
Department of Computer Science

Dual Laser Fault Injecধon Aħack

Yannis Koukoulis
M.Sc. Thesis

in fulfillment of the requirements
of the EIT Digital Security & Privacy Master

September ǙǗǘǝ

Supervisors:
Dr. A. Peter.

Dr. F. de Beer

Services, Cybersecurity and Safety Group
Department of Computer Science

University of Twente
P.O. Box ǙǘǞ

ǞǜǗǗ AE Enschede
The Netherlands

ǘ

©ǙǗǘǝ – UTwente. - Riscure
all rights reserved.

Thesis advisor: Dr. Andreas Peter Yannis Koukoulis

Dual Laser Fault Injecধon Aħack

Abstract

This thesis describes the development and demonstraধon of a Laser Fault Injecধon aħack on a commercial,
programmable ǚǙ-bit architecture ǠǗnm technology target with a microcontroller and dedicated hardware
peripherals. More precisely, we perform a dual, or second-order, laser fault injecধon. That is aħacking
the target at two different locaধons simultaneously, for the purpose of validaধng fault tolerant design and
performance. The first laser aims to neutralize the security funcধon, while the second precisely injects a
fault into the AES encrypধon, resulধng in a faulty ciphertext.
Hardware vendors must assume that the aħacker is highly skilled, equipped with advanced tools and has
abundant resources. We aħack many different components both front- and back-side to illustrate that just
one countermeasure is not sufficient, rather a combinaধon is required for fault tolerant design.To the best
of our knowledge such an aħack is only performed once, concurrently with the present, however based on
an FPGA target opened from the backside. In this thesis we aim at a fairly different scenario, on a commer-
cial target, not only of hardware components of different type, but also of a large spaধal distance between
them.
We show how laser fine tuning has been used to characterize the vulnerable spots, and to subsequently
inject faults. Moreover, we devise a reproducible and transferable approach of aħacking commercial hard-
ware with a detecধon countermeasure implemented. With the advent of mulধ-processor chips, embedded
industry leans towards distribuধon of cores, peripherals and computaধon. We show that for security criধcal
applicaধons, relying on hardware distribuধon as a countermeasure is not sufficient.

iii

Contents

ǘ Introducধon Ǚ
ǘ.ǘ Moধvaধon . Ǚ
ǘ.Ǚ Background . Ǜ
ǘ.ǚ Countermeasures . ǜ
ǘ.Ǜ Use-cases . ǝ
ǘ.ǜ Fault models . ǟ
ǘ.ǝ Contribuধon . Ǡ

Ǚ Setup ǘǘ
Ǚ.ǘ Experiments’ components . ǘǘ
Ǚ.Ǚ Device under test . ǘǜ
Ǚ.ǚ Decapping the Pinata . ǘǞ
Ǚ.Ǜ Laser Energy . ǘǟ

ǚ Aħacking the CPU ǙǗ
ǚ.ǘ Idenধfying the vulnerable spot . ǙǗ
ǚ.Ǚ Instrucধon skip . ǙǙ
ǚ.ǚ Conclusions . Ǚǜ

Ǜ Aħacking the peripherals ǙǞ
Ǜ.ǘ AES . Ǚǟ
Ǜ.Ǚ SRAM . ǚǙ
Ǜ.ǚ HASH with DMA . ǚǜ
Ǜ.Ǜ Back-side . ǚǝ
Ǜ.ǜ Conclusions . ǚǞ

ǜ Combining the Aħack ǛǗ
ǜ.ǘ Preliminary work . ǛǗ
ǜ.Ǚ Implemenধng the target . ǛǙ
ǜ.ǚ Aħack . Ǜǚ
ǜ.Ǜ Conclusions . Ǜǝ

ǝ Conclusion Ǜǟ
ǝ.ǘ Summary . Ǜǟ
ǝ.Ǚ Further research . ǜǗ
ǝ.ǚ Limitaধons . ǜǗ
ǝ.Ǜ Feasibility of the aħack in reality . ǜǘ

References ǜǚ

iv

List of Figures

ǘ.ǘ A fault injecধon and propagaধon in the last Ǚ AES rounds. Ǟ
ǘ.Ǚ The Bootloader . ǟ

Ǚ.ǘ Schemaধc overview of the test setup . ǘǙ
Ǚ.Ǚ An overview of the Setup - Laser Staধon . ǘǝ
Ǚ.ǚ Close-up on the target . ǘǞ
Ǚ.Ǜ Pinata connected with ST-LINK/VǙ ISOL debugger-programmer and serial I/O ǘǟ
Ǚ.ǜ Absorpধon in intrinsic silicon . ǘǠ

ǚ.ǘ The CPU scan . ǙǙ
ǚ.Ǚ A close-up of the suggested region . ǙǛ
ǚ.ǚ The vulnerable spot . Ǚǜ

Ǜ.ǘ Trigger window and the pulse sent to the laser . ǙǠ
Ǜ.Ǚ Down-clocked ধme window . ǚǗ
Ǜ.ǚ How the pulse influences the board . ǚǘ
Ǜ.Ǜ Vulnerable ধming . ǚǘ
Ǜ.ǜ Decrypধng the AES . ǚǙ
Ǜ.ǝ Power trace capture of the hardware AES procedure . ǚǙ
Ǜ.Ǟ Input and output correlaধon of the Hardware AES process ǚǚ
Ǜ.ǟ A decapped delayered picture of the die . ǚǜ
Ǜ.Ǡ A decapped picture of the die . ǚǝ
Ǜ.ǘǗ The ram experiment . ǚǞ
Ǜ.ǘǘ The AES with DMA scan . ǚǟ
Ǜ.ǘǙ Entering from the backside . ǚǠ
Ǜ.ǘǚ A setup with a fan . ǚǠ

ǜ.ǘ Twinscan prototype used from programming . Ǜǘ
ǜ.Ǚ The assembly of our code adjacent to the if instrucধon . ǛǛ
ǜ.ǚ The assembly of our code adjacent to the if instrucধon . Ǜǜ
ǜ.Ǜ The ধme distance between the Ǚ triggers . Ǜǝ
ǜ.ǜ The exact ধme when both lasers shoot . ǛǞ
ǜ.ǝ The faulty ciphertext is outpuħed by bypassing the countermeasure ǛǞ

v

Dedicated to my father.

vi

Acknowledgments

I would like to express my deep graধtude to Dr. A. Peter, my research supervisor, for his paধent guidance,
enthusiasধc support and precious criধques of this research work.
I would also like to offer my special thanks to Dr. F. de Beer from Riscure, for steadily facilitaধng my
research and experimenধng during the past seven months. My special thanks are also extended to Mr.
Carpi, for his help seষng-up and troubleshooধng my experiments, Mr. Zhang for taking the ধme explaining
the fundamental architectural concepts of Inspector sođware, and his useful feedback during building the
Twinscan module, Mr. Timmers, and Mr. Spruyt for sharing their experience in fault injecধon concepts and
techniques, as well as their warm support.
Finally, I would like to thank my father for his support and encouragement throughout my research.

ǘ

1
Introducধon

ǘ.ǘ Moধvaধon

Implementaধons of cryptographic algorithms conধnue to proliferate. The emergence of the ”Internet of

Things” concurs to that. Hardware Security is a branch of IT security, leveraging models such as Fault

Injecধon and Side-Channel analysis. Potenধal targets of those methods are, Smart Cards, Automated Teller

Machines, Industrial Control Systems, video game consoles and Set-TopBoxes. This list is demonstraধve but

not exhausধve, for aħackers are quite creaধve in idenধfying security shortcomings and potenধal targets. In

the bank & finances sector - perhaps the most crucial from implicaধons point of view domain - security has

transmuted from armed forces to TLS and Public Key Cryptography. In case a smart card can be pracধcably

Ǚ

breached, or an ATM trivially tapped, our savings are in jeopardy and our established ”status quo” in peril.

