot of research has been focused on finding good
approximation algorithms. Most algorithms only consider the case when k = 1 or k = 2, though
some research has been done on finding more reliable networks (k ≥ 2). To our knowledge, using
partitioning algorithms and smoothed analysis on these functionals has never been attempted.

3.1 Work related to MkEEp, MkEEmp and MkEPp

Grötschel et al. [18] studied 2-edge-connectivity as well as 2-vertex-connectivity by using a cutting
plane algorithm. They also looked at k-edge-connectivity and k-vertex-connectivity for larger k
mainly by investigating the polyhedra arising from these network design problems [16, 17, 19].

Mahjoub [22] looked at 2-edge-connectivity by studying the polytope of all possible 2-edge-
connected graphs. Mahjoub also concluded that the polytope is completely described by the trivial
constraints and cut constraints when the graph is series-parallel (does not contain a homeomorph
of K4 as a subgraph). Biha and Mahjoub [5] looked at series-parallel graphs as well. In this paper
their previous work is extended to k-edge-connectivity. Mahjoub [23] studied the polytope of all
2-vertex-connected graphs and derived some useful results on the extreme points of this polytope.

Diarrassouba et al. [13] look at 2-vertex-connectivity when a maximum path length was im-
posed on the vertex-disjoint paths between set pairs of terminals. They derived inequalities that
could be used to define facets of the polyhedron of solutions. They also used a Branch-and-Cut al-
gorithm to find good feasible solutions when the path lenght was at most 3 edges. In a similar study
Diarrassouba et al. [14] studied k-vertex-connectivity without a maximum path length for k ≥ 3,
again finding facets and using a Branch-and-Cut algorithm. They are not the only ones using this
algorithm. Bendali et al. [3] also used a Branch-and-Cut algorithm for k-edge-connectedness.

Chan et al. [8] studied k-edge-connectivity and k-vertex-connectivity given a maximum degree
for all vertices. They derived constant factor approximation algorithms when the cost function
satisfied the triangle inequality, always returning solutions with the smallest possible maximum
degree.

Chopra [9] did research on the polyhedron arising from k-edge-connected multigraphs, finding
several facets of this polyhedron.

Cornelissen et al. [11] and Manthey and Waanders [25] both studied k-edge-connectivity and
k-vertex-connectivity, albeit with degree constraints. They used approximation algorithms to find
d-regular spanning subgraphs with some connectivity requirements.

3.2 Work related to MkVEp and MkVPp

Ramanathan and Rosales-Hain [29] have studied the problem of minimising the maximum power
used by any vertex in the graph. They did this for connectivity and for 2-vertex-connectivity.
They used two adaptive heuristics for mobile networks and two centralised algorithms for static
networks.

Montemanni and Gambardella [28] looked at algorithms to get optimal solutions for connect-
edness in power assignment graphs. They also use linear programs and derive valid inequalities
for the polytope of solutions.

Althaus et al. [1] use several approximation algorithms for connectivity in power assignment
graphs, as well as a Branch-and-Cut algorithms based on a linear program for this problem.

Santi et al. [32] studied the connectivity in power assignment graph in case every vertex has
the same amount of power. They derived lower and upper bounds on this power to have a high
probability for a connected graph in 1-, 2- and 3-dimensional spaces.

De Graaf and Manthey [12] use a probabilistic approach to analyse connectivity in power
assignment graphs. They obtain properties for this problem very similar to the ones we prove in
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Section 4. They also show the expected approximation ratio of the simple spanning tree heuristic
is strictly less than 2.

Calinescu and Wan [7] analysed several approximation algorithms for 2-edge-connectedness
and 2-vertex-connectedness, as well as k-edge-connectedness for k ≥ 2. They did this for both
undirected graphs, as well as directed graphs (in which case arc {u, v} in the power assignment
graph if PA(u) ≥ |{u, v}|).

Lloyd et al. [21] describe a general approach for polynomial time algorithms for minimising the
maximum power used by any vertex in a graph with monotone properties (k-edge-connectivity and
k-vertex-connectivity are example of this). For minimising the total power, they prove the problem
is NP-complete even for simple graph properties. They also use a approximation algorithm for
2-vertex-connectedness in power assignment graphs.

Bahramgiri et al. [2] designed an algorithm for k-vertex-connectedness in power assignment
graphs where vertices in 2- and 3-dimensional spaces adjust their power by looking at nearby
vertices.

Bettstetter [4] studied k-vertex-connected power assignment graphs when each vertex gets
assigned the same power. He derived some bounds on this power to get an almost sure k-vertex-
connected graph. In case transmission power is given, an algorithm is presented to calculate how
many vertices are needed to cover an area with a k-vertex-connected graph.

Li and Hou [20] studied a problem closely related to k-vertex-connectivity in power assignment
graphs. They look at an already k-vertex-connected graph and use their algorithm to reduce the
maximum power used by a vertex while maintaining k-vertex-connectivity.

4 Theoretical Results

In this section we will treat the theoretical results we have obtained along with their proofs. For
completeness, we have also included a few obvious results and counterexamples to hypotheses we
had. After proving subaddivity, superaddivity, pointwise closeness and smoothness, we can use
these properties. We show a bound on the longest edge with high probability for MkEEp. We also
use the properties to show complete convergence and some limit theories as wel as bounds on the
rates of convergence of means. Finally we present two umbrella theorems for MkEEp, MkEEmp,
and MkEPp as extensions on the limit theorem. After this, some results related to the smoothed
analysis of the partitioning algorithm are presented.

We have structured this section in the following way. We will start with a few simple results
used throughout the rest of this section. After this, we will treat results related to subadditivity,
followed by results related to superadditivity. Section 4.5 contains results related to pointwise
closeness. In Section 4.6 we will prove results related to smoothness. After this some probabilistic
results as well as limit theorems are presented and this section is concluded by the smoothed
analysis of MkEEp and MkEPp. Throughout this section d, p and k are constants.

4.1 Basic Results

In Section 2 we gave a few examples of Euclidean functionals. The functionals we will treat in
this thesis are also Euclidean.

Theorem 4.1. For p ≥ 1 and k ∈ N, MkEEp, MkEEmp, MkEPp, MkVEp and MkVPp are all
Euclidean functionals.

The proof of Theorem 4.1 is trivial, so we will omit it. We will however show a useful property
of k-edge-connectedness that k-vertex-connectedness does not possess. Connecting two k-edge-
connected parts creates a k-edge-connected graph. We call this transitivity. This property is
made exact in Theorem 4.2.

Theorem 4.2. k-edge-connectedness is transitive. This means that if graphs G1 = (V1, E1) and
G2 = (V2, E2) are k-edge-connected and V1 ∩ V2 6= ∅, then the graph H = (V1 ∪ V2, E1 ∪ E2) is
k-edge-connected as well.
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Proof. For each pair of vertices u, v ∈ V1∪V2 we want to find k edge-disjoint paths between them.
If both u and v are in either V1 or V2 these paths exists as both G1 and G2 are k-edge-connected.
So w.l.o.g. u ∈ V1 \ V2 and v ∈ V2 \ V1. We consider a vertex w ∈ V1 ∩ V2. We know that there
exist k edge-disjoint paths Pi from u to w, and also k edge-disjoint paths Qj from w to v with
1 ≤ i, j ≤ k. We can combine these in the following way. We start with path Pi and follow it
from u to w. As soon as we encounter a vertex t that is also in a path Qj we stop, where t = w
is allowed. We can now create a path from u to v by taking Pi up to t and then completing it by
adding Qj from t to v. We then remove Pi and Qj from the paths we have. As we have as many
paths from u to w as from w to v, and as all of them have at least w in common, this process will
terminate and we end up with k edge-disjoint paths from u to v.

4.2 Subadditivity

We will prove that MkEEp, MkEEmp, MkEPp, MkVEp and MkVPp all are geometric subadditive
functionals. Although geometric subadditivity is weaker than simple subadditivity, most theorems
described later in this section only require geometric subadditivity. On top of that geometric
subadditivity is easier to prove. We will start with MkEEp.

Theorem 4.3. For p ≥ 1, MkEEp is a geometric subadditive functional.

Proof. We will check that Definition 2.25 holds for MkEEp(V,R).The partition into R1 and R2

results in two graphs which we will call (V1, E1) and (V2, E2). Here V ∩R1 = V1 and V ∩R2 = V2.
We distinguish three cases. Here w.l.o.g. |V1| ≥ |V2|.

1. |V1|, |V2| ≥ k + 1. We have that (V1, E1) and (V2, E2) are k-edge-connected. By joining
(V1, E1) and (V2, E2), we want to obtain a k-edge-connected graph on V . This means we
need to add some edges. We add k vertex-disjoint edges e1, . . . , ek, with ei = (ui, vi) and
ui ∈ V1, vi ∈ V2. As (V1, E1) and (V2, E2) are k-edge-connected, removing less than k edges
from any of them results in a connected graph. The only option then is to disconnect (V1, E1)
and (V2, E2), but as there are k edges in between them, removing k−1 or fewer of them still
results in a connected graph. So in total (V,E1 ∪ E2 ∪ {e1, . . . , ek}) is a k-edge-connected
graph and we can state that

MkEEp(V,R) ≤ MkEEp(V,R1) + MkEEp(V,R2) +

k∑
i=1

|ei|p (20)

≤ MkEEp(V,R1) + MkEEp(V,R2) + kdp/2(diamR)p (21)

2. |V1| ≥ k + 1, |V2| ≤ k. We know that (V2, E2) is complete. For each vertex vi ∈ V2 we
add k edges ei1 , . . . eik with endpoints in V1. Each pair of vertices from V1 has at least k
edge-disjoint paths in E1, and by adding eij each pair in V has k edge-disjoint paths as well.
At most k2 edges have been added this way, so

MkEEp(V,R) ≤ MkEEp(V,R1) + MkEEp(V,R2) +

|V2|∑
i=1

k∑
j=1

|eij |p (22)

≤ MkEEp(F,R1) + MkEEp(F,R2) + k2dp/2(diamR)p (23)

3. |V1|, |V2| ≤ k. Both (V1, E1) and (V2, E2) are complete, and we know that a complete graph
is always k-edge-connected. So if we make the combined graph complete as well, it is k-edge-
connected. We need to add at most k2 edges this way, so MkEEp(V,R) will be bounded by
a term similar to that in (22).

Since the case distinction is exhaustive, MkEEp is subadditive.

As we never explicitly used that G was a simple graph in the proof of Theorem 4.3, we can easily
copy this result for MkEEmp.
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Theorem 4.4. For p ≥ 1, MkEEmp is a geometric subadditive functional.

Proof. The proof is similar to that of Theorem 4.3.

The proof of subadditivity of MkEPp is similar, though we need to account for the change of power
while adding edges.

Theorem 4.5. For p ≥ 1, MkEPp is a geometric subadditive functional.

Proof. We follow the proof of Theorem 4.3. We need to increase PA(v) accordingly for the edges
that need to be added in the power assignment graph. We define duv = max{0, |(u, v)| − PA(u)}.
This denotes the increase in power needed for u to reach v. Then we can add an edge (u, v) by a
change of power equal to (PA(u) + duv)

p + (PA(v) + dvu)p−PA(u)p−PA(v)p ≤ 2(diamR)p. The
rest of the proof follows.

For proving subadditivity of MkVEp and MkVPp we first need some other results.

Lemma 4.6. Given k ∈ N, consider a graph G = (V,E) with |E| ≤ k + 1. The G is k-vertex-
connected if and only if it is complete.

Proof. Suppose graph G is not complete and let (u, v) be an edge that is not in E. Now consider
the cut X = V \ {u, v} and notice that |X| ≤ k− 1. This cut will disconnect vertices u and v so G
cannot be k-edge-connected. Conversely, let G be a complete graph and consider any cut X with
|X| ≤ k − 1. Then, as G is complete, (V \X,E) will be connected as the remaining vertices still
have edges in between them, or it will leave the null graph, which is connected by definition.

Lemma 4.7. Consider a complete graph G = (V,E). Then G is k-vertex-connected for all k ∈ N.

Proof. See proof Lemma 4.6 for the case where |E| ≤ k + 1. When |E| > k + 1, any cut X ⊆ V
with |X| ≤ k − 1 will leave (V \ X,E) connected as the remaining vertices still have edges in
between them.

With these lemmas, we can use a case distinction similar to the one in the proof of Theorem 4.3
to prove subadditivity for MkVEp.

Theorem 4.8. For p ≥ 1, MkVEp is a geometric subadditive functional.

Proof. We will check that Definition 2.25 holds for MkVEp(V,R). Note that the partition into
R1 and R2 results in two graphs which we will call (V1, E1) and (V2, E2). We distinguish between
three cases. Here w.l.o.g. |V1| ≥ |V2|.

1. |V1|, |V2| ≥ k + 1. We have that (V1, E1) and (V2, E2) are k-vertex-connected. By joining
(V1, E1) and (V2, E2), we want to obtain a k-vertex-connected graph on V . This means
we need to add some edges. We add k vertex-disjoint edges e1, . . . , ek, with ei = (ui, vi)
and ui ∈ V1, vi ∈ V2. As (V1, E1) and (V2, E2) are k-vertex-connected, removing less than k
vertices from any of them results in a connected graph. The only option then is to disconnect
(V1, E1) and (V2, E2), but as there are k vertex-disjoint edges in between them, removing
k−1 or fewer vertices still results in a connected graph. So in total (V,E1∪E2∪{e1, . . . , ek})
is a k-vertex-connected graph and we can state that

MkVEp(V,R) ≤ MkVEp(V,R1) + MkVEp(V,R2) +

k∑
i=1

|ei|p (24)

≤ MkVEp(V,R1) + MkVEp(V,R2) + kdp/2(diamR)p (25)

2. |V1| ≥ k + 1, |V2| ≤ k. We know that (V2, E2) is complete. For each vertex vi ∈ V2 we add
k edges ei1 , . . . eik with endpoints in V1. As (V1, E1) and (V2, E2) are k-vertex-connected,
removing less than k vertices from any of them will have a connected graph as a result. The
only option then is to disconnect (V1, E1) and (V2, E2). Since each vertex in V2 is connected
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to k different vertices in V1, we would have to remove at least k vertices to disconnect them.
This means we have a k-vertex-connected graph on V . At most k2 edges have been added
this way, so

MkVEp(V,R) ≤ MkVEp(V,R1) + MkVEp(V,R2) +

|V2|∑
i=1

k∑
j=1

|eij |p (26)

≤ MkVEp(F,R1) + MkVEp(F,R2) + k2dp/2(diamR)p (27)

3. |V1|, |V2| ≤ k. As both (V1, E1) and (V2, E2) are k-vertex-connected, according to Lemma
4.6 they are complete. If we make a complete graph on V as well, we know that it is k-
vertex-connected by Lemma 4.6. As |V1|+ |V2| < 2k, we have to add fewer than k2 edges to
make a complete graph, so MkVEp(V,R) will be bounded by a term similar to that in (26).

Since the case distinction is exhaustive, MkVEp is subadditive.

We can prove subadditivity for MkVPp by combining the proofs of MkVEp and MkEPp.

Theorem 4.9. For p ≥ 1, MkVPp is a geometric subadditive functional.

Proof. Combining the proofs of Theorem 4.5 and 4.8, this theorem follows.

4.3 Superadditivity

In the previous section, we have proved subaddivity for our original functionals. Unfortunately,
as mentioned in Section 2, the original functionals that we consider here are not superadditive.
Luckily their boundary functionals (Definition 2.17) do have this property. Again we start with
the proof of superadditivity of MkEEpB .

Theorem 4.10. For p ≥ 1, MkEEpB is a superadditive functional.

Proof. We will check that Definition 2.26 holds for MkEEpB , so we are given a k-edge-connected
graph G = (V,E) and a partitioning of R into rectangles R1 and R2. For each vertex in V1 = V ∩R1

that has an edge to a vertex in V2 = V ∩ R2 we add an edge to the boundary between R1 and
R2, and we do the same for vertices in V2. If we replace the edges lost by the partition in this
way, we keep the k-edge-connectedness in both parts, as both V1 and V2 (using the same notation
as before) are locally k-edge-connected in E. Now V1 and V2 are locally k-edge-connected in E1

and E2 respectively. This holds as the k edge-disjoint paths from u ∈ V1 to v ∈ V1 that went
trough V2 now travel along the boundary (as an edge rooted to the boundary can count as up to
k independent edges). We get an equivalent result for V2. This means both (V1, E1) and (V2, E2)
have k edge-disjoint paths between pairs of vertices in them. If we can show that the costs do not
increase by this construction, we have that MkEEpB is superadditive.

We have to replace an edge c by two edges a and b to the new boundary. As these new edges are
be perpendicular to the boundary we have that |a|+ |b| ≤ |c|, so also |c|p ≥ ||a|+ |b||p ≥ |a|p + |b|p
for p ≥ 1, where |e| denotes the Euclidean length of an edge e. This means that the costs are not
increasing by the construction, so

MkEEpB(V,R) ≥ MkEEpB(V,R1) + MkEEpB(V,R2) (28)

and therefore MkEEpB is superadditive for p ≥ 1.

As the definition of k-edge-connected simple boundary graphs and boundary multigraphs is slightly
different (see Definition 2.18), we cannot literally copy the result of Theorem 4.10 for multigraphs.

Theorem 4.11. For p ≥ 1, MkEEmp
B is a superadditive functional.
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Proof. We can use the same reasoning as in the proof of Theorem 4.10, but we replace edges lost
by the partition by an equal amount of edges to the boundary (as we have a multigraph). We also
do not increase the costs here as each added edge is still cheaper than the edge crossing it. So
MkEEmp

B is superadditive for p ≥ 1.

