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Abstract

Specification-based intrusion detection has high detection rates and
low false positives rates. Its main drawback is that the creation of spec-
ifications (rules) often require human intervention. We present a data-
mining approach that reads documents and automatically extracts rules
from them. Specifically, we work in the field of Building Automation
Systems (BAS) using the BACnet protocol (ISO 16484-5). The input
documents are provided by manufacturers of BACnet devices. These doc-
uments state the capabilities of every device, therefore the extracted rules
represent the expected behavior of the devices. In our experiments, the
proposed algorithm creates rules with a 94.5% of concordance with the
documents, on average. We tested our automatically generated rules in
a real BACnet network. Non-standard undocumented capabilities were
detected for three kinds of devices during the evaluation period.

1 Introduction

Processes automation has been one of the main applications in the ubiquitous
computing field, specially for homes, buildings and industries [8, 14, 27]. The
implementation of a Building Automation System (BAS) is an important step
in the pursue of achieving those smart environments. Different solutions have
emerged in the BAS context: LonTalk (ISO 14908), BACnet (ISO 16484-5) and
KNX (ISO 14543-3) are competing protocols whose market share is difficult
to assess [22]. Independently of the chosen standard, the growing trend in
building automation is a palpable fact [17]. Since BACnet is vendor-neutral
yet implemented by more than 800 manufacturers [13], this paper is focused
exclusively on this protocol.

Although initially isolated, BAS devices became interconnected in order to
ease management and provide new functionality. With the advent of the Inter-
net of Things (IoT) new functional requirements pushed towards BAS networks
being connected to the Internet. Internet exposed networks and devices allow
efficient access for system administrators without physical location constraints.
Unfortunately, remote Internet access also enables attackers to access and possi-
bly cause damage to BAS from remote locations. The close interaction between
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BAS actuators (elevators, alarms, lights, etc.) and people living or working in
smart buildings, makes cyber-attacks a life threatening menace.

Different reports state conditions that increase the risk of attacks in BAS: the
firmware is rarely updated in BAS devices [13], shared physical infrastructure
with Internet connected LANs [9], easy access to exposed devices via IoT search
engines like Shodan1 [28] and the absence of authentication, authorization and
encryption in BACnet [10].

Defining a threat model is the first step in the challenging task of securing a
system. Back in 1995, BACnet’s threat model dealt mostly with insiders. One
of the BACnet creators wrote about “a disgruntled system operator who would
do whatever damage he/she intended by means of an operator workstation”
[19]. The massive connectivity we have nowadays has drastically changed the
original threat model. The addition of outsiders as potential threats makes it a
much more complex scenario.

Prevention of attacks is the way in which BACnet deals with security threats.
The so-called BACnet Security Architecture has been integrated into the proto-
col with the aim to ensure confidentiality, integrity and authenticity of BACnet
messages. If correctly implemented, those security features can prevent most
of the attacks targeting BACnet [9]. However, BACnet compliant devices must
adhere only to a small subset of mandatory clauses of the standard. Worri-
somely, the BACnet Security Architecture is not mandatory and most devices
do not implement such features [13, 28]. Detection of attacks becomes then one
essential approach to secure BAS.

1.1 Intrusion Detection

Intrusion detection is “the process of monitoring the events occurring in a com-
puter system or network and analyzing them for signs of possible incidents,
which are violations or imminent threats of violation of computer security poli-
cies, acceptable use policies, or standard security practices” [23]. Literature
identifies three types of Intrusion Detection Systems (IDSs): misuse detection,
anomaly detection and specification-based detection [25]. Misuse detection, also
known as signature-based detection, is done by comparing audit trails (e.g. net-
work traffic) against a database of patterns that univocally identify attacks.
Anomaly detection first observes what normal behavior is in a particular sys-
tem and then scrutinizes audit trails looking for deviations from the norm in that
particular setting. Finally, specification-based detection compares audit trails
against rules that describe benign behavior (regardless of previous observations).
Deviations from those rules are flagged as potential malicious activities. The
three types of IDSs have advantages and disadvantages that must be carefully
evaluated in the context where the IDS is going to be deployed.

Specification-based and anomaly-based intrusion detection share the capabil-
ity to detect previously unknown attacks; however, specification-based detection
considerably reduces the amount of false alarms triggered in anomaly-based de-
tection [24]. On the other hand, rule generation is a costly process, which is
considered the main drawback of specification-based intrusion detection [2].

Specification-based intrusion detection has been applied to a small set of
computer network protocols including TCP, IP, AODV, among others [24, 20].

1https://shodan.io/
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The rules for those protocols are extracted from openly available documents
such as Request For Comments (RFC). Even though RFCs are mostly plain
text descriptions in natural language (English), it is possible to extract for-
mal and unambiguous rules from them. BACnet networks could be protected
using specification-based intrusion detection using the same approach. More-
over, BACnet devices come with specific documentation about their capabili-
ties. These documents are called “Protocol Implementation Conformance State-
ments” (PICS). Taking advantage of the availability of PICS, much more fine-
grained rules can be generated. Our paper consists in automated rule gener-
ation from PICS to deploy specification-based intrusion detection in BACnet
networks.

1.2 Contribution

Medium to large BACnet networks can easily contain hundreds of devices. Fur-
thermore, BACnet networks are specially prone to change; devices are contin-
uously added, replaced and removed. The fact that every device model has its
own PICS makes it unfeasible to manually extract a complete set of rules.

PICS interpretation is hard to automate because of the several different
formats vendors use. Different table styles, English words and even Unicode
symbols are employed to enumerate device’s capabilities in PICS. To overcome
the formatting problem, our approach first looks at network traffic to identify
BACnet devices and their capabilities. Combining the information observed in
the traffic with the information written in the PICS, the algorithm interprets the
PICS document. The output of the process are rules to be used in specification-
based intrusion detection.

In summary, the main contributions of this paper are:

• A data-mining approach to interpret documents using network traffic,
whose applicability is not limited to the BACnet protocol.

• A direct application of our data-mining approach that automatically ex-
tracts rules for specification-based intrusion detection in BACnet net-
works.

• An evaluation of the automatically generated rules in a real BACnet en-
vironment.

1.3 Organization

We first discuss the BACnet protocol in more detail Section 2. A literature
review is presented in Section 3. Section 4 describes the system overview. The
methodology and results are described in Sections 5 and 6. Our results are
discussed in Section 7, followed by conclusions and future work in Section 8.