This is only one side of the coin. Imaginewhat can happen if state, or governmental secrets, that are secured

with an encrypধon scheme, fall into the wrong hands.

Those are all valid reasons for us to want to secure our infrastructure. Cybercriminals are however

poised to wreck these plans and wreak havoc. Defenders and IT security officers are trying to thwart the

aħacks and shelter the systems, in what is called a cat and mouse game [ǜ]. In this game hardware aħacks

were devised and are successfully deployed. These aħacks are becoming more pracধcal due the abundance

of highly-trained personnel, the advancement of dedicated tools and ever more sophisধcated theoreধcal

aħacks. Consequently, there are numerous ways for aħacking the hardware infrastructure.

In a holisধc approach hardware aħacks can be classified into non-invasive, semi-invasive, and inva-

sive, regarding the level of physical modificaধon they impinge upon the target (see [Ǟ] and [Ǚǚ]). The two

predominant domains of hardware aħacks are [ǝ]:

Side-channel Aħacks Timing analysis, Power analysis, Electromagneধc aħacks. They are non-invasive.

Fault aħacks Voltage, and Clock glitching, Laser Fault injecধon, Microprobing, Physical tampering. They

range from semi-invasive to invasive aħacks, hence include tampering.

Fault injecধon is being extensively used not only for evaluaধng the security of embedded systems and

portable hardware, but also for breaching into systems. Two hyped examples of fault injecধon aħacks are

presented, in order to highlight the impact of a breach and the necessity for countermeasures.

The nicknamed ”Reset Glitch Hack” is aħacking the XBOX ǚǝǗ. It was released by a French developer.

”Memcmp is ođen used to check the next bootloader’s SHA hash against a stored one, allowing it to run if

they are the same. Effecধvely we can put a bootloader that would fail hash check in NAND (i.e. memory),

glitch the check and that bootloader will run, allowing almost any code to run.” A reset pulse is send to the

processor on the right ধming, neutralizing the hash-check, hence the injected bootloader will execute in a

seamless fashion. Thereby the secure-boot chain is defeated[ǘǙ].

Another aħack against PSǚ console was achieved, also know as the ”glitching aħack”. This hardware

aħack involves sending a carefully-ধmed voltage pulse in order to compromise the Hashed Page Table and

subsequently get read/write access to the main segment. The HPT performs the integrity check of the

loaded memory, and maps all memory including the hypervisor. Hypervisor is the module that supervises

the iniধal memory read and write procedures. Hence if we precisely glitch the hypervisor to desynchronize

from the actual state of RAM, we enable arbitrary write access to the acধve HPT, and thus control access

ǚ

to any memory region. The glitch is a ǛǗ ns voltage pulse, roughly ǘǗǗ clock cycles, carefully-ধmed. An

FPGA was used to capture the correct ধming and send the glitch pulse. Finally we can either inject and

arbitrarily execute our exploit or dump the binary in order to examine for sođware vulnerabiliধes [ǘǛ].

The aforemenধoned examples are not the only techniques that are deployed in hardware aħacks. An

overview of the known fault injecধon techniques is presented in table ǘ.ǘ.

Techniques Effects
Varying the supply voltage Misinterpret or skip instrucধon
Glitching the external clock Data misread, Instrucধon miss
Varying the temperature Randomizaধon of RAM cells,

Glitching write or read operaধons
Shooধng with white light Fault injecধon
Shooধng with Laser Fault injecধon (higher precision)

Shooধng with X-rays and ion beams Fault injecধon (depackaging is not required)

Table 1.1: Notable techniques used in non-invasive and semi-invasive aħacks

ǘ.Ǚ Background

This thesis is occupiedwith fault injecধons performedwith lasers, in fact two of them. The necessity thereof

will become apparent ađer the background retrospecধve, and especially the countermeasures introduced

by the industry, and are described in the next secধon.

The fault injecধon legacy is instanধated by an accident. In the ǝǗ’s it was observed that charged parধ-

cles from the packaging of devices, usually compounded fromUranium isotops, were radiaধng, thus flipping

logic bits. In the seminal paper [ǘǗ] from ǘǠǝǜ, Habing illustrates high levels of ionizaধon can be created in

semiconductor devices by irradiaধng the devices with short pulses of light. Thus, proving that controlled

fault injecধon is feasible. It is shown furthermore that a pulsed-infrared laser can be used as a relaধvely

simple, inexpensive, and effecধve means of simulaধng the effects caused by intense gamma ray sources

on semiconductors. Thus, imitaধng the cosmic radiaধon. In-between new fault models for key extracধon

are devised. An overview of notable fault models is presented in secধon ǘ.ǜ. Also, back-side laser fault-

injecধons emerge as an alternaধve and more successful way to breach into an embedded systems, such as

in [ǘǘ]. Next, ever more precise and with higher success rates fault injecধon are illustrated, whereas tech-

nologies descend below the μm threshold, as in [Ǚǘ, Ǟ, ǘǟ]. As of ǙǗǘǗ, Trichina and Korkikyan introduce the

Ǜ

so called ”Mulধ-glitching” aħack. This involves for the first ধme mulধple glitches, albeit they use one laser,

as the glitch is injected on the same spot. Finally, in [ǙǙ] a simultaneous laser fault injecধon on different

spots is achieved. As we will see in the next chapter this technique is used to bypass hardware duplicaধon,

and the authors manage to inject idenধcal faults in two iteraধons of AES.

This research was in fact conducted at the same ধme with this thesis, nevertheless there are some differ-

ences compared to our research. First and foremost they aħack an FPGA, whereby they configure the state

registers in a-priori known posiধons. Moreover their target offers an easy back-side access, where this is

not always feasible in commercial targets. Even more their aħacked spots are very close to each other,

whereas our setup aħacks two spots significantly more distant. In fact, there is a trade-off between this

distance and the spot size. Last but not least, while they bypass hardware duplicaধon, we aim at hardware

distribuধon.

Logical faults are geষng scarce, whereas fault injecধon is becoming more relevant. There are a number

of trends in the industry that increase the suscepধbility of circuits to either external, or internal perturba-

ধons. These are the increasing circuit density, reduced operaধng and threshold voltage, increasing clock

rates[ǙǗ]. As inferred, in the hardware domain physical access to the target is the first premise for such an

aħack. Thereupon aħackers with ӜǘK voltage and clock glitching equipment, or ӜǘǗǗK laser can compro-

mise the devices by injecধng a fault[Ǚǝ]. Laser fault injecধon gives extra a degree of spaধal freedom. A

successful breach may require a laser fault injecধon into the cryptoalgorithm, hence subverধng the cipher-

text, or an instrucধon skip, or a combinaধon of both.

Furthermore, cryptographic algorithms are ubiquitous in mobile and embedded applicaধons. Those

cryptographic algorithms are executed either on a microcontroller or, as of late, in dedicated hardware

(cryptoaccelerator). It is evident that the laħer can be perceived as a countermeasure from the perspecধve

of the aħacker, or the security analyst, due to the spaধal distance of the targeted spots.

The present thesis hereby performs a second-order aħack in order to achieve a breach of the new sheltered

systems. This is further delineated in the next secধon where the countermeasure’s design is explained.

