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Executive summary

Introduction

The payment industry has closely followed and benefited from the new technologies and
e-commerce trends. Easy, fast and flexible payment methods have become a necessity.
Shoppers expect to be able make payments on web, in-store, and on mobiles, no matter
the currency, merchant or type of bank card. Merchants want to accept payments from
anywhere in the world. However, payments are not always successful. In the payment
flow there are many processing institutions, such as payment service providers (PSP),
acquiring banks, credit card schemes, and card issuing banks. At a global scale, the
interaction between all of these different systems is not perfect, resulting in refused
payments.

What it is usually seen at Adyen, a technology company that processes payments, is
that, on any given day, 10-20% of online card payments may get refused. Approximately
half of refusals are for legitimate reasons because of insufficient funds, possible frauds,
or expired cards, while the other half are caused by technical or inexplicable flaws in
the payment flow. Adyen has tried to learn useful patterns in the failing payments and
intervene where possible. However, this proved to be a very difficult task, given the
diversity of payments and the dynamic character of the payment flow.

Research Goal and Research Approach

The main research goal is to improve the authorization rate of genuine pay-
ments by designing an optimization algorithm for routing transactions in the
payment flow, algorithm that supports unknown and unfixed authorization
rates, such that payments are more efficiently processed.

The research approach follows the methodology explained in [1]:

Figure: Engineering cycle [1]
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In the problem investigation, we identify Adyen and its clients (the merchants) as the
main stakeholders. The architecture framework is the payment flow of the transaction
from the shopper to the merchant:

Figure: Architecture framework

In some markets (e.g.: in Spain, France or US), Adyen (as a gateway) can connect to
two or more acquirers. It has been observed that the authorization rate of the trans-
actions is influenced by the selection of one acquirer or the other to send transactions
to. Choosing acquirers from the available ones and redirecting traffic to them is called
routing of payments. However, the better acquirer, in terms of the highest authoriza-
tion rate, is not evident and it depends on many factors. The most important factors
are the country of the merchant and BIN (Bank Identification Number; usually, the first
6 digits of a bank card).

Current solution and proposed treatments

In the treatment design of the engineering cycle, we start by analyzing the requirements.
The most important requirements are the overall authorization rate of transactions in-
crease and the usability of the solution on the current platform.

Adyen has built the core infrastructure to enable routing of payments, but the answer
to the question on how to route payments is still unknown. Currently, the routing
rules are decided by the data analysts. They look at the past transactions, by country,
merchant, BIN and try to find large differences in authorization rates (usually, larger
than 1%) between acquirers. This method proved to be cumbersome and inefficient in
terms of authorization rate improvements. After each setup, subsequent analyses were
run. In many cases, they showed that the setup was not correct because the acquirer, that
had been selected to route the most payments to, did not have the highest authorization
rate as expected.

In this thesis, we analyze several possible treatments for payments routing and test
them against payment data. These algorithms are part of the randomized experimental
design (Play the Winner Rule) and reinforcement learning, the so-called multi-armed
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bandits (4 different versions or strategies: ε-Greedy and Pursuit strategy, Gradient ban-
dit, Exp31, and Thompson sampling).

In the design of these algorithms, we have two phases: exploration (find the better
acquirer) and exploitation (send traffic to the better acquirer). Each algorithm has
different approaches on exploration and exploitation. Play the Winner Rule algorithm
sends traffic to a single acquirer until a number of refused payments has been reached;
when the refused transactions go over this threshold, then the algorithm switches the
traffic to one of the alternatives and the count of failed transactions starts again. ε-
Greedy always exploits, except for a fixed proportion of ε % transactions, which are
randomly sent any of the available acquirers. Gradient bandit and Exp31 use more
complex functions to compute the preference to an acquirer or the other. Thompson
sampling uses a Beta distribution to calculate the probability of each acquirer of being
the best one.

The main traits of these algorithms are that they do not make assumptions on the
authorization rate of the acquirers and they never settle to an acquirer, but continuously
try to identify change.

Some of these algorithms have parameters that can be set by the user (e.g.: thresholds,
ε). In our case, we test the same algorithm with different combinations of parameters to
see the impact of these parameters on the results.

Results

In the treatment validation of the engineering cycle, we gathered real payment data for
a merchant, in three markets: France, Spain, and US. In total, the sample data has
30.7 mil transactions, for approximately 17,000 different BINs. These BINs are grouped
into 10 clusters per volume of transactions per day, variation of authorization rate and
difference of authorization rate between the two acquirers. A subset of two BINs from
each cluster has been extracted to run the algorithms.

We implemented the proposed algorithms offline. However, we tried to simulate the
real world as much as possible. For example, we included the relevant fields when
generating the payment requests and we added a time delay to the payment responses.

The below simulation shows the authorization rates per day after applying Play the
Winner Rule algorithm for one of the US BIN. In this case, we can see that the use of the
bandit algorithm is expected to bring 1.95% authorization rate improvement. However,
there is still a regret of 2.34% authorization rate that could be further improved:
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Figure: Play the Winner Rule on a US BIN

In the plot below, we see the overall results of the selected algorithms. The one
with the highest expected authorization rate improvement (of 2.84%) is the multi-armed
bandit - Greedy and Pursuit bandit strategy:

Figure: Authorization rate improvement weighted by the total number of transactions
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However, there is a trade-off between the higher usability, but lower performance of
the Play the Winner Rule and the lower usability, but higher performance of the Greedy
and Pursuit bandit.

Conclusion

Multi-armed bandit is a neat solution for optimizing the authorization rates of payments
and it can bring up to 2.84% more authorized payments. This result has been achieved
by simulating payments requests and responses based on real data, and applying multi-
armed bandit - Gradient and Pursuit bandit strategy.

The main research goal is achieved by utilizing any of the designed algorithms for rout-
ing payments to different acquirers. Implementing one of these algorithms will definitely
reduce the effort of setting routing rules, compared to the current implementation.

Intelligent payment routing can be easily implemented and tested on the payment
platform at Adyen and leverages the connections to multiple acquirers.

Future research

The multi-armed bandit has dozens of versions and strategies, but this thesis focuses only
on small subset of them. To get a complete view on the performance of the multi-armed
bandit, it would be useful to have an exhaustive testing of all strategies.

As already mentioned, some of the bandit strategies depend on parameters. Not only
we can test different values for these parameters, but it would be useful to have another
logical layer to learn the best parameters for each strategy.

Adyen can also modify the payment request itself (by tweaking various fields, such as
merchant address data), procedure called payment flagging. There are many similarities
between payment flagging and intelligent payment routing. Based on analogy, the same
research and same algorithms could be used in payment flagging applications for the
same purposes of increasing the authorization rate and make payment more efficient.

The failure rate due to unknown or technical reasons is much higher (up to 10% of
all transactions). Thus, a lot more effort needs to be put in understanding the payment
flow and the interactions between all financial institutions to cover all technical failures.

At the end of the day, payment processing is deterministic. Treating the other end as a
black box is due to poor standardization of messages and adoption of those standards by
all payment processing institutions. Until these standards will be perfectly implemented
and adopted, using algorithms such as the multi-armed bandit has the potential of
getting accepted thousands of payments world-wide, every day.
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1. Introduction

1.1. Problem identification and motivation

Payments are not new, they have been with us for a while. Electronic payments (such as
debit cards, credit cards, electronic funds transfers, direct credits, direct debits, internet
banking and e-commerce payment systems) were a disruptive technology at the time they
were introduced. Also in the beginning, these systems were adopted by banks by simply
building them on top of their infrastructure at that time. This way, with relatively little
effort, banks managed to make these payments work.

Since then, technology world has witnessed another type of disruption, i.e. the ex-
pansion of the Internet, the dominance of the mobile world, and the IoT. These new
trends majorly influenced the payments systems. Payments need to support all kind of
innovative payment methods (e.g.: ApplePay, AliPay) at a whole new level in terms of
volume. Last but not least the globalization of businesses and shoppers has intensified,
which increased the diversity of systems involved in processing of payments. Nowadays,
it is not uncommon for a person with a card issued by a bank in the Netherlands order
and pay products from a merchant in Mexico.

Making payments as fast, seamless, easy, and secure as possible has become very
important in the new digital context. The data insights from payments are also extremely
valuable to understand the shopper behavior and to enable a better service. One example
is the introduction of omnichannel, i.e. to be able to link payments made at Point-Of-
Sale (POS), online and mobile for the same shopper. This information is very useful,
in many ways. For example, one could order shoes online and return them to the same
brand’s store around the corner of his street. Another example is that the merchant
can see the full profile of one shopper and make specials offers or can link fraudulent
patterns and have a better risk control.

However, payment systems do not always keep up with the needs of merchants and
shoppers. One effect is that payments fail. The reason is that during a payment pro-
cessing there are many different parties involved, that are not always communicating
effectively. A payment can be seen as a message sent to the shopper’s bank to request
money to be transferred to the merchant’s account. There are many problems that can
occur here, such as network errors, message interpretation, wrong formatting, etc. that
cause a payment to fail. Fixing these deviations from the standards is not trivial. In
many cases, the processing at the issuing banks (the bank of the shoppers) is treated
as a black-box, sometimes due to privacy concerns. The payment response that comes
from the issuers contain a response code, but in many cases this code is general and
not helpful in identifying the problem that caused the payment to fail. Moreover, there
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is a lot of other deciding factors (e.g.: card scheme specifics - Visa/MasterCard/Amex
-) in the payment flow, there is a lot of diversity (country specific regulations, tens of
thousands of different issuers), and a great deal of change in how this processing is being
done at every end.

Merchants are aware that payments are failing at times, without fully understanding
why. They are cognizant that there is little that they can do about it. The complexity
in payment processing allowed dedicated businesses to develop and fulfill the need to
solve this complexity. One of these businesses is Adyen B.V., a Dutch-based technology
company, that started as a payment gateway to banks and card schemes, on behalf of
the merchants. Adyen provides a single-platform to accept payments anywhere in the
world through any sales channel. At Adyen, wee see that, on any given day, 10-20% of
online card payments may get refused. Approximately half of refusals are for legitimate
reasons because of insufficient funds, possible frauds, or expired cards, while the other
half are caused by technical or inexplicable flaws in the payment flow. In 12 months time,
Adyen solely processed approximately 1.5 billion transactions. Roughly, this means that
there are up to 150 million transactions that potentially could have been saved. For
companies as Booking.com, Spotify, Uber, any improvement can be very relevant as it
brings more revenue without much effort on their side. As for the shoppers, eliminating
failing transactions means less frustration.

The main motivation behind this research is to reduce the number of
failed transactions and to make a step further in transforming payments
from a hindrance to an opportunity.

1.2. Research goal

The ratio between authorized or successful payments over all payments is called autho-
rization rate or simply, auth rate. The authorization rate is a consistent metric used
to calculate performance. Reduction of payment failures is equivalent to increasing the
authorization rate.

Adyen, as a gateway or so-called Payment Service Provider (PSP), can observe differ-
ent patterns of the payments that fail, make suggestions and take actions. For example,
if one issuer sends back many failures with the code: “Shopper address not provided”,
then Adyen can ask the merchant to ask this information on their webshop and send it
over to the issuer. Adyen can also take actions to slightly modify and format the pay-
ment request to issuing bank’s specific preferences. For instance, some issuers request the
address of the shopper to exist. However, they do not do any further check; so, in case
the merchant does not include any address, Adyen can simply attach an empty string
field. Another type of action that Adyen takes is to auto-retrying payments to surpass
a temporary glitch or transmission issue. Last but not least, Adyen can choose different
routes for the payment requests through the payment flow to increase the chances of an
payment to be accepted.

These actions are very useful and they might seem logical and simple to apply. In
reality, these rules and patterns are not always evident. Furthermore, even if they are
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identified, they are not consistent in time. In the shopper address example, we do not
know beforehand which issuers handle the payments by only checking if the address
exists. Even if we have a good idea whether an issuer does this, we do not know when
this issuer changes the address check at their end to actually verify the complete shopper
address. In the same way, a payment request route might show a better authorization
rate today, but this route might not have the same results tomorrow.

The main research goal can be synthesized as: improve the authorization rate of
genuine payments by designing an optimization algorithm for routing trans-
actions in the payment flow, algorithm that supports unknown and unfixed
authorization rates, such that payments are more efficiently processed.

The word ”genuine”, used to describe payments, limits the scope of the algorithm,
by excluding the transactions that are supposed to fail (e.g.: insufficient funds or PIN
incorrect), but also transactions that are tagged as frauds. The desired algorithm does
not directly aim to reduce these failures, because they are managed already by other
tools (e.g.: risk detection tools).

Known algorithms that deal with similar problems are defined by general statistics
(section 3.1), randomized experimental design (section 3.2), and reinforcement learning
(section 3.3).

As far as the present literature review has gone, none of aforementioned solutions
were applied to the payment industry, which leaves a gap of knowledge in the existing
algorithms, heuristics and theories. This gap is obvious when trying to apply these
algorithms and certain context assumptions are not fulfilled (such as: fixed probabilities
or immediate responses), thus resulting in inaccurate outcomes. This research should
come as an extension to the current knowledge so that it accommodates the requirements
of the payments industry.

1.3. Research methodology and overview

This research is organized and conducted by using the design science methodology ex-
plained in [1]. Two of the most important concepts in the aforecited book is the design
science framework and the engineering cycle.

Looking at the scheme in figure 1.1, the most important stakeholder is Adyen B.V.
that has dedicated most resources into this research. The design is the optimization
algorithm. In the investigation phase, we try to explore the payment flow, the current
implementation, and especially the subsystems that can be actionable from the point
of view Adyen, PSP. The theoretical knowledge (around the literature of the existing
algorithms) and the practical knowledge (about how a payment system works) constitute
the knowledge context.
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Figure 1.1.: Framework for design science [1]

This current thesis focuses on the design cycle, which is a subset of the engineering
cycle, excluding the treatment implementation and implementation evaluation. These
final parts are the responsibility of the main stakeholder, Adyen, based on the knowledge
and design that result from this research (figure 1.2).

