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Abstract

In the recent years, the radar technology, once used predominantly in the
military, has started to emerge in numerous civilian applications. One of the
areas that this technology appeared is the automotive industry. Nowadays,
we can find various radars in modern cars that are used to assist a driver to
ensure a safe drive and increase the quality of the driving experience. The
future of the automotive industry promises to offer a fully autonomous car
which is able to drive itself without any driver assistance. These vehicles will
require powerful radar sensors that can provide precise information about
the surrounding of the vehicle. These sensors will also need a computing
platform that can ensure real-time processing of the received signals.

The subject of this thesis is to investigate the processing platforms for
the real-time signal processing of the automotive FMCW radar developed at
the NXP Semiconductors. The radar sensor is designed to be used in the
self-driving vehicles.

The thesis first investigates the signal processing algorithm for the MIMO
FMCW radar. It is found that the signal processing consists of the three-
dimensional FFT processing. Taking into account the algorithm and the
real-time requirements of the application, the processing capability of the
Starburst MPSoC, 32 core real-time multiprocessor system developed at the
University of Twente, has been evaluated as a base-band processor for the
signal processing. It was found that the multiprocessor system is not capable
to meet the real-time constraints of the application.

As an alternative processing platform, an FPGA implementation of the
algorithm was proposed and implemented in the Virtex-6 FPGA. The imple-
mentations uses pre-built Xilinx IP cores as hardware components to build
the architecture. The architecture also includes a MicroBlaze core which is
used to generate the artificial input data for the algorithm and manage the
operation of hardware components through software.

The results of the implementation show that the architecture can provide
reliable outputs regarding the range, velocity and bearing information. The
accuracy of the results are limited by the range, velocity and angular resolu-
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iv ABSTRACT

tion which are determined by the specific parameters of the RF front-end and
the designed waveform pattern. However, the real-time performance on the
architecture cannot be achieved due to the high latencies introduced by the
memory transpose operations. A few techniques have been tested to decrease
the latency bottleneck caused by the SDRAM transpose processes, however
none of them have shown any significant improvements.
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Chapter 1

Introduction

1.1 Context

For a long time radars have been used in multiple military and commercial
applications. The development of the ideas that lead to the radar systems
emerged in the late nineteenth and early twentieth centuries. However, the
main developments of the system have been seen during the Second World
War. During that period radars were extensively used for air defence pur-
poses such as long-range air surveillance and short-range detection of low
altitude targets. In the post-war period, improvements had been made in
the development of the radar technology for both the military and civilian
applications. Major civilian applications of the radar that emerged during
that period were the weather radar and the air-traffic control radar that used
to ensure the safety of the air traffic in the airports [2].

Recently, applications of radars in the automotive industry have started
to emerge. High-end automobiles already have radars that provide parking
assistance and lane departure warning to the driver [3]. Currently, there is
a growing interest in the self-driving cars and some people consider it to be
the main driving force of the automotive industry in the coming years. With
the start of the Google’s self-driving car project, the progress in this area has
got a new acceleration.

Self-driving cars offer a totally new perspective on the application of the
radar technology in the automobiles. Instead of only assisting the driver,
the new automotive radars should be capable of taking an active role in the
control of the vehicle. As a matter of fact, they will be a key sensor of the
autonomous control system of a car.

Radar is preferred over the other alternatives such as sonar or lidar as
it is less affected by the weather conditions and can be made very small to
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2 CHAPTER 1. INTRODUCTION

decrease the effect of the deployed sensor to the vehicle’s aerodynamics and
appearance. The Frequency Modulated Continuous Wave (FMCW) radar is
a type of radar that offers more advantages compared to the others. It ensures
the range and velocity information of the surrounded objects to be detected
simultaneously. This information is very crucial for the control system of the
self-driving vehicle to provide a safe and collision-free cruise control.

A radar system installed in a car should be able to provide the neces-
sary information to the control system in real-time. It requires to have a
base-band processing system which is capable of providing enough comput-
ing power to meet the real-time system requirements. The processing system
performs digital signal processing on the received signal to extract the use-
ful information such as range and velocity of the surrounded objects. One
of the platforms that can achieve this task is a multiprocessor system-on-
chip (MPSoC) which uses multiple processors to increase the computational
power.

The Starburst multiprocessor system has been developed at the Com-
puter Architecture for Embedded Systems (CAES) group of the University
of Twente. This system is used to carry out research on real-time design and
analysis. It is prototyped on a Xilinx ML605 development board which hosts
a Virtex-6 FPGA and several peripheral devices such as DDR3 SDRAM,
Ethernet and UART interface. The main processing element of the Star-
bust is Xilinx’s soft processor core - MicroBlaze. A number of MicroBlaze
cores are connected through Network-on-Chip (NoC) with a ring topology
which provides arbitration for all the processing elements connected to it.
The platform also supports hardware accelerator integration to improve it’s
computing capabilities [4].

The aim of this thesis is to analyze the Starburst platform from the per-
spective of the requirements of the FMCW radar signal processing and pro-
pose an alternative architecture if it fails to meet the real-time requirements.
First, a theoretical study on the MIMO FMCW radar signal processing will
be performed, second, computational requirements of the algorithm will be
analyzed and based on the requirements a platform for the implementation
will be chosen, third, a signal processing architecture will be designed and
implemented, finally, the tests will be performed and the results will be an-
alyzed.

1.2 FMCW Radar Fundamentals

This section introduces the basics of radar systems and gives a brief intro-
duction to the FMCW type radar. In addition, the basic working principle
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of the FMCW radar is discussed and some application examples are given.
Radar which stands for Radio Detection and Ranging, is a system that

uses electromagnetic waves to detect and locate objects. A typical radar
system consists of a transmitter, receiver and a signal processing module.
Initially, the transmitter antenna radiates electromagnetic energy in space.
If there is an object within the range of the antenna, it will intercept some of
the radiated energy and reflect it in multiple directions. Some of the reflected
electromagnetic waves will be returned and received by the receiver antenna.
After amplification and some signal processing operations, target information
such as distance, velocity and direction can be acquired [2].

Nowadays, radars are used for many different purposes. The applications
of radars include but are not limited to surveillance, object detection and
tracking, area imaging and weather observation. Each type of radar requires
the radar sensor to have specific features which can deliver useful information
to the user [2]. In case of automotive radars, the radar sensor should provide
the range and the relative velocity information of the surrounded objects to
the driver with a high accuracy and resolution. In addition, the sensor is
desirable to be smaller in size and lower in cost. Currently, FMCW radar is
the most common radar type used for this purpose [5].

FMCW radar is a type of Continuous Wave (CW) radars in which fre-
quency modulation is used. The first practical application of this type of
radar emerged in 1928, when it was patented by J.O.Bentley to be used
on airplane altitude indicating system. Industrial applications of this radar
started to appear at the end of the 1930s, after exploitation of the ultra-high
frequency band. In the following years, FMCW radar had been applied in the
number of civilian and military applications in which estimation of the range
with a very high accuracy was crucial. Few examples of these systems are
vehicle collision avoidance systems, radio altimeters and the systems to mea-
sure the small motion changes caused by vibrations of various components
of machines and mechanisms [6].

The theory of operation of FMCW radar is simple. FMCW radar sends
a continuous wave with an increasing frequency. A transmitted wave after
being reflected by an object is received by a receiver. Transmitted and re-
ceived signals are mixed (multiplied) to generate the signal to be processed
by a signal processing unit. The multiplication process will generate two sig-
nals; one with a phase equal to the difference of the multiplied signals, and
the other one with a phase equal to the sum of the phases. The sum signal
will be filtered out and the difference signal will be processed by the signal
processing unit [7]. The block diagram of the radar sensor can be seen in the
Figure 1.1.

FMCW radar offers a lot of advantages compared to the other types of
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radars. These are [6]:

• Ability to measure small ranges with high accuracy

• Ability to measure simultaneously the target range and its relative
velocity

• Signal processing is performed at relatively low frequency ranges, con-
siderably simplifying the realization of the processing circuit

• Functions well in many types of weather and atmospheric conditions
as rain, snow, humidity, fog and dusty conditions

• FMCW modulation is compatible with solid-state transmitters, and
moreover represents the best use of output power available from these
devices

• Small weight and small energy consumption due to absence of high
circuit voltages

The FMCW radar signal processing requires Fast Fourier Transform (FFT)
algorithm to be implemented. More detailed coverage of this topic will be
presented in Chapter 2.

Figure 1.1: FMCW radar block diagram
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1.3 Research Platform

This section introduces the Starburst MPSoC and the hardware platform on
which the radar application will be implemented.

The hardware platform ton which the application will be implemented is
Xilinx’s ML605 development board (Figure 1.2). The board is equipped with
a Virtex-6 FPGA which contains 241,152 logic cells, 37,680 configurable logic
blocks (CLBs) and 416 36 Kb block RAM (BRAM) blocks. Additionally, the
board contains several peripherals such as 512 MB DDR3 SODIMM SDRAM,
an 8-lane PCI Express interface, a tri-mode Ethernet PHY, general purpose
I/O, DVI output and a UART interface [8]. Currently, the platform is used
for the development and testing of the Starburst MPSoC.

