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by Edwin BOSSCHA

Advances in big data, data collection and machine learning have made
it possible to apply new machine learning concepts to a wide array of
problems. The aim of this thesis is to explore the possibility of predicting
secondary delays in a railway network using a recurrent neural network.
This can eventually be used to perform risk analysis and alternative
evaluation combined with stochastic delay modelling. Empirical data from
Irish Rail is used to test this method and verify the results.
First a RailML data model is constructed containing infrastructure,
timetable and rolling stock information based on multiple data sources
from Irish Rail. Significant features are identified and extracted from
this data model for around 60.000 different delay combinations. Then a
sequential approach is used incorporating a recurrent neural network to
predict the total knock-on delay. This sequential approach allows for input
data in variable lengths, avoiding information loss due to generalization of
features. The model is trained with mini-batch gradient descent using the
RMSprop algorithm on a large portion of the 60.000 training examples, and
validated using the remainder of the example delay combinations.
A coefficient of determination of R2 = 0, 7029 is achieved, which is
comparable to similar machine learning methods presented in literature.
The resulting accuracy is in the same order of magnitude as similar research
using support vector machines. While results are less accurate then
the results that can be achieved with micro-simulation tools, a series of
improvements of the proposed method are presented which might be able
to elevate the results of this method to a higher level.
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Chapter 1

Introduction

Railway operators have always struggled with the right balance between
railway capacity utilization and punctuality. With an increase in traffic
density and capacity utilization, the amount of conflicts between trains is
bound to increase, resulting in delays called knock-on delays.[1] Knock-on
delays are delays which are induced by another train being delayed,
instead of being induced by an exogenous event such as infrastructure
or mechanical malfunctions. The prediction of these delays is extremely
important to create a robust timetable, and for railway operators to be able
to able to fully utilize their railway capacity. Aside from the creation of
robust timetables, insight in delay causes and the propagation of delays can
allow railway operators to manage their maintenance and new investments
accordingly. Temporary speed restrictions are not uncommon with railway
maintenance works or other works around the rails. Delayed trains are
hard to avoid in these situations, but correcting the operational planning
can resolve a lot of problems that might occur on busy railway corridors,
and can prevent the delays to influence other parts of the railway network.

The prediction of knock-on delays can be applied to two main use-cases.
The first is operational prediction, where delays have to be predicted in
real-time to improve the capabilities of the railway operator to adjust to
occurring delays. Real-time operational prediction of train delays can
also be used to improve communication to commuters, by providing
more insight in prospected delays in their travels. Real-time prediction of
knock-on delays requires the prediction of train-specific delays to be usable
for this use-case.

The second use case is simulation and analysis. Knock-on delay prediction
can be used combined with stochastic modelling of primary delays to gain
insight in the prospected total train delay occurrence for a location or for
the total network. This can be transformed into monetary values for risk
analysis strategical investment planning, or used to evaluate infrastructure
or timetable alternatives in terms of punctuality and monetary loss. The
evaluation of alternatives can then be used to find near-optimum solutions
to maintenance problems or new investments.[2] This use-case requires a
network-total delay minutes as an evaluative measure, and is where the
focus of this thesis lies.

With the current rise in big-data, enabled by more advanced sensor
systems, better capabilities in IT and data storage, and more computational
power to process the accumulated data, new methods of train delay
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prediction are now available. Multiple researches have been done using
statistical regression to quantify the occurrence of train delays, and
the occurrence of knock-on delays. However, most of these consider a
single railway corridor with a relatively small sample set. Compared to
traditional regressional methods, machine learning algorithms have proven
useful in many fields of engineering, including computer vision, speech
recognition, video captioning, object recognition and more. Machine
learning algorithms have also been used sparsely in train delay prediction,
producing results equal or better than those of traditional regressional
methods.[3]

While some researches have indicated a correlation between certain input
features and the occurrence of knock-on delays in railway operations,
all these researches have been limited to single-line operations or to a
specific small subset of lines and operational regimes. While this provides
some insight in the parameters contributing to the occurrence of knock-on
delays, it does not provide a fully generalizable model applicable to
multiple scenarios besides the data-intensive micro-simulation method.

Based on established methods and literature, the main issues that can
be identified with current methods are limitations in applicability,
generalization and accuracy. Micro-simulation based methods often lack
in applicability due to the large data overhead and required set-up time.
traditional regressional models often lack generalization or accuracy, while
they require less input and pre-processing. This leads to believe that there
is much room for improvement in the prediction of knock-on delays.

Machine learning and neural networks have been applied in many fields
of engineering and data science to be used as an improved regressional
or classification model for a wide array of problems. However, the
applications in railway operations and analysis are quite limited, not
utilizing the full power of modern neural networks, while the possibilities
are enormous. Modern neural network architectures and training methods
are capable of far better performance in classification and regressional
problems, and open up a whole new array of possibilities in computing
and data analysis.

Artificial neural networks are algorithms which try to find the optimal
transformation between input and output data based on smart learning
algorithms. This makes it possible for artificial neural networks to find
complex non-linear relationships in data, making it extremely applicable to
the prediction of knock-on delays. Theoretically an artificial neural network
is capable of representing every possible non-linear function, making them
more versatile than multiple regression methods. Furthermore, being
trained on purely empirical data allows the neural networks to establish
the non-linear transformation between input and output based on actual
data instead of theoretical simplifications, allowing them to account for
hidden effects that would possibly be missed in analytical models.

This thesis describes a recurrent neural network based approach to
predicting first-order knock-on delays in railway networks. Chapter 2
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describes the general aspects of railway operations related to this research,
after which Chapter 3 describes the basic theory of recurrent neural
networks. The research approach is described in Chapter 4, discussing the
proposed algorithm. Chapter 5 describes the application of the developed
approach to a case study at the Irish Rail network using empirical delay
data. Finally in Chapter 6 some conclusions will be drawn regarding the
performance of the proposed method and a comparison between other
methods described in literature.
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Chapter 2

Railway Operations

Railway operations can be defined as the management of running trains
throughout a railway network. It can be regarded as the result of
infrastructure management, timetabling and other managerial aspects,
and can be classified as a complex task. Numerous researches have been
devoted to evaluation and optimization in railway operations, leaning on
either the infrastructural, timetabling or strategic aspects.