Proving superadditivity of MkEPpB is even easier than proving it of MkEEpB as the power of vertices
that lose a connection is already large enough to reach to boundary.

Theorem 4.12. For p ≥ 1, MkEPpB is a superadditive functional.

Proof. We apply the same construction as in the proof of Theorem 4.10. Notice that since |a| ≤
|c| and |b| ≤ |c|, the edges to the boundary are already included without changing the power
assignment. This means that MkEPpB(V,R) ≥ MkEPpB(V,R1) + MkEPpB(V,R2) and therefore
MkEPpB is superadditive for p ≥ 1.

For k-vertex-connected boundary graphs superadditivity is obtained in same way it was done for
k-edge-connected boundary graphs.

Theorem 4.13. For p ≥ 1, MkVEpB is a superadditive functional.

Proof. As in the proof of Theorem 4.10, we replace all edges lost by the partition by edges to the
boundary and show that both parts still have k-vertex-connectedness. There are k vertex-disjoints
paths in E between each pair of vertices in V1, some of which used vertices in V2. The path that
used vertices in V2 can now be redirected along the boundary and are therefore still vertex-disjoint
(as the boundary does not count as a vertex). This means that (V1, E1) is also k-vertex-connected.
We get an equivalent result for V2. We showed in the proof of Theorem 4.10 already that we do
not increase the costs by this construction, so we can conclude that MkVEpB is superadditive for
p ≥ 1.

Again MkVPpB can easily be proved by combining the proofs of MkEPpB and MkVEpB .

Theorem 4.14. For p ≥ 1, MkVPpB is a superadditive functional.

Proof. Combining the proofs of Theorem 4.12 and 4.13, this theorem follows.

4.4 Growth Bounds

The previous two sections showed that the original functionals are subadditive, and their boundary
functionals are superadditive. If we can also prove that each functional is close to their boundary
functional, our functionals show a form of near additivity. We first need another lemma to prove
closeness that appeared in Yukich [37, Lemma 3.3]. The proof can also be found there.

Lemma 4.15 (Yukich [37], growth bound). Let 0 < p < d and Lp be a subadditive Euclidean
functional. Then there exists a constant C = C(d, p) such that for all cubes R ⊂ Rd and all V ⊂ R
we have

Lp(V,R) ≤ C(diamR)p|V |(d−p)/d (29)

As the original functionals we consider in this thesis are all subadditive and Euclidean, we can
get the following result.

Lemma 4.16. For p ≥ 1, MkEEp, MkEEmp, MkEPp, MkVEp, and MkVPp all satisfy the growth
bound from Lemma 4.15.

Proof. This lemma follows directly by combining Theorem 4.1 and Lemma 4.15.
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4.5 Pointwise Closeness

With the results from Section 4.4, we can prove pointwise closeness of MkEEp to MkEEpB .

Theorem 4.17. For 1 ≤ p < d, MkEEp is pointwise close to MkEEpB.

Proof. We will check that Definition 2.27 holds, so we are a given an arbitrary finite set of
points V . By definition we have MkEEp(V, [0, 1]d) ≥ MkEEpB(V, [0, 1]d), we only need to check
MkEEp(V, [0, 1]d) ≤ MkEEpB(V, [0, 1]d) + o(|V |(d−p)/p). We distinguish between the cases |V | ≤ k
and |V | ≥ k + 1.

For |V | ≤ k we know that the corresponding graph in the original functional will be complete
(per definition). In the boundary functional, it will have an edge to the boundary for every vertex
in V , or it is complete. So we need to add at most k(k − 1) edges. This only costs O(1) as k is
constant, so we have MkEEp(V, [0, 1]d) ≤ MkEEpB(V, [0, 1]d) + o(|V |(d−p)/p).

For |V | ≥ k+ 1 we need a different approach. We will first prove our variant of Theorem 4.18,
following the proof of Lemma 3.8 from [37].

Lemma 4.18. Let V ⊂ [0, 1]d, |V | = n, and 1 ≤ p < d. Consider a graph G = (V,E) realising
the optimal solution of MkEEpB(V, [0, 1]d). The sum of the p-th powers of the lengths of the edges
connecting vertices in V with the boundary of [0, 1]d is bounded by O(n(d−p−1)/(d−1)).

Proof. The proof depends upon a dyadic subdivision of [0, 1]d. This idea comes from Yukich [37].
Let Q0 by the cube of edge length 1/3 and centered within [0, 1]d. Let Q1 be the cube of edge
length 2/3, also centered within [0, 1]d. Partition Q1 −Q0 into subcubes of edge length 1/6; it is
easy to verify that the number of such subcubes is bounded by C6d−1 for some constant C = C(d).

Continue with this subdivision recursively, so that at the jth stage we define cube Qj of edge
length 1−2(3 ·2j)−1 and partition Qj−Qj−1 into subcubes of edge length (3 ·2j)−1. The number
of such subcubes isbounded from above by C3d−12j(d−1). Carry out this recursion until the `th
stage, where ` is the unique integer satisfying

2(`−1)(d−1) ≤ n ≤ 2`(d−1). (30)

This procedure produces nested cubes Q1 ⊂ Q2 ⊂ · · · ⊂ Q`. It produces a dyadic covering of
the cube until the moat [0, 1]d−Q` has a width of O(n−1/(d−1)). We use these properties to prove
Theorem 4.18 as follows.

This dyadic subdivision partitions the largest cube Q` into at most

k∑
j=0

C3d−12j(d−1) ≤ Cn (31)

subsubes, each with an edge length equal to the distance between the subcube and the boundary
of [0, 1]d. Furthermore, by partitioning each subcube into (k2y)d congruent subcubes, where y
is the least integer satisfying 2y ≥ d1/2, we obtain a partition P of Q` consisting of at most Cn
subcubes with the property that the k times the diameter of each subcube is less than the distance
to the boundary.

Observe that in an optimal boundary solution on V , each subcube Q in P contains at most
k points in V which are rooted to the boundary. Indeed, if there were more than k point in
V ∩Q rooted to the boundary, we can do the following. We know that these points will not have
edges directly between them as they already have k edge-disjoint paths between them, and edges
between them would then not be optimal. So we can take one of them and connect them to all
the other points rooted to the boundary (which are at least k), while removing the connection
to the boundary. As the diameter of each subcube is less than the 1/k times the distance to the
boundary, this relinking gives us a cheaper solution, contradicting the optimality of the solution.
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The sum of the p-th powers of the lengths of the edges connecting vertices in V ∩ (Qj −Qj−1)
with the boundary is thus bounded by the product of the number of subcubes in Qj −Qj−1 and
the p-th power of the common diameter of the subcubes, namely

C3d−12j(d−1) · (3 · 2j)−p. (32)

Summing over all 1 ≤ j ≤ ` gives a bound for the sum of the p-th power of the lengths of the
edges connecting points to the boundary in V ∩Q`:

∑̀
j=1

C3d−12j(d−1) · (3 · 2j)−p ≤

{
C max{nd−p−1, log n} if 1 ≤ p ≤ d− 1

C if d− 1 < p < d.
(33)

The log n term is needed to cover the case p = d− 1. The sum of the p-th powers of the lengths
of the edges connecting vertices in V ∩ ([0, 1]d −Q`) with the boundary is at most the product of
n = |V | and the p-th power of the width of the moat [0, 1]d −Q`, i.e. at most

n · Cn−p/(d−1) = Cn(d−p−1)/(d−1). (34)

Combining (33) and (34) establishes Theorem 4.18 for MkEEpB .

We can now continue with the proof of Theorem 4.17. Consider U ⊂ V the set of all vertices
connected to the boundary, and B ⊂ ∂[0, 1]d the set of points on the boundary to which vertices are
connected. Then |U | ≥ |B|. As we want to remove all edges to the boundary to get to a solution
for our normal functional, we will need to add new edges as well. We even need a k-edge-connected
graph on U , as the edged rooted to the boundary could be counting as k edges for these points.
As used in the proof of Theorem 4.18, we know there are no edges between the points of U .

To get a good bound on the increase of costs by adding the edges to get a k-edge-connected
graph on U , we will first prove the following lemma.

Lemma 4.19. Fix 1 ≤ p < d and let G = (V,E) be a k-edge-connected graph realising the optimal
solution for MkEEp(V, [0, 1]d). Then there exists a constant c = c(k, d) such that the degree of
every vertex v ∈ V is bounded by c.

Proof. Let us assume to the contrary that there exists a vertex v ∈ V for which the degree is not
bounded by c. We then divide [0, 1]d into cones originating from v and with the property that for
every two points x and y in a cone we have ∠(x, y, v) < π/3. In this way, the number of cones we
create is finite (as d is constant) and every point is covered by a cone. We consider a cone C with
an unbounded number of points connected to v and look at the point y that is furthest from v
and connected to v. Such a cone has to exist as the number of cones is bounded. Let us consider
two cases.

In the first case, the degree of y is greater than c as well, and y is connected to all vertices in C
that are also connected to v. This means both are connected to more than k vertices in C. In that
case we can remove the edge between v and y as we would still have more than k edge-disjoint
paths between v and y (and other points will not be affected). Removing an edge would only lower
the cost for the graph, so this would contradict the optimality of the solution.

In the other case, we can find a vertex to which y is not connected, but v is. Let us call
this vertex z and consider the triangle ∆(v, z, y). As we know that ∠(z, v, y) < π/3, either
∠(z, y, v) > π/3 or ∠(v, z, )y > π/3 (or both). Using that |(v, y)| ≥ |(v, z)|, we can see that
|(y, z)| < |(v, y)|. If we then replace the edge from v to y by the edge from y to z, the number
of edge-disjoint paths from y to z or v cannot decrease. But as |(y, z)| < |(v, y)|, we also have
|(y, z)|p < |(v, y)|p, meaning we lowered the cost, and still have a k-edge-connected graph. This
again would contradict the optimality of G, so we have to conclude no such vertex v can exist.
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With this lemma we can continue the proof of Theorem 4.17. We can also get a bound
on the length of each edge we need to add. By using the triangle inequality for p = 1 we
get |(u, v)| ≤ |(u, uB)| + |(uB , vB)| + |(vB , v)|, where uB and vB are the points where u and v
respectively are rooted to the boundary. If we look at M , the set of edges used create a k-edge-
connected graph on U , and use the relaxed triangle inequality |(a, c)|p ≤ 2p−1(|(a, b)|p + |(b, c)|p),
we have:∑

(u,v)∈M

|(u, v)|p ≤ 2p−1(
∑

(u,·)∈M

|(u, uB)|p +
∑

(u,v)∈M

|(uB , v)|p) (35)

≤ 2p−1(
∑

(u,·)∈M

|(u, uB)|p + 2p−1(
∑

(u,v)∈M

|(uB , vB)|p +
∑

(·,v)∈M

|(vB , v)|p)) (36)

≤ 4p−1(
∑

(u,·)∈M

|(u, uB)|p +
∑

(u,v)∈M

|(uB , vB)|p +
∑

(·,v)∈M

|(vB , v)|p) (37)

≤ 4p
∑

(u,·)∈M

|(u, uB)|p + 4p−1 MkEEp(B, [0, 1]d) (38)

≤ 4pC1

∑
u∈U
|(u, uB)|p + 4p−1C2|V |(d−p−1)/(d−1) using Lemma 4.16 (39)

≤ 4pC1C3|V |(d−p−1)/(d−1) + o(|V |(d−p)/d) using Lemma 4.18 (40)

≤ o(|V |(d−p)/d) (41)

Now we changed a graphs achieving the optimal solution for MkEEpB(V, [0, 1]p) into a k-edge-
connected graph. This means it is an upper bound for MkEEp(V, [0, 1]p). As we increased the solu-
tion value by at most o(|V |(d−p)/d), we have MkEEp(V, [0, 1]d) ≤ MkEEpB(V, [0, 1]d)+o(|V |(d−p)/p).
This proves that MkEEpB and MkEEp are pointwise close.

Changing this proof to hold for multigraphs is rather simple.

Theorem 4.20. For 1 ≤ p < d, MkEEmp is pointwise close to MkEEmp
B.

Proof. The proof for the multigraph is the same as the proof of Theorem 4.17, except that we
create a k-edge-connected multigraph on U .

Proving pointwise closeness of MkEPp and MkEPpB is a bit more difficult as not all theorems we
used in the proof of Theorem 4.17 hold for these functionals.

Theorem 4.21. For 1 ≤ p < d, MkEPp is pointwise close to MkEPpB.

Proof. The proof for power assignments is the same as the proof of Theorem 4.17, except that
Theorem 4.18 does not hold directly for MkEPpB . Luckily, a similar theorem also holds for the
power assignment functional MkEPpB :

Theorem 4.22. Let V ⊂ [0, 1]d, |V | = n, and 1 ≤ p < d. Consider a graph realising the optimal
solution of MkEPpB(V, [0, 1]d). The sum of the p-th powers of the lengths of the edges connecting
vertices in V with the boundary of [0, 1]d is bounded by O(n(d−p−1)/(d−1)).

Proof. The proof is similar to that of Theorem 4.18, except that for power assignment, in case
more than k points are rooted to the boundary, all of them are also connected to each other (as
the diameter of the subcube is less than the distance to the boundary). Without changing the
solution, we can remove one of the roots to the boundary. This also gives us that we only have to
take into account at most k points rooted to the boundary in each subcube. The rest of the proof
follows.

As we know the degree of vertices in an optimal power assignment graph can be unbounded
[12], we cannot show Lemma 4.19 for MkEPp as well. We do however have the following lemma:
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Lemma 4.23. Fix 1 ≤ p < d, let V ⊂ [0, 1]d be V is a finite subset and let R ∈ R be a
d-dimensional rectangle. Then we have that MkEPp(V,R) ≤ 2 MkEEp(V,R).

Proof. Consider a graph G = (V,E) achieving the optimal solution for MkEEp(V,R). Then for
each vertex v ∈ V we take the longest edge from v and we set power PA(v) to the length of this
edge. This means that all edges that were in E, will also be in the graph resulting from power
assignment PA. So the power assignment graph resulting from power assignment PA will also
be k-edge-connected, and has costs no more than twice MkEEp(V,R). An optimal solution for
MkEPp(V,R) can only have costs lower or equal to that of PA, so MkEPp(V,R) ≤ 2 MkEEp(V,R)
follows.

We can use Lemma 4.23 and equation (35) to get the following result for a k-edge-connected
power assignment graph on U

MkEPp(U, [0, 1]d) ≤ 2 MkEEp(U, [0, 1]d) = 2
∑

(u,v)∈M

d(u, v)p ≤ o(|V |(d−p)/d), (42)

where M is the set of edges used create a k-edge-connected graph on U . This gives us for MkEPp

that we have MkEPp(V, [0, 1]d) ≤ MkEPpB(V, [0, 1]d) + o(|V |(d−p)/p), and therefores MkEPpB and
MkEPp are pointwise close.

To prove pointwise closeness for MkVEp and MkVPp is straightforward now.

Theorem 4.24. For 1 ≤ p < d, MkVEp is pointwise close to MkVEpB.

Proof. The proof for k-vertex-connectedness is the same as the proof of Theorem 4.17, except that
we create a k-vertex-connected graph on U .

Theorem 4.25. For 1 ≤ p < d, MkVPp is pointwise close to MkVPpB.

Proof. The proof for k-vertex-connectedness with power assignments is the same as the proof of
Theorem 4.21, except that we create a k-vertex-connected power assignment graph on U .

The following is a weaker version of pointwise closeness, as it only holds in mean. It is included
for completeness nonetheless.

Remark 4.26. For 1 ≤ p < d, MkEEp, MkEEmp, MkEPp, MkVEp, and MkVPp, are all close
in mean to their corresponding boundary functional.

4.6 Smoothness

We have shown geometric subadditivity, superadditivity and pointwise closeness, creating a pow-
erful set of properties for other results. These properties are more useful for other obtaining
other results when functional also is smooth. Unfortunately, we have not been able to prove
smoothness for MkVEp and MkVPp. One of the problems is that k-vertex-connectedness is not
a transitive property as k-edge-connectedness is. We do have proofs for MkEEp, MkEEmp and
MkEPp and their respective boundary functionals. At the end of this section we will also show a
counterexample of a different approach we tried to use for proving smoothness of MkEEp.

Theorem 4.27. For 1 ≤ p < d, MkEEp is smooth.

Proof. We will check that Definition 2.29 holds, so we start with finite sets U, V ⊂ Rd. As MkEEp

is a subadditive Euclidean functional, we can first use subadditivity to get

MkEEp(U ∪ V, [0, 1]d) ≤ MkEEp(U, [0, 1]d) + MkEEp(V, [0, 1]d) + c1 (43)

for some constant c1 = c1(d, p). Using Lemma 4.16 we get

MkEEp(U ∪ V, [0, 1]d) ≤ MkEEp(U, [0, 1]d) + c|V |(d−p)/d + c1

= MkEEp(U, [0, 1]d) +O(|V |(d−p)/d). (44)
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Now to prove smoothness we will only need to show

MkEEp(U, [0, 1]d)−MkEEp(U ∪ V, [0, 1]d) ≤ O(|V |(d−p)/d). (45)

We first consider the case k = 2. We will start with a graph G = (U ∪ V,E) achieving the
optimal solution for MkEEp(U ∪ V, [0, 1]d). After removing the set V we will show that we can
alter G to obtain a k-edge-connected graph on U by increasing the cost at most O(|V |(d−p)/d).
We consider the set of neighbours NV containing all vertices that are direct neighbours of a vertex
in V , but not vertex in V itself. By Lemma 4.19 we know that |NV | ≤ c|V | for some constant c,
that only depends on k and d.

q1 q2

v

u

Nv

T

P1 P2

Figure 3: Explanation for the proof of Theorem 4.27. Paths P1 and P2 meet the first vertex in
Nv, being q1 and q2 respectively. As both q1 and q2 are on tour T , we can easily complete paths
P1 and P2 on T to reach v without having to use the same edge anywhere.