Figure 1.2: Xilinx ML605 development board

The Starburst MPSoC consists of number of processing tiles connected
through Network on Chip. Currently, the platform supports up to 32 pro-
cessing cores and a Linux core to provide an easy interaction with a host PC.
In addition, the platform also supports hardware accelerator integration.

The main processing tile of the Starburst is a MicroBlaze, the soft proces-
sor core developed by Xilinx. The MicroBlaze is highly configurable soft-core
processor that can be implemented using FPGA logic. It is based on Harvard
CPU architecture and has a 5 stage single issue instruction pipeline. It has
additional hardware support for number of operations such as floating point
processing, division, multiplication and bit shifting. In addition, MicroBlaze
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has a local memory and a scratchpad memory which sizes are reconfigurable
at design time. Both memories are connected to MicroBlaze through Local
Memory Bus (LMB), and can be accessed from local MicroBlaze core, al-
though, the scratchpad memory is also connected to the ring interconnect
and can accept data from it. All the processors run a real-time POSIX com-
patible micro-kernel called Helix which supports the newlib C library and
implements the Pthread standard.

The communication network of Starburst consists of two parts. The first
one is the Nebula ring interconnect which supports all to all communication
between processing tiles and hardware accelerators. The ring is unidirec-
tional and has an arbitration policy based on ring slotting which prevents
the occurrence of starvation. Each processing tile is connected to a router
via a Network Interface and each router is connected to its two neighbouring
routers which makes a ring-like structure. The processors are processing the
stream of data and can transfer their computation results to other processors
connected to the ring. The communication between processors is achieved
through C-FIFO algorithm which allows arbitrary number of simultaneous
streams between processor tiles. The second communication network is the
Warpfield arbitration tree which provides a communication to the shared
resources such as UART, DVI and SDRAM. The access to the resources is
given on a first-come-first-served basis.

The Starburst MPSoC allows a number of CPUs to run in parallel to
achieve a high computation power. Additional support of hardware accel-
erators allows to improve the performance for the applications which are
limited by the computational power of MicroBlaze cores. The resulting het-
erogeneous MPSoC is an important research and development platform for
the stream processing applications which also allows real-time multiprocessor
system analysis [4].

1.4 Problem Description

Recent developments in the digital electronics has led to the major improve-
ments in number of areas. Novel microwave transmitters are capable of
generating extremely high frequency signals in real time which allows the
usage of these high frequency signals in numerous applications. Recently,
number of automotive radar chips have emerged which take advantage of the
mm-Wave band such as 77 Ghz and 79 Ghz [3].

Earlier this year, NXP Semiconductors introduced it’s 77 GHz single-chip
radar transceiver (Figure 1.3) which is based on multiple-input multiple-
output (MIMO) FMCW principle. The chip is planned to be used in self-
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driving vehicles such as self-driving cars. Currently, researchers at NXP
Semiconductors are working on the development of the base-band processor
for the above mentioned chip.

Figure 1.3: NXP Semiconductor’s automotive radar chip

This thesis works as a supportive research to test concepts of the Starburst
MPSoC to be used in a base-band processor. The main aim of this research
is to analyse the computational and real-time requirements of the FMCW
radar application and extend the Starbust MPSoC platform accordingly to
support the MIMO FMCW radar signal processing.

The main research objectives for the thesis are:

• Research the theory of the MIMO FMCW radar signal processing and
evaluate the proposed signal processing architectures.

• Propose the efficient architecture for the Starburst platform to support
the FMCW radar application.

• Propose and implement a new architecture in case Starburst cannot
achieve the real-time computational requirements for the application.
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Chapter 2

FMCW Signal Processing

This section consists of two main parts; the first part explains the FMCW
signal processing scheme and the second part introduces the MIMO radar
concept.

2.1 FMCW Signal Analysis

There are several different modulations that are used in FMCW signals such
as sawtooth, triangle and sinusoidal. In our case, we will consider a sawtooth
model of the FMCW signal, seen in the Figure 2.1;

Figure 2.1: FMCW sawtooth signal model

As it can be seen, transmitted frequency increases linearly as a function of
time during Sweep Repetition Period or Sweep Time (T). Starting frequency
is fc, which is 79 GHz in our calculations. Frequency at any given time t can

9
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be found by:

f(t) = fc +
B

T
t (2.1)

Here, B
T

is a chirp rate and can be thought as a “speed” of the frequency
change. We can substitute it with α:

α =
B

T
(2.2)

By using frequency change over time, we can find the instantaneous phase:

µ(t) = 2π

∫ t

0

f(t)dt+ µ0 = 2π(fct+
αt2

2
) + ϕ0 (2.3)

Therefore, the transmitted signal in the first sweep, considering ϕ0 to be the
initial phase of the signal, can be written as:

xtx(t) = A cos(µ(t)) = A cos(2π(fct+
αt2

2
) + ϕ0) (2.4)

The equation above only describes the transmitted signal in the first sweep.
If we want to describe the transmitted signal in the nth sweep, a modification
should be made. We can consider ts as a time from the start of nth sweep
and define t as:

t = nT + ts where 0 < ts < T (2.5)

Therefore, our signal form for the transmitted signal in the nth sweep be-
comes:

xtx(t) = A cos(µ(t)) = A cos(2π(fc(nT + ts) +
αt2s
2

) + ϕ0) (2.6)

Let’s consider an object located at an initial distance of R which is moving
with a relative velocity of v. The returned signal from the object will have
the same form, but with some delay τ which can be defined as:

τ =
2(R + vt)

c
=

2(R + v(nT + ts))

c
(2.7)

Considering the delay τ , we can describe the returned signal as:

xrx(t) = B cos(µ(t−τ)) = B cos(2π(fc(nT+ts−τ)+
α(ts − τ)2

2
)+ϕ0) (2.8)

According to the FMCW radar principle, the returned signal is mixed with
the transmitted signal:

xm(t) = xtx(t)xrx(t) (2.9)
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The equation above will include cosine multiplication which can be trans-
formed using the trigonometric formula below:

cos(α) cos(β) = (cos(α + β) + cos(α− β))/2 (2.10)

The sum term in our case will have a very high frequency (2 · fc = 158GHz)
which will be filtered out. Therefore, the resulting signal will only include
the subtraction term:

xm(t) =
AB

2
cos(2π(fc(nT + ts)+

αt2s
2

−fc(nT + ts−τ)− α(ts − τ)2

2
) (2.11)

After simplification we get:

xm(t) =
AB

2
cos(2π(fcτ + ατts −

ατ 2

2
)) (2.12)

If we replace τ with its equivalent from Equation 2.7, we will get:

xm(t) =
AB

2
cos(2π(fc

2(R + v(nT + ts))

c
+ αts

2(R + v(nT + ts))

c

−α4(R + v(nT + ts))
2

2c2
))

(2.13)

We can simplify and write the equation as:

xm(t) =
AB

2
cos(2π((

2αR

c
+

2fcv

c
+

2αvnT

c
− 4αRv

c2
− 4αnTv2

c2
)ts

+(
2fcv

c
− 4αRv

c2
)nT +

2fcR

c
+

2αvt2s
c

− 2αR2

c2

−2αv2n2T 2

c2
− 2αv2t2s

c2
))

(2.14)

If we look at the Equation 2.14, we see that there is a frequency and a
phase that influences how the signal changes over time. In the literature,
the frequency is usually named as a ”beat frequency”. The difference in
frequency between the transmitted and the received signals is denoted by
fB in the Figure 2.1. The above equation shows that the ”beat frequency”
is affected by number of terms such as initial range to the object, object’s
velocity and the chirp number.

According to the Matlab model provided, the following values are used
for the parameters:
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Parameter Value

B 1GHz
T 35.6 µs
fc 79 GHz
c 3 ·108 m/s

Number of chirps 96
Number of samples per chirp 1024

Number of Tx antennas 3
Number of Rx antennas 4

Table 2.1: Parameter table

If we assume an object at a distance of 15 m (R = 15) which is moving
with a velocity of 10 m/s (v = 10), and assuming ts equal to T and n to be
50, we can find how the individual expressions in the equation affect the final
value of xm(t):

xm(t) =
AB

2
cos(2π((2.81 · 106 + 5.26 · 103 + 3.33 · 103 − 0.1873

−2.22 · 10−4)ts + (5260 − 0.19)nT + 7.9 · 103

+0.0024 − 0.1404 − 1.97 · 10−7 − 7.9 · 10−11))

(2.15)

Few observations can be made based on the equation above; first, we see
that the values of the expressions 4αRv

c2
and 4αnTv2

c2
are very small and can

easily be neglected. Apart from that, the terms 2fcv
c

and 2αvnT
c

are relatively
small and their effect to the main frequency component 2αR

c
can be considered

negligible. Second, other terms which have c2 in their denominators are also

very small and can be neglected too. Third, the term with t2s,
2αvt2s
c

is also
very small (0.0024) and can be neglected as well.

