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Summary

This project aims to reduce the deployment and development time of SLAM systems for robotic
projects. This is done by creating a clearly defined structure in which to develop SLAM algo-
rithms and supporting software in a modular approach.

The structure is defined based on a separation of concerns and the identification of dependen-
cies of the different parts of a SLAM system on the underlying hardware and the environment.

Based on this structure a simple SLAM system is implemented based on a simulation of a robot
with a LIDAR. This system uses a general purpose feature detector for the LIDAR data and a
version of the Fast-SLAM algorithm. The single system that is implemented in the designed
structure is tested in order to determine the best configuration. Based on these test the system
is functional, from which it can be concluded that the structure works.

A improvement that can still be made on the structure is the feature association. This asso-
ciation is not yet separated from the SLAM algorithm. This should be implemented in future
work.

The feature selector used for the system has a flaw in the current environment: due to the close
detection of different features, correct association of features becomes a problem. A feature
detector with unique classifiers for every feature would therefore be better suited for these kind
of problems.

The created structure could also lead to large performance optimizations, as parts of the system
could be implemented on dedicated hardware, e.g. FPGAs.

Robotics and Mechatronics T.G. Broenink
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1 Introduction

This project aims to reduce the deployment and development time of Simultaneous Localiza-
tion And Mapping (SLAM) solutions by creating a structure for reusable SLAM.

1.1 Context

The current SLAM ecosystem consists of a lot of different techniques (Openslam, 2016), based
around different types of sensors (LIDAR: Vu et al. (2007), Cameras: Davison et al. (2007), RGB-
D: Kerl et al. (2013)), assumptions made about the environments (indoor, outdoor), and pro-
cessing requirements. These different techniques are tailored to a certain situation in which
they provide optimal performance. This leads to the fact that for every combination of hard-
ware and environment, there is a need of significant effort to tailor these algorithms, thus lead-
ing to larger development and deployment times. These development and deployment times
are both a barrier for the creation of new projects, but also serve as a deterrent for changing
existing set-ups.

This research attempts to unify the different systems and techniques based on the fact that
they all have the same reference, the world they are trying to map. As the map that is required
for navigation is always a occupancy map, the map is independent of the sensor or feature
size used. This is why an approach is described to separate the world belief from the SLAM
algorithms, allowing multiple sensors to work on the same data set depending on the situation,
and hardware available. This could also be done concurrently, a second robot continuing the
map of the first one, or in parallel, two robots working on the same map at the same time.

1.2 Goals

The goal of this research is to reduce the effort required to deploy and develop SLAM systems,
by separating the different essential parts of SLAM algorithms and defining these using stan-
dard structures and interface types.

Standardizing and separating world belief, sensors and processing algorithms allows a modular
approach to development and deployment. Thus allowing a new set of hardware or a new
algorithm to be deployed with a smaller amount of effort, while also removing the need to
recreate complete maps for every system that is used.

1.3 Approach

In order to standardise the SLAM system, it is first necessary to evaluate how different parts
of the SLAM algorithm depend on different system properties (e.g. sensor, kinematics, type of
environment). This can then be used to split the SLAM algorithm into sub-blocks based on
these dependencies and the interfaces between these blocks can be defined. These blocks can
then be implemented and tested based on these interfaces. This means that the design process
is divided into the following steps:

1. Identify dependencies

2. Split SLAM algorithm into blocks

3. Define interfaces between blocks

4. Implement individual blocks

5. Combine finished blocks into functioning SLAM system

Robotics and Mechatronics T.G. Broenink



2 On reusable SLAM

1.4 Outline

Chapter 2 is a brief introduction on what SLAM is and how SLAM algorithms are structured.
This chapter can be skipped if the reader has sufficient knowledge in this field. Chapter 3 deals
with an analysis of the current problem, based on which a design is proposed in Chapter 4.
The implementation of this design is discussed in Chapter 5. This design is tested in Chapter 6.
Conclusions and recommendations for further work are shown in Chapter 7

T.G. Broenink University of Twente
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2 Background

The basics of Simultaneous Localization and Mapping (SLAM) algorithms is shown in this
chapter. This chapter also gives an overview of the current state of slam. If the reader has
sufficient background knowledge on the workings of SLAM, this chapter can be safely skipped.

2.1 Basics of SLAM

SLAM, as the name implies is a family of algorithms to simultaneously map an environment,
and use this map for correction the own position. Most of this algorithms are based on prob-
abilistic models of the position and the environment. The output will then be the most likely,
according to the algorithm, position and environment. The SLAM algorithm consists of two
major parts: a prediction step and a update step. In the predict step the internal information of
the robot, for example control signals, odometry or an IMU, is used to predict the new state of
the robot. In the update step external information is used, usually measurements of the envi-
ronment, to correct the prediction of the robot and the environment. A schematic overview of
this behaviour is shown in Figure 2.1. It is important to note that not only is the robot position
corrected, but that the estimation of the landmark is also corrected with the measurement.

2.1.1 Statistical model

The prediction step of the SLAM algorithm can be mathematically expressed as:

p(x �
t |ct , xt−1)

With x the state of the system, and c the control signals. This probability includes disturbances
based on the system noise. As the period over which the state is predicted become larger it
becomes less accurate, as is shown in Figure 2.2. The prediction that is started earlier has a
larger error then the later prediction.

The update step of the SLAM algorithm can be expressed mathematically as:

p(xt |x �
t , zt )

With x � the corrected state and z the measurement of the environment. The state of the system
also includes the landmark positions. This is shown in Figure 2.1, where the position of the
landmark is also estimated. Both the update step and the predict step use information that will
contain uncertainties. By combining this information in an intelligent way, the final estimation
of the state can be more accurate then a single measurement/prediction could provide.

2.1.2 Feature detection

In the previous section landmarks are mentioned, but usually the environment has no clearly
defined landmarks. This is where the feature detector comes in. The feature detector takes
raw data from the environment and extract features from this data. This process is shown in
Figure 2.3.

Depending on the sensor used different algorithms for feature detection need to be used. Some
feature detectors function on depth based data, from LIDAR (Li and Olson, 2010), Sonar, or
depth cameras, and some use visual information (Frintrop et al., 2006; Silveira et al., 2008),
from a normal camera. It is important for a feature detector to be able to reliably detect the
same feature over and over, as feature detectors with a large false positive or false negative rate
are hard to use. It is also important for a feature detector to be able to match a landmark to
previously known landmarks based on the position and attributes of the landmark.

Robotics and Mechatronics T.G. Broenink
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T = 0 T = 1

Estimation and
 Real position

T = 1

Measurement
And correction

Figure 2.1: A SLAM system in action. The robot (triangle) measures the landmark (plus), moves forward
and measures the landmark a second time, correcting its estimation of its own position and that of the
landmark.

