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Abstract

Origin-destination matrices describe the traffic demand between different zones of a net-
work. Their entries, the number of trips for every origin-destination pair, can be assigned to
a network to give corresponding link flows and speeds. The OD matrix calibration problem is
the problem of finding an OD-matrix which after the assignment step corresponds as good as
possible with some given criteria. During this thesis, the only criteria considered are measured
values for flow and speed on specific links of the network. This problem can be formulated as
a bi-level optimization problem. In the upper level, a minimization of the difference between
the estimated flow and the measured flow is done while in the lower level the relation between
the OD matrices and the link flows is derived by means of a traffic assignment model.

Although there are good methods to solve the problem when using static traffic assignment
models, when it comes to (semi-) dynamic assignment models (such as STAQ), the problem
becomes more complex and computationally intense. (Semi-) dynamic assignment models
accurately model the primary effects of congestion (flow metering and spillback), which, in the
context of matrix calibration, can cause a misinterpretation of the traffic flow measurements.
In the situation of (semi-) dynamic models, the sensitivity of the assignment model plays a
crucial role in the minimization part in the upper level. This dependence makes the matrix
approximation more difficult. To hold the amount of required calculations low, the stochastic
approximation method SPSA is used in this thesis. This method requires less measures of the
objective function per iteration than other methods (like e.g. FDSA), hence less computations
of the assignment model.

Since the calculation times are still large for most networks and there are a lot of parameters
that need to be tuned, the further exploration of SPSA might be sensible. There also exist
modifications for SPSA that might help to reduce the computational time until convergence.

The aim of this master thesis is to implement and test the basic version of SPSA and its
modifications to minimize the differences in the upper level. This is done in combination with
the semi-dynamic assignment model STAQ for the traffic assignment part in the lower level.
Also some tests of the different parameters of the SPSA algorithm are performed to improve
the convergence of the method further.
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1 Introduction

1.1 Motivation of research

Since traffic plays an important role in modern life, a lot of research is done in traffic engineering
to optimize traffic flow and other criteria such as pollution or accessibility. Traffic systems become
more and more complex due to the large demand for transport in cities. Since people are choosing
their trips based on the current situation and the current situation is influenced by the choices
of all people, the situation becomes even more complex. To get more insight into the situation,
simulations are conducted on study areas. These areas can include cities or even whole regions
with several connected cities. The study area is divided into smaller parts, called zones, which
include e.g. a neighbourhood, an area of several companies or a city centre.

The area of interest is modelled by a network consisting of a set of nodes (N) and a set of
links (L). The directed links l = (i, j) ∈ L represent the streets from node i to node j, hence
i, j ∈ N . The nodes in N connect several streets with each other. They can also represent origins
or destinations, hence places where travelers come from or are attracted to. So the links connect
the nodes with each other and thus make up a connected network denoted by G = (N,L). The
links of the network have different characteristics such as capacity, speed at capacity and free flow
speed. Capacity reflects the amount of vehicles that are able to pass the link in a specific time
interval. The speed at capacity gives the average speed when the capacity of the link is reached
and the free flow speed defines the possible speed on a link if no congestion occurs. Using this
network and its characteristics, transportation engineers can simulate different situations and see
the effect of possible measures on the traffic situation. They aim at optimizing the traffic flow,
increasing accessibility and decreasing congestion and pollution.

To optimize the traffic, a lot of data is required. This data can be obtained by sensors, traffic
counts, license plate investigation or GPS data and gives details about the traffic. This thesis is
focused on the information obtained by traffic counts which include values of flow and speed for
the observed links in the network. This data gives valuable insight into the situation. Using this
data, traffic engineers are able to model and analyse the traffic and to identify congested situations
and find solutions.

However, the information obtained by the sensors is only descriptive and not explanatory for the
human behaviour behind it. To get explanatory data, other means to get the desired information
are required. This can be done by doing surveys among the users and by following the steps of the
so-called four step model to model the traffic situation (see section 3.1 for more details). From the
first three steps we get a matrix containing the number of all trips from points of origin to points
of destination. This matrix is called the origin-destination matrix. However, the initial data is not
complete, since it will be too difficult to conduct a survey amoung all people, but it can give an
explanatory approximation of the situation.

On the other hand, the data from the sensors only gives information about the flow and speed
on one link, but it does not tell what origins and destinations the trips have. In order to make
simulations and forecasts reliable, a good origin-destination matrix is required, which can then
be assigned to the network in the fourth step of the four step model. This gives an overview of
the situation and helps to find and locate the problems that cause the congestion. A good origin-
destination matrix is a matrix that reproduces the reality as close as possible. For this reason an
OD matrix calibration is performed. Here both descriptive and explanatory data is used to find a
model that reflects the reality as close as possible.

5



The OD matrix calibration problem is hence the problem of calibrating a given OD matrix to
match specific measured values. In this study, these values are measurements of the flow and speed
at the links. The aim of the calibration is to carefully change the number of trips of some initial OD
matrix such that after the assignment is performed with the assignment model, the corresponding
values for flow and speed are as close as possible to the measured values at the observed links.
The exact procedure is explained in section 3.2. Since there is a complex dependency between
the origin-destination matrix and the values for flow and speed on the links, the calibration is not
straight forward, but needs to be performed iteratively.

There are some quite reliable methods to solve the OD matrix calibration problem when using
classic static traffic assignment models. However, when it comes to static models that are capacity
and storage constrained, called quasi-dynamic assignment models, the problem becomes more
complex and computationally intense. Due to the complexity of the situation caused by the quasi-
dynamic assignment model, most common approximation algorithms do not converge or are likely
to converge to local minima. The use of stochastic approximation algorithms might help to solve
this problem.

1.2 Problem description

In transportation engineering, origin-destination matrices (OD matrices) describe the traffic de-
mand between different zones of a studied area. Two connected zones of this network form an
origin-destination pair (OD pair). An OD matrix D consists of entries dij with i, j ∈ N . More
precise, there is a subset of nodes that is either origin, destination or both. These special nodes
are called centroids. So the set of centroids, denoted by C, is a subset of the nodes, C ⊆ N . This
definition includes that i, j ∈ C. The entries of the OD matrices, dij , are the number of trips
made from origin i to destination j, hence the demand of this pair. With the assignment model
the demand from the OD matrix is distributed along the possible routes in the network according
to their characteristics such as travel time or travel costs.

As output of the assignment, corresponding values for flow and speed are found for all links.
This is the fourth step of the so-called four step model which is explained in more detail in section
3.1. The output of the assignment step differs by the used assignment model. There are static and
dynamic models, which can simulate specific traffic phenomena more or less exact.

D −−−−−−−−→
assignment

(v(D), s(D)) (1)

The problem of OD matrix calibration can be formulated as a bi-level optimization problem.
In the upper level, a minimization of a difference function between the estimated values and the
measured values is done while in the lower level the relation between the OD matrices and the
link flow and link speed is derived by means of a traffic assignment model. This concept is further
explained in section 3.2.

The used assignment model in this thesis is STAQ (Static traffic assignment with queueing),
a quasi dynamic assignment model. Quasi-dynamic assignment models are able to consider the
capacity of the links and can take the queueing in congested systems into account. Classic static
assignment models might calculate a link flow that is higher than the capacity of this link. In these
situations just the speed decreases, but the vehicles can still pass the link. In reality, queueing
occurs in front of the too small link, which is called bottleneck. This behaviour can be modelled
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with (quasi-)dynamic models, since they obey the capacity and add the queueing effects to the
network.

The main reason that the application of quasi-dynamic models makes the OD matrix calibration
problem more complex is that the underlying relation between the flow and the speed on a segment
is not anymore bijective. The underlying fundamental diagram gives the relation between flow and
speed on a link. This diagram is specific for every link in the network and it is designed based on the
value for capacity, free speed and speed at capacity. The relation between flow and speed is bijective
for static problems, which means that it gives for every value of flow just one corresponding value
for speed. This is not anymore given when dealing with quasi-dynamic models. Here two different
speed values for the same flow are possible. One is in uncongested and one in the congested state.
These states are also called traffic regimes. The corresponding relation between the flow and the
speed is given in Figure 1 for both static and quasi-dynamic assignment models.

Figure 1: Relation between the flow and the speed for both static assignment (speed flow curve)
and STAQ (fundamental diagram) - the capacity of this link is 2000

The minimization in the upper level needs to be done with an optimization algorithm to find
the corresponding optimal solution. Due to the fact that the fundamental diagram is not bijective
for STAQ, both flow and speed need to be considered in the minimization process. Unfortunately,
by doing this, the situation gets more complex and the optimization algorithm encounters some
problems.

Since the assignment model used in the lower level does not have one explicit gradient, a
gradient approximation algorithm is required to solve the minimization problem. For this thesis it
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was chosen to use the SPSA (Simultaneous Perturbation Stochastic Approximation) algorithm to
find this gradient approximation. For this method less measurements of the objective function per
iteration are necessary compared to other stochastic optimization methods (e.g. Finite Difference
Stochastic Approximation (FDSA)). In the case of OD matrix calibration problems, this implies
that a lower number of assignments per iteration is required, which might decrease the computation
time to solve the problem. The algorithm of SPSA is explained in more detail in section 3.5.

The calibration of an origin-destination matrix can be done for very complex networks including
different modes of transport. However, to keep the problem in a more simple scope and to be able
to investigate it in more detail, this thesis is restricted to only observing one mode of traffic, namely
the individual vehicle mode, where the car and freight traffic is aggregated to pcus (passenger car
equivalents). In further research it is possible to expand the method to multiple modes of traffic.

The aim of this master thesis is to implement and test the basic version of SPSA in the pro-
gramming language Ruby such that it works with the transport planning software OmniTRANS.
This is done in combination with the quasi-dynamic assignment model STAQ (Static Traffic As-
signment with Queueing), which is used for the traffic assignment part in the lower level. Also the
investigation of the different parameters of the SPSA algorithm is important to investigate and
improve the convergence properties of the method when combined with STAQ. Furthermore, some
techniques are tested that reduce the problems with the algorithm. We are aiming at finding a
method based on the SPSA algorithm that solves the OD matrix calibration problem for STAQ as
fast and reliable as possible.

1.3 Thesis Outline

During this thesis the focus will be on different aspects of the OD matrix calibration problem
with the optimization algorithm SPSA. First some review of the already available literature is
done to find a promising approach to the problems in calibrating OD matrices with quasi-dynamic
assignment models. This is written in section 2.

In the next section, section 3, more detailed information on the different parts of the OD
matrix calibration problem is given, including the four step model, the general OD matrix calibra-
tion problem, the assignment model STAQ, the approximation algorithm SPSA and the different
convergence criteria.

In section 4 the problems caused by the presence of local minima and other problems for the
convergence of the algorithm are investigated. This section shows why local minima occur in the
objective function, how the problems they cause can be avoided and gives a new, more advanced
method to use for the optimization process. This section also deals with the issue of bounds to
restrict the search area and the evaluation of the performance of the algorithm, including the
number of assignment steps required and a new convergence criterion to measure the quality of
the result.

The section 5 deals with a small, but realistic network. For this a network describing the
highway corridor between Tilburg and Eindhoven in the Netherlands is used and different situations
are investigated. Here the performance of the algorithm is measured and improved by application
of the so-called asymmetric design. Also some of the parameters of SPSA are investigated and
tests are performed in order to find the optimal set of parameters for the optimization. At the end
of this section, these optimal parameters are tested for several different situations.

Finally a conclusion of this thesis is drawn and some possible modifications of the SPSA algo-
rithm and recommendations for further research are given in section 6.
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2 OD matrix calibration and SPSA: literature review

In this section some literature about SPSA as well as about its application in OD matrix calibration
problems is reviewed. First some basic outcomes of research about SPSA are given and then its
application and problems are discussed. Also the basic idea of STAQ is explained shortly. Then
the different results for dynamic OD matrix calibration are summarized.

Spall (1998) [2] gives in his work some general information about the optimization algorithm
SPSA. This technique computes a gradient approximation using only two measurements of the
objective function per iteration, regardless of the dimension of the problem.. For OD matrix
calibration this implies that only two performances of the traffic assignment are required to find
a gradien approximation. This approximation of the gradient is especially useful when solving
problems where the relationship between the variables to be optimized and the objective function
are unknown, which is the case for OD matrix calibration due to the traffic assignment. In another
paper of Spall (1992)[5] he proves that the algorithm converges and gives some advice and rules of
thumb about how to choose the numerous parameters of the technique. These parameters need to
fulfill some conditions such that the algorithm converges, but within this framework the user is free
to choose the parameters. However, he proposes that especially the choice of the gain sequences
ak and ck, as given in section 3.5, is critical for the performance of the algorithm. He also shows
how to implement the technique in an efficient way. The rules of thumb proposed by Spall provide
helpful guidance to find some set of parameters that works for our situation. More details about
the SPSA algorithm will be given in section 3.5.