Consequently, xm(t) equation can be approximated as:

xm(ts, n) =
AB

2
cos(2π(

2αR

c
ts +

2fcvn

c
T ) +

4πfcR

c
) (2.16)

where the term 4πfcR
c

is a constant phase term, since R is an initial distance
at which the object is located.

The frequency spectrum of the signal computed over one modulation
period will give us 2αR

c
as a main frequency component which is the beat

frequency. The derivation of the beat frequency is usually based on the Fast
Fourier Transform (FFT) algorithm which efficiently computes the Discrete
Fourier Transform (DFT) of the digital sequence. Consequently, by apply-
ing the FFT algorithm over one signal period, we can easily find the beat
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frequency (2.17) and thus the range to the target:

fb =
2αR

c
and R =

fbc

2α
(2.17)

Range resolution of a radar is the minimum range that the radar can
distinguish two targets on the same bearing [9]. Based on the above equation
and substituting α with Equation 2.2, we can find the range resolution of a
radar. It is based on the fact that the frequency resolution ∆fb of the mixed
signal is bounded by the chirp frequency (∆fb ≥ 1

T
) which means that in

order to be able to detect two different objects, the frequency difference of
the mixed signal returned from that objects cannot be smaller than the chirp
frequency. This intuition gives the range resolution which can be found as:

∆fb =
2B∆R

c
· 1

T
and ∆R =

c

2B
(2.18)

On the other hand, there is also a phase (2fcv
c

· nT ) associated with the beat
frequency which changes linearly with the number of sweeps. The change of
the phase indicates how the frequency of the signal changes over consequent
number of periods. This change is based on the Doppler frequency shift
which is the shift in frequency that appears as a result of the relative motion
of two objects. The Doppler shift can be used to find the velocity of the
moving object:

fd =
2fcv

c
and v =

fdc

2fc
(2.19)

The Doppler shift of the signal can be found by looking at the frequency
spectrum of the signal over n consecutive periods (n · T ). In this case, the
FFT algorithm is applied on the outputs of the first FFT. Figure 2.2 describes
this process; first, the row-wise FFT is taken on the time samples, second,
the column-wise FFT is taken on the output of the first FFT. After two
dimensional FFT processing, we have a range-Doppler map which contains
range and velocity information of the target.

Velocity resolution of a radar is the minimum velocity difference between
two targets travelling at the same range of which the radar can distinguish. It
can be found in a similar way as the range resolution. Here, the Doppler fre-
quency change over n chirp durations is bounded by the frequency resolution
(∆fd ≥ 1

nT
). Thus, the velocity resolution can be expressed as:

∆v =
c

2fc
· 1

nT
(2.20)

Another conclusion that can be drawn from the equation is that if we have
multiple antennas which are separated by some distance, each of them will
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Figure 2.2: FMCW signal 2D FFT processing

have a different phase shift based on the distance. This information can be
used to find the angle of arrival of the wave and thus angular position of
the target. To achieve that a third FFT can be taken over processed signals
from different antennas. Using a phase comparison mono-pulse technique,
see Figure 2.3, we can find the phase shift between two array antennas.

Figure 2.3: Principle of phase interferometry [1]

If antennas are located in distance d from each other, and the angle of
arrival of waves is θ, we can find the phase difference through Equation 2.21,
where λ is the wavelength of the signal:

∆ϕ =
2πd sin(θ)

λ
(2.21)

Since 2π phase shift equals to λ and the wave that reaches to antenna 1
travels d sin θ more distance, we can find the phase shift associated with
that additional travel distance which will give us the equation above. If we
consider having K number of equally spaced antennas with distance d, we
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can rewrite 2.16 as:

xm(ts, n, k) =
AB

2
cos(2π(

2αR

c
· ts +

2fcvn

c
· T +

dk sin θ

λ
) +

4πfcR

c
) (2.22)

where 0 ≤ k ≤ K − 1 and 1 ≤ n ≤ N , and N is the total number of chirps
per frame.

2.2 MIMO Radar Concept

Multiple input multiple output (MIMO) radar is a type of radar which uses
multiple TX and RX antennas to transmit and receive signals. Each trans-
mitting antenna in the array independently radiates a waveform signal which
is different than the signals radiated from the other antennas. The reflected
signals belonging to each transmitter antenna can be easily separated in the
receiver antennas since orthogonal waveforms are used in the transmission.
This will allow to create a virtual array that contains information from each
transmitting antenna to each receive antenna. Thus, if we have M number
of transmit antennas and K number of receive antennas, we will have M ·K
independent transmit and receive antenna pairs in the virtual array by using
only M + K number physical antennas. This characteristic of the MIMO
radar systems results in number of advantages such as increased spatial reso-
lution, increased antenna aperture, higher sensitivity to detect slowly moving
objects [10, 11].

2.2.1 MIMO Signal Model

As stated above, signals transmitted from different TX antennas should be
orthogonal. Orthogonality of the transmitted waveforms can be obtained
by using time-division multiplexing (TDM), frequency-division multiplexing
and spatial coding. In the presented case, TDM method is used which allows
only a single transmitter to transmit at each time. Considering M number
of transmitting antennas and K number of receiving antennas (Figure 2.4),
the transmitting signal from ith antenna towards target can be defined as:

xtx(t,m) = A cos(µ(t) +
2πdtm sin θ

λ
) (2.23)

where 0 ≤ k ≤ K − 1 and 0 ≤ m ≤M − 1.
The corresponding received signal at jth antenna can be expressed by:

xrx(t,m, k) = B cos(µ(t− τ) +
2πdtm sin θ

λ
+

2πdrk sin θ

λ
) (2.24)
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and consequently the difference signal can be written as:

xm(ts, n,m, k) = cos(2π(
2αR

c
· ts+

2fcvn

c
·T +

dtm sin θ

λ
+
drk sin θ

λ
)) (2.25)

The steering vector represents the set of phase delays experienced by a
plane wave as it reaches each element in an array of sensors. By using the
equations above, we can describe the steering vector of transmitting array
as:

at(θ) = [1, e
−j2πdtsinθ

λ , e
−j2πdt2 sin θ

λ , ..., e
−j2πdt(M−1) sin θ

λ ]T (2.26)

and the steering vector of receiving array as:

ar(θ) = [1, e
−j2πdrsinθ

λ , e
−j2πdr2 sin θ

λ , ..., e
−j2πdr(K−1) sin θ

λ ]T (2.27)

Figure 2.4: TX and RX antennas of MIMO radar

The steering vector of the virtual array (Figure 2.5) can be found by
the Kronecker product of the steering vector of transmitting array and the
steering vector of receiving array. Kronecker product can be thought as
multiplying each element of the first vector with all the elements of the
second vector and concatenate all the multiplication results together to form
one vector. Kronecker product of two vectors sized M × 1 and K × 1, will
result in an M × [K × 1] size vector. Thus, steering vector of the virtual
array can be expressed by:

av(θ) = at(θ) ⊗ ar(θ) = [1, e
−j2πdrsinθ

λ , ..., e
−j2πdt sin θ

λ , e
−j2π(dt+dr) sin θ

λ ,

..., e
−j2π(dt(M−1)+dr(K−1)) sin θ

λ ]T
(2.28)

The vector above contains phase delays that waveform experiences in its
path from each transmitting antenna to each receiving antenna. It can be
used to find the angular position of the object which can be expressed as:

P (θ) =
L−1∑
l=0

Xl(f) · alv(θ) =
M−1∑
m=0

K−1∑
k=0

Xm,n(f) · e
−j2π(dtm+drk) sin θ

λ (2.29)
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where L is the number of elements in the virtual array and Xl(f) refers to
the spectrum of the signal in the lth virtual array element and alv(θ) refers to
the lth element of the steering vector. Intuitively, the formula above finds the
amplitudes (gains) associated with the angle of arrivals (AOA) in the whole
imaging area. It can be thought as finding a frequency spectrum of a time-
domain signal where frequency corresponds to direction and time samples
correspond to space samples:

Figure 2.5: Virtual antenna array

Consequently, assuming antennas in the virtual array uniformly spaced
and distance between two antennas is d, we can find the relation between θ
and virtual array as:

L−1∑
l=0

Xl(f) · e
−j2πsl
L =

L−1∑
l=0

Xl(f) · e
−j2πdl sin θ

λ (2.30)

where the range of s is 1 ≤ s ≤ L.
The left side of the Equation 2.30 is the Discrete Fourier Transform and

the right side is the Equation 2.29 modified for virtual array representation.
The equation above will help us to describe the relation of a virtual antenna
number or FFT bin s with AOA (θ):

− j2πsl

L
= −j2πdl sin θ

λ
(2.31)

which gives us θ expressed as:

θ = arcsin
sλ

dL
(2.32)

Since we want 180o view, the angle of arrival θ will range from −90o to 90o.
Angular resolution of a radar is the minimum angular separation that the

radar can distinguish two objects located at the same range. It is determined
by the antenna beam width; the smaller the beam width is, the better the
angular resolution becomes [9]. The beam width of the antenna is directly
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proportional to the the wavelength of the transmitted signal and inversely
proportional to the effective antenna aperture. Hence, considering a con-
stant wavelength, increasing the effective antenna aperture will decrease the
antenna beam width and increase the angular resolution [12]. This is one of
the reasons why the MIMO radar is preferred over other alternatives such as
the phased-array radar. It allows us to increase the antenna aperture, thus
the angular resolution by using the same number of antennas.