We now compute a minimal length TSP tour T on NV . As mapping a finite point set NV to the
length of the optimal travelling salesman tour on NV is an Euclidean functional, we can use Lemma
4.16. By this growth bound, we know the weight w(T ) will be no more than O(|NV |(d−p)/d) =
O(|V |(d−p)/d). Let F be edge set left from E after we remove V from G. We combine T with F ,
only adding edges to F that are not in it yet. Consider the graph (U,F ∪ T ). We need to prove
that it is 2-edge-connected. Consider two vertices u, v ∈ U , we need to prove that there exist two
edge-disjoint paths between u and v, given that there are at least k edge-disjoint paths between u
and v in G. We distinguish three cases.

1. Both u and v are in NV . As T is a tour, there are two edge-disjoint paths from u to v.

2. Exactly one of u, v is in NV and one is not. W.l.o.g. v ∈ NV and u ∈ U \NV . Consider the
two edge-disjoint (u, v)-paths P1 and P2 that existed in (U ∪ V,E). If these paths did not
use a vertex from V ∪NV , nothing is changed. In case a path did use a vertex from V ∪NV ,
we know it has to enter and exit V through NV as it contains all neighbours of V . Following
path Pi from u, let qi be the first vertex in NV . From qi we can continue the path along T to
v. When both paths use V ∪NV , we know q1 and q2 are on a tour, so they can both reach v
using T without crossing each other. This means we still have two edge-disjoint paths from
u to v. Figure 3 illustrates this.
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3. Both u and v are not in NV . Take a vertex x ∈ NV , then by Item 2 we know there are two
edge-disjoint paths from u to x and from x to v. By transitivity of k-edge-connectedness
(Theorem 4.2), we know that there are also two edge-disjoint paths from u to v.

In all cases there are two edge-disjoint paths. Thus (U,F∪T ) is 2-edge-connected. So we found a k-
edge-connected graph on U by increasing the cost no more than O(|V |(d−p)/d) from a graph achiev-
ing the optimal solution for MkEEp(U ∪ V, [0, 1]d). Then it follows that MkEEp(U ∪ V, [0, 1]d) +
O(|V |(d−p)/d) ≥ MkEEp(U, [0, 1]d). This means MkEEp is smooth for k = 2.

For k ≥ 3, we apply a similar argument. Instead of creating a TSP tour on NV , we cre-
ate a k-edge-connected graph T on NV . Again this will increase the cost by no more than
O(|NV |(d−p)/d) = O(|V |(d−p)/d) as we have Lemma 4.16. For the graph (U,F ∪ T ) we will prove
it is k-edge-connected. Consider two vertices u, v ∈ U . We need to prove that there exist k edge-
disjoint paths between u and v, given that there are at least k edge-disjoint paths between u and
v in G. We distinguish between three cases.

1. Both u and v are in NV . As T is a k-edge-connected graph, there are k edge-disjoint paths
from u to v.

2. Exactly one of u, v is in NV and one is not. W.l.o.g. v ∈ NV and u ∈ U \NV . Consider k
edge-disjoint paths P1, . . . , Pk from u to v in (U∪V,E). If path Pi does not use a vertex from
V ∪NV , we keep it. If Pi does use a vertex from V ∪NV , let qi be first vertex in NV when
following path Pi from u. For all these paths Pi we only keep them up to qi. Now we have
at most k paths temporarily halted at a vertex in NV . These paths all need to be completed
to reach v. Say we add a vertex x to our graph and we connect it to all qi, adding some
edges multiple times to make sure x has exactly degree k. NV ∪{x} is also k-edge-connected
as we do not have a cut with less than k edges (T already was k-edge-connected and x is
connected to T with k edges). Using Definition 2.2, we know there are k edge-disjoint paths
between x and v, and that all these paths will have to use the vertices qi. So from every qi
we can find an edge-disjoint path in T to v. If we combine all halted Pi with these paths,
we in total have k edge-disjoint (u, v)-paths again.

3. Both u and v are not in NV . Take a x ∈ NV , then by Item 2 we know there are k edge-disjoint
paths from u to x and from x to v. By transitivity of k-edge-connectedness (Theorem 4.2),
we know there are also k edge-disjoint paths from u to v.

In all cases there are k edge-disjoint paths. Thus (U,F ∪T ) is k-edge-connected. So we found a k-
edge-connected graph on U by increasing the cost no more than O(|V |(d−p)/d) from a graph achiev-
ing the optimal solution for MkEEp(U ∪ V, [0, 1]d). Then it follows that MkEEp(U ∪ V, [0, 1]d) +
O(|V |(d−p)/d) ≥ MkEEp(U, [0, 1]d). This means MkEEp is smooth for k ≥ 3.

This theorem is easily extended to hold for MkEEmp as well.

Theorem 4.28. For 1 ≤ p < d, MkEEmp is smooth.

Proof. The proof is similar to that of Theorem 4.27, except for the fact that we create a k-edge-
connected multigraph on NV .

If we try to extend the proof of Theorem 4.27 to power assignments, we get into trouble with
the possible unbounded degree of power assignment. So instead of trying to bound the number
of vertices connected to one vertex, we will bound the number of k-edge-connected components
connected to one vertex. To do this, we first need another lemma. We omit the proof, which can
be found in De Graaf and Manthey [12, Lemma 3.2].

Lemma 4.29. Let x, y ∈ V , let v ∈ [0, 1]d, and assume that x and y have power PA(x) ≥ |(x, v)|p
and PA(y) ≥ |(y, v)|p, respectively. Assume further that |(x, v)| ≤ |(y, v)| and that ∠(x, v, y) ≤ α
with α ≤ π/3. Then the following holds:
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(a) PA(y) ≥ |(x, y)|p, i.e., y has sufficient power to reach x.

(b) If x and y are not connected (i.e., PA(x) < |(x, y)|p), then |(y, v)| > 2 cos(α) · |(x, v)|.

With this lemma, we can prove smoothness for MkEPp. This proof is based on the proof of Lemma
3.6 in De Graaf and Manthey [12].

Theorem 4.30. For 1 ≤ p < d, MkEPp is smooth.

Proof. To prove smoothness, we will follow the proof of Lemma 3.6 in De Graaf and Manthey
[12]. Consider a graph G = (U ∪ V,E) achieving the optimal solution for MkEPp(U ∪ V,R). The
problem for smoothness is that the degree degG(v) of vertices v ∈ V can be unbounded. The idea
is to exploit the fact that removing v ∈ V also frees some power. Roughly speaking, we proceed
as follows: Let v ∈ V be a vertex of possibly large degree. We add the power of v to some vertices
close to v. The graph obtained from removing v and distributing its energy has only a constant
number of k-edge-connected components (either seperate vertices, or components with k + 1 or
more vertices). To prove this, Lemma 4.29 is crucial. We consider cones rooted at v with the
following properties:

• The cones have a small angle α with v; for all cones C and for all x, y ∈ C, we have
∠(x, v, y) < α = π/6.

• Every point in [0, 1]d is covered by some cone.

• The number of cones m is finite (as d is a constant).

Let C1, . . . , Cm be these cones. By abusing notation, let Ci also denote all points Ci∩(U ∪V \{x})
that are adjacent to v in G. Let xi1 , . . . , xik be the k points in Ci closest to v and let yi be farthest
from v. (We ignore Ci if Ci ∩ U = ∅). Let `i = |(yi, v)| be the maximum distance of a vertex in
Ci to v and let ` = maxi `i. We note that ` ≤ p

√
PA(v).

We increase the prower of the k closest points in each Ci by `p/(mk). Since the power of v
is at least `p and we have m cones, we can account for this increase by the removal of v. As
α = π/6, and as xi1 , . . . , xik are the closest points to v, any point in Ci is closer to xi1 , . . . , xik
than to v. According to Lemma 4.29(a), every point in Ci \ {xi1 , . . . , xik} has sufficient power to
reach all vertices in xi1 , . . . , xik . There will now be an edge between xi1 , . . . , xik and every point
z ∈ Ci that has a distance of at most `/

p√
mk. Now let z1 be the first vertex not connected to all

xi1 , . . . , xik as it has too little power. We can use Lemma 4.29(b) which implies that if x and y are
not connected, then |(y, v)| > 2 cos(α)|(x, v)| =

√
3|(x, v)|. We section the cone in pieces such that

if x and y are in one piece, we have |(y, v)| ≤
√

3|(x, v)|. In this way, adjacent pieces are scaled
by a factor

√
3. We cover all vertices in the cone in this way, starting with the piece containing

all xi1 , . . . , xik up to z1. Let us denote the number of pieces we need to cover the cone by h. We

can state that ` ≥ `i = |(yi, v)| ≥
√

3
h−1|(z1, v)| ≥ `/ p√

mk. This implies that h ≤ log√3(
p√
mk)+1.

For each piece, we have two options.

1. The number of vertices in there is smaller or equal to k. In this case we just count all of
them as separate k-edge-connected components.

2. The number of vertices in there is larger or equal to k + 1. As |(y, v)| ≤
√

3|(x, v)| for all x
and y in one piece, we know all vertices in this piece are connected to each other by Lemma
4.29. A complete graph on k + 1 vertices is k-edge-connected, so we can count this whole
piece as one k-edge-connected component.

This means that the number of k-edge-connected components per cone after removing k and
redistributing the power is bounded by h ·k = k log√3(

p√
mk) +k, which is a constant number. As

the number of cones is finite as well, the total number of k-edge-connected components is bounded
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by a constant as well. If we remove |V | points, the graph fall into at most O(|V |) k-edge-connected
components. Creating a k-edge-connected graph on these components will increase the costs no
more than O(|V |(d−p)/d), meaning we can follow the proof from Theorem 4.27. This then proves
that MkEPp is also smooth for k ≥ 2.

Smoothness for the boundary functionals now follows almost automatically.

Theorem 4.31. For 1 ≤ p < d, MkEEpB, MkEEmp
B and MkEPpB are smooth.

Proof. The proofs are similar to those of Theorem 4.27, 4.28 and 4.30, respectively. For removing
V , we ignore the possible connections to the boundary and create a boundary k-edge-connected
graph on NV for MkEEpB , a boundary k-edge-connected multigraph on NV for MkEEmp

B , and a
boundary k-edge-connected power assignment graph on NV for MkEPpB .

Before we figured out that we could simply create a k-edge-connected graph on Nv, we tried a
different approach. We expected that removing one vertex from a k-edge-connected graph would
give a constant number of locally k-edge-components, but this was not the case. We will show a
counterexample of our hypothesis.

Lemma 4.32. For 1 ≤ p < d, k ∈ N and for infinitely many n, there exist instances of |V | = n
vertices in [0, 1]d such that removing one vertex from the graph achieving the optimal solution of
MkEEp(V, [0, 1]d) leaves a graph with O(n) k-edge-connected components.

Proof. We will prove this by giving an example of graphs achieving this behavior. Figure 4 shows
this example for k = 5. We will explain the idea behind this graph G = (V,E). We start of with
a vertex v, which will be the vertex we remove. v is connected to k vertices on layer 1 (indicated
by the number 1 in Figure 4). Each of these vertices has connections to k− 1 vertices on the next
layer. These vertices in layer 2 are connected to each other such that they form a circle with one
edge missing. Each of these vertices has edges to k − 2 vertices on layer 3. As with layer 2, the
vertices in layer 3 again form a circle with one edge missing.

The structure between layer 2 and 3 can now by copied an arbitrary number of times. So,
vertices on layer i would form a circle with one edge missing, and each of them has edges to k− 2
vertices in layer i + 1. The total amount of layers is denoted by m. Then on layer m − 1 the
vertices again form a circle with one edge missing. We call this missing edge (um−1,1, um−1,s)
where s is the number of vertices on layer m− 1. Then, to make sure G is k-edge-connected, we
add an extra edge from um−1,1 and um−1,s to their neighbouring vertex on layer m− 1. For layer
m we form a cirle with edge (um,1, um,t) missing, where t is the number of vertices on layer m. To
ensure k-edge-connectedness, we need

⌈
k
2

⌉
edges between neighbouring vertices on layer m instead

of just 1 edge. To account for the missing edge um,1 has k− 1 edges um,2, um,2 has k− 2 to um,3,
and so on, until k − i would be lower than

⌈
k
2

⌉
. This works similarly for um,t.

We can verify this multigraph is k-edge-connected, as no removal of k−1 edges will disconnect
the graph. However, we were looking for a simple graph. Luckily, we can alter this quite easily.
By transitivity of k-edge-connectedness, G would also be k-edge-connected if all vertices (with
exception of v) would be k-edge-connected components. So by replacing all vertices with multiple
edges to another vertex by k-edge-connected components, we can turn G into a simple graph. For
convenience of argumentation, we will still refer to each k-edge-connected component as a vertex.

What happens when we remove v? All vertices in layer 1 only have k − 1 edges, so they all
belong to seperate k-edge-connected components. At that point in layer 2, the vertices that miss
the edge from the circle only have k−1 to other vertices that are not a seperate component yet, so
they become seperate components as as well. By repeating this line of reasoning again and again,
eventually all vertices will be in seperate k-edge-connected components. This means by removal
of v, a total of

k + k(k − 1) +

m−2∑
i=1

k(k − 1)(k − 2)i = O(n) (46)
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k-edge-connected components were formed. This proves the lemma for k ≥ 3. In case k = 2 we
can use a simple cycle to prove this lemma. For k = 1 we can use a star and remove the central
vertex.

v

1

2

3

m− 2

m− 1

m

Figure 4: Example graph for Lemma 4.32 in case k = 5. If vertex v is removed the graph will
have O(n) k-edge-connected components.

4.7 Probabilistic and Limit Theorems

As we have geometric subadditivity, superadditivity, pointwise closeness, and smoothness for some
functionals, several other theorems directly follow. All these properties are just tools to obtain
useful results. These are mentioned in this section, along with a few other interesting theorems. We
start with results similar to those in De Graaf and Manthey [12, Lemma 3.10–3.12]. These lemmas
give a maximum length of an edge in an optimal k-edge-connected graph with high probability.
Here V = {x1, . . . , xn} ⊂ [0, 1]d.
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Lemma 4.33. For every β > 0, there exists a cball = cball(β, d) such that, with a probability of
at least 1 − n−β, every hyperball of radius rball = k · cball · (log n/n)1/d and with center in [0, 1]d

contains at least k points of V in its interior.

Proof. We use Lemma 3.10 from [12] and see that at least k balls of radius cball · (log n/n)1/d fit in
our hyperball. This means in the hyperball there will be at least k points of V in its interior.

Lemma 4.34. Assume that every hyperball of radius rball with center in [0, 1]d contains at least
k points of V . Then the following holds: For every choice of u, v ∈ [0, 1]d with |(u, v)| ≥ 2rball,
there exists a point w ∈ V with the properties

• |(u,w)| ≤ 2rball and

• |(v, w)| < |(u, v)|.

Proof. The set of candidates for w contains a ball of radius rball, namely a ball of this radius
whose center is at a distance of rball from u on the line between u and v.

Lemma 4.35. Fix 1 < p < d. Consider graphs G = (V,E) and H = (V, F ) achieving the optimal
solution for MkEEp(V, [0, 1]d) and MkEEpB(V, [0, 1]d) respectively. For every β > 0, there exists a
constant cedge = cedge(β) such that, with a probability of at least 1− n−β, every edge of G and H
is of length at most redge = cedge · (log n/n)1/d.

Proof. We restrict this proof to graphs achieving the optimal solution for MkEEp(V, [0, 1]d). The
proof for MkEEpB is almost identical.

Let G = (V,E) be a graph achieving the optimal solution for MkEEp(V, [0, 1]d), and let (x, y)

be a longest edge in G. Let cedge = 4kcball/
√

4(p−1)/p − 1. According to Lemma 4.33, with
probability at least 1−n−β , every ball B with radius rball = 1

2cedge · (log n/n)1/d contains at least
k points of V . Now suppose |(x, y)| > redge. Let B(r) be a hyperball of radius rball centered in the
middle of (x, y). Then with probability at least 1−n−β , B(r) contains at least k points, z1, . . . , z`
with ` ≥ k, using Lemma 4.33. Either all z1, . . . z` are connected to both x and y. This means
we can remove xy and x and y would still have k edge-disjoint paths between them, so G would
still be k-edge-connected. As G is optimal and cxy > 0, this leads to a contradiction. Or at least
one zj is not connected to both x and y. We can replace (x, y) with (x, zj) and (zj , y). We only
treat the case |(x, zj)| = |(zj , y)| here, the other cases are similar as zj is in a hyperball. When
|(x, zj)| = |(zj , y)|, replacing the edges lowers the total cost by:

|(x, zj)|p + |(zj , y)|p ≤
√

( 1
2 |(x, y)|)2 + r2ball

p

+
√

( 1
2 |(x, y)|)2 + r2ball

p

(47)

= 2

 1
4 |(x, y)|2 +

(
k
√

4(p−1)/p − 1

4k
redge

)2
p/2

(48)

< 2

(
1 +
√

4(p−1)/p − 1

4
|(x, y)|

)p
(49)

≤ 2

(
1

21/p
|(x, y)|

)p
(50)

= |(x, y)|p (51)

Also in this case x and y would have k edge-disjoint paths between them, contradicting the
optimality of G. So we can conclude that with a probability of at least 1− n−β , the longest edge
in an optimal MkEEp graph is of length at most redge.