Figure 1.2.: Engineering cycle [1]
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The rest of this work is organized as follows:

• problem investigation (Chapters 1, 2, 3) focuses on understanding the problem,
identifying the stakeholders, acknowledge the role of Adyen, analyzing the current
implementation, defining conceptual and statistical frameworks, and the literature
review for relevant existing solutions as resulting from the state-of-the-art;

• treatment design (Chapter 4) describes the algorithm’s requirements and context
assumptions, determining the available solutions, and finally, proposing designs
based on the expectations of contribution to the stakeholders’ goals;

• treatment validation (Chapter 5) contains the validation models for the design and
context and the sample data used for testing the proposed treatments. The results
are used as prediction of what will happen if the algorithm is implemented on
the live Adyen payment platform. The most important outcome of this phase is
building a design theory based on the validation model;

• the last part (Chapter 6) summarizes the research within three subsections: con-
clusions, limitations, recommendations, and future work.
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2. Background

2.1. Stakeholders

Stakeholders are very important for any type of research, because in the end, they are
the ones who directly benefit from the results, but also that might decide to commit
resources in order to implement the new design and knowledge. The most important
stakeholders are:

• shopper - a person/company that buys products;

• merchant - a company that sells products;

• acquirer - a bank or financial institution that processes credit or debit card pay-
ments on behalf of the merchant;

• card scheme - a payment network linked to payment cards; the most relevant
card schemes for this research problem are: Visa, MasterCard, American Express,
Diners Club, JCB, Discover;

• issuer - a bank or financial institution that issues cards to shopper on behalf of the
card schemes; the number of issuers is on the order of thousands;

• payment platform - a technical solution providers that connect the merchant to
the acquirers, card schemes and issuer banks; in this case, Adyen is the payment
platform under research.

An implicit stakeholder is University of Twente, involved with the supervision and
overall contribution to the research. It is important to notice that fraudsters are excluded
from the list of the stakeholders, because they are out of the scope of this research and
they are not considered to have a relevant impact on the context of the treatment.

Most of the stakeholders are aware of the problem of failing transactions, and may
or may not be committed to solve the issues on their side, depending on the level of
information they have. For example, payment platforms have usually more data about
different merchants, shoppers, acquirers, etc. and can aggregate all this information for
more accurate actions. On the other hand, the shoppers have less options in fixing the
problem, and can be at most aware of it.

The aforementioned stakeholders have a similar top-goal: the merchants want to
increase the efficiency in processing all genuine transactions and shoppers
want all (presumably genuine) payments to go through, so they can get their
goods or services.
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Looking more closely to the top-level goal, there is no conflict between stakeholders,
because it is a win-win situation for all: shoppers are buying the products they want,
merchants are selling their products, and payment platforms, acquirers, card schemes
and issuers successfully process payments, thus selling this service.

However, the stakeholders that provide the payment systems have intrinsic conflicts,
such as legal, technical, and economic conflicts:

• Legal conflicts. Data confidentiality is an important concern. Each merchant has
its own payment data and full control over it. On the other hand, having aggregates
over industries has the potential of improving authorization rates by making some
patterns evident. Another example of legal conflict is that some banks consider
the information of “insufficient funds” as confidential, and they merely send a
generic “error” message. Thus, even though the authorization could be optimized
by knowing the exact failure cause, banks prefer to keep secret this information,
on behalf of the shoppers;

• Technical conflicts. Security is very important and it creates a lot of overhead
for the payment process itself. Many checks during the payment process that
are designed to assure security, can actually cause technical errors: invalid card,
invalid amount, etc. The technical conflict appears when trying to accept as many
payments, but without ignoring any security checks;

• Economic conflicts. Unsure payments that have an unknown decline message or
that are suspect could be added to a queue, and manually verified by a specialist.
This way, trying to increase the authorized genuine payments comes at the cost of
the specialist. Another example of economic conflict is to invest more in the IT
infrastructure to improve the speed of payment processing, while trying to reduce
revenue loses due to failures caused by servers unavailability and long pending
times.

2.2. Adyen

The most important stakeholder is Adyen, which fully committed to solving the prob-
lem of failing transactions, because having a higher authorization rate will surely bring
happier merchants, less frustrated shoppers, and finally, more revenue.

Adyen is a technology company that provides a single platform to accept payments
anywhere in the world. Currently, the platform processes payments for over 4,500 cus-
tomers over the world, including: Uber, Airbnb, Netflix, Booking.com, Mango, Evernote,
LinkedIn, Spotify, Groupon, etc (figure 2.1).
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Figure 2.1.: Adyen customers

The company has its headquarters in Amsterdam and has other 11 international offices:
Europe - London, Paris, Berlin, Stockholm, Madrid; North America - New York, San
Francisco; South America - Sao Paolo; Australia: Sydney; Asia - Singapore, Shanghai.
The payments platform is founded on a robust core technology, which is developed and
maintained in-house. It has regular release cycles (every month). Over 250 payment
methods (for example, in the Netherlands, there is IDeal, Visa Pay, Apple Pay, Maestro,
etc.) and 187 currencies are supported. In many markets, credit cards account for a
small proportion of online payments, and local shoppers favor payment methods such as
e-wallets or cash on delivery (figure 2.2).

Figure 2.2.: Worldwide offices and payment methods

Adyen is an omnichannel, which means that it includes all payments solutions: social
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media, e-commerce, mobile, unattended terminals, Point of Sales (POS) and mobile POS
(figure 2.3). All these different solutions are important, because they have an impact on
the authorization rate of the payments.

Figure 2.3.: Payment solutions

2.3. Conceptual framework

2.3.1. The payment flow

Adyen manages the whole payment flow from checkout, the moment when the shopper
decides to buy goods or services, right through to final settlement, the actual money
transfer from the shopper’s bank account to the merchant’s bank account. All using a
single platform. This includes:

• Checkout pages for desktop, mobile, and in-store;

• Acquiring services, by processing payments on behalf of the merchant;

• Direct connections to card schemes (e.g.: Visa, MasterCard);

• Complex risk management;

• Comprehensive reports and live monitoring;

• Optimized payments success rate.

When a shopper interacts with a merchant, a payment request is sent to a payment
platform, such as Adyen. A payment request is, simply stated, an XML file that contains
(confidential) information about the cardholder, merchant, the bank of the shopper,
the amount that is requested by the shopper to buy the goods or services, currency,
etc. Depending on the implementation, the merchant can host the payment page itself,
in which case the merchant is sending the payment request to the payment platform.
Otherwise, if the merchant does not want to add this complexity, it can outsource the
hosted payment page to the payment platform, in which case, the shopper sends the
payment directly to the payment platform. Either way, the type of implementation is
(almost) hidden from the shopper. One example of hosted payment page can be seen in
figure 2.4, where the shopper can see the product to be bought, the sum and possibility
of choosing a payment method (for example, in the Netherlands, iDeal).
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Figure 2.4.: Example of a hosted payment page

Traditionally, since online payments have been introduced, the payment platform was
a relatively simple system that had one major role, i.e. to be a gateway for the online
payments to the legacy systems of the banks. The system that has only this function is
called Payment Service Provider (PSP). But, nowadays the payment platform is much
more complex and the PSP has become a component of a much larger system. Next to
the gateway, other complementary systems developed, such as: risk management tools,
reporting systems and optimization solutions. Newer payment platforms, such as Adyen,
merged all of these various systems into a single platform.

The PSP connects to the acquirer, which is a bank or financial institution, that pro-
cesses credit or debit card payments on behalf of the merchant. The acquirer sends
the payment requests to the card schemes (e.g.: Visa, MasterCard), which are payment
networks linked to payment cards. The main role of the card schemes is to set rules and
to give guidelines on how card payments should work.

Finally, the payment request reaches the issuer, which is the bank of the shopper
which issued to him or her the card that is connected to the shopper’s bank account.
The issuer analyzes the payment request and it does some basics checks, such as verifying
the balance of the shopper’s account, but also some more complex ones, for example,
it verifies the nature of the payment and the merchant, to minimize the probability
of charge backs, in case later on the transaction is disputed or it proves to be fraud-
ulent. Nevertheless, the issuer accepts or refuses the payment request, and creates a
payment response code to offer extra-information, especially in the case of refusals, such
as ”Insufficient funds”, ”Card expired”, ”Refused with no reason”, etc.

The response is sent back on the same pipeline to the card schemes, acquirer, payment
platform, merchant and shopper. Based on the response, the merchant can decide if
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it should send the goods or offer the services. In the same time, the shopper knows
whether the transactions was successful or he/she should or should not try again. The
architecture framework is described in figure 2.5.

Figure 2.5.: Architecture framework

The components (shopper, merchant, gateway, risk management, acquirer, schemes,
issuers), processes (payment flow), constraints (especially card schemes regulations, but
also law regulations), and events (payment request, payment response) create the archi-
tectural structure around payments. The algorithm to be designed intervenes between
the gateway (PSP) and the processing (acquirer).

Understanding the architectural system (the way different parts of the system inter-
acts) is important because it explains why some transactions fail, where exactly they
fail, and gives insight on fixing the problem.

2.3.2. Intelligent payment routing

In some countries, Adyen has the possibility to send a payment request to more than one
acquirer. Usually, Adyen works with a local acquirer per country and the own Adyen
acquirer. Observations and data analyses showed that the choice of an acquirer or the
other is relevant for the approval of payments.

The acquirer is the institution that actually formats the payment request following
the standards created by the card schemes. Acquirers can ignore any extra information
that it receives and can modify some fields to fit these standards.

The framework for routing payments to different acquirers is already integrated in the
platform, but the logic on how to route payments is missing. The challenge is to decide
for every payment the best acquirer it will be sent to. Routing of payments is a good
opportunity to take action in increasing the number of authorized transactions. This
research focuses on payment routing. In figure 2.6, we see that Adyen (as a PSP) is the
one that connects to one or more acquirers.
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Figure 2.6.: Routing to different acquirers

2.3.3. Authorization rate

Authorization rate is one of the main concerns of both the merchants and the PSP, and
also a good indicator of the performance of the solutions proposed by this research.

The observation unit is a transaction. A payment request contains a lot of information,
in the order of tens of fields; but, only a handful of them are relevant in the context of the
authorization rate. As recommended by the experts at Adyen with a deep understanding
of the architectural framework, these are: company, merchant (child of company), trans-
action variant (card type, such as: MasterCard debit, MasterCard credit, Visa debit,
etc.), displayable transaction variant (short version of card type, such as: MasterCard,
Visa, American Express, etc.), shopper interaction (explains how the transaction was
made, such as: E-commerce or regular online transaction, contAuth or recurring online
transaction, accountValidation or transaction with no amount used to check if the ac-
count is valid, and POS or Point-Of-Sale), issuer, issuer country, acquirer, creation date
(the date when the transaction was made), BIN (Bank Identification Number; usually
the first 6 digits of the bank card), currency, and amount.

The variable of interest is the result of a transaction, whether the transaction was a
success or a failure. Based on the variable of interest, one can compute the authorization
rate:

authorization rate =
approved transactions

all transactions
.

The authorization rate over days represents the probability of a transaction to be
successful. Previous experiments at Adyen have shown that in most cases, the au-
thorization rate is unknown and unfixed, which makes the prediction of the result
of future transactions very difficult.

Some information can also be picked up from the detailed response code of a trans-
action, that mainly says what type of failure was it, such as: “Fraud”, “Invalid amount”,
“Canceled”, etc. The population represents all the transactions that run through Adyen’s
payment platform, whereas a sample population is used that contains just a fraction of
these transactions, usually within a time frame.

In table 2.1, one can see the most important variables included in a payment request
(the input) and the variables of interest (the output):
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Element Indicator Example/ Explanation

Observation unit Transaction (tx)
A combination of variables +
variable of interest

Variables

Company account
Name of the company to which
the transaction was made

Merchant account
Name of the merchant, child of
the company

Tx variant
{mcdebit, mccredit, maestro,
visadebit, visaclassic, etc.)

Displayable tx variant {mc, visa, amex, etc.}

Shopper interaction
{Ecommerce, contAuth - recurring
Ecommerce, accountValidation -
no amount tx, POS - Point Of Sale}

Issuer name Name of the issuing bank
Issuer country code {es, nl, ro, etc.}
Acquirer Name of the acquirer
Creation date 2016-04-12

BIN
Usually a 6-digits number,
400000

Currency code {eur, usd, etc.}
Amount 10

Variable of interest Result of a transaction
1 - Success or
0 - Failure

Secondary variable
of interest

Response code of a transaction
{Unknown, Approved, Invalid amount,
Issuer unavailable, Canceled, etc.}

Sample population
Multiple transactions within a
time frame

Usually an aggregation of transactions
of the same company, per BIN,
per shopper interaction, etc.

Population
All transactions that use Adyen’s
payment platform

Table 2.1.: Payment variables

2.3.4. Payment responses

When a shopper tries to buy a product, a payment request is sent to the issuer. The
issuer accepts or refuses the request and sends back a response code. Usually, successful
transactions have only one response code, while the refused transactions are a lot more
explanatory. Moreover, every issuer, card scheme and acquirer have slightly different
response codes. Nevertheless, at Adyen, all of the responses codes are mapped to 30
codes. These codes can be split into four categories: success, failure due to discretionary
reasons, failure due to technical reasons, failure due to fraud reasons. These codes and
categories are explained in figure 2.2.
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Response code
No

Codes
Category Description

APPROVED 1 Success
Transactions that are

successful

REFERRAL
BLOCK CARD

CARD EXPIRED
NOT 3D AUTHENTICAT

NOT ENOUGH BALANCE
CANCELLED

SHOPPER CANCELL
INVALID PIN

PIN TRIES EXCEED
NOT SUBMITTED
CVC DECLINED

REVOCATION OF AUTH
WITHDRAWAL AMOUNT EXCEED
WITHDRAWAL COUNT EXCEED

14 Discretionary

Transactions that are
designed to fail in certain

situations, such as:
transactions cancelled

by the shopper or merchant,
insufficient funds,

incorrect PIN, or CVC,
etc.

UNKNOWN
DECLINED

ERROR
INVALID AMOUNT

INVALID CARD
ISSUER UNAVAILABLE

NOT SUPPORTED
PENDING

PIN VALIDATION NOT POSSIBLE
TRANSACTION NOT PERMITTED

RESTRICTED CARD
DECLINED NON GENERIC

12 Technical

Transactions that are not
designed to fail,

but they still due.
Causes: implementation

deficiencies, invalid input,
unknown reason

ACQUIRER FRAUD
FRAUD

FRAUD CANCELL
3 Fraud

Transactions that triggered
fraud detection tools

of the payment platform,
acquirers, card schemes,

or issuers.