Robot path

Prediction 1

Prediction 2

Figure 2.2: A prediction of a robot driving forward with some motion noise. Prediction 1, which is started
earlier then prediction 2 has a larger error, while prediction 2 is much more accurate. The ellipses are a
representation of the uncertainty of the position.

Laser scanner Feature detector

Features:
1: pos: ….
2: pos: ….

Figure 2.3: A feature detector working on laser data. The laser scanner supplies a depth line, and the
feature detector extracts recognizable features into data.
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Map layer Feature layer Complete map

Figure 2.4: The different layers of a map. In this situation the map is a 2D occupancy map, and the
features are detected based on corners.

Update

Predict

Control Signals

Measurement
Feature

Detection

Map

Slam cycle

Figure 2.5: A overview of the slam algorithm with a SLAM cycle (predict->update->predict).

2.1.3 SLAM filters

The most important part of a SLAM system is the SLAM filter, this is the algorithm that actually
implements the predict and the update step. The result is only an approximation of the proba-
bility density functions, as the true probability distribution is to computationally expensive to
be calculated. A multitude of different filters exist to implement this approximation. More on
this is shown in Section 2.2.2.

2.1.4 Maps

Another part of the system is to create a map of the environment. The environment is usually
mapped in two layers when using a SLAM algorithm. The feature layer contains the features
that are detected. This part is mostly used by the slam filter for positioning. The map layer
contains the "raw" data from the sensors, providing a physical map of the environment. This is
shown in Figure 2.4.

2.1.5 Recap

An overview of the complete slam cycle is shown in Figure 2.5. In this figure it is shown that
the SLAM cycle requires odometry data or control signals for the predict step, and features for
the update step. The slam system results in a current estimation of the map every with every
iteration of the slam cycle.

2.2 The current state of SLAM

To give an overview of the current situation of SLAM systems a split has been made between
algorithms and sensors, as most algorithms can be configured to work with multiple different
types of sensor data. First the types of sensors and their physical properties and limitations are

Robotics and Mechatronics T.G. Broenink
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Sensor type Physical quantity Data provided
LIDAR Backscattering Reflection Distance, Reflectivity, Velocity
Sonar Acoustic Reflection Distance, Reflectivity, Velocity
Camera Colour Colour image
Depth Camera Colour/Backscattering Reflection Colour and Depth image

Table 2.1: The different types of sensors, including physical quantity and the type of data provided

discussed. Secondly the different families of algorithms and their strong and weak points are
discussed.

2.2.1 Sensor Types

The sensors that are used the most in SLAM systems can roughly be divided into 4 sets of sen-
sors. Both based on the physical quantity that the sensor measurement is based on, and the
type of data that the sensor provides. These four sets are:

• LIDAR, 1D,2D and 3D. (Kohlbrecher et al., 2011; Li and Olson, 2010)

• Sonar, both 1D and 2D (Choit and Ahnt, 2005; Ribas et al., 2006)

• Camera, both Intensity and RGB (Davison et al., 2007; Steder and Grisetti, 2008)

• Depth camera, both depth and RGBD (Sturm et al., 2012; Endres et al., 2012)

The different physical quantities and data types of these sensors are shown in Table 2.1. It is
important to note that depending on the exact sensor configuration, the data that is returned
can be a 1D, 2D or 3D.

Based on this table, it can be deduced that different types of sensors may have problems de-
tecting different kinds of obstacles. A simple example is a mirror or glass plate, a camera or
LIDAR will be confused by the reflections or the transparency, while a sonar based system has a
much better change of detecting this correctly. The sonar will however have trouble with sound
absorbing material, which is not a problem for the optical systems, unless the material is also
light absorbing.

Another limitation for sensors is the effective range. While a LIDAR system can measure dis-
tances up to, and exceeding 30m (Hokuyo, 2012), sonar systems can only measure upto a cou-
ple of meters with any speed (MaxBotics, 2005), and camera systems can go up to near infinite
ranges, limited only by visibility. These limitations are imposed by the difference in the speed
of sound and light in air, and will be different in other media e.g. water.

2.2.2 Algorithm Families

The algorithms used in a SLAM system in general consist of two parts. First the feature detec-
tion, which transforms the sensor data into feature locations. Secondly a probabilistic algo-
rithm which uses this pose estimation to improve the world belief. Both are discussed here.

Feature detection

Feature detection simplifies the sensor data into features which can be easily associated and
stored. One can also use the complete measurement using a scan matching approach, but this
takes a significantly larger amount of computational resources (Li and Olson, 2010).

Feature detection can be done using line/corner detection for use in man-made environments
or a tree detector for outside environments. Both of these systems can be used for depth im-
ages. Corner and line detection can also be applied to color images (Gil et al., 2009; Choit and
Ahnt, 2005; Kim and Oh, 2007). Both of these methods are limited by the assumptions made

T.G. Broenink University of Twente
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Sensor type Computational complexity Flexibility
Scan matching High High
(Li and Olson, 2010)
Attention-based F.D. Medium Medium
(Vu et al., 2007; Li and Olson, 2010)
Fixed F.D. Low Low
(Gil et al., 2009; Choit and Ahnt, 2005; Kim and Oh, 2007)

Table 2.2: The different types of feature detection/matching, including the computational complexity
and the flexibility

about the environment and thus performs badly when these assumptions are false. E.g. while
using a system optimized for line and corner detection will perform poorly in a park in contrast
to inside a building.

Another option is to use a feature detection algorithm based on attention. This evaluate the
fitness of landmarks based on the contrast with the environment. So instead of looking for a
fixed structure, it will detect whatever aspect of the environment gets the most attention. This
results in a more flexible feature detector (Vu et al., 2007; Li and Olson, 2010). An overview of
these options is shown in Table 2.2, with a comparison of computational complexity, and how
well the algorithm deals with different environments, i.e. the flexibility.

From this table it can be concluded that the more flexibility is necessary for a system, the higher
the computational costs. There are also hybrid solutions, which mitigate this effect by, for ex-
ample, using both a line and a corner detector for feature recognition, but as more different
detectors are added to a system, it quickly approaches an attention-based approach.