2 BACnet Protocol Overview

BACnet is a vendor-neutral communications protocol for Building Automation
and Control Networks. Since 2003, BACnet became the ISO 16484-5 standard
protocol. It is also an ANSI and ASHRAE standard. Originally created to
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support only heating, ventilation, and air conditioning (HVAC), BACnet was
extended to support additional functionality like access control and lighting
[10]. BACnet dictates a set of rules that governs how BACnet compliant de-
vices should communicate. Thanks to the standardization, BACnet devices are
capable to interoperate regardless of the manufacturer.

BACnet was inspired by the Open Systems Interconnection (OSI) model
(ISO-7498). Four layers, each of them providing services to the next one, are
part of the standard (Figure 1). The physical and data link layers allow the usage
of different protocols that offer advantages and disadvantages in terms of cost,
performance and type of transmission. The BACnet network layer allows the
interconnection of two or more BACnet networks. BACnet has its own routing
protocol implemented in the network layer. On top of the BACnet protocol
stack is the application layer on charge of the actual data exchange between
BACnet devices. The information is properly encoded and encapsulated in
messages called Application Protocol Data Units (APDU). The details on how
to create such messages are also part of the BACnet standard. BACnet objects
and services play a key role in BACnet’s application layer.

2.1 BACnet objects

Similar to the “object” concept in Object Oriented Programming, BACnet de-
vices store data within objects. Objects have a type and a set properties. This
abstraction hides low level details such as operating system or storage mecha-
nisms and is crucial to exchange data among heterogeneous BACnet devices.

The BACnet-2012 standard defines 54 BACnet objects to satisfy the most
frequent needs in Building Automation Systems. The standard also dictates
which BACnet properties are mandatory for each object. Other properties
are considered optional so manufacturers are free to implement them or not.
Furthermore, the standard declares the possibility to implement proprietary
–vendor specific– objects and properties in BACnet devices.

A BACnet temperature sensor, for example, will very likely contain an object
to store its readings from the field. In this case, the most appropriate object
type is analog input. Some of the properties that can be found in the analog
input object are the object-name (e.g. “Office #1”), present-value (e.g. “23”),
upper-limit (e.g. “35”), lower-limit (e.g. “10”), units (e.g. “Celcius”), and
out-of-service (e.g. “False”).

Most properties are readable, some are writable (object-name) and others

Figure 1: BACnet layers and their OSI equivalent [18].
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are writable under certain conditions (e.g. present-value is writable only if out-
of-service is “True”) [18]. The access type (read, write or conditional write) for
every property is also defined in the standard.

There is a broad variety of BACnet objects: analog input, analog output,
binary input, binary output, calendar, and device are some of the most popu-
lar. The device object in particular, is the only mandatory object in a BACnet
device. It contains properties such as vendor-identifier, model-name, protocol-
object-types-supported, max-apdu-length-accepted, among others. Since the ap-
plicability of standard objects vary depending on the purpose of the device, it
is not required to implement all 54 standard objects. Clause 24 of the BACnet
standard (“Network Security Architecture”) defines a network security object
intended to solve the problem of unauthenticated plain-text messages; however,
this clause is not mandatory and there are not known devices implementing the
network security object yet [19].

It is important to distinguish between object types and object instances.
Object types are templates that will be filled in with data when instances are
created. BACnet devices that implement some object types must be able to store
at least one instance of them. Some devices contain a fixed amount of instances
by default, whereas others allow to create and delete instances dynamically. It
is also possible that devices implement some object types but do not have any
instances of them.

2.2 BACnet services

BACnet services refer to the capabilities that BACnet devices have. There are
services to create and delete BACnet objects, services to read and write proper-
ties one at a time and several properties at once, services to receive notifications
of changes, and many others. Some services are confirmed, which means that an
acknowledgment message is expected, whereas other services are unconfirmed.

Read and write operations are confirmed services. The observation of BAC-
net traffic allows to identify both successful operations and errors. Common
error codes are write-access-denied for attempts to write non-writable prop-
erties; unknown-property for properties not available within a specific object;
and unknown-object for attempts to access object instances not available in the
device, even though the object type could be implemented.

2.3 BACnet PICS

BACnet networks are composed of devices with very different functions. Field
devices, controllers, routers, servers and workstations are some of them. Sen-
sors typically report their readings (e.g. temperature) to BACnet controllers.
Controllers can instruct actuators to perform actions (e.g. turn air conditioning
on). Sensors and actuators are often called “field devices”. BACnet routers
interconnect different BACnet networks. The servers are often used for long-
term storage of the logs generated by BACnet devices. Finally, workstations
allow BACnet administrators to monitor and configure all the BACnet devices
in the network. All these devices must be compliant with the BACnet standard:
they communicate using BACnet services and exchange information stored in
BACnet objects.

5



(a) Priva. (b) Kieback&Peter. (c) Siemens.

Figure 2: Excerpt of object listings in different PICS.

It is clear that different devices require different BACnet objects and services
to execute their functions. In order to specify which BACnet objects, properties
and services are actually implemented in every BACnet device, vendors must
issue a document called “Protocol Implementation Conformance Statement”
(PICS). Figure 2 shows how different vendors list implemented BACnet objects
in PICS. Figure 3 shows examples describing specifically the analog input object.
All figures show different styles and symbols to describe similar information.

2.4 BACnet Attacks

The BACnet standard is comprised of 4 layers, as shown in Figure 1. The
two bottom layers allow to choose among different protocols. On top, BACnet
implements its own routing (i.e. network) protocol and the BACnet application
protocol. While our paper focuses on the application layer, it is important to
note that any attacks on the underlying protocols will affect the upper layers as
well.

BACnet nowadays controls services like HVAC, lighting, water, life-safety
(e.g. fire alarms, foam system), and security (e.g. CCTV, physical access con-
trol). Furthermore, there are Working Groups2 for elevators (EL-WG) and
smart grids (SG-WG), which will lead to the addition of these services in the
near future. As stated in [7], the “integration of security-critical services de-
mands the underlying control system to be reliable and robust against malicious
manipulations”.

Since BACnet is essentially a computer protocol involving a BACnet network
and BACnet devices, it is possible to classify BACnet attacks in the same way
as in “regular” TCP/IP computer networks. Other attacks, known as process
control subverting attacks, are specific to the BAS context because they interfere
with physical processes using BAS actuators.