Table 2.2.: Payment response codes

Successful transactions, discretionary failures and fraudulent failures represents a very
useful segregation of payment responses. Purely technical failures (invalid input, unsup-
ported transaction, restricted card) and generic response codes (unknown, declined and
errors) would not theoretically exist if all of the different processing systems would work
perfectly and if they would have a flawless integration between them. One important
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factor, that causes technical failures to occur, is the change over time in the imple-
mentation of each of the systems, separately. These changes are in the form of rules
in payment processing imposed by the card schemes or improvements of the payment
systems themselves.

Despite the differences between failures (technical, discretionary, fraud), there are
some inconsistencies in how each raw response codes are actually tagged by each issuer
and acquirer. For example, some issuers might consider ”Insufficient funds” as a private
information of the card holder, thus sending back generic failure messages: ”Unknown”
or ”Declined”.

If we were to concentrate only on technical failures when doing optimization (rout-
ing of payments), due to already mentioned inconsistency issues, some acquirers would
inevitably and unfairly have more technical failures than the others. This is why, we
will take into consideration all failures. This will produce some noise and extra effort in
trying to reduce number of failures that, in reality, cannot be saved. On the other side,
including all failures will help us reliably compare acquirers, which is our main focus.

2.4. Current implementation

Firstly, Adyen has introduced payment routing by building the core infrastructure in
the payment flow. This infrastructure enables getting a list of the available acquirers
for specific payments and making the necessary connections to one of these available
acquirers. All of this happens in real-time, when each payment request comes in.

Secondly, the intelligent part of payment routing is actually deciding which of the
available acquirers is optimal for each payment, given that there are two or more acquir-
ers available. An optimal acquirer is the one that has a higher authorization rate.

2.4.1. Available acquirers

The core part of routing is getting the available acquirers and making sure that once
they are declared available, the necessary connections can be made to them.

As described in table 2.1, a payment has many variables. In order to get the available
acquirers, the most important variables are the issuer country and company account.
Adyen has contracts with various acquirers in each country, that allows them to process
payments made within those countries. For example, in France, there are two acquirers
that have contracts and connections with Adyen, whilst in U.S., a specific company
(client of Adyen) has costs contracts with two other acquirers in this country. Usually,
Adyen offers either one connection to a domestic acquirer (local acquirer within one
country), or two connections, a domestic and an international acquirer (an acquirer that
is used to process payments in multiple countries). Nevertheless, there are a few cases
where there are other combinations (e.g.: two domestic acquirers), but also cases where
there are more than two acquirers.

Having multiple available acquirers is helpful because of many reasons, such as:
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• assures a robust and reliable connections for payments; acquirers can fail, or can
have difficulties processing some payments;

• acquirers can offer different prices and services; using some acquirers can be more
expensive than others, and they have different quality of service in terms of uptime,
currencies processing, and data-insights;

• acquirers have different authorization rates for different types of payments and
markets; for clients, it is very important to have the highest possible authorization
rate;

2.4.2. Ordering of available acquirers by authorization rate

Ordering of the available acquirers is applicable for the cases where there are two or
more available acquirers. Given that the authorization rate is very important in the
world of payments, the ordering is done by authorization rate. However, it is not always
clear which acquirer has a higher authorization rate.

Currently, at Adyen, assuming that there are two available acquirers, the ordering of
the available acquirers is done by a data analyst, following these 3 steps:

1. gathering of data;

2. data analysis;

3. routing configuration.

In the first step, gathering of data, the data analyst takes data from previous payments.
He or she must make sure that there is payment data for both acquirers that will be
compared.

Usually, companies have always processed payment through one acquirer and want to
see whether using a different acquirer will bring a higher authorization rate. In this case,
because only one acquirer has been used to processed payments, there is no available
data for the second acquirer. Thus, the analyst needs to route some payments to the
second acquirer, to have some data on it. Usually, a static configuration of 95% - 5% of
the payment traffic is made, with the majority of payments still going to the traditional
acquirer. If there has been a positive experience with the second acquirer in other
contexts or the exploration needs to be done fast, then a configuration of 50% - 50% of
the payment traffic to the two acquirers is also acceptable.

In the second step, the data analysis, the analyst extracts from the database the
payment data of the transactions made trough the two acquirers. The payment data
contains many of the variables described in table 2.1. The most important information
is the success or failure of transactions by each acquirer. The analyst does the following
operations on the data:

• data cleaning : some transactions are excluded from the analysis, such as transac-
tions that failed before reaching any of the two acquirers (in most cases, because
of a fraud detection);
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• descriptive statistics: to provide basic summaries about the sample data; the most
important information is to make sure that the payments are equally distributed
between the two acquirers, for the same variables; for example, some issuing banks
have a higher authorization rates than others, shopper interaction account valida-
tion for 0$ amount transactions has a considerable higher authorization rate, and
the payments of various merchants can be very different between each other (be-
cause of the nature of their businesses). Thus, it is very important to assure a fair
comparison between the two acquirers; in this step, any bias towards an acquirer
is eliminated;

• authorization rate comparison: the analyst computes the general authorization
rates per merchant and acquirer; however, in most cases, the comparison goes
on a finer scale, taking into account other variables than just the merchant and
acquirer, such as: BIN (the most important one), transaction variant (e.g. Visa/
MasterCard/ Amex), and shopper interaction.

At the third and last step, routing configuration, Adyen uses the authorization rate
comparisons from the previous step and draws conclusions on which acquirer has an
higher authorization rate.

These conclusions represent the support for creating a new routing configuration. A
routing configuration is actually a distribution of payments between the two acquirers
(for example, 75% - 25%).

The most valuable routing configurations are those that can be generalized to multiple
companies or to an entire country. For example, the conclusion can be that there is
enough reasons to believe that in Spain, acquirer A has a higher authorization rate than
acquirer B in 95% of the payments. In this case, we create a routing configuration that
sends most, if not all, payment requests to acquirer A.

However, it is very difficult to get to such solid conclusions. Usually, the data ana-
lyst analysis data per company and BIN and makes routing configuration accordingly,
without much generalization to other companies or other BINs.

2.4.3. Problems with the current implementation

There are multiple problems with the current implementation, that refer to the ordering
of the available acquirers.

The main problem is the reliability of the result of the authorization rate comparisons,
because there is no theoretical or scientific method that applies to this comparison.

More specifically, it is up to the data analyst to decide what actually means that
an authorization rate for one acquirer is higher than the authorization rate for the
other acquirers. The two main factors that help them conclude a better acquirer are:
the number of transactions and the difference in authorization rate. Thus, if there is
a ”significant” difference between the authorization rate of the acquirers (e.g.: higher
than 1% difference) and there are enough transactions (e.g.: higher than 50 transactions
for both acquirers) then the analyst reaches a conclusion. Nevertheless, there are all
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kind of complications and deviations. For example, if 90% of the BINs for one company
have only 10-20 transactions and the authorization rate between the acquirers is very
large (50%), then the data analyst might still conclude that one acquirer is better. This
creates inconsistent thresholds regarding the necessary number of transactions and the
authorization rate difference necessary to reliably consider one acquirer better than the
other.

The second problem is that the authorization rate of the acquirers changes in time.
Thus, it is very difficult to assure that the conclusions made today, about the performance
superiority, will still be valid tomorrow.

Thirdly, the whole process of ordering of available acquirers by authorization rate
is cumbersome. It is very time consuming and takes a lot of resources from the data
team. There is a trade-off between making an analysis for an entire country, applicable
to all companies, which is inevitably less accurate, and making tens or hundreds of
analyses for each company, which are more accurate, but they need much more effort
and maintenance.

2.5. Research questions

In between the top-level research goal defined in section 1.2 and the current implementa-
tion problems exemplified in subsection 2.4.3, there are many other research questions.
They will get us closer to a full understanding of the problem and will enable finding an
adequate design for it.

The classification of the research questions uses the groups defined in chapter 2 of the
book [1]. We distinguish two important types of questions that derive from the top-level
research goal:

1. Descriptive

a) What is the scope of the routing of payments?

b) How many payments are affected?

2. Explanatory

a) What are the reasons that cause a payment to fail?

b) What are the influences of different variables on the payments?

c) How much does the performance of the acquirers change in time?

d) What is the expected improvement that a new algorithm will bring?

This research focuses on designing a solution for efficiently routing the payments.
Looking more in-depth into the design, there are other types of important questions:

1. Effect and requirement satisfaction

a) What effects does the algorithm have on payments?

b) What is the execution time when using the new algorithm?

18



c) What is the usability of the new algorithm for the payment platform?

d) Does the algorithm satisfy the requirements of the stakeholders?

2. Trade-off and sensitivity

a) How do different algorithms perform?

b) How do different parameters of the same algorithm perform?

c) Can the algorithm be applied to other contexts?
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3. Literature review

3.1. Comparing two proportions

Two of the most basic methods of making statistical inferences are hypothesis testing and
confidence intervals of the difference between two proportions. In the case of binomial
distribution, where the random variable can be 1 or 0, yes or no, success (s) or failure
(f) over n experiments a proportion p is the number of successes over the total number
of experiments. These two parameters are used to describe the population of random
variables.

Hypothesis testing involves having two proportions p1 and p2. In our case, these pro-
portions describe the authorization rates for different acquirers. The null hypothesis H0

assumes there is no differences between the two proportions. The alternative hypothesis
Ha assumes there is a difference between the two proportions.

H0 : p1 = p2,

Ha : p1 6= p2.

The test can have two outcomes. First, when we have enough evidence to reject the
null hypothesis and to accept the alternative hypothesis. Second, when there is not
enough certainty to reject the null hypothesis, thus we cannot accept the alternative
hypothesis.

If the data is sampled independently and there are enough samples, then the sampling
distribution of p̂1 − p̂2 (proportion estimators) is approximately normal and we can use
the Z-methods.

The test statistic is:

z =
(p̂1 − p̂2)√

p̂(1− p̂)( 1
n1

+ 1
n2

)
,

where,

p̂ =
s1 + s2

n1 + n2
,

p̂1 =
s1

n1
,

p̂2 =
s2

n2
.

The z value is then compared to the appropriate value from the Z-table, depending
on the desired confidence level, and the conclusion is one of the two possible outcomes,
i.e. to accept H0 or H1.
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In any test statistic there are two types of errors that can be made: type I error
and type II error. A type I error is when we reject the null hypothesis, in favor of the
alternative hypothesis, when the null hypothesis is in fact true. A type II error is if we
fail to reject the null hypothesis when the null hypothesis is false.

Type I errors are not relevant in the case of improving authorization, because if the
options have equal authorization rate, then there is no loss in sending more transactions
to one of them. On the other side, type II errors are crucial, because making these errors
means the traffic is sent to the sub-optimal option.

Comparing two proportions with the Z-test is a neat way to find out which acquirer
is better. However, there are two important assumptions: the observations are inde-
pendent and authorization rates for the two acquirers are fixed. The former can be
assumed, because payments are in general independent. The latter, in practice, cannot
be guaranteed because the authorization rates of the acquirers tend to variate from time
period to another.

Moreover, comparing two proportions is not recommended to be used for prediction,
but rather for describing an (existing) population, based on sampled data, especially in
the cases where the success rates are unfixed.

3.2. Randomized experimental design

Randomized experiments is a designed experiment that allows the random allocation
of units to different treatment groups. In many empirical experiments, one can have a
reasonable expectation of the result when applying a treatment to a context. However,
there are cases in which the context is more of the black-box and one cannot know
whether the treatment has a positive effect, negative effect, or any effect at all. Never-
theless, the treatment is still worth trying so that we get this information and potentially
improve the context. In other words, [2] suggests that randomized experiments are ap-
propriate when there is little or no knowledge about what is going on, but “treatment
(i.e. chemicals) like this seem to have some effect on problems like that; let’s see what
happens”.

Clinical trials were the starting point for this type of experiments and are arguably
the most popular applications for randomized experimental designs. There are numerous
examples of applications in this domain ([3], [4], [5]). Even though clinical trials do not
have much to do with payments, the knowledge on randomized experimental designs
from this domain can be extended to payments as well. In the mentioned papers, the
basic randomized experiment consists in randomly dividing the patients into two groups:
control and test. Doctors have two types of treatments, the real medicine for the test
group, and a fake medicine with no effect for the control group. The patients are not
aware of which treatment they receive, and in most cases, the doctors are not aware
either.

There is a great diversity of types of randomized experiments, such as: constraint ran-
domization (randomization in permuted blocks, stratified randomization), and adaptive
randomization (treatment assignment probability changes during the trial).
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This research will focus on two popular types of randomized experiments: A/B testing
and Play the Winner Rule (adaptive design).

3.2.1. A/B Testing

Marketing and internet advertising is a very common place for randomized experiments
that intensively use A/B testing. In most cases, one tries to measure the success of
different treatments that try to increase the conversion rate on a website. For example,
one can try two colors, two text boxes, or to positions on the website for a Call-to-Action
button, such as: ”Try it now!”. Another example, is when merchants are sending their
payment traffic to two payment platforms and compare the two authorization rates.
Finally, they might decide to send the majority of their transactions to the better one.

A/B testing algorithms are randomized experiments with two variants, A and B,
which are the control and variation in the controlled experiment [6], respectively. The
logic behind A/B testing is that one sends a percentage of traffic to variant A, and
the remaining of the traffic to variant B (usually the percentage is set to 50%). After
reaching to the variants, one can compute the successful rate/conversion rate of the
traffic (the number of completed processes over the total number of accesses; e.g.: ratio
of paying customers, or authorization rate). After a sufficient number of traffic, one can
decide which variant is better, A or B. Even though A/B testing are very often seen in
the optimization of web pages, these algorithms have also been tried in the payments
industry; for example, to see if a new payment solution is better than an old one (success
stories can be found in [7]).

The most common A/B testing algorithm is the fixed-size A/B testing. This mainly
requires setting a significance level, a minimum detectable effect (the smallest effect that
will be detected), and a statistical power (percent of time the minimum effect size will
be detected, assuming it exists). These settings are important to guard against type I
and II errors. One can calculate the minimum (fixed) sample size needed to confidently
assess the difference between the two populations. After collecting the data, we can
decide which of the variant is better.

A different flavor of A/B testing is sequential A/B testing, as presented in [8], [9], [10]
and [11]. This algorithm is trying to identify as quick as possible if one variant is better
than the other. This advantage can be exploited especially in situations where real-time
streams of data are available.