Processing Algorithm

There are different ways of processing the feature measurement in order to obtain position in-
formation. It can be done using different algorithms, The biggest split is the use of Bayesian
techniques, where the features are used to refine a prior estimation of the position in order to
improve the current estimate, or using direct position estimation, where the feature informa-
tion is first used to estimate the robot position directly before that position is used to update
the position estimation. Bayesian techniques can then be implemented using Extended (Civera
et al., 2008; Cole and Newman, 2006; Artieda et al., 2009; Choit and Ahnt, 2005; Davison et al.,
2007) or Unscented Kalman (Chekhlov et al., 2007) filters or by using particle filtering (Grisetti,
2005). Direct pose estimation is most easily done using visual slam, combined with for exam-
ple RANSAC (Endres et al., 2012; Artieda et al., 2009; Steder and Grisetti, 2008) or other fitting
algorithms. All of these different algorithms benefit from using a smoothing or optimization
algorithm for loop closing problems (Kohlbrecher et al., 2011; Frintrop et al., 2006; Steder and
Grisetti, 2008; Se et al., 2005), for example g2o (Endres et al., 2012).

The more linear estimations algorithms, especially the Kalman filters, have problems rep-
resenting multi-modal beliefs (Thrun, 2002), thus these algorithms, while computationally
cheaper, perform badly in global localization cases, for example the kidnapped robot prob-
lem1. In contrast, particle filtering and direct pose estimation perform significantly better, at
significantly higher costs.

All of these filters are in essence suitable for a global and local localization problem, however
as the amount of poses remembered grows it might be useful to prune the information. This is

1The kidnapped robot problem is the situation in which a robot is "kidnapped" between 2 measurements to a
new location. This invalidates the prior knowledge of the robot position, making it a tough problem to track for
statistical filters.

Robotics and Mechatronics T.G. Broenink
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to keep memory requirements manageable. This could also be achieved by using a chunking
algorithm to split the world belief into multiple maps

T.G. Broenink University of Twente



9

3 Analysis

In order to reduce deployment time and development time, it is important to be able to reuse as
much of the existing system as possible. To accomplish this, it is important to analyse how the
different parts can be reused. Depending on, in what situations different parts of the system
can be reused, it can be determined which parts of the system can be implemented in the same
module.

Furthermore, this chapter contains a section on using multiple robots, which could be possible
due to standardisation, and on correction done between robots. In Chapter 4 a solution to
some of the problems found in this chapter is proposed.

3.1 Reusability

To be able to reuse any part of the system implies that the system is flexible enough to function
even when assumptions on which it is based are changed. This means it should be able to con-
tinue functioning with minimal changes, or at least with most parts of it intact. In order to be
able to design a system like this, it is important to define the different changes that can hap-
pen. This allows the system to be designed in such a way that a single change only influences a
single part of the system.

A schematic overview of a working SLAM system is shown in Figure 3.1. The different changes
that can be made can be split as follows. The effects of the different changes are discussed in
more depth in the following subsections. These three option only reflect the reuse of the system
on a possibly different platform. The other option of reuse is that the data that is acquired by
one robot is reused by another robot.

• The robot platform changes, thus changing kinematics of the robot.

• The sensor changes, thus requiring a different system to process sensor information.

• The environment changes such that a different state estimation algorithm is needed.

• The data is reused on a different robot.

The fact that data can be reused by different robots could also be exploited to allow multiple
robots to work in parallel on a single map. This is not a trivial problem, as more care needs to

Data

Robot platform

SensorProcessing

Environment

Figure 3.1: A complete SLAM system, based on Chapter 2
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Diffential drive Ackerman steering Holonomic drive

Figure 3.2: Different modes of steering for a robot

be taken to be able to correctly correlate the data real-time. This requires a way to determine
which robot is right in the case of conflict.

The system can be made mostly reusable if one of the parts can be swapped without influencing
the other parts. Making the SLAM system as reusable as possible.

3.1.1 Reusing on a different robot platform

Changing the hardware of the robot can mean two different things:

1. The processing hardware of the robot is changed.

2. The physical structure of the robot is changed.

The assumption is made that the first part can be solved by using modern compilers/software
stacks. This analysis only focusses on the second option. When the hardware of the robot
changes the kinematic model of the robot also changes. This can only be a parametric change
(e.g. larger wheels), or can be a change to the type of model. For example a differential drive is
changed to Ackerman steering or a holonomic drive. An example of these differences is shown
in Figure 3.2 As the kinematic model of the robot only deals with the localization, it does not
need to take into account other states of the robot. The assumption is made here that the state
of, for example, a manipulator on top of the robot has a minimal influence on the location of
the robot itself.

In order to be able to contain not only the changes in parameters but also in changes of the
motion model, the whole kinematic model of the robot should be self contained. Thus the
model contains all parameters relevant to predicting the robot movement from a previous state
and a control signal.

3.1.2 Using different sensors

A different sensors can change the requirements of the system that is processing the sensor
data in two ways:

1. An other driver is needed to interpret the sensor data.

2. An other way of processing the sensor data into features is needed.

It is an obvious assumption that the driver for the new sensor will be available. As there is no
way to use the sensor without some form of software driver. The different way of processing is
based on the type of sensor used. For example if the change is only the use of a different laser

T.G. Broenink University of Twente
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Feature detectors Sensors

Laser 1

Laser 2

Camera

Driver 2

Driver 1

Driver 3

Laser scanners

Depth cameras

Feature detector A

Feature detector B

Universal
Feature

Output

Figure 3.3: Different sensors require different drivers and possibly different feature detectors, but in the
end the output is the same.

scanner, then there is no need to change the feature detection, but depending on the format
that of the output of the sensor driver, a translation step might be necessary. If one would
change from a laser scanner to a depth camera, a significantly different feature detector might
be necessary. This situation is shown in Figure 3.3

The features that are supplied by a feature detector should be in an universal format. This
allows the rest of the system to remain the same. This requires all information needed to change
the raw sensor data to something that is processable by the robot to be contained in the sensor
module. This includes sensor positioning, but also uncertainty information.

3.1.3 Using various state estimation algorithms

The various algorithms used for state estimation take advantage of the standardization of the
feature detector and the kinematic model. This means that all algorithms have to estimate the
same state, a 6 degrees-of-freedom pose. The choice for a 6DOF pose was made because a
6DOF pose allows a representation of a 3DOF pose by simply assuming the other three to be
constant, but the other way around is not possible.

Depending on the kinematic model and feature detector it might also be impossible to estimate
all 6 degrees of freedom, which then must be assumed unknown or constant. It is also assumed
that derivatives of the pose (velocity and acceleration) will be provided by odometry data or
other sensors. The algorithms are designed in such a way that as much information about the
localization as possible is stored in the map, instead of in the algorithm itself. This will allow
most of the data to be reused when an algorithm is swapped out. However as the map cannot
change in implementation when the algorithm changes, it is probably necessary to save some
algorithm-specific information in the algorithm instead of in the map.