Chapter 3

Requirements

This chapter describes the analysis of the algorithm that the signal processing
is based on. The first section describes the Matlab model of the radar signal
processing. The second section provides the computational analysis on the
FFT algorithm which is the main functional block of the signal processing
and gives the requirements for the architecture to be implemented. The next
section discusses the architectures proposed in the recent literature. Finally,
the last section provides a signal-flow analysis of the radar processing.

3.1 Matlab Model

The Matlab model of the reception part of the radar application was provided
by the NXP Semiconductors. The essential part of the code is 3D FFT mod-
ule which is used to get the frequency domain representation of the received
signals from their time and space domain equivalents. Later, the frequency
domain representation is used to plot the Range-Doppler spectrum and the
bearing information. Provided code had no measurement file that could be
used to test the model. To be able to test the radar Matlab function was
implemented which generates an input signal based on the MIMO FMCW
model presented in Chapter 2. The function implements the Equation 2.25
from Chapter 2 with three transmitting and four receiving antennas. The
output of the tested Matlab model can be seen in the Figure 3.1 and 3.2.
The input signal was generated considering an object located at 4 m initial
distance with 1 rad counter-clockwise angular position and moving with a
relative velocity of 4 m/s (14.4 km/h). Figure 3.1 shows the range-Doppler
spectrum of the radar. It can be seen that the range of the the target is 4
m and its relative velocity is around 15 km/h. Figure 3.2 shows the relative
position of the object with respect to the radar transceiver.

19
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Figure 3.1: Range-Doppler Spectrum

Figure 3.2: Birdseye view

3.2 Computational Analysis

We have seen in Chapter 2 that the main processing block of the radar
application is the FFT block. The FFT is a fast algorithm that computes
the discrete Fourier transform of the time domain samples xn:

Xk =
N−1∑
n=0

xne
− 2πi

N
nk (3.1)

The algorithm allows to reduce the complexity of the DFT computation from
O(n2) to O(n log n).

Straightforward Starburst MPSoC implementation of the signal process-
ing would be to use MicroBlaze cores to perform Fast Fourier Transforms.
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The platform has enough processing cores to support simultaneous process-
ing of signals coming from multiple receiving antennas. Hence, it should be
studied if MicroBlaze cores could provide enough computing power for the
FFT processes used in the signal processing while taking into account the
real-time constraints of the application.

The computational requirements for the FFT process can provide us with
an overview of the required computational power. The analysis of the al-
gorithm shows that N point FFT requires N

2
(log2N) number of complex

multiplications and N log2N number of complex additions. Taking into ac-
count the fact that multiplications in the last stage of the FFT are simply
multiplications by 1, we can exclude the multiplication operations in that
stage. Therefore, the number of complex multiplications required will be
N
2

(log2N − 1). Additionally, each complex multiplication contains four real
multiplications and two real additions. By combining these two we can ex-
press the number of real multiplications (RM) required as:

RM = 2N(log2N − 1) (3.2)

Similarly, each complex addition contains two real additions. As a result,
the number of real additions (RA) can be expressed as:

RA = N(log2N − 1) + 2N log2N (3.3)

According to the MicroBlaze Reference Guide, the core has a Floating Point
Unit (FPU) which supports single-precision floating point arithmetic. As
stated in the reference, floating-point addition and multiplication requires 4
clock cycles in non-area optimized mode and 6 clock cycles in area optimized
mode. Considering using the single-precision floating point numbers and
configuring the MicroBlaze core in non-area optimized mode, we can find the
number of clock cycles (NCC) required for the FFT processing as:

NCC = 4 · (RM +RA) (3.4)

The first FFT stage is very crucial from the perspective that it has a
real-time requirement to finish the 1024 point FFT processing in 35.6 µs,
since in every 35.6 µs new 1024 samples will be available. By using the
Equations 3.2 and 3.3, we can find that the number of real multiplications and
additions needed for this FFT; which are 18432 and 29696 respectively. By
substituting the values in Equation 3.4, we can find that the number of clock
cycles required to finish the FFT equals to 192512. Since the MicroBlaze core
in Starburst runs at 100 MHz clock frequency, the time needed to finish the
FFT process will be 1925.12 µs. The resulting value gives us the lower bound
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for the computation since it only takes into account the actual computation
required by the FFT algorithm and excludes the overheads such as variable
initializations, function calls, loops and memory accesses. It can be concluded
that the result is 54 times larger than the provided chirp time which is 35.6
µs. Consequently, we can conclude that it is not possible to meet the real
time requirements by using one MicroBlaze core as an FFT processor.

The calculations show that even if we are able to use fixed-point arith-
metic for the FFT process, we are not able to reach the real-time requirement
needed. The MicroBlaze reference guide [13] specifies that the integer addi-
tion and multiplication take 1 clock cycle to finish. By following the same
procedure as above, we can calculate and find that the fixed-point FFT pro-
cess will take at least 48128 clock cycles (481.28 µs) to finish which is 13.5
times bigger than the requirement.

The analysis above shows that using only the Microblaze processors in the
Starburst architecture for base-band processing will not allow to achieve the
real-time requirements demanded by the application. Although, the Star-
bust platform also supports a hardware accelerator integration, the current
application does not benefit from it. Therefore, we should consider alterna-
tive architectures that can provide better performance characteristics. In the
next section we discuss the architecture considerations that can lead to the
higher performance.

3.3 Architecture Considerations

We have seen in Chapter 2 that the three dimensional FFT processing can
give us the range, velocity and the relative position information of the target.
In the previous section, we discussed the computational requirements of the
FFT and found out that using MicroBlaze soft cores for FFT processing
does not allow us to meet the real-time requirements. Consequently, we
concluded that the Starbust architecture is not very useful in terms of meeting
the real-time demands of the radar application. This section discusses the
architecture that can be used to achieve the real-time performance in the
Virtex-6 FPGA.

Implementation of the FMCW signal processing on hardware has been
investigated by number of previous works. In [14], the authors provide an
FPGA based real-time implementation of range-Doppler image processing.
The architecture performs 2D FFT processing by storing the intermediate
data in a DDR SDRAM. The authors propose using two DDR SDRAM
controllers which control the access to two different SDRAM modules. This
prevents any lose of data and allows the data from the second frame to be
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written to the second SDRAM while the processed data from the first frame
is read from the first SDRAM for the second FFT processing. However, the
authors provide no details about the resource usage and the performance of
the proposed implementation.

In [15], the authors propose an architecture for range-Doppler processing
which supports sampling rates up to 250 MSPS and a maximum of 16 parallel
receiving channels. The architecture uses digital down-sampling to enable
various sampling frequencies to be used and a low pass FIR filter to suppress
the aliasing effects arising from the down-sampling process. Similar to [14],
the data after the first FFT processing is stored in the SDRAM. The authors
propose to interleave the usage of multiple banks of the SDRAM to improve
the data throughput. That is, the outputs of the first FFT block should be
distributed over multiple banks. The paper describes an example addressing
scheme based on that idea which reduces processor stall cycles. In spite of
the fact that the detailed resource usage of the implementation on Virtex-7
FPGA is given, no information on the performance is provided in the paper.

The architecture described in [16] allows a pipelined and parallel hard-
ware implementation of signal processing for an FMCW multichannel radar.
The architecture supports a 3D FFT based signal processing algorithm which
has been described in Chapter 2. It consists of the FFT processing blocks
for range, Doppler and beamforming calculations and the dual-port memory
blocks inserted between them to store the intermediate data. In contrast
to the architectures described above, this implementation does not use the
SDRAM and takes advantage of the FPGA on-chip memory blocks instead.
In addition, the authors provide the hardware resource usage of the archi-
tecture and the processing time of the algorithm implemented on Virtex-5
FPGA.

Another architecture for the radar signal processing is described in [17].
The RF front end of the design has four transmit and four receive antennas
and applies the TDM technique for the transmit signals. This allows sixteen
virtual antennas to be synthesized. Consequently, the processing of the re-
ceived signal is based on the MIMO virtual array concept. The architecture
uses an 1D FFT processing to extract the range information from the ”beat”
signal and a digital beamformer to find the angular information. The imple-
mentation of the architecture is based on combined FPGA and DSP pipeline
approach. The FFT processing is done on the FPGA side, on the other hand
the beamforming algorithm runs on the DSP side. After the processing, the
radar image is displayed on the LCD panel which is actuated by the FPGA
at a frame rate of 50 Hz. According to the authors, the implementation can
achieve a real-time imaging rate of 1.5625 Hz.