ǘ.ǚ Countermeasures

Hardware manufacturers and sođware developers are consistently trying to thwart aħacks, thereby im-

plemenধng security funcধons. In hardware security, sensors were one of the first efforts of the industry

to detect these. Glitching aħacks, such as voltage and clock glitching, can be thereby countered, as an

ǜ

erraধc variaধon of these parameters can be easily detected. Laser fault injecধon whatsoever is not easy to

counter not only because the chip is hard to be comprehensively covered with sensors, but also because

a sufficiently small spot size can go through them undetected. Therefore, merely relying on sensors for

security is not a sufficient countermeasure and for that reason redundancy is introduced [Ǜ, ǘǜ]. Next, a

holisধc presentaধon of redundancy countermeasures [ǙǙ].

Detecধon-countermeasures compare the obtained results and retain the output if a discrepancy is de-

tected.

Infecধon countermeasures try to transform the output in such a way, that it cannot be used anymore to

conduct an aħack.

Redundancy ranges from error detecধon codes, to repeধধon of encrypধon steps and hardware dupli-

caধon. The countermeasure we designed is a combinaধon of repeধধon of encrypধon steps and hardware

distribuধon. The sođware part takes care of the double instanধaধon of the crypto-core and the compari-

son of the outpuħed ciphertexts. The output is either displayed, or destroyed depending on whether the

two resulted ciphertexts are idenধcal, or not respecধvely. The hardware part of the countermeasure, that

substanধates the term hardware distribuধon, consধtute the two cores that parধcipate in the process and

are located at different posiধons on the die. Hence, the term hardware distribuধon is self-explanatory, and

the need for two effecধvely simultaneous faults is evident.

Two lasers can saধsfy the need for two simultaneous fault injecধons on different areas, thereby circum-

venধng the aforemenধoned security mechanisms. In fact one laser is used to inject the fault, while the

second laser neutralizes the security funcধon at the same ধme. The contribuধon that stems from the

aforemenধoned is discussed in secধon ǘ.ǝ

ǘ.Ǜ Use-cases

This secধon describes the use-cases we research, whereby two almost simultaneous glitches are required.

Both involve except for the main core a second target (spot) on the die. The first scenario involves the AES

crypto core, whereas the second one the RAM blocksǘ.Ǚ.

ǝ

Figure 1.1: A fault injecধon and propagaধon in the last 2 AES rounds.

AES

In our experiments we are encrypধng with AES-ǘǙǟ, in Electronic Codebook, ECB mode. ECB indicates

that the message is divided into blocks, and each block is encrypted separately. The key in that case has a

length of ǘǙǟ bits, the same as the block size, and the number of rounds is ǘǗ. According to the NIST AES

standard [ǘǞ], an AES round (apart form the ǘǗth), consists of the Subbytes(), ShiđRows(), MixColumns(), and

AddRoundKey() transformaধons. By injecধng a single-byte fault during the Ǡth round, ađer propagaধng Ǜ

bytes are finally subverted in the result. This in Ǜ byte modified result is called faulty ciphertext. Depending

on the fault model implementedwe need aminimum number of such faulty ciphertexts for opধmum results,

as well as the correct ciphertext (see next secধon for more details on fault models). Figure ǘ.ǘ* illustrates

a Ǡth round fault injecধon and the propagaধon thereof, ađer each transformaধon. This expected paħern is

also used in order to test whether our results are in accordance with it. Targets with a dedicated crypto core

can be found easily and cheaply on the market. The CPU instructs the crypto core to compute encrypধon

over the input two ধmes. Subsequently it compares the two output and checks whether the result is the

same, and retains the result in case they are not idenধcal. The moধvaধon is to bypass the countermeasure.

Injecধng the same precise fault in the AES hardware crypto core has been proven as of late by Selmke et al..

Our approach is to use two lasers, one for injecধng the fault on top of the crypto core, and a second one

on top of the CPU in order to neutralize the comparison.

Table 1.2: Targeted modules

*This scheme is an amended version, and the original can be found in [ǘǝ]

Ǟ

Figure 1.2: The Bootloader

Components Difficulty

HW AES ӫӫӫ

CPU ӫ

RAM ӫӫӫ

Secure-boot

Secure boot is a security standard developed by the pc industry to ensure that the pc only loads modules

trusted by the pc manufacturer. The firmware checks the signature of the bootloader, and the firmware

drivers. If these pass the test, the system either loads the operaধng system directly, or passes the authority

to the next module in the secure-boot chain. Almost all recent pc come with UEFI that has the Microsođ

cerধficate stored, where only Microsođ signed sođware is allowed to be loaded if the feature is enabled.

Everyone buying a pc will end up being secured by the Microsođ-driven secure boot feature. Most Intel

and ARM PCs are implemenধng it.

In that scenario we want to bypass the signature verificaধon and at the same ধme inject a fault, for instance

forge an opcode, in a loaded on RAM module.

ǘ.ǜ Fault models

This secধon describes and summarizes notable faults models. A fault model is a proven method of key

calculaধon based on faulty ciphertexts, as described earlier. Each fault model defines the flexibility of the

fault bit, or byte, the precise ধming, or round-stage of the encrypধon scheme the fault should be injected,

and the amount of faulty ciphertexts it requires. Giraud has described two fault models to retrieve AES

Key[ǟ]. In another paper Giraud summarizes notable fault aħacks against the most popular cryptographic

ǟ

algorithms[Ǡ].

Dhiman Saha et.al provide a comprehensive survey of fault aħacks against AES, and they introduce a new

Fault Model Fault locaধon
Minimum number
of required faulty

results

DES Byte (could be
more)

Anywhere among
the last ǝ rounds Ǚ

AES Byte

Anywhere
between the

MixColumns of the
Ǟth and ǟth round

Ǚ

RSA-CRT Size of the modulus

Anywhere during
the computaধon of
one of the CRT
Components

ǘ

DSA Bit Anywhere among
ǙǗ bytes ǘǝǗ

EC-DSA Bit Anywhere among
ǙǗ bytes ǘǝǗ

mulধ byte aħack in [ǘǠ].

ǘ.ǝ Contribuধon

This thesis gives an overview of the current state-of-the-art in laser fault injecধon aħacks, and introduces

a new aħack vector on embedded systems. This vector is the second laser that is leveraged to neutralize

the countermeasure, while the first one injects the fault in the ciphertext. We have menধoned already

that industry has devised detecধon countermeasures. Such a countermeasure we aħack. Moreover, this

countermeasure is combined with hardware distribuধon, a term that we introduce hereby, to indicate the

two different cores that parধcipate in the process. More precisely, the crypto hardware core performs the

encrypধon, whereas the main core implements the comparison (countermeasure).

So far very few have aħacked similar scenarios. Trichina and Korkikyan inject two faults in the same core

at two different ধmings using one laser, albeit their technique and setup is incapable of aħacking the sys-

tem that this thesis does, however it can be perceived as a predecessor of the dual laser aħacks. Recently,

Selmke et al. (ǙǗǘǝ) aħacked two different cores simultaneously, however, as we menধoned in secধon ǘ.Ǚ,

their aħack is performed on an FPGA where they design the logic of the board and posiধon the state reg-

isters in ”a-priory” known vulnerable posiধons at a close vicinity. We, on the contrary, aħack a commercial

Ǡ

target, hence, we do not know the vulnerable posiধons. We describe the approach we follow to nail them

down. Moreover our targeted posiধons are more distant, as in most realisধc scenarios, which imposes cer-

tain limitaধons. We describe the trade-off between the distance of the cores and the spot size.