3.1.4 Reuse SLAM Data

Data reuse is a fundamentally different problem than code reuse. The important part about
data reuse is that it is not only useful to save the finished map of the environment, but also
to save (part of) the probabilistic information of the algorithm, as this allows this information
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12 On reusable SLAM

to be used in later expeditions into the same environment. If the data acquired is to be used
to successfully navigate in an environment, it is necessary to at least store occupancy data. It
could also be useful to store 3D coloured maps to allow human visualization of the data. In
order to be able to use the mapping data for another algorithm it is important that the features
that are detected are saved. Not only is their position needed, but also the feature descriptor
and the uncertainty information. This means the map has to contain:

• Occupancy map

• 3D color map

• Features

– location

– descriptor

– uncertainty

The occupancy map and 3D color map, might not be both used, depending on the types of
sensors available to the robot. As the map needs to be usable by multiple robots it is important
to allow multiple algorithms to access the map data independently. Based on the size of the
map, it should also be possible to only load a part of all the data. In this way a robot will not
need to be able to process the whole map. It is important that the map can contain as much
probabilistic information as possible without growing unnecessary large and in a format that
is compatible with as much different algorithms as possible.

3.2 Multiple Concurrent Robots

If the SLAM system is structured in such a way that the map information and the position esti-
mation algorithm are independent of one another it would be possible to have multiple robots
or actors active at the same time. These actors could then map an area cooperatively.

Care has to be taken that the algorithms used are able to handle outside changes and that the
map is not treated as a place to write data to, but that the map is also read for changes by
the other robot. The position estimation algorithms would have to actively read back their
information from the map.

Another obstacle to multiple actors is the relative localization between actors. This is not a
problem if the actors start in known relation to one another, but if the actors are started in-
dependently, it might cause problems. This is especially the case when feature detectors are
used that cannot discern between different features, as then there is no way to correlate the
positions of the different actors.

3.3 Correction using data

As a SLAM algorithm is collecting large amounts of data it could be useful to do an error analysis
on the type of noise received from sensor data. Especially to validate that the noise model used
in the prediction/measurement models is actually representative of the real noise. This could
then be used to further improve the SLAM system by using an adaptive system. For example,
if the SLAM algorithm has to constantly correct the odometry data in a certain direction, the
odometry has a clear bias. Thus the noise of the prediction model is not centred around a mean
of zero. This bias can then be corrected to improve the accuracy of the prediction step. This
can then also be used to detect faults or degradation of the system. For when there corrections
grow larger than an estimated limit, there is clearly something wrong with the system and an
alert could be raised.
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Figure 3.4: A SLAM system with a single robot

Robot
Robot

Robot

Sensor system

Kinematic
 Model

Sensor
Driver

SLAM
Algorithm

Feature
Detector

Map
Storage

Figure 3.5: A SLAM system with multiple robots

3.4 Overview

Based on the information of this chapter, the SLAM system can be split into a set of different
pieces. The structure for the system for a single actor is shown in Figure 3.4. When the system
is extended to multiple actors, the structure is shown in Figure 3.5. Based on these structures,
the design of the system is refined in Chapter 4.
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4 Architecture

In this chapter, the focus on the design of the architecture of reusable SLAM systems. This
design is based on the problem context mentioned in Chapter 3 and poses a general solution
for the system. A implementation of this architecture is discussed in Chapter 5. The structure
from Chapter 3 is first split up further and structured based on the dependencies of the different
parts. Then the interfaces between the different parts are discussed. Finally the global structure
of the system are discussed including the requirements of the implemented system.

4.1 Dependency of structure

The structure given in Figure 3.4 is further analysed by determining which parts needs to
change when the underlying robot or the environment changes. This allows for clear bound-
aries to be drawn between parts of the system based on how specific a part is for a certain
situation. This allows the different parts of the SLAM system to be divided into:

• Robot specific

• Sensor specific

• Feature specific

• Environment specific

• World specific

The resulting structure is shown in Figure 4.1. This structure defines four clean boundaries in
the system. These are discussed in the next section.

4.2 Interface between blocks

The structure of Figure 4.1 defines a few clear boundaries between subsystems. These bound-
aries are between:

• The feature detector and the SLAM algorithm.

• The kinematic model and the SLAM algorithm.

• The SLAM algorithm and the map storage.

• The sensor driver and the feature detector.

In this section these interfaces will be specified, based on:

• What information needs to pass through the interface.

• How this information is represented.

• In what direction this information flows.

Based on these criteria the different interfaces will be specified in the following subsections

4.2.1 SLAM algorithm to map storage

Different types of data that are interchanged between the map, and the SLAM algorithm. As
mentioned in Chapter 3 the map contains occupancy data, 3D color data and the features.
This means that all three of these types of data need to be inserted into the map. But the only
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Figure 4.1: A SLAM with the dependencies of the different subsystems.

data that is directly read from the map by the SLAM algorithm are the features. These three
different data types are represented differently. The occupancy map is written by using scan
data to indicate free/occupied terrain. This means the input should be a local occupancy map.
The color map needs 3D color information, preferably as a point cloud, which can then be
included in the map. Both of these data types are dependent on the location of the actor, thus
the position estimation of the SLAM algorithm needs to be available as well. The data that is
written to the map will have to be processed in order to be able to include it. As a occupancy
map can have a certain uncertainty as can a 3D map. The features consist of: a location, a
descriptor and an uncertainty region. All this data needs to be available with the feature. It is
critically important that the covariance between features can also be represented while sending
this data to the map. Thus the final interface consists of three parts:

• Occupancy data (SLAM to map)

– 2D Occupancy data

– robot pose estimation

• Colour map (SLAM to map)

– 3D point cloud

– robot pose estimation

• List of features (bidirectional)

– Poses

– Descriptors

– Covariance matrix

Note that the occupancy and 3D information still need to be accessible for software dealing
with path-planning or map creation, but is just not used by the SLAM algorithm.

4.2.2 Kinematics to SLAM algorithm

The kinematics interface is used by the SLAM algorithm to update the state prediction. This
means it takes a state vector as input and the time period over which to transform the state.
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The kinematics interface can return this transformed state in three different ways. This will
allow different algorithms to function using the kinematic model:

• A direct deterministic estimation of the state.

• A direct estimation with an uncertainty region.

• A sample from the uncertainty region.

The direct estimation can be used in for example an Unscented Kalman Filter (UKF) The esti-
mation with an uncertainty region can be used for a system which uses a linear estimator, for
example a Extended Kalman Filter (EKF). The Sample estimation can be used for systems using
particle filters.

All three of these options will require a state vector and a time period to function. Thus the
interfaces can be described as:

• input (SLAM to model)

– State vector

– Time period

– Depending on the type:

* Covariance matrix

• output (model to SLAM)

– State vector

– Depending on the type:

* Covariance matrix

It is important to note that the kinematic model also includes the probabilistic information
of the robot hardware. This means that all effects of control signals or errors are modelled in
the kinematic model. The slam algorithm will no need any information on the specifics of the
hardware platform.