To summarize the architectures presented, we can see that there are two
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types of architectures for the hardware implementation of the algorithm. The
first type uses the off-chip SDRAM to store the intermediate results of the
processing. The architectures presented in [14] and [15] are based on this
type. In this type it is important to minimize the time required to open and
close a page of the SDRAM when accessing the data for the second and the
third FFT processings. The second type of architecture uses on-chip FPGA
memory blocks to store the intermediate results. This type of architecture
is more efficient and can achieve faster processing due to the fact that there
is much less overhead in accessing the intermediate data of on-chip FPGA
memory blocks rather than the SDRAM. However, it should be noted that
this architecture is limited by the amount of available on-chip memory and
will bound the number of points used for the FFT processing.

3.4 Signal-flow Analysis

In the Matlab model described in Section 3.1, we have considered only a single
radar scanning. From the provided model it is not clear if the radar will start
the consecutive scanning immediately after finishing the previous scanning or
there will be a time interval between them. Here we consider a model in which
the consecutive scannings happen without any time interval (see Figure 3.3).
Therefore, we will consider the performance of the implementation to be real-
time if it provides enough computational power to process the consecutive
radar scannings without any delays.

Figure 3.3: Radar scannings

Based on the signal processing architectures described in the previous
section and our requirements, we can construct the signal-flow graph of the
algorithm. The Figure 3.4 shows the signal-flow graph of the signal processing
algorithm for one receiving antenna. After sampling by the 40 MHz ADC
and decimation by a factor of 2, the first FFT can be performed. The first



3.4. SIGNAL-FLOW ANALYSIS 25

FFT is performed on 1024 time samples from one chirp period. To achieve
a real-time performance, the worst case computation time of the first FFT
block should be equal to the chirp time which is 35.6 µs based on our model.
It means that we can process a frame as soon as it is available, thus avoiding
any time delays. In addition, the outputs of the FFT block should be stored
in a memory for further Doppler processing. Given the worst-case execution
time (WCET) of the FFT block and the number of samples required to be
stored in the memory, we can calculate the required minimum bandwidth
from the first FFT block to the memory

B1 =
1024

Tc
=

1024

35.6 · 10−6
= 28.76 MS/s (3.5)

Figure 3.4: Signal Flow Graph of 3D FFT Procesing

The ADC used for the sampling of the received signal has 12 bits of
resolution. Knowing that the output of the FFT is a complex-valued number,
we can easily calculate the minimal memory required to store the FFT data.
Our model uses 96 chirps per frame, thus our memory requirement equals to
96 · 1024 · 2 · 12 = 2359296 bits = 294912 bytes.

The second FFT block computes the column-wise FFT for each transmit-
ting antenna from the stored data. To illustrate, the first row contains the
samples from the first transmit antenna, the second row contains the sam-
ples from the second one and the third row contains the samples from the
third transmit antenna. Similarly, the fourth row will contain the samples
from the first transmit antenna too. So, FFT will be performed on samples
from the rows 1, 4, 7. . . 91, 94 for the first transmit antenna, 2, 5, 8. . . 92,
95 for the second transmit antenna and 3, 6, 9. . . 93, 96 for the third one.
Out of the 1024 columns of the matrix, it is sufficient to process the first 512
columns since the output of the real valued FFT is always symmetric and
the second half of the columns will not provide any additional information.
Given that we have 512 columns, in total 1536 (512 ·3) 32 point FFTs should
be performed for the single radar antenna image processing. We know that
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the total time for that processing is n · Tc, where n is the number of chirps
and Tc is the chirp time. Therefore, given the parameters we can find the
worst-case computation time for the second FFT:

T2 =
n · Tc
1536

=
96 · 35.6 · 10−6

1536
= 2.22 µs (3.6)

All the outputs from the FFT block should be stored for the third FFT
processing. As it can be seen in Figure 3.4, there are three 2D arrays for the
single receiving antenna each of them containing 16384 (512 · 32) complex
values. We can easily calculate the memory required for each of the arrays
which equals to 32 · 512 · 2 · 12 = 393216 bits = 49152 bytes.

Given WCET of the second FFT block we can find the required minimum
bandwidth from block to the memory:

B2 =
32

T2
=

32

2.22 · 10−6
= 14.4 MS/s (3.7)

The third FFT is performed on samples from all Range-Doppler spectrum’s.
Considering the real-time constraints, the required time to complete all the
FFTs equals to n · Tc. The number of points that the third FFT performs
is based on the equation provided on Matlab model:

N = 2dlog2 A∗Ke (3.8)

where A is the interpolation factor for the Angle of Arrival spectrum and
K is the number of virtual antennas. Considering only a single FFT block,
worst-case execution time of the block will be:

T3 =
96 · 35.6 · 10−6

16384
= 0.21 µs (3.9)

Consequently, the bandwidth can be found as:

B3 =
N

0.21 · 10−6
(3.10)

Additionally, we can find the memory requirements for the processing. One
thing to note is that we need double buffering to prevent the overwriting of
the data that is already in the memory. The reason is that while the second
FFT stage will be busy performing the column-wise memory reads, writing
the received new data to the same memory will cause the previous data to
be lost. Therefore, if the calculated latency and bandwidth constraints are
met, the double buffering should be sufficient for the real-time performance.



3.4. SIGNAL-FLOW ANALYSIS 27

Based on the Figure 3.4, we can calculate that the memory requirement for
a single antenna as:

MEM = 2 · (294912 + 49152 · 3) = 884736 bytes (3.11)

The application requires to have 4 receiver antennas. We can find that the
memory requirement for the receiver with four antennas is around 3.5 MByte
(4·884736 bytes). According to the Xilinx Virtex-6 FPGA family documen-
tation, the Virtex-6 FPGA deployed on the ML605 board - XC6VLX240T -
has maximum 1.872 MByte block ram capability which is considerably less
than the required memory for our application. This requirement adds a con-
straint of using the off-chip SDRAM to store the intermediate results of the
FFT processing.

Furthermore, it should be noted that the above mentioned requirement
can change based on the design decisions. To illustrate, if we consider having
enough time between consecutive radar scannings and consider using an in-
place computation, then the actual minimum memory requirement will be
equal to 4 · 96 · 1024 · 2 · 12 = 9437184 bits = 1.125 MByte. We can see that
it is considerably less than the memory available in the FPGA.

However, representing a 12 bit value with 12 bit fixed-point format will
not be very reliable as it does not allow any bit growth and might result
in serious errors in the calculations. Instead, a common 16 bit fixed-point
format can be used for that purpose. We can find that the memory require-
ment in this case will be equal to 4 · 96 · 1024 · 2 · 16 = 12582912 bits = 1.5
MByte. It is still less than the available on-chip FPGA memory and can
fit in it if the other hardware components require less than 0.372 MByte of
on-chip memory.

In the current case, a single-precision floating-point format was used for
the implementation. It requires each value to be represented by 32 bits thus,
the total memory requirement in this case will be equal to 4 ·96 ·1024 ·2 ·32 =
25165824 bits = 3 MByte. It is clear that these amount of data cannot fit on
on-chip FPGA memory blocks. Therefore, the implementation will require
to store the data on off-chip SDRAM.
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Chapter 4

System Implementation

The previous chapter presented the analysis of the algorithm and the archi-
tectures found in the literature to implement it. This chapter will describe the
architecture that is used to implement the algorithm on the Virtex-6 FPGA
based on the given requirements. The first section describes the implemented
algorithm based on the signal processing scheme described in Chapter 2 and
the requirements found in Chapter 3. The second section presents the com-
ponents or hardware blocks required to implement the processes found in the
algorithm. Finally, the last section describes the hardware architecture that
has been used to implement the algorithm.

4.1 The algorithm

This section describes the three dimensional FFT processing algorithm on
which the signal processing is based on.

The first process in the algorithm is performing 1024 point FFT on the
time samples. In Chapter 3 we found that the storage of the intermediate
results of the FFT processing should be stored in the off-chip SDRAM. There-
fore, the output of the first FFT process must be written to the SDRAM. The
second FFT process will read the data from the SDRAM and perform the
transform. It was mentioned in Chapter 2 that this process can be thought
as a column-wise FFT of a matrix. Thus, all the 512 data samples from the
32 different chirps (rows) will be read at a different time slices. To illustrate,
first the first column of data samples will be read from 32 different chirp
outputs, second the second column of data samples will be read from the 32
different chirps and so on. This process will continue till all the 512 data sam-
ples have been read. Knowing how the modern DRAM memories function,
we observe that this is not an efficient way of addressing the SDRAM.

29
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Modern SDRAM memories are usually organized in multiple banks. Each
bank has a matrix structure and consists of rows and columns. To access a
memory address for reading or writing requires to activate a row which will
read the data stored in the row to the row buffer. After activating the row
the data can be read or written based on the column addresses. After reading
or writing the data, the row will be closed and the data will be written back
to the bank. Thus, accessing the memory address requires three operations;
activating the row, doing a read or write operation and closing the row. It
is clear that it will introduce a huge overhead if the memory is addressed in
an arbitrary order.