Denial of Service. DoS attacks “prevent legitimate users of a service
from using that service”[26]. Researchers have compromised the availability
of BACnet devices by means of malicious messages [13]. In standard TCP/IP

2http://www.bacnet.org/WG/index.html
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(a) Delta Controls Inc - enteliBUS CPU Engine

(b) Siemens - Desigo V4

(c) Priva BV - TC BACnet router

Figure 3: Analog-input object representation in different PICS.
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networks, there are usually several paths between any two hosts (the network is a
graph). BACnet’s simplistic routing protocol allows only one path (the network
is a tree). A successful attack on a vulnerable BACnet router will disable not
only the device itself, but also the network segments connected through it. Thus,
the proportion of the attack is magnified depending on the logical location of
the vulnerable device in the network.

Exploitation attacks. This kind of attacks exploit flaws in software usu-
ally via unsanitized input. The outcome of the attack could be a DoS, gaining
access to the system or execution of arbitrary code. BACnet software, either in
embedded devices or at the operator’s workstation, is susceptible to exploitation
attacks. Examples of exploitation attacks in BACnet can be found in Mitre’s
Common Vulnerabilities and Exposures database3. Firmware updates in BAC-
net devices are rarely applied [28], which increases the chances of successful
exploitation attacks.

Snooping attacks. Snooping attacks assume that the attacker has ac-
cess to the network. Snooping attacks are possible because current BACnet
implementations do not use encryption. Even with encryption in place, side-
channel attacks have been successful enough to perform snooping attacks in
other protocols [5]. Similar techniques could be used for BACnet. Unautho-
rized information gathering from a BAS is not only a security problem but also
a privacy sensitive issue. From a security point of view, snooping attacks allow
intruders to enumerate and fingerprint devices, which is usually the first step
before launching exploitation attacks. On the privacy side, information about
human activities can be easily collected and inferred from the BACnet traf-
fic: presence or absence in rooms, temperature and lighting preferences, tracing
people’s paths through badge locked doors, etc.

Process control subverting. Process control subverting attacks [3] are
particularly important because they combine digital actions and physical con-
sequences. Attackers can gain access to BACnet software through exploitation
attacks and then modify the automation and control processes set up in the
building. Taking into account the broad set of services controlled by BACnet,
life threatening situations can occur (e.g. people being stuck in elevators). It
is clear that attacks on BACnet are grave, however, simultaneous execution of
BACnet and physical attacks can be catastrophic (e.g. disabling fire alarms,
water supply, locking doors, turning the lights off and then setting a fire in the
building).

3 Literature Review

Specification-based intrusion detection has been applied in very diverse con-
texts. This detection approach was originally presented in [15] as an alternative
to IDSs encoding misuse behavior. Their research aimed at detecting malicious
activities executed by vulnerable privileged software running on UNIX systems.
Using a Policy Specification Language the authors were able to formalize nor-
mal behavior, and therefore note when exploited applications diverted from its
normal operations.

In specification-based intrusion detection, rules are often extracted from un-
structured sources of information. This is considered difficult and requires hu-

3https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=BACnet
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man intervention. Several researchers have used textual descriptions of network
protocols to manually extract rules [12, 20, 24]. For most protocols, including
BACnet, there are a few documents (RFCs, IEEE or ISO standards) describing
them; however, actual implementations do not strictly adhere to these docu-
ments [1, 6]. As a consequence of slightly different protocol implementations,
specification-based intrusion detection must use loose rules, otherwise there is
a risk of triggering false alarms [24]. The drawback of loose rules is that some
attacks might not be detected (false negatives). Some researchers have found
that adding anomaly-based detection can help to overcome this problem [25, 24]
but the complexity of the system increases.

In the specific case of the BACnet protocol, PICS represent additional
sources of information describing the list of objects (with their correspond-
ing properties) implemented in each device. The BACnet standard demands a
strict match between device’s capabilities and PICS, which allows us to create
tight rules from PICS without facing bad detection problems. Since rules ex-
traction from possibly hundreds of PICS is not feasible for real world BACnet
deployments, our research aims to automate this process. Following this ap-
proach, IDS alerts mean a deviation from the expected behavior described in
the PICS. Likewise, non-alerts mean adherence to the PICS, which according
to the standard should always be the case [19].

The location of the IDS defines the audit data to be scrutinized. While
network IDSs are usually placed in network gateways with the intention to
capture all incoming and outgoing traffic, host-based IDSs monitor only local
events. Sekar et al. [24] created a network specification-based IDS with a Finite
State Machine modeling the TCP/IP traffic from a router’s point of view. In
[12] a similar IDS was proposed for the ZigBee (IEEE 802.15.4) protocol. In
their proposal the IDS was located in the ZigBee Personal Area Network (PAN)
coordinator, which is on charge of forwarding messages among PAN devices.
Since our particular interest lies in BACnet network traffic, BACnet routers
and switches are considered ideal locations to apply our automatically generated
rules.

Although our paper focuses on detection some efforts have been made in
prevention. Kaur et al. [13] developed a traffic normalizer that either drops or
fixes (whenever possible) malformed BACnet packets. The poor input handling
in BACnet devices can make them fail on unexpected messages [13]. Their
approach does not deal with specific details of every device and instead only
considers general aspects of the protocol like header fields length or valid flags
status.

The idea of a training phase in specification-based intrusion detection is
mentioned in [4] in the context of mobile phones. Mobile malware often send
SMS messages or dial numbers without the users knowledge and consent. The
authors idea was to create a framework capable to differentiate between soft-
ware generated actions and user generated actions. During the training phase
the system computes hashes of running applications in order to notice future
tampering on those applications. The training phase is not directly related with
the process of rule generation. We also consider a training phase in which we
collect BACnet traffic that will help in the correct interpretation of PICS.

A common characteristic among all the aforementioned papers is the re-
quirement of creating manual specifications. In [25], Stakhanova et al. auto-
mate this tedious and error-prone process using a hybrid specification/anomaly
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based IDS. The IDS detects wrong behavior of GNU/Linux application pro-
grams (e.g. cat, mount) using the sequence of system calls they make. The
anomaly-based subsystem, supported by a machine learning classifier (SVM),
automatically populates with rules the specification-based subsystem. Rules in
our system are automatically generated from trusted sources (PICS written by
manufacturers) explicitly dictating the right behavior of devices.