From a basic operational standpoint, trains normally run on a timetable
basis, which are designed to run (almost) conflict free. These conflicts
however are bound to occur due to exogenous or unforeseen events. When
considering a single train line, it can be stated that every train on that
line physically takes up a portion of that track, because it is physically
impossible for two trains to occupy the same position on a track. In
addition to that, a certain distance, both in time and position, should be
kept between trains to satisfy some safety conditions. Due to these safety
considerations, trains usually have to be authorized to occupy a certain
discrete track section. Traditionally, these sections are created by signal
blocks or stopping points.

When operating at higher speeds, movement authority must sometimes be
gained for multiple sequential track sections to satisfy the safety standards
and to avoid unnecessary braking and accelerating. Thus it can be stated
that a track section might be blocked longer than that the train actually
occupies that track section. When two trains request movement authority
for the same track section, or the track section is still blocked when a train
requests movement authority, conflicts arise. Traffic controllers can decide
to either reroute the train via other track sections, or halt the train until the
requested sections are free again.

To evaluate railway operations, delay minutes are often a key indicator.
The difference between scheduled and actual operations is deemed
as the product of inadequate operations management and unforeseen
circumstances. More delay minutes are often related to less reliable railway
operations, which is noticeable for everyday railway users. But to use
delay as an indicator for railway operations, multiple distinctions can be
made. The first distinction is between arrival and departure delays. As the
name indicates, the first is the delay when a train arrives at a station, and
the latter is the delay when a train departs from a station. While these are
highly related, most timetabling strategies incorporate some form of buffer,
allowing trains to make up for some lost time.
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A second distinction can be made between primary and secondary delays.
Primary delays are delays that are caused by external events. Secondary
delays, or often called ’knock-on delays’, are delays induced by other
primary delays. A delayed train can block a path for another train,
inducing a knock-on delay for the train that has to wait. Due to this
mechanism, delays are able to propagate throughout the railway network
and timetable.

As described earlier, trains traditionally operate on an authority basis,
which can cause conflicts between trains. While a timetable ideally is built
not to have any conflicts, any deviations from the scheduled timetable can
still cause conflicts. By increasing the headway between trains, which is
the time between two sequential trains to pass a section, the probability
of conflicts due to operational deviations is reduced.[4] Another method
to prevent delay propagation is to induce buffer times, which can be
used for trains to recover from delays. Buffer times mean that a train
has more time at a stop than it actually needs. This allows trains with
a slight arrival delay to still depart from that station as planned. One
major consideration in creating a timetable is the extent to which buffer
times and extra headway are available. With both coping mechanisms,
the train runs sub-optimal, not utilizing the maximum potential of the
infrastructure. However, both mechanisms reduce risk of knock-on delays
within the network. This indicates that the timetables used are often
capable of dealing with disruptions to a certain degree, depending on the
capacity utilization. If a disruption would surpass the built in buffers,
knock-on delays are bound to occur, and then will dissipate again based
on the available headway and buffers.

2.1 Analysis methodologies

Railway operations classically are analyzed using either statistical
regression methods or simulation methods. The first traditionally uses
empirical data to establish regressional relationships between network
parameters and the occurrence of operational deviations. The latter uses
simulation and analytical models to encapsulate the operational logic and
determine possible delays, and simulates the railway operations as they
occur in a discrete-time manner.

Statistical Regression Statistical regression methods have been widely
applied to railway operations and delays. Statistical regression give
the possibility to approximate primary and secondary delays based on
empirical data. It is the only method available to estimate the occurrence of
primary delays based on simple regressional models.[5] Gibson introduces
a regressional model estimating knock-on delays for a given primary
delays based on regression.

An interesting subset of regressional algorithms are machine learning
algorithms, using a large dataset of examples to train a more complex
model. The main advantage is that relations do not have to be programmed
explicitly, but the algorithm approximates these relations based on the



Chapter 2. Railway Operations 6

training data. A more in-depth review of machine learning and neural
networks is given in Chapter 3. Machine learning has been applied
to many different problems, including transport modeling and delay
prediction. Most applications are focused on primary delays, such as the
research by Markovic and Milinkovic, predicting primary delay occurences
using support vector machines.[6] Robello and Balakrishnan have taken
another approach, in his study to model delay propagation in airline
networks. By using machine learning to classify the overall delay state of
the network, and using clustering to these delay states, they can identify
key characteristics for the most critical points in the American National
Airspace System.[7] A more micro-simulation based research is proposed
by Milinkovic and Markovic, predicting train delays using a neuro-fuzzy
interface to encapsulate railway operational behavior.[8]

Lai, Huang and Chu present a comparison between traditional regressional
and machine learning applied to railway capacity, related to knock-on
delays.[3] Their findings conclude that even a relatively simple and small
artificial neural network can outperform traditional regressional methods.

Simulation Simulation of railway traffic can traditionally be split into
two methodologies; Micro-simulation and macro-simulation, differing
in level of detail and general use-cases. Macro-simulation is generally
not used to analyze and predict specific train performance, so it is not
discussed further in this thesis.

Micro-simulation is a method where the movement of trains is simulated
based on pre-programmed operational logic. It is used to analyze a
wide range of operational problems on a microscopic level of detail.
[2] A simulation as such requires a large amount of input data such
as track layout, signaling locations and logic, speed profiles, timetable
and exact rolling stock data. Micro-simulation models can be used
to simulate train interactions to attain knock-on delays and recovery
time based on stochastic occurrence of primary delays, or to evaluate
conflicts within a proposed timetable. Micro-simulation models have
proven extremely useful to predict railway capacity, knock-on delays
and operational conflicts when all boundary conditions are known.[9,
2] However, parameters such as specific gradient profiles, traction force
diagrams or brake performance can be hard to come by for an entire railway
network, impeding the use of micro-simulation method for real use cases
and fast alternative evaluation.
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Chapter 3

Machine Learning

With the increase of available computational power and available data
during the last decade, machine learning has been increasingly used as
a classification and numerical prediction method. Machine learning is
the study of self-learning algorithms using artificial intelligence. A clear
distinction can be made between supervised and unsupervised machine
learning, where the former maps an input to a predefined output, and the
latter finds patterns in unlabeled data. This thesis focuses on supervised
learning by using artificial neural networks.

3.1 Artificial Neural Networks

Artificial neural networks(ANN) are algorithms inspired by the human
brain. As a machine learning algorithm they can be applied as both
a classifier and a regressional algorithm, and form the basis for more
advanced machine learning algorithms. Artificial neural networks revolve
around a mathematical representation of a biological neuron. Every
artificial neuron takes the weighted input of previous neurons, and outputs
a single value based on a predefined activation function. While in theory
this activation function could be any function, most applications suggest
the use of simple functions such as a linear function, sigmoid function,
hyperbolic tangent or Gaussian curve.[10]

Σ

bias

Wij

output

input

FIGURE 3.1: Model of artificial neuron.