To use SPSA for the OD matrix calibration problem, an assignment model needs to be chosen.
Bliemer et al. (2015) [1] categorized the existing different assignment models by two characteristics:
the spatial interaction assumptions and the temporal interaction assumptions. They concluded
that quasi-dynamic models, such as STAQ, belong to the static models, but they pay attention to
the capacity and are mostly storage constrained. STAQ is able to take both the effect of limited
capacity as well as the effect of spillback into consideration and thus belongs to the capacity and
storage constrained models. The general ideas of STAQ and how it works are given by the authors.
The assignment model STAQ is still a static model, which means that it is not necessary to deal
with several time periods.

Within the field of the OD matrix calibration problem, some research has been done regarding
the influences of different assignment models as well as different queueing models. Frederix (2012)
[6] investigated in chapter 3 of his dissertation the effect of congestion on the dynamic OD matrix
calibration problem. He investigated three different queueing models, the point queue, the spatial
queue and the kinematic wave model, and found that a too simplified queueing model such as the
point queue model might cause large errors in the dynamic matrix calibration. In his analysis he
used the stochastic approximation algorithm SPSA with some chosen values for the parameters. In
this thesis, SPSA is used as well, but with a different queueing model, the quasi-dynamic assignment
model STAQ as introduced in section 1.2 and further explained in section 3.4. Although Frederix
investigated the problem of dynamic OD matrix calibration, some problems he found may also occur
in quasi-dynamic OD matrix calibration. Here the results of Frederix’ work might be helpful.

In chapter 4 of Frederix (2010) [6] the author analyses problems in dynamic OD matrix cal-
ibration due to congestion from the perspective of the relationship between the link flows and
the OD flows. Especially the presence of local minima causes errors in the calibration process.
These might result from incorrect interpretation of the information obtained by the detectors. He
proposed that it might be helpful to include the response of the lower level, the traffic assignment,
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in the upper level, hence in the minimization of the differences. The main problems here are that
this response is non-linear when dealing with spillback and flow metering and that the objective
function in the upper level can be non-convex due to the congestion dynamics. Additionally, some
ideas to prevent the problems caused by the local minima are discussed, including identifying the
correct traffic regime by minimization of the speed and preserving this correct regime in the further
optimization. These techniques might be helpful to obtain a good solution in the optimization and
are further explained in sections 4.3 and 4.4.

Cipriani (2011) [4] also investigated the OD matrix calibration problem and proposed to include
next to the flow differences also the differences between the measured speed and the observed speed
in the objective function. He states that if only the flow on a link is measured, it does not indicate
whether there is congestion on the link or not. This knowledge is important to estimate the OD
matrix in a good way, since a low flow can be caused by both congestion or a low demand. Including
the speed helps to interpret the information given in a more exact way. Cipriani also used lower
and upper bounds for the matrix entries, which ensures to avoid infeasbile solutions and to restrict
the search space. This technique is further investigated in section 4.5. Further, he investigated the
computation time of SPSA, where he proposed three modifications to improve the performance of
the algorithm: asymmetric design, the use of a third degree polynomial interpolation and the use
of an average approximated gradient. The first modification is explained in section 5.3, whereas
the last modification is already included in the general formulation of SPSA in section 3.5.1. The
use of a third degreee polynomial interpolation is not further investigated, since for simplicity, in
this thesis it is chosen to use the line search technique of golden section instead.

In his later work, Cipriani (2013) [3] performs a sensitivity analysis of the parameters of SPSA
AD-PI (SPSA with asymmetic design and polynomial interpolation) when applied to a dynamic
OD matrix calibration problem. Further a second order SPSA AD-PI approach is explored and
another sensitivity analysis is done. Different values for the parameters are tested and some appear
to have a lot of influence on the performance. These results are helpful for choosing the parameters
in an effective way and to perform our own analysis of some of the parameters in section 5.4.

The literature research gives numerous ways to investigate the problem at hand. Spall (1992,
1998) [5],[2] gives a lot of information on the SPSA algorithm, including the choice of the parameters
and how to implement it. It is found that the quasi-dynamic assignment model STAQ is required,
since Frederix (2010) [6] found that an assignment model that does not consider the effect of
congestion can cause problems for the optimization. On the other hand, Frederix found that there
might be problems with a dyamic assignment model, so these problems can also occur for the
application of STAQ. Frederix further found that most problems are caused by local minima and
can be avoided by finding the correct traffic regime for all measurements and then preventing the
algorithm to leave it again. Finally, Cipriani [4],[3] proposes improvements of the SPSA algorithm
and performed a sensitivity analysis, which can be used to make one for the problem investigated
in this thesis.
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3 Background information

3.1 Four step model

In this section the classic four step model for static assignments is given. At the beginning the
traffic network of interest is divided into smaller parts, the traffic zones. First specific areas such as
the city centre, living areas or areas with several companies are recognized and assigned as zones
with their own characteristics such as population, employment, etc. Within these zones the zone
centroid is placed, which is a single point with all the attributes and properties of the zone. This
point lies somewhere in the zone and is connected to the network via a link that is called centroid
connector. This link gives the average time and distance to get to the network from within the
zone. The zone centroid is also called gravity point. For all zones, the centroids are connected to
the network.

Now the four subsequent steps of the four step model are executed:

• The first step that is made is the trip generation. Here the characteristics of the zones are
transformed to trip production and trip attraction values that state how many trips are
starting or finishing in this zone. This is done based on the zones characteristics and the
socio-economic data such as income, employment, etc and is defined by a chosen model.
These values are located at the zone centroid as a point of origin or destination of trips.

• The next step is the trip distribution step. Here the trip productions and trip attractions
at the centroids are connected to produce origin-destination pairs. This results in the OD
matrix D, a matrix which gives the so-called OD demand dij , the number of trips for every
origin-destination pair (i, j), for the studied network. Hence this matrix gives the number of
trips from every centroid i in the studied network to every other centroid j in the network.

• The third step is the modal split. Here the trips are divided according to the used mode of
traffic. These modes can be car traffic, public traffic or bicycle, but also walking can be seen
as a mode of transport. Often this is already done in step two to get OD matrices that only
contain information for one mode.

• The last step of the four step model is the assignment step. Here the demand of the OD
matrix is distributed along the network, resulting in values for link flow and link speed. An
important factor to assign the OD demand is the route choice for each trip. This choice is
based on the travel time and is thus influenced by the level of congestion on every possible
route and the assigned traffic influences the amount of congestion. This means that during
the assignment step an equilibrium is searched, the so-called user equilibrium, where all the
traffic is assigned such that no individual can find a better route to its destination. This is
done according to some chosen assignment model.

The assignment step of the model plays a crucial role in the OD matrix calibration problem, since
here the OD demand, i.e. the output of steps 2 and 3, is approximated based on the travel times
calculated in step 4, the measured flow and speed on the links. As stated, different assignment
models can be chosen, which make the problem static, dynamic or quasi-dynamic. In this thesis
the quasi-dynamic assignment model STAQ will be used, which makes the OD matrix calibration
problem quasi-dynamic.
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3.2 OD matrix calibration problem

In this thesis the OD matrix calibration problem is defined as the problem of finding an OD matrix
whose values for flow and speed at the links match as good as possible with measured values on
these links. This definition includes that whenever the modelled values for flow and speed match
with the measured values, the OD matrix calibration problem is solved, independent of the found
OD matrix. This implies that there might be more than one solution of the OD matrix calibration
problem, since there can be more than one matrix that produce certain values for the flow and the
speed. This is due to the underspecified characteristic of the problem, since there are mostly more
variables that need to be optimized, the number of non-zero OD pairs, than there are constraints,
the measured values for flow and speed on the links.

As described in the last section, the OD matrix calibration problem uses the output of the
fourth step, the assignment step, to find the value of the OD matrix, which is the output of steps
two and three. By restricting our research to just one mode of traffic, we can ignore the influence
of step three.

The problem of OD matrix calibration can be formulated as a bi-level optimization problem.
The classic mathematical formulation of the OD matrix calibration problem can be found in
Cipriani(2011) [4], but the notation is slightly changed to make it more clear:

In the upper level a minimization problem is solved:

upper level: min
D

z(D) with z(D) = f1(v(D), ṽ) + f2(s(D), s̃) (2)

where D gives the OD matrix, v(D) and s(D) give the flow and speed on the links obtained by
the assignment with matrix D and ṽ and s̃ give the measured flow and speed on the links.

In the lower level, the assignment of the matrix D to the network is done to get the values of
v(D) and s(D):

lower level: D −−−−−−−−→
assignment

(v(D), s(D)) (3)

where assignment denotes the assignment of the OD matrix D according to the chosen assignment
model.

This bi-level optimization problem can also be seen as a problem from the field of game theory,
called the Stackelberg game. Here the leader, the upper level (where the minimization of the
objective function is performed), changes the values of the matrix D and the follower, the lower
level (where the assignment is done), reacts on this change with new values for the modelled flow
and speed.

To achieve a good estimation of the OD matrix, a search algorithm is applied to iteratively
find the optimal solution. In this algorithm we proceed similar to the steepest descent method for
solving the minimization problem

min
D

z(D) (4)

The classical steepest descent method is as following: Starting with an initial guess D0 we
iterate

Dk+1 = Dk − ak∇z(Dk) (5)

where the steps ak are computed e.g. by exact (or inexact) line search. Note that the standard
assumption in the steepest descent method is that z is differentiable. However, the function z(D)
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above is probably not differentiable everywhere due to the assignment step with STAQ. Because
of this, instead of the gradient ∇z(Dk) = gk we use in our algorithm an approximation ĝk. More
detail on the method of SPSA and how it relates to the steepest descent method can be found in
section A in the appendix.

The procedure of this search algorithm is shown in Figure 2.

Initial OD
matrix D0

make assignment:
Dk −−−−→

STAQ

(v(Dk), s(Dk))

get values for the
flow and speed on the
links: (v(Dk), s(Dk))

evaluate value of
objective function z(Dk)

convergence
criteria

fulfilled?

return current
OD matrix Dk

calculate gradient ap-
proximation ĝk (SPSA)

compute new esti-
mated OD matrix:
Dk+1 = Dk − akĝk

observed
values of
flow and

speed: (ṽ, s̃)

calculate
step size
ak for this
iteration

yes
no

Figure 2: Scheme of the procedure of the OD matrix calibration
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This scheme gives the general idea of the algorithm. Starting with an initial OD matrix D0,
which is mostly obtained by the first three steps of the four step model, the assignment is performed,
according to the chosen assignment model (in this thesis this model is STAQ). This corresponds
to the equation of the lower level (Equation 3) and gives values for the flow and speed v(Dk) and
s(Dk). Next the values of the flow and the speed on the links are retrieved from the model and then
compared to the observed values ṽ and s̃, which are given beforehand. This comparison is done by
evaluating the equation of the upper level (Equation 2) to find the value for the objective function
z(Dk) = f1(v(Dk), ṽ) + f2(s(Dk), s̃). Next some chosen criteria for convergence are investigated
and if the criteria are fulfilled, the process will return the current OD matrix Dk as its best solution.
If the convergence criteria are not fulfilled, the process will calculate the gradient approximation
ĝk. The way the gradient approximation is calculated is explained in more detail in section 3.5.
From the gradient approximation together with some specific step size ak a new estimated OD
matrix is computed by Dk+1 = Dk− akĝk. Next this new matrix is again assigned to the network,
giving the values for the flows and speeds on the links (v(Dk+1), s(Dk+1)), and the following steps
are repeated until the convergence criteria are met.

This is the general procedure used here to solve the OD matrix calibration problem. In the
next sections, the different parts of the process are further explained.

3.3 The objective function z(D)

The choice of the objective function plays an important role in the OD matrix calibration problem.
This function determines what values are required to be minimized in the process. In general, these
are the differences to the ’real’ origin-destination matrix of the network. However, in practice this
matrix is unknown. In this study we assume that the only information we have about it are the
observed values for flow and speed on the links. Since we want the difference between the observed
and modelled values for flow and speed to be as small as possible, it is logical to include them in
the objective function z(D). This can be done in different ways. For now, the objective function
is chosen to include the euclidean differences of flow and speed with corresponding weights.