The ML-605 board contains 512 MB DDR3 SDRAM from Micron Tech-
nology (MT4JSF6464HY-1G1B) [8]. The module has 4 chips placed on the
board each having 16 bits data output. In addition, the module is organized
in 8 internal device banks. Each bank has 8K rows and 1K columns. It is
easy to find that each row of the bank can store 8 KByte of data. If we use
single-precision floating point representation, each row of a bank will contain
a processed FFT data from a single chirp, since each complex-valued number
contains 8 Bytes and having 1024 numbers will make 8 KByte. Therefore,
the second FFT will require to open and close a row for reading of each sam-
ple which will make in total 16384 (32 · 512) requests per virtual antenna.
This process can add significant delays to the FFT processing time.

One way to overcome this overhead is to transpose the data matrix. We
can transpose the data stored in 32x1024 matrix to 1024x32 matrix form.
In this way the memory addressing will be in sequential order resulting in
less overhead in reading the data from the SDRAM. Thus, we need to have
a memory transpose process after finishing the first FFT processing of all
chirps from a given frame. After completing the transpose operation, the
second FFT can be performed on the data.

According to the requirements, we have 3 transmitting and 4 receiving
antennas making in total 12 virtual antennas. After the transpose operation
and the second FFT processing, the data will be stored in the memory as
in 12x512x32 3D matrix. The third FFT requires the data samples from
all virtual antennas. As it can be seen, these data are not located in the
consecutive memory locations and will need to open and close a row for each
read operation. As it was discussed above, this can add a big overhead. Thus,
we need to transpose the memory again make it suitable for the third FFT
processing. In this case, the transpose operation will take the 12x512x32 3D
matrix and output the 512x32x12 3D matrix. Now, the third FFT can be
performed on the data. After finishing the third FFT, the data can be stored
in the SDRAM for further processing. At this moment, the range, velocity
and the angle information can be extracted from the data.
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To summarize, we have seen that the algorithm consists of multiple FFT
and transpose operations. The whole process can be described with the
following algorithmic flowchart.

Figure 4.1: Signal processing algorithm flowchart

4.2 The hardware components

This section describes the hardware components used in the architecture
implementation. A brief description and function of all the components have
been provided.

4.2.1 FFT Core

It can be seen from the algorithm that the FFT is the major process in
the realization of the algorithm. In order to reduce the implementation
time, the FFT algorithm is implemented using Xilinx LogiCORE IP Fast
Fourier Transform v8.0 [18]. The IP core implements the Cooley-Tukey FFT
algorithm for the transform sizes of N = 2m where m ranges between 3 and
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16. The core supports processing with fixed-point data ranging from 8 to
34 bits as well as single-precision floating point data. In the latter case,
the input data is a vector of N complex values represented as dual 32-bit
floating-point numbers with a phase factors represented as 24 or 25-bit fixed
point numbers.

The FFT core provides four architecture options;

• Pipelined Streaming I/O

• Radix-4 Burst I/O

• Radix-2 Burst I/O

• Radix-2 Lite Burst I/O

The pipelined streaming architecture pipelines several Radix-2 butterfly
processing engines to allow continuous data processing. Each processing
engine has its own dedicated memory banks which are used to store the
input and intermediate data. This allows the core to simultaneously perform
a transform on the current frame of data, load input data for the next frame
of data and unload the results of the previous frame of data.

For the current implementation, the pipelined streaming architecture was
chosen for the two main reasons. First, the pipelining allows the FFT block
to receive the data while it is processing the data from the previous frame.
This is convenient for the first FFT processing in our application, since it
eliminates the need for buffering of the incoming data and allows the data
immediately to be received by the FFT block. Second, the processing latency
of the pipelined streaming architecture is much less than the latency of the
burst-architectures and meets the latency constraints found in Section 3.4.

The FFT IP core is compliant with the AXI4-Stream interface. All in-
puts and outputs to the FFT core use the AXI4-Stream protocol. Since the
FFT core needs to access to the main memory to read a data, we need an
additional hardware block which can access the memory and translate the
AXI4-Memory Mapped (AXI4-MM) transactions to AXI4-Stream (AXI4-S)
transfers and vice versa. This is achieved by using LogiCORE IP AXI DMA
core [19] of Xilinx.

4.2.2 AXI DMA Core

The AXI DMA engine supports high-bandwidth direct memory access be-
tween memory and AXI-Stream peripherals. The data movement is achieved
through two data channels; Memory-Map to Stream (MM2S) channel and
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Stream to Memory-Map (S2MM) channel. Reading a data from the mem-
ory is accomplished by AXI4 Memory Map Read Master interface and AXI
MM2S Stream Master interface. On the other hand, writing a data to the
memory is achieved through AXI S2MM Stream Slave interface and AXI4
Memory Map Write Master interface. The core also has an AXI4-Lite slave
interface which is used to access the registers and control the DMA engine.

The DMA core allows maximum 8 MByte of data to be transferred be-
tween a memory and a stream peripheral per transaction. According to
the documentation [19], the core can achieve high throughput in transfers,
namely; 399.04 MByte/s in MM2S channel and 298.59 MByte/s in S2MM
channel.

4.2.3 Memory Interface Core

To access an off-chip memory from an FPGA a memory controller is required.
Xilinx provides a memory interface core [20] to interface the FPGA designs to
DDR3 SDRAM devices. The core handles the memory requests from hard-
ware blocks such as AXI DMA and translates them to SDRAM commands.
It allows the data movement between FPGA user designs and the external
memory. In addition, the core also manages the refresh operation of the
memory.

4.2.4 Microblaze Core

The information about the Microblaze core was provided in Chapter 1. The
design uses a single Microblaze core to generate the input data for the algo-
rithm, to configure the AXI DMA blocks for data transfers, to transpose the
memory, to measure the time required for each process and to extract the
range, velocity and the angle information form the frequency spectrum data.

4.3 The architecture and operation

The hardware components of the architecture were described in the previous
section. This section describes how the components are interconnected to
each other and how the architecture functions.

It was mentioned in the previous chapters that the RF front of the design
has four receiving antennas. By using an FPGA for a signal processing we
can achieve a parallel processing of the received signals from all receiving
antennas. However, since the RF front end of the design is not yet ready,
the architecture also includes an input signal generation as part of it.
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The architecture of the implementation can be seen in the Figure 4.2.
The figure shows the hardware blocks implemented in the FPGA and the
communication channels between that blocks and SDRAM. The widths of
the data buses between FFT block, AXI DMA block and Memory Interface
Core are 64 bit. The Microblaze core and AXI-Lite channels of the AXI DMA
blocks are connected to the 100 MHz clock source. The channels of the FFT
cores and the other channels of the AXI DMA blocks run at 200 MHz clock
frequency and the main memory runs at 400 MHz clock frequency.

Based on the provided input data, such as range of the target, its veloc-
ity and angular information, the Microblaze core generates an input data in
single-precision floating-point arithmetic and stores it in the SDRAM. Fol-
lowing that, the Microblaze initializes the AXI DMA block to read the data
stored in the SDRAM, transfer it to the first FFT block and writes back the
output data from the block. In the design, a single AXI DMA and single
FFT block are used for the processing of the whole 3D array. With the cur-
rent design, having multiple DMA and FFT blocks will not accelerate the
processing since all the instructions of the Microblaze run sequentially.

Figure 4.2: The architecture of the implementation

After finishing the first FFT processing, the Microblaze will perform a
transpose operation (see Figure 4.3) on the data stored in the SDRAM.
As it was mentioned in the previous section, this operation is done using
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the Microblaze core by doing the column-wise reads from the SDRAM and
row-wise writes to the SDRAM. The output of this operation is a matrix in
12x512x32 3D format. Following that, the Microblaze will instruct the second
AXI DMA block to start fetching the data from the SDRAM, transfer it to
the second FFT block and write back the results from it. After completion
of the second FFT operation, the Microblaze will transpose the data for
the last FFT processing. The output of this transpose operation will have
512x32x12 3D matrix format where the third dimension contains the data
from all virtual antennas. The Microblaze now can instruct the DMA block
to transfer the data for the third FFT process. Although we have 12 data
samples available, based on the Equation 3.8 in Chapter 3, 32 point FFT will
be performed on the data. This means that the fetched data vector will be
padded with zeros before processing. Consequently, the third FFT process
can use the same hardware blocks used in the second FFT since they both
need the same number of point FFT core. In a similar way, the output of
the third FFT will be stored in the SDRAM.