While a single neuron is just a simple transformation function, creating
a network of these neurons enables the ANN to reproduce complex
non-linear functions. In theory an ANN could be created to represent any
function, given it has enough neurons and connections.
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The most basic variant of the neural network is a single hidden layer
feed-forward neural network. This feed-forward neural network consists
of three layers containing Ni neurons. The input layer represents all input
variables, where every neuron in the layer outputs a specific input variable.
The last layer, or output layer, represents the output values as numerical
values. The middle layer, also called the hidden layer, represents a series
of transformation functions applied to the input, and outputting the results
to the output layer. Usually every neuron in a layer is connected to every
neuron in the next layer, creating a fully-connected feed-forward neural
network. But virtually any architecture, including more sparsely connected
architectures are possible.

input

output

FIGURE 3.2: Feed-forward artificial neural network.

Introducing multiple hidden layers into the ANN enables the algorithm to
represent more complex transformation functions. However, the cost of
introducing more layers does increase the amount of connections between
nodes, resulting in more parameters that have to be optimized in the
learning process.

3.2 Recurrent Neural Network

To deal with the fixed-length input vector that is a major restriction for
feed-forward neural networks, recurrent neural networks(RNN) have been
introduced. RNNs function identically to a normal feed-forward neural
network, with the addition of context nodes, which store the output of a
previous time-step. By storing and reusing neuron output values in these
context nodes, the algorithm is able to factor in data from the previous
time-step. RNNs have proven extremely useful at solving sequential tasks
such as text interpretation, speech recognition and function approximation.
[11]

The simplest form of an RNN is the Elman pattern, where the hidden layer
in a single-layer feed-forward neural network feeds its output value back
to itself, as shown in Fig. 3.3.[12] This architecture can be extended by
stacking recurrent layers, or feeding the output of one recurrent layer to
another layer than itself.

The recurrent connections in the RNN allow the neural network to store
information as if it has a memory to some degree. While this memory
only acts as short-term memory, it can be effective for short sequences
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Dt−1

input

output

FIGURE 3.3: Elman recurrent neural network pattern.
Dashed lines are recurrent connections.

(<50 elements).[13] For longer time-dependencies, gated recurrent neural
networks such as long-short term memory(LSTM) neural networks
perform significantly better.[14]

The recurrent neurons allow the algorithm to deal with sequential data,
but also to deal with a variable length of input sequence. This allows for
a many-to-one input-output mapping, where a sequence of data points
is responsible for one singular output, instead of a continuous stream of
outputs. This type of input-output mapping is depicted in Fig. 3.4.

Xt−3 Xt−2 Xt−1 Xt

RNN RNN RNN RNN

Output

FIGURE 3.4: Many-to-one output mapping.

Le, Jaitlhy and Hinton present several manners to initialize the recurrent
connections in an RNN, providing some toy experiments as a reference.[15]
Their research suggests that initializing the recurrent weights of an RNN as
an identity matrix highly improves performance, beating LSTM-networks
on some experiments they provided. Initializing the recurrent weights as
an identity matrix means that at the start of the learning process, each
recurrent neuron only factors in it’s own previous output. During the
training process the recurrent neurons slowly add more connections with
other recurrent neurons to improve their contextual behaviour.

3.3 Training

Training an ANN is the process where the structure and connections of the
ANN are optimized to best predict data the neural network has not seen
before. To accomplish this, a training dataset of coupled input and output
values is used. If assumed that both the training and unseen data represent
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roughly the same phenomenon, finding a network configuration that best
represents transformation between the input and output of the training
dataset will result in a good predictive capabilities for the unseen data.
The ratio to which the algorithm is able to predict unseen data correctly is
called generalization.

In most cases, the ANN architecture is defined beforehand, and only the
weights of the connections are updated in the training process. The neural
network architecture is mostly defined by trial and error, and the best
suited architecture is highly dependent on the relationship between input
and output data.

When the architecture and activation functions of the ANN are pre-defined,
the training process becomes an optimization problem where the values of
the connection weights ~W have to be optimized, as described in Eq. (3.1).

minE( ~W ) (3.1)

For regressional problems the mean square error can be used as the
objective function E( ~W ). The optimization problem is then to minimize
the total difference between the predicted and actual values.

E( ~W ) =
1

2n

∑
p

∑
o

(yp,o − dp,o)2 (3.2)

The objective function is written out in Eq. (3.2), where p is an index over
input-output pairs, o is an index over output values, y is the actual value
of that output unit, d is the desired value of that output unit and n is the
number of samples in the dataset.

3.3.1 Training Feed-forward neural networks

The most common training algorithm for feed-forward ANN is the
backpropagation algorithm, on which most modern gradient-descent
methods are based.[16] The method revolves around calculating the output
error for each data pair, calculating the contribution of each neuron and
weight to this error, determining a gradient based on the contribution
to this error and finally updating the weights according to this error.
Doing this process for the entire dataset can minimize the error between
predicted and ideal output values, minimizing the mean square error for
the predictive algorithm.

When considering the objective function stated in Eq. (3.2), the gradient is
an array of partial derivatives for each weight. This partial derivative is
the sum of the partial derivatives for each input-output pair. The partial
derivative to a specific weight can be formulated as Eq. (3.3)

δE

δwij
=
δE

δsi

δsi
δneti

δneti
δwij

(3.3)

where E is the error function, si is the output of neuron i, neti is the
weighted sum of inputs of neuron i and wij is the weight between neuron
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j and neuron i. These three components can be easily calculated, as δsi
δneti

is
the derivative of the activation function of neuron i. δnetiδwij

equals the output

of neuron j. The remaining part of the equation, δE
δsi

, can be calculated
by propagating the error back through the network using the chain rule.
For the output layer, this is equal to the derivative of the error function,
resulting in δE

δsi
= y − d, where y is the actual output and d is the desired

output. Once the partial derivative of each weight is known, every weight
can be updated according to the following rule:

wij(t+ 1) = wij(t) + ε
δE

δwij
(t) (3.4)

where ε is the learning rate, usually a value between 0 and 1. The value
of this learning rate has an important effect on the convergence speed of
the algorithm. With a lower learning rate, the algorithm converges slower,
while a higher learning rate might cause the algorithm to oscillate, causing
the algorithm unable to find a minimum value for the error.