Our results show that in security criধcal applicaধons, hardware distribuধon in combinaধon with a detec-

ধon countermeasure do not consধtute a sufficient countermeasure. Furthermore, we show that backside

aħacks have more chances of success. Even if the way from the back seems blocked, we show that it is

worth it to sacrifice some funcধonality in order to achieve beħer success rate. Finally, we follow a holisধc

approach aħacking all the peripherals registers that communicate with the core, and we draw interesধng

conclusions for the paħern of errors that are observed, depending on the module we target. Finally, we

present a systemaধc and methodological approach on capturing the faults, characterizing the target and

implemenধng a countermeasure, which is furthermore transferable and reproducible.

This thesis is structured in the following way:

• Chapter Ǚ describes the two laser setup, as well as the device under test (target) and every tool, or

technique we used for seষng up our experiments.

• Chapter ǚ follows the procedure for characterizing and idenধfying a vulnerable spot on the CPU, and

performing an instrucধon skip.

• Chapter Ǜ presents the approach on aħacking hardware peripherals with the purpose of injecধng

a carefully-ধmed meaningful fault. The modules that are aħacked are the cryptoengine, the Hash

hardware peripheral and the SRAM blocks.

• Chapter ǜ combines the previous findings in order to showcase a simultaneous fault injecধon on two

spaধally apart posiধons. We, furthermore, describe the differences of the Twinscan setup, as well as

the added tools.

• Chapter ǝ we summarize the results of our experiments, the feasibility of the aħack in pracধce, as

well as further research desiderata.

ǘǗ

2
Setup

In this chapter we describe the setup, including the tools uধlized, and the concepts involved in the subse-

quent experiments. Furthermore, we describe the preliminary work we performed on the target, and the

physical background is summed up. The schemaধc overview of the setup is presented in figure Ǚ.Ǜ.

Ǚ.ǘ Experiments’ components

The main components of the setup are presented:

VC Glitcher is the heart of the Laser Fault Injecধon aħack. It is an FPGA based glitch generaধon and

control devicewhich is able to create configurable glitch paħerns. As its name betrays its fundamental

purpose is to inject voltage and clock faults. Nevertheless, it has an aħribute that is leveraged in our

ǘǘ

Figure 2.1: Schemaধc overview of the test setup

laser fault injecধon setup. This is outpuষng a pulse instead of a direct voltage, or clock glitch, at the

same configurable ধme offset in their place. For the Voltage-Clock glitch case, a Smartcard is inserted

into the designated slot, integral to the device, where its pads are in contact with the VC glitchers’

pins, and thereby the glitch is communicated. If it is a SOC it is connected via USB to a smartcard

replica, which is leveraged to accommodate the communicaধon. In the laħer more relevant case, the

pulse is sent to the lasers, which in turn shoot, as instructed. The SOC, or the smartcard are fixed

under the gun (see Ǚ.ǚ).

The ধme offset is considered towards a reference point in ধme. The reference point can be either

the trigger that we sent to the VC glitcher’s namesake dedicated input, or the reset of the target. The

offset of the process we intend to aħack can be idenধfied in three possible ways.

• We have control over the binary running on the device under test. This case is popular in

research, and when we aħack a commercial target and we use a similar target of our control to

make characterizaধon of the device. In this case we pull-up the output of the pin whenever fits

our purposes and we wire it to the aforemenধoned trigger input.

• We have no control over the binary. We can set the VC glitcher to interpret the reset of the

device under test as trigger. Therefore all the offsets must be calculated from the targets’ reset.

The offsets in this case are large and non-intuiধve.

• The above complexity is roundedwith the aid of another dedicated tool, called icWaves. IcWaves

ǘǙ

can extend the triggering funcধonality with a concept called paħern recogniধon triggering. This

FPGA-based device generates a trigger pulse ađer real-ধme detecধon of a paħern. The paħern

is usually obtained by Side Channel Analysis (SCA) techniques, applied on the target. These can

be power consumpধon, or electromagneধc emission measurements (see secধon Ǜ.ǘ). Never-

theless, icWaves and paħern recogniধon will not be employed for this thesis, for we control

the firmware of the target, thus the trigger.

Finally, the VC glitcher handles the reset of the target. There are cases where injected faults corrupt

the target, and as a consequence they invalidate the subsequent iteraধons of the experiment. Thus,

reseষng is required. The VC glitcher has a dedicated input, named ”reset”, and ađer the process is

finished it instructs the target to reset, before the next iteraধon begins. The target also has a pin, that

when set, it reboots. To instruct for a reboot ađer every iteraধon, we set the appropriate checkbox

in the sođware. The sođware is called inspector, and its purpose is explained in the next paragraph.

Inspector®* If the VC glitcher is the heart of the setup, Inspector is the brains. Inspector sođware is the

interface between the user and the hardware. It collects the results and provides for the configuraধon

of the glitch’s (perturbaধon) parameters. These are in turn communicated to the hardware. The

parameters are

• the number of measurements per spot,

• the pulse’s length,

• the pulse’s offset from the trigger,

• the pulse’s power,

• areas’, or spots’ coordinates.

. Inspector also handles the applicaধon of implemented aħackmodules on traces taken. Such aħacks

are SCA aħacks, or the relevant ”key retrieval from faulty ciphertexts” aħack. It, moreover, drives the

motorized device, (or the mirroring system in Twinscan’s case). We define the area to be scanned

by seষng the three points, namely the northeast, northwest, and southwest points. A ”glitch test”

funcধon that triggers the laser, in combinaধon with a camera help us intuiধvely define and visualize

the targeted spots, based on beam’s reflecধon on the die. The spots are represented by coordinates

on an X-Y plane, with the NW point being the (Ǘ,Ǘ) spot. Having set the extreme spots we have

defined a area. This are can be divided to a number of steps in each direcধon. The reader can

ǘǚ

think of it as filling the area with a laষce of verধcal and horizontal lines, where each intersecধon

indicates an aħacked spot. To move the target in order to target each of the aforemenধoned spots

we instruct the motorized device to perform that (in the next secধon we describe the funcধonality

of the motorized device). Finally, for every spot the results are collected and the target is moved

to the next spot. The results taken from each spot are entries in a database and they include the

coordinates. Thereby, we can navigate back to this spot if needed.

Motorized device and Mirroring System We clamp the device under test onto the motorized device. Our

motorized device has a ǚ axis translaধon table, with an X-Y posiধoning accuracy of Ǘ.ǘμm. As men-

ধoned earlier we can define the area to scan, by seষng the three extreme points. The motorized

device will take care of moving the target. In Twinscan’s case, however, a double mirroring system,

that drives the two laser beams, is used instead. The laser beams are driven via the same objecধve

(refer to next paragraph) and these move independently to the motorized device. Each of the beams

has its own table of coordinates which are not comprehensible to humans. Whatsoever, with the

aid of a camera, we can ”translate” these coordinates to actual posiধons over the die. The mirroring

system consists of Ǜ mirrors, that consধtute two X-Y grids, one for each laser. These grids have also

precision of Ǘ.ǘum. The Y coordinate which is associated with the focusing of the beams on the

target can only be changed by moving the motorized board. The setup is calibrated is such a way

that when the camera is focused on the dies, then the beams are also focused on the same plane.

A dedicated controller and sođware are responsible for interpreধng the move commands that we

define in Inspector and communicate them to the mirrors. This interface was implemented as a part

of this thesis. It is important for the reader to digest that whereas in the one-laser setup wemove the

board, thus the target relaধvely to the laser, in the Twinscan case the laser beams are moved while

the target remains fixed.