Figure 4.3: An example transpose operation

In this phase, we have a 3 dimensional matrix that contains a frequency
spectrum of all the signals from all virtual antennas. The Microblaze now
can read the data and process it accordingly to calculate the range, velocity
and angle information. This is achieved by using the range, velocity and
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angle equations derived in Chapter 2.
The range of a target and it’s velocity are found as following; first, 2D

FFT processed signal data from the first virtual antenna is taken and it’s
absolute value is calculated, then, a maximum value in the 2D matrix and
it’s location were found, following that, based on the row (range bin - rb) and
column (velocity bin - vb) location information, the range and the velocity
of the target were calculated. Based on the Equation 2.17 in Chapter 2, the
range can be found as:

R =
fbc

2α
=
rbfsc

2αN
(4.1)

where fs is the sampling frequency of the mixed signal and equals to:

fs = N/T (4.2)

In a similar way, based on the Equation 2.19 in Chapter 2, the velocity
of the target can be found as:

v =
fdc

2fc
=
vbfchc

2fcn
(4.3)

where fch is the chirp frequency and equals to:

fch = 1/T (4.4)

The angle information is found as following; first, data samples were taken
from all virtual antennas based on the row and column information from the
previous calculation making a snapshot vector, second, absolute values of the
vector elements were calculated and stored in a vector, following that, angle
bin values were calculated using the Equation 2.32 in Chapter 2, finally,
based on the bin location of the maximum value of the vector, the angle
value is found. The distance between virtual antenna elements was taken
to be equal to the distance between receiving antennas. It should be noted
that the first half of the snapshot vector represents the positive angles which
range between 0o and 90o, while the second half of the vector will contain
the magnitude of the angle bin values in -90o - 0o range. Consequently, by
combining them together we will have a bird’s-eye view in -90o - 90o range.

In Chapter 3 we found the real-time requirements for the FFT processes.
These values were 35.6 µs, 2.22 µs and 0.21 µs for the first, second and
the third FFT respectively. According to Xilinx’s Core Generator tool, gen-
erated 1024 point single-precision floating-point FFT with natural ordered
output has 4237 clock cycle latency, whereas the 32 point FFT under the
same conditions has 228 clock cycle latency. For 200 MHz clock frequency,



4.3. THE ARCHITECTURE AND OPERATION 37

the time required to finish these FFT processes will be 21.185 µs and 1.14
µs respectively. We can see that the first and the second FFT processes
meet the timing constraints, however the third FFT process fails to meet the
requirement. It requires more concurrent functioning FFT hardware blocks
to achieve the real-time performance for the third FFT. In this case, we need
at least 6 32 point FFT cores to meet the real-time constraints. However,
considering the sequential processing of FFTs, it is not mandatory for our
implementation.
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Chapter 5

Results and Analysis

In the previous chapter, we discussed the algorithm and the implemented
architecture. This chapter describes the results of the implemented architec-
ture tested on Virtex-6 FPGA.

5.1 Results

Multiple tests have been carried out with the implemented architecture. As
specified in Chapter 4, the Microblaze core generates input data based on
the provided parameters such as range, velocity and angle information of
the target, number of transmitting and receiving antennas of the RF front
end and number of range and velocity bins in the FFT process. The test
results have been compared with the Matlab implementation. In addition,
the measurements have been taken to find out execution time required for
each process and to determine the bottleneck of the implementation.

5.1.1 Hardware Resource Usage

As it was mentioned in Chapter 1, the Xilinx ML605 board is used as a
hardware platform for the implementation. The boards contains Virtex-6
XC6VLX240T-1FFG1156 FPGA which is the main processing unit. The
hardware resources of this FPGA are: 241152 Logic Cells or LUTs, 37680
Logic Slices, 768 Digital Signal Processing Slices (DSP48E1) and 416 36
Kbit Block RAM blocks. Single look-up-table (LUT) has 6 input ports and
1 output port which can optionally be registered in a flip-flop. Each logic
slice consists of four LUTs, eight flip-flops and additional multiplexer and
arithmetic carry logic.

The Table 5.1 shows the hardware resource usage and utilization of the
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implemented architecture. We can see that the memory interface core and the
AXI4 interconnect together take almost half of the total resources. Another
thing to note is that the FFT cores use considerable amount of resources. In
fact, the hardware resources required for 1024 point FFT core is much more
than the resources needed for the Microblaze processor core. One explanation
of this can be that both FFT cores have been configured to perform a single-
precision floating-point processing with a pipelined-streaming architecture
which require usage of significantly more hardware resources.

HW Component Logic Slices LUTs BRAM DSP48E1

Memory Interface Core 3044 6567 - -
AXI DMA (x2) 995 2028 14 -

FFT Core - 1024 pt. 1795 5066 16 36
FFT Core - 32 pt. 1023 2869 2 16

Microblaze 1065 2565 6 5
AXI4 Interconnect 3102 7735 18 -

AXI4-Lite Interconnect 139 326 - -

Total 12158 30184 70 57
Utilization (%) 32.3 12.5 16.8 7.4

Table 5.1: Resource usage of the architecture

5.1.2 Tests

The architecture was tested by generating input data with varying values of
range, velocity and angle parameters. The Table 5.2 contains the performed
test cases and their outputs.

We can observe that the range output values have 0.15 m difference be-
tween consequent ranges. This is due to the fact that range resolution of the
radar is equal to 0.15 m. It was derived in Chapter 2 and can be found by
Equation 2.18;

∆R =
c

2B
=

3 · 108 m/s

109 Hz
= 0.15 m (5.1)

The data associated with each FFT bin represents a different range where
FFT bins range from 0 to 511. Consequently, we can find the maximum range
that the radar can detect which will be equal to 76.65 m (511 · 0.15).

On the other hand, the velocity of the moving target has 1.66 m/s differ-
ence between two consequent bins. The value represents the velocity resolu-
tion of the radar which was derived in Chapter 2 and can be found by using
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Equation 2.20;

∆v =
c

2fcnT
=

3 · 108

2 · 79 · 109 · 32 · 35.6 · 10−6
= 1.6668 m/s (5.2)

In a similar way we can find that the maximum velocity that the radar can
detect. It will be equal to 25.002 m/s (15 · 1.6668) due to the fact that the
FFT bins that represent positive frequencies range from 0 to 15. Therefore,
the radar can be used to detect velocities in -25 - 25 m/s range. Here the
negative velocities depict a target that is approaching to the radar and the
positive a one that is moving away.

We can see from the table that the angular resolution of the radar is not
constant over the range. It is higher in the angles closer to zero (boresight)
and smaller in the angles that are far away. This is due to the fact that
the angular resolution is dependent on the beam width of the antenna which
is smaller at angles closer to zero. We can also observe it in the shape of
arcsin() function which is used to calculate the angle FFT bin values. It has
a sharper change in the higher angles in 0o - 90o range as well as in the lower
angles in 0o - −90o range which results in having smaller resolution in that
angles.

Input Output
Test # Distance Velocity Angle Distance Velocity Angle

1 4 m 4 m/s 60.2o 4.05 m 3.33 m/s 61.0o

2 4.16 m 5 m/s 57.3o 4.20 m 5.00 m/s 54.3o

3 4.33 m 6 m/s 50.0o 4.35 m 6.66 m/s 48.6o

4 4.55 m 7 m/s 45.0o 4.50 m 6.66 m/s 43.4o

5 4.68 m -8 m/s -5.7o 4.65 m -8.33 m/s -7.2o

6 5.07 m -9 m/s -11.5o 5.10 m -8.33 m/s -10.8o

7 5.81 m -10 m/s -15.0o 5.85 m -10.00 m/s -14.5o

8 6 m -11 m/s -19.5o 6.00 m -11.66 m/s -18.2o

Table 5.2: Radar test results

5.1.3 Performance

The performance of the implementation was measured by finding the execu-
tion times of the processes. For this purpose, Xilinx’s LogiCORE IP AXI
TIMER core [21] was used. The results of the measurements can be found
in the Table 5.3. It should be noted that the FFT processes also include the
time spent on DMA transfers. We can see that the time needed for 1024
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point FFT and 32 point FFT are 24.14 µs and 3.02 µs, respectively. From
Section 4.3 we know that 1024 point FFT process takes 21.185 µs and 32
point FFT process takes 1.14 µs. Consequently, we can find the time spent
on DMA transfers for these processes. It will be equal to 2.955 µs (24.14 -
21.185) for the AXI DMA block connected to 1024 point FFT and 1.88 µs
(3.02 - 1.14) for the AXI DMA block connected to 32 point FFT.

Process Time (clock cycles) Time (µs)

FFT - 1024 pt. 2414 24.14
FFT - 32 pt. 302 3.02

First FFT - Total (x384) 925164 9251.64
Second FFT - Total (x6144) 1825811 18258.11
Third FFT - Total (x16384) 4868601 48686.01

First transpose 22935952 229359.52
Second transpose 23207150 232071.50

Table 5.3: Timing results of the implementation

It is clear that the second FFT does not meet the requirement found in
Chapter 3. Based on the DMA transfer time we can find a constraint on
the processing time required for this FFT process. It can be calculated by
finding the difference between the required time for the second FFT process
and the DMA transfer which will be equal to 0.34 µs (2.22 - 1.88). Hence,
the processing time for this FFT should be less than or equal to 0.34 µs.

However, according to the Core Generator tool, latency of the pipelined
32 point floating-point FFT with the maximum achievable frequency equals
to 0.415 µs. Thus, we can conclude that it is not possible to achieve the
desired processing time by using a single hardware block. Consequently,
we should add another 32 point FFT hardware block in order to meet the
requirements with the current implementation conditions.