3.3.2 Improved Backpropagation

To increase the effectiveness of the general backpropagation algorithm,
many improvements have been proposed, such as the use of a momentum
term, turning the weight update rule into

wij(t+ 1) = wij(t)− ε
δE

δwij
(t) + µ∆wij(t− 1) (3.5)

where µ is the momentum term. This tends to increase the stability of the
learning process, and can theoretically help the algorithm bridge shallow
regions of the error domain faster. Another often used improvement is
the resilient propagation algorithm, which works solely on the sign of
the gradients. Resilient propagation was introduced by Riedmiller and
Bräun in 1993, and is known to be a significant speedup compared to the
traditional backpropagation algorithm in a lot of cases.[17]

While the resilient propagation algorithm is a significant speedup in
cases where the weights are updated after calculating gradients for the
entire dataset, it loses effectiveness when using batched training, updating
the weights after a certain amount of training examples. To overcome
this problem, Tieleman and Hinton have introduced root-mean-squares
propagation(RMSprop), an algorithm that scales the weight update value
with the root mean square of the gradients.[18, 19] This method keeps a
moving average of the mean squares of the gradients using Eq. (3.6).

MS t = 0.9MS t−1 + 0.1

(
δE

δWij

)2

(3.6)

This allows for the weight updates to be scaled individually based on the
root mean squares of the gradients, resulting in the weight update equation
provided in Eq. (3.7)

wij(t+ 1) = wij(t)−
ε√

MS (t)

δE

δwij
(t) (3.7)
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The advantage of RMSprop over regular backpropagation or resilient
propagation is the fact that every individual weight update is scaled using
the root mean square. Furthermore, keeping the moving average of the
gradients allows for a scaling parameter that is not influenced by the
use of mini-batches, where resilient propagation is not compatible with
mini-batch gradient descent.

3.3.3 Training recurrent neural networks

While RNNs have a lot of similarities with feed-forward ANNs,
backpropagation is usually not an effective solution for training a recurrent
neural network, because of the dependencies throughout the sequential
data. To account for the recurrent nodes in a recurrent neural network,
the backpropagation algorithm has to be altered. Werbos has introduced
an alteration of the regular backpropagation algorithm which is capable
of dealing with these recurrent nodes.[20] The basis of this algorithm is
unfolding the sequential recurrent neural network through time, creating a
topology resembling a feedforward neural network, as displayed in Fig. 3.5.
This allows for the errors to propagate back in time, and update the weights
of the recurrent neural network accordingly. Specific weight update rules
such as resilient propagation, momentum updates and RMSprop can be
used to increase the efficiency of the basic backpropagation through time
algorithm.

inputt

output

inputt−1

inputt−2

FIGURE 3.5: Schematic representation of unfolded RNN

Unfolding the neural network through time creates a deep neural network,
susceptible to the problems occurring in deep neural networks, requiring
extra care in the training process. These problems are explained in
Section 3.3.4. The general procedure of the basic gradient descent methods
is outlined in Algorithm 1.

3.3.4 Known Difficulties

While in theory these training methods are able to find a global
optimum for the neural network, several difficulties arise when training
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Algorithm 1 Outline of gradient descent learning methods

1: while i < MaxEpochs do
2: for all Minibatch in Dataset do
3: for all Sequence in Minibatch do
4: for all Datapoint in Sequence do
5: Calculate network output
6: Store neuron activation values
7: end for
8: for all Datapoint in Sequence do
9: Calculate partial derivatives for weights

10: end for
11: Reset recurrent activation values
12: end for
13: Update weight vector ~W
14: end for
15: i← i+ 1
16: end while

feed-forward- and recurrent neural networks. First of all, the efficiency
of the training method is highly dependent on the training parameters of
the given training algorithm. Choosing the correct values for the training
parameters is essential for the error rate to converge, but the choice is
mostly limited to trial and error.

Vanishing gradients

A common problem in training neural networks using gradient descent
methods is the vanishing gradients problem, as described by Hochreiter
and Pascanu.[21, 13] Due to the error term being propagated through the
neural network, and the derivative for most activation functions being
lower than 1, the error term diminishes as the error is propagated through
the network. This occurs especially in multi-layered structures. This is also
a big problem for RNNs, as the backpropagation through time algorithm
transforms the RNN into a deep feed-forward neural network. As the
error propagates back through time, it is bound to vanish, inhibiting the
capability of the network to learn from long-delayed dependencies.

One proposed solution to this known problem is the use of rectified linear
units(ReLu). Linear rectifiers are activation functions which limit the
output value at 0, creating the nonlinear function o = max(0, x). The
advantage of this type of activation function is that the derivative for
positive numbers is 1. An added advantage is that ReLu neurons only
activate when the input is higher than 0, creating sparser activations for
all neurons. [22]

Exploding gradients

Exploding gradients is a problem mainly occurring in RNNs. The standard
gradient descent methods are unable to account for a steep wall in the error
curvature, which is likely to occur with RNNs. These kinds of walls can
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severely disrupt the learning process when not dealt with appropriately,
as described further by Pascanu, Mikolov and Bengio.[13] One proposed
solution to deal with this problem is the use of a simple clipping function
to clip the gradients once they tend to explode. While this does introduce
a new parameter into the learning process, it is the simplest working
approach to dealing with this problem, and has proven to be effective.[23,
24]

Overfitting

Overfitting is a problem that occurs due to the learning process working
too well. When a machine learning model is overfitted, it represents the
training data to an extent that is not generalizable to an unseen dataset.
This is a huge limitation in machine learning, and regressional analysis
overall. A first solution would be to use a second dataset, not used for
training as a reference. Once the error rate on this training set goes up,
the training algorithm should stop to prevent overfitting. However, this
method means that the available data should be split up further, meaning
less data is available for training.

A second method to avoid overfitting in neural networks is the dropout
method, proposed by Srivastava et. al. This method manipulates the
structure of the neural network to train a subsample of the entire neural
network for each example. This can be done by randomly dropping out the
activation of certain neurons or connections, leading to a randomly sparse
neural network for each training example.[25] Due to the subsampling
during the training procedure, the full neural network is less likely to
overfit the data.