In most cases, the euclidian norm is calculated and all squared differences are added up. When
doing this, it would be advisable to apply weights to give different values corresponding importance.
The following equations give this general objective function for flow and speed:

z(D) = f1(v(D), ṽ) + f2(s(D), s̃) (6)

f1(v(D), ṽ) = λ
∑
l∈Lm

(ṽl − vl(D))2 (7)

f2(s(D), s̃) = (1− λ)
∑
l∈Lm

(s̃l − sl(D))2 (8)

where 0 ≤ λ ≤ 1 and l ∈ Lm are the links in the network where measurements are available. Here
again ṽ and s̃ represent the measured values for the flow and speed on the links and D is the
current matrix approximation. The values vl(D) and sl(D) are obtained from the assignment. So,

D −−−−−−−−→
assignment

[vl(D), sl(D)] ∀l ∈ Lm (9)
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These equations result in the objective function z(D) which states the corresponding values for
different OD matrices D:

z(D) = λ
∑
l∈Lm

(ṽl − vl(D))2 + (1− λ)
∑
l∈Lm

(s̃l − sl(D))2 (10)

This results in the upper level equation:

upper level: min
D

z(D) = min
D

[λ
∑
l∈Lm

(ṽl − vl(D))2 + (1− λ)
∑
l∈Lm

(s̃l − sl(D))2] (11)

The value of the weight λ is for now chosen such that the influence of the flow and speed are
approximately equal to each other. For example, if there is a value of flow of 1000 and the maximum
speed is only 100 km/h, then a speed difference of 5 kilometers per hour is more important for
the optimization than a flow difference of 5 vehicles per hour. So it is required that the squared
values for the flow get a lower weight than the squared differences of the speed. The value of λ is
in this thesis chosen below 0.1 and thus the weight of the speed gets a value above 0.9. For now,
λ is chosen to be 0.05. This means that the weight for the speed is 0.95. In section 4.3 the role of
these weights is further explored.

3.4 STAQ

The assignment model STAQ (Static Traffic Assignment with Queueing) is a quasi-dynamic model.
This means that it only investigates one time period (so an average value over some time, e.g. one
hour), which makes it static, but on the other hand the capacity constraints are observed and the
effect of queueing is taken into account, which needs to be done dynamically. A quasi-dynamic
model such as STAQ is required to accurately model congestion spillback and flow metering around
congested links.

If the number of vehicles that want to use a link is larger than the capacity of that link, queueing
occurs. In normal static models this capacity problem is ignored and the demand is assigned to the
links, even if the flow exceeds the capacity of that link. To model these situations more accurately,
STAQ consists of two phases, the squeezing phase and the queueing phase.

In the squeezing phase the links are investigated. If the demand at the link exceeds its capacity,
the amount of demand that is larger than the capacity is stored as a so-called vertical queue at
the beginning of the link. Here the difference between the capacity and the demand is summed
up. This part of the model is a static assignment.

During the queueing phase, the length of the vertical queue, hence the total amount of traffic
that could not pass the link, is translated into a horizontal queue that propagates back along the
links. This is done according to traffic flow theory. This part of the model is dynamic to give good
values for the queue length and the travel times.

The output of the assignment are values for flow, speed and density on all links in the network.
The values for flow and speed can now be used in the objective function to evaluate the quality
of the approximation of the OD matrix. The details about the assignment model of STAQ are
outside the scope of this thesis, such that STAQ is used in the optimization algorithm as a black
box where given a matrix D values for v(D) and s(D) can be calculated.
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3.5 SPSA

3.5.1 General SPSA

SPSA (Simultaneous Perturbation Stochastic Approximation) is a stochastic gradient approxima-
tion algorithm that is used in a lot of different fields including aircraft modeling, noise cancellation
and robot control.

SPSA is an optimization algorithm. If given an objective function z(θ) ∈ C1, SPSA aims at
finding the minimum of this function. SPSA uses gradient approximation. This is a good method
if the relationship between the objective function and the variable to be optimized, θ ∈ Rp, are
unknown (which is the case in OD matrix calibration problems due to the assignment step). For
using SPSA, the outcome of the objective function needs to be a scalar. The gradient approximation
is then found by calculations including the values of the objective function.

SPSA is also a stochastic method, which means that the iterate θk converges to the optimal
value θ∗ in a stochastic sense (almost surely). The term stochastic also includes that there are
values ∆k for the perturbations in every iteration, which are taken at random according to a given
distribution. This distribution needs to fulfill some conditions to make sure that the algorithm is
able to converge to the optimal solution. These include an independent, symmetric distribution
around zero and the fact that the absolute inverse expectation needs to be finite: E|∆−1

ki | <
∞ for every component i of the vector ∆k. This condition makes most common distributions
inappropriate for this situation. All distributions with a positive probability around zero are
not allowed for the SPSA algorithm. For this reason other distributions are required. A simple
distribution recommended by Spall (1998) [2] and proven to be optimal by Hutchinson (2002) [7]
is a distribution with as only possible outcomes 1 or −1, each with probability 1/2.

Then the algorithm proceeds as follows: SPSA starts with an initial guess of θ, θ0, and in every
iteration k a gradient approximation ĝk is calculated. This is used to make a step towards a better
solution. This step has the following form:

θk+1 = θk − akĝk(θk) (12)

where ĝk(θk) is the approximation of the gradient g(θ) = ∂z/∂θ at the current iterate θk. ak is
some specific step size for iteration k.

For the application of SPSA, the value θ is perturbed by values of the vector ∆ times a value
c from the sequence ck. Both sequences ak and ck are defined later. The vector ∆ consists of p
entries ∆i which are randomly chosen such that they can be either −1 or 1 with probabilty 1/2.
With this ∆ the perturbations are given in equation 13.

θ+ = θ + c∆ , θ− = θ − c∆ (13)

In most situations more than one gradient approximation is performed, where the number of
gradient approximations is denoted by m. In general m � p, the number of dimensions, hence
there are a lot less gradient approximations than the number of elements in θ. So the vector θ is
perturbed with m different vectors ∆l, resulting in 2m different perturbed vectors denoted by θ+l

and θ−l with l ∈ {1, 2, ...,m}. Then for the perturbed vectors the objective function values are
found, denoted by z(θ+l) and z(θ−l).

From this the gradient approximation g̃l is found by

g̃l(θl) =
z(θ+l)− z(θ−l)

2c∆l‖g̃l‖
=
z(θ + c∆l)− z(θ − c∆l)

2c∆l‖g̃l‖
(14)
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where z is the objective function at the corresponding points and ‖g̃l‖ denotes the norm of the
gradient approximation, such that the gradient is normalized. This norm is defined by ‖g̃l‖ =√∑

i(g̃
l
i)

2. Note that the calculation of the gradient approximation g̃l only requires 2 values of the

objective function for every gradient approximation, regardless of the dimension of θ. This means
that SPSA requires less values of the objective function per iteration than most other optimization
algorithms, since these use at least one value of the objective for every dimension of θ.

Finally, to find ĝk, all values of g̃l are averaged:

ĝk =
1

m

m∑
l=1

g̃l (15)

An implementation of the algorithm with m = 1 is given in Figure 31 in the appendix. More
detail about the SPSA algorithm is given in section A in the appendix.

The sequences ak and ck play an important role in the optimization process. ck defines the
”area” in which the objective function is evaluated to calculate the gradient. If it is chosen to be
too large, the algorithm might not converge. If ck is too small, the algorithm might stay in the
current position regardless of whether it is optimal or not. The value ak defines the step size to
make. If it is chosen too large, the algorithm might take a step far away from the optimal solution.
If it is too small, the algorithm gets stuck in the currect position or needs a lot more iterations to
reach the solution.

In the general SPSA algorithm, the sequences are defined such that:

ck =
C

kγ
and ak =

a

(A+ k)α
(16)

where k defines the current iteration number and C,γ, a, A and α need to be chosen according to
the problem and some other conditions.

These conditions include:

• α− 2γ > 3γ − α
2 ≥ 0

• α > 0, γ > 0

• C > 0, a, A > 0

From this it follows that

• ak, ck > 0 and ak → 0, ck → 0 as k →∞

•
∑∞
k=0 ak =∞

•
∑∞
k=0

(
ak
ck

)2

<∞

These conditions are shown in more detail in Spall (1992) [5]. Mostly the values for α and γ
are chosen to be 1 and 1/6 respectively or 0.602 and 0.101, see Spall (1998) [2].
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3.5.2 SPSA for OD matrix calibration

This section is about how to use SPSA in the OD matrix calibration problem. To make it easier
to understand, the working scheme from section 3.2 is used in figure 32 in the appendix, where
several elements are added to make the situation more precise.

As described in section 3.2 the OD matrix calibration problem starts with an initial guess of
the OD matrix, D0. So D0 is a matrix of dimension c× c with c = |C| the number of centroids in
the network.

After performing the assignment with STAQ and evaluating the function value z(Dk), the
convergence criteria are checked. If they are not fulfilled, the SPSA algorithm is started.

Typically a big part of the entries of the OD matrices have value zero, which means that there
is no demand between this origin and destination. For this reason, these values will remain zero
during the whole process. So it is for sure that no demand between this origin-destination pair is
present.

Due to this high number of zero entries, it is advisable to translate any OD matrix D to a
vector of nonzero entries θ which can then be used in the SPSA algorithm. This translation is
done by finding all positions of non-zero entries and storing their positions in an extra vector, while
the entry values are copied one after another to the vector θ. This process can be reversed with
the vector of positions and θ to find the matrix D. So first the matrix Dk is transformed to give
the vector of non-zero elements θk.

For all nonzero entries, at iteration k the perturbation values ∆ki are computed randomly
according to the chosen underlying distribution. During this thesis, this distribution is chosen to
be such that ∆ki can be either 1 or −1 as reported in section 3.5.1, such that ∆k is a vector with
these values.

Next the vector θk is perturbed in two directions:

θ+
k = θk + ck∆k and θ−k = θk − ck∆k. (17)

Both θ+
k and θ−k are now assigned to the network by using the specified assignment model, STAQ

in this thesis. To do this, first the vectors are translated back to matrices D+
k and D−k . Then these

are assigned to the network, resulting in values for flow and speed on all links, (v(D+
k ), s(D+

k )) and
(v(D−k ), s(D−k )).

Next for both situations the flow and speed at the links are compared to the available measured
values ṽ and s̃. The differences are calculated according to the objective function as defined in
section 3.3. The value of the objective funtion then gives a final measure of the quality of both
perturbed OD matrices D+

k and D−k . These values are z(D+
k ) and z(D−k ).

Using the values of the objective function z(D+
k ) and z(D−k ), the gradient approximation is

found by function 14 and 15. This gives the vector ĝk with values for every nonzero entry of the
current OD matrix calibration vector θk.

Now the values of the current vector are updated according to

θk+1 = θk − akĝk(θk) (18)

respectively.
This new vector is now transformed to the matrix Dk+1 and the function value z(Dk+1) is

calculated. If the convergence criteria are still not fulfilled, the vector θk+1 is perturbed and the
whole algorithm repeats.
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3.6 Convergence criteria

There are different ways to evaluate the quality of the approximation and to decide whether the
algorithm needs to iterate further or if the approximation is good enough to end the computation.

The first and most straightforward way is to stop whenever the normalized objective function
values is low, so below a value chosen beforehand. This includes that most of the values for flow
and speed are close to the measured values.

This objective function value is given by z(Dk). This value is normalized by the number of
measurement points, denoted by |Lm|. So this convergence criterion gives that whenever

z(Dk)

|Lm|
< κ (19)

the algorithm stops with Dk as the optimal solution, where κ is a fixed value chosen beforehand.
If |Lm| is large or if the measurements are not good enough, this criterion might never be

reached. Then the algorithm needs to stop due to some other criterion.
One possible other criterion is to stop when the number of iterations exceeds a beforehand

chosen number kmax:
k > kmax (20)

Here the last matrix Dk with k = kmax gives the best solution. The same can also be done for the
number of assignments of STAQ.

Another criterion would be to stop when the function value does not change significantly any-
more. So with some chosen ε

|z(θk)− z(θk−q)| < ε (21)

holds with q ∈ N. If q is for instance 5, then the algorithm stops whenever after 5 iterations the
function values only changed by at most the amount of ε.

Another possible convergence criterion is the often applied T-test. The T-test is used to measure
the result of the calibration concerning the flow, hence the found values v(D∗) relative to the
measured values ṽ. These are compared according to equation 22.

Tl = ln

(
(vl(D

∗)− ṽl)2

ṽl

)
(22)

with ln denoting the natural logarithm. The value of Tl is calculated at every measurement position
l ∈ Lm. All values of Tl need to fulfill the following condition: Tl < 3.5.