4.2.3 Feature detector to SLAM algorithm

The feature detector needs to supply positional and uncertainty information about the features
that it detects. In order to be able to match the detected features, it is also important to know
the type of feature that is detected and the descriptor of the specific feature. This information
is only written to the SLAM algorithm. The features are represented as a list of:

• Poses

• Uncertainty regions

• Descriptors

• The types of the features

4.2.4 Sensor to feature detector

The interface between the sensor and the feature detector is very specific. It depends mostly
on the type of feature detector used. A 2D corner detector will require different data then a
3D image detector. The direction of the information is only from the sensor to the feature
detector.
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4.3 Structure

Based on the previous section, a reusable and flexible SLAM system consists of the following
components:

• Self contained sensor module, including probabilistic functions

• A kinematic model of the robot including odometry data

• Feature detector working on sensor data

• A universal standard for storing features, world belief and pose history

• A pose estimator based on standardized world belief and features

• Map Smoothing algorithms working on universal world belief

A complete SLAM system would then have the structure as represented in Figure 3.4. However
as these different parts are independent of each other, they can be used in parallel, allowing
multiple sensors, feature detectors, pose estimators or even multiple robots working on the
same world belief. This is represented in Figure 3.5. This means that the world structure will
have to be set up in such a way that it can handle multiple systems working on it at the same
time. As the inputs of the system (odometry,sensors) can be supplied at different rates, a choice
is made to use the sensors, and by extension the feature detector, as a determining factor for
the timing of the system. This means that the odometry data will have to be synchronized to
the sensor data.

4.4 Design targets

As this project was limited in time the requirements from Chapter 3 and Chapter 4 are divided
into four categories. This is done according to the MoSCoW principle. Thus they are divided
into must, should, could and will not. This division is shown in Table 4.1

Must Should Could Will not
Single implementation of interfaces SLAM validation Map validation Multiple robots
A SLAM algorithm Map smoothing reuse validation
A feature detector Corrections based on data
A kinematic model
A map

Table 4.1: MoSCoW requirements for this project

The Single implementation of interfaces must entail the creation of hard definitions of all the
interfaces in a format that can be directly synthesized into code. Based on these interface a
module must be implemented for a SLAM algorithm, a feature detector, a Kinematic model
and a map. If possible the SLAM algorithm should be validated based on a existing dataset. If
possible a algorithm should be created to smooth the map.

If a large map can be created this could be used to validate the creation of such a map using a
existing dataset.

The suggestions mentioned in Chapter 3 for multiple actors, and correction based on big data
will not be implemented. There will not be a second implementation of the system on new
hardware to validate re-usability as there is no time for this.
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5 Implementation

There is a multitude of systems available for implementing robotics software, but for this
project ROS indigo (ROS, 2014) has been chosen as software platform. This because the ROS
platform allows nice separation of the different blocks by using nodes, and ROS requires hard
definitions of interfaces and topics. These exact definitions used can be found in Appendix A.
Using ROS, a single implementation of this SLAM system is made. This does not validate the
re-usability criterion, but shows that the structure is valid for SLAM.

This chapter first shows the hardware used for the project and then continues to the imple-
mentation of the different subsystems as explained in Chapter 4 All specification of interfaces
and algorithms are described in a single package. The robot and sensor-specific elements are
created in separate packages. This results in the structure as shown in Figure 4.1.

5.1 Hardware

As the goal of this project is to create the architecture for a reusable SLAM system, and not to
implement SLAM on a specific robot. the choice was made to not test on real hardware, but
use a simulation of a robot by using Gazebo(gaz, 2016). This allows quicker testing and allows
the project to be completely self-contained. The simulated robot is build, based on a platform
with a differential drive. This allows easy navigation and control. The dimensions of the robot
are chosen small enough (60x45x40cm) so that it can easily fit a door-frame or navigate in small
spaces. The robot model is shown in Figure 5.1

Figure 5.1: The simulated model of the robot in Gazebo (gaz, 2016). The black bar on top represents the
laser scanner.

The robot is outfitted with a laser scanner for 2D navigation. This should provide enough in-
formation to test a system, and is easier and faster to simulate then a camera system. The laser
scanner is based on the Hokuyo laser (Hokuyo, 2012). This allows the robot to make a 2D map
of the environment. Gazebo provides drivers for the simulation model. This is a node that re-
sponds the /cmd_vel ROS topic for driving and a node that published laser scan data. Gazebo
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Figure 5.2: The ROS structure in which Gazebo publishes the robot state and sensor measurements. The
/t f topic is used by ROS to publish transforms between coördinate frames

also published the state of the robot joints. The full publishing structure of the Gazebo model is
shown if Figure 5.2. As this project does not include any form of navigation, the robot is driven
around manually for measurements.

5.2 Feature detection

As the simulated robot has a laser scanner, a feature detector that works on laser scan data
is required. The technique described by Li and Olson (2010) is used to implement this. This
technique allows general purpose LIDAR features to be extracted from data. It does this by first
mapping laser data to a 2 dimensional image, before applying image processing techniques
to find features. The important technique is to map the laser data onto an image in such a
way that the information that the laser scan represents is kept in the image. A few design de-
cisions, required for the implementation of the feature detector, were not specified in Li and
Olson (2010). These decisions are the segmentation of data and the handling of occlusion. The
segmentation was handled based on a distance threshold between two points. The occlusion
was handled by identifying occluded points and excluding the region around this point from
feature detections. Both of these parameters were left configurable, in order to determine an
optimum. The general process of the feature detector is shown in Figure 5.3.

Laserscan data segmentation extrapolation

filteringOcclusion masking Feature detection

Figure 5.3: The processing chain for the feature detector. The circles indicate regions in which features
are rejected. The crosses indicate detected features.

The feature detector only exports the scale at which the feature was detected and the position
estimation of the feature. This means there is no specific classifier for a single feature.
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Figure 5.4: The implementation of the kinematic model as the transformation of a state. The buffer is
filled at a fixed frequency and buffers a certain amount of time. The state is transformed from the F r om
time to the To time.

5.3 Kinematic model

The raw odometry is provided by Gazebo at a fixed frequency. This frequency is not the same
as the frequency of the laser scanner or the SLAM algorithm. This means the odometry data
needs to be saved in a buffer to be applied to a state when required. So when for example
the odometry data is published with 100Hz and the sensor data is only provided at 10Hz, 10
odometry messages are needed for every predict step. The kinematic model provides a few
services to transform a state, but all the different services have in common that they have a
f r om and a to time. So that a prediction can be made over a arbitrary time frame. These times
can then be looked up from the buffer to allow a state transformation over all the odometry
data received in this time frame. This process is shown in Figure 5.4.