When applied to RNNs, Zaremba has identified some problems with
dropout applied to recurrent connections, impairing the network from
learning long-time dependencies.[26] They propose dropout to only be
applied to the non-recurrent connections in the neural network. However,
Moon et. al. propose a different approach to dropout application to
recurrent connections, using a constant dropout mask for each sequence.
This allows the dropout generalization advantages to be applied to
recurrent connections as well.[27]

3.3.5 Alternative training methods

As specified earlier, the training process is in fact a mathematical
optimization problem where a vector of weights has to be optimized
to minimize an objective function. While the gradient descent methods
described earlier usually do a good job at training a neural network,
they are prone to getting stuck in local optima and subject to the
problems described in Section 3.3.4. However, more general mathematical
optimization techniques can also be used to optimize the objective function
E = F ( ~W ). General evolutionary algorithms such as the genetic
algorithm can be applied, or social search algorithm such as particle swarm
optimization. While these methods generally do require a lot more function
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evaluations, where a function evaluation is the entire pass over a dataset,
they do tend to be better at avoiding local optima.

Particle Swarm Optimization

Particle Swarm Optimization(PSO) is a social optimization method derived
from the way groups of animals behave. Particle swarm optimization
based methods have proven useful in optimizing non-convex problems,
even if dimensionality is high.[28, 29, 30] The algorithm begins by initiating
particles randomly within the search space. Each particle has a position,
which is the vector of weights. Then a velocity is added to these particles
to make them move through the search space. Each iteration, the position
of the particle is updated according to this velocity, and the new position
is evaluated. For each particle, as well as for the entire swarm, the best
positions are being stored. The best performing position of that particle is
called the cognitive attractor, and the best performing particle position in
the swarm is called the social attractor.

Each iteration the velocity of the particles is updating using a set of simple
rules. The velocity is based off three variables: the previous velocity,
the cognitive attractor and the social attractor. The amount to which the
velocity adheres to each of these variables is dependent on the learning
parameters, and defines the swarm behavior. This results in a set of simple
equations:

v(t+ 1) = µvt +A1(x− aC) +A2(x− aS) (3.8)

where x is the particle position, µ is the momentum term, A1 and A2 are
the cognitive and social learning rates, and aC and aS are the cognitive
and social attractors. The values for the momentum and learning rate
parameters define how well the swarm performs in the given search
space. A higher momentum value generally results in more exploration,
while a lower momentum value results in a more exploitative behavior.
These values usually are set through trial and error, or meta-optimization
techniques.

Xt AC

AS

Xt+1

Vt
Vt+1

FIGURE 3.6: PSO particle update rule

The advantage of particle swarm optimization compared to the gradient
descent methods described earlier is that it is less dependent on the gradient
of the error surface. Particle swarm optimization disregards the difference
between steep and less steep error surfaces and is capable to deal with
non-convex error surfaces quite well. The cost of this performance is the
high computational complexity requiring a significant increase in passes
over the entire training dataset.
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Chapter 4

Delay Prediction Method

In Chapter 1 two use-cases for knock-on delay prediction are presented.
The operational prediction use-case requires a per-train approach to
knock-on delays to be usable, while the evaluative use-case can be
generalized to network-wide knock-on delays. This thesis focuses on the
evaluative use-case. To model the knock-on delays occurring as an effect
of a singular delayed train, several aspects have to be considered. The first
of these is the required and available data that can be used to model this
phenomenon. The second aspect to consider is how to use that data to
approximate the delay propagation.

4.1 Railway data modeling

As established in Chapter 2, railway operations is a combination of
infrastructure management, timetabling and equipment management. To
model such a task and its implication, data about all three aspects should
be in aggregated, and related to each other. When considering the railway
network as a whole, it can be divided up into several routes, which possible
intersect at some points. These routes cover a series of tracks and pass
several stations, and all have a certain traffic behavior at a certain point at
time. But because certain routes might use parts of the same infrastructure,
delays can transfer from one route to another due to knock-on delays.

To create a related railway data model, a graph model can be created
connecting intersections. Each edge and vertex in this graph can contain
data about its respective route or intersection. This data behind each vertex
and edge contains all infrastructure and timetable data, as illustrated in
Fig. 4.1.

To improve communication between different types of software used in
railway operations, the RailML exchange format has been developed.[31]
RailML stands for Railway Markup Language, and is an exchange
format based on the popular XML language. It is designed to contain
infrastructural and operational data, and connecting these by referencing
to each other. The basis of the RailML data model lies in three subclasses.
These are infrastructure, describing topology, tracks and track elements;
Rolling stock, describing all train formation features and timetable,
describing the allocation of rolling stock to the infrastructure at a given
time.
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FIGURE 4.1: Illustration of a railway graph data model

The RailML data model permits some flexibility in level of detail, not
restricting the user to a specified level of detail. It works by creating
operational control points, which are referenced by the timetable module.
Operational control points can be any location on the railway network,
such as a signal, intersection or station. These operational control points
are allocated along one or multiple tracks to define their relative location
to other operational control points.

With the operational control points and track layouts known, a graph
model can easily be created, where each operational control point is a
vertex V . These vertices can be connected based on the track topology
specified the RailML file. Each graph edge E represents a route between
two connected vertices, containing information about the tracks connecting
the vertices.

4.2 Proposed Algorithm

From the basic operational logic described in Chapter 2, we can derive
that a transformation happens between the intended timetable and actual
timetable once a disruption occurs. This transformation is dependent on
infrastructure, rolling stock and timetable aspects, as well as the initial
disruption. It is assumed that an artificial neural network would be able
to represent this transformation, given the right network architecture and
input parameters.

As established in Chapter 2, the first-order knock-on delay is collection of
delays that directly result from a train with a primary delay. This means
that every train that has a primary delay, or initiator train, can be linked
to a value of total resulting first-order knock-on delays D. While it would
be possible to approximate D using a feed-forward neural network using
generalized features describing the movement of the initiator train, some
problems would arise. Because of the fixed-length input requirement of a
feed-forward neural network, input data would have to be generalized to
a fixed-length input vector. In this feature generalization process, detailed
information and nuisances would be lost. The process can be compared
to sentence analysis and word recognition, where compression to a single
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vector has resulted in limitations of the learning capabilities of the machine
learning algorithms. To solve this issue, recurrent neural networks can be
used to process variable-length sequences of input vectors, as described in
Section 3.2.

When considering a railway graph G, the movement of the initiator train
can be divided into a subset of movements between graph nodes. This
creates a sequence S of movements mi over graph edges. In this sequence,
every movement mi can be defined by a feature set Fi, which describe
the infrastructure characteristics, rolling stock characteristics, timetable
characteristics and the initial train delay. Assuming the premise that D
is a result of infrastructure, rolling stock, timetable and initial event is
correct, the sequence S with the correct feature set should contain enough
information to approximate D.