Laser Staধon The laser staধon accommodates the lasers, and the rest of the devices, equipment as well

as the cable-ware. This is necessary cause our lasers are classified, in accordance to the IEC ǝǗǟǙǜ-ǘ

standard, as class IV (above ǜǗǗmW output power), which denotes that direct, as well as scaħered

radiaধon can cause severe or permanent damage to the skin, or eyes, without any magnificaধon. In

our experiments we leverage a blue laser (ǛǛǜnm, ǚW), with ǘ*ǘ.Ǜum spot size, which offers precision

in hunধng down vulnerable areas, and a red laser (ǟǗǟnm, ǘǛW), with a ǝ*ǘ.ǜum spot size, that offers

more power. These two are uধlized in the front-side aħacks scenario. For the backside aħack we

ǘǛ

have used the infrared laser (ǘǗǚǛnm, ǙǗW). The deliberaধon for this choice is given in Ǚ.Ǜ. The delay

between the trigger and the shot is for both lasers below ǜǗns. We take this into consideraধon for

the subsequent calculaধons.

Objecধves and Spot size The objecধves uধlized were a ǜX, a ǙǗX and a ǜǗX. The spot sizes menধoned

above refer to the ǜǗX objecধve. With increasing magnificaধon, the refracধve index follows and

subsequently the spot size decreases. Hence, the resoluধon is bigger for more powerful objecধves.

The ǜǗX objecধve however is eminently hard to focus on the span of big surfaces, because the

focusing depth is very small and the target is hardly perfectly horizontal. Moreover, it is extremely

suscepধble to the slightest disturbance, even the shuষng of the door can set it out of focus. Hence,

this objecধve is not used for preliminary scans, but rather for smaller areas, that are roughly on

the same Z ground. In the subsequent experiments mainly ǙǗx and ǜx objecধves where employed.

Another limitaধon of the ǜǗx objecধve is that it is hard to navigate on the die as the observed area

is very small.

To calculate the laser spot for each objecধve the theoreধcal formula below is used. Given the wave-

length of the laser and the Numerical Aperture, NA of the objecধve, the spot size is given by:

Laser Spot Diameter = 1.22 · wavelength
ΝΑ

,

where NA = n ∗ sin(a) and ”n” be the refracধve index of the medium (in our case air, thus nӬǘ), and

’a’ be the half angle aperture of the objecধve†.

Figure Ǚ.Ǚ and Ǚ.ǚ present our laser fault injecধon setups.

Ǚ.Ǚ Device under test

Having set up the tools, we needed to select a target, in order to prove our point. The selected target is

the SoC STMǚǙFǛǘǞIG‡. The main reason behind this selecধon is the integrated hardware encrypধon core,

which is necessary to implement the countermeasure and perform the aħack described in this thesis. Fur-

thermore, we opted for a commercial target in order to simulate a real case scenario, and this disধnguishes

this research from similar aħacks. Finally this board has scored high in durability tests and we had already
†hħp://www.microscopyu.com/arধcles/formulas/formulasna.html
‡The STMǚǙFǛ family datasheet can be found here

ǘǜ

http://www.st.com/web/en/resource/technical/document/datasheet/DM00035129.pdf

Figure 2.2: An overview of the Setup - Laser Staধon

many idenধcal boards in stock. The last reason is important in a ধme-limited thesis, for ”killing” a board can

cause a significant delay to the research due to ordering and decapping (see Ǚ.ǚ). The micro-controller is a

Cortex-MǛ§, based on the ǚǙ-bit ARM thumb-Ǚ® architecture¶.

The system on chip is ǠǗnm CMOS technology, hence the bit cell area is ǘμmǙ. Our spot size is roughly ǝ

ধmes larger, which corroborates that a single-byte fault injecধon is feasible. We will fondly call the board

henceforward Pinata.

Ǚ.Ǚ.ǘ Programming the IC

The St-Link ISOL vǙ was used for programming and debugging. An extra FTDI cable handles the Input-

Output from the target to the computer. The built-in pins for input and output are occupied by the debug-

ger. To round this problem, they are short circuited with two free pins on the board, thus enabling us to

communicate with it, while debugging. The laħer was required in order to debug the target, and delve into

its assembly instrucধons. Finally the board is powered either via USB, or from a power generator. USB
§The Cortex MǛ technical reference manual can be found here
¶The ARM vǞ-M architecture reference manual can be found here. For the latest version registraধon is required

ǘǝ

http://infocenter.arm.com/help/topic/com.arm.doc.100166_0001_00_en/arm_cortexm4_processor_trm_100166_0001_00_en.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0403e.b/index.html

Figure 2.3: Close-up on the target

powers up with ǜV while the power generator can be set to any value in the range Ǘ-ǘǜV. We opt to set

it to ǚ.ǚV, as is the recommended supply for a laser fault injecধon installaধon. Ađer the installaধon of the

drivers and the assembly of the parts, the programming as well as the debugging is a fairly straighĤorward

process.

In order to expose certain vulnerabiliধes, and depending on the module that is targeted each ধme, the

device under test is programmed accordingly. The code for each case is presented and explained in the

respecধve secধon.

Ǚ.ǚ Decapping the Pinata

We decap the chips from the accessible to us side. This exposes the front-side of the die. The procedure is

as follows. We iniধally mill a pocket of Ǜ mm diameter onto the epoxy layer. We apply nitric acid Ǜ-ǜ ধmes

iteraধvely for roughly Ǜ-ǜ seconds, we check whether the epoxy layer was adequately dissolved. We use

acetone and isopropanol to wash off the residues. Finally, we check whether the die is properly exposed,

otherwise we apply another iteraধon, as described above.

ǘǞ

Figure 2.4: Pinata connected with ST-LINK/V2 ISOL debugger-programmer and serial I/O

As we will see in Chapter Ǜ, before the end of this research we decapped the chip from the opposite

side, subsequently exposing the back-side of the die. This task was significantly more challenging, because

not only the painstaking soldering and de-soldering of the chip was required, but also milling a hole on

the hard surface of the board in a cauধous manner was required. The former was required for us to have

access to the epoxy laser from the back-side and apply the aforemenধoned procedure, while the laħer

should ensure that the funcধonality of the board is not irreversibly damaged. Fortunately, the buses that

had to be destroyed in our case, carried the USB Input - Output, which was not catastrophic; we rounded

it by collecধng the output from the JTAG pin.

Ǚ.Ǜ Laser Energy

Before seষng off to the aħack, it is sensible to deliberate our choice of lasers with respect to the side we

decide to ”enter”. From figure Ǚ.ǜ we extrapolate that lower energies (higher frequencies) are absorbed less

from silicon. Since back-side is covered with silicon, it is apparent that for entering therefrom, the ǘǗǚǛnm

laser is suitable. Whereas the back-side is covered with the bulk of silicon, front-side is flooded by metallic

layers forming the gates and logic of the chip. Hence, low absorpধon from silicon is no longer a requirement

for front-side aħacks. However another emerges. We need thinner laser beams that can penetrate easier

due to less scaħering by the metallic mesh, therefore, higher frequency lasers are selected (ǟǗǟnm, ǛǗǛnm).

Finally, when a back-side experiment is opted, the length of the silicon should be factored in for focusing

correctly on the plane where the logical gates reside. This length is roughly ǚǘǜμm, as described in [ǘǘ].

ǘǟ

Figure 2.5: Absorpধon in intrinsic silicon

Ađer this necessary theoreধcal and state-of-the-art background summary, we can now set off with

describing the approach we followed in our research-aħack.

ǘǠ

3
Aħacking the CPU

ǚ.ǘ Idenধfying the vulnerable spot

CPU, or alternaধvely the main core is the first of the two spots we target, because it performs the com-

parison of the two ciphertexts that we want to skip. We bootstrapped the venture to find the CPU related

logic by implemenধng the counter example. This is the name we have given to a loop that consists of two

counters; one decreasing and one increasing. The implementaধon is presented in ǚ.ǘ. The two counter

design ensures that we will catch the glitch irregardless of whether the subverted value is bigger or smaller.