In principle, the same parameters are needed for sequential testing as for fixed-size
testing. The main difference is that the test can stop earlier, if the two options diverge
enough one from the other. As it results from the cited sources, sequential A/B testing
becomes extremely useful especially when one option clearly outperforms the other. In
this case, one does not need to continue the experiment until the fixed-size number of
samples is reached. In the case of payments, many otherwise sacrificed transactions can
be saved by applying sequential A/B testing and the fixed-size one.

No matter what type of A/B testing is conducted, one needs to compare the two
proportions with similar methods as the one explained in 3.1 to assess whether one
acquirer actually performs better than the other. Thus, the assumptions about observa-
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tion independence and fixed authorization rates continue to be a challenge even for A/B
testing.

3.2.2. Play the Winner Rule

Traditional balanced randomization experiments have an important shortcoming: deal-
ing with sensible (negative) results during the trial. This shortcoming is especially
evident in the case of clinical trials, when a possible result of an experimental treatment
can go as far as death for the patient.

An adaptive approach of randomized experiments proposes to change the manner in
which the treatment is applied during the trial, so that we avoid negative effects on
patients as much as possible. For example, we have two groups of patients: one that
takes the treatment and the other that take no treatment (or just a placebo). During the
experiment is observed that the treatment is performing very well, whereas the placebo
is performing very poorly for the other patients, then patients from the second group
can be redirected to the first group, so that they can benefit from the treatment early
on. In the same way, if the treatment is observed to not work at all, the experiment is
designed to be stopped before the term, without great loss.

Likewise, in the online payment domain, a treatment that is tested can cause all
payments to fail, thus losing a significant amount of money. Of course, in these extreme
cases, the experiment can just be shut off; but, this represents a huge risk for the
research, because no conclusions can be drawn, and the treatment that has successfully
been applied will stop as well.

Play the Winner Rule (PWR) is a simple, but effective implementation of the adaptive
randomized experimental design. There are many forms and applications of this method,
as described many specialized papers, such as: [12], [13], and [14]. In these papers,
the method tends to successfully apply the treatment more often than in traditional
randomization experiment.

Similar to the definitions in [13], assume there are two treatment groups ”A” and ”B”,
and there are n observational units - OU - (i.e.: patients, transactions, etc.). We define
Ti the treatment applied to the ith observational unit, and Yi the result of the treatment
applied to the ith observational unit (success or failure):

Ti =

{
1, for the A treatment, applied to the ith observational unit,

0, for the B treatment, applied to the ith observational unit;

Yi =

{
1, if the treatment applied to the ith observational unit was a success,

0, if the treatment applied to the ith observational unit was a failure.

The success probabilities of the two treatments are pA = P (Yi = 1 | Ti = 1) and
pB = P (Yi = 1 | Ti = 0). The number of observations units that used treatment A and
B are NA =

∑n
i=1 Ti and NB = n−NA, respectively.

In the simplest form, the assignment of observational units (OU) to treatment groups
goes like this: first OU goes to a random treatment group, say A. The success proba-

23



bilities pA and pB are updated. The next OU goes to the one with the highest success
probability. And the process is continued.

In paper [15], the author discusses about how Play the Winner Rule handles practical
and theoretical issues such as stratification, delayed responses, variability, selection of
parameters, and inference.

Sticking to the clinical experiments, stratification refers to the segregation of the
patients into multiple homogeneous strata and afterwards, each stratum will be divided
into the two groups: patients that receive the treatment, and patients that receive the
placebo. Variability of the binomial variables is often neglected in adaptive designs, due
to their inherent processes that induce randomness. However, it is shown in [15] that
Play the Winner Rule for small sample size (e.g.: 10 observations) is extremely variable,
thus in these cases, the actual usefulness it questionable. As the sample size increases
(>100 observations) the variability of the results decreases.

Delayed responses is a very common problem of any adaptive design. In its most raw
form, Play the Winner Rule has all the information up to the ith patient, and based on
this knowledge, takes an action for the next i+1 th patient. Of course, this is not the case
in practice. Paper [16] describes a multistage solution that updates the statistics only at
certain time points, and not instantaneously and continuously. However, unless there is
a very long delay (such as in experiments testing survival rate), the delay causes a slow
adaptation, and there will be less patients that benefit from the better treatment.

3.3. Reinforcement learning

According to [17] reinforcement learning focuses on gaining information as interacting
with the environment. Say we have a set of possible actions, and each action brings
a different reward. The objective is to maximize the total reward in time, but there
is a central problem: we do not know the reward each action brings. Naturally, if the
rewards were known, then the problem would have been merely trivial by always going
for the action with the highest reward.

Another similar research [18] names reinforcement learning as a trial and error ap-
proach in which an agent operating in an environment learns how to perform a desired
task in that environment. The agent learns by adjusting its policy on the basis of positive
(or negative) feedback (reinforcement). This feedback takes the form of a scalar value
generated by the agent each time step, high and low values corresponding to rewards
and punishments respectively. The mapping from environment states and agent actions
to reinforcement values is termed the reinforcement function. The agent converges to
the behavior maximizing reinforcement (the optimal policy). In theory an appropriate
reinforcement function exists for all task; although, finding such a function is typically
hard.

Reinforcement learning is similar to machine learning, but it has three distinguishing
characteristics: closed-loops, unknown next action, and unknown reward distribution.
First, closed-loops refers to the fact that each action serves as an input for the next
action. Second, the order of actions is not given; in the simplest form, one is able to take
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any of the possible action at any time. Thus, unlike supervised learning, the feedback
does not indicate which behavior is correct, but how good or bad the current behavior
is relative to others. Taking different actions brings different rewards, and one does not
know beforehand the reward that is received. The objective is to eventually converge to
the optimal solution, maximizing the reinforcement function.

Some of reinforcement learning implementations are: Markov Decision Processes,
multi-armed bandit, dynamic programming, Monte Carlo methods, temporal-difference
learning, eligibility traces, approximate solution methods, etc.

Domains where reinforcement learning is applied are rather diverse. Artificial Intel-
ligence is one of the prominent examples, especially in the research of creating mobile
robots. These robots need to make many decisions and they should be ”optimal“, given
the environment in which they find themselves. It is difficult, or even impossible, to pro-
gram the robots to have a decision ready for any type of event that can occur. Rather,
they should learn from the environment, and make the best decision from the available
options. In [18] are given many examples on how reinforcement learning has been in-
spired by behaviors and mechanisms observed on animals, and how they are desired to
be adapted and perfected for mobile robots.

Other example applications are shown in [17], such as psychology, neuroscience, and
even elevator dispatching. For the last one, the algorithm tries to learn patterns of how
passengers take the elevators in a building: if passengers from different floors request
the pickups, who should be served first? If there are no pickup requests, how should the
elevators distribute themselves to await the next request?

A wide range of applications is given in [19], especially related to economics: experi-
mental consumption, market learning with unknown demand, labor market, investment
in innovation or current projects, but also minimizing the delay in a network. Paper [20]
mentions domains as packet routing, online auctions, assortment selection and online
advertising.

Nevertheless, the most popular utilization of reinforcement learning is within clinical
trials ([21], [22], [23]), and gambling ([24], [25], [26]). In clinical trials, usually the
primary goals is to use an adaptive strategy to confirm earlier results of the treatments,
but also to minimize the number of patients affected by the side effects in trying to get
these results.

Gambling serves mostly as a model and it is somewhat different, because it represents
the source problem from which the multi-armed bandit implementation of reinforcement
learning has emerged. If we consider the unknown and unfixed authorization distri-
bution as characteristics of the intelligent payment routing, then multi-armed bandit
implementation makes a good candidate for a solution.

3.3.1. Multi-armed bandit

Multi-armed bandit is an implementation of reinforcement learning, and it mainly focuses
on the trade-off between trying the available actions and going with the best one up to
the moment. This trade-off is called exploration - exploitation ratio. In a gambling
model, bandit problem is pictured as a set of slot machines in a casino, where each slot
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machine is an arm. An action is defined as the choice of a specific arm. One action can
be taken at a time, so each arm-pull represents one step. In the beginning, the player
does not know which arm brings more reward, but decides to “explore” the arms and
to observe the reward distributions. The final objective is to maximize the reward over
a finite or infinite number of slot arm pulls. Due to its adaptive nature, multi-armed
bandit can be categorized as an adaptive randomization designed experiment.

Figure 3.1.: Slot machines example used by the multi-armed bandit problem

Multi-armed bandit has multiple versions, depending on the context in which it is
applied. Some of them are simple and straightforward, but others are rather complex
and try to address very specific problems. Nevertheless, the core concepts stay the same
for all versions of bandits.

More formally, we have k different options, actions, or arms (in the gambling example)
a1, a2, . . . , ak. Each arm pull is measured in time steps t, where the total number of time
steps is called the horizon H. Moreover, every arm pull outputs a reward R, that follows
unknown distributions corresponding to each arm a. The performance of the arms is
measured as an expected reward or preference indicator Qt+1, based on the rewards
received up to and including t.

Qt+1(ai) = E[Rt | At = ai], where i ∈ {1, 2, . . . , k.} (3.1)

The way the expected rewards functions E[•] and ratios between exploration and ex-
ploitation are chosen is called a bandit strategy. A measure of performance for different
bandits is the regret ρ. The regret is the difference between always taking the best deci-
sions and the rewards that the bandit has managed to obtain. The best decision means
that at each time step t one picks the best arm, which should bring a maximum reward
Qmax. In practice, knowing the maximum reward is impossible; but, looking retroac-
tively, it is helpful to use this concept to measure the effectiveness of the algorithm. The
regret up to and including time step t is:

ρt = t ∗Qmax −
t∑

s=1

Qs. (3.2)
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As mentioned in [27] a strategy whose average per time step ρt
t tends to zero when

the horizon of time tends to infinity is a zero-regret strategy. Intuitively, zero-regret
strategies are guaranteed to converge to an optimal strategy, not necessarily unique,
if enough rounds are played. The following subsections will dive into various bandit
strategies, based on different evaluations made in [27] and other previously cited papers.

3.3.2. ε-greedy bandit strategy

Based on [17] (similar opinions are shared across the literature) ε-greedy bandit is one
of the simplest strategy, thus being widely spread. This strategy chooses a random arm
with a frequency of ε (exploration), and for the rest of arm pulls it goes with the one
with the maximum expected reward Q (exploitation). Usually the exploration is done
throughout the experiment, but if the horizon is finite, the experiment can start by first
doing the exploration. Given that At is the action chosen at time t, the strategy of
choosing the arm to be played at the next time step t=1 can be formulated as follows:

At+1 =

{
arg maxaiQt(ai) with probability 1− ε,
a random action ai with probability ε.

(3.3)

We assume that the reward function is simply the mean of rewards of each arm ai,
where ti is the total number of arm pulls that have gone through arm i, and Rs,i is the
result of arm pull s of the arm i :

Qt+1(ai) =
sum of rewards when ai taken up and including t

number of times ai taken up and including t

=

∑t
s=1Rs ∗ 1As=ai∑t

s=1 1As=ai

=

∑ti
s=1Rs,i
ti

, where i ∈ {1, 2, . . . , k}. (3.4)

If one option is outperforming the other, the simple ε-strategy will not have very good
results in the long term, because it will constantly trying the low performing option
instead always choosing the best arm. To fix this, a different variant of this strategy
considers that as the time passes, the expected rewards Q(ai) become more accurate,
so there is no need to have the same amount of exploration, thus it reduces the ε. The
strategy that has a decreasing εt is called ε-decreasing strategy.

For the ε-decreasing strategy is the same, except for ε, which is now ε0 and can be
selected by the user, and for every round t we have multiple possible εt functions (the
logarithmic version is called the GreedyMix strategy). For example:

εt =
ε0
t

, or εt =
log(ε0)

t
.
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A different perspective on the ε-greedy strategy is the LeastTaken strategy, which does
the exploration based on how often are the different options tried. Thus, in [28] suggests
that the least taken arm should be tried with a probability of 4/(4 + m2), where m is
the number of times that arm has already been tried.

3.3.3. Pursuit bandit strategy

In [17] and [23], an interesting approach on bandit is elaborated to deal with non-
stationary environments, i.e. when the probability of success µ changes in time. The
suggestions is to include a recency parameter α that weights recent rewards more heavily
than long-past ones. In the same paper, a short mathematical proof shows that the
equation (3.4) for each arm ai is equivalent to:

Qt+1(ai) =
1

ti
∗

ti∑
s=1

Rs,i

=
1

ti
∗
(
Rt,i +

ti−1∑
s=1

Rs,i

)
=

1

ti
∗
[
Rt,i + (ti − 1) ∗ 1

ti − 1
∗
ti−1∑
s=1

Rs,i

]
=

1

ti
∗
[
Rt,i + (ti − 1) ∗Qt(ai)

]
=

1

ti
∗
[
Rt,i + ti ∗Qt(ai)−Qt(ai)

]
= Qt(ai) +

1

ti
∗
[
Rt,i −Qt(ai)

]
, where i ∈ {1, 2, . . . , k}. (3.5)

First, equation (3.5) is more practical because the state consists of only one variable
Qt, and not the list of all R1, R2, . . . , Rt−1 for the arm i. Second, the time step size is 1

ti
,

which will be denoted as αt(ai). This time step size is incremental and it decreases from
step to step. In the case of a non-stationary environment, when the rewards of the arms
change in time, using αt(ai) is not appropriate, as new arm pulls that are supposed to
be more accurate will have little impact on Qt. To solve this shortcoming, [17] proposes
a constant α ∈ (0, 1]. As this time step size increases and comes closer to 1, the more
important the latest arm pulls are for deciding the arm assignment for the next arm
pull.

Qt+1(ai) = Qt(ai) + α ∗
[
Rt,i −Qt(ai)

]
, where i ∈ {1, 2, . . . , k}. (3.6)

Another way to increase the flexibility of the exploitation function Q(a) is to manip-
ulate the initial values Q1(ai), if there exist information prior to starting the algorithm
about a more rewarding arm. For example, setting Q1(a1) = +5, Q1(a2) = -5 is highly
biased towards the first arm, which can be a advantage for the exploitation, following
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that for the next arm pulls, it will adapt to the optimal value, but without sacrificing
transactions in the beginning if one arm is known to be better, at that time, than the
other. Nevertheless, this prior values is left to the user to be set, with the default of 0.