Semi-automated rules creation in Networked Control Systems (NCS) is an-
alyzed in [3]. NCSs like Industrial Control Systems, In-Vehicle Networks and
Building Automation Systems, often have a variety of documentation that can
be used to generate rules. The authors’ proof of concept was done with the BAC-
net protocol, considering not only PICS but also configuration files as sources
of information. Our system completely automates the process of rules creation
using a novel data-mining approach that interprets PICS by means of network
traffic previously analyzed during a training phase.

4 System Overview

Our research aims to automatically generate rules to be used in specification-
based intrusion detection. Rules are extracted from PICS written by manufac-
turers. PICS are published by BACnet Testing Laboratories that certify devices
as BACnet compliant4.

We assume the possibility to collect BACnet traffic in pcap format from the
same network where the IDS is going to be deployed. Furthermore, we assume
the existence of a local repository storing the PICS of all the devices in the
network.

The Analysis Engine shown in Figure 4 is on charge of the rule extraction
process. The procedure starts with a training phase whose input is BACnet
traffic previously collected from the network. The observation of BACnet traffic
allows the Analysis Engine to keep record of active BACnet devices and their
features like present and absent BACnet objects and properties (Figure 4, label
1). This information is extracted using the BACnet protocol parser provided by
[3]. It is required that the traffic used during the training phase contains only

4http://bacnetinternational.net/btl/

Figure 4: System overview.
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legitimate BACnet dialogues. Malicious BACnet messages could mislead the
Analysis Engine to wrong conclusions (e.g. false observations). At the end of the
training phase, the Analysis Engine automatically matches each device observed
during the training phase with one of the PICS stored in local repository.

The PICS interpretation phase leverages on the training phase to make
sense out of tables, words and symbols commonly found in PICS (Figure 4, label
2). If a PICS, for example, contains all the implemented properties next to a
Unicode symbol (e.g. X�), while the non-implemented properties are next to a
different symbol (e.g. X�), then the Analysis Engine can compare its observations
during the training phase with the two sets of properties in the PICS. The set
of properties tagged as “X�” will have several elements in common with the set
of observed properties, whereas the set of properties tagged as “X�” will not. In
this way the Analysis Engine is capable to discern among the different sets of
properties and deduce that the “X�” symbol means “implemented properties”.
PICS reading automation is the basis to create rules from the PICS’ content.

The output of the Analysis Engine are specifications, also known as rules,
stating allowed BACnet objects and properties per device (Figure 4, label 3).
The access type of the properties –read or write– is also part of the rules.

A Detection Engine takes the automatically generated rules as input (Figure
4, label 4). Once the rules are loaded, the Detection Engine verifies concordance
between BACnet packets and rules (Figure 4, label 5). It is worth noting that
the rules constitute a white list of allowed BACnet objects, properties and ac-
cess types. Messages to or from identified devices containing BACnet objects,
properties or access types not mentioned in the rules will be considered security
violations (Figure 4, label 6), otherwise the messages are considered benign.

5 Method

A detailed description of the tasks executed by the Analysis Engine followed by
our experimental results are described in Section 5.1 and Section 5.2. The rules
creation process is described in Section 5.3.

5.1 Training Phase

The observation of BACnet traffic has a twofold purpose. First, to create an
inventory of legitimate BACnet devices in the network. Second, to keep record
of present and absent BACnet objects and properties per device. The access
type (read or write) for every property is also logged.

BACnet devices. The BACnet standard defines a service that allows de-
vices to advertise themselves in the network. The service is called “I-Am”.
“I-Am” messages contain information that univocally identify BACnet devices:
the BACnet MAC address and the device ID. Figure 5a shows an excerpt of an
“I-Am” message. Moreover, queries on the device object contain very detailed
information (BACnet properties) such as model name, vendor identifier and ob-
ject name (Figure 5b). Those properties are used at a later stage, as keywords
to match the correct PICS for every device.

PICS stored in a local repository are indexed using Apache Solr5. This
tool consists of a web server that allows searches on indexed documents using

5https://lucene.apache.org/solr/
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(a) I-Am message. (b) Device’s properties.

Figure 5: Messages used to identify devices.

keywords. The goal of the device identification process is to group all the devices
by PICS.

In our implementation at the University of Twente, the local PICS reposi-
tory consists of 6 different files. During the training phase we used 5 days (2
gigabytes) of BACnet traffic. We discovered 223 out of the 225 devices listed
by the BACnet administrators. Discovered devices were matched with one of
the PICS available in the repository. A manual verification confirms that BAC-
net compliant devices were correctly matched with their corresponding PICS.
A breakdown of the amount of devices per PICS is shown in Table 1.

Those devices were identified using the first 160.000 BACnet packets of the
training data, which in our particular network represents roughly one hour (20
MB) of traffic (see Figure 6a).

# Devices Vendor PICS file
2 Delta Controls PICS-for-enteliBUS-CPU-Engine-340.pdf
2 Priva BACnet-PICS-Blue-ID-S10-Controller.pdf
6 Siemens DESIGO-PX-Router.pdf
6 Kieback&Peter PICS-EN-DDC4400.pdf
9 Siemens DESIGO-PX-Station.pdf
198 Priva PICS-TC-BACnet-Router.pdf

Table 1: Devices grouped by PICS.

BACnet objects and properties. Besides device identification, it is also
crucial to learn as many BACnet object types –and their properties– as possible.
To do so we use a technique originally described in [3] as “BACnet address
linking”. It consists in looking for two features in every BACnet packet: (1)
the BACnet source address; and (2) BACnet objects and properties. Then, it
is possible to link the objects and properties to a specific device ID using the
source address (Figure 5a). Since in our system devices are already matched
with PICS, there is an indirect link between those objects and properties with
their corresponding PICS.

BACnet devices are regularly queried for their properties. The fact that a
response contains the current value of a particular property proves that the re-
spondent device actually has the attribute and the object it belongs to, otherwise
an error would have been sent. Moreover, the device object has a mandatory
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property called protocol-object-types-supported, which is also commonly queried.
This property contains all the implemented and not implemented object types
in the device.

The access type (read or write) of properties can also be confirmed by scru-
tinizing network traffic. Write requests in the BACnet protocol must be con-
firmed by the recipient. Acknowledgment messages after write requests, allow
us to identify the set of writable properties. Similarly, error messages offer the
possibility to identify non-writable properties.