Imagine that we have only one decreasing counter, a loop that returns when it reaches zero and we output

the final value of the counter. Now, the glitch turns the counter to a bigger number. We will not catch

ǙǗ

the glitch since the loop will terminate as expected when the counter reaches zero. The second counter

whatsoever will reveal the glitch even in that case.

ǘ i n t upӬǗ;

Ǚ i n t downӬǘǗǗǗ

ǚ s e t _ t r i g g e r () ;

Ǜ {

ǜ whi le(−−down) { up ӫӫ ; }

ǝ }

Ǟ c l e a r _ t r i g g e r () ;

Lisধng 3.1: The two-counter example

The above snippet describes our target, and the expected final values are down = 0 and up = 999.

When the outpuħed values are in accordance with these the spot on the die is deemed green (see figure

ǚ.ǘ). Whereas is deemed red if any other pair of values, that do not agree with this, is outpuħed.

From the above preliminary scan we defined the correct energy range. While for low power the energy

deposed on the die was not sufficient to inject a fault, for high energies the latch-up effect was observed.

The latch-up effect would normally break the procedure, or give an erraধc result. A broken iteraধon is

deemed yellow. Figure ǚ.ǘ did not depict any yellows as this was a tuned scan. We clearly, whatsoever see

a red paħern at the top-leđ quarter. That corroborates a strong indicaধon that at this spot the CPU-related

logic resides. To confirm this, we devised the code that is presented in ǚ.Ǚ. This code can validate this, and

furthermore, we can thereby discover the vulnerable spot, in that vicinity, that enables the skipping of the

instrucধon. We remind that this is the first objecধve of this thesis. Before we go into that, there are another

two findings (see figure ǚ.ǘ) whereupon we want to draw the aħenধon. The red thin line from one side to

the other, indicates a hard fault, or alternaধvely a persistent fault. The fact that it did not emerge in our

subsequent experiments led us to discard it as an erraধc event. Secondly, we can see that the whole region

in the top leđ corner is red, which indicates that the glitch source power parameter was set correctly. In

the opposite case, we should expect either to break the procedure, thus having yellow results, or not affect

it at all, thus yielding green results.

Ǚǘ

Figure 3.1: The CPU scan

ǚ.Ǚ Instrucধon skip

Let’s return to the experiment that enabled us to track down the vulnerable posiধon, that led to an instruc-

ধon skip (without breaking the procedure). The code snippet ǚ.Ǚ shows what was flashed onto the target.

What we consider successful in this experiment is to skip the ’write’ instrucধon in lines ǙǛ and Ǚǜ. Thus, not

overwriধng the iniধally placed value Ǘxǝǝǝǝǝǝǝǝ. If the output is Ǘxǝǝǝǝǝǝǝǝ the glitch and consequently

the instrucধon skip was successful, whereas if the output is ǗxǗǘǗǘǗǘǗǘ, then we did not affect the target.

As always we observed some erraধc results, as well as mutes, and ”breaks”. For that purpose in all of our

experiments we output the control value (Aǜ), to ensure that the CPU funcধoned or terminate properly

thus indicaধng that a sensiধve spot was hit. If the control bytes are outpuħed as expected whereas the

in-between values are erraধc, then we can say that this spot is hit with the correct energy and it is a good

ǙǙ

candidate to research furthermore. Highly likely a register, or a bus transfer was affected. The former case

can lead to a memory dump.

ǘ v o l a t i l e unsigned i n t * p layӬ (unsigned i n t *) ǗxǙǗǗǘbfǗǗ ;

Ǚ v o l a t i l e unsigned i n t * playǙӬ (unsigned i n t *) ǗxǘǗǗǗaǗǗǗ ;

ǚ * p lay ӬǗxǝǝǝǝǝǝǝǝ ;

Ǜ * playǙӬǗxǝǝǝǝǝǝǝǝ ;

ǜ

ǝ

Ǟ s e t _ t r i g g e r () ;

ǟ {

Ǡ // loop g l i t c h PEW PEW PEW

ǘǗ asm (”NOP\n ”

ǘǘ ”NOP\n ”

ǘǙ ”NOP\n ”

ǘǚ ”NOP\n ”

ǘǛ ”NOP\n ”

ǘǜ ”NOP\n ”

ǘǝ ”LDR rǝ , ӬǗxǙǗǗǘbfǗǗ \n ”

ǘǞ ”LDR rǜ , ӬǗxǗǘǗǘǗǘǗǘ\n ”

ǘǟ ”STR rǜ , [rǝ] \n ”

ǘǠ ”NOP\n ”

ǙǗ ”NOP\n ”

Ǚǘ ”NOP\n ”

ǙǙ ”NOP\n ”

Ǚǚ ”NOP\n ”

ǙǛ ”LDR rǝ , ӬǗxǘǗǗǗaǗǗǗ\n ”

Ǚǜ ”LDR rǜ , ӬǗxǗǘǗǘǗǘǗǘ\n ”

Ǚǝ

ǙǞ ”STR rǜ , [rǝ] \n ”) ;

Ǚǟ }

ǙǠ c l e a r _ t r i g g e r () ;

ǚǗ

ǚǘ send_bytes_uart (ǘ , cont ro l _by tes) ;

ǚǙ send_bytes_uart (s i z eo f (unsigned i n t) , (u i n tǟ _ t *) p lay) ;

ǚǚ send_bytes_uart (ǘ , cont ro l _by tes) ;

Ǚǚ

ǚǛ send_bytes_uart (s i z eo f (unsigned i n t) , (u i n tǟ _ t *) p layǙ) ;

ǚǜ

ǚǝ v o l a t i l e char buf fe r [ǘǘǙ * ǘǗǙǛ]Ӭ { Ǘ } ;

Lisধng 3.2: The instrucধon skip snippet

We ran the above snippet on the target but we had to set the ধme offset correctly. In order to carefully ধme

the pulse we manually set the trigger before the assembly instrucধons (see line Ǟ in ǚ.Ǚ). The reader can

see the NOP’s injected in the target. We opted for that in order to loosen the duraধon requirements for our

glitch. This experiment was repeated without the NOP, with a high success rate. Subsequently, we went on

debugging the target. Via JTAG we were stepping over each instrucধon, unধl we received the trigger rise.

Therefrom we started counধng. Our targeted ’write’ was Ǡ instrucধons far from the trigger. This is not so

intuiধve since only six NOPs precede the targeted instrucধon. Nevertheless, the set_trigger() funcধon call

adds the extra ǚ instrucধons (clock cycles) ađer the trigger is sent to the appropriate pin. Given that the

clock is running at ǘǝǟ MHZ, we can compute the suitable offset as 9/168M− 5ns = 9 ∗ 5.9589− 5(ns) = 40ns.

We factored in a ǜ ns for the expected jiħer of the laser. Intuiধvely enough, triggering earlier with a longer

pulse duraধon has effecধvely, due to the NOPs, the same effect. Below is a close up of the presumpধve

arm cortex main core region.

Hereby we successfully glitched the main core, in fact we achieved an instrucধon skip. Many of the

Figure 3.2: A close-up of the suggested region

seemingly successful glitches were filtered out, as some were associated with a CPU break-down. Some

were outpuষng only parধally and then muধng. Given the targeted instrucধons, we expect the write not

to happen, hence outpuষng the value Ǘxǝǝǝǝ ǝǝǝǝ instead of ǗxǗǘǗǘ ǗǘǗǘ.