Another conclusion that can be drawn based on the table is that the
memory transpose times are very high and will add huge delays to the sig-
nal processing time. We can see that the transpose processes together take
around 0.46 s which is a lot higher compared to the FFT processing times.
This will hinder the real time performance and will add a minimum time
constraint of 0.46 s between two consequent radar scannings.

To summarize, we see that due to the DMA transfer times the number of
FFT hardware blocks for the second and the third FFT should be increased in
order to meet the real-time requirements. In addition, the transpose time of
the memory is very high and adds a time constraint between two consequent
radar scannings and therefore prevents to meet the real-time requirements.
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5.2 Analysis

In the previous section we found out the bottleneck of the implementation.
This section describes the evaluation of the model and presents the techniques
that can be applied to reduce the effect of the bottleneck.

5.2.1 Evaluation

Based on the results from the previous section we can conclude that com-
plete real-time performance of the architecture is not possible. The main
reason behind it is the time required for the memory transpose operations
which is the main bottleneck of the implementation (see Figure 5.1). Due
to this bottleneck, the processing time requirements for the second and the
third FFT processes can be loosened. In fact, no additional hardware blocks
are required for the current implementation of the architecture. However,
consequent radar scannings must happen with a specified interval which is
0.46 s based on the Table 5.3.

Figure 5.1: Processes and their performance

Moreover, it should be noted that precise real-time guarantees cannot be
given on the architecture. This is due to the fact that the implementation
requires frequent access to the SDRAM to which access latency is not con-
stant and can vary based on number of reasons such as cache page misses and
refresh operations of inside the SDRAM. This uncertainty can be reduced by
knowing the exact scheduling scheme of the SDRAM controller. However,
Xilinx documentation of the Memory Interface Controller does not provide
any information related with the scheduling scheme of the provided core.

A few methods have been tested to reduce the time needed for the memory
transpose operations. The first method was to use different memory banks for
the transposed data and for the data to be transposed. The intuition behind
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it was to separate the SDRAM read and write operations, hence reducing the
time spent on page openings and closings. This was expected to allow less
time for the memory write operations, since one column of the transposed
data could be written to the memory without any more page openings. The
result of the performed test proved it to be true; the first transpose operation
in this case takes 22849682 clock cycles which is 86270 clock cycles less than
the former one.

The second method that was tested on the architecture was to add a block
RAM module to the architecture and use it as a base location for memory
transpose operations. The main intuition behind the idea was that the access
latency to the block RAM is considerably less than the SDRAM and no page
opening and closing are required for accessing the data in a random order.
Thus, the memory transpose operation would include fetching the data to
the block RAM, performing transpose operation on the data and writing
it back to the SDRAM. Consequently, the architecture was extended with
AXI BRAM Controller [22] module to provide the AXI transfers to be read
and written to the block RAM. However, the performed test showed that
this method is not very effective as the first memory transpose time became
43408097 clock cycles which is almost twice more than the former one.

Another method that can be used and was mentioned in the paper [15]
is to store the FFT outputs in multiple banks so that while reading the data
back wait cycles for opening and closing a row could be hidden. That is,
by interleaving the banks for memory accesses the data can be immediately
accessed without any time spent on waiting. This would reduce the amount of
time needed for read operations and additionally would require no transpose
operation to be performed. However, this method has a major limitation
due to the DMA transfer characteristic. It will require to use a AXI DMA
core to transfer a single data sample which is not very efficient in terms of
bandwidth since it does not take advantage of the burst transfer. We can
observe it on the timing results Table 5.3 which shows that transferring 16
KByte (8 KByte on MM2S channel and 8 KByte on S2MM channel) of data
using AXI DMA block takes 2.955 µs, whereas transferring 512 Byte (256
Byte on MM2S channel and 256 Byte on S2MM channel) of data takes 1.88
µs. We can conclude that the higher the amount of data for the transfer, the
higher the bandwidth of the transfer.

To sum up, we have described few methods that have been tested to
reduce the memory transpose time which is the main bottleneck of the im-
plementation. Application of these methods did not result in getting consid-
erable improvements in terms of operation time. Two bank implementation
of the transpose operation can decrease the amount of time required, how-
ever this change is not significant compared to the complete transpose time.
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The other two methods described will result in the increase of the transpose
time and does not provide any value. Therefore, we can conclude here that
transpose operation using MicroBlaze is the major limitation of the imple-
mentation and has a little room for further improvement.
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Chapter 6

Conclusion

The initial aim of this thesis was to analyze the MIMO FMCW signal pro-
cessing scheme and extend the Starburst platform based on the real-time
requirements of the automotive radar application. However, it was found
that Starburst platform is not suitable for this application and does not
provide any means to meet the requirements needed for the real-time per-
formance. Therefore, an alternative architecture was proposed based on the
signal processing algorithm and implemented on Virtex-6 FPGA. This chap-
ter describes the conclusions drawn during this process and future work that
can be carried out to improve the architecture.

6.1 Conclusions

There were three main findings after analysis of the MIMO FMCW signal
processing algorithm. First, it was found that the Fast Fourier Transform
is the core process of the algorithm. Second, the algorithm requires huge
amount of intermediate data to be stored in a memory. Third, memory
transpose operation might be required in order to have an efficient memory
access. In addition, the algorithm had to meet certain constraints to provide
the real-time performance. These constraints were based on the parameters
used in the Matlab model which was provided by the NXP Semiconductors.

The initial design idea for the implementation was based on the Starburst
platform. The idea was to use a MicroBlaze core which is the main processing
element of the Starbust platform to run the FFT algorithm. However, it was
theoretically found that FFT algorithm running on the MicroBlaze core could
not meet the processing time constraints and the real-time performance could
not be achieved with this implementation.

To meet the constrains an FPGA implementation of the algorithm was
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proposed. The MicroBlaze core was used as a main unit in the architecture
to generate the input signal to be processed and to control all the other
operations such as transposing the memory and configuring AXI DMA cores.
For the FFT operations, Xilinx’s FFT IP was found to be suitable enough to
be included in the architecture. It provides a number of architecture options
for the FFT implementation and meets the real-time constraints required by
the application.

Moreover, on-chip memory provided by Virtex-6 FPGA was found to
be insufficient for the storage of the intermediate data. Thus, it has been
decided to use the off-chip SDRAM memory for this purpose. This constraint
would require transpose operation to be performed in the memory. As it
was discovered later, this operation would be the main bottleneck of the
implementation.

The memory transpose process is the main area in which major improve-
ments need to be made. A few methods have already been evaluated, however
no solution was found that meets the real-time requirements.

It was also found that the accuracy of the range, velocity and bearing
results are limited by the resolution. The accuracy of the output can be
found by finding the half of the resolution. Range resolution of the radar is
0.15 m which means that the accuracy of the range output will be ≤ 0.075
m. The velocity resolution of the radar is 1.6668 m/s which will means
the accuracy of the output will be ≤ 0.8334 m/s. As it was mentioned in
Chapter 5, the angular resolution of the radar is not constant and changes
based on the beam width.

In addition, it should be noted that the current implementation uses
single-precision floating-point representation for the signal processing. Main
reason for that is the MicroBlaze core can generate single-precision floating-
point input data which offers more precision than fixed-point. Furthermore,
the FFT IP core supports single-precision floating-point processing as well
which makes it easier to implement in the architecture. However, the specific
advantages of using floating-point over fixed-point are not clear and further
research should be carried out to find out the trade-offs between floating-
point and fixed-point implementation.

6.2 Future Work

Further research and work should be carried out on the FPGA implementa-
tion of the algorithm to improve the performance. As it was mentioned in
the previous section, the main work should concentrate on reducing the time
needed for the transpose operations. It should be noted that the current
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analysis and implementation assumed that the consecutive radar scannings
would happen without any time interval between them so that at any time
period the driver of the vehicle would have an information about its sur-
rounding environment. However, the necessity of this condition is not very
clear according to the provided model. Therefore, it should be investigated
whether the SDRAM storage of the intermediate data is really a requirement
if there is enough time between consecutive radar processing. According to
the calculations, if we consider having enough time after the first radar scan-
ning and use 16 bit fixed-point arithmetic, the memory inside the Virtex-6
might be sufficient to store the intermediate data of the first FFT process-
ing. In addition, in-place computation can be used to store the data of the
second FFT processing without using any additional memory storage. This
would require a design of a new DMA core since the current one used in the
implementation has very low bandwidth for single transfers.

Moreover, the current design uses pre-existing IP blocks developed by
Xilinx which provides no information about the internal design of the blocks.
Therefore, it is difficult to perform the data-flow analysis on the model and
provide the real-time guarantees. For the future, some of the blocks such as
the DDR controller could be redesigned based on the specific memory access
patterns of the application. This would allow to perform data-flow analysis on
the model and give estimates about the performance of the implementation
beforehand.

Additionally, we saw in Section 5.1 that FFT blocks take a lot of hardware
resources. An improvement can be made in this part by redesigning the FFT
core to achieve less hardware usage at the same time to provide a sufficient
latency and bandwidth.
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