Using the data available at the University of Twente we were able to discover
3.933 properties (Figure 6c). Our system also found 5.566 objects. Figure 6b
shows the difficulty in finding new objects after 100.000 BACnet packets (ap-
proximately 40 minutes of traffic in our setting). The access type of properties
is also logged by the system, however only 2 BACnet properties were correctly
linked with one of the discovered devices. The abnormally low amount of write
requests in our training traffic is due to a reorganization process carried out in
the network at the time of collecting the traffic.

5.2 PICS Interpretation Phase

While PICS contents are clearly specified in the standard, PICS format is not
standardized. Tabular information arrangements are commonly employed in
PICS. Since there are several ways to accommodate BACnet objects and prop-
erties in tables, our approach defines an extendable set of templates from which
it is capable to extract information.

PICS are usually provided in PDF format, however, our prototype works
with PICS converted to spreadsheets in XML format. PDF parsing [21] is
beyond the scope of this paper, however, PICS files conversion can be automated
with tools such as Adobe Reader Pro, which we have used in our work.

PICS reading automation relies in the correct spelling of BACnet objects and
properties. However, typos and abbreviations are commonly found in PICS. In
order to overcome this problem we implemented a typos correction routine based
in the Levenshtein distance [16]. The Levenshtein distance counts the minimal
number of insertions, deletions and substitutions to edit one string into another.

Sections 5.2.1 and 5.2.2 show how our algorithm extracts implemented BAC-
net objects and properties from PICS.

5.2.1 Extraction of Implemented BACnet Objects

Most PICS specify which BACnet objects are implemented by means of tables
as those shown in Figure 2. Human understanding of language and symbols
makes it easy to realize which objects are implemented and which are not.
Our approach to automatically “understand” such tables consists in creating
templates that the system can identify when reading the PICS. Figure 7 shows
an abstract version of the tables in Figure 2, where orange circles denote BACnet
objects. The template consists of an undetermined number of objects, one per
row, but all of them in the same column. Furthermore, arbitrary texts are
allowed in the columns to the right and left of the object.

The interpretation process creates groups of objects based on the texts found
on each object’s side columns. Using Figure 2a as an example, the algorithm
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(a) Identified BACnet devices.

(b) Identified BACnet objects.

(c) Identified BACnet properties.

Figure 6: BACnet packets required during the training phase.
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creates two sets:

yes = {calendar, file, schedule, trend log, ...}

no = {accumulator, analog input, analog value, ...}

These sets are called reference sets. Set “yes” and set “no” contain the
implemented and not implemented object types, respectively. Several reference
sets can be created depending on the number of columns and texts present in the
table. Any sequence of one or more characters, including Unicode symbols, is
used to create reference sets. Furthermore, the algorithm also creates a reference
set with the union of all the others reference sets.

In order to identify which of the reference sets contains the implemented
objects, the algorithm uses the (possibly incomplete) list of present objects that
was collected during the training phase. It is worth recalling that present and
absent objects are grouped by PICS. Comparing the similarity of the collected
list, against all the reference sets allows the algorithm to choose the “winner”
set. The Jaccard similarity coefficient is a simple yet effective scoring mechanism
to compare sets [11]. Equation 1 defines Jaccard similarity, where P is the set of
present objects observed during the training phase, and Rn is the nth reference
set.

Jaccard(P,Rn) =
|P ∩Rn|
|P ∪Rn|

(1)

Since absent objects (denoted as A) are also collected during the training
phase, we implemented a modified version of the Jaccard similarity to improve
the accuracy of the algorithm. Equation 2 shows our Jaccard’ similarity, that
lies at the core of our extraction algorithm. Jaccard′ adds new terms to the
Jaccard similarity with the following effect:

1. If Rn is a suitable reference set, it should contain most (ideally all) of the
objects in P, which means that |P −Rn| must be equal or close to zero.

2. If Rn is a suitable reference set, it should contain few (ideally none) of the
elements in A, which means that |A ∩Rn| must be equal or close to zero.

Deviations from the ideal cases will increase the penalization (denominator) and
cause a decrease in the overall scoring for Rn. On the other hand, the ideal cases
imply that Jaccard′(A,P,Rn) is identical to Jaccard(P,Rn).

Jaccard′(A,P,Rn) =
|P ∩Rn|

|P ∪Rn| · (|P −Rn|+ |A ∩Rn|+ 1)
(2)

Figure 7: BACnet objects table template.
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Results about the extraction of implemented objects using Jaccard′ are
shown in Section 6.1.1 Table 2.

Object Extraction Summary. In order to extract the set of implemented
object types from the PICS, a table template is created (Figure 7). The template
is used to match similar tables in the PICS document. Once the table has been
read, the algorithm creates as many reference sets as possible, and then ranks
each of them using a modified version of the Jaccard similarity (Equation 2).
The reference set scoring the highest similarity will be considered the complete
set of implemented objects according to the PICS. A pseudo-code description is
shown in Algorithm 1.

Algorithm 1 Implemented Objects Extraction Algorithm.

1: function Object–Extraction(PICSi, Set PPICSi , Set APICSi)
2: Extract from PICSi all reference-sets
3: for each reference-set do
4: similarity = jaccard’(Set APICSi , Set PPICSi , reference-set)
5: end for
6: return reference-set with highest similarity
7: end function

5.2.2 Extraction of Implemented and Writable BACnet Properties

Extraction of implemented properties from PICS is very similar to the approach
taken to extract objects. There are, however, two main differences: (1) the
properties are grouped by object; and (2) different PICS use disparate table
types to write the properties. Figure 8 shows three table templates from which
our current implementation is capable to extract information, where orange
circles represent BACnet objects and green circles represent BACnet properties.
Linking the templates shown in figure 8 with the real examples shown in Figure
3, it is possible to find a match between Figures 3a-8a, 3b-8b and 3c-8c. From
a sample of 786 PICS available for download6, 73.28% of the PICS match with
any of those three templates. All the PICS used in our infrastructure also belong
to those templates.

Vendors commonly describe a few attributes about BACnet properties: ac-
cess type, obligatoriness according to the standard, range restrictions and whether
they are implemented or not. More or fewer attributes are shown in different
PICS. Figure 3 shows how all these attributes about BACnet properties are
differently encoded. Our main interest lies in the identification of implemented
properties and their access type.

The algorithm to identify implemented properties consists in grouping the
object’s properties in different sets (reference sets). Then, using the properties
observed during the training phase (set P), along with the set of absent proper-
ties (set A), the algorithm uses our modified Jaccard similarity (Equation 2) to
choose the “winner” set. The reference set scoring the highest similarity will be
considered the complete set of implemented properties according to the PICS.