3.3.4. Upper-Confidence-Bound bandit strategy

If there are more than two arms, then another improvement opportunity arises. The
bandit strategies, presented up to the moment, select a random arm in the exploratory
phase. But, what if there are ten arms in total, one of them is currently used for
exploitation, two are performing very poorly, and two others are performing almost as
good as the exploitation arm. In this case, we would want to explore especially the
two challenger arms and very rarely explore the two bad performing arms. With this in
mind, one can take into account both the expected reward and the potential for actually
being optimal, and not only selecting a random arm in the exploration phase. Upper-
Confidence-Bound (UCB) strategy has many versions, as presented in papers as [23],
[27], [25], but the version presented both in [17] and [29] is very comprehensive:

At+1 = arg amax

[
Qt(ai) + c ∗

√
log t

Nt(ai)

]
. (3.7)

In equation (3.7), compared to equation (3.3), we have Nt(ai) for the number of
times action has been selected prior to time t, and c > 0 to control the degree of
exploration. However, for non-stationary problems, one needs to take into account the
more complicated method of the pursuit bandit strategy (see section 3.3.3). An adaption
of UCB for non-stationary problems is presented in [24].

3.3.5. Gradient bandit

The gradient bandit, as presented in [17], does not use estimated action values to select
the best action, but instead takes a different approach: this bandit uses a numerical
preference Qt(a) for each action a at time t. The preference depends on the rewards of
the action, but does not have any particular meaning; the action’s preference is important
only when comparing it to another action’s preference.

The action probabilities are determined based on Gibbs or Boltzmann distribution.
This distribution is often used in other bandit algorithms (e.g.: Gittins index, SoftMax).
Based on action probabilities of being the preferred one pt, At the action for time t is
selected. The probabilities are computed as follows:

pt(ai) =
eQt(ai)∑k
j=1 e

Qt(aj)
, where i ∈ {1, 2, . . . , k}.

The important aspect of the gradient bandit is the preference update after each time
t. Same as the pursuit bandit explained in section 3.3.3, it takes into account the step
size, α > 0, so that the preference weights more the most recent transactions than
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the older ones. More, the preference uses the idea of stochastic gradient ascent for
updates. Considering Rt the reward after time t and R̄t the average of all rewards
up through and including time t. The preferences can be initiated with same values:
Q1(ai) = 0, ∀i ∈ {1, 2, . . . , k}. The update of the preferences is done as follows:

Qt+1(a) =

{
Qt(ai) + α(Rt − R̄t)(1− pt(ai)) ai = At the selected arm,

Qt(ai)− α(Rt − R̄t)pt(ai) ∀ai 6= At other arms.
(3.8)

It is worth noticing that the gradient ascent is slightly changed, because it has usually
only measured the effect of the increment Rt on the preference Qt. Nonetheless, [17]
proposes the version of gradient ascent described in equation (3.8) that uses the baseline
R̄t as an extra factor. If the reward is higher than the baseline (the averaged rewards),
then the preference of the selected reward is increased; otherwise, if the reward is lower
than the baseline, then the preference is decreased.

3.3.6. Exponential-weight algorithm for exploration and exploitation

Many of the bandit strategies have different assumptions about the statistics of the arms.
Exponential-weight algorithm for exploration and exploitation (henceforth referred to as
Exp) tries to detach from these assumptions and admit not having complete control over
the rewards. In the paper [30] various forms of Exp are presented in full detail.

One of the Exp forms is Exp3.1. This version is the most appropriate for the problem
raised by this research, both from a implementation point of view and because of the
input assumptions.

Using the notations defined in (3.1) and (3.2) Exp3.1 assures that the regret ρ is
bounded by O(

√
kQmaxlnk) and it holds uniformly over time, where k is the number of

arms and Qmax maximum reward as if we were to choose the best arm at each time t.
An interesting aspect of Exp3.1 is that it runs in Γ epochs that divide the time t.

The epochs are used to restart some indicators so that we do more exploration at the
beginning of each epoch. As the time passes, the epochs are longer and longer.

In paper [30] is given a pseudocode for this algorithm. The first step is an epoch
initialization:

Γ = 0.

Exp is aiming at securing a boundary for the regret. However, to measure the regret,
the maximum expected reward Qmax is needed, which in most cases is difficult to have
a value for. Thus, Exp31 proposes an approximation for Qmax, computed per epoch, as
follows:

qΓ =
k ∗ lnk

(e− 1)4Γ
. (3.9)

As in the case of the gradient bandit (subsection 3.3.5), probabilities pt(ai) are com-
puted for selecting At, but with a different function:
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pt(ai) = (1− γΓ)
ωt(ai)∑k
j=1 ωt(aj)

+
γΓ

k
. (3.10)

Exp uses γΓ as a parameter for more control over the probabilities defined at (3.10).
This parameter can be tuned as:

γΓ = min

{
1,

√
k ∗ lnk

(e− 1)gΓ

}
.

To compute (3.10), ω is a variable similar to the expected reward Q, that it is used to
calculate the probabilities of an arm to being the best one, based on previous results:

ω1(ai) = 1 for i = 1, ..., k.

The reward is corrected by the probability of the selected action of actually being the
optimal:

R̂t =
Rt

pt(At)
.

The variable ω is updated only for the selected arm At, as follows:

ωt+1(At) = ωt(At)exp(
γΓR̂t
k

).

The expected reward is also updated:

Qt+1(At) = Qt(At) + R̂t.

If the following condition is fulfilled, then the epoch Γ is incremented. Otherwise, the
epoch stays the same. In any case, the steps from (3.9) on are then repeated:

maxQt > qΓ −
k

γΓ
.

3.3.7. Thompson sampling

Thompson sampling is a simplistic heuristics for exploration and exploitation trade-off.
This strategy focuses on giving each arm a probability of being the optimal by using a
Beta distribution. As always, the arm with the highest probability if being optimal is
chosen. In paper [31], Thompson sampling is presented in much more detail, along with
an example application for an online advertising application to decide which ads should
be shown based on the highest click-through rates.

In the case of a Bernoulli bandit (rewards are 1 or 0), we define St(ai) and Ft(ai)
the number of successes of arm ai up to time t and the number of failures, respectively.
The probabilities of each arm of being the optimal one are computed using the Beta
distribution, as follows:
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pt(ai) = Beta[St(ai), Ft(ai)].

For the selected arm (based on the highest probability) At, the reward is observed,
and for St+1(At) or Ft+1(At) are incremented.

Originally, Thompson sampling does not have any parameter. However, in the above
mentioned paper it is shown that better performance can be achieved by reshaping the
posterior of the Beta distribution, or tweaking the Beta prior parameters.

3.3.8. Other strategies

There are an impressive number of bandit strategies developed over time that try to
target specific problems. For the sake of completeness, this subsection enlists a couple
of other strategies.

John Gittins is one of the pioneers of solving multi-armed bandit problems using index
policies. The main idea is to compute a number (called an index) for each of the bandit
arms and assign arm pulls to the arm with the greatest index. This method is very useful
for job scheduling, and it originates from the book [32]. This book defines k independent
reward-producing Markov Decision processes that can be continued (arm pull) or frozen
(not an arm pull) by naming it a simple family of alternative bandit processes, where
simple means that the bandit arms are available at all times. More, there is no cost
for transitions from one arm to the other. In the simplest form, the Gittins proposes
a function G(ai) that uses a discount factor β, a stopping time τ , and for Bernoulli
bandits it depends on the beta distribution for the expected reward function. The
function tries to find the optimal strategy for maximizing the total expected discounted
reward. Formally, the index is calculated as:

Gi =
E
[∑τ−1

t=0 Ri,t ∗ βt
]

E
[∑τ−1

t=0 β
t
] .

SoftMax strategy and probability matching variants is a popular strategy that uses
Boltzmann (also called Gibbs) distribution. This uses a probability

p(ai) =
eQ(ai)/τ∑k
i=j e

Q(aj)/τ
.

The choice of τ is left to the user. SoftMax can be adapted to a decreasing SoftMax, by
using for example τ = τ0

t , in the same manner as for ε-decreasing strategy (see subsection
3.3.2). Another adaptation if this strategy is GaussMatch specific for the case where the
rewards follow a Gaussian distribution. More details about SoftMax, and GaussMatch
can be found in [17], [23], [25], [26], and [27].

The paper [33] presents an extension of the bandit strategy for the cases when the
arms depend on each other. The authors propose a model that clusters the arms and
manage to reduce the problem to a traditional bandit problem.
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4. Treatment design

4.1. Context assumptions

The context assumptions are the given facts about the environment in which the design
will act upon. Thus, the routing algorithm for payments need to take into consideration
and to integrate into the payment flow. To a certain extent, these assumptions define
the scope of the to-be-designed solution.

The most important context assumptions are:

1. Assumptions on payments

a) Infinite horizon. The total number of transactions is unknown beforehand
and it is considered infinite;

b) Batch and continuous transactions. Most of the merchants have the trans-
actions that come continuously, as a stream, but there are a few merchants
that have all their transactions in batches. A batch of payments means that
all the payments from the previous week, month or quarter of year come all
together;

c) Binomial rewards. The reward function of one payment is not a continuous
number, but rather binomial with two possible outcomes: 1 - Success or 0 -
Failure;

d) Delayed responses. There is a time delay between sending a payment and
receiving a response, because network transfer time and external processing
time by card schemes and issuers.

2. Assumptions on acquirers and authorization rates

a) Unknown authorization rate distribution. This propriety is general across all
bandit problems, because if the authorization rate was known, choosing the
best action for each transaction would have been trivial, by always going to
the acquirer with the higher authorization rate;

b) Non-stationary authorization rate. The experience at Adyen shows that au-
thorization rate changes in time for the same acquirer, because of unknown
reasons to Adyen;

c) Independent acquirers. The authorization rate and the processes of one ac-
quirer does not influence the other arm, no matter what action is taken;

d) Acquirers availability. It is assumed that the acquirers are available at all
times;
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e) No transitional costs. Going from one acquirer to the other does not involve
any cost;

f) Small number of acquirers. The number of acquirers is usually two, although
it can be three, four, or sometimes more;

g) Acquirers are available at all time. As long as an acquirer is on the list of
possible acquirers, it is also assumed that the acquirer can be reached out
and used for processing of payments;

h) Acquirers do not treat payments independently. For example, if there is a
history of n failed transactions, the n+1 transaction might be also refused,
if there is any sign of doubt about it (for example, if the shopper address is
missing). However, the same transaction could have been accepted in other
circumstances, i.e. if the history of the shopper, merchant or issuing bank
would have been cleaner (less failed transactions in the past).

4.2. Treatment requirements

Using the definitions of treatment requirements defined in [1], we consider them as
desired proprieties of the solution that should contribute to the stakeholders goals.

The requirements have been defined by both experts at Adyen and by external stake-
holders. The most important stakeholders at Adyen in defining the requirements are the
data analysts and product owners (for dew the expected behavior, input, and output),
software engineers (for making sure that the implementation is realizable), and account
managers (the actual users of the new algorithm, responsible for setting it up for the
merchants and monitor the results for them). On the other hand, in the case of external
stakeholders, the merchants (the buyers of the payment services) are the most important
ones, because they are the beneficiaries of the treatment.

The requirements can be functional (f ) or non-functional (nf ). A functional require-
ment is a desired function of the solution or algorithm, whereas a non-functional require-
ment is actually a desired propriety when the solution is introduced in its context.

To make everything more concrete, it is important to have ways of measuring a require-
ment fulfillment by using indicators or metrics. This is usually needed for non-functional
requirements, but indicators can be defined for functional requirements as well. This
procedure is called operationalization. The priority of the requirements are determined
by the means of importance and likelihood. These treatments requirements are described
in table 4.1.
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Requirement Type Description Indicators Priority Main stakeholder

Performance f
The treatment should increase the
number of authorized transactions

Auth. rate High Merchants

Low Risk f
In worst case scenario, the eventual
negative impact should be low and
controllable

Auth. rate High Merchants

Automation f
The treatment needs a minimum
user interaction to configure and
control the treatment

Avg. no.
of user interactions

Normal Adyen

Utility nf
The treatment is meant for cases
where there are two or more
available acquirers

No. of merchants Normal Adyen

Usability nf

The configuration and monitoring
interfaces should be simple to use;
the treatment mechanisms should
be easy to explain to the
beneficiaries (merchants)

Effort to use,
effort to learn

Normal Adyen

Flexibility nf

The treatment should allow
configurations per different variables
(e.g.: merchants, BINs); it should be
configured and come into effect
in real-time;

No. of var.;
effect delay

High Adyen

Reliability nf
There should be no system failures or
deadlocks in the acquirer selection

System errors count High Adyen

Interoperability nf

Compatible with the current
implementation; ability to set
proportion of traffic between
treatment and current
implementation;

Compatibility effort Normal Adyen

Time efficiency nf
Payments should happen very fast;
the treatment should add an
insignificant time overhead

Time overhead due
to the algorithm

Normal Adyen

Space efficiency nf
The main memory used by the
treatment should be not be
excessive

Main memory used
by the algorithm

Normal Adyen

Accuracy nf

Payments are financial operations,
so the treatment should handle
them consistently and accurately,
where all numbers match; e.g.:
total no.payments in equals total
no. payments out.

Accuracy checks Normal Adyen

Security nf

The algorithm should, in no way,
compromise or weaken the
security of the transactions in the
payment flow

Security checks Normal Adyen

Compliance nf

It should not affect various
compliance rules from the card
schemes; e.g.: sending only
failing payments to one acquirer
might attract penalties for bad
traffic from the card schemes

Compliance checks Normal Adyen

Table 4.1.: Treatment requirements

4.3. Proposed treatments

The current implementation is not fully adequate for the research problem, as explained
in section 2.4. There are many alternatives to the current implementation, as shown in
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the literature review (section 3), but given the scope of this research, not all of them
will be tested and validated.

The presented algorithms need to be tailored to and best fit the context assumptions
(section 4.1) and the treatment requirements (section 4.2), the list of possibilities can be
divided into two lists: high expectation designs, and low expectation designs.

4.3.1. High expectation designs

There are 5 high expectation designs: play the winner rule 3.2.2, a combination be-
tween the greedy bandit (subsection 3.3.2) and the pursuit bandit (subsection 3.3.3),
the gradient bandit (subsection 3.3.5), Exp31 (subsection 3.3.6), and Thompson sam-
pling (subsection 3.3.7).