In a real-case scenario we do not control the code executed, consequently neither do we have a trigger at

ǙǛ

Figure 3.3: The vulnerable spot

our disposal. Finding, hence, the correct ধming is challenging. However there are are certain methods to

sort this. We can either set the offset from the reset of the target, or in a more high-end manner, we can

apply paħern recogniধon. More precisely, the laħer is carried out by costly equipment, but we can finally

effecধvely trigger ađer an idenধfied paħern adjacent to the vulnerable ধming. For more details on how to

track down the correct ধming in a real case scenario please see subsecধon Ǜ.ǘ. There we explain how to

track down the ধming of the AES encrypধon machine. The comparison is highly likely to come right before

or ađer the encrypধon. This approach on idenধfying the vulnerable ধming of the comparison-check skip

in an unknown target is addressed in the final secধon of this thesis, ধtled feasibility of this aħack in reality

(see ǝ.Ǜ).

ǚ.ǚ Conclusions

In this secধon we followed a structured and methodological approach in order to find a vulnerable spot

that can effecধvely lead to an instrucধon skip. Instrucধon skips can be powerful stepping stones to not

only bypass security funcধons, but also to inject faults in sođware encrypধon processes. We managed to

Ǚǜ

neutralize the security feature in our scenario, that is the ciphertext check, by precisely tuning a laser shots’

ধming, duraধon, spot on the die and source power. We have furthermore devised transferable techniques

and code snippets to idenধfy and exploit CPU fault injecধon vulnerabiliধes that can be applied on virtually

any commercial target. Finally, we have shown that embedded industry does not always take the necessary

hardware security recommendaধons, as showcased in literature and in the present research, into serious

consideraধon.

While shooধng at the CPU, we mainly observe retained outputs or mutes. For that reason, we output

a control byte to validate whether the procedure was broken, or muted. The erraধc responds that, what-

soever, include the control byte corroborate an arbitrarily changed register, or a bus corrupধon. Also, in

many cases, memory dumps were observed. We suggest to further invesধgate into arbitrary changes of

registers, in order to dump selected memory segments. However, this is out of the scope of this dual laser

aħack, therefore we will not delve into this topic to a greater extent.

A countermeasure developed by the embedded industry is adding a random delay in computaধons.

This could sabotage the efforts to track down the ধming in a real case scenario. However, with the right

amount of traces and high-end analysis this could even be circumvented. This example illustrates the ”cat

and mouse” characterisধc of the security domain.

Ǚǝ

4
Aħacking the peripherals

For our proof of concept we have menধoned already that we need to aħack a second core on the target.

This, among others, corroborates the hardware distribuধon term selecধon. It furthermore necessitates a

device under test with mulধple cores-peripherals. We have chosen our target on that premise (we deliber-

ated this process in secধon Ǚ.Ǚ) as it integrates a cryptogrqaphic core that computes AES(various modes),

DES and Triple DES. Furthermore it include other peripherals such as the hash core that is responsible for

the computaধon of the hashes, namely MDǜ end SHA-ǘ. The laħer also uধlizes these hashes to com-

pute the authenধcaধon algorithm HMAC. Another peripheral device is the Direct Memory Address arbiter,

henceforward called DMA. DMA handles direct transfers from one of the peripherals to memory addresses

and vice versa, albeit without the interrupধon of the CPU. Finally, it lodges the SRAM cells that accommo-

ǙǞ

date the heap, the stack and the like. We aħack these as well. Every of the above components reside at

a certain distance from the main core, which makes this research the first to combine the aħacks on two

as distant spots on the die at the same ধme. Aħacking various components also gives the opportunity to

draw valuable insight on how to aħack these components and can be leveraged in the future research as

a stepping stone for more complex cases and scenarios. On the other hand we encourage industry to not

rely in existent countermeasures and devise stronger immune ones.

Ǜ.ǘ AES

Hardware AES was chosen for obvious reasons. The main concern of this thesis is to achieve a laser fault

injecধon into the AES core, between the Ǡth and ǘǗth round as described in ǘ.Ǜ, thereby resulধng to a

faulty ciphertext. In order to inject a fault in the AES procedure, we started off with scans of the whole

die, whereby we characterized the surface. The ধme offset was determined by measuring the duraধon of

the procedure with the oscilloscope. We can set the oscilloscope to start measuring when it receives the

trigger, and we can see the rise and fall thereof. This is roughly the duraধon that the crypto core is acধve,

since our trigger is posiধoned ধghtly before and ađer its invocaধon.

For the discovery of vulnerable posiধons and ধming we mainly have to set up the trigger and instan-

ধate the crypto-core. For that purpose the code below (see snippet Ǜ.ǘ) was downloaded on the device.

By sending the command byte ǗxCA, the target waits for the ǘǝ byte input, that is the plaintext, and it

computes the ciphertext which it outputs. For hardware AES, the computaধon is carried out in hardware

and the communicaধon (I/O) is performed via the relevant ǚǙ-bit register, a word at a ধme. For more de-

tails on the technicaliধes of CRYP_AES_ECB() and nomenclature of the registers please refer to [ǘ]. The

implementaধon of the method belongs to STM and is integral to its standard peripherals’ library.

ǘ case (ǗxCA) :

Ǚ get_bytes (ǘǝ , rxBuf fe r) ;

ǚ // T r i gge r pin hand l ing moved to CRYP_AES_ECB funct ion

Ǜ cryptoCompletedOK Ӭ CRYP_AES_ECB (MODE_ENCRYPT, keyAES , ǘǙǟ , rxBuffer , (u in tǚǙ_ t)

AESǘǙǟLENGTHINBYTES , rxBuf fe r ӫ AESǘǙǟLENGTHINBYTES) ;

ǜ i f (cryptoCompletedOK ӬӬ SUCCESS) {

ǝ send_bytes (ǘǝ , rxBuf fe r ӫ AESǘǙǟLENGTHINBYTES) ;

Ǟ } e l se {

Ǚǟ

ǟ send_bytes (ǘǝ , zeros) ;

Ǡ } ’

Lisধng 4.1: The hardware AES command

Ađer the first scans we analyzed the results and we figured that the glitches were either not very precise,

or affecধng more than one byte. This was aħributed to the fact that our clock cycle is very brief (ǜ̃ns).

Since our minimum laser shot duraধon was ǙǗns, in order to aħack the AES we decided to down-clock the

device. The SoC uses either an internal, or an external pll for clocking. No use of an external clock was

made, hence we programmaধcaly tuned the internal pll to clock the device at its minimum speed, namely

ǟ MHz. Hence, the clock cycle now has a duraধon of 125ns.

In figure Ǜ.Ǚ a down-clocked iteraধon is shown. The ধme window is roughly ǘǙ us. The disturbances

depicted are not useful for analysis as they are noisy versions of the procedure’s power consumpধon. In

secধon Ǜ.ǘ we describe the setup we used to take a beħer measurement.

Figure 4.1: Trigger window and the pulse sent to the laser

The glitches happen at precise offsets as is shown in figure Ǜ.Ǜ. We call these vulnerable ধmings. Since

the computaধons are performed in words there are specific ধmings where each of the word can be sub-

verted. This is furthermore confirmed in chapter ǜ.

A module was implemented, that collects all the traces (results) and resolves them to successful or not

glitches. It moreover, resolves each result based on the color code we described earlier. A successful glitch

is for instance when the result differs in exactly four bytes compared to the expected ciphertext. Then

we call it faulty ciphertext and is depicted as a red dot. In this case we can be certain that we injected a

single byte fault in the Ǡth round, as described in ǘ.Ǜ. These ciphertexts are suitable for our fault model.