As mentioned in Section 4.2.2 the kinematics model should return three different estimations:
A direct estimation, a estimation with an uncertainty region and a sample from the uncertainty
region. All three options are implemented as different services and are shown in Appendix A

5.4 SLAM Algorithm

The slam algorithm is implemented based on fast-slam as described in Montemerlo et al.
(2002). This algorithm is chosen because it used a particle filter for position estimation and
thus has a high tolerance for non-linear motion models, thus allowing for a lot of different
robots without change. The amount of particles allows a trade-off between computational
complexity and accuracy. In this case a particle count of 100 particles is chosen. One of the
important decisions to be made when implementing the algorithm was the way to match fea-
ture measurements with known features. The decision was made to match features based on
Euclidean distance, with a certain maximum threshold for matching and a certain minimum
distance for generating new features. This decision is based on the fact that there is no (semi-)
unique identifier for the feature provided by the feature detector except for the position. The
Fast-SLAM algorithm consists of a particle filter in which every particle contains a set of inde-
pendent estimations of a landmark location. Every feature measurement needs to be processed
in every particle to update the particles before particles are re-sampled based on the weight of
the measurements. This structure is shown in Figure 5.5
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Figure 5.5: The Fast-SLAM algorithm. Every measurement is followed by a predict and an update step,
applied to every particle. X is the maximum matching distance, Y is the minimum distance for a new
feature.
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5.5 World specific

Due to time constraints only simple mapping algorithm was implemented. This algorithm is
based on the local _map node provided by ROS. This simply maps the laser data to a map
based on current position estimation. This means there are no corrections on old data.
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6 Experiments

The design posed in Chapter 4 is implemented in ROS. The information about the code repos-
itory is shown in Appendix B. Based on this repository a set of tests are executed to asses the
performance of the different parts. As some of the modules are implemented using ROS pack-
ages, they are not explicitly tested. These parts are the simulation model, the map and the
drivers. This means that the feature detector, the kinematic model and the Fast-SLAM algo-
rithm are tested. The first test only tests the feature detector. The second test also includes the
kinematic model and the Fast-SLAM algorithm.

6.1 Feature detector

The Feature detector is tested by simulating the robot in a structured environment. The envi-
ronment that was chosen was the willowgarage model as is provided by Gazebo. This environ-
ment is shown in Figure 6.1. Based on this environment the parameters shown in Listing B.1
are changed and evaluated. These parameters are divided into different sections:

• Image resolution

• Laser Properties

• Segmentation

• Feature detection

These different sections are discussed separately.

6.1.1 Test method

To test the effect of the different parameters the feature detector was started using the instruc-
tion from Appendix B. This loads the parameters from the configuration. The set of parameters
was then evaluated based on the following criteria:

• Features are detected on some corners in the environment.

• There are no features in empty space.

• There are no features on straight sections of wall.

During the development of the system the values were selected to produce at least a working
system. In order to explore the boundaries of the working parameters, the parameters were
then changed pseudo-randomly and the situations, which led to problems were found using
trial and error. The effects of the different parameters are described in the following sections.

6.1.2 Image resolution

The image resolution section of the configuration contains three settings: The pixels-per-meter
(ppm), the kernel radius and the scale levels.

The ppm indicated how many pixels are in a meter at the smallest scale level. Increasing this
value increases computation time quadratically as all images increase in size. When this value
is made very small it becomes difficult for features to be detected accurately, but this only hap-
pens in the region of 10 pixels per meter.

The kernel radius only determines the size of the kernel used to smooth the laser-scan data.
This does however not determine the shape of the kernel, as that is based on the probabilistic
properties of the laser-scanner. The only limitation on this parameter is that it should be large
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Figure 6.1: The environment in which the robot is tested. The willowgarage building provided by
Gazebo. The green square indicates the robot starting position.
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Actual Structure

Too much seperation

Too little seperation

Figure 6.2: The problems of too much or too little segmentation. In both cases more features (crosses)
are detected then in the ideal situation. The circle is the sensor position.

enough to contain the actual kernel, however increasing the size also increases the computa-
tional load by a significant amount.

The scale levels determine the amount of different scales used in the feature detection algo-
rithm. As mentioned in Li and Olson (2010), the feature detection algorithm is scale invariant
because the images generated from the laser data are downsampled. When this parameter is
set too large, the resolution of the lower scale images approaches resolutions that are no longer
sensible, in the order of 10-1 pixels-per-meter. The consequence of this is that random features
are detected in regions that are nowhere near actual features. This is off course dependent on
the feature size of the environment.

The parameter ranges in which the feature detector works are present in Table 6.1.

6.1.3 Laser Properties

The laser properties configuration are based on the model of laser-scanner used and are shown
in Table 6.1. The laser range sigma is the standard deviation of the range error made by the laser
scanner, and the laser angle sigma is the standard deviation of the angle error made by the laser
scanner. These parameters are used to determine the kernel size of the smoothing algorithm.
There is no limit on these parameters, but a laser scanner with higher standard deviation will
perform worse.

6.1.4 Segmentation

The Segmentation section of the configuration contains three parameters, the distance thresh-
old, the occlude limit and the extrapolation distance

The distance threshold property is used for segmenting the laser-scanner data. When this value
is chosen too small, continues structures will be treated as different sections. This results in a
’break’ in the structure, and causes features on the ’break’. This means the value should always
be larger then the expected distance between measured values. When the value becomes too
large, different structures are treated as a single structure. This will remove certain features,
and create false features due to occlusion. This effect is shown in Figure 6.2.

The occlude limit determines how far away from a occluded point a feature should be to be
acceptable. If this value is chosen too small, artificial features are detected at a occluded point.
If it is chosen too large, potential room is lost for detecting features, it should thus be as small
as possible.
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The extrapolation distance should be large enough that even at the lowest scale levels, the edge
of the extrapolation is far enough away from the corner to not influence the feature. It can be
arbitrary large, but this will increase computational costs.

See Table 6.1 for the actual parameters used.

6.1.5 Feature Detection

The feature detection section contains the parameters used for the corner detector which is
used in the feature detector. The parameters for the corner detector are the max features, the
feature threshold, the feature distance and the covariance limit.

The max features determines the maximum amount of features that a the feature detector can
detect in one segment. When this is set too low there is a possibility that all detected features
are rejected. Setting this too high will increase computational time, but this is limited by the
other parameters.