For the following theorem we again use results from Yukich [37]. By using the results obtained in
Section 4.2 – 4.6, we can get convergence in mean, and even complete convergence for our smooth
functionals. This shows that our functionals do not grow very fast compared to the number of
nodes in the set V . They even converge to a set constant.
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Theorem 4.36. Fix 1 ≤ p < d and k ∈ N. Let Lp be either MkEEp, MkEEmp, or MkEPp. Then
there exists a positive constant α = α(Lp, d, k) such that

lim
n→∞

Lp(V,R)/n(d−p)/p = α c.c., and (52)

lim
n→∞

LpB(V,R)/n(d−p)/p = α c.c., (53)

where n = |V |. Here α(Lp, d, k) is equal to α(LpB , d, k), and c.c. denotes complete convergence.

Proof. As MkEEp, MkEEmp and MkEPp are smooth subadditive Euclidean functionals which are
pointwise close to their respective smooth superadditive boundary functionals, we can use the
result in Yukich [37, Theorem 4.1] to directly get this theorem.

The following corollary is a weaker version of Theorem 4.36, but is stated here for completeness.

Corollary 4.37. Fix 1 ≤ p < d and k ∈ N. Let Lp be either MkEEp, MkEEmp, or MkEPp. Then
there exists a positive constant α = α(Lp, d, k) such that

lim
n→∞

E[Lp(V,R)]/n(d−p)/p = α and (54)

lim
n→∞

E[LpB(V,R)]/n(d−p)/p = α (55)

where n = |V |. Here α(Lp, d, k) is equal to α(LpB , d, k), and both are equal to the constants in
Theorem 4.36.

Proof. This result follows directly from Theorem 4.36, as Limit (54) is only a version in mean of
Limit (52).

The following famous limit theorem is due to Rhee [31]. This theorem states that the solution
value will not be far from its expected value when we look at randomly places vertices.

Theorem 4.38. Fix d ≥ 2, 1 ≤ p < d and k ∈ N. Let Lp be either MkEEp, MkEEmp, MkEPp.
Let Xi, i ≥ 1 be independent random variables with values in [0, 1]d. Then there exists constants
c1 = c1(Lp, d) and c2 = c2(Lp, d) such that for all t > 0 we have

P[|Lp({X1, . . . , Xn}, [0, 1]d)− E[Lp({X1, . . . , Xn}, [0, 1]d)]| > t] ≤ c1 exp

(
−c2t2d/(d−p)

n

)
. (56)

Proof. As MkEEp, MkEEmp and MkEPp are smooth subadditive Euclidean functionals which are
pointwise close to their respective superadditive boundary functionals, we can use the theorem in
Rhee [31] to instantly get this result.

The rates of convergence of means of functionals are useful for analysing certain heuristics. The-
orem 4.39 gives us nice bound on these rates. The reason this theorem uses Poisson variables is
that this creates a lot of indepence. The indepence can then be used to prove this theorem more
easily.

Theorem 4.39 (rates of convergence of means). Fix d ≥ 2, 1 ≤ p < d and k ∈ N. Let Lp be
either MkEEp, MkEEmp, MkEPp, MkVEp, or MkVPp. If N is an independent Poisson random
variable with parameter n, then we have

|E[Lp({U1, . . . , UN}, R)]− αn(d−p)/d| ≤ C max{n(d−p−1)/d, 1} (57)

where α = α(Lp, d, k) is the same constant as in Theorem 4.36. Moreover, for Lp being either
MkEEp, MkEEmp of MkEPp we have

|E[Lp({U1, . . . , UN}, R)]− αn(d−p)/d| ≤ C max{n(d−p)/2d, n(d−p−1)/d} (58)
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Proof. This result follows directly from Yukich [37, Theorem 5.1] as MkEEp, MkEEmp, MkEPp,
MkVEp, and MkVPp are subadditive Euclidean functionals which are close in mean to their
respective superadditive boundary functionals, and as MkEEp, MkEEmp and MkEPp are smooth
as well.

Yukich [37] presented an umbrella theorem for Euclidean functionals, both on compact sets and
on Rd, d ≥ 2. These theorems are an extension of the limit law obtained in Theorem 4.36. Now
the variables are not restricted to be drawn from a uniform distribution. We first show the result
for our smooth functionals on compact sets.

Theorem 4.40 (umbrella theorem for Euclidean functionals on compact sets). Fix d ≥ 2, 1 ≤
p < d and k ∈ N. Let Lp be either MkEEp, MkEEmp, or MkEPp. Let (Xi)i≥1 be i.i.d. random
variables with values in [0, 1]d, then we have

lim
n→∞

Lp({X1, . . . , Xn}, R)/n(d−p)/d = α

∫
[0,1]d

f(x)(d−p)/ddx c.c., (59)

where α = α(Lp, d, k) is the same constant as in Theorem 4.36, and f is the density of the
absolutely continuous part of the distribution of X1.

Proof. As MkEEp, MkEEmp and MkEPp are smooth subadditive Euclidean functionals which are
pointwise close to their respective smooth superadditive boundary functionals, we can use the
result in Yukich [37, Theorem 7.1].

To also obtain this result on Rd, d ≥ 2, we need some additional requirement. First of all, the
functional has to be simple subadditive instead of just geometric subadditive. Luckily, this results
follows immediately, since we proved geometric subadditivity without explicitly using that both
R and its partitions were rectangles.

Theorem 4.41. Fix 1 ≤ p < d and k ∈ N. Then MkEEp, MkEEmp, MkEPp, MkVEp, and
MkVPp are all simple subadditive.

Proof. This results follows directly from the proof for geometric subadditivity, as the shape of the
sets was not explicitly used.

The following definition makes stating Theorem 4.43 a lot more compact.

Definition 4.42. Let A0 denote the ball in Rd centered at the origin and with radius 2. For all
k ≥ 1, let Ak denote the annular shell centered around A0 with inner radius 2k and outer radius
2k+1. Given f ∈ L1(Rd), set

ak(f) := 2dkp/(d−p)
∫
Ak

f(x)dx (60)

The umbrella theorem on Rd, d ≥ 2 is as follows, as an extension of Theorem 4.40.

Theorem 4.43 (umbrella theorem for Euclidean functionals on Rd, d ≥ 2). Fix d ≥ 2, 1 ≤ p < d
and k ∈ N. Let (Xi)i≥1 be i.i.d. random variables with an absolutely continuous distribution on
Rd having a density f(x). If we have∫

Rd

f(x)(d−p)/ddx < ∞ and (61)

∞∑
k=1

(ak(f))(d−p)/d < ∞, (62)

then for Lp being either MkEEp, MkEEmp or MkEPp we have

lim
n→∞

Lp({X1, . . . , Xn}, R)/n(d−p)/d = α

∫
Rd

f(x)(d−p)/ddx a.s., (63)

where α = α(Lp, d, k) is the same constant as in Theorem 4.36.
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Proof. As MkEEp, MkEEmp and MkEPp are smooth simple subadditive Euclidean functionals
which are pointwise close to their respective smooth superadditive boundary functionals, we can
use the result in Yukich [37, Theorem 7.6].

Condition (62) is satisfied whenever f satisfies
∫
Rd |x|rf(x)dx <∞ for some r > d/(d−p) (see Yu-

kich [37]). Examples of functions f satisfying condition (62) are f having a Gaussian distribution,
or f having compact support (it is zero outside of a compact set).

4.8 Partitioning Scheme

We apply the framework as given by Bläser et al. [6] on our functionals. This framework is used for
the performance analysis of partitioning heuristics for Euclidean functionals. This performance
analysis is also refered to as smoothed analysis. It is a hybrid of worst-case and average-case
analysis. To be able to use it, we need a smooth subadditive Euclidean functional which is
pointwise close to its superadditive boundary functional. We will use MkEEp and MkEPp for
the scheme. As MkEEmp would behave quite different due to the multigraph structure, we have
decided not to include it in our simulations. This partitioning scheme is the basis of the partitioning
algorithm used in Section 6. Based on the scheme, we can also give a smoothed approximation
ratio of the algorithm.

Algorithm 4.44 (Partitioning Scheme).
Input: set V ⊆ [0, 1]d of n points and number of points per cell s

1. Partition [0, 1]d into ` = d
√
n/s stripes of dimension d − 1 such that each stripe contains

exactly n/` = (nd−1s)1/d points.

2. Keep partitioning each i+ 1-dimensional stripe into ` stripes of dimension i such that each
stripe contains exactly n/`i = (nd−isi)1/d points. Stop at i = 1 so that each 2-dimensional
stripe is partitioned into ` cells with n/`d = s points. In this way we end up with `d = n/s
cells. Here we assume s > k.

3. Compute a graph achieving the optimal solution of Lp for each cell.

4. Join the graphs to obtain a k-edge-connected graph on V Algorithm 4.47.

Algorithm 4.45 (Joining Graphs).
Input: set V ⊆ [0, 1]d of n points, divided into n/s cells with s points, and an optimal k-edge-
connected graph on each cell.

1. Take a random point from each cell.

2. Compute a graph achieving the optimal solution of Lp on these points.

The graph we get as an output from Algorithm 4.44 is k-edge-connected because of transitivity of
k-edge-connectedness (Theorem 4.2). With these algorithms we can now give running time and
approximation guarantees. Depending on the way we compute the optimal solution on each cell,
we need to vary s to get a polynomial running-time.

Theorem 4.46. If the algorithm for computing an optimal solution on each cell in Algorithm
4.44 and has a running time of O(Cn

2

) for some constant C, the Partitioning Scheme has a
polynomial running time if we choose s = O(

√
log n). The approximation guarantee then becomes

MkEEp(V ) + O((n/s)(d−p)/d) for k-edge-connected graphs and MkEPp(V ) + O((n/s)(d−p)/d) for
k-edge-connected power assignment graphs.

Proof. As we have n/s cells, each with s points, the algorithm would have a total running time

of n/s ·O(Cs
2

) = n/O(
√

log n) ·O(C logn) = O(n2/
√

log n) which is polynomial. Now for the ap-
proximation guarantee. Let PSEp(V ) be the cost of the k-edge-connected graph on V computed
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by Algorithm 4.44 when Lp = MkEEp and PSPp(V ) when Lp = MkEPp. By using subaddi-
tivity we can get an upper bound on PSEp(V ) (Theorem 4.3): PSEp(V ) ≤ MkEEp(V ) + C1 +
“cost(Algorithm 4.47)”, where C1 = C1(d, p) is a finite constant as used in Definition 2.25.

As Algorithm 4.47 creates an k-edge-connected graph on all cells, treating each cell as one point,
we can upper bound the cost by O((n/s)(d−p)/d) (using Theorem 4.16). So we get PSEp(V ) ≤
MkEEp(V )+O((n/s)(d−p)/d). For PSPp(V ) we can get a similar expression: PSPp(V ) ≤ MkEPp(V )+
O((n/s)(d−p)/d).

If we can find an even faster algorithm to compute optimal solutions on the cells, we can adjust s
a little more.

Theorem 4.47. If the algorithm for computing an optimal solution on each cell in Algorithm
4.44 and has a running time of O(Cn) for some constant C, the Partitioning Scheme has a
polynomial running time if we choose s = O(log n). The approximation guarantee then becomes
MkEEp(V ) + O((n/s)(d−p)/d) for k-edge-connected graphs and MkEPp(V ) + O((n/s)(d−p)/d) for
k-edge-connected power assignment graphs.

Proof. This proof is very similar to the proof of Theorem 4.46.

We do not use exact algorithms with a running time guarantee ofO(Cn) or evenO(Cn
2

) as we could
not find any. We can however use a mixed integer linear program (MILP) to get optimal solutions
on the cells. The reason why using the partition scheme in combination with MILPs is still useful,
is because MILP solvers are quite powerful. We can however not give any running time guarantee.
The approximation guarantee is still MkEEp(V ) + O((n/s)(d−p)/d) for k-edge-connected graphs
and MkEPp(V ) + O((n/s)(d−p)/d) for k-edge-connected power assignment graphs, depending on
which s we choose.

The mixed integer linear programs (MILP) used in the algorithms will be described in the next
section.

5 Model Formulation

Before describing the MILPs used for solving MkEEp, MkEEmp, MkEPp, MkVEp, and MkVPp

to optimality, we will first explain the intuition behind them. When we look at MkEEp, we want
to find the cheapest k-edge-connected graph G = (V,E). By Definition 2.2 we need to check if G
has k edge-disjoint paths between every pair of vertices u, v ∈ V . This is equivalent to finding a
flow of at least k from u to v with all edge capacities set to 1. As k-edge-connectivity is transitive,
we only need to check this flow from one vertex to all other vertices.

For MkEEmp edge capacities are set to the number of duplicates of that edge. For MkEPp

it works similar, though we need to only include edges when the power is large enough. As k-
vertex-connectivity is not transitive, for MkVEp we need to check the flow between all pairs of
vertices. Instead of edge capacities, we set all vertex capacities to 1. For MkVPp we also set vertex
capacities to 1, and we include edges only if the power is sufficiently large.

We can now define all sets, parameters and variables used in the mixed integer linear programs.
This will be followed by the actual MILPs.
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Sets:

V set of vertices

Parameters:

cij power-weighted distance between vertex i and j (= |(i, j)|p)

Variables:

Xij 1 if we use edge (i, j), 0 otherwise. For a multigraph, this indicates how many

edges are used between vertex i and j

Ai power assigned to vertex i

Fiuv 1 if edge (u, v) is part of an edge-disjoint path from vertex 1 to i

Gijuv 1 if edge(u, v) is part of a vertex-disjoint path from vertex i to j

Model for MkEEp

Minimise
∑
i∈V

∑
j∈V,j<i

cijXij (64)

Subject to:

Xij = Xji ∀i, j ∈ V, i > j (65)

Fiuv ≤ Xuv ∀i, u, v ∈ V (66)∑
u∈V

Fiuv =
∑
w∈V

Fivw ∀i, v ∈ V, v /∈ {1, i} (67)∑
v∈V

Fi1v ≥ k ∀i ∈ V (68)

Xij ∈ {0, 1} ∀i, j ∈ V (69)

Fiuv ≥ 0 ∀i, u, v ∈ V (70)

Model for MkEEmp

Minimise
∑
i∈V

∑
j∈V,j<i

cijXij (71)

Subject to:

Xij = Xji ∀i, j ∈ V, i > j (72)

Fiuv ≤ Xuv ∀i, u, v ∈ V (73)∑
u∈V

Fiuv =
∑
w∈V

Fivw ∀i, v ∈ V, v /∈ {1, i} (74)∑
v∈V

Fi1v ≥ k ∀i ∈ V (75)

Xij ∈ N ∀i, j ∈ V (76)

Fiuv ≥ 0 ∀i, u, v ∈ V (77)
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Model for MkEPp

Minimise
∑
i∈V

Ai (78)

Subject to:

Ai ≥ cijXij ∀i, j ∈ V (79)

Xij = Xji ∀i, j ∈ V, i > j (80)

Fiuv ≤ Xuv ∀i, u, v ∈ V (81)∑
u∈V

Fiuv =
∑
w∈V

Fivw ∀i, v ∈ V, v /∈ {1, i} (82)∑
v∈V

Fi1v ≥ k ∀i ∈ V (83)

Xij ∈ {0, 1} ∀i, j ∈ V (84)

Ai ≥ 0 ∀i ∈ V (85)

Fiuv ≥ 0 ∀i, u, v ∈ V (86)

Model for MkVEp

Minimise
∑
i∈V

∑
j∈V,j<i

cijXij (87)

Subject to:

Xij = Xji ∀i, j ∈ V, i > j (88)

Gijuv ≤ Xuv ∀i, j, u, v ∈ V (89)∑
u∈V

Gijuv =
∑
w∈V

Gijvw ∀i, j, v ∈ V, v /∈ {i, j} (90)∑
v∈V

Gijiv ≥ k ∀i, j ∈ V (91)∑
u∈V

Gijuv ≤ 1 ∀i, j, v ∈ V, v /∈ {i, j} (92)

Xij ∈ {0, 1} ∀i, j ∈ V (93)

Gijuv ≥ 0 ∀i, j, u, v ∈ V (94)
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Model for MkVPp

Minimise
∑
i∈V

Ai (95)

Subject to:

Ai ≥ cijXij ∀i, j ∈ V (96)

Xij = Xji ∀i, j ∈ V, i > j (97)

Gijuv ≤ Xuv ∀i, j, u, v ∈ V (98)∑
u∈V

Gijuv =
∑
w∈V

Gijvw ∀i, j, v ∈ V, v /∈ {i, j} (99)∑
v∈V

Gijiv ≥ k ∀i, j ∈ V (100)∑
u∈V

Gijuv ≤ 1 ∀i, j, v ∈ V, v /∈ {i, j} (101)

Xij ∈ {0, 1} ∀i, j ∈ V (102)

Ai ≥ 0 ∀i ∈ V (103)

Gijuv ≥ 0 ∀i, u, v ∈ V (104)

The objective functions (64), (71) and (87) minimise the sum of the length of power-weighted
edges used. In (78) and (95) this objective is changed to minimising the total power used. Here
the power-weighted edge length cij makes sure Ai does not have to be raised to the power p again.
Constraint (65), (72), (80), (88) and (97) ensure the edges in the graphs are all symmetric. In
constraint (66), (73), (81), (89) and (98) we make sure we can only send flow over an edge if we
use that edge, and at the same time make sure we can only send as much flow as we have edges.