Results about the extraction of implemented properties using Jaccard′ are
shown in Section 6.1.2 Table 3.

6https://bacnetinternational.net/btl/
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(a) (b) (c)

Figure 8: BACnet properties table templates.

Extraction of writable properties is done with the same algorithm but dif-
ferent parameters. If writable properties are specified in the PICS, one of the
reference sets will contain those properties. Then, using the sets of writable
and non-writable properties extracted during the training phase, the algorithm
ranks the reference sets using our modified Jaccard similarity.

Reference sets creation. For those objects whose properties are described
as in Figure 8a, we take advantage of the groups of properties already bounded
within a cell. Each of those groups becomes a reference set. The table tem-
plate shown in Figure 8b suggests a column-wise grouping. Reference sets are
comprised of all the BACnet properties in the same column. Finally, properties
arranged as in Figure 8c are grouped using the strings shown per row. In Figure
8c, for example, we would create a reference set containing all the properties
marked with an “R”, a different reference set with all the properties marked
with an “R/W”, and lastly a reference set with the checked (i.e. X�) properties.
Regardless of the table template, we also create a reference set with the union
of all the others reference sets.

Property Extraction Summary. The interpretation of tables containing
implemented properties is based on the observations carried out during the
training phase. Present and absent properties for the specific BACnet object
under analysis, come from the database created during the training phase. The
reference sets are retrieved from the PICS according to the table templates.
Finally, the algorithm ranks the reference sets using the modified version of
Jaccard similarity shown in Equation 2. A pseudo-code description is shown in
Algorithm 2.

Algorithm 2 Implemented Properties Extraction Algorithm.

1: function Property–Extraction(Objecti, Set PObjecti , Set AObjecti)
2: Extract from PICS all reference-sets for Objecti
3: for each reference-set do
4: similarity = jaccard’(Set AObjecti , Set PObjecti , reference-set)
5: end for
6: return reference-set with highest similarity
7: end function

5.3 Automatic IDS Rule Creation

The goal of our research is to automatically create rules for specification-based
intrusion detection. For every PICS, the system creates three sets of rules con-
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taining implemented objects, implemented properties and writable properties.
Since all the devices are grouped by PICS, it is straightforward to link every de-
vice with its corresponding sets of implemented objects, implemented properties
and writable properties.

The rules consist in an exhaustive list of devices found in the network, along
with the corresponding sets of valid objects and properties. Even though some
PICS do not include mandatory properties, we added them to the rules in
order to avoid false alerts. In the same way that rules were created in [3], any
attempt to access an object or property is verified with the corresponding rules
(Algorithms 3 and 4). Furthermore, any attempt to write a property is verified
with the set of writable properties (Algorithm 5). For every device, all outgoing
and incoming packets are verified against the rules.

Since rules for objects and rules for properties are created independently,
contradictions can occur. Rules for objects are created based on object listings
(Figure 2), while rules for properties are extracted from different tables (Figure
3). One of our PICS has typos in the objects list (see Section 6.1.1). As a
consequence, 2 objects were not added to the list of valid objects. Later in the
same PICS, the affected objects were correctly spelled in the properties tables.
Thus, the 2 objects with their properties are considered as valid by the second
rules set.

Our prototype uses Bro IDS7 as a network traffic analyzer. Rules are gen-
erated using Bro’s scripting language, however, the system could be adapted to
create rules in other formats.

Algorithm 3 Object Rules Format.

1: if BACnetObject /∈ DeviceAllowedObjectTypes then
2: Alert(“Forbidden BACnet Object”)
3: end if

Algorithm 4 Property Rules Format.

1: if BACnetProperty /∈ DeviceObjectTypeAllowedProperties then
2: Alert(“Forbidden BACnet Property”)
3: end if

Algorithm 5 Writable Property Rules Format.

1: if write(BACnetProperty) /∈ DeviceObjectTypeWritableProperties then
2: Alert(“Forbidden BACnet Property writing”)
3: end if

6 Results

The evaluation of our algorithm is done in two levels. First, we measured the
effectiveness of our approach to create rules concordant with the PICS (Section

7https://www.bro.org/
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6.1). Second, we applied the rules in our BACnet network to analyze their
impact in a real BACnet environment (Section 6.2).

All the results presented in this section are based in the BACnet network
located at the University of Twente.

6.1 Evaluation Using PICS

As we already showed in Table 1, 223 BACnet devices in our network are
grouped into six different PICS. For each of those PICS we ran our algorithm to
extract implemented objects, implemented properties and writable properties.
In order to measure the accuracy of the extracted elements (i.e. objects and
properties), we created a ground truth list by hand.

We will refer to the elements consistent with the PICS as matches. Extracted
elements not in the PICS will be considered mismatches. Finally, not extracted
elements will be denoted as omissions.

6.1.1 Implemented objects

Table 2 shows the results gotten after running the algorithm described in Section
5.2.1. Overall results show that 97.8% of the objects described in the PICS were
correctly extracted and 2.2% were omissions, all of them in one single PICS. All
the objects tagged as implemented by the algorithm were indeed implemented
according to the PICS (no mismatches).

PICS # Objects Matches Mismatches Omissions

PICS-for-enteliBUS-
CPU-Engine-340

19 19 0 0

BACnet-PICS-Blue-
ID-S10-Controller

16 16 0 0

DESIGO-PX-Router N/A N/A N/A N/A

PICS-EN-DDC4400 22 22 0 0

DESIGO-PX-Station 18 18 0 0

PICS-TC-BACnet-
Router

16 14 0 2

TOTAL 91 89 0 2

Table 2: Automatic object extraction performance.

The DESIGO-PX-Router PICS does not contain a table of implemented
object types. Instead, there is a legend saying “Only the device object is sup-
ported.”. This is clearly not compliant with our template and therefore the
algorithm does not work.

The 2 omissions in the PICS-TC-BACnet-Router were caused by typos. The
object “trend log” is written simply as “trend” and “notification class” written
as “notification”. Even though we implemented a typos correction routine, the
Levenshtein distance in these two cases is greater than the threshold set in our
prototype (distance ≤ 2), therefore no fixing was applied. The algorithm uses
pattern matching to identify the template (Figure 7) in the PICS. Object names
must adhere to the standard, otherwise they will not be found.
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6.1.2 Implemented properties

The results of the algorithm described in Section 5.2.2 are shown in Table 3.
The algorithm extracted 94.0% of the properties implemented and shown in the
PICS. There are also 2.9% of mismatches and 6.0% of omissions. It is important
to recall that some PICS (e.g. Figure 3a) do not show all the implemented
properties, but only the optional. Since our evaluation is based in the contents
of the PICS, implicit properties are not taken into account.