The feature threshold limits the quality of features. This setting determines the minimum qual-
ity of a feature based on a factor of the best feature. This parameter suffers the same problem
as the max features. When it is set too strict (above 0.95), it is possible that all detected features
are invalidated due to other reasons, resulting in no detected features. Setting it too low, will
result in a lot of low-quality features, which might be false positives.

The feature distance option sets the minimum distance between detected features. If this is
set too small, multiple features are detected in the same corner. When this happens is very
dependent on the environment. It can be set very large, but this increases the risk of all features
being rejected. Just as the previous settings.

The covariance limit is a limit based on the covariance matrix of the feature. The feature is
rejected if one of the covariances is larger then this limit. Just as the previous limits, care should
be taken that this is not too strict (too small), as then there is a possibility that all features are
rejected.

The final parameters used are shown in Table 6.1.

6.1.6 Final results

Based on the selected parameters a test is run. The testing situation is shown in Figure 6.3. The
result of the feature detector is this situation is shown in Figure 6.4. The large circles are the
regions that are excluded from feature detection due to the occlusion or projection. The small
ellipses are the detected features with their 1 σ uncertainty regions. From this image it can be
seen that features are only detected on "real" corners. There are no false features provided due
to occlusion or by the projections of the laser scanner.

6.1.7 Discussion

The feature detector has some problems with detecting false features in straight sections of
wall. The computational costs can also become quite high when certain parameters are in-
creased. Especially image resolution.

Overall features are detected well, but large unbroken sections can have the result that a single
’good’ feature can obscure a few more subtle features, but as soon as the ’good’ feature is no
longer observed the others are valid.

6.2 SLAM algorithm

The Fast-SLAM algorithm has a set of configuration parameters, which are shown in Table 6.2.
To determine the effect of these parameters a few tests are run with different configurations.
These tests are run with the configuration of the feature detector from the previous section.
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Figure 6.3: The environment the robot is tested in. The result from the feature detector is shown in
Figure 6.4

Figure 6.4: The results of the feature detector in the situation shown in Figure 6.3. The rectangle is the
robot. The large circles are the regions that are excluded from feature detection due to the occlusion or
projection. The small ellipses are the detected features with the 1 σ uncertainty region.
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Parameter Minimum Used Maximum

Image resolution
ppm (pixels) 50 100 200
kernel radius (pixels) 15 40 100
scale levels 1 3 3

Laser Properties
laser range sigma (m) - 0.02 -
laser angle sigma (rad) - 0.0036 -

Segmentation
Distance threshold (m) 0.3 0.3 1
Occlude limit (m) 0.3 0.03 -
Extrapolation distance (m) 1 1 -

Feature Detection
Max features 5 10 -
Feature limit 0.7 0.9 0.95
Feature distance (m) 0.15 0.3 -
Covariance limit - 0.7 -

Table 6.1: The range of parameters which gave acceptable results for the feature detector and the final
values chosen. These are only approximate values for good performance, not absolute limits, and are
dependent on the environment. ’-’ means no limit was found.

These tests are done by manually driving the robot around in the testing environment and
assessing the performance.

6.2.1 Test Method

The Fast-SLAM algorithm is tested in much the same way as the feature detector. The system
is started according to Appendix B and the evaluation is done based on the criteria:

• The position did not drift away.

• No extra landmarks are created when driving the robot a bit.

• No landmarks are created in empty space.

• When a complete circuit of the room was made, the landmarks were re-discovered.

Working parameters were selected during development and were varied pseudo-randomly in
order to find parameter configurations that would cause problems. The effects of these param-
eters are described in the following section.

6.2.2 Parameters

The Fast-SLAM algorithm has 4 parameters. Three of these parameters, particle amount, fea-
ture match distance and minimum feature separation affect the functioning of the filter directly.
future interpol affects the ROS framework.

The particle amount option sets the amount of particles used in the filter. Increasing this
should result in more accurate representation of the probability density functions, with a in-
crease in computational cost. A minimum of about 50 particles is advised, but there is no max-
imum limit.

The feature match distance and minimum feature separation determine what happens with a
measurement, as is shown in Figure 5.5. When the feature match distance and minimum fea-
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Parameter Minimum Used Maximum

Image resolution
particle amount 50 100 -
feature match distance 0.1 0.1 -
minimum feature separation 0.3 0.3 -
future interpol(s) 0 0.1 -

Table 6.2: The range of parameters which gave acceptable results for the Fast-SLAM and the final values
chosen. These are only approximate values for good performance, not absolute limits, and are depen-
dent on the environment and the settings for the feature detector. ’-’ means no limit was found.

Figure 6.5: A small bit of the map generated. The white dots are detected features. The light grey areas
are passable and the black areas are impassable. The dark grey is unknown.

ture separation are too small, features will not be associated after a bit of drift. If it is too large,
features will be associated with the wrong features. This is highly dependant on the feature
spacing of the environment and on the configuration of the feature detector. There was not
really an optimal value for these parameters.

The future interpol setting determines how long the position published by the Fast-SLAM node
will be considered valid. Setting this too large will results in other nodes working with old data.
Setting this too small might result in the fact that there is no valid prediction for the present if
the delays of the feature detection and the Fast-SLAM algorithm are too big. The ideal setting
for this parameter is very dependant on the rest of the system.

6.2.3 Final results

The SLAM algorithm is tested by driving around in the environment and looking at the map.
One of the maps generated in this way is shown in Figure 6.5.

Robotics and Mechatronics T.G. Broenink



30 On reusable SLAM

6.2.4 Discussion

A problem that was quickly noted in this system is that there are a few features that are appar-
ently in free space. This is caused by problems in matching features with new measurements,
as the distance to match features was too small to correct for the drift of the robot. This distance
could not be increased as there were features in the environment that were close together.

This posed a problem for validation as the algorithm was not stable enough to map the whole
dataset provided. Thus there are no numerical results to compare to.

This association problem limits the efficiency of the algorithm, but also limits the possibilities
of working together with multiple robots without extra coördination.

The feature detection could be improved by implementing a feature detector that has a (semi-
) unique classifier for every feature. Something based on (stereo-) vision. This should also
eliminate the SLAM algorithm problems, as these were mostly based on feature matching.

The current system has a few speed/time limitations, this is partially caused by the fact that the
system was not optimized for performance in any way, and that a lot of debug information is
still present.

The speed problems in the current system could probably be improved by optimizing the code
and by improving ROS usage. But a larger improvement could be gained by using the separation
of modules to move parts of the system that allow it to specialized hardware. Especially the
image processing could benefit from dedicated hardware or a FPGA

T.G. Broenink University of Twente



31

7 Conclusion and Recommendations

Based on the experiments performed in Chapter 6, it can be concluded that the structure is
working. This chapter discusses the functioning of the structure and how to improve it.