These high expectation designs cover most of the context assumptions and treatment
requirements. However, there are couple of assumptions that are not particularly man-
aged by any of these algorithms and they might bring a performance shortfall. These
are the assumptions on delayed responses and batch transactions. The algorithms are
designed to work best when the decision on t+1 transaction is taken by using the infor-
mation up to the t transaction.

Most of high expectation algorithms are part of reinforcement learning - multi armed
bandit, that is why, all of these algorithms have common structure. The algorithm can
be divided into three phases:

1. Initialization: the variables used by the algorithm are assigned initial values. They
can be either some default values or user specified. The initialization can be done
all at once in the beginning, but it is more appropriate to have a lazy initialization.
This means that for each new payment to be routed, we look whether the initializa-
tion has already been done for the relevant combination of payment characteristics
(e.g.: merchant, BIN). If not, then we do the initialization.

2. Send payments: the payments are sent based on the routing rules set by the
algorithm.

3. Update: the update step refreshes the algorithm variables based on the result of
the payment (success or failure), and thus updating the routing rules used for the
future payments.

First, update step can only happen once the response have been received, but in
between payment request and the actual update of the variables based on the payment
responses, other payments can come in. Inevitably, these later payments will be routed
using outdated information.

Second, time efficiency means that the variables should be kept in the main memory.
On the other hand, the payment flow is a stateless process, where the only allowed state
are static caches of the data found in the database. These caches work as a snapshot
of that data. The variables used by the algorithm can only be stored and used through
the caches. Once a payment response is received, then the flow is more relaxed, and it is
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possible write to the database. However, for each new payment, it is impossible to access
the database to read the algorithm variables, due to time efficiency. The middle ground
is to use the cache as a (outdated) snapshot of the database variables. The caches are
refreshed at a fixed time (e.g.: 15 minutes, 1 hour, 4 hours, 1 day). Having a smaller
time frame means that the algorithm variables are more up to date; having a larger time
frame means that the execution time overhead brought by the algorithm is smaller.

4.3.2. Low expectation designs

Comparing two proportions (subsection 3.1) is very similar to the current implementa-
tion. However, it offers an additional layer of statistical rigidity by clearly specifying the
minimum sample sizes needed to make a fair comparison and it defines the minimum
difference of authorization rate to be able to conclude that one acquirer consistently
performs better than the other acquirer, not only due to chance. Nevertheless, there are
two important drawbacks of this approach. The authorization rates need to be constant,
which is not the case for payments (see context assumptions). This makes it impossible
to make predictions. . Second, while data is gathered for the minimum sample size,
this method cannot offer any information on the best acquirer, so the risk of losing
transactions while learning is very large.

A/B Testing is a bit more advanced than comparing two proportions. It can cope
better with setting the minimum sample size and it can assess quicker the best acquirer,
especially if the difference in authorization rate is large. In any case, it is not very
appropriate to make predictions, because the differences of performance is done with
Z-test, and this has the same shortcomings as in the case of comparing two proportions.

Upper-Confidence-Bound bandit strategy leverages cases where there are more than
two acquirers. For payments, in almost all cases, there are two acquirers. Thus, the
extra complexity brought by this strategy does not pay-off.

Gittins index has a strong theoretical support, but in practice, it is very difficult to
implement due to the resources needed to compute the index for every new payment.
More, the infinite horizon context assumption (undefined total number of payments)
it is not genuinely supported by the Gittins index. As for the SoftMax strategy and
GaussMatch, most of their logic are incorporated by Exp31.
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5. Treatment validation

5.1. Validation models

The main two objectives of validating the algorithms in the context are: selecting the
best algorithm to be implemented on the platform and building a design theory around
the algorithm. The design theory should assure that the assumptions and requirements
are covered by the algorithm, so that the results of the simulation can be generalized to
the real context. More, the design theory should commit to an improvement expectation
of the algorithm. The validation can also bring to surface patterns and other information
about the data.

As described in subsection 4.3, there are multiple possible solutions. Ideally, the best
way to validate the performance is to implement all of the possible algorithms in the
real world context (the payment platform). However, this is not feasible, and a more
practical approach is to have models of the algorithms’ implementation applied to a
model of the context.

A great deal of complexity of the real payment platform is not included in these
models:

• mechanisms used to send information between parts of the payment platform and
outside (network, RPL protocol, etc.). The models use direct function calls;

• database and cache implementations. Everything is kept in memory;

• other irrelevant sub-systems (risk system, payment request parser, etc.). The mod-
els simulate only the strictly necessary sub-systems (payment generation and ac-
quirers);

• fallback procedures. On the payment platform, everything needs to have a safe
fallback in case of any kind of failure or inconsistent state. On the real payment
platform, this might result in situation in which some payments will ignore the
recommendation of the treatment, or the treatment fails before making any rec-
ommendation;

• control on the application of the treatment. This can be done by wrapping every-
thing around a on/off feature, and controlling exactly when a payment uses the
treatment by creating filters by variables (e.g.: only for some merchants, only for
some BINs, only for 50% of the payments of these filters);
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5.1.1. Model of the context

The model of the context needs simulate the following:

1. generation of payment requests;

2. acquirer selection out of the available acquirers;

3. payment responses for the generated payment requests.

Payment generation is very simplistic and it only contains the necessary variables
(issuer country, merchant, BIN). The available acquirers are given, and the acquirer
selection is the result of the algorithm.

The most difficult part is to simulate the payment response, as it is impossible to
replicate a true acquirer that handles real payments. However, it is possible to simulate
the authorization rate distributions of real acquirers by using historical data. To keep the
non-stationary assumption of the distributions, the authorization rates will be calculated
per day. These distributions will determine whether it is a success or a failure. More, the
number of payments generated per day will be the same as the one on the real platform
for the respective day for which the authorization rate distribution is simulated.

The payment responses are also simulating the delay to which they are received by the
payment platform. The delay is not fixed a time, but probabilistic, similar to the real
world. So, the t+1 payment might or might not have an updated view of the algorithm
variables up to the t, t-1, t-2, ... payment. In paper [15], two types of simulated delays
are defined: deterministic (when a payment request comes in, we get the response of this
payment after 2, 3, 4, ... other payment requests) or stochastic (when a payment request
comes in, we get the response for this payment with a probability of 1/3, 1/4, ... before
each new payment request). Thus, in the current simulations, we used the stochastic
approach, fixing a probability of 60% that a payment response is received after each
payment request. This means that there will be cases in which the number of payment
responses will be behind compared to the number of payment requests that have been
made.

Another important aspect is that all experiments are run for 1,000 times, so that the
results are as accurate as possible and we limit the impact of the randomness on the
algorithms’ performance.

5.1.2. Model of the algorithms

The algorithms are build in Java and they use the pseudocodes described in appendix
A. The algorithms are isolated from each other, but they use the same sample data for
benchmarking.

To measure the performance of the algorithms we define the following:

• Improvement : the difference between the authorization rate of the simulated pay-
ments handled by the algorithms and the real authorization rate from the sample
data. A negative improvement means that the algorithm does more harm than
good;
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• Regret : the difference between the authorization rate of the best acquirer and
the authorization rate of the simulated payments handled by the algorithms; of
course, the best acquirer is not known beforehand and it is determined by looking
backwards at the real data. It is not realistic to consider an authorization rate of
100% as being the maximum, because that cannot be reached by only selecting the
best acquirer. The gap between the authorization rate of the best acquirer per day
and the real authorization rate per day is the actual improvement opportunity;

• Weight : some types of BINs appear more often in the data set than other BINs;
this is why, it is important to add some weights to the results to make sure we
make a fair comparison between the acquirers;

• Weighted improvement : importance * % improvement. This measurement is reli-
able and can be used to compare the algorithms’ performance.

5.2. Sample data

The sample data is real payment data from one merchant for E-commerce and ContAuth
(recursive E-commerce) shopper interactions. We use data from three countries, same
merchant, to increase diversity of the validation by making sure that the results are
consistent across countries. The sample has two sets, presented in table 5.1.

Country Period
No.

payments
No.

BINs

US April - June 2016 26.7 mil 15,919

FR January - June 2016 1.8 mil 653

ES January - June 2016 2.2 mil 702

Table 5.1.: Sample data

The algorithm is supposed to run per country, merchant, and BIN, as they include
much of the information of a payment. Of course, the design should and does allow later
variables addition, if needed.

5.2.1. Data description

Three of the most important variables that describe our data are: volume, variation and
authorization rate difference between acquirers. The volume is the number of payments
done by a BIN in a day. The variation is defined as the probability of an acquirer to
have the highest authorization rates two days in a row. For example, if the variation
of a BIN is 50%, it means that if at transaction t acquirer A is the best, then at t+1,
there are 50% chances that acquirer A will be the best, whereas there are 50% chances
that acquirer B will be the best. These characteristics were selected in consultation with
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data experts at Adyen. However, the daily number of transactions is the decisive factor,
for two reasons: the impact on the business and the influence on the algorithms.

In figure 5.1, we can see that the cumulative density of BINs by the daily number of
transactions. Most of the BINs (86.18%) have between 0-10 transactions per day. As
the daily number of transactions increases, the number of BINs decreases, up to one BIN
that has nearly 10,000 transactions per day.

Figure 5.1.: Cumulative density of BINs by daily number of transactions

Figure 5.2 looks more in-depth in the small BINs. We can see here the same distribu-
tion of the small BINs in all the three sampled countries: France(FR), Spain(ES), and
United States(US).

Figure 5.2.: Distribution of BINs by daily number of transactions - less than 5 tx/day

However, the majority of small BIN counts for less then 10% of the total number of
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transactions for the sampled data. In figure 5.3, we see that the most influential BINs in
terms of total number of transactions are 48 BINs (only 0.28% of all BINs) that count
for more 38% of all transactions. These can be considered as “outliers”, but in our case,
they are very important, and we might want to cluster them differently. Some of these
BINs have around 6,000 thousands - 10,000 transactions per day. More than 50% of
transactions are done via BINs that have between 11 - 1,000 transactions per day.

Figure 5.3.: BINs impact on total number of transactions based on the daily number of
transactions

Figure 5.4 shows a more general view on the BINs by variation and authorization
rate difference between acquirers. We can observe that most of the BINs cluster around
variation of 50%. At the same time, small BINs tend to have a larger difference in
authorization rate than larger BINs. This behavior is normal, because if one BIN has
a few transactions, from which one of them fails, then one acquirer will present a much
higher authorization rate than the other. As already shown, the number of BINs between
0-5 tx/day is much higher than the others. The figures are dominated by the blue color,
because US BINs are much more frequent in the sampled date, but the identified trends
are similar for all three countries.
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Figure 5.4.: Distribution of BINs by daily number of transactions, variation, and differ-
ence in authorization rate
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5.2.2. Clustering

The generation of millions of payments is very demanding. An alternative is to extract
several BINs and infer the results over all the data. However, the BINs are not homo-
geneous, and it is important to assure representativeness of the extracted BINs. To do
this, we first cluster the data based on the three characteristics: volume, variation and
authorization rate difference between acquirers.

There is a second use of the layers: to find and validate patterns of the algorithms
behavior. On one hand, the patterns should help in comparing the algorithms’ per-
formance on different types of BINs. For example, Play the Winner Rule algorithm is
expected to perform better for BINs with that have small variation, because once the
better acquirer is identified, exploration is non-existing, as long as the selected acquirer
is not failing too much. One the other hand, if the variation is high, we expect that the
other algorithms perform better because they have more complex mechanisms to explore
change and to exploit the rightful acquirer. On the other hand, the identified patterns
should help in deciding the right parameters for each of the algorithms. For example,
the threshold for the Play the Winner Rule algorithm, for which the algorithm performs
best, is expected to be high for large BINs, but for small BINs, it is expected to be very
low.

One of the most used multivariate clustering analysis in data mining [34] is k-means.
We have used k-means to reduce the number of selected BINs to run simulations, but in
the same time, to make sure that we have variety of BINs in our selection. The clustering
has been done on normalized/scaled variables (mean is subtracted and divided by the
standard deviation).

In figure 5.5 we plot the within groups sum of squares by the number of clusters.
There is no “good” way to choose the right number of clusters. However, there is a

popular heuristics, called the Elbow method, that looks at the variance explained by
various number of clusters. When there is little variance explained by adding a new
cluster, then the Elbow method suggests to stop.

After running k-means analysis on all BINs, we have the number of clusters to be 10,
because here we see the error (within groups sum of squares between points and the
center of the cluster) to stop from the fast decrease. This method is based on the one
presented in [35], which is actually a slightly modified version of the Elbow method, by
using within cluster variance.
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Figure 5.5.: K-means analysis of clusters

Figure 5.6 presents the BINs divided into 10 clusters in a 3D plot for the three (nor-
malized) variables: variation, authorization rate difference, and daily number of trans-
actions.

Figure 5.6.: All BINs divided into 10 clusters with kmeans

In figure 5.7, we can see the number of BINs per cluster. Cluster 10 contains the
most BINs and more than 50% of the total transactions. Cluster 8 has the least BINs,
but the second most transactions, because it has the biggest BINs in terms of number of
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transactions. Clusters 1-5 and 9 have many BINs, but not so many transactions, because
they mostly contain small BINs.

Figure 5.7.: Number of BINs and proportion of transactions per cluster

Out of each cluster, we have selected 2 BINs to simulate and apply the proposed
treatments. More than half of the clusters have very small BINs (around 1 transaction
per day), and there is little sense to apply any of the proposed algorithms and expect
improvements. Thus, we have selected the BINs with the most number of transactions
within each cluster. More, larger BINs are more important, as they count for more
transactions. Table 5.2 lists the selected two BINs within each cluster.
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Cluster BIN Daily tx Variation (%) AuthRate Difference (%) Country

1 468xxx 192.97 66.67 0.91 US

1 457xxx 17.48 64.29 5.21 US

2 438xxx 1711.03 0 14.93 US

2 484xxx 999.19 13.33 0.27 US

3 435xxx 20.62 44.44 12.91 US

3 529xxx 14.76 46.41 9.36 FR

4 449xxx 29.4 28.89 24.45 US

4 540xxx 23.9 38.89 15.71 US

5 513xxx 29.08 20.99 38.66 FR

5 513xxy 13.84 28.18 39.12 FR

6 474xxx 606.76 58.89 0.38 US

6 470xxx 550.22 58.89 2.05 US

7 435xxy 405.62 34.44 3.33 US

7 454xxx 391.08 35.56 0.30 US

8 434xxx 10034.18 48.89 0.27 US

8 414xxx 6016.99 0 8.59 US

9 448xxx 5.1 66.67 33.33 US

9 478xxx 3.11 50 33.33 US

10 542xxx 1798.2 43.33 0.16 US

10 542xxy 1784.35 46.67 0.77 US

Table 5.2.: Sampled BINs for simulations

5.3. Results

In this section we present the results of the five proposed algorithms (section 4.3) on the
sample data (section 5.2). Based on these results, we measure the performance of the
treatments. These statistics are used to compare the proposed algorithms and conclude
on the most appropriate choice for the identified problem. More, we learn more about the
treatments themselves, especially about the right parameters that can be used. These
results bring us closer to fulfilling the three functional requirements (section 4.1).