Another criterion would be to measure the absolute differences in flow or speed. This gives

T vl = |vl(D∗)− ṽl| < ωv and T sl = |sl(D∗)− s̃l| < ωs (23)

These values need to be smaller than some beforehand chosen values ωv and ωs.
All these criteria can be used individually or can be combined such that the moment one or

several of them hold, the algorithm will terminate. For the basic instance of SPSA, the criteria
concerning the function value are used as well as the maximum number of iterations. The criterion
concerning the difference of the objective function value is not used in this thesis to prevent the
algorithm from stopping too early, although it might be a good criterion when applied with care.
The T-test is also not used in this thesis, for reasons that are explained later in section 4.7. The
absolute difference in flow is not needed, but the absolute difference in speed is used later in section
5.

19



4 Test networks

In this section three different test networks are used for the investigation of using SPSA in combi-
nation with STAQ. There are several different situations that might influence the performance of
the algorithm. This can cause the algorithm to converge very slow or to end up at a local optimal
solution. These solutions are called local minima. For the optimization it is helpful to decrease
the number of local minima in the objective function, since otherwise the actual optimum might
not be found.

For this, first some test networks are introduced to test the different influences. These networks
are given in section 4.1. Then the reasons for the local minima are described in section 4.2. In
sections 4.3 and 4.4 options to decrease the number of local minima are found. In section 4.5
a possible solution for situations where the algorithm iterates to values outside of the searched
solution space is proposed. The performance of this enhanced method is tested in section 4.6 and
finally in section 4.7 the performance of this enhanced method is further improved. Section 4.8
gives a short conclusion of the results of these sections.

4.1 The three test networks

To test the different situations for local minima, some test networks are used before the algorithm
can be applied to real networks.

The first test network is from Frederix (2013, chapter 3) [6]. Here he uses a simple corridor
network with only one OD pair and 8 links. It has one link whose capacity is smaller than the
expected demand, such that congestion occurs and a queue is formed. This link is called the
bottleneck of the network. The network looks as shown in figure 3.

Figure 3: Plot of network 1 with capacity in red if smaller than the expected demand and green if
capacity is larger than expected demand

Here the OD demand goes from the left part, denoted by centroid 1, to the right part, denoted
by centroid 2. The fourth link, indicated by red, is the bottleneck of this network.

The next network to investigate is called matchstick network, since it is only a straight line
as network 1. It consists of 5 links and has one OD pair. Different from network 1, it has two
different bottlenecks at links 2 and 4. It can be seen in figure 4.

Here again the OD demand goes from left to right, from centroid 1 to centroid 2. The bottle-
necks, indicated in orange and red, have a capacity of 2000 vehicles per hour and 1000 vehicles per
hour. With this setting the influences of a second bottleneck on as well the first bottleneck as the
whole network can be investigated.
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Figure 4: Plot of matchstick network with capacity in red if smaller than expected demand, orange
if capacity is smaller than some demands and green if capacity is larger than most demands

Since a network with only one OD pair is not really realistic, the next test network consists of
two OD pairs. This is a diverge network, where demand comes from only one origin, the bottom
centroid, but has two different destinations, the left centroid and the right centroid. This network
is given in Figure 5.

Figure 5: Plot of network 2 with capacity in red if smaller than most demands and green if capacity
is larger than most demands

Here the capacity of the second to last link of the left part is smaller than the expected demand,
so the queue might propagate back until the point where the routes split and even further back
until the origin of the network. This queue might also influence the right part of the network.

These three test networks are used for the further investigations in this section.
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4.2 How local minima occur

This section deals with the topic of local minima and investigates why they occur. Local minima
define values of OD demand where the gradient of the objective function is zero, but the function
value is not optimal, hence there is at least one other set of OD demands where the value of
the objective function is smaller, the global minimum. Local minima are present whenever the
objective function is not convex with respect to the OD matrix D. Due to the complex relation
between the OD matrix D and the values v(D) and s(D) caused by the assignment, this might
always be the case. To understand what exactly causes some of the local minima, plots of OD
demand versus link flow and OD demand versus link speed are made for the test networks: network
1, the matchstick network and network 2.

To explain the situations, we differentiate between two traffic regimes as shown in figure 6: the
congested regime and the free flow regime. In the free flow regime, the flow at the link is lower
than the capacity and the average speed lies between the value for speed at capacity and the free
flow speed. When the demand at the link approaches the capacity, the average speed decreases
from the value of the free flow speed to the value of speed at capacity. When the demand exceeds
the capacity, the link becomes congested. If a link is in the congested regime, the average speed
drops below the value for speed at capacity and the flow at the link decreases as well. A link at
capacity is considered to be congested.

Figure 6: Plot of fundamental diagram with in green the free flow regime and in red the congested
regime - the free flow speed is 120, the speed at capacity 100 and the capacity is 2000

To find the reasons for the presence of local minima, the three different test networks from
section 4.1 are investigated. For these tests, a true demand is assumed, such that we can generate
the vector of observed flows and speeds. In the tests we can choose a different start demand matrix
and observe to what extent the method is able to revert to the true OD matrix. The true demand
is given by the OD matrix Dm. With this matrix the assignment is performed using STAQ and
the corresponding values for ṽ and s̃ are found:

Dm −−−−→
STAQ

(ṽ, s̃) (24)
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4.2.1 Local minima in network 1

The first network to investigate is network 1 as described in section 4.1. It can be seen in figure
8 with different colors for each link. The plots of the flow and speed at the links for different OD
demands are shown in figures 7a and 7b with the corresponding colors for the different links.

(a) Flow network 1 (b) Speed network 1

Figure 7: Flow and speed of network 1 for different demands, demand is shown on the x-axis
whereas the link flow and link speed are shown on the y-axis respectively

Figure 8: Network 1 with different colors for the links

In figure 7a the flow is shown for different OD demands and the lines indicate the different
links 1 to 8, where only links 1, 2 and 8 are visible, the other graphs of links 3-7 are equal to the
graph of link 8. It can be seen that for the links 1 and 2 (blue and green curve) the flow is not
bijective and hence there are two different OD demands possible for the same link flow. Each of
the two OD demands gives a different state of the link, congested or free flow. So for some values
of flow, there are two possible situations, one in the free flow regime (left of the peak) and one in
the congested regime (right of the peak). For further insight into these situations, more knowledge
about STAQ is required, which is outside of the scope of this thesis.

Figure 7b shows the values of the average speed on the different links according to different OD
demands. Note that the functions for speed are all bijective, hence there is only one situation for
every possible average speed. Also it can be seen that the speed decreases when the links becomes
congested. Again further research requires more knowledge of STAQ.
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To understand how the local minima occur, consider the following example: Assume the mea-
sured OD matrix Dm has the non-zero entry 1050. According to the figures for flow and speed,
this produces a link flow of 982 and a speed of 49 km/h at the first link. So ṽ = 982 and s̃ = 49.
However, a flow of 982 can also be produced by an OD demand of 982, see figure 7a. For a demand
of 982 in the OD matrix, after the assignment is done, the corresponding values for flow and speed
would be 982 and 79 respectively.

Assume now that there is a measurement at link 1 which gives the measured values for flow
and speed by ṽ = 982 vehicles/hour for the flow and s̃ = 49km/h for the speed. This means that
for the OD demand of 982, the difference in flow is zero, but the speed has a difference of 30. This
results in a local minimum, since a slightly higher or lower demand than 982 produces a larger
difference for the flow whereas the speed difference remains nearly the same. To see the local
minimum around the value of 982, figure 9 gives the function value with the described measured
values for flow and speed for different OD demands.

Figure 9: Objective function values for different OD demand of network 1 for measured values of
of ṽ = 982 and s̃ = 49

Around an OD demand of 982 vehicles/hour a small local minimum can be seen, whereas
the global minimum is at 1050 vehicles/hour, as expected. This is a typical situation where a
local minimum occurs. This local minimum occured since there is more than one element in the
objective function and because the flow is not bijective due to the OD demand. There are more
similar situations possible for network 1, but in this example the problem is most obvious. When
the algorithm reaches the local minimum, it can get stuck there since the gradient points in the
direction of the local minimum instead of pointing to the global minimum.

This problem can also occur in other networks.
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4.2.2 Local minima in the matchstick network

The matchstick network has characteristics similar to network 1, but there are some different
aspects as well. Most important, this network has two potential bottlenecks to deal with, such
that it can be investigated how they might influence each other. The plots of the flow and speed
for different OD demands are shown in figures 10a and 10b and the corresponding colors for the
links are given in figure 11.

(a) Flow matchstick network (b) Speed matchstick network

Figure 10: Flow and speed of the matchstick network for different demands

Figure 11: Matchstick network with different colors for the links

In figure 10a the link flow on the different links is shown. The graph for link 1,2 and 5 is visible,
whereas the graphs of links 3 and 4 are equal to the graph for link 5. Again no more details are
explained, since the characteristics depend on the assignment model STAQ. However, it can be
seen that the flow is bijective everywhere except for link 2, the light blue curve, between the OD
demands of 1520 and 2000. Another thing to notice is that from the demand of 2000 on, the flow
does not change anymore. This is due to the second bottleneck at link 2. It becomes active at a
demand of 2000 and thus no more flow can pass any of the links. This interaction between the
bottlenecks makes the investigation of larger networks more complicated.

The speed corresponding to the different values of demand is given in figure 10b. Here again
the speed decreases whenever the link gets congested.

In this network almost all flow and speed functions are bijective, except the flow function of
link 2 between OD demand 1520 and 2000. After this the flow does not change anymore and hence
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is bijective from here on. Measurements on this link are used to show the presence of local minima.
In this example we assume that the measured values on link 2 are ṽ = 1613.4 vehicles/hour and
s̃ = 53.5 km/h for the speed. Figure 12 gives the function values for different OD demands.

Figure 12: Objective function values for different OD demand of the matchstick network with
measured values ṽ = 1613.4 and s̃ = 53.5

There is a local minimum around an OD demand of 1613.4. Here the difference in flow becomes
zero, whereas the difference in speed is still high. When starting from a demand below or near
this local minimum, the algorithm is likely to converge to this value instead of converging to the
global minimum with an OD demand of 1800.

4.2.3 Local minima in network 2

In network 2 the situation becomes even more complicated. Here two OD pairs are present, so
there are two values of OD demand. The whole demand originates from one point, at the bottom
of the figure, but it splits after the fourth link. The corresponding plots for the flow and speed are
shown in 2-dimensional plots for every link, where the different OD demand is given on the bottom
axes and the vertical axis gives the values for flow or for speed. The OD demand is differentiated
in the demand to the right and to the left of the network as given in figure 14. This gives figures
13a and 13b for link 3, whose location can be seen in figure 14 in orange.

Again it can be seen that the flow function is not bijective. In figure 13a there is a straight
area, coloured in dark blue, from which the flow drops to two sides, denoting the free flow regimes
(right side) and the congested regime (left side). The link flow is hence not bijective with respect
to the OD demand for the left side. Note that in figure 13b the speed is bijective everywhere.
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(a) Flow network 2 (b) Speed network 2

Figure 13: Flow and speed of network 2 for different demands

Figure 14: Network 2 with link 3 in orange

Assume that the measured matrix Dm has OD demands of 1200 for the OD pair from the
bottom to the left upper side and 400 for the OD pair from the bottom to the right upper side.
These give some measured values for flow and speed for link 3. This results in figure 15.

It can be seen that there is some sort of local optimal corridor (orange) at the right side, where
the algorithm might end up in. So there is not only one local minimum like in the networks before,
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Figure 15: Function values for different demand of network 2 with measured demand 1200 and 400

but a whole set of combinations which end up in local minima. This means that with increasing
dimension there are more and more local minima possible and we need to find a way to handle
them efficiently.

4.2.4 Conclusion local minima

Local minima can always occur in the objective function. Especially if the flow is not bijective with
respect to the OD demand and there is another element in the objective function, like the speed,
a lot of local minima can be present. For more than one dimension (OD pair) there is also the
possibility that a corridor of local minima is present. With an increasing number of dimensions,
also the number of possible local minima increases, which makes the problem even more relevant
for real world situations, where a lot more dimensions are present.
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4.3 Starting in the correct traffic regime

Due to the fact that local minima might cause the algorithm to converge to a non-optimal solution,
we would like to make sure that the algorithm is converging to the optimal solution.

In his chapter 4, Frederix (2013) [6] investigates the causes of local minima and gets to the
same results as shown in section 4.2: The fact that the relation between the OD demand and the
link flow is not bijective causes most of the local minima in the objective function. These local
minima are situations where at least one of the values for speed is in a different regime than the
measured value for speed here. So s̃ and s(Dk) are in two different regimes.