In Chapter 3 it was established that recurrent neural networks excel at
extracting meaning from sequential data with variable sequence length.
Using a many-to-one recurrent architecture, an input sequence S can be
mapped to an output value D, as displayed in Fig. 4.2.

Station Station Station Station

RNN RNN RNN

Total Delay

F1 F2 F3

FIGURE 4.2: Schematical representation of RNN-based
algorithm

The algorithm uses the input feature set for each point in the sequence,
as well as the hidden state of the previous data point to update the new
hidden state of the recurrent layer. This recurrent layer state is a vector
of size n containing information about the sequence in an n-dimensional
feature space. The generalized method is presented in Appendix A

Because of the highly non-linear behaviour, and the better generalization
of deep neural networks, a multi-layered architecture is proposed. This
allows the neural network to parse the input features to higher level
features before the recurrent layers, increasing the potential performance
of the algorithm. To solve the vanishing gradients problem for deep neural
networks described in Chapter 3, ReLu activation layers are used as the
activation function for all hidden layers.

To reduce the chance of overfitting, dropout is applied to each hidden
layer as proposed by Moon et. al. and in Chapter 3.[27] Compared to
evaluating an extra dataset, which increases computation time per epoch,
the hidden and recurrent connections are dropped out with a specific
dropout chance, allowing all processor power available to be directed
towards gradient calculation during training. The proposed training
algorithm is the RMSProp algorithm developed by Tieleman and explained
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in Section 3.3.2.[18] This usually allows for faster convergence towards
lower error rates and allows mini-batch training to save processing power.

4.3 Input Features

The input features of a neural network are the input variables derived
from a dataset that are fed into the neural network. These features are
represented as a real number, thus Fi ∈ R. However, because of the
initial weight initialization being semi-random, it is best to choose the input
features to be any real number close to the [−1, 1] range. Classes as an input
variable can be dealt with by transforming it into a numerical parameter.
This is usually done by binary encoding, creating a binary vector for the
amount of classes, and allocating a 1 or 0 to the index of that class. For the
predictive algorithm, the following input features were used:

Delay Times This is a two-value input, containing both the delay at the
origin and the destination point at the respective graph edge. The value is
presented in hours to keep it near the [−1, 1] range.

Train Maximum Speed The train maximum speed is derived from the
route speed restrictions and the train type. It is presented to the neural
network in 100km

h to keep the value within the desired range.

Route Maximum Speed The route maximum speed is the general
maximum speed for the considered graph edge, corrected for local speed
restrictions. It is also presented in 100km

h

Speed Homogeneity The speed homogeneity is the measure of
homogeneity in the maximum speed of the trains passing that edge. It is
calculated by calculating the standard deviation of train maximum speeds
for each train passing that graph.

Route Departures The route departures is a measure for headway on
the considered edge. This is divided into six values where the first three
represent trains in the same direction as the initiator train, and the last
three values represent trains in the opposite direction. The departure count
is split into three values based on the time between the initiator train
departure and the other train departure. The first value is the count of trains
within 5 minutes difference, the second value for 5 to 15 minutes difference
and the third value is for trains with a 15-30 minute difference.

Vertex Departures/Arrivals The vertex departures and arrivals is similar
to the route departures feature, but for the origin and destination vertex of
the initiator train. The first three values represent the origin vertex, and
the last three values represent the destination vertex. The time difference
grouping is equal to that of the route departures feature.
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Edge Length The route length is the route distance between two vertices.
It is calculated using the Dijkstra Algorithm applied to the RailML track
definitions. The length is presented in Miles

10 to keep it within the desired
range.

Percentage Double Track The percentage double track is fraction of
distance of the route between two vertices that operates with a double track.
This value is close to a binary value for most edges, with a few exceptions.

4.4 Implementation

The entire program including data management is written in C# using
the .NET 4.6.1 framework. The recurrent neural network and training
algorithm implementations are all based on the Encog 3.3 framework,
which allows high customization while providing high-speed basic
functions.[32] A custom implementation of the backpropagation through
time algorithm was added based on the regular backpropagation
code provided by Encog. The custom backpropagation through time
implementation was optimized to run in parallel on multiple processor
cores to attain the maximum performance out of the available hardware.

The RailML exchange format is converted into C# classes, to allow
for greater speed and flexibility in the data manipulation and feature
extraction. The RailML model of the infrastructure and timetable is
serialized into these C# classes to extract data. A graph model is created
from the track topology described in the RailML model. This graph
model is then populated with the corresponding timetable for every delay
combination. From this populated graph, a data sequence is then created
for each delay combination in the training set using the input and output
features specified in Section 4.3.
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Chapter 5

Case Study

To train and test the algorithm described earlier, a case study has been
conducted on the entire Irish Rail network. This chapter discusses some
general characteristics of this network, the level of detail used in the data,
the data collection process and the training process.

5.1 Network Characteristics

The Irish Rail network consists of a total of 2.400 km of tracks, spread out
over the entire Republic of Ireland. It operates both urban and intercity
traffic, making it a well diversified network for research purposes. The
main lines; Dublin-Cork and Dublin-Belfast, as well as the urban DART
service, operate fully on double track, while the rest of the network consists
mostly out of single track lines.

FIGURE 5.1: Topographical map of Irish Rail Network. Blue
dots are operational control points.



Chapter 5. Case Study 22

Between 1-1-2010 and 1-9-2015 an average of 661 trains operate daily on
the Irish Rail network, excluding shunting operations and empty train
movements. This includes a small amount of freight movements per
day, traveling from the Dublin or Rosslare Harbor to various locations
throughout Ireland. Maximum operational speeds on the network range
from 160 km/h on double tracks to 100 km/h on most single-track lines.
Lower speed restrictions are in place in most urban areas or around level
crossings.

Due to the Irish Rail network containing mostly single-track lines, the
occurrence of knock-on delays are not uncommon. On average the total
destination delay due to primary delays is 571.9 minutes per day between
1-1-2010 and 1-9-2015. The average amount of first-order knock-on delays
is 93.9 minutes per day. On average 7% of all trains have primary delays
higher than 5 minutes, out of which 18% cause a knock-on delay of more
than 5 minutes.