5.3.1. Performance

We have applied the proposed algorithms for each of the 20 selected BINs. In figure 5.8,
we can see the results of Play the Winner Rule applied to BIN 414xxx (part of cluster
8), which is an US BIN with large volume, no variation, and small authorization rate
difference. This result uses the optimal parameter (failure threshold), or the parameter
for which the best results were obtained. The impact of different parameters is analyzed
in the next subsection.
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Figure 5.8.: Play the winner on large volume, no variation, small authorization rate
difference BIN

The real line represents the authorization rate per day from real payments. The best
line represents the authorization rate per day, if we were to choose the acquirer with
the highest authorization rate for the respective day. The bandit line represents the
authorization rate of the algorithm. The difference between the bandit line and the real
line is the improvement. If the former is below the latter, then the bandit had a negative
impact. The difference between the best line and the bandit line is the regret. If the
bandit line is close to the best line, then we have fulfilled most of the improvement goal.

In the above case, we have an improvement throughout the period. On average, the
improvement is 2.34% authorization rate. There is still 1.95% improvement possibility
left (regret). The threshold used for this experiment is 71 failures.

In figure 5.9, we applied Greedy and Pursuit bandit on the BIN 457xxx (part of clus-
ter 1), which has fewer transactions, higher variation and smaller authorization rate
difference.
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Figure 5.9.: Greedy and Pursuit bandit small volume, high variation, small authorization
rate difference BIN

Here, we have an improvement of 3.17% and a regret of 1.77%. The bandit line is
closer to the real line, though, it never goes under it, which means that we do not expect
it to have a negative impact. This is important to know when assessing the low risk
requirement.

This process has been repeated for all sampled BINs and for all proposed algorithms.
In figure 5.10 we can see the performance improvement brought by the five proposed

algorithms for each cluster. For cluster 4, the majority of the algorithms managed to
bring an important improvement. Clusters 1, 6, and 10 have a small authorization
improvements. As for cluster 9, the improvements are negative for some algorithms,
which means that they actually have a negative impact on the performance of those
BINs, if the algorithms were to be applied.

From these results, a few patterns can be identified. First, Play the Winner Rule shows
better improvements for clusters that have a larger variation (clusters 1 and 9). This can
be explained by the fact that it can change to the other acquirer quicker, because it just
counts the number of failures without keeping track of any other information. In the
case of high variation, the algorithms retain more information from the past transactions,
thus they take some more time and transactions until they propose the other acquirer
to be explored.

Second, the algorithms Exp31, Gradient bandit and Greedy, and Pursuit bandit have,
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in most cases, improvements that go in the same direction. However, Exp31 consistently
presents lower authorization rate improvements.

Figure 5.10.: Authorization rate improvement per cluster

An important question that the stakeholders ask is ”What authorization rate improve-
ment are we expecting on average?”. This question can be answered by weighting the
authorization rate improvement by the total number of transactions. Nevertheless, not
all clusters are equally important. Results in figure 5.11 Try to answer stakeholders‘
question. Expected improvements are 2.38% for Exp31, 2.57% for Gradient bandit,
2.84% for Greedy and Pursuit bandit, 1.54% for Play the Winner Rule, and 2.58% for
Thompson Sampling. Greedy and Pursuit bandit shows the best performance; followed
by Gradient bandit and Thompson sampling.
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Figure 5.11.: Authorization rate improvement weighted by the total number of transac-
tions

5.3.2. Automation

One other important functional requirement (see table 4.1) is to minimize the user
interactions when trying to configure a route. The proposed algorithms manage to do
this to a certain extent, but some of them still have parameters that need to be set.
In the literature, setting the parameters is usually left to the user, depending on the
context of the application. In our context, it is important to offer default values of the
parameters, and if needed, to allow the user to manually change them.

Thompson sampling and Exp31 algorithms do not have any parameters to be set.
Thus, the analysis is only applicable for Play the Winner Rule (failure threshold), Greedy
and Pursuit bandit (exploration rate ε, recency rate α and initial preference indicators
Q) and Gradient bandit (recency rate α and initial preference indicators Q). The initial
preference indicators (where applicable) are not analyzed, because their use is quite
clear and they should be used only when there is already good information about the
performance of the available acquirers. Otherwise, their default values are 0.

We analyzed the effects that different parameters have on the algorithms to see whether
a pattern can be observed based on which we could define a heuristics. More, it is
important to see what are the expected costs in terms of performance.

An overview of the impact of different parameters on the authorization rate can be
seen in table 5.3. This table tells us that, in the case of Play the Winner Rule, we expect,
on average, to have a difference of 0.20% authorization rate between the best performing
failure threshold compared to the worst failure threshold. This amplitude gives us insight
on how important it is to focus on getting the best performing parameters. For example,
looking at figure 5.11, for Play the Winner Rule, we expect an improvement of 1.54% in
authorization rate, for the case where we have selected the best performing parameters.
On the other hand, the amplitude of the failure threshold is 0.20%. So, if we were to select
the worst failure threshold instead of the best one, we expect the lowest authorization
rate to be 1.34%.
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Algorithm Parameter
Average amplitude

of the impact on the
authorization rate

Play the Winner rule Failure threshold 0.20%

Greedy + Pursuit bandit Exploration rate 1.33%

Greedy + Pursuit bandit Recency rate 1.20%

Gradient bandit Recency rate 0.39%

Thompson sampling - -

Exp31 - -

Table 5.3.: Impact on authorization rate for different parameters

As one can observe, Greedy and Pursuit bandit is the most sensible algorithm to
different values of the parameters. More, it has two parameters that might be set to
the wrong values. In simplest terms, one can expect a lowest authorization rate average
of 0.31% (2.84% - 1.33% - 1.20%). Despite its highest authorization rate improvement,
Greedy and Pursuit bandit can easily turn into the worst performing algorithm in case
the exploration and recency rates are not carefully set for each BIN.

Thus, we will have a closer look on the behavior of the parameters for different cluster
of BINs.

Play the winner rule. Failure Threshold. In figure 5.12 we observe the impact of
different values for the failure threshold parameter on the authorization rates of different
types of BINs.

This figure confirms that setting one threshold or another has little effect on the
overall authorization rate. The main reason is that there is usually little difference in
authorization rates between the two acquirers and the algorithm is too simplistic to
exploit the acquirer that is slightly better, no matter what threshold we set. There is
one exception: BIN 448xxx (cluster 9) which is a small BIN with a high variation. For
this BIN, a higher threshold has better results.
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Figure 5.12.: Play the winner rule - failure threshold impact on the authorization rate

Greedy and pursuit bandit. Exploration rate and recency rate. In figure 5.13 we can
see the impact of exploration and recency rates on the authorization rate. In the case of
exploration rate lines, we keep fixed recency rates; in the case of recency rate lines, we
keep fixed exploration rates. These fixed values are set differently for each BIN. We are
interested more in the dynamics of the parameters lines, than on the interaction between
the two for different values.

The impact of the exploration rate is stable for BINs 468xxx (cluster 1), 474xxx
(cluster 6), 435xxy (cluster 7), 434xxx (cluster 8), and 542xxy (cluster 10). All of
these BINs are medium to large BINs. Usually, for larger BINs, the authorization
rate differences are smaller, thus there is little effect on always exploring or actually
exploiting the slightly better acquirer. On the other hand, for the rest of the BINs, we
see a decreasing trend in authorization rate as the exploration rate increases. Most of
these BINs are small BINs (with the exception of BIN 438xxx). For these BINs, the
differences in authorization rates are higher, and too much exploration causes to go more
often with the worst acquirer. BIN 438xxx is the exception because it has 0% variation,
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Figure 5.13.: Greedy and pursuit bandit - exploration rate and recency rate impact on
the authorization rate

which means that an acquirer is always better than the other, thus excessive exploration
has a negative effect.

Compared to the exploration rate, recency rate is rather stable. For some BINs (e.g.
BIN 449xxx, BIN 513xxy, BIN 435xxx), wee see that a higher recency rate is better for
the authorization rate. The same behavior can be seen at all BINs, but at a smaller
impact scale. This makes sense, because having a very small recency rate means that
the latest transactions have a very small weight when calculating the score. A small
recency rate is fine for very low variation, but in our case, most BINs have a variation
between 40% - 60%, thus a higher recency rate is beneficial.
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Gradient bandit. Recency rate. In figure 5.14 we can see the impact of the recency
rate α on the authorization rate.

Figure 5.14.: Gradient bandit - recency rate impact on the authorization rate

The main observation is that the impact of different values is not big. Still, same
small impact trends as in Greedy and Pursuit bandit can be observed for BIN 449xxx,
BIN 513xxy, and BIN 448xxx. The small effect is due to the fact that the Gradient
bandit has other regulating mechanisms to keep the preference indicator in check, i.e.:
the average reward R̄ and the probabilities p(ai). More, it is the only algorithm that
updates preferences of both acquirers Q for every transaction.
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6. Discussion and conclusions

6.1. Discussion

6.1.1. Remarks on the research goal and research questions

Throughout the paper, we analyzed ways to reach our research goal and to answer all of
the question that derive from it. In this section, we come back and discuss these aspects.

1. Descriptive

a) What is the scope of the routing of payments?
The scope of the routing of payments is wherever there are multiple available
acquirers to connect to, which is country specific. It is only applicable to credit
cards networks Visa and MasterCard (not for other payment methods, such
as iDeal). For Adyen, this is the case the following countries: Spain, France,
Brazil, and US. However, not all merchants want to use all of the available
acquirers due to different costs. At the moment, there are 21 merchants that
allowed routing of payments between multiple acquirers. It is not excluded
for more merchants to sign-in for routing, or for the number of countries that
Adyen has multiple acquirer connections to increase.

b) How many payments are affected?
For the countries mentioned above, only card payments, there are approxi-
mately 2.35 mil payments per day that could eventually have the intelligent
payment routing applied to.

2. Explanatory

a) What are the reasons that cause a payment to fail?
Payments fail due to discretionary, technical and fraud reasons. The technical
failures are the ones that need to be fixed, and they count, on average, for
5-10% of all transactions.

b) What are the influences of different variables on the payments?
For card payments, the card networks decide the format of the messages.
There are approximately 150 data fields (no sub-fields included) that eventu-
ally influence the decision of the issuers. However, for routing purposes, we
only consider a handful of them: issuer country, merchant, and BIN.

c) How much does the performance of the acquirers change in time?
The variation is defined as the chances to have the same best acquirer (in
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terms of auth rate) for two days in a row. In France, the average variation is
45.71%, in Spain 38.33%, and in US, it is 48.05%.

d) What is the expected improvement that a new algorithm will bring?
If we apply Greedy and Pursuit bandit we expect an average 2.84% authoriza-
tion rate increase. Play the Winner Rule has the lowest expected authoriza-
tion improvement of 1.54%, but in the same time, it is the simplest algorithm
(to both understand and implement).

1. Effect and requirement satisfaction

a) What effects does the algorithm have on payments?
Any of the algorithms make recommendation for the best acquirer to go for
each transaction. It will modify the payment request, acquirer field, to the
one selected.

b) What is the execution time when using the new algorithm?
To make the it as fast as possible, the parameters needed for the algorithm
to decide are kept in cache. It is not expected to bring any significant delay
during a payment.

c) What is the usability of the new algorithm for the payment platform?
The algorithm is easily implementable, based on the given pseudocodes. User
interaction is minimal. Users need only to enable/disable the algorithm. They
can set the parameters manually or use the default ones. Payments that use
this algorithm can be flagged, thus it enables real time performance monitor-
ing. More, the traffic can be A/B tested with the current implementation.

d) Does the algorithm satisfy the requirements of the stakeholders?
The requirements are listed in 4.1. The most important requirement is the
performance and low risk. As it results from the results, the expected im-
provement is positive, which means that the algorithms can safely be imple-
mented and tested. The other requirements become more important in the
implementation phase, which will eventually be covered by Adyen.

2. Trade-off and sensitivity

a) How do different algorithms perform?
There are differences between algorithms, as Play the winner rule and greedy
and pursuit bandit perform best, especially because data shows a high varia-
tion. Gradient bandit, Exp31, andThompson sampling perform similarly.

b) How do different parameters of the same algorithm perform?
Parameters affect the performance of the algorithms. In table 5.3, we see
that the impact is around 2.5% authorization rate, which means that, in
some cases, choosing the unfitting parameters might make the improvement
of the algorithm negative.

c) Can the algorithm be applied to other contexts?
The algorithms are highly adaptable to other contexts. In payments, we can
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apply them for payment flagging (e.g.: include or not include shopper address)
and retrying of transactions (e.g.: retry transactions if the response code is
“Unknown”). But, one can make use of the algorithms and these results for
other domains where there is unknown and unfixed probability distribution.

6.1.2. Research contribution

The current research gives the data used in the payment industry a whole new look and
functionality. Payment data is commonly used to either exchange data between financial
institutions, shoppers, and merchants, or to make reports about amounts, number of
transactions, authorization rates, etc. However, we have showed that there is much
more that can be done with the data, than just looking at aggregates or case by case
payments. The complexity of the payment network brings to the surface the need of a
data-driven, dynamic approach in taking various decisions. This paper tries to frame
routing as a reinforcement learning application, especially as a case of the multi-armed
bandit problem. As far as this literature review has gone, this has not been tried in the
payment industry before.

The most interesting characteristic of payments is the unknown and unfixed nature
of the authorization rates. This enabled a comparison between five different bandit
strategies on real-data that lead to better understanding the performance expectations
of the algorithms under these particular circumstances.

More, the application quantified the impact of various parameter values of the bandit
strategies on the results and raised the problem of automatically decide the parameters,
which has partially solved by using heuristics and the expert opinions based on the logic
of payments.