Frederix [6] states an idea to avoid the problems that the presence of local minima causes: He
proposes to make sure that the algorithm starts at a good place. This means that the algorithm
should start at a point where at all measured points the correct traffic regime is given. To find
this good starting point, he proposes to perform the optimization with an objective function
that is bijective: by only taking the speed differences into account. To understand why this is an
advantage, we consider the plot of the function values for measurements on link 2 of the matchstick
network for a measured demand of 1800. Here we found a local minimum at an OD demand of
1613. Now we decrease the weight on the flow λ, see equation 10, and thus increase the weight
on the speed until the weight on the speed is 1 and the weight on the flow is 0. The resulting
functions can be seen in figures 33a until 33h in the appendix. Some selected plots are shown in
figures 16a until 16d.

The local minimum at an OD demand of 1613 vanishes with decreasing value for the weight on
the flow λ. As can be seen in the last figure, there is no local minimum anymore, only the global
minimum is left. This is due to the fact that the function of link speed against OD demand is
bijective and hence there is only one situation where the correct link speed is reached, which is
near the global optimum.

The same can be seen for the two-dimensional situation in network 2. Here the measured
matrix Dm has an OD demand of 1200 and 400 for the two OD pairs. For the standard weight of
λ = 0.05 a corridor of local minima occurs. This corridor slightly vanishes the smaller the value of
λ gets. Plots of this behaviour are found in Figures 34a until 34f in the appendix. Here it can be
seen that when we only consider the influence of the speed, most local minima that might cause
problems vanish.

This gives the following method to find a good starting point: We choose some initial matrix D0.
The objective function of the SPSA algorithm is changed such that only the speed is considered,
hence the weight on the speed is 1 and the weight on the flow is 0. Now the algorithm is performed
to find a solution where the modelled speed s(Dk) is reasonably close to the measured speed s̃,
s(Dk) ≈ s̃.

This procedure is equivalent to changing the OD demand in the matrix D such that the mea-
sured and the approximated speeds all lie in the same traffic regime and thus close to each other.
This means if the speed s̃ at link 1 is measured to lie in the congested regime, then also the
modelled speed, s(Dk) needs to lie in the congested regime. The algorithm can stop whenever all
measured links are in the correct regime, hence when all the differences in speed are small. We can
choose the value of κ such that the algorithm only converges if the result is close to this situation
or the absolute difference of the speed is calculated and the algorithm ends when all differences
are small.
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(a) Weight flow 0.05 (b) Weight flow 0.02

(c) Weight flow 0.002 (d) Only speed

Figure 16: Function values for a measured demand of 1800 on link 2 of the matchstick network
with different weights on flow

4.4 Staying in the correct traffic regime

4.4.1 Line Search

To avoid the algorithm to leave the correct traffic regime, Frederix (2013) [6] proposed to use a line
search procedure instead of a sequence for ak to avoid too large step sizes during the optimization
process. This appears to be a good solution to the issue of staying in the correct traffic regime.
With the line search the step size is determined by the function values. In the normal algorithm,
the step size depends on the size of the gradient and the choice of the sequence. The main problem
with the sequence ak is that the step size taken might be too large and the algorithm iterates to
the wrong traffic regime. With the line search, the step is only taken as far as the function value
decreases. This decreases the chances of ending up in the wrong traffic regime.

In the field of line search there are many different procedures. They can be divided in two fields,
the exact line search and the inexact line search. Due to the high complexity of the assignment
step, the function z(Dk) is not found explicitly. For that reason an exact line search is not possible
in the OD matrix calibration process.

The other option is to find a ’quite’ good step size such that the objective value decreases as
much as possible. This option is called inexact line search and has several popular methods. By
virtue of the efficiency of the golden section procedure, this line search strategy is used in this
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thesis. The golden section search is a technique which iteratively narrows the search area.
At the beginning two points are chosen between which an optimum is searched. In the OD

matrix calibration the first point is the current vector θk and the other point is the current vector
θk plus a chosen maximum stepsize times the normed gradient approximation. So,

a = θk

b = θk + αĝk(θk)
(25)

The choice of the value α depends on the situation to be optimized. A high value means that
a large area needs to be searched, which results in a high number of assignments. A small number
might be too small to actually find the area where the minimum lies. In general, α is chosen
such that there is a minimum between a and b. However, since there is no knowledge about the
objective function z, it is not always sure whether there is a minimum between a and b.

To find a good value of α, a value of a maximum step size (maxstep) can be chosen. This value
defines the maximum change of values for the matrix in one iteration. The maximum step size
is chosen to decrease with the same factor as ck does in order to prevent too big steps in later
iterations. The stepsize for every entry of θ is now calculated in a way such that the biggest step
taken is as big as the value of maxstep and all others are smaller, depending on the value of the
normed gradient. So,

α =
maxstep ∗ĝk

maxi ĝki
(26)

Once the values of a and b are found, two inner points, x1 and x2 are calculated according to
the golden ratio

ϕ =

√
5− 1

2
(27)

such that

x1 = θk + αĝk(θk)(1− ϕ) = b− ϕ(b− a)

x2 = θk + αĝk(θk)ϕ = a+ ϕ(b− a).
(28)

Now for the inner points x1 and x2 the objective values z(x1) and z(x2) are found. In the
OD matrix calibration problem this includes to make the assignment for the given vectors x1 and
x2 and to evaluate the differences between the measured values ṽ and s̃ and the modelled values
v(x1), s(x1) and v(x2), s(x2). Now the objective values of x1 and x2 are compared. Two situations
are distinguished: z(x1) ≥ z(x2) and z(x1) < z(x2).

Whenever z(x1) ≥ z(x2) the minimum is expected to lie between the points x1 and b. Otherwise,
as shown in figure 17, the search area is chosen between points a and x2. The names of the points
are changed accordingly like shown in figure 17

For the next iteration the same procedure is repeated for the new points a′ and b′. Figure 17
shows the procedure for θ with one dimension.
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Figure 17: Implementation of the basic line search procedure

This procedure is repeated until the distance between the points x′1 and x′2 is smaller than
a chosen value ε. To make the search more and more accurate in every iteration, in this thesis
ε is chosen to decrease with the number of iterations. So εk = ε/k. So there are two important
parameters to perform the line search, which need to be chosen in a good way, the value of maxstep
and ε. In this thesis it is chosen to set ε = 1.

Figure 18: Example of golden section search for two iterations

The golden section search is effective if there is actually an optimum between the two starting
points a and b. However, this is not always the case during the OD matrix calibration. Since the
solution of the line search might be worse than the current, the step θk+1 = θk + akĝk(θk) is only
done if z(θk+1) < z(θk), otherwise it is chosen that θk+1 = θk. This guarantees that after the
line search for the new solution θk+1 it holds that θk+1 ≤ θk. Due to the random character of the
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vector ∆ the algorithm does not get stuck here, but the function value decreases further after one
or more iterations.

Note that for this reason when using the convergence criterion concerning the change in function
values, q needs to be chosen such that it is large enough to avoid the algorithm to stop too early
at a non-optimal solution.

4.4.2 Objective function with binary variables

After obtaining an OD matrix D∗ such that s(D∗) ≈ s̃, it is required to assure that the algorithm
stays in the correct traffic regime. To find the optimal solution a different objective function is
used during this part of the optimization process. After the correct initial traffic regime is found
by optimizing only the speed, in the next step also the flow needs to be considered. At the same
time we want to make sure that the algorithm remains in the correct regime without adding local
minima in the objective function. This is done by converting the speed into binary variables which
state whether the link is in the congested or free flow regime. So,

rl =

{
1 if congested

0 if free flow
(29)

This is done based on the value of the speed at capacity, denoted by sc. Then it follows that

rl =

{
1 if sl ≤ sc
0 if sl > sc

(30)

The corresponding objective function then looks like this:

z(D) =
1

|Lm|

[∑
l∈Lm

(ṽl − vl(D)2 +B
∑
l∈Lm

|rl(D)− r̃l|

]
(31)

where rl(D) is the regime in the modelled situation and r̃l gives the regime in the measured
situation. B is a parameter that gets a value defining the size of the penalty for reaching the
wrong traffic regime. This value should be chosen a lot higher than the squared flow values. For
now it is chosen to be 10,000,000.

However, if the measured speed is near the speed at capacity, the penalty for the wrong regime
is often present whereas the current approximation is close to the solution. To avoid long calcu-
lation times because of a slightly wrong regime, the penalty for the regime is not applied in these
situations. So whenever the distance between the measured and the estimated value for the speed
is small for a link l, they are assumed to be in the same regime and the difference rl(D)− r̃l is set
to zero.

An example of the corresponding function values for the matchstick network is shown in figure
19.
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Figure 19: Example of function values of network 2 with new objective function

The local minimum at 1613 can still be seen in this figure, so there is no advantage in using
this new objective function without performing the speed optimization first. When doing this, the
algorithm finds a starting point right of the optimal value. By using the new objective function
it is made sure that the line search is unlikely to take a step that leads back to the wrong traffic
regime at the left of the figure.

So if the algorithm starts at the right side of the peak after the speed optimization, there is
a high chance of finding the global optimum and not getting stuck in the local optimum. The
algorithm stops according to the chosen convergence criteria in section 3.6.

4.5 Bounds

Upper and lower bounds on the entries of the OD matrix are used to avoid infeasible solutions and
to restrict the search space. They help to avoid situations where most of the network is congested.
Especially when a link that is connected to an origin is congested, this demand can not enter the
network. These situations are mostly unwanted and difficult to calibrate.

Most literature proposes to use the difference to the initial matrix in the objective function to
prevent these situations. However, since in section 4.2 it is found that local minima can occur due
to an objective function with several different elements from which one or more are not bijective,
this choice might cause local minima as well. Since there is more than one element considered
in the objective function, there might be situations where one of the elements is optimal whereas
the other elements are not. For example, the initial matrix we start with is equal to the initial
matrix, hence the difference here is zero, but the flow and speed differences might be quite high.
On the other hand there might be a solution where the flow and speed differences are small, but
the difference to the initial matrix is high. This can cause additional local minima in the objective
function and thus should be avoided.

So another way to prevent the algorithm from taking on values that are too high or too low, is
considered. First the initial matrix is regarded. Here the sums of the rows, hence the total amount
of vehicles leaving this centroid, are calculated. Next this amount is multiplied with chosen factors
for the upper and lower bound. This gives the values for the upper and lower bound for every row
total during the algorithm.
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During the SPSA algorithm, the sums of the matrix rows are compared to their upper and lower
bounds. Whenever the sum is too large or too small, a large value, for now chosen to be 100000 is
added to the objective function. This prevents the algorithm to iterate towards a solution where
the matrix is too far away from the initial matrix.

In this thesis different factors for the upper and lower bound are used, depending on the
situation at hand. They are also influenced by the difference to the row totals of the searched OD
matrix. If the row totals of the searched OD matrix do not lie within the bounds, the algorithm is
not able to find this optimal solution.

With this method the objective function is kept as simple as possible in order to avoid more
local minima.

4.6 Application of the enhanced method

The enhanced method now consists of all the parts that help to avoid the problems of local minima
and other situations such as a too congested network. Additionally, line search is used according
to the gradient and the chosen step size as explained above. First the optimization is performed
using only the speed measurements. This results in a matrix that is a quite good approximation of
the situation. Then this matrix is used for another SPSA application, where the binary variables
for the speed are used and the flow is optimized. Here the line search helps to avoid the wrong
traffic regime. In both SPSA applications, the bounds, see section 4.5, are used to restrict the
search area.

To test the performance of this enhanced method, tests are run for different situations for net-
work 2. Here some situations are found where local minima occur such that the original algorithm
is not able to find the global solution. Then these situations are tested again with the enhanced
method and the results are compared.

For the tests the measured demand is chosen to be 1200 for the demand from the bottom to
the left and 400 for the demand from the bottom to the right. These demands are considered the
true matrix Dm. When applying STAQ we get the values ṽ and s̃ for all links. The initial matrix is
always chosen to have demands 700 and 400 respectively. This means that in the begin situation,
none of the links is congested, whereas in the measured situation some of the links are congested.

To investigate different situations, the measurement locations for the values ṽ and s̃ are selected.
For now we only consider one or two measurement locations. The standard objective function uses
both flow and speed with weights 0.05 and 0.95 respectively. The results of the tests are shown
in table 1, where position 1 and 2 give the positions of the two measurements. To make the table
easier to interpret, the links are named the following: Links 1-4 belong to the common part at the
bottom, links 5-8 to the right part and links 9-12 to the left part after the diverge point.