5.2 Data Collection

The RailML data model described in Chapter 4 and the delay combinations
were all established using databases utilized by Irish Rail. The
infrastructure side of the RailML model was created using GIS data
from Irish Rail. This data describes a set of infrastructure elements and
their respective locations, as either points or polylines. This locational
data is mostly based on GPS measurements or drawings. To transform
this data into a valid topology, track polylines were connected based on
switch locations and proximity. Using a brute-force method, the tracks
closest to the switch location were queried, and they were connected using
a RailML switch element. To ensure a valid topology, all switch locations
were checked beforehand to avoid errors in the topology algorithm. To
validate the topology, all track connections were manually checked for
consistency. Operational control points such as stations were positioned
along the tracks in a similar fashion, using GPS locations and a brute-force
approach to find the nearest locations. Once the operational control points
and topologies are established, train routes between operational control
points can be calculated using the Dijkstra shortest path algorithm.[33]

Timetable and operational data was derived from a system developed
in-house by Irish Rail to track train performance. This system registers the
proposed timetable for every day, and registers the actual train operations
using track circuitry. The system is regulated by delay clerks at the central
traffic control, who allocate a delay code to every train delayed more than
a certain threshold. This delay code contains information about the source
of the delay, and whether it is a knock-on delay or primary delay. The
source of the delay is established by the central traffic control as well as
communications with the train driver.

The track circuitry based system was introduced gradually in 2009, and is
still operational, providing around six years worth of operational data. To
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avoid some initial start-up errors, this case study only regards data from
2010.

With the operational data and delay codes available, delay combinations
can be easily formed for each primary delay. Trains that have suffered a
knock-on delay can be allocated to the delay combination of their respective
primary delay. This results in a total of around 60.000 delay combinations
between 1-1-2010 and 1-9-2015.

5.3 Training Procedure

As described in Chapter 3 and Chapter 4, the RMSProp algorithm is the
fastest and most widely used algorithm to train a similar neural network.
Thus it is assumed that RMSProp is the initial best choice of training
algorithm for this problem. To solve the problem that gradient descent
algorithms are prone to local minima, a clause is built in to switch to
particle swarm optimization when RMSProp algorithm gets stuck. Particle
swarm optimization is initiated when the mean squared error has not
decreased over 20 epochs. The learning rate of the RMSProp algorithm is
exponentially lowered, as sensitivity to exploding gradients increases. This
is done by introducing the formula εt = 0.98εt−1.

The training process is performed for multiple configurations,
using different output activation functions, learning rates and other
hyper-parameters. Due to the instability of recurrent neural networks and
the wide range of output values, many configurations lead to an unstable
training process where at some point the weights exploded, causing
numerical errors. Due to the high required computational complexity, it
was chosen not to optimize the training parameters in a computationally
intensive manner. The training parameters were initiated on values
suggested in literature for similar studies, after which they were fine-tuned
based on which problems exhibited during the training process. From a
set of successful training configurations, the best was chosen for further
examination. Training this best performing configuration took a total of 17
hours on an AMD A6-3420 processor. All final training parameters for this
specific configuration are given in Table 5.1
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Parameter Abbreviation Value
Initial Learning Rate ε 10−4

Learning Rate Decrease rε 0.98
Number of hidden layers nl 2
Number of neurons per hidden layer nn 50
Hidden layer activation function fhidden ReLu
Output layer activation function foutput Sigmoid
Maximum weight norm ‖w‖max 3
Dropout percentage Pd 0.2
Weight initialization w0 N (0, 0.03)

Batch Size nb 50
PSO social learning rate A1 2.0
PSO cognitive learning rate A2 2.0
PSO number of particles nPSO 75
PSO maximum velocity vmax 0.2

TABLE 5.1: Training and neural network parameters

5.4 Results

To validate the performance of this method, a validation set of 1750
delay combinations is used. After the training procedure has stagnated,
a mean square error for the predicted total knock-on delays in hours of
0.0206 has been obtained on the validation dataset. This is equal to a
normalized mean square error of 0.2971, or the coefficient of determination
R2 = 1−NMSE = 0.7029. The mean average error of the validation dataset
is MAE =

∑
|xi−yi|
n = 0.0722h. This means that the prediction is off by 4.33

minutes.
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FIGURE 5.2: Histogram of outputs and ideal values

When looking at the individual values produced in the validation dataset,
displayed in Fig. 5.2, the correlation between the predicted and actual total
knock-on delay can be observed. The clear limitation at 0 and 1 hour where
the sigmoid activation function is saturated can be observed. Other output
activation functions as well as other output scales were tested, but resulted
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FIGURE 5.3: Histogram of absolute errors in predictions
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FIGURE 5.4: Occurrences of absolute errors

in an unstable training process or in far worse results. This suggests that
an alternative output feature scaling or output activation function should
be used for the algorithm to be more efficient at recognizing the wide array
of possible output values.

In Fig. 5.3 the absolute prediction error is plotted against the actual
knock-on delay for every validation example. This suggests that for total
knock-on delays under 60 minutes, the bandwidth of the prediction error
is almost equal. For examples with a total knock-on delay higher than 60
minutes, the absolute prediction error rises linearly, suggesting that most
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high knock-on delay values are predicted as a 60-minute knock-on delay.
Fig. 5.4 displays the occurrences of absolute error values of the predictive
algorithm. It can be observed that a total of 1322 out of the 1750 validation
examples are predicted within a 5 minute margin, corresponding to a total
of 75.5% of the delays that are predicted within this 5 minute margin.

When the outliers with a total knock-on delay of more than 60 minutes are
omitted, the corrected coefficient of determination is R2 = 0.7082 over a set
of 1698 observations. With these 52 samples omitted from the validation
dataset, the mean absolute error is reduced to MAE = 3.532min. While
this result seems more accurate, it means that the early saturation of the
sigmoid output activation function hardly contributes to the coefficient of
determination.
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Chapter 6

Conclusion

The experiment described in this thesis did not reach a level of accuracy
feasible for a real risk analysis of a railway network and timetable. The
results did however prove the feasibility of recurrent neural networks in
delay prediction and the general application to relational data to some
extent. The attained regressional model by a recurrent neural network
with two hidden layers results in a similar coefficient of determination
as Marković et. al. in their method using support vector regression.[6]
The expected increase in performance due to the retained detail in the
sequential input data model was not observed. However, this study was
conducted using more data examples attained from a complete, diverse
railway network. Considering this does indicate better generalization
capacity than other similar methods.