Constraint (67), (74), (82), (90) and (99) ensure flow conservation. To make sure we start with
a flow of k we have constraint (68), (75), (83), (91) and (100). To account for power assignment
graphs, constraint (79) and (96) together with (80) and (97), respectively, only allow usage of an
edge (i, j) if the power of both vertex i and j is more than or equal to the power-weighted edge
length cij . Constraint (92) and (101) set the vertex capacities to 1. Constraint (69), (84), (93) and
(102) make Xij a binary variable, while in constraint (76) Xij is allowed to be a natural number,
as it is a multigraph.

As this model is a flow model Fiuv and Gijuv only need to be positive and integrality will be
ensured by the constraints itself. This is done in constraint (70), (77), (86), (94) and (104). Lastly,
constraint (85) and (103) set Ai to positive values.

6 Computational Results and Discussion

In this section we present the results of the computational tests that we have carried out based on
the partitioning scheme presented in Section 4.8. There are some slight differences between the
code that we used to conduct these experiments, and the scheme. We will address these differences
now.

First of all, Algorithm 4.44 assumes both ` and n/`i are integers for 1 ≤ i ≤ d. This would
substantially limit the number of vertices we could use for simulations. To solve this, we chose
the following approach. We assume that ` is integer for now (we will explain in a bit why we can
make this assumption). When we make a partition of n vertices in ` stripes, we calculate t =

⌊
n
`

⌋
.

Each stripe will have t vertices, possibly excluding the last stripe. The last stripe contains either t
vertices (if t = n/`), or n− t · (`− 1) vertices otherwise. In other words, we rather have too many
vertices in a stripe, than too few.

The second difference is that we not neccesarilly create ` partitions in each dimension. As
mentioned before, ` = d

√
n/ log n is not always integer. Also, part of the experiment is to see the
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influence of the number of cells on the solution value. So instead of using `, we give our own input
on how many stripes are created in each dimension. In this way, we also ensure that number of
stripes is integer at all times as used when calculating t.

An issue that could arise by choosing the number of partitions ourselves is that the number of
vertices in each cell is smaller than k + 1, or that the number of cells created is less than k + 1.
We recall that k is a constant, and n will be large compared to k, but for our computational
experiments this might occur. The first of these options can be avoided by carefully choosing the
number our partitions. So for all our simulations we make sure that the number of vertices per
cell is at least k + 1. The second option however cannot always be prevented. We solve this by
adjusting Algorithm 4.47. Instead of creating a k-edge-connected (power assignment) graph on the
cells, we lace cells together. We do this by creating a minimal length matching of k vertices from
two cells. It is easy to check that this yields a k-edge-connected (power assignment) graph as well.
In order for the distance between two laced cells not to be too large, we need a clever way of the
cells following up one another. This is done by creating a snakelike succession. This is illustrated
in Figure 5 in two dimensions. The difficulty with this structure is that the numbering of the cells
is done stripe by stripe (as shown in Figure 5), contrary to what the snakelike succession will be.
The exact formulation can be found in the code in Appendix A.3 and A.4. We did compare if it
was cheaper to also use the snakelike succession when the number of cells is at least k + 1, but it
that was not the case.

The last difference is again with Algorithm 4.47. When Lp = MkEPp, instead of taking a
random vertex from each cell, we take the vertex with the largest power. The idea behind this is
that this vertex might already reach some other cells, therefore it might lower the cost of joining
graphs compared to taking a random vertex.

All simulations have been carried out on randomly generated vertex sets. For each problem of
size n = |V |, we created 30 instances with n points chosen from a uniform distribution on [0, 1]d.
We allow a 10 hour computation limit and a 6GB memory limit for each instance. The solver
we use is ILOG CPLEX 12.6.1 with the Python 2.7 programming language using PuLP modeller
1.6.1 [27]. The computational experiments are carried out on an Intel Core i7-4790 machine with
8 GB of RAM.

All simulations have been done with d = 2, though the algorithms also work for other d. To
get an idea of what the influence of p is on the cost, we did simulations with p = 1 and p = 2.
We also tried two options for k, namely k = 3 and k = 5. For the number of cells by partitioning
in two dimensions we chose how many partitions we wanted in each dimension. The maximum
number of partition in one dimension is 4. This gives us the following options, where the numbers
in brackets denote how many partitions we used in each dimension: 1 (optimal), 2 (2 and 1), 4 (2
and 2), 6 (3 and 2), 9 (3 and 3), 12 (4 and 3) and 16 (4 and 4). We have checked if noticeable
differences occurred if we changed the order of partitioning (so instead of 3 and 2, we used 2 and
3), but the order hardly changed the solution value or time.

For MkEEp we can solve cases of up to 40 vertices to optimality. This is why we decided to do
our tests with n = 30 and n = 40. We also tried larger sets of vertices using only the partitioning
heuristic (up to 100 vertices) for the case p = 1 and k = 3. As we take the average over 30
instances for each problem, this amounts to a total of 1410 simulations of MkEEp. Here we take
into account that we have a maximum number of cells to make sure the number of vertices in each
cell is at least k + 1. So for example, with n = 30 and k = 3 we can only use 1, 2, 4 and 6 cells.
The results are displayed in Table 1

For MkEPp the solution times drastically increased and we were only able to solve (some) cases
of up to 20 vertices to optimality. Here we decided to do tests for n = 20, n = 30 and n = 40 if
they were admissible by solution time and number of vertices per cell. We also tried n = 60 for
the case p = 1 and k = 3. Again taking the average over 30 instances per problem, this amounts
to 990 simulations of MkEPp. The results are displayed in Table 2. Not all cases with 1 cell were
solved to optimality due to memory or computation time limits. For these cases the number of
instances not solved to optimality are shown behind the solution time in brackets. The complete
code can be found in Appendix A.

In Figure 6 the solution times and values of MkEEp are shown with their standard deviation
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1 2 3

4 65

7 8 9

Figure 5: Example of the snakelike succession used in our partitioning algorithm in two dimen-
sions. The cells are numbered 1 to 9 as shown, but we want to make sure cells are close to each
other when we lace them together. This is why we want successive cells to be neighbours. By
creating a snakelike pattern over the cells, we make sure this happens. The order for lacing then
becomes 1 2 3 6 5 4 7 8 9. This pattern is generalised for higher dimensions in the code in Appendix
A.3 and A.4.

for n = 40, p = 1 and k = 3. As expected the average solution value increases if the number
of cells becomes larger. It is interesting to see that the biggest change in solution value happens
between 2 and 4 cells. This could be explained as we have to create a complete graph on a random
point in each of the 4 cells (as k = 3), instead of a minimal length matching of k vertices from two
cells. Lacing has a much lower cost, as we can pick the k cheapest edges instead of having random
vertices to create a k-edge-connected graph on. Another striking observation is that the average
solution time grows enormously between using 2 cells, and solving the instances to optimality.

The same observation can be done in Figure 7, where the solution times and values of MkEPp

are shown with the standard deviation for n = 20, p = 1 and k = 3. This indicates that n = 40
for MkEEp and n = 20 for MkEPp really are a critical number of vertices. In Figure 7 we only
have 1, 2 and 4 cells, as n = 20 and k = 3. Again we can see that the increase from 2 to 4 cells is
quite steep.

Figure 8 shows the solution times and values of MkEEp with standard deviation for both p = 1
and p = 2. These two are shown for n = 40 and k = 3. To make the figure more clear, the solution
time of the optimal solution is left out as well as the standard deviation of the solution times. The
shape of the average solution value is similar for both cases, though we clearly see the solution
value for p = 2 is lower. This makes sense as |e| > |e|2 for edges e with Euclidean edge length
0 < |e| < 1. Since V ⊂ [0, 1]2, most edges satisfy |e| < 1. It is interesting that their solution times
are almost identical. This could be explained by not having p appear anywhere in the MILP, but
only affecting the cost of edges.

In Figure 9 the solution times and values of MkEEp are shown with their standard deviation
for both k = 3 and k = 5. These two are shown for n = 40 and p = 1. To make the figure more
clear, the solution time of the optimal solution is left out as well as the standard deviation of
the solution times. The number of cells only is 6 here at maximum, as for k = 5 and n = 40 we
cannot use 9 cells. This would create cells with less than 6 vertices, so we would need a minimum
of 54 vertices to use 9 cells for k = 5. We see that for k = 5 the average solution value grows
even stronger between 4 and 6 cells compared to the growth between 2 and 4 cells. This might
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Figure 6: The average solution values and times for MkEEp with p = 1, d = 2, k = 3 and
n = 40 for different partitions. The error bars on each point indicate the standard deviation.
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Figure 7: The average solution values and times for MkEPp with p = 1, d = 2, k = 3 and
n = 20 for different partitions. The error bars on each point indicate the standard deviation.

be explained by having to create a complete graph on a random point in each of the 6 cells (as
k = 5), instead of 3 minimal length matching of k vertices from two cells by lacing them together.
Furthermore, the solution time for 2 cells is a lot lower for k = 5 than for k = 3. This also holds
for 1 cell, which can be seen in Table 1. This could be due to the graph needing more edges to
be 5-edge-connected than 3-edge-connected. There are less choices between possible short edges
used in the graph, as they are all needed in the graph, reducing the solution time.

In Figure 10 the solution times and values of MkEEp are shown with their standard deviation
for n ranging from 30 to 100. All cases have p = 1 and k = 3, and are partitioned in 4 cells. We
see that the solution values grow linear, or even sublinear. This makes sense because as we add
more vertices, all vertices are relatively closer together. In this way, the solution value would not
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p = 1

p = 2

Figure 8: Comparison of p = 1 and p = 2 for MkEEp with d = 2, k = 3 and n = 40 for different
partitions. The error bars on each point indicate the standard deviation. The case for p = 1 is
shown in the uninterrupted line, and p = 2 in the interrupted line.
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k = 3

k = 5

Figure 9: Comparison of k = 3 and k = 5 for MkEEp with p = 1, d = 2 and n = 40 for different
partitions. The error bars on each point indicate the standard deviation. The case for k = 3 is
shown in the uninterrupted line, and p = 5 in the interrupted line.

increase too much eventually. In the solution times however, we see a steep increase as we add
more vertices. This could well indicate a running time of exponential order.

As mentioned before Table 1 and 2 show the results of all simulations done. An interesting
observation is that partitioning 60 vertices in 2 cells and solving those, is faster than twice the
solution time of 30 vertices. This could mean that the structure of 60 vertices split in 2 is different
as they are closer together in 1 dimension.

If we compare the solutions of the partition algorithm to the optimal solutions of MkEEp, we
get that for n = 30 partitioning in 2 cells is gives a solution value approximately 18% higher for

37



30 40 50 60 70 80 90 100

Number of vertices

0

5

10

15

20

25

30

35

A
v
e
ra
g
e
 s
o
lu
ti
o
n
 v
a
lu
e
 (
M
kE
E
)

0

50

100

150

200

250

A
v
e
ra
g
e
 s
o
lu
ti
o
n
 t
im
e
 (
se
c)

Figure 10: The average solution values and times for MkEEp with p = 1, d = 2 and k = 3, all
for partitioning in 4 cells and n ranging from 30 to 100. The error bars on each point indicate the
standard deviation.

both p = 1 and p = 2, and both k = 3 and k = 5. Partitioning in 4 cells gives a solution value
63% higher when k = 3 and 42% higher for k = 5. For n = 40 this changes to 14 % for 2 cells in
case k = 3 and 12% when k = 5. For 4 cells this becomes 54% when k = 3 and 35% when k = 5.
Interestingly, p does not seem to have a substantial influence on these increases. For higher k, it
seems like partitioning in more cells has less of an influence than it has for lower k. The increase
is also bigger for smaller n. This makes sense as a partition of a smaller set has a relatively bigger
influence.

7 Conclusions

In this thesis we have looked at fault tolerant networks in terms of connectivity. There has been
a lot of research on this topic, since it has numerous applications. We studied both standard
and wireless networks, looking at k-edge-connectedness and k-vertex-connectedness. The problem
of finding a shortest k-edge-connected or k-vertex-connected graph on a given set of vertices in
terms of summed power-weighted edge lengths can be seen as a functional. The same holds for
finding a minimal power assignment resulting in a k-edge-connected or k-vertex-connected graph.
We also looked at finding a shortest k-edge-connected multigraphs as a functional. We defined
these functionals as MkEEp, MkEEmp, MkEPp, MkVEp, and MkVPp. We wanted the functionals
to have certain properties in order to do smoothed analysis on the performance of partitioning
algorithms for the functionals.

First we proved subadditivity for MkEEp, MkEEmp, MkEPp, MkVEp, and MkVPp. As these
functionals were not superadditive, we used their boundary functionals and proved superadditivity
for MkEEpB , MkEEmp

B , MkEPpB , MkVEpB , and MkVPpB . To show that the original functionals had
a form of near additivity, we proved pointwise closeness of MkEEp, MkEEmp, MkEPp, MkVEp,
and MkVPp to their respective boundary functional. For other results we also needed smoothness,
and we were able to prove this for MkEEp, MkEEmp, and MkEPp, and their boundary functionals.

With these properties we have shown a bound on the longest edge with high probability for
MkEEp. We also used the properties to show complete convergence and some limit theories
for MkEEp, MkEEmp, and MkEPp. Bounds on the rates of convergence of means of MkEEp,
MkEEmp, MkEPp, MkVEp, and MkVPp have been obtained. Finally we presented two umbrella
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MkEEp Number of cells
1 2 4 6 9 12 16

n = 30

p = 1
k = 3

time (s) 655.95 4.23 1.52 1.79 - - -
value 9.63 11.24 15.81 17.94 - - -

k = 5
time (s) 26.49 3.37 1.85 - - - -
value 19.17 22.56 27.49 - - - -

p = 2
k = 3

time (s) 640.95 4.42 1.90 1.73 - - -
value 7.77 9.16 12.58 14.47 - - -

k = 5
time (s) 22.64 3.44 1.86 - - - -
value 15.40 18.17 21.76 - - - -

n = 40

p = 1
k = 3

time (s) 5332.46 19.29 2.66 1.88 1.89 - -
value 10.99 12.45 16.99 18.68 20.25 - -

k = 5
time (s) 310.81 7.31 2.35 1.77 - - -
value 21.59 24.22 29.27 38.21 - - -

p = 2
k = 3

time (s) 6554.43 23.50 2.55 2.30 2.30 - -
value 8.87 10.11 13.65 15.20 16.19 - -

k = 5
time (s) 315.47 7.78 2.29 1.76 - - -
value 17.37 19.51 23.38 30.45 - - -

n = 60 p = 1 k = 3
time (s) - 776.15 7.59 3.67 2.92 3.45 -
value - 14.30 19.48 20.88 22.63 25.32 -

n = 80 p = 1 k = 3
time (s) - - 30.25 7.90 5.47 4.56 6.33
value - - 20.79 22.59 24.60 26.15 28.80

n = 100 p = 1 k = 3
time (s) - - 210.53 18.94 8.00 6.86 6.33
value - - 22.53 24.05 26.25 28.17 29.74

Table 1: Solution values and times of MkEEp averaged over 30 instances for different combina-
tions of p, d, k, n and number of cells.

theorems for MkEEp, MkEEmp, and MkEPp as extensions on the limit theorem.
We used smoothed analysis to prove that the partitioning algorithms for MkEEp obtains a

solution with value MkEEp(V ) + O((n/ log n)(d−p)/d), where |V | = n. For MkEPp it becomes
MkEPp(V )+O((n/ log n)(d−p)/d). For acquiring a solution on each cell we used the exact solution
of mixed integer linear program (MILP). These MILPs are based on the flow from one vertex
to another to show there are k edge-disjoint paths, or k vertex-disjoint paths. The cells are then
joined by treating each cell as one point and making a k-edge-connected (power assignment) graph
on it. Although smooth analysis is done only for MkEEp, MkEEmp, and MkEPp, the MILPs are
presented for all functionals.

Based on the partitioning algorithm we made a heuristic in which we could specify how many
cells we get. This heuristic can be used for arbitrary p, d and k, though we have done simulations
for p = 1 and 2, d = 2, k = 3 and 5 for both MkEEp and MkEPp. We varied the number of cells
between 1 and 16, and the number of vertices between 20 and 100. Here we take into account
that we have a maximum number of cells to make sure the number of vertices in each cell is at
least k + 1. For each problem of size n = |V |, we created 30 instances with n points chosen from
a uniform distribution on [0, 1]d. In total we simulated and solved 2400 instances. For MkEEp we
could solve instances of up to 40 vertices to optimality and for MkEPp only up to 20 vertices.