The quality of the convergence is interpreted in different ways: The term small value means
that the function value is small at the end of the performance, but the solution might be far away
from the demand 1200 and 400. However, since the aim of the OD matrix calibration is to find
a matrix D∗such that the values v(D∗) and s(D∗) are close to the measured values ṽ and s̃, a
small function value means that this goal is reached. Local minimum means that the algorithm
converges to a local minimum where the algorithm is not able to leave again. These situations
need to be considered further.

For these situations the enhanced method is tested. The results of this testing are shown in
table 2.
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position1 position 2 convergence
common part none local minimum
left/right part none small value
common part common part local minimum

common part links 1+2 left part local minimum
common part links 1+2 right part correct

common part link 3 left part local minimum
common part link 3 right part correct
common part link 4 right part local minimum
common part link 4 left part correct

right/left part right/left part small value/correct

Table 1: Qualitative table network 2 with normal SPSA

position1 position 2 convergence
common part none correct/small value
common part common part correct/small value

common part links 1+2 left part correct/small value
common part link 3 left part correct/small value
common part link 4 right part correct/small value

Table 2: Qualitative table network 2 with enhanced method

In all of the cases that go wrong with the normal method, the enhanced method finds a solution
with a satisfying small value. This mostly depends on the choice of the parameters, especially the
choice of convergence criterion for the speed optimization. If this is chosen in a good way, the
second part can quite easily find the correct solution and the chances of ending up in a local
minimum are low. To achieve this, it is mostly the best to perform the speed optimization until
a high precision or until the maximum number of iterations is reached. Then the chances to find
the correct solution are very good.

In total this enhanced method solves the problem of local minima for all the cases with one or
two measurements. However, the algorithm might not always be able to solve the situation with
more measurements. The more measurement positions, the more difficult it gets to find a solution
with a small difference. The enhanced method has a much higher chance to find the correct solution
than the former method. Due to this the enhanced method is used for all subsequent tests.

4.7 Improving the performance

The number of assignments required to find the solution are important to measure the performance
of the algorithm. The less assignments are required, the less time the algorithm needs, especially for
large sized networks. The number of assignments for network 2 are given in table 3 for several runs
numbered 1 to 5 and two different matrices. The number of assignments are given for two different
optimization techniques. The first technique is the enhanced method where first an optimization
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for the speed is done and then both flow and speed are used in the objective function as given in
section 4.4.2. The second technique shows the number of assignments when only the optimization
for the speed is done and the second part is not performed.

runs Matrix 1 Matrix 2
run number speed and flow only speed speed and flow only speed

1 238 6 169 106
2 185 29 155 37
3 80 6 21 16
4 152 79 218 69
5 70 6 75 48

Table 3: Comparison of the two-step procedure and only the optimization for the speed for five
different runs and two different matrices

It can be seen that most of the assignment steps are needed for the second part of the algorithm.
However, this part is only needed for some last small changes to the OD matrix, so it should not
require too much time. So the idea comes up to only use the optimization for speed and then end
with the found OD matrix.

This decision is done based on the following consideration: When starting with the measured
values ṽ and s̃, it is advisable to check for all links if these values lie on the fundamental diagram
of STAQ with these characteristics. If this is not the case, these values are not feasible to find a
solution for the OD matrix calibration and hence need to be neglected or need to be changed such
that they fit to the fundamental diagram. So whenever ṽ and s̃ lie on the fundamental diagram,
the following holds: if s(D∗) ≈ s̃ then it follows that also v(D∗) ≈ ṽ. So whenever the measured
values lie on the fundamental diagram, getting close to the observed speed inplies getting close to
the observed flow. Note that this does not hold the other way around due to the flow being not
bijective.

To use only the speed optimization, a good convergence criterion is required. During the rest of
this thesis, this criterion is chosen that the absolute difference between the modelled and observed
speed is smaller than 5 km/h for all measurement points as given in section 3.6.

4.8 Conclusion

Local minima can cause problems in the convergence of the algorithm. They can make the al-
gorithm converge slow or even stop at non-optimal solutions. Applying the algorithm first only
with speed and then also with flow helps to solve this problem. One remaining problem is that
the optimization now needs a high number of assignments to make the last changes for the opti-
mal solution, due to the two-step procedure. However, the optimization for speed in most cases
already delivers satisfying close results to the optimal solution. The enhanced procedure can only
optimize the speed until the values of the absolute difference lies below 5km/h for most considered
measurements. Then we can accept the solution as the optimum. This saves a lot of assignments
and makes the algorithm hence a lot faster. This algorithm is next applied to a real world network,
to see how it performs.
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5 A small real network

In this section a small real life network, called the CHARM network, is investigated. First some
information about the network is given and a way to measure the performance of the algorithm is
discussed. Then another modification of the algorithm is given, followed by some tests of different
parameters of the algorithm. At the end the algorithm is tested with the optimal found set of
parameters for different situations on the CHARM network and a conclusion is drawn.

5.1 The CHARM network

In this section the new method is applied to a small real life network to see how it performs under
real conditions. The chosen small network is the CHARM network and it reproduces the A58
between Tilburg and Eindhoven in the Netherlands. It consists of 19 centroids and has 330 links.
The network is shown in figure 20.

Figure 20: Figure of the CHARM network

The middle part of the network represents the highway, where a free flow speed of 120km/h is
allowed. These links have two or more lanes on one side. The other links are connecting roads to
the highway with different capacity, number of lanes and free flow speed.

First an original matrix is given for the network. In this matrix there are 89 non-zero OD pairs
that can be calibrated. For this original matrix the assignment is performed to give measurement
values at chosen links ṽ and s̃. Then the original matrix is changed slightly to give the start-matrix.
This change can be done in different ways. For the tests in sections 5.3, 5.4 and 5.5 the relative
error of every entry is chosen to be in the interval [−0.2, 0.2]. The algorithm is now applied to
this new startmatrix to calibrate it such that the final result is reproducing the measured values
as good as possible.
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5.2 Measures of Performance

To compare the quality of different parameter values and the performance of the modifications
of SPSA, some measures to evaluate the resulting approximation are required. We distinguish 3
possible ways of measuring the performance:

• 1) Measuring the overall performance of the calibration in replicating the ob-
served data. Here the observed values are compared with the simulated link values and the
differences are evaluated in some specific way.

• 2) Number of assignments. This measures the speed of the performance and gives in-
formation about the number of assignments required to find a satisfying solution. Since
in large-scale networks the time for one assignment is quite high, it is important that the
number of required assignments until convergence is as small as possible.

• 3) Computation time. This measures the actual time the algorithm needs until it converges
to a satisfying solution. This can also be approximated by the number of assignments as given
in 2) to avoid the influence of any hardware in the measurement of the performance.

For the measuring of the overall performance in replicating the observed data, a lot different
measures are possible. Some of them are listed here:

• a) Total squared difference of the corresponding values (TSD). Here the differences
are calculated and these are squared such that large differences are weighted more. Then the
resulting values are added for all compared values, which gives the total squared difference
between the observed and the calculated values.

TSD =
∑
l∈Lm

(sl(D)− s̃l)2 (32)

• b) Absolute difference for every measurement (AbsD). For every measurement location
the absolute difference between the observed values and the modelled values are calculated.

AbsD = |sl(D)− s̃l| (33)

• c) Mean Absolute Error (MAE). Here the absolute differences are calculated as in b), but
then the mean of them is taken to give a single value.

MAE =
1

|Lm|
∑
l∈Lm

|sl(D)− s̃l| (34)

• d) Root Mean Square Error (RMSE). Here the differences for every measurement are
calculated and squared. Then the mean is taken and from this mean value the root is taken.

RMSE =

√∑
l∈Lm

(sl(D)− s̃l)2

|Lm|
(35)
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The first measure of the performance is important to see whether the current OD matrix gives
values for flow and speed that are close to the measured values. To assure that this is satisfying
enough, the new convergence criterion is used as stated in section 3.6. So option b) is used for the
further research, but also the other options can be chosen in further research.

Further the computation time is not a good option to use for the comparison of two perfor-
mances, since it depends a lot on the used computer and the time required for the assignment with
STAQ. For these uncertainties, it is better to compare the performances based on the number of
assignments required. If these are smaller, then the computation time is also smaller in general.
Thus, the performances are evaluated based on the number of assignments, with as convergence
criterion that the absolute differences are everywhere below 5km/h.

5.3 Asymmetric Design

To further improve the performance of the algorithm, a different way to calculate the gradient
approximation with SPSA is investigated. The method of asymmetric design (SPSA-AD) uses only
half the number of objective function evaluations per iteration to find the gradient approximation
compared to the normal algorithm. The calculation of the gradient approximation is only based
on a perturbation in one direction. This calculation is given in equation 36.

g̃lk =
z(θk + ck∆k)− z(θk)

ck∆l
k‖g̃lk‖

(36)

This equation gives the gradient approximation g̃lk for iteration k and gradient approximation l.
In Figure 21 a comparison between the normal algorithm and the application of the asymmetric

design is shown for the average of three different runs for the same matrix.

Figure 21: Number of assignments vs. average function value of three runs for both SPSA (blue)
and SPSA AD (orange)
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The start matrix resulted from a perturbation with a factor from the interval [0.8, 1.2] and the
measurements are the same as in section 5.4. It can be seen that on average the asymmetric design
requires less assignments than the normal algorithm to reach the same precision. However, there
are also situations where the normal algorithm performs better than the asymmetric design, which
can be seen in figure 22. Here a different start matrix is used which resulted in a different quality
of performance.

Figure 22: Number of assignments vs. average function value for both SPSA (blue) and SPSA AD
(orange)

Although sometimes the application of the asymmetric design requires more assignments than
in the symmetric case, in most situations the asymmetric design is able to save some computation
time, which is the reason it is applied from now on. Nevertheless, it can be a better choice in some
situations to use the normal SPSA algorithm instead of SPSA-AD.

5.4 Sensitivity analysis of the parameters of SPSA

For large scaled networks the assignment with STAQ needs a lot of computation time, so a low
number of assignments and hence a fast convergence of the algorithm is required. A good choice
of the parameters helps SPSA to converge faster, which has been found by Spall(1998,1992) [5],[2],
Frederix(2010) [6] and Cipriani(2011,2013) [4],[3]. So some further exploration of the parameters
might be useful to improve the performance of the method.

In this section some different parameters of the SPSA algorithm are discussed and investigated
in more detail. We restrict the research in this thesis to the number of gradient approximations
m, the choice of C for ck, the values of γ to calculate ck and the size of the maximum step for the
line search, maxstep.

41



To test the different parameters, a test environment is made. This is based on some measure-
ments in the network, which are evenly spreaded along the highway. These measurements can be
seen in figure 23.

Figure 23: Figure of the measurement points for the analysis of the parameters

Then the original matrix is multiplied by random factors from the interval [0.8, 1.2]. During
the tests, two different start matrices are used. These produce initial objective function values of
212.446 and 166.7823 respectively.

These matrices form together with the measured values ṽ and s̃ on the shown measurement
locations the test environment for the parameters. For both matrices two runs with different values
for the vector ∆ are performed to obtain more certainty about the outcomes. The resulting four
possible combinations are named situation 1 - 4. Here situations 1 and 2 are the two runs with
start matrix 1 and situations 3 and 4 are the runs with start matrix 2. The four situations are
shown in the tables by sit 1 - sit 4.

As a reference, the following parameters are chosen:

C = 10, γ = 0.17,maxstep = 30 and m = 2

The reference case gives for the chosen four situations the graphs given in figure 24. After
this number of assignments the algorithm finds a satisfying solution, which means that at all
measurement points the differences between the modelled and observed speed are smaller than
5km/h.

To limit the amount of required test runs, the parameters are investigated one by one. This
means that when investigating the first parameter, the others are kept as in the reference case.
Once one or several optimal values for this parameter are found, this parameter value is chosen
this way and the next parameter is changed until in the end an optimal set of parameter values for
this situation is found. In order to do this, we first need to test the sensitivity of the parameters

42



Figure 24: Graph of number of assignments vs. objective function values for all four situations
with the reference parameters

with respect to the reference case. For every parameter specific values are investigated which
are explained in the corresponding section. Table 4 gives the results of the tests where only one
parameter is changed and the others are kept the same. In the column named difference the
absolute difference of the average number of assignments is compared to the average number of
assignments of the reference case.

m C γ maxstep sit 1 sit 2 sit 3 sit 4 avg difference avg diff
2 10 0.17 30 59 84 4 18 41.25 reference
1 10 0.17 30 25 4 7 84 30 11.25

19.75
4 10 0.17 30 36 82 6 159 70.75 29.5
9 10 0.17 30 23 46 11 101 45.25 4
18 10 0.17 30 36 177 20 69 75.5 34.25
2 1 0.17 30 141 15 15 68 59.75 18.5

42.252 5 0.17 30 66 15 8 12 25.25 16
2 20 0.17 30 73 100 300 61 133.5 92.25
2 10 0.101 30 62 94 4 18 44.5 3.25

6.752 10 1 30 54 66 4 20 36 5.25
2 10 0.5 30 31 65 4 18 29.5 11.75
2 10 0.17 50 69 110 6 300 121.25 80

34.252 10 0.17 100 95 99 8 39 60.25 19
2 10 0.17 10 37 55 24 34 37.5 3.75

Table 4: Tests of the sensitivity of the parameters with respect to the reference case
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From this table we see that the highest sensitivity is for the values of the parameter C, so this is
the first investigated parameter. It is followed by maxstep and m and in the end γ is investigated,
which has the lowest sensitivity.