7.1 Conclusions

The current structure appears to be correct. However when one looks at the separation of con-
cerns it is clear that the feature matching that is done by the SLAM algorithm right now, should
be part of the feature module. Furthermore, the map interface is not clear enough yet, as the
advanced parts of the map interface could not be implemented due to problems with the algo-
rithm.

7.2 Recommendations

The first recommendation for the structure is to separate the feature matching from the SLAM
algorithm and move this to the feature detector package. This would also allow multiple feature
detectors to be used in parallel.

The second recommendation of the structure is to test the interface between the SLAM algo-
rithm and the map. As of right now it is not used very much. The re-usability of the structure
has not been validated. This should be done by implementing the system on different hardware
and with different sensors.

7.3 Future work

Based on this conclusion and on the discussion from Chapter 6 there are 3 steps that need to
be taken to be able to use this system on a real platform.

• A feature detector with a (semi-) unique classifier.

• A more advanced map.

• Enough performance optimization to run real-time.

A feature detector with a unique classifier would solve the problem of feature association,
which will make the Fast-SLAM algorithm more robust. It will also allow better coöperation
between robots.

A more advanced map will allow better integration of probabilistic data into the map, which
should also pave the way for multiple actors.

Performance optimization to allow the system should be possible. Especially if FPGAs or other
specialized hardware is used to accelerate some parts of the system.

If these three steps can be implemented the next step would be to apply the system on a real
platform.
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A Interface definitions

The interfaces used in the current system are defined based on the ROS syntax for messages
and services. In this appendix these definitions are sorted based on the module to which they
belong. The rest of the interfaces currently use build in messages from ROS. Messages in ROS
are structure by simply listing all elements of the message, for example:✞ ☎

Header Header
i n t a
i n t b✝ ✆

Listing A.1: An example message definition.

is a message with a header, which contains things like the time of publishing and two integers:
a and b.

A service includes the request parameters above the dashed line, and the response below, for
example:✞ ☎

i n t a
i n t b
−−−
i n t sum✝ ✆

Listing A.2: An example service definition.

is a service that takes two integers (a and b) in its request and returns a single integer (sum).

A.1 Kinematic Model

The kinematic model interfaces all contain a vector for the state (n elements) and possibly a
second vector for the covariance (n ×n elements). The output is again a state and possibly a
covariance.✞ ☎

f l o a t 3 2 [ ] s t a t e
time from
time to
−−−
f l o a t 3 2 [ ] s t a t e✝ ✆

Listing A.3: Service to directly update the state.✞ ☎
f l o a t 3 2 [ ] s t a t e
f l o a t 3 2 [ ] cov
time from
time to
−−−
f l o a t 3 2 [ ] s t a t e
f l o a t 3 2 [ ] cov✝ ✆

Listing A.4: Service to update the state including uncertainty information.✞ ☎
f l o a t 3 2 [ ] s t a t e
time from
time to
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−−−
f l o a t 3 2 [ ] s t a t e✝ ✆

Listing A.5: Service to update the state by taking a sample out of the uncertainty region.

A.2 Feature Detector

As stated in Chapter 4 the features require a pose with covariance, type and classifier. This
structure was implemented and a second message was defined to publish a list of features✞ ☎

Header Header
s t r i n g type
s t r i n g c l a s s i f i e r
geometry_msgs/PoseWithCovariance pose✝ ✆

Listing A.6: The message definition for a single feature.✞ ☎
Header Header
Feature [ ] Features✝ ✆

Listing A.7: The message definition for a list of feature.
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B Repository Information

This is a modified version of the README file supplied with the code project. This project con-
sists out of multiple ROS packages for different responsibilities. All these packages are stored
in a git repository. footnotehttps://git.ram.ewi.utwente.nl/R-SLAM The ROS modules include
launch files to run certain systems.

B.1 Modules

The different modules are:

• ram_slam The main module of the system, includes the message and service definitions
as well as the SLAM algorithms

• ramscout_model This module contains the model of the simulated robot

• ramscout_kinematics This module contains the kinematic model of the robot

• ramscout_gazebo_plugin This module contains all the files required for the gazebo sim-
ulation.

• ramscout_feature_detector This module contains the feature detector for use with the
simulated robot.

B.2 Usage

To use this repository a few launch files are provided. The two most important launch files are:

ramscout_model/launch/RAMscout.launch

Which will launch the simulation of the robot.

ram_slam/launch/ramscout.launch

Which will launch not only the simulation of the robot, but will also start the feature detector
and kinematic model.

ram_slam/launch/fast_slam.launch

Which will start the fast-slam algorithm

ram_slam/launch/map.launch

Which will start the map.

To start the complete system one would need to run

ram_slam/launch/ramscout.launch
ram_slam/launch/fast_slam.launch
ram_slam/launch/map.launch

For control of the robot it is advised to use rqt and the robot control module.
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B.3 Requirements

This system uses:

• Gazebo

• OpenCV2

Which need to be installed separately.

B.4 configuration

There are 2 main configuration files used by the System. One for the feature detector, and one
for the Fast-SLAM algorithm. The configuration files contain the following options✞ ☎

#Image resolution
ppm: 100 # P i x e l s per meter , determines image

resolution
kernel_radius : 40 # How large a kernel i s used for

smoothing ( in p i x e l s )
s c a l e _ l e v e l s : 3 # The amount of scale l e v e l s for

processing (1−5)
#Laser Properties
laser_range_sigma : 0.02 # Stdev for the l a s e r range
laser_angular_sigma : 0.0036 # Stdev for the l a s e r angle
#Segmentation
distance_threshold : 0.3 # distance threshold for the

segmentation .
occlude_limit : 0.3 # the minimum distance from occluded

points a feature should be .
extrapolation_distance : 1.0 # How f a r the l a s e r corners need to

be extrapolated , should be l a r g e r then occludelimit .
#Feature detection
max_features : 10 # Maximum amount of features to

detect in a si ngl e segment .
feature_threshold : 0.9 # Feature qual i ty l i m i t a l l features

that are lower then t h i s f r a c t i o n of the best feature are
discarded

feature_distance : 0.3 # Minimum distance between two
features .

covariance_limit : 0.7 # Maximum covariance that a feature
can have , before being rejected .✝ ✆

Listing B.1: The configuration of the feature detector✞ ☎
particle_amount : 100 # Amount of p a r t i c l e s to use in

a f i l t e r
feature_match_distance : 0.1 # Maximum distance that a

feature can be associated
minimum_feature_seperation : 0.3 # Minimum distance required to

create a new feature
future_interpol : 0.1 # Time in the future that a

position estimation i s v al id .✝ ✆
Listing B.2: The configuration of the Fast-SLAM algorithm
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