For k = 3 we saw that the solution value increased the most if we changed from partitioning into
2, to partitioning into 4 cells. For k = 5 this change was from 4 to 6 cells. Solution values of p = 1
were higher than of p = 2. Those of k = 5 were logically also higher than those of k = 3, though
the solution time for k = 5 was noticeably lower. When comparing the partitioning in 4 cells for a
different number of vertices, we could see the solution values were only growing (sub)linear. The
running time, however, showed signs of being of exponential order, as expected. An interesting
observation we did was that when we doubled the number of vertices and partitioned them in 2
cells, the solution time was less than doubled. This could mean that the structure of the vertices
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MkEPp Number of cells
1 2 4 6 9 12

n = 20

p = 1
k = 3

time (s) 9091.83 (13) 9.23 1.54 - - -
value 7.08 7.96 11.08 - - -

k = 5
time (s) 15514.51 (16) 1.53 - - - -
value 9.62 11.29 - - - -

p = 2
k = 3

time (s) 11698.57 2.07 1.28 - - -
value 5.68 6.43 8.66 - - -

k = 5
time (s) - 1.56 - - - -
value - 9.01 - - - -

n = 30

p = 1
k = 3

time (s) - 129.62 1.92 2.31 - -
value - 9.52 12.83 13.97 - -

k = 5
time (s) - 146.08 2.56 - - -
value - 13.00 14.82 - - -

p = 2
k = 3

time (s) - 140.10 2.04 2.32 - -
value - 7.63 9.88 11.21 - -

k = 5
time (s) - 142.13 2.07 - - -
value - 10.29 11.53 - - -

n = 40

p = 1
k = 3

time (s) - - 3.93 2.87 2.64 -
value - - 13.95 14.95 15.56 -

k = 5
time (s) - - 3.51 2.28 - -
value - - 15.76 21.63 - -

p = 2
k = 3

time (s) - - 3.89 2.86 2.75 -
value - - 10.96 12.08 12.39 -

k = 5
time (s) - - 3.89 2.04 - -
value - - 12.48 16.91 - -

n = 60 p = 1 k = 3
time (s) - - 294.78 5.96 4.30 5.49
value - - 15.76 16.98 17.74 19.40

Table 2: Solution values and times of MkEPp averaged over 30 instances for different combina-
tions of p, d, k, n and number of cells. The numbers in brackets indicate how many of the 30
instances could not be solved to optimality within the given computation time or memory limit.

split in 2 is different as they are closer together in 1 dimension, speeding up computations.
When we checked how much worse our partitioning algorithm performs compared to the op-

timal solution, we see that it performs worse on instances with a lower number of vertices, and
with lower k. p does not seem to have an influence on this. For example, we got that for n = 40
partitioning in 2 cells is gives a solution value approximately 14% higher with k = 3 for both p = 1
and p = 2, and 12% when k = 5. Partitioning in 4 cells gives a solution value 54% higher when
k = 3 and 35% higher for k = 5.

8 Future Work

One prominent problem we encountered is that we could not show smoothness for MkVEp or
MkVPp. The main issue with this is that k-vertex-connectivity is not transitive as k-edge-
connectivity is. It would be worthwhile to find a way to work around this, as we already have
subadditivity and pointwise closeness to its superadditive boundary functionals. This means we
could extend all results obtained for MkEEp, MkEEmp, and MkEPp directly to MkVEp or MkVPp.
This would also give the option to use a partitioning algorithm on these functionals and get a per-
formance approximation with smoothed analysis.

Another relevant extension would be to consider the case p ≥ d. This would further generalise
our results. We would probably need to depend on closeness and smoothness in mean as pointwise
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closeness and smoothness are not guaranteed to hold for p > d. We could perhaps use the approach
in De Graaf and Manthey [12] to obtain similar results.

Our smoothed analysis approach could be extended to be able to get stricter approximation
ratios. As in De Graaf and Manthey [6] we could also analyse the running time of the partitioning
algorithm. This would also help in finding an optimal trade-off between approximation factor and
running time, which we could use in our partitioning algorithm.

We are aware that our analysis of our algorithm is a bit frugal as we did not compare it to
other heuristics. This would be useful research topic. Another thing is that our algorithm could
have further improvements, especially in joining all cells together. At this point we take a random
point in each cell, but it might be smarter to base this choice on some other attributes the vertices
have.
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A Python Code

A.1 Code for solving MkEEp to optimality

1 ” ” ”
2 Gives the optimal s o l u t i o n s o f s p e c i f i e d number o f i n s t a n c e s o f MkEE f o r

s p e c i f i e d parameters
3 ” ” ”
4

5 import pulp
6 import cplex
7 import numpy as np
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8 import time as tm
9

10 # Parameters
11 k=3
12 n=40
13 d=2
14 p=1
15 num seeds=30 #number o f i n s t a n c e s
16 s o l t i m e s = [ ]
17 s o l v a l u e s = [ ]
18 s o l s t a t u s = [ ]
19

20 for sd in range ( 0 , num seeds ) :
21 np . random . seed ( sd ) #To g e t the same s o l u t i o n s i f we rerun i t
22 v e r t i c e s =range ( 1 , n+1)
23 l o c a t i o n s = d i c t ( ) # Contains c o o r d i n a t e s o f a l l v e r t i c e s
24 for l in range ( d ) :
25 l o c a t i o n s [ l ]= d i c t ( )
26 for i in v e r t i c e s :
27 l o c a t i o n s [ l ] [ i ]=np . random . random ( )
28 distance = d i c t ( ) #Power−weighted d i s t a n c e between v e r t i c e s
29 for i in v e r t i c e s :
30 distance [ i ]= d i c t ( )
31 for j in v e r t i c e s :
32 i f i == j :
33 distance [ i ] [ j ]=0
34 e lse :
35 distance temp temp=0
36 for l in range ( d ) :
37 distance temp temp +=( abs ( l o c a t i o n s [ l ] [ i ]− l o c a t i o n s [ l ] [ j ] ) ) ∗∗p
38 distance [ i ] [ j ]= distance temp temp ∗∗ ( 1 . / p )
39 n=len ( v e r t i c e s )
40

41 s t a r t =tm . clock ( )
42

43 MkEE=pulp . LpProblem (’Basic Fragmentation Model’ , pulp . LpMinimize )
44

45 # V a r i a b l e s
46 X={}
47 for i in v e r t i c e s :
48 for j in v e r t i c e s :
49 X [ i , j ]= pulp . LpVariable ("X %s %s"

%(i , j ) , lowBound=0 ,upBound=1 , cat =pulp . LpInteger )
50

51 F={}
52 for i in v e r t i c e s :
53 for u in v e r t i c e s :
54 for v in v e r t i c e s :
55 F [ i , u , v ]= pulp . LpVariable (’F %s %s %s’ %(i , u , v ) , lowBound=0)
56

57 # O b j e c t i v e function
58 MkEE += sum( [sum ( [ distance [ i ] [ j ]∗X [ i , j ] for j in v e r t i c e s i f j>i ] ) for i

in v e r t i c e s ] )
59

60 # C o n s t r a i n t s
61 for i in v e r t i c e s :
62 for j in v e r t i c e s :
63 i f j>i :
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64 MkEE += X [ i , j ]==X [ j , i ]
65

66 for i in v e r t i c e s :
67 for u in v e r t i c e s :
68 for v in v e r t i c e s :
69 MkEE += F [ i , u , v]<=X [ u , v ]
70

71 for i in v e r t i c e s : # e x t r a c o n s t r a i n t to make sure i t does not send flow
to i t s e l f , as the d i s t a n c e [ i ] [ i ]=0

72 MkEE += X [ i , i ]==0
73 for u in v e r t i c e s :
74 MkEE += F [ i , u , u]==0
75

76 for i in v e r t i c e s :
77 for v in v e r t i c e s :
78 i f ( v ! = i and v ! = v e r t i c e s [ 0 ] and i ! = v e r t i c e s [ 0 ] ) :
79 MkEE += sum( F [ i , u , v ] for u in v e r t i c e s ) == sum( F [ i , v ,w] for

w in v e r t i c e s )
80

81 for i in v e r t i c e s :
82 MkEE += sum( F [ i , v e r t i c e s [ 0 ] , v ] for v in v e r t i c e s ) − sum(

F [ i , u , v e r t i c e s [ 0 ] ] for u in v e r t i c e s )>= k
83

84 MkEE. writeLP ("MkEE OPT seed %s n %s k %s d %s p %s lp.lp" %(sd , n , k , d , p ) )
# Write the LP f i l e to s o l v e

85 problem = cplex . Cplex ("MkEE OPT seed %s n %s k %s d %s p %s lp.lp"
%(sd , n , k , d , p ) ) #Loads the LP

86 problem . parameters . t i m e l i m i t . s e t (36000) # S e t s computation time l i m i t in
seconds

87 problem . parameters . mip . l i m i t s . treememory . s e t (6000) # S e t s the memory l i m i t
in MB

88

89 t r y :
90 problem . s o l v e ( )
91 except CplexSolverError as exc : #Catch the e r r o r i f CPLEX cannot s o l v e

i t , ignore code a n a l y s i s
92 print ’Cplex encountered an error with seed %s, continue to next.’

%(sd )
93 continue
94

95 #Even i s the LP i s not s o l v e d to o p t i m a l i t y ( but f . e . with gap ) we want
to g e t the answer

96 i f problem . s o l u t i o n . g e t s t a t u s ( ) in
[ 1 , 6 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 8 , 1 9 , 2 1 , 2 2 , 2 3 , 2 4 , 2 5 , 1 0 1 , 1 0 2 , 1 0 4 , 1 0 5 , 1 0 7 , 1 1 1 , 1 2 0 ,
1 2 1 , 1 2 2 , 1 2 4 , 1 2 5 , 1 2 9 , 1 3 0 , 1 3 1 ] :

97 s o l t i m e s . append (tm . clock ( )−s t a r t )
98 s o l v a l u e s . append ( problem . s o l u t i o n . g e t o b j e c t i v e v a l u e ( ) )
99 s o l s t a t u s . append ( problem . s o l u t i o n . g e t s t a t u s ( ) )

100 e lse :
101 s o l t i m e s . append (’NaN’ )
102 s o l v a l u e s . append (’NaN’ )
103 s o l s t a t u s . append ( problem . s o l u t i o n . g e t s t a t u s ( ) )
104 print ’Total Cost = %s’ %(problem . s o l u t i o n . g e t o b j e c t i v e v a l u e ( ) )
105 print ’Total solution time = %s’ %(tm . clock ( )−s t a r t )

A.2 Code for solving MkEPp to optimality

1 ” ” ”
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2 Gives the optimal s o l u t i o n s o f s p e c i f i e d number o f i n s t a n c e s o f MkEV f o r
s p e c i f i e d parameters

3 ” ” ”
4

5 import pulp
6 import cplex
7 import numpy as np
8 import time as tm
9

10 # Parameters
11 k=3
12 n=40
13 d=2
14 p=1
15 num seeds=30 #number o f i n s t a n c e s
16 s o l t i m e s = [ ]
17 s o l v a l u e s = [ ]
18 s o l s t a t u s = [ ]
19

20 for sd in range ( 0 , num seeds ) :
21 np . random . seed ( sd ) #To g e t the same s o l u t i o n s i f we rerun i t
22 v e r t i c e s =range ( 1 , n+1)
23 l o c a t i o n s = d i c t ( ) # Contains c o o r d i n a t e s o f a l l v e r t i c e s
24 for l in range ( d ) :
25 l o c a t i o n s [ l ]= d i c t ( )
26 for i in v e r t i c e s :
27 l o c a t i o n s [ l ] [ i ]=np . random . random ( )
28 distance = d i c t ( ) #Power−weighted d i s t a n c e between v e r t i c e s
29 for i in v e r t i c e s :
30 distance [ i ]= d i c t ( )
31 for j in v e r t i c e s :
32 i f i == j :
33 distance [ i ] [ j ]=0
34 e lse :
35 distance temp temp=0
36 for l in range ( d ) :
37 distance temp temp +=( abs ( l o c a t i o n s [ l ] [ i ]− l o c a t i o n s [ l ] [ j ] ) ) ∗∗p
38 distance [ i ] [ j ]= distance temp temp ∗∗ ( 1 . / p )
39 n=len ( v e r t i c e s )
40

41 s t a r t =tm . clock ( )
42

43 MkEV=pulp . LpProblem (’Basic Fragmentation Model’ , pulp . LpMinimize )
44

45 # V a r i a b l e s
46 X={}
47 for i in v e r t i c e s :
48 for j in v e r t i c e s :
49 X [ i , j ]= pulp . LpVariable ("X %s %s"

%(i , j ) , lowBound=0 ,upBound=1 , cat =pulp . LpInteger )
50

51 F={}
52 for i in v e r t i c e s :
53 for u in v e r t i c e s :
54 for v in v e r t i c e s :
55 F [ i , u , v ]= pulp . LpVariable (’F %s %s %s’ %(i , u , v ) , lowBound=0)
56

57 A={}
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58 for i in v e r t i c e s :
59 A [ i ]= pulp . LpVariable (’A %s’ %( i ) , lowBound=0)
60

61 # O b j e c t i v e function
62 MkEV += sum( [ A [ i ] for i in v e r t i c e s ] )
63

64 # C o n s t r a i n t s
65 for i in v e r t i c e s :
66 for j in v e r t i c e s :
67 MkEV += A [ i ] >= distance [ i ] [ j ]∗X [ i , j ]
68

69 for i in v e r t i c e s :
70 for j in v e r t i c e s :
71 i f j>i :
72 MkEV += X [ i , j ]==X [ j , i ]
73

74 for i in v e r t i c e s :
75 for u in v e r t i c e s :
76 for v in v e r t i c e s :
77 MkEV += F [ i , u , v]<=X [ u , v ]
78

79 for i in v e r t i c e s : # e x t r a c o n s t r a i n t to make sure i t does not send flow
to i t s e l f , as the d i s t a n c e [ i ] [ i ]=0

80 MkEV += X [ i , i ]==0
81 for u in v e r t i c e s :
82 MkEV += F [ i , u , u]==0
83

84 for i in v e r t i c e s :
85 for v in v e r t i c e s :
86 i f ( v ! = i and v ! = v e r t i c e s [ 0 ] and i ! = v e r t i c e s [ 0 ] ) :
87 MkEV += sum( F [ i , u , v ] for u in v e r t i c e s ) == sum( F [ i , v ,w] for

w in v e r t i c e s )
88

89 for i in v e r t i c e s :
90 MkEV += sum( F [ i , v e r t i c e s [ 0 ] , v ] for v in v e r t i c e s ) − sum(

F [ i , u , v e r t i c e s [ 0 ] ] for u in v e r t i c e s )>= k
91

92 MkEV. writeLP ("MkEV OPT seed %s n %s k %s d %s p %s lp.lp" %(sd , n , k , d , p ) )
# Write the LP f i l e to s o l v e

93 problem = cplex . Cplex ("MkEV OPT seed %s n %s k %s d %s p %s lp.lp"
%(sd , n , k , d , p ) ) #Loads the LP

94 problem . parameters . t i m e l i m i t . s e t (36000) # S e t s computation time l i m i t in
seconds

95 problem . parameters . mip . l i m i t s . treememory . s e t (6000) # S e t s the memory l i m i t
in MB

96

97 t r y :
98 problem . s o l v e ( )
99 except CplexSolverError as exc : #Catch the e r r o r i f CPLEX cannot s o l v e

i t , ignore code a n a l y s i s
100 print ’Cplex encountered an error with seed %s, continue to next.’

%(sd )
101 continue
102

103 #Even i s the LP i s not s o l v e d to o p t i m a l i t y ( but f . e . with gap ) we want
to g e t the answer

104 i f problem . s o l u t i o n . g e t s t a t u s ( ) in
[ 1 , 6 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 8 , 1 9 , 2 1 , 2 2 , 2 3 , 2 4 , 2 5 , 1 0 1 , 1 0 2 , 1 0 4 , 1 0 5 , 1 0 7 , 1 1 1 , 1 2 0 ,
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1 2 1 , 1 2 2 , 1 2 4 , 1 2 5 , 1 2 9 , 1 3 0 , 1 3 1 ] :
105 s o l t i m e s . append (tm . clock ( )−s t a r t )
106 s o l v a l u e s . append ( problem . s o l u t i o n . g e t o b j e c t i v e v a l u e ( ) )
107 s o l s t a t u s . append ( problem . s o l u t i o n . g e t s t a t u s ( ) )
108 e lse :
109 s o l t i m e s . append (’NaN’ )
110 s o l v a l u e s . append (’NaN’ )
111 s o l s t a t u s . append ( problem . s o l u t i o n . g e t s t a t u s ( ) )
112 print ’Total Cost = %s’ %(problem . s o l u t i o n . g e t o b j e c t i v e v a l u e ( ) )
113 print ’Total solution time = %s’ %(tm . clock ( )−s t a r t )

A.3 Code for solving MkEEp with partitioning algorithm

1 ” ” ”
2 Uses the p a r t i t i o n i n g algorithm with s p e c i f i e d number o f c e l l s to g e t

s o l u t i o n s o f s p e c i f i e d number o f i n s t a n c e s o f MkEE f o r s p e c i f i e d
parameters

3 ” ” ”
4

5 import pulp
6 import cplex
7 import numpy as np
8 import time as tm
9

10 # Parameters
11 k=3
12 n=40
13 d=2
14 p=1
15 num seeds=30 #number o f i n s t a n c e s
16 s o l t i m e s = d i c t ( )
17 s o l v a l u e s = d i c t ( )
18

19 for sd in range ( num seeds ) :
20 s o l v a l u e s [ sd ]=0 # S t a r t s with 0 and adds the s o l u t i o n on each c e l l
21 np . random . seed ( sd )
22 v e r t i c e s =range ( 1 , n+1)
23 l o c a t i o n s = d i c t ( ) # Contains c o o r d i n a t e s o f a l l v e r t i c e s
24 for l in range ( d ) :
25 l o c a t i o n s [ l ]= d i c t ( )
26 for i in v e r t i c e s :
27 l o c a t i o n s [ l ] [ i ]=np . random . random ( )
28 distance = d i c t ( ) #Power−weighted d i s t a n c e between v e r t i c e s
29 for i in v e r t i c e s :
30 distance [ i ]= d i c t ( )
31 for j in v e r t i c e s :
32 i f i == j :
33 distance [ i ] [ j ]=0
34 e lse :
35 distance temp temp=0
36 for l in range ( d ) :
37 distance temp temp +=( abs ( l o c a t i o n s [ l ] [ i ]− l o c a t i o n s [ l ] [ j ] ) ) ∗∗p
38 distance [ i ] [ j ]= distance temp temp ∗∗ ( 1 . / p )
39 n=len ( v e r t i c e s )
40