5.4.1 The choice of C

In this section the influence of the value of C on the performance of the algorithm is investigated.
This value plays a crucial role in the algorithm since it defines in which area around the current
matrix the function is evaluated to find a new gradient. C is used for the calculation of the search
size ck in the perturbation. This is done by equation 37.

ck =
C

kγ
(37)

ck is used in the calculation of the gradient approximation ĝk. This calculation is given in
equation 38.

g̃lk =
z(θ + ck∆k)− z(θ)

ck∆l
k‖g̃lk‖

(38)

Looking at the definition of the gradient, given in equation 39, equation 38 is quite similar to
this definition.

∇z = lim
h→0

z(θ + h)− z(θ)
h

(39)

Choosing h = ck∆k and neglecting the normalization in equation 38, the two equations are
almost the same. Whenever ck∆k is chosen small, they are close to each other.

So from theory it would be a good choice to make C as small as possible such that ck is small
as well. However, C can not be very small since then the speed does not change at all and the
algorithm gets stuck.

The different values of C that are considered are C = 10 as reference, C = 5, C = 1 and
C = 20. The other parameters are the same as in the reference case, hence maxstep = 30,m = 2
and γ = 0.17. This gives table 5. The results can also be seen in figures 25 and 26.

C sit 1 sit 2 sit 3 sit 4 avg
10 59 84 4 18 41.25
20 73 100 300 61 133.5
1 141 15 15 68 59.75
5 66 15 8 12 25.25

Table 5: Tests for C
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Figure 25: Tests of C with C = 10 and C = 20

In these examples, the theoretical idea can be verified. Here the choice of C = 5 gives the best
results followed by C = 10. C = 1 gives worse results than C = 10. This shows that a too small
value for C is also not a good choice. C = 20 gives the worst situation. Here C is chosen too large
for a good convergence. For this reason, only C = 5 and C = 10 are further considered.

Figure 26: Tests of C with C = 1 and C = 5
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5.4.2 The value maxstep

In this section the following values of maxstep are tested in combination with C = 10 and C = 5:
maxstep = 30, maxstep = 50, maxstep = 100 and maxstep = 10.

All these situations are now compared in table 6.

C maxstep sit 1 sit 2 sit 3 sit 4 avg
10 30 59 84 4 18 41.25
10 50 69 110 6 >300 121.25
10 100 95 99 8 39 60.25
10 10 37 55 24 34 37.5

C maxstep sit 1 sit 2 sit 3 sit 4 avg
5 30 66 15 8 12 25.25
5 50 89 9 10 170 69.5
5 100 96 9 13 63 45.25
5 10 44 46 8 35 33.25

Table 6: Tests for maxstep

The choices of maxstep = 30 and maxstep = 10 give for both C = 10 and C = 5 the best
performance with convergence in all four situations, within less than 100 assignments for all of
them. Hence the following four combinations are used for the remaining two parameter tests:

• C = 10 and maxstep = 30

• C = 10 and maxstep = 10

• C = 5 and maxstep = 30

• C = 5 and maxstep = 10

5.4.3 Number of gradient approximations m

The number of gradient approximations m determines how many computations of the gradient
approximation are used to average the final gradient, that is used for the step to the next solution.

ĝk =
1

m

m∑
1

ĝkl (40)

A high value decreases the chance of taking the step in an undesired direction. However, at
the same time, the number of assignments increases since for every gradient approximation an
assignment needs to be performed. So the choice of the number of approximations needs to be
taken with care. An analysis is performed to investigate whether a low value of this parameter is
enough for a good performance or whether a higher value improves the performance.

The investigated values for the number of gradient approximations are chosen based on the
number of OD pairs to be optimized. For the CHARM network there are 89 non-zero OD pairs.
From this amount 5%, 10% and 20% are chosen. These percentages are also used in the paper
of Cipriani (2011) [4]. This results in 89 ∗ 0.05 = 4.45 ≈ 4, 89 ∗ 0.1 = 8.9 ≈ 9 and 89 ∗ 0.2 =
17.8 ≈ 18 gradient approximations per iteration. For comparison, also only 1 approximation and
2 approximations per iteration are done.

The results of these situations, with γ = 0.17, c = 10 and maxstep = 30 as in the reference
case, are shown in table 7.
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m sit 1 sit 2 sit 3 sit 4 avg
1 25 4 7 84 30
2 59 84 4 18 41.25
4 36 82 6 159 70.75
9 23 46 11 101 45.25
18 36 177 20 69 75.5

Tests for C = 10 and maxstep = 30

m sit 1 sit 2 sit 3 sit 4 avg
1 25 4 7 60 24
2 66 15 8 12 25.25
4 66 108 10 127 77.75
9 308 246 15 69 159.5
18 194 300 24 300 204.5

Tests for C = 5 and maxstep = 30

m sit 1 sit 2 sit 3 sit 4 avg
1 51 101 35 9 49
2 37 55 24 34 37.5
4 37 300 33 55 106.25
9 115 289 28 20 113
18 291 120 38 43 123

Tests for C = 10 and maxstep = 10

m sit 1 sit 2 sit 3 sit 4 avg
1 58 101 33 22 53.5
2 44 46 8 35 33.25
4 37 181 10 167 98.75
9 288 95 15 20 104.5
18 93 117 24 32 66.5

Tests for C = 5 and maxstep = 10

Table 7: Tests for the different situations

It can be seen that for m = 18,m = 9 and m = 4 the number of required assignments until
convergence is higher than in the cases where m = 1 and m = 2. Also it can be seen that in almost
all situations the choice of maxstep = 30 is better than the choice of maxstep = 10. For this reason
we further choose to use the following sets of parameters to investigate the influence of the value
of γ:

• C = 5,maxstep = 30 and m = 1

• C = 5,maxstep = 30 and m = 2

• C = 10,maxstep = 30 and m = 1

• C = 10,maxstep = 30 and m = 2

5.4.4 Gamma

The literature gives several conditions for the values of α and γ and also suggests different values.
Spall gives in his work (1997) [10] the following condition for these parameters:

α− 2γ > 3γ − α/2 ≥ 0 (41)

Most literature uses the values α = 0.602 and γ = 0.101 or α = 1 and γ = 1/6 ≈ 0.17.
Since line search is used instead of the gain sequence ak, the value of α is not important for this

situation. Next to the often used values γ = 0.17 and γ = 0.101, also some tests are performed
with higher values for γ. The considered values for γ are 1 and 0.5.

Now the different values for γ are tested and the required assignments for convergence are
shown in table 8.
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m γ sit 1 sit 2 sit 3 sit 4 avg
2 0.17 59 84 4 18 41.25
1 0.17 25 4 7 84 30
2 0.101 62 94 4 18 44.5
1 0.101 27 4 7 87 31.25
2 0.5 31 65 4 18 29.5
1 0.5 18 4 7 300 82.25
2 1 54 66 4 20 36
1 1 62 4 7 52 31.25

Tests for C = 10

m γ sit 1 sit 2 sit 3 sit 4 avg
2 0.17 66 15 8 12 25.25
1 0.17 25 4 7 60 24
2 0.101 76 14 8 11 27.25
1 0.101 27 4 7 63 25.25
2 0.5 33 14 8 11 16.5
1 0.5 27 4 7 248 71.5
2 1 32 14 8 11 16.25
1 1 62 4 7 54 31.75

Tests for C = 5

Table 8: Tests for C = 10 and C = 5

Here it can be seen that the tests with C = 10 are most times worse than the tests for C = 5. To
get more secure about the situations at hand, another run for every matrix is performed, denoted
by situations 3 and 6, resulting in table 9.

m γ sit 1 sit 2 sit 3 sit 4 sit 5 sit 6 avg
2 0.17 66 15 80 8 12 122 50.5
1 0.17 25 4 44 7 60 51 31.83
2 0.101 76 14 82 8 11 124 52.5
1 0.101 27 4 37 7 63 118 42.67
2 0.5 33 14 80 8 11 102 41.33
1 0.5 27 4 64 7 300 45 74.5
2 1 32 14 181 8 11 81 54.5
1 1 62 4 300 7 54 83 85

Table 9: Tests for C = 5

The best combination is chosen, resulting in the following set of parameters:

C = 5,maxstep = 30,m = 1 and γ = 0.17

The chosen value for γ is thus 0.17, which is one of the two most used values for this parameter.
So this should be a good choice.
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5.4.5 The optimal found set of parameters

The optimal found set of parameters is given by C = 5,maxstep = 30,m = 1 and γ = 0.17. Figure
27 gives a comparison between the performance of the optimal set of parameters and the reference
case.

(a) Start matrix 1 (b) Start matrix 2

Figure 27: Comparison between the reference set of parameters (orange) and the optimal found
set (green)

We choose to use this optimal set of parameters for the tests in the next section. However,
it might be better to use another set of parameters for other networks and other start matrices
since the algorithm is unreliable concerning the number of assignments. Moreover, since we only
investigated the parameters one by one and not simultaneous, there might be a combination of
parameters that works a lot better than the found optimal set. Nevertheless, as can be seen, it is
possible to do some tests to find a set of parameters that performs relatively good and some more
research can make the performance of the algorithm even better.

5.5 Sensitivity analysis of the input data for SPSA

To test the algorithm and the set of parameters further, other different situations for the CHARM
network are investigated.

To start with the general tests, a small number of measurements is chosen and then this number
is increased stepwise. There is a set of 68 real measurement locations available. From this set a
certain part is used for the tests. To start with, only 20% of the measurements are used. The
resulting 14 measurements are chosen randomly from the set. Next more measurement points
are added to the network to see how the algorithm can handle a larger number of measurements.
The number of measurement points is increased from 20% until 100%. For the tests two different
combinations of measurement points are tested for every value of percentage.

The original matrix is perturbed by random factors within the interval [0.8, 1.2]. This is done
two times, resulting in two different start matrices, named matrix 1 and matrix 2. These matrices
are given in figure 35. Then the algorithm is run three times for each matrix. Figures 28, 29 and
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30 give the resulting graphs of the objective function value versus the number of assignments with
STAQ. Here the maximum number of assignments is chosen to be 300, so if the graphs reach more
than 300, the algorithm did not converge within this number of assignments.

20 percent

(a) Situation 1 (b) Situation 2

40 percent

(c) Situation 1 (d) Situation 2

Figure 28: Plots of function value versus number of assignments for the different situations with
20 and 40 percent of the measurement points
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60 percent

(a) Situation 1 (b) Situation 2

80 percent

(c) Situation 1 (d) Situation 2

Figure 29: Plots of function value versus number of assignments for the different situations with
60 and 80 percent

It can be seen that there are mostly high differences in the number of assignments for the three
different runs. Also there are high differences in the performances for different percentages of the
measurements. Here the random characteristic of SPSA gets visible. This implies that beforehand
it is almost unknown how good the algorithm performs.

However, in more than 74% of the situations investigated, the algorithm was able to find a
solution that fulfills the convergence criteria in less than 300 assignments of STAQ. Most of the
remaining 26% might converge a little later, due to the small objective function value after 300
assignments of STAQ, see e.g. figure 28c. Only for the case of matrix 2 and run 2 with 80 percent
of the measurements, it looks like that the algorithm has problems to converge, see figures 29c and
29d
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all measurement points

(a) all measurements

Figure 30: Plot of function value versus number of assignments for all measurement points

5.6 Conclusion

In this section we tested the new method on a small real network, called the CHARM network.
For this we first defined the used measures of performance, followed by a new modification of the
method to make the convergence faster. Then tests for the parameters m, γ, C and maxstep are
performed and the optimal set with m = 1, γ = 0.17, C = 5 and maxstep = 30 is used for some
general tests of the situation. Here in more than 74% of the situations the algorithm is able to
find a solution within 300 assignments of STAQ.