When looking at the attained model from an absolute accuracy standpoint,
an average error of 4.33 minutes seems reasonably accurate. When
comparing this to the study done by Marković et. al. where a MAE of
6 minutes was reported, the results from this experiment are a bit more
favorable with a MAE of 4.33 minutes. However, when considering
the range of outliers observed in the validation dataset in Fig. 5.3,
misclassification is a big issue when looking at the reliability of the
model. While the misclassifications observed in the validation dataset
are statistically not incredibly significant, they can bias a risk analysis
in the wrong direction. When considering the use-cases presented in
Chapter 1, where the knock-on delay prediction combined with stochastic
delay models are used to evaluate a multitude of alternatives, the wide
bandwidth of errors can cause the analysis to favor otherwise highly
unfavorable alternatives. This means that the level of confidence for the
knock-on delay prediction has to be increased for it to be a usable model.
This suggests that an alternative objective function than the mean squared
error could prove more efficient for knock-on delay predictions applicable
to real use-cases.

It can be argued that the artificial neural network trained with this method
is only valid for situations that are almost identical to the examples it
is trained on. This means that in order to attain an algorithm that is
applicable to more cases, it has to be trained and validated on other
situations. While compared to other machine learning based approaches
presented in literature, the training data is already diversified, it is still
based around the operations of one single railway network with certain
characteristics. To extend the algorithm to other situations with differences
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in traffic density, spacing between stations or other operational differences,
the algorithm should be retrained on examples within that scope.

Compared to micro-simulation of railway operations, the accuracy
attained by the recurrent neural network is significantly worse. There is
no directly comparable study benchmarking the performance of knock-on
delay prediction attained by micro-simulation, but it is assumed that
micro-simulation models are capable of predicting train movements within
a few minutes accurate.[2] Micro-simulation is also capable of predicting
train-specific knock-on delays instead of the aggregated knock-on delays
predicted using the recurrent neural network approach.

From a broader operational standpoint, micro-simulation methods are
currently capable of providing insight in more operational metrics than
the method presented in this paper. Occurrences of specific phenomena
such as a train breaking down or maintenance work can be simulated
in more detail to provide insight into operational bottlenecks. However,
the machine learning approach presented in this thesis, as well as other
machine learning applications in railway operations open up a whole new
array of possibilities due to the high computational performance compared
to micro-simulation methods. With this high computational performance,
more alternatives or phenomena can be simulated in the same timeframe
compared to micro-simulation methods, allowing for more brute-force
oriented methods in timetable and alternative generation and evaluation.

From a machine learning and computing standpoint, it is speculated that
the accuracy of this method can be pushed further using newer innovations
in machine learning. Most techniques used such as RMSprop and ReLu
activation functions have been developed in the last few years, and are
still subject to constant improvement from the research community. The
same goes for machine learning implementations in frameworks and the
possibility of using GPU’s (Graphical Processing Units) to speed up the
learning process and neural network size. When considering the current
speed of advancement made in machine learning and the availability
of computational power, it is probable that more detailed regressional
analysis will be possible to predict knock-on delays at higher accuracy and
level of detail using machine learning. With the correct data and machine
learning methods, the theoretical possibilities would supersede the current
performance of micro-simulation in both accuracy and applicability, given
that machine learning methods keep advancing at the current rate. The
best performing artificial neural networks can have millions of connections
and weight parameters, where this study only involved around 6000
connections. Theoretically the performance of artificial neural networks
using more layers and more connections should improve significantly,
suggesting that this method can ideally reach a better accuracy.

An obvious limitation of this study is the absence of signaling data in the
training data and implementation. Signal placement, density and operation
contributes significantly to the dynamics of knock-on delays, and thus are
expected to have a positive influence on the potential prediction accuracy.
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6.1 Recommendations

From the proposed artificial neural network, and the case study applied
to the Irish Rail network, several recommendations can be done regarding
a follow-up research, data management in railway operations and similar
machine learning applications.

As described, the proposed method does not attain results accurate enough
to be feasible for a realistic prediction yet. But it does demonstrate the
potential of deep learning using a rather small and simple neural network.
Further research into the application of recurrent neural networks to delay
predictions using other input and output features will probably attain
better and more accurate results.

Other objective functions could be considered to greatly reduce the
bandwidth of errors in the resulting predictions. This will make the
method significantly more useful in alternative evaluation, risk analysis
and traffic assessment. Finding a solution for the saturation problems at 1
hour delays while also retaining training stability will also highly increase
the usability of the predictive model. Increasing the resolution of the
machine learning algorithm to signal block size instead of station-based
could also improve the capabilities of the algorithm. This would require a
higher resolution in historical operational data, which could be achieved
by introducing more track circuitry or using GPS tracking on trains. Aside
from the implications for this specific machine learning algorithm, more
detailed delay data would also contribute to identifying bottlenecks more
accurately with empirical data.

From a machine learning perspective, it would be wise to find ways to
further push back the computational limitations by utilization of GPU’s,
dedicated FGPA (Field-programmable gate array) hardware or clusters of
processors to unlock the potential of deep neural network structures. One
big limitation in this study was the availability of computational power
to process the data and calculate the gradients for such a big dataset. The
best performing neural networks consist of significantly more layers and
neurons per layer, meaning that more detail in information can propagate
through the neural network.

A focus towards relational integrated data management instead of using
the traditional table-based format would greatly increase the possibilities
for other studies such as this one, and the general versatility of the data
model. As proven in this study, the use of a relational data model such
as a graph model enables for more in-depth studies into the dynamics
of railway operations, and more general combinatorial analysis. The
current practice to store all information in separate systems with minimal
horizontal integration makes the execution of a similar study harder to start
up. The possibilities for big data analysis that open up from utilizing a more
integrated data model would have enormous potential for issues in asset
management, maintenance planning, traffic control and long-term strategic
planning.
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Appendix A

Algorithm Pseudocode

Algorithm 2 Pseudocode of the machine learning algorithm

1: for all DelayCombination in Set do
2: Sequence ← {}
3: for all Station in DelayCombination do
4: Calculate input features F from data model for data point
5: Sequence ← Sequence + F
6: end for
7: Calculate total primary knock-on delay D
8: Sequence ← Sequence +D
9: DataSet ← DataSet + Sequence

10: end for
11: while i < MaxEpochs do
12: for all Minibatch in Dataset do
13: for all Sequence in Minibatch do
14: for all Datapoint in Sequence do
15: Calculate network output
16: Store neuron activation values
17: end for
18: for all Datapoint in Sequence do
19: Calculate partial derivatives ~G using backpropagation

through time
20: ~G← δE

δ ~W
21: end for
22: Reset recurrent activation values
23: end for
24: Update weight vector ~W
25: ~W ← ~W +− ε√

MS(t)
~G

26: end for
27: i← i+ 1
28: end while
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