41 l o c a t i o n s o r t = d i c t ( ) # l o c a t i o n s o r t [ l ] : a l l v e r t i c e s s o r t e d on t h e i r
( l +1)−th coordinate

42 for l in range ( d ) :
43 l o c a t i o n s o r t [ l ]= sorted ( l o c a t i o n s [ l ] , key= l o c a t i o n s [ l ] . g e t i t e m )

48



44

45 num subsets= d i c t ( ) # num subsets [ l ] [ i ] : Number o f [ s u b s e t s a f t e r
p a r t i t i o n i n g over l +1 dimensions ] we want out o f [ s u b s e t i from a f t e r
p a r t i t i o n i n g over l dimensions ] ,

46 v e r t i c e s p e r s u b s e t = d i c t ( ) # v e r t i c e s p e r s u b s e t [ l ] : minimum number o f
v e r t i c e s per s u b s e t a f t e r part ioning over l +1 dimensions

47 t o t s u b s e t s = d i c t ( ) # t o t s u b s e t s [ l ] : t o t a l number o f s u b s e t s a f t e r
p a r t i t i o n i n g over l dimensions

48 num subsets [ 0 ] = d i c t ( )
49 num subsets [ 0 ] [ 0 ] = 2 #Number o f s u b s e t s we want a f t e r the f i r s t

p a r t i t i o n i n g
50 v e r t i c e s p e r s u b s e t [ 0 ] = d i c t ( )
51 v e r t i c e s p e r s u b s e t [ 0 ] = i n t ( n/ num subsets [ 0 ] [ 0 ] )
52 t o t s u b s e t s [ 0 ] = 1
53

54 subsets = d i c t ( ) # s u b s e t s [ l ] [ i ] : v e r t i c e s in s u b s e t i a f t e r p a r t i t i o n i n g
over l dimensions

55 s u b s e t s s o r t = d i c t ( ) # s u b s e t s s o r t [ l ] [ i ] : v e r t i c e s in s u b s e t i a f t e r
p a r t i t i o n i n g over l dimensions s o r t e d on t h e i r ( l +1)−th coordinate

56 subsets [ 0 ] = d i c t ( )
57 subsets [ 0 ] [ 0 ] = v e r t i c e s
58 s u b s e t s s o r t [ 0 ] = d i c t ( )
59 s u b s e t s s o r t [ 0 ] [ 0 ] = l o c a t i o n s o r t [ 0 ]
60

61 for l in range ( 1 , d+1) :
62 subsets [ l ]= d i c t ( )
63 num subsets [ l ]= d i c t ( )
64 s u b s e t s s o r t [ l ]= d i c t ( )
65 v e r t i c e s p e r s u b s e t [ l ]=25 #Can be adjusted to g e t the req uired

minimal number o f v e r t i c e s in each s u b s e t
66 for i in range ( t o t s u b s e t s [ l −1]) :
67 num subsets done=0 #Number o f s u b s e t s we have c r e a t e d t h i s

i t e r a t i o n
68 for j in range ( i n t ( num subsets [ l −1][ i ] ) ) :
69 num subsets done=sum( i n t ( num subsets [ l −1][ r ] ) for r in

range ( i ) )
70 i f ( j +1)== i n t ( num subsets [ l −1][ i ] ) :
71 subsets [ l ] [ j +num subsets done ]=

s u b s e t s s o r t [ l −1][ i ] [ j ∗ v e r t i c e s p e r s u b s e t [ l −1 ] : ]
72 e lse :
73 subsets [ l ] [ j +num subsets done ]=

s u b s e t s s o r t [ l −1][ i ] [ j ∗ v e r t i c e s p e r s u b s e t [ l −1]:
( j +1)∗ v e r t i c e s p e r s u b s e t [ l −1]]

74 i f l<d :
75 s u b s e t s s o r t [ l ] [ j +num subsets done ]=

sorted ( s e t ( l o c a t i o n s o r t [ l ] ) &s e t ( subsets [ l ] [ j +num subsets done ] ) ,
key= l o c a t i o n s o r t [ l ] . index )

76 num subsets [ l ] [ j +num subsets done ]=2 #Can be adjusted to
g e t the r equired number o f s u b s e t s from one s u b s e t in
the previous i t e r a t i o n

77 t o t s u b s e t s [ l ]= i n t (sum( num subsets [ l −1]. i t e r v a l u e s ( ) ) )
78

79 # Solve the MILP f o r each c e l l to g e t a k−edge−connected graph
80 s t a r t =tm . clock ( )
81 for ss in subsets [ d ] : #now v e r t i c e s = s u b s e t s [ d ] [ s s ]
82

83 MkEE=pulp . LpProblem (’Basic Fragmentation Model’ , pulp . LpMinimize )
84
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85 # V a r i a b l e s
86 X={}
87 for i in subsets [ d ] [ ss ] :
88 for j in subsets [ d ] [ ss ] :
89 X [ i , j ]= pulp . LpVariable ("X %s %s"

%(i , j ) , lowBound=0 ,upBound=1 , cat =pulp . LpInteger )
90

91 F={}
92 for i in subsets [ d ] [ ss ] :
93 for u in subsets [ d ] [ ss ] :
94 for v in subsets [ d ] [ ss ] :
95 F [ i , u , v ]= pulp . LpVariable (’F %s %s %s’ %(i , u , v ) , lowBound=0)
96

97 # O b j e c t i v e function
98 MkEE += sum( [sum ( [ distance [ i ] [ j ]∗X [ i , j ] for j in subsets [ d ] [ ss ] i f

j>i ] ) for i in subsets [ d ] [ ss ] ] )
99

100 # C o n s t r a i n t s
101 for i in subsets [ d ] [ ss ] :
102 for j in subsets [ d ] [ ss ] :
103 i f j>i :
104 MkEE += X [ i , j ]==X [ j , i ]
105

106 for i in subsets [ d ] [ ss ] :
107 for u in subsets [ d ] [ ss ] :
108 for v in subsets [ d ] [ ss ] :
109 MkEE += F [ i , u , v]<=X [ u , v ]
110

111 for i in subsets [ d ] [ ss ] : # e x t r a c o n s t r a i n t to make sure i t does not
send flow to i t s e l f , as the d i s t a n c e [ i ] [ i ]=0

112 MkEE += X [ i , i ]==0
113 for u in subsets [ d ] [ ss ] :
114 MkEE += F [ i , u , u]==0
115

116 for i in subsets [ d ] [ ss ] :
117 for v in subsets [ d ] [ ss ] :
118 i f ( v ! = i and v ! = subsets [ d ] [ ss ] [ 0 ] and

i ! = subsets [ d ] [ ss ] [ 0 ] ) :
119 MkEE += sum( F [ i , u , v ] for u in subsets [ d ] [ ss ] ) == sum(

F [ i , v ,w] for w in subsets [ d ] [ ss ] )
120

121 for i in subsets [ d ] [ ss ] :
122 MkEE += sum( F [ i , subsets [ d ] [ ss ] [ 0 ] , v ] for v in subsets [ d ] [ ss ] ) −

sum( F [ i , u , subsets [ d ] [ ss ] [ 0 ] ] for u in subsets [ d ] [ ss ] )>= k
123

124 MkEE. s o l v e ( pulp . CPLEX(msg=1) )
125 s o l v a l u e s [ sd ]+= pulp . value (MkEE. o b j e c t i v e )
126

127 #Merging s o l u t i o n s
128 merge set = [ ]
129 i f len ( subsets [ d ] ) <(k +1) : #Choose i f we use s n a k e l i k e s t r u c t u r e or MILP
130 #We add s t r i n g comparable to a one dimensional s n ip p e t o f the

hyperdimensional r e c t a n g l e , as t h i s s ni p p et has s u c c e s i v e numbers
131 # F . e . in [ 1 2 3 ] we can add a s ni p p et l i k e [ 4 5 6 ] at once , though we
132 # [ 4 5 6 ] need to take i n t o account i f we should at i t as
133 # [ 7 8 9 ] r e v e r s e ( [ 6 5 4 ] ) or as [ 4 5 6 ]
134 c o r r e c t o r d e r s e t = [ ] #Outputs the s n a k e l i k e order to l a c e them

t o g e t h e r
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135 s t a r t o f s t r i n g =0 #Makes sure we are at the r i g h t number
136 r e v e r s e s t r i n g =0 #Do we need to add a r e v e r s e s t r i n g or a normal one
137 o r d e r s t r i n g = d i c t ( )
138 for l in range ( d ) :
139 o r d e r s t r i n g [ l ]=1
140 for l in range ( d−1 ,0 ,−1) : # S t a r t with lo w e st dimension and work

upwards
141 while len ( c o r r e c t o r d e r s e t )<np . prod ( [ i n t ( num subsets [ t ] [ 0 ] ) for

t in range ( d−1, l −2,−1) ] ) : # while t h i s dimension i s not
f i n i s h e d y e t

142 i f r e v e r s e s t r i n g ==0:
143 temp string =range ( s t a r t o f s t r i n g , ( s t a r t o f s t r i n g +

i n t ( num subsets [ d−1 ] [ 0 ] ) ) ) #normal s t r i n g
144 s t a r t o f s t r i n g +=( i n t ( num subsets [ d−1 ] [ 0 ] ) ∗(1+

np . prod ( [ o r d e r s t r i n g [ z ] for z in range ( d ) ] ) )−1)
145 r e v e r s e s t r i n g =1
146 e lse :
147 temp string =range ( s t a r t o f s t r i n g , ( s t a r t o f s t r i n g−

i n t ( num subsets [ d−1 ] [ 0 ] ) ) ,−1) # r e v e r s e s t r i n g
148 s t a r t o f s t r i n g −=( i n t ( num subsets [ d−1 ] [ 0 ] ) ∗(1−

np . prod ( [ o r d e r s t r i n g [ z ] for z in range ( d ) ] ) )−1)
149 r e v e r s e s t r i n g =0
150 c o r r e c t o r d e r s e t += temp string #Add s t r i n g o f length l ( d−1)

( as we work backwards here )
151

152 for t in range ( l −1,d−1) : # Re ve rs e for−loop , as we want to
f in d the l a r g e s t dimension that f i t s , to compensate f o r
switching from one x dimensional s l a b to the next

153 i f len ( c o r r e c t o r d e r s e t ) %
np . prod ( [ i n t ( num subsets [ z ] [ 0 ] ) for z in
range ( t , d ) ] ) ==0: #Check i f len ( c o r r e c t o r d e r s e t ) %
l ( d−1) ∗ . . . ∗ l x ==0

154 s t a r t o f s t r i n g −=i n t ( num subsets [ d−1 ] [ 0 ] ) ∗
np . prod ( [ o r d e r s t r i n g [ z ] for z in range ( d ) ] )

155 s t a r t o f s t r i n g +=np . prod ( [ i n t ( num subsets [ z ] [ 0 ] ) for
z in range ( t , d ) ] ) ∗np . prod ( [ o r d e r s t r i n g [ z ] for z
in range ( t ) ] ) #Add proper amount to s t a r t o f
s t r i n g , as f o r next one we need to add
l ( d−1) ∗ . . . ∗ l x i n s t e a d o f l ( d−1) :

156 i f o r d e r s t r i n g [ t ] = = 1 :
157 o r d e r s t r i n g [ t ]=−1
158 e lse :
159 o r d e r s t r i n g [ t ]=1
160 break
161

162 s et b el o ng = d i c t ( ) # Assign each v e r t e x to i t s c e l l
163 for ss in subsets [ d ] :
164 s et b el o ng [ ss ]= d i c t ( )
165 for i in subsets [ d ] [ ss ] :
166 s et b el o ng [ ss ] [ i ]=1
167

168 for ss in range ( len ( subsets [ d ] )−1) :
169 merge set = [ ]
170 merge set+= subsets [ d ] [ c o r r e c t o r d e r s e t [ ss ] ] [ : ]
171 merge set+= subsets [ d ] [ c o r r e c t o r d e r s e t [ ss + 1 ] ] [ : ]
172 # Laces two c e l l s t o g e t h e r
173 Match=pulp . LpProblem (’Basic Fragmentation Model’ , pulp . LpMinimize )
174
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175 # V a r i a b l e s
176 X={}
177 for i in merge set :
178 for j in merge set :
179 X [ i , j ]= pulp . LpVariable ("X %s %s"

%(i , j ) , lowBound=0 ,upBound=1 , cat =pulp . LpInteger )
180

181 # O b j e c t i v e function
182 Match += sum( [sum ( [ distance [ i ] [ j ]∗X [ i , j ] for j in merge set i f

j>i ] ) for i in merge set ] )
183

184 # C o n s t r a i n t s
185 for i in merge set : #Match needs to be symmetric
186 for j in merge set :
187 i f j>i :
188 Match += X [ i , j ]==X [ j , i ]
189

190 for s t in [ c o r r e c t o r d e r s e t [ ss ] , c o r r e c t o r d e r s e t [ ss + 1 ] ] : # There
need to be k matches from one c e l l to the other

191 Match += sum(sum( s e t b el o ng [ s t ] . get ( i , 0 ) ∗X [ i , j ] for j in
merge set i f s et b el o ng [ s t ] . get ( j , 0 ) <0.1) for i in
merge set ) >= k

192

193 Match . s o l v e ( pulp . CPLEX(msg=1) )
194 s o l v a l u e s [ sd ]+= pulp . value ( Match . o b j e c t i v e )
195 s o l t i m e s [ sd ]=tm . clock ( )−s t a r t
196

197 e lse :
198 for ss in subsets [ d ] :
199 merge set . append ( subsets [ d ] [ ss ] [ 0 ] ) #Use 0 th v e r t e x from each

s u b s e t to c r e a t e k−edge−connected graph on
200

201 MkEE=pulp . LpProblem (’Basic Fragmentation Model’ , pulp . LpMinimize )
202

203 # V a r i a b l e s
204 X={}
205 for i in merge set :
206 for j in merge set :
207 X [ i , j ]= pulp . LpVariable ("X %s %s"

%(i , j ) , lowBound=0 ,upBound=1 , cat =pulp . LpInteger )
208

209 F={}
210 for i in merge set :
211 for u in merge set :
212 for v in merge set :
213 F [ i , u , v ]= pulp . LpVariable (’F %s %s %s’ %(i , u , v ) , lowBound=0)
214

215 # O b j e c t i v e function
216 MkEE += sum( [sum ( [ distance [ i ] [ j ]∗X [ i , j ] for j in merge set i f j>i ] )

for i in merge set ] )
217

218 # C o n s t r a i n t s
219 for i in merge set :
220 for j in merge set :
221 i f j>i :
222 MkEE += X [ i , j ]==X [ j , i ]
223

224 for i in merge set :
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225 for u in merge set :
226 for v in merge set :
227 MkEE += F [ i , u , v]<=X [ u , v ]
228

229 for i in merge set : # e x t r a c o n s t r a i n t to make sure i t does not send
flow to i t s e l f , as the d i s t a n c e [ i ] [ i ]=0

230 MkEE += X [ i , i ]==0
231 for u in merge set :
232 MkEE += F [ i , u , u]==0
233

234 for i in merge set :
235 for v in merge set :
236 i f ( v ! = i and v ! = merge set [ 0 ] and i ! = merge set [ 0 ] ) :
237 MkEE += sum( F [ i , u , v ] for u in merge set ) == sum(

F [ i , v ,w] for w in merge set )
238

239 for i in merge set :
240 MkEE += sum( F [ i , merge set [ 0 ] , v ] for v in merge set ) − sum(

F [ i , u , merge set [ 0 ] ] for u in merge set )>= k
241

242 MkEE. s o l v e ( pulp . CPLEX(msg=1) )
243 s o l v a l u e s [ sd ]+= pulp . value (MkEE. o b j e c t i v e )
244 s o l t i m e s [ sd ]=tm . clock ( )−s t a r t
245 print ’Total Cost = %s’ %( s o l v a l u e s [ sd ] )
246 print ’Total solution time = %s’ %( s o l t i m e s [ sd ] )

A.4 Code for solving MkEPp with partitioning algorithm

1 ” ” ”
2 Uses the p a r t i t i o n i n g algorithm with s p e c i f i e d number o f c e l l s to g e t

s o l u t i o n s o f s p e c i f i e d number o f i n s t a n c e s o f MkEE f o r s p e c i f i e d
parameters

3 ” ” ”
4

5 import pulp
6 import cplex
7 import numpy as np
8 import time as tm
9 import operator

10

11 # Parameters
12 k=3
13 n=40
14 d=2
15 p=1
16 num seeds=30 #number o f i n s t a n c e s
17 s o l t i m e s = d i c t ( )
18 s o l v a l u e s = d i c t ( )
19

20 for sd in range ( num seeds ) :
21 s o l v a l u e s [ sd ]=0 # S t a r t s with 0 and adds the s o l u t i o n on each c e l l
22 np . random . seed ( sd )
23 v e r t i c e s =range ( 1 , n+1)
24 l o c a t i o n s = d i c t ( ) # Contains c o o r d i n a t e s o f a l l v e r t i c e s
25 for l in range ( d ) :
26 l o c a t i o n s [ l ]= d i c t ( )
27 for i in v e r t i c e s :
28 l o c a t i o n s [ l ] [ i ]=np . random . random ( )
29 distance = d i c t ( ) #Power−weighted d i s t a n c e between v e r t i c e s
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30 for i in v e r t i c e s :
31 distance [ i ]= d i c t ( )
32 for j in v e r t i c e s :
33 i f i == j :
34 distance [ i ] [ j ]=0
35 e lse :
36 distance temp temp=0
37 for l in range ( d ) :
38 distance temp temp +=( abs ( l o c a t i o n s [ l ] [ i ]− l o c a t i o n s [ l ] [ j ] ) ) ∗∗p
39 distance [ i ] [ j ]= distance temp temp ∗∗ ( 1 . / p )
40 n=len ( v e r t i c e s )
41