6.1.3. Limitations and recommendations

There are some limitations to the treatment’s approach:

1. no information about why an acquirer works better than the other, we just see the
preferred one; to understand better the variables that lead to a failure or a success,
we need a different approach, such as logistic regressions or decision trees;

2. little control on the routed payments; in Brazil especially, merchants have strict
contracts with the acquirers about the volume and costs; or, Adyen might have
strategic needs to route more payments to particular acquirer; the proposed treat-
ment tries to find the best acquirer in terms of performance;

3. the performance expectations do not cover all the improvement opportunity; as
mentioned, 5-10% of payments technically fail, but routing of payments with the
proposed treatments expect an increase in authorization rate of 2.84%; however,
by applying the same algorithm for flagging, retrying of payments, or other parts
of the payment flow, we might be able to reach a higher improvement;
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4. there is no available theory for setting the parameters (e.g.: exploration rate and
recency rate), but merely heuristics based on observations on which parameters
work better for which test cases.

The main recommendation for the treatment implementation on the real platform is
to apply and compare Play the Winner Rule and Greedy and Pursuit bandit, because
the first one is very simple to implement, and the second one has the highest expected
results. The second recommendation is to implement one of the other three proposed
algorithms for the cases in which one acquirer is always better than the other, because
they have more stable results and one or no parameters to be set.

6.1.4. Future work

The future work should concentrate in covering the limitations of the treatments, espe-
cially shortcomings of the multi-armed bandit strategies. These are:

1. connect multi-armed bandit algorithms with other types of learning based on the
input variables to explain the contribution of the features; or, another way of
understanding why is to integrate the response codes of a payment, so that it does
not use just a binomial model (1-success, 0 - failure)

2. incorporate more complex rules in the decision of the best option, for example,
minimum or maximum number of transactions through one acquirer;

3. a method to compute and use the optimal parameters (highest performance).

Adyen can also modify the payment request itself (by tweaking various fields), pro-
cedure called payment flagging. There are many similarities between payment flagging
and intelligent payment routing. Based on analogy, the same research could be used in
payment flagging applications.

6.2. Conclusions

Multi-armed bandit is a neat solution to optimize unknown and unfixed probability dis-
tributions. The main research goal can be achieved by routing payments to different ac-
quirers. It is expected to bring a 2.84% authorization rate improvement and it definitely
reduces the effort of setting routing rules, compared to the current implementation.

Intelligent payment routing can be easily implemented and tested on the payment
platform at Adyen and leverages the connections to multiple acquirers. Even more, the
proposed treatments can be used in many other applications, such as payment flagging
or retry of payments.
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A. Pseudocodes

A.1. Play the winner rule

Pseudocode:

set failure threshold;
F = 0 ; /* init failure count */

A1 = random (ai) ; /* choose a random acquirer */

for t = 1, 2, 3, ... do
send payments to At;
if F >= failure threshold then

F = 0 ; /* reset failure count */

At = switch (ai) ; /* switch to a different acquirer */

end

end
updateDBFailureCountASync;
refreshCacheASync;
/* when a payment response is received, */

/* update failure count in the database */

define updateDBFailureCountASync begin
if Rt = 0 then increment failure count

F++;
end

end

The function updateDbFailureCountASync runs asynchronously, and for each payment
response received, and in case it is a failure, then it increments the F failure count in
the database. However, the cache that actually gives the failure count is only refreshed
in a given time frame.
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A.2. Greedy and pursuit bandit

Pseudocode:

set preference indicator Q1;
set exploration rate ε;
set recency rate α;
for t = 1, 2, 3, ... do

switch randomly generated number do
case ε %

At = random(ai) ; /* refresh cache every given time frame */

end
case 100-ε %

At = arg maxaQt(ai) ; /* choose acquirer with max preference

*/
end

endsw
send payments to At;

end
updateDBPreferenceASync ; /* on responses, update database */

refreshCacheASync;
/* when a payment response is received, */

/* update the preference indicators in the database */

define updateDBPreferenceASync begin
for i = 1, 2, ... k do

Qt+1(ai) = Qt(ai) + α ∗ [Rt −Qt(ai)];
end

end
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A.3. Gradient bandit

Pseudocode:

set preferences Q0(ai);
computeProbabilities;
for t = 1, 2, 3, ... do

At = drawAcquirerUsingProbabilities;
send payments to At;

end
updateDbASync ; /* on responses, update database */

refreshCacheASync;
/* when a payment response is received, */

/* update the preferences and probabilities */

/* in the database */

define updateDbASync begin
for i = 1, 2, ..., k do

R̄t = average of all R up to transaction t;
if At = ai then

Qt+1(ai) = Qt(ai) + α ∗ (Rt − R̄t)(1− pt(ai));
else

Qt+1(ai) = Qt(ai)− α ∗ (Rt − R̄t)pt(ai);
end
computeProbabilities;

end

end
/* calculate probabilities using Boltzmann distribution */

define computeProbabilities begin
for i = 1, 2, ..., k do

pt(ai) = eQt(ai)[1/esumQt(a)]
end

end

66



A.4. Exp31

Pseudocode:

Γ = -1 ; /* init epoch count */

startNewEpoch;
computeProbabilities;
for t = 1, 2, 3, ... do

At = drawAcquirerUsingProbabilities;
send payments to At;

end
updateDbASync ; /* on responses, update database */

refreshCacheASync;
/* when a payment response is received, */

/* update the preference indicators in the database */

define updateDbASync begin

Γ++ R̂t = Rt/pt(At);
computeProbabilities;

Qt+1(At) = Qt(At) + R̂t;
if maxQt > qΓ − (k/γΓ) then

startNewEpoch;
end

end
define startNewEpoch begin

qΓ = (k ∗ lnk)/[(e− 1)4Γ;

γΓ = min

[
1,
√

(k ∗ lnk)/[(e− 1)gΓ]

]
;

ωt(a) = 1;

end
define computeProbabilities begin

ωt+1(At) = ωt(At)exp(γR̂t/k);
for i = 1, 2, ..., k do

pt(ai) = (1− γ)[ωt(ai)/(sumωt(a)] + (γ/k)
end

end
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A.5. Thompson sampling

Pseudocode:

S0(ai) = 0;F0(ai) = 0 ; /* init success and failure counts */

computeProbabilities;
for t = 1, 2, 3, ... do

At = drawAcquirerUsingProbabilities send payments to At;
end
updateDbASync ; /* on responses, update database */

refreshCacheASync;
/* when a payment response is received, */

/* update the success, failure counts, and probabilities */

/* in the database */

define updateDbASync begin
if Rt = 1 then increment success count

St(At) + +;
else increment failure count

Ft(At) + +;
end
computeProbabilities;

end
/* calculate probabilities using Beta distribution */

define computeProbabilities begin
for i = 1, 2, ..., k do

pt(ai) = Beta[St(ai), Ft(ai)]
end

end
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B. Simulation results

B.1. Play the Winner Rule

BIN Cluster Improvement Regret Weight
Best

parameter
(threshold)

Weighted
improvement

457xxx 1 2.76 2.19 0.14 1 0.00

468xxx 1 1.14 1.22 0.14 21 0.00

438xxx 2 3.64 3.83 3.38 51 0.12

484xxx 2 0.61 1.46 3.38 31 0.02

435xxx 3 4.57 3.43 0.87 1 0.04

529xxx 3 7.31 6.29 0.87 1 0.06

449xxx 4 8.05 9.55 0.18 11 0.01

540xxx 4 3.61 5.08 0.18 1 0.01

513xxx 5 -1.38 10.12 0.05 1 0.00

513xxy 5 -4.46 10.47 0.05 1 0.00

470xxx 6 0.9 1.16 8.87 71 0.08

474xxx 6 0.67 0.61 8.87 81 0.06

435xxy 7 0.32 1.96 6.22 81 0.02

454xxx 7 0.66 1.25 6.22 91 0.04

414xxx 8 1.95 2.34 26.90 71 0.52

434xxx 8 0.52 0 26.90 81 0.14

448xxx 9 18.18 0 0.08 21 0.01

478xxx 9 -12.31 14.39 0.08 61 -0.01

542xxx 10 0.43 0.1 53.31 91 0.23

542xxy 10 0.32 0.36 53.31 91 0.17

Total 1.54

Table B.1.: Play the Winner Rule full results
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B.2. Greedy and Pursuit bandit

BIN Cluster Improvement Regret Weight

Best
parameters

(exploration -
recency rates)

Weighted
improvement

457xxx 1 1.77 3.17 0.14 0.21-0.3 0.00

468xxx 1 1.42 0.94 0.14 0.1 - 0.11 0.00

438xxx 2 7.03 0.43 3.38 0.1-0.01 0.24

484xxx 2 2.02 0.05 3.38 0.1-0.01 0.07

435xxx 3 4.41 3.59 0.87 0.1-0.21 0.04

529xxx 3 6.68 6.91 0.87 0.21-0.3 0.06

449xxx 4 13.76 3.84 0.18 0.01-0.3 0.02

540xxx 4 4.04 4.65 0.18 0.11-0.3 0.01

513xxx 5 2.42 6.32 0.05 0.01-0.3 0.00

513xxy 5 1.92 4.09 0.05 0.1-0.11 0.00

470xxx 6 1.28 0.78 8.87 0.1-0.11 0.11

474xxx 6 0.79 0.49 8.87 0.1-0.01 0.07

435xxy 7 1.96 0.32 6.22 0.1-0.01 0.12

454xxx 7 1.03 0.88 6.22 0.1-0.01 0.06

414xxx 8 4.24 0.05 26.90 0.1-0.01 1.14

434xxx 8 0.62 0 26.90 0.1-0.01 0.17

448xxx 9 9.47 0 0.08 0.11-0.3 0.01

478xxx 9 -10.12 12.2 0.08 0.71-0.3 -0.01

542xxx 10 0.64 0 53.31 0.1-0.01 0.34

542xxy 10 0.71 0 53.31 0.1-0.01 0.38

Total 2.84

Table B.2.: Greedy and Pursuit bandit full results
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B.3. Gradient bandit

BIN Cluster Improvement Regret Weight
Best

parameter
(recency rate)

Weighted
improvement

457xxx 1 1.01 3.93 0.14 0.91 0.00

468xxx 1 0.86 1.51 0.14 0.11 0.00

438xxx 2 7.97 0 3.38 1.01 0.27

484xxx 2 0.93 1.14 3.38 0.81 0.03

435xxx 3 5.87 2.13 0.87 1.01 0.05

529xxx 3 3.11 10.48 0.87 0.51 0.03

449xxx 4 12.73 4.87 0.18 0.81 0.02

540xxx 4 6.39 2.3 0.18 0.41 0.01

513xxx 5 4.26 4.48 0.05 0.81 0.00

513xxy 5 4.11 1.9 0.05 0.91 0.00

470xxx 6 0.59 1.47 8.87 0.91 0.05

474xxx 6 0.53 0.76 8.87 1.01 0.05

435xxy 7 2.16 0.13 6.22 0.11 0.13

454xxx 7 0.52 1.39 6.22 0.21 0.03

414xxx 8 4.78 0 26.90 0.61 1.29

434xxx 8 0.56 0 26.90 0.01 0.15

448xxx 9 7.73 0 0.08 0.91 0.01

478xxx 9 -8.75 10.83 0.08 0.41 -0.01

542xxx 10 0.44 0.1 53.31 0.11 0.23

542xxy 10 0.41 0.26 53.31 0.01 0.22

Total 2.57

Table B.3.: Gradient bandit full results
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B.4. Exp31

BIN Cluster Improvement Regret Weight
Best

parameter
(NA)

Weighted
improvement

457xxx 1 -0.11 5.05 0.14 NA 0.00

468xxx 1 0.62 1.75 0.14 NA 0.00

438xxx 2 7.89 0 3.38 NA 0.27

484xxx 2 0.62 1.44 3.38 NA 0.02

435xxx 3 3.44 4.56 0.87 NA 0.03

529xxx 3 2.52 11.07 0.87 NA 0.02

449xxx 4 11.95 5.64 0.18 NA 0.02

540xxx 4 4.04 4.65 0.18 NA 0.01

513xxx 5 2.86 5.89 0.05 NA 0.00

513xxy 5 3.4 2.6 0.05 NA 0.00

470xxx 6 0.56 1.5 8.87 NA 0.05

474xxx 6 0.5 0.79 8.87 NA 0.04

435xxy 7 2.09 0.19 6.22 NA 0.13

454xxx 7 0.47 1.43 6.22 NA 0.03

414xxx 8 4.73 0 26.90 NA 1.27

434xxx 8 0.52 0 26.90 NA 0.14

448xxx 9 4.67 0 0.08 NA 0.00

478xxx 9 -10.69 12.77 0.08 NA -0.01

542xxy 10 0.37 0.16 53.31 NA 0.20

542xxx 10 0.28 0.39 53.31 NA 0.15

Total 2.38

Table B.4.: Exp31 full results
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B.5. Thompson sampling

BIN Cluster Improvement Regret Weight
Best

parameter
(NA)

Weighted
improvement

457xxx 1 2.17 2.77 0.14 NA 0.00

468xxx 1 0.89 1.48 0.14 NA 0.00

438xxx 2 7.96 0 3.38 NA 0.27

484xxx 2 0.45 1.62 3.38 NA 0.02

435xxx 3 5.8 2.2 0.87 NA 0.05

529xxx 3 3.44 10.15 0.87 NA 0.03

449xxx 4 12.5 5.09 0.18 NA 0.02

540xxx 4 6.48 2.21 0.18 NA 0.01

513xxx 5 4 4.74 0.05 NA 0.00

513xxy 5 3.85 2.16 0.05 NA 0.00

470xxx 6 0.59 1.46 8.87 NA 0.05

474xxx 6 0.63 0.66 8.87 NA 0.06

435xxy 7 1.99 0.3 6.22 NA 0.12

454xxx 7 0.49 1.41 6.22 NA 0.03

414xxx 8 4.77 0 26.90 NA 1.28

434xxx 8 0.5 0 26.90 NA 0.13

448xxx 9 5.45 0 0.08 NA 0.00

478xxx 9 -3.17 5.25 0.08 NA 0.00

542xxx 10 0.47 0.06 53.31 NA 0.25

542xxy 10 0.45 0.23 53.31 NA 0.24

Total 2.58

Table B.5.: Thompson sampling full results
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