Note that the OD matrix calibration problem is mostly an underspecified problem, which means
there is not only one unique solution, but several different OD matrices that reproduce the same
values for speed (and flow). The problem is underspecified, because e.g. in this example there are
89 OD pairs that can be calibrated, but there are at most 68 measured values of the speed. So
there are 21 more variables than constraints. However, the OD matrix calibration problem does
not deal with finding one optimal matrix, but the aim is to find a matrix that reproduces the
measured values as good as possible, which is already stated in section 3.2.
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6 Conclusion and Recommendations

6.1 Conclusion

In this thesis the origin-destination matrix calibration problem is investigated for the application
of the quasi-dynamic assignment model STAQ. The OD matrix calibration problem can be seen
as a bi-level optimization problem that acts like a Stackelberg game. The follower, the lower level,
reacts on the actions of the leader, the upper level. This requires the optimization to find the
solution iteratively. For this purpose the stochastic optimization algorithm SPSA (Simultaneous
Perturbation Stochastic Approximation) is used. This algorithm performs a gradient approxima-
tion in every iteration with only two objective function values. With this gradient the next solution
is found iteratively.

During the literature review some promising modifications of the SPSA algorithm have been
found, where some of them are applied during this thesis. The others are given in section 6.2. Also
some problems that might come up with the SPSA algorithm are found in the literature.

After some background information about the four step model and the different parts of the
OD matrix calibration problem, a main problem of the classic SPSA algorithm for the calibration
is investigated, the problem of local minima. After some research, it becomes clear that especially
the fact that the flow on a link is not bijective with respect to the OD demand causes all of the
local minima that we found in the test situations. However, it is not clear if these include all
the local minima present in the objective function. To prevent these local minima, the objective
function is chosen such that it only includes the difference in speed on the links. The convergence
criterion is now only dependent on the speed and convergence is reached if the absolute differences
in speed of all measured links are small enough. Also line search is used instead of a sequence of
step sizes in order to make sure that the step is only taken as far as the function value decreases.
For this purpose the golden section search is applied.

Further bounds to prevent the algorithm from infeasible solutions are investigated. Since in-
cluding the initial matrix in the objective function might cause local minima as well, a penalty
is used whenever the beforehand chosen bounds are crossed. In general it can be said that it is
advisable to keep the objective function as simple as possible to avoid local minima. Using only
the speed differences makes the objective function bijective. Together with the assumption that
all measurement combinations of flow and speed lie on the objective function, this gives that only
minimizing the speed differences also minimizes the flow differences.

After the application of the modifications on some test networks, it becomes clear that the
algorithm performs quite succesful for these networks. So in the next section the modified algorithm
is used for a larger real network, the CHARM network.

Some more tests show that the use of the asymmetric design, where only one objective function
value is required for every gradient approximation, needs less assignments to converge. Next several
tests for the parameters are done to find a relatively good set of parameters. This set is then used
in a concluding test to see how good the performance of the algorithm is. During these tests it
is found that in more than 81% of the situations the algorithm is able to converge within 300
assignments of STAQ. For the other situations more assignments are required.

The modifications make the SPSA algorithm for the OD matrix calibration a lot faster and
more reliable. However, in general it is not possible to give a guarantee for the converge or to
know how many assignments with STAQ are required beforehand. A lot depends on the situation
at hand, the initial matrix and the randomness of the ∆ parameter of the algorithm. In most
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cases where the algorithm has problems to converge or needs a lot of computations, it helps to
run the algorithm again from the start, since then the random values are chosen different and
the algorithm might be able to perform better. Despite this, the algorithm is capable of most
situations and additional modifications might improve its performance further.

6.2 Recommendations

Further research can be done to make the algorithm more reliable and faster. During this thesis a
lot of choices needed to be made, for example the form of the objective function, the convergence
criteria or the choice of parameters. All of these can be chosen different and can cause the algorithm
to perform better.

Although the SPSA algorithm gives a good performance for the tested situations, other opti-
mization algorithms can be used as well and might perform better and especially more reliable.
However, there are more possible modifications of the SPSA algorithm found in the literature.
Some of them are given now. Since this thesis only dealed with the standard version and the
enhanced method to avoid local minima, these modifications need to be tested in further research.
Some possible modifications are the following:

• Polynomial Interpolation. Cipriani (2011,2013) named this modification together with
the use of the asymmetric design. The polynomial interpolation can replace the golden
section search. Here a third degree polynomial is calculated which fits calculated function
value. Then the minimum of this polynomial is found and this gives the next iterate of the
algorithm.

• Second order SPSA (see Cipriani et al. (2013)). Here an estimation of the Hessian matrix
H of z(D) is required. This approximated matrix is then used together with the gradient
approximation to find the new solution.

• c-SPSA and w-SPSA (see Lu et al.(2015) and Tympakianaki et al.(2015)). These modifi-
cations use further information about the correlations between the OD pairs to improve the
performance of the algorithm.

There are a lot possibilities for further research to improve the reliability and the performance
of the SPSA algorithm in order to solve the OD-matrix calibration problem more efficient.
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Terminology

In this section some terminology is explained in more detail.

• Demand. During this thesis the term traffic demand, OD demand or just demand gives the
amount of traffic that wants to travel from an origin to a destination. For every pair of origin
and destination, the demand gives the number of vehicles that want to make this trip.

• Flow. The flow or flow rate gives the amount of traffic that actually passes a specific point
in some defined time interval. This includes that the flow can be at most equal to the total
demand on that link, but if congestion occurs, the flow might be lower than the demand.
The flow is measured in vehicles per hour.

• Speed. The value of speed gives the average speed of all vehicles passing that link. Every
link has a free flow speed, which is the possible speed if no congestion occurs, and a speed at
capacity, which gives the average speed whenever the capacity is reached. From the speed it
is possible to see whether a link is congested or not. If the average speed is lower than the
speed at capacity, the link is congested, if it lies above the speed at capacity, then the link is
in free flow.

• Bottleneck. A link is a potential bottleneck when its capacity is lower than the sum of
the capacities of the inlinks to that link. The inlinks are all links that are directed to and
connected with this link. A potential bottleneck will only become an active bottleneck when
the sum of the outflows of the inlinks, so the amount of flow that arrives at that link, is
greater than the capacity of this link.

List of acronyms

SPSA Simultaneous Perturbation Stochastic Approximation

STAQ Static Traffic Assignment with Queueing

OD Origin-destination
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Appendix

A SPSA in detail

In this section we give a summary of the SPSA- (Simultaneous Perturbation Stochastic Approxi-
mation) method for solving the unconstrained minimization problem

min
x∈Rp

f(x) (42)

where f ∈ C1 on Rp. Denote ∇f(x) by g(x). The well-known steepest descent method proceeds
as follows:

Starting at x0 the method generates iterates

xk+1 = xk − akg(xk) k = 0, 1, ... (43)

where the stepsizes ak are computed by solving line minimization

ak = arg min
a>0

f(xk − ag(xk)) (44)

either ”exactly” or by some ”inexact version”. Often we are faced with a situation where the gradi-
ent g or even the function f is not explicitly available. Thus the value of g has to be approximated
numerically.

From numerical analysis we consider the following formula for approximating the derivative
h′(t) of a C2 or C3 function h : R→ R at a point t based on stepsize c > 0:

h(t+ c)− h(t− c)
2c

= h′(t) +O(c2) (45)

This leads to the following approximation g̃ of gradient g.

g̃(x̄) given by g̃i(x̄) =
f(x̄+ cei)− f(x̄− cei)

2c
(46)

Here gi(x̄) denotes the ith component of g(x̄), i.e. gi(x̄) = ∂
∂xi

g(x̄).

For C2 or C3 function f : R→ R formula 45 directly gives the error bounds (for c→ 0)

g̃(x̄) = g(x̄) +O(c2) (47)

According to equation 46 the computation of g̃ requires (assuming f(x̄) is known) 2p function
evaluations of f . In cases where p is large and function evaluations of f are expensive, this
approximation might be too expensive.

Here now comes the idea of SPSA into play. It defines a type of probabilistic approximation
for g(x̄) which (independent of p) only requires two function evaluations as follows:

Given a direction ∆ ∈ Rp and a stepsize c, the corresponding vector g̃(x̄) is defined componen-
twise as

g̃i(x̄) =
f(x̄+ c∆)− f(x̄− c∆)

2c∆i
(48)
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Clearly we have to assume ∆i 6= 0, otherwise g̃ is not defined. Note that actually g̃(x̄) = g̃(x̄,∆).
Clearly, we can’t expect g̃(x̄) to be a good approximation of g(x̄). But, as we will see, if we

take (many) different directions ∆1, ...,∆k (randomly), compute the corresponding vector g̃j(x̄) =
g̃(x̄,∆j) and take the mean

ĝ(x̄) =
1

k

∑
j

g̃j(x̄) (49)

then (under some assumptions given later) we can expect g̃(x̄) to be a reasonable approximation
for g(x̄).

We now introduce the SPSA approximation in more detail. For easyness we describe a version,
where no noise (error in evaluation of f(x)) is present.

Let D be a given set of vectors ∆

D = {∆ ∈ Rp | α0 ≤ |∆i| ≤ α1} (50)

for some numbers 0 < α0 ≤ α1.
We could for example choose D = {∆ ∈ Rp | ∆i ∈ {−1, 1} ∀i}.
Let ∆ ∈ D be randomly generated such that the expected value E[∆] = 0. Then g̃(x̄) becomes

a random variable. Then the following holds:
L1. Let f be three times continuously differentiable in a neighbourhood of x̄. Let ∆ ∈ D be

generated randomly as described above.
Then for the expected value of g̃(x̄) we have for c→ 0:

E[g̃(x̄)− g(x̄)] = O(c2) (51)

Proof see Spall (1992).
L1 states that in the mean for c small g̃(x̄) can be seen as a reasonable approximation of

gradient g(x̄).
The SPSA algorithm for solving equation 45 now is as follows: Starting with x0 and fixed

sequence of stepsizes ak, ck, k ≥ 0 such that ak → 0, ck → 0 and∑
ak =∞

∑ a2
k

c2k
<∞ (52)

we generate a sequence ∆ ∈ D randomly as described above.
Let Ω denote the corresponding space of sequences

Ω = {ω = (∆0,∆1, ....)} (53)

We then compute the corresponding SPSA iterates: starting with x0 compute

xk+1 = xk − akĝ(xk,∆
k) k = 0, 1, ... (54)

Let further x∗ be a local minimum of f (in particular g(x∗) = 0).
Then under strong conditions on x0 (see conditions A3-A5 in Spall (1992)) for the iteration

given in equation 54 we have

xk → x∗ for almost all ω ∈ Ω (55)
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B Figures

Figure 31: A short implementation of SPSA
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fulfilled?

return current
OD matrix Dk

perturbe vector θ by
ck∆k: θ+

k = θk + ck∆k

and θ−k = θk − ck∆k

calculate m gradient
approximations g̃k:

g̃k =
z(D+

k )−z(D−
k )

2ck∆k

and find average ĝk

compute new vector:
θk+1 = θk − akĝk(θk)

observed
values of
flow and

speed: (ṽ, s̃)

calculate
step size
ak for this
iteration

compute
value of ∆k

with ∆ki ∈
{−1, 1}

transform
matrix:
Dk → θk

transform
vector:
θk → Dk

find z(D+
k ) and z(D−k )

by transforming
θ+
k → D+

k and
θ−k → D−k ,

assignment with STAQ
and evaluation of
z(D+

k ) and z(D−k )

yes
no

Figure 32: Scheme of the procedure of the OD matrix calibration
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(a) Weight flow 0.05
(b) Weight flow 0.04

(c) Weight flow 0.02 (d) Weight flow 0.01

(e) Weight flow 0.004 (f) Weight flow 0.002

(g) Weight flow 0.001 (h) Weight flow 0

Figure 33: Function values for a measured demand of 1800 on link 2 of the matchstick network
with different weights on flow
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(a) Weight flow 0.05 (b) Weight flow 0.025

(c) Weight flow 0.01 (d) Weight flow 0.005

(e) Weight flow 0.001 (f) Weight flow 0

Figure 34: Function values for a measured flow of 1284 and a measured speed of 24 on link 3 of
network 2 with different weights on flow
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(a) Start matrix 1

(b) Start matrix 2

Figure 35: The start matrices 1 and 2 compared to the measured values for all measurements-
green indicates the equal part, red and blue indicate the unequal parts
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(a) 20 percent situation 1 (b) 20 percent situation 2

(c) 40 percent situation 1 (d) 40 percent situation 2

(e) 60 percent situation 1 (f) 60 percent situation 2

(g) 80 percent situation 1 (h) 80 percent situation 2

(i) all measurements

Figure 36: count locations for the different situations of section 5.5
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