PICS # Properties Matches Mismatches Omissions

PICS-for-enteliBUS-
CPU-Engine-340

231 206 9 25

BACnet-PICS-Blue-
ID-S10-Controller

241 241 0 0

DESIGO-PX-Router 7 7 1 0

PICS-EN-DDC4400 520 520 25 0

DESIGO-PX-Station 241 196 3 45

PICS-TC-BACnet-
Router

237 218 5 19

TOTAL 1477 1388 43 89

Table 3: Automatic property extraction performance.

We identify three main causes of omissions and mismatches:

1. Typos and abbreviations: As we already pointed out in Section 6.1.1,
typos can lead to problems while identifying BACnet objects and proper-
ties. Exact pattern matching fails in presence of typos or abbreviations.
Even though the system is flexible about word separators (white space,
underscore or dash), other variations are not taken into consideration.
We use Levenshtein’s distance to fix typos in PICS. The correction pro-
cedure is intended to fix minor typos in BACnet’s objects and properties
names. Words in the PICS are fixed if the Levenshtein distance to a BAC-
net object or property name is less or equal than 2. Words with greater
Levenshtein distances are not modified.

2. Table format misinterpretation: The system identifies table templates
(Figure 8) by means of keywords, which are BACnet objects and proper-
ties. The location of those keywords in the table can alter the internal
representation of the table that is used at a later stage to generate the
rules. A concrete example of the table format misinterpretation problem is
shown in Figure 3a, where “Object-Type” is a column header but it is also
a standard BACnet property name. Another cause of table format misin-
terpretation comes from the typos correction procedure. A high threshold
for the Levenshtein distance causes that many words (e.g. English stop
words) in the PICS become BACnet objects and properties. In this case,
it is hard for the system to identify any of the 3 templates it is capable to
extract information from.

3. Wrong set selection: Regardless of the table template being analyzed,
a variable number of reference sets are created. Our modification on
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the Jaccard similarity decides which of them is the set of implemented
properties according to the PICS. Insufficient data during the training
phase can lead to selection errors.

Typos and abbreviations cause 4.7% of the mismatches and 22.5% of the
omissions. On the other hand, table format misinterpretation problems cause
95.3% of the mismatches and 77.5% of the omissions. Even though wrong set
selection was not a problem with our 2GB training dataset, previous tests (not
reported in this document) with fewer training data suffered from this problem.

6.1.3 Writable properties

In order to extract writable properties it is crucial to have enough write requests
during the training phase. Due to special circumstances in the BACnet network
where our training dataset was collected, all the write requests were directed to
only two BACnet properties (analog-value→ present-value and binary-value→
present-value) in one device. Under these conditions we were not able to extract
writable properties from any PICS.

Our observations extracting implemented properties suggest that at least
one-third of the writable properties (for a single object) must be learned during
the training phase in order to successfully extract all of them.

6.2 Rules Evaluation with BACnet Traffic

In this section we present our results after analyzing 5 days of real BACnet
traffic with the automatically generated rules.

Matches, mismatches and omissions in the rules determine the performance
of our approach when dealing with real BACnet traffic.

Omitted rules are BACnet objects and properties showed in the PICS as
implemented that were not added to the sets of valid elements. Therefore, the
IDS triggers false alerts whenever those elements are observed in the traffic.

Mismatches are BACnet objects and properties not showed in the PICS
as implemented that were added to the sets of valid elements. Therefore, the
IDS do not trigger alerts whenever those elements are observed in the traffic.

Finally, Matches are BACnet objects and properties showed in the PICS as
implemented that were correctly added to the sets of valid elements. Therefore,
the IDS do not trigger alerts whenever those elements are observed in the traffic.
However, the IDS does trigger alerts whenever elements not showed in the PICS
as implemented are observed in the traffic.

Our tests with real BACnet traffic allowed us to understand the effect of the
matches, mismatches and omissions during the intrusion detection phase. Table
4 summarizes our results per PICS file. We counted how many unique alerts
were triggered because of matches (M) and omitted (O) rules. Furthermore, we
manually checked the traffic with Wireshark8 in order quantify how many alerts
were missing because of the mismatches (MM).

PICS-for-enteliBUS-CPU-Engine-340. Objects rules were fully con-
cordant with the PICS. As a consequence, the count of alerts (for omissions)
and non-alerts (for mismatches) was kept in zero. Matching rules, however,
triggered one alert. Attempts to access a proprietary object raised the alarm.

8https://www.wireshark.org/
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Objects rules Properties rules
PICS M MM O M MM O

PICS-for-enteliBUS-CPU-Engine-340 1 0 0 13 0 1

BACnet-PICS-Blue-ID-S10-Controller 0 0 0 0 0 0

DESIGO-PX-Router N/A N/A N/A 5 0 0

PICS-EN-DDC4400 0 0 0 0 0 0

DESIGO-PX-Station 1 0 0 14 0 4

PICS-TC-BACnet-Router 0 0 2 3 0 8

TOTAL 2 0 2 35 0 13

Table 4: Impact of the rules during the detection phase.

Properties rules triggered 13 alerts because of matching rules, 11 of them
caused by proprietary properties and 2 caused by attempts to access standard
properties not implemented in this kind of devices. The 25 omissions in prop-
erties rules caused only 1 alarm. A manual inspection in the traffic, confirmed
that the 9 mismatches did not cause that important alarms were dismissed.

BACnet-PICS-Blue-ID-S10-Controller. Objects and properties rules
were fully concordant with the PICS. Since this PICS did not suffer from omis-
sions or mismatches in the generated rules, both counts remain in zero for
objects and properties rules.

The traffic analyzed for this kind of devices contained only valid BACnet
objects and properties. Therefore, the matching rules did not trigger any alerts
either.

DESIGO-PX-Router. As it was explained in Section 6.1.1, no objects
rules were generated by our approach for this specific PICS.

Properties rules, however, triggered 5 alerts because of matching rules: 2
of them caused by proprietary properties in the device object and 3 because
of unimplemented standard properties in the same object. The mismatched
property (mode), was not found in the traffic. No omissions in the automatically
generated rules avoid false alarms.