42 l o c a t i o n s o r t = d i c t ( ) # l o c a t i o n s o r t [ l ] : a l l v e r t i c e s s o r t e d on t h e i r
( l +1)−th coordinate

43 for l in range ( d ) :
44 l o c a t i o n s o r t [ l ]= sorted ( l o c a t i o n s [ l ] , key= l o c a t i o n s [ l ] . g e t i t e m )
45

46 num subsets= d i c t ( ) # num subsets [ l ] [ i ] : Number o f [ s u b s e t s a f t e r
p a r t i t i o n i n g over l +1 dimensions ] we want out o f [ s u b s e t i from a f t e r
p a r t i t i o n i n g over l dimensions ] ,

47 v e r t i c e s p e r s u b s e t = d i c t ( ) # v e r t i c e s p e r s u b s e t [ l ] : minimum number o f
v e r t i c e s per s u b s e t a f t e r part ioning over l +1 dimensions

48 t o t s u b s e t s = d i c t ( ) # t o t s u b s e t s [ l ] : t o t a l number o f s u b s e t s a f t e r
p a r t i t i o n i n g over l dimensions

49 num subsets [ 0 ] = d i c t ( )
50 num subsets [ 0 ] [ 0 ] = 2 #Number o f s u b s e t s we want a f t e r the f i r s t

p a r t i t i o n i n g
51 v e r t i c e s p e r s u b s e t [ 0 ] = d i c t ( )
52 v e r t i c e s p e r s u b s e t [ 0 ] = i n t ( n/ num subsets [ 0 ] [ 0 ] )
53 t o t s u b s e t s [ 0 ] = 1
54

55 subsets = d i c t ( ) # s u b s e t s [ l ] [ i ] : v e r t i c e s in s u b s e t i a f t e r p a r t i t i o n i n g
over l dimensions

56 s u b s e t s s o r t = d i c t ( ) # s u b s e t s s o r t [ l ] [ i ] : v e r t i c e s in s u b s e t i a f t e r
p a r t i t i o n i n g over l dimensions s o r t e d on t h e i r ( l +1)−th coordinate

57 subsets [ 0 ] = d i c t ( )
58 subsets [ 0 ] [ 0 ] = v e r t i c e s
59 s u b s e t s s o r t [ 0 ] = d i c t ( )
60 s u b s e t s s o r t [ 0 ] [ 0 ] = l o c a t i o n s o r t [ 0 ]
61

62 for l in range ( 1 , d+1) :
63 subsets [ l ]= d i c t ( )
64 num subsets [ l ]= d i c t ( )
65 s u b s e t s s o r t [ l ]= d i c t ( )
66 v e r t i c e s p e r s u b s e t [ l ]=25 #Can be adjusted to g e t the req uired

minimal number o f v e r t i c e s in each s u b s e t
67 for i in range ( t o t s u b s e t s [ l −1]) :
68 num subsets done=0 #Number o f s u b s e t s we have c r e a t e d t h i s

i t e r a t i o n
69 for j in range ( i n t ( num subsets [ l −1][ i ] ) ) :
70 num subsets done=sum( i n t ( num subsets [ l −1][ r ] ) for r in

range ( i ) )
71 i f ( j +1)== i n t ( num subsets [ l −1][ i ] ) :
72 subsets [ l ] [ j +num subsets done ]=

s u b s e t s s o r t [ l −1][ i ] [ j ∗ v e r t i c e s p e r s u b s e t [ l −1 ] : ]
73 e lse :
74 subsets [ l ] [ j +num subsets done ]=

s u b s e t s s o r t [ l −1][ i ] [ j ∗ v e r t i c e s p e r s u b s e t [ l −1 ] : ( j +1)∗ v e r t i c e s p e r s u b s e t [ l −1]]
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75 i f l<d :
76 s u b s e t s s o r t [ l ] [ j +num subsets done ]= sorted ( s e t ( l o c a t i o n s o r t [ l ] ) &s e t ( subsets [ l ] [ j +num subsets done ] ) ,

key= l o c a t i o n s o r t [ l ] . index )
77 num subsets [ l ] [ j +num subsets done ]=2 #Can be adjusted to

g e t the r equired number o f s u b s e t s from one s u b s e t in
the previous i t e r a t i o n

78 t o t s u b s e t s [ l ]= i n t (sum( num subsets [ l −1]. i t e r v a l u e s ( ) ) )
79

80 # Solve the MILP f o r each c e l l to g e t a k−edge−connected power assignment
graph

81 s t a r t =tm . clock ( )
82 pa= d i c t ( ) #Remember how much power has been assigned to each v e r t e x
83 for ss in subsets [ d ] :
84

85 MkEV=pulp . LpProblem (’Basic Fragmentation Model’ , pulp . LpMinimize )
86

87 # V a r i a b l e s
88 X={}
89 for i in subsets [ d ] [ ss ] :
90 for j in subsets [ d ] [ ss ] :
91 X [ i , j ]= pulp . LpVariable ("X %s %s"

%(i , j ) , lowBound=0 ,upBound=1 , cat =pulp . LpInteger )
92

93 F={}
94 for i in subsets [ d ] [ ss ] :
95 for u in subsets [ d ] [ ss ] :
96 for v in subsets [ d ] [ ss ] :
97 F [ i , u , v ]= pulp . LpVariable (’F %s %s %s’ %(i , u , v ) , lowBound=0)
98

99 A={}
100 for i in subsets [ d ] [ ss ] :
101 A [ i ]= pulp . LpVariable (’A %s’ %( i ) , lowBound=0)
102

103 # O b j e c t i v e function
104 MkEV += sum( [ A [ i ] for i in subsets [ d ] [ ss ] ] )
105

106 # C o n s t r a i n t s
107 for i in subsets [ d ] [ ss ] :
108 for j in subsets [ d ] [ ss ] :
109 MkEV += A [ i ] >= distance [ i ] [ j ]∗X [ i , j ]
110

111 for i in subsets [ d ] [ ss ] :
112 for j in subsets [ d ] [ ss ] :
113 i f j>i :
114 MkEV += X [ i , j ]==X [ j , i ]
115

116 for i in subsets [ d ] [ ss ] :
117 for u in subsets [ d ] [ ss ] :
118 for v in subsets [ d ] [ ss ] :
119 MkEV += F [ i , u , v]<=X [ u , v ]
120

121 for i in subsets [ d ] [ ss ] : # e x t r a c o n s t r a i n t to make sure i t does not
send flow to i t s e l f , as the d i s t a n c e [ i ] [ i ]=0

122 MkEV += X [ i , i ]==0
123 for u in subsets [ d ] [ ss ] :
124 MkEV += F [ i , u , u]==0
125

126 for i in subsets [ d ] [ ss ] :
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127 for v in subsets [ d ] [ ss ] :
128 i f ( v ! = i and v ! = subsets [ d ] [ ss ] [ 0 ] and

i ! = subsets [ d ] [ ss ] [ 0 ] ) :
129 MkEV += sum( F [ i , u , v ] for u in subsets [ d ] [ ss ] ) == sum(

F [ i , v ,w] for w in subsets [ d ] [ ss ] )
130

131 for i in subsets [ d ] [ ss ] :
132 MkEV += sum( F [ i , subsets [ d ] [ ss ] [ 0 ] , v ] for v in subsets [ d ] [ ss ] ) −

sum( F [ i , u , subsets [ d ] [ ss ] [ 0 ] ] for u in subsets [ d ] [ ss ] )>= k
133

134 MkEV. s o l v e ( pulp . CPLEX(msg=1) )
135 for i in subsets [ d ] [ ss ] :
136 pa [ i ]= pulp . value (A [ i ] )
137 s o l v a l u e s [ sd ]+= pulp . value (MkEV. o b j e c t i v e )
138

139 #Merging s o l u t i o n s
140 merge set = [ ]
141 i f len ( subsets [ d ] ) <(k +1) : #Choose i f we use s n a k e l i k e s t r u c t u r e or MILP
142 #We add s t r i n g comparable to a one dimensional s n ip p e t o f the

hyperdimensional r e c t a n g l e , as t h i s s ni p p et has s u c c e s i v e numbers
143 # F . e . in [ 1 2 3 ] we can add a s ni p p et l i k e [ 4 5 6 ] at once , though we
144 # [ 4 5 6 ] need to take i n t o account i f we should at i t as
145 # [ 7 8 9 ] r e v e r s e ( [ 6 5 4 ] ) or as [ 4 5 6 ]
146 c o r r e c t o r d e r s e t = [ ] #Outputs the s n a k e l i k e order to l a c e them

t o g e t h e r
147 s t a r t o f s t r i n g =0 #Makes sure we are at the r i g h t number
148 r e v e r s e s t r i n g =0 #Do we need to add a r e v e r s e s t r i n g or a normal one
149 o r d e r s t r i n g = d i c t ( )
150 for l in range ( d ) :
151 o r d e r s t r i n g [ l ]=1
152 for l in range ( d−1 ,0 ,−1) : # S t a r t with lo w e st dimension and work

upwards
153 while len ( c o r r e c t o r d e r s e t )<np . prod ( [ i n t ( num subsets [ t ] [ 0 ] ) for

t in range ( d−1, l −2,−1) ] ) : # while t h i s dimension i s not
f i n i s h e d y e t

154 i f r e v e r s e s t r i n g ==0:
155 temp string =range ( s t a r t o f s t r i n g , ( s t a r t o f s t r i n g +

i n t ( num subsets [ d−1 ] [ 0 ] ) ) ) #normal s t r i n g
156 s t a r t o f s t r i n g +=( i n t ( num subsets [ d−1 ] [ 0 ] ) ∗(1+

np . prod ( [ o r d e r s t r i n g [ z ] for z in range ( d ) ] ) )−1)
157 r e v e r s e s t r i n g =1
158 e lse :
159 temp string =range ( s t a r t o f s t r i n g , ( s t a r t o f s t r i n g−

i n t ( num subsets [ d−1 ] [ 0 ] ) ) ,−1) # r e v e r s e s t r i n g
160 s t a r t o f s t r i n g −=( i n t ( num subsets [ d−1 ] [ 0 ] ) ∗(1−

np . prod ( [ o r d e r s t r i n g [ z ] for z in range ( d ) ] ) )−1)
161 r e v e r s e s t r i n g =0
162 c o r r e c t o r d e r s e t += temp string #Add s t r i n g o f length l ( d−1)

( as we work backwards here )
163

164 for t in range ( l −1,d−1) : # Re ve rs e for−loop , as we want to
f in d the l a r g e s t dimension that f i t s , to compensate f o r
switching from one x dimensional s l a b to the next

165 i f len ( c o r r e c t o r d e r s e t ) %
np . prod ( [ i n t ( num subsets [ z ] [ 0 ] ) for z in
range ( t , d ) ] ) ==0: #Check i f len ( c o r r e c t o r d e r s e t ) %
l ( d−1) ∗ . . . ∗ l x ==0
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166 s t a r t o f s t r i n g −=i n t ( num subsets [ d−1 ] [ 0 ] ) ∗
np . prod ( [ o r d e r s t r i n g [ z ] for z in range ( d ) ] )

167 s t a r t o f s t r i n g +=np . prod ( [ i n t ( num subsets [ z ] [ 0 ] ) for
z in range ( t , d ) ] ) ∗np . prod ( [ o r d e r s t r i n g [ z ] for z
in range ( t ) ] ) #Add proper amount to s t a r t o f
s t r i n g , as f o r next one we need to add
l ( d−1) ∗ . . . ∗ l x i n s t e a d o f l ( d−1) :

168 i f o r d e r s t r i n g [ t ] = = 1 :
169 o r d e r s t r i n g [ t ]=−1
170 e lse :
171 o r d e r s t r i n g [ t ]=1
172 break
173

174 s et b el o ng = d i c t ( ) # Assign each v e r t e x to i t s c e l l
175 for ss in subsets [ d ] :
176 s et b el o ng [ ss ]= d i c t ( )
177 for i in subsets [ d ] [ ss ] :
178 s et b el o ng [ ss ] [ i ]=1
179

180 for ss in range ( len ( subsets [ d ] )−1) :
181 merge set = [ ]
182 merge set+= subsets [ d ] [ c o r r e c t o r d e r s e t [ ss ] ] [ : ]
183 merge set+= subsets [ d ] [ c o r r e c t o r d e r s e t [ ss + 1 ] ] [ : ]
184 # Laces two c e l l s t o g e t h e r
185 Match=pulp . LpProblem (’Basic Fragmentation Model’ , pulp . LpMinimize )
186

187 # V a r i a b l e s
188 X={}
189 for i in merge set :
190 for j in merge set :
191 X [ i , j ]= pulp . LpVariable ("X %s %s"

%(i , j ) , lowBound=0 ,upBound=1 , cat =pulp . LpInteger )
192

193 A={} #Takes i n t o account the A [ i ] already p r e s e n t b e f o r e matching
194 for i in merge set :
195 A [ i ]= pulp . LpVariable (’A %s’ %( i ) , lowBound=pa [ i ] )
196

197 # O b j e c t i v e function
198 Match += sum( [ ( A [ i ]−pa [ i ] ) for i in merge set ] )
199

200 # C o n s t r a i n t s
201 for i in merge set : #We can only use an edge i f the power i s

l a r g e enough
202 for j in merge set :
203 MkEV += A [ i ] >= distance [ i ] [ j ]∗X [ i , j ]
204

205 for i in merge set : #Match needs to be symmetric
206 for j in merge set :
207 i f j>i :
208 Match += X [ i , j ]==X [ j , i ]
209

210 for s t in [ c o r r e c t o r d e r s e t [ ss ] , c o r r e c t o r d e r s e t [ ss + 1 ] ] : # There
need to be k matches from one c e l l to the other

211 Match += sum(sum( s e t b el o ng [ s t ] . get ( i , 0 ) ∗X [ i , j ] for j in
merge set i f s et b el o ng [ s t ] . get ( j , 0 ) <0.1) for i in
merge set ) >= k

212

213 Match . s o l v e ( pulp . CPLEX(msg=1) )
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214 s o l v a l u e s [ sd ]+= pulp . value ( Match . o b j e c t i v e )
215 s o l t i m e s [ sd ]=tm . clock ( )−s t a r t
216

217 e lse :
218 for ss in subsets [ d ] :
219 sub pa= d i c t ( ) # connect each v e r t e x with the c o r r e c t power

assignment
220 for i in subsets [ d ] [ ss ] :
221 sub pa [ i ]= pa [ i ]
222 merge set . append (max( sub pa . i t e r i t e m s ( ) ,

key= operator . i t e m g e t t e r ( 1 ) ) [ 0 ] ) # Take v e r t e x from each c e l l
with h i g h e s t A [ i ]

223

224 MkEV=pulp . LpProblem (’Basic Fragmentation Model’ , pulp . LpMinimize )
225

226 # V a r i a b l e s
227 X={}
228 for i in merge set :
229 for j in merge set :
230 X [ i , j ]= pulp . LpVariable ("X %s %s"

%(i , j ) , lowBound=0 ,upBound=1 , cat =pulp . LpInteger )
231

232 F={}
233 for i in merge set :
234 for u in merge set :
235 for v in merge set :
236 F [ i , u , v ]= pulp . LpVariable (’F %s %s %s’ %(i , u , v ) , lowBound=0)
237

238 A={} #Takes i n t o account the A [ i ] already p r e s e n t b e f o r e merging
239 for i in merge set :
240 A [ i ]= pulp . LpVariable (’A %s’ %( i ) , lowBound=pa [ i ] )
241

242 # O b j e c t i v e function
243 MkEV += sum( [ ( A [ i ]−pa [ i ] ) for i in merge set ] )
244

245 # C o n s t r a i n t s
246 for i in merge set :
247 for j in merge set :
248 MkEV += A [ i ] >= distance [ i ] [ j ]∗X [ i , j ]
249

250 for i in merge set :
251 for j in merge set :
252 i f j>i :
253 MkEV += X [ i , j ]==X [ j , i ]
254

255 for i in merge set :
256 for u in merge set :
257 for v in merge set :
258 MkEV += F [ i , u , v]<=X [ u , v ]
259

260 for i in merge set : # e x t r a c o n s t r a i n t to make sure i t does not send
flow to i t s e l f , as the d i s t a n c e [ i ] [ i ]=0

261 MkEV += X [ i , i ]==0
262 for u in merge set :
263 MkEV += F [ i , u , u]==0
264

265 for i in merge set :
266 for v in merge set :
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267 i f ( v ! = i and v ! = merge set [ 0 ] and i ! = merge set [ 0 ] ) :
268 MkEV += sum( F [ i , u , v ] for u in merge set ) == sum(

F [ i , v ,w] for w in merge set )
269

270 for i in merge set :
271 MkEV += sum( F [ i , merge set [ 0 ] , v ] for v in merge set ) − sum(

F [ i , u , merge set [ 0 ] ] for u in merge set )>= k
272

273 MkEV. s o l v e ( pulp . CPLEX(msg=1) )
274 s o l v a l u e s [ sd ]+= pulp . value (MkEV. o b j e c t i v e )
275 s o l t i m e s [ sd ]=tm . clock ( )−s t a r t
276 print ’Total Cost = %s’ %( s o l v a l u e s [ sd ] )
277 print ’Total solution time = %s’ %( s o l t i m e s [ sd ] )
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