PICS-EN-DDC4400. None of the rules triggered alarms on any of the 6
devices described by this PICS. The 25 mismatches for properties rules did not
cause any problem during our evaluation period. None of those properties was
observed in the traffic.

DESIGO-PX-Station. Objects rules triggered 1 alert caused by a pro-
prietary object not listed in the PICS. The fact that objects rules do not have
omissions avoids false alerts at detection time.

Properties rules reported 14 unique alerts caused by matching rules: 8 of
them were caused by proprietary properties in standard objects, 3 because of
standard properties in proprietary objects and the remaining 3 because of unim-
plemented standard properties. The 45 omissions caused only 4 unique alerts.
After manually inspecting the traffic we concluded that the mismatches did not
have a negative effect for this PICS.

PICS-TC-BACnet-Router. Table 2 shows 2 omissions in objects rules.
Since both objects were observed during the real traffic analysis, the IDS trig-
gered alarms for both of them.

For properties rules, 8 out 19 different possible alerts were triggered because
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of the omissions. Three alarms were correctly raised after unimplemented prop-
erties were observed. A manual inspection of the traffic confirmed that the 5
properties mistakenly added as valid (mismatches), were not observed in the
traffic.

In summary, a higher amount of alerts are triggered by properties rules.
Manual inspections discarded that mismatches had a negative effect during our
evaluation period.

Omitted rules caused 15 unique false alerts in total: 2 for objects and 13
for properties. Omitted rules should be minimized as much as possible to avoid
false alarms. All the 37 alerts from matching rules are caused either by pro-
prietary or unimplemented elements. It is important to clarify that asking for
unimplemented elements is allowed by the BACnet standard and should not be
considered as an attack. Instead, we consider it as an event of interest that
could be a sign of a snooping attack.

7 Discussion

Our approach leverages on two assumptions: first, the availability of enough
training traffic; second, a repository of PICS describing all the devices in the
network.

The BACnet traffic required for training purposes must contain as much
objects and properties as possible. More important than the amount of traffic is
the diversity of information in it. Our own experiments suffered from monotonic
traffic regarding write requests. Even though we observed several thousands
write requests in our training dataset, all of them were directed to only two
BACnet properties. Due to the scarce information available, the system was
unable to extract rules about writable properties. Having control of the BACnet
network during the traffic capture, would achieve good results in short time.
BACnet operators could methodically execute read and write requests to at
least one device of every kind. This ensures the gathering of enough information
to properly interpret all the PICS.

The foundation of our algorithm is the interpretation of PICS. Automatically
generated rules are as good as the PICS they come from. Typos and non-
standard abbreviations lead to a considerable amount of omitted rules with
subsequent false alarms during the detection phase.

Our PICS reading approach is based in a limited but extendable set of table
templates. Our aim is to read most of the PICS available in the market. Al-
though BACnet’s official website offers a PICS template9 for vendors, in practice
most manufacturers use their own format. The variety of PICS difficults the
process of information extraction. A fundamental constraint in our approach is
that we identify different table templates by means of keywords. These keywords
are standard BACnet objects and properties. Thus, our approach is unable to
detect proprietary objects and properties from PICS.

Besides the PICS conditions (typos, tables, etc.), the file reading itself is
a difficult task. PDF is optimized for information representation, however,
extraction of information is hard. Our prototype reads an XML version of
the PICS, which is generated by a third-party software tool. Nonetheless, the
process is error prone and the format and contents of the original file might be

9http://www.bacnet.org/DL-Docs/135-2008-ANNEX-A-rev-2010-11-02.doc
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distorted in the output file. Two of our PICS had to be manually fixed due to
important missing information (BACnet object names) in the XML.

Automatic typos correction should be applied carefully. We ran the cor-
rection routine on those strings with a Levenshtein distance less or equal than
2. While a low threshold in the Levenshtein distance has a moderated effect
in the PICS, a high threshold converts irrelevant words into BACnet objects
and properties. If the contents of the PICS is severely damaged by the typos
correction routine, the extracted rules suffer from omissions and mismatches.

While looking for the PICS of the 223 devices found in our network, we dis-
covered that not all of them have one. According to the BACnet standard, all
BACnet devices must have a PICS. After contacting the vendors, we realized
that some devices are BACnet aware (they are capable to exchange BACnet
messages) but not BACnet compliant (properly certified by the BACnet Test-
ing Laboratories). Since BACnet aware devices are not obliged to satisfy any
BACnet requirements, we found devices without mandatory properties. From
a security point of view, networks composed of standard and non-standard de-
vices, make it even harder to identify anomalous behavior.

The results during the detection phase are determined by the PICS interpre-
tation process. A good interpretation leads to good rules and therefore relevant
alerts. The fact that 89 omitted properties rules generated only 13 unique alarms
in total, suggest that most of those omitted properties are not common in BAC-
net dialogues. We stress that this observation is only valid for BACnet networks
with conditions similar to ours. Alerts because of proprietary elements are par-
ticularly important when they are not documented in the PICS. The discovery
of undocumented capabilities become a valuable insight for BACnet operators
as it was shown in [3].

8 Conclusions and Future Work

We present a data-mining approach to automatically interpret documents using
network traffic. A direct application of our algorithm was used to generate rules
for specification-based intrusion detection in the BACnet protocol. Our algo-
rithm leverages on a modified version of the Jaccard similarity that enhances the
interpretation of PICS based on the BACnet traffic analyzed during a training
phase.

In our experiments at the University of Twente, the automatically generated
rules show a high level of concordance with the PICS, however, there are some
factors that can affect the results: the traffic in the training phase, the quality
of the PICS (e.g. typos) and the correct interpretation of tables.

We tested our rules using 5 days of real BACnet traffic and discovered un-
documented proprietary elements (objects and properties) about three types of
devices.

The severity of attacks in BAS merits a careful security study. The fact
that BAS protocols privilege functionality over security, increases the chance
of attacks. Future BAS protocols should be designed with security as a core
component. In the meantime, current BAS protocols should be methodically
protected. The approach presented in this paper is a contribution in this direc-
tion.
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Our current implementation10 could be extended to take advantage of addi-
tional information provided in PICS. Annotations like “writable if out-of-service
is TRUE” in Figure 3c, can be used to extract more complex rules. A different
approach, possibly involving Natural Language Processing will be required.
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