Figure ǘ.ǘ shows how a single-byte fault injecধon is propagated through the last two rounds and results

ǙǠ

Figure 4.2: Down-clocked ধme window

in a subverted in four posiধons ciphertext. Having used all the combinaধons of lasers (blue and red) and

objecধves (ǜx and ǙǗx), we did not yield any faulty ciphertexts. Hence, we deem that this boards’ AES core

is secure against such a fault injecধon. Nevertheless, we will pursue our research in proving the concept of

two successful simultaneous glitches. Many of our results nearby the presumed crypto core vicinity were

reproducible. They would happen at very specific point in ধme during the processors’ acধvity and at certain

spots. These are leveraged in order to prove our concept. Hence, the second glitch will be replaced by a

controlled fault.

From the following figure Ǜ.ǜ we can see a paħern of faults or breaks appearing on the die. Most of the

faults are single byte changes, delays, outputs that miss a word, fact that leads us to the conclusion that we

have found the main data bus that is used by the AES core to communicate internally and externally. The

results were taken during hardware AES encrypধon.

Tracking down the precise ধming in a real case scenario

In real case scenarios we do not have the luxury to have triggers poinধng out the right ধming. We setup

an experiment to validate the correct ধming, arrive to a beħer understanding of the target and confirm the

aħack as pracধcal in real case scenarios. As menধoned previously there are two methods for arriving to

this result. The first method, the one we followed in this thesis, was measuring the current consumpধon, by

ǚǗ

Figure 4.3: How the pulse influences the board

Figure 4.4: Vulnerable ধming

interposing a current probe between the power supply, the board, and the oscilloscope. The current probe

is a tool that enables measurements of power consumpধon of embedded technology and consequently side

channel analysis. Our boardwas poweredwith the suggested ǚ.ǚ V power supply. The resulধng power trace

between the triggers’ rise and fall is presented in figure Ǜ.ǝ. The measurement presented is cropped to the

ধmewindow that the hardware core performs the AES, Electronic Codeblock cipher mode, encrypধon. The

ধme window was defined with the help of the trigger, whatsoever ađer we have taken this measurement

we can remove it and apply our findings in similar devices.

The second method used to track down the correct ধming is Electromagneধc side channel analysis.

In this case no trigger is needed therefore this method is universal and applies in real case scenarios in

analysi of black boxes. The following figure Ǜ.Ǟ shows the input and output correlaধon computed over

ǘǗǗǗ samples. We can see that the samples correlate at certain ধmings, these ধmings are demonstrated

ǚǘ

Figure 4.5: Decrypধng the AES

Figure 4.6: Power trace capture of the hardware AES procedure

by the input and output curves. Each of the four curves represent the processing of each of the words

that the crypto-core receives as input. Similarly for the output. We derive that the encrypধon is happening

inbetween, in fact, for this case between ǘǗǗǗ and ǘǝǗǗ ns. These numbers refer to the ধme elapse ađer

crypto processing started. This processing start at a ǜǗǗ ns offset from the reset.

Ǜ.Ǚ SRAM

As we menধoned earlier we implement a suitable target in order to aħack the SRAM cells. Hereby, the

aħack aims for a bit flip, which can be combined with a skip of the hash check of this SRAM block. This

ǚǙ

Figure 4.7: Input and output correlaধon of the Hardware AES process

is another dual laser aħack scenario, where we want to cause a bit flip for instance to an executable part

of the SRAM, hence forging the code executed, but at the same ধme neutralizing a countermeasure, such

as the hash check of that block. At first we created a methodology for aħacking the ram. The code we

developed and runs during the described aħacks is shown in the snippet of code Ǜ.Ǚ

ǘ v o l a t i l e char buf fe r [ǘǘǙ * ǘǗǙǛ]Ӭ { Ǘ } ;

Ǚ v o l a t i l e i n t * s ta r t ram Ӭbuf fe r ;

ǚ v o l a t i l e i n t *endramӬbuf fe r ӫ NUM_ELEM(buf fe r) ;

Ǜ i n t h i t s ǘ Ӭ Ǘ ;

ǜ

ǝ memset (buffer , Ǘ xǗǘ ,ǘǘǛǝǟǟ) ;

Ǟ

ǟ s e t _ t r i g g e r () ;

Ǡ fo r (v o l a t i l e i n t * i Ӭ s ta r t ram ; i ӯendram ; i ӫӫ) {

ǘǗ i f (* i !ӬǗ xǗǘǗǘǗǘǗǘ) {

ǘǘ h i t s ǘ ӫӫ;

ǘǙ }

ǘǚ }

ǘǛ c l e a r _ t r i g g e r () ;

ǘǜ

ǘǝ

ǘǞ case (ǗxCA) :

ǘǟ get_bytes (ǘǝ , rxBuf fe r) ;

ǘǠ // T r i gge r pin hand l ing moved to CRYP_AES_ECB funct ion

ǙǗ cryptoCompletedOK Ӭ CRYP_AES_ECB (MODE_ENCRYPT, keyAES , ǘǙǟ , rxBuffer , (u in tǚǙ_ t)

AESǘǙǟLENGTHINBYTES , rxBuf fe r ӫ AESǘǙǟLENGTHINBYTES) ;

ǚǚ

Ǚǘ i f (cryptoCompletedOK ӬӬ SUCCESS) {

Lisধng 4.2: The code behind RAM aħacks

In order to aħack the RAM and capture a bit-flip the following procedure was adopted. We constructed

an uniniধalized array and filled it with ǗxǘǗǘǗǗǘǗǘ words. Moreover wemaximized the size of the array, for

covering as much of the SRAM as possible. The stack consumes space during allocaধon that amounts to

the stack limit, and is by default allocated in the aħacked SRAM cells. We configured the linker to allocate

the stack instead of the SRAM cells to the Core Coupled Memory, CCM. Hence, we managed to free some

valuable space and store an array of ǘǘǙ Kbytes. Our array is filled with the value ǗxǘǗǘǗ ǗǘǗǘ and is stored

in the .bss segment that accommodates the uniniধalized data. The value was chosen because we can catch

both sets and resets of bits, whereas the word Ǘxǘǘǘǘ ǘǘǘǘ could only capture resets. An overview of the

addressablememory segments that this board provides is shown in table Ǜ.ǘ. The SRAMcells are discernible

in the delayered picture of the die at the upper-right quarter (see figure Ǜ.ǟ)

Next, we set the trigger and instrucধng the laser to shoot, at a seemingly random offset, albeit within the

Table 4.1: Segment allocaধon

Segment Memory Size (bytes) Memory address range
text rom ǠǜǚǞǙ ǗxǗǟǗǗǗǗǗǗ - ǗxǗǟǘǗǗǗǗǗ
data ram ǚǞǞǙ ǗxǙǗǗǗǗǗǗǗ - ǗxǙǗǗǙǗǗǗǗ
bss ram ǘǚǝǛǛǗ »
heap ram - »
stack ccm - ǗxǘǗǗǗǗǗǗǗ - ǗxǘǗǗǘǗǗǗǗ

ধme window that the device is counধng for subverted words (lines ǟ-ǘǛ). The reason we simultaneously

shoot and count is that we aim to record a temporary bit flip, that would otherwise have gone unrecorded.

Nevertheless we do not stop there, we perform another similar iteraধon, counধng for subverted word ađer

the compleধon of the laser shooধng. Thus, validaধng that the captured glitch was not a product of bus or

CPU corrupধon, but rather a persistent bit-flip.

Figure Ǜ.ǟ shows a delayered die such as the one under test. We can idenধfy the memory block on the

top right quarter. Despite the fact that we tried both lasers and all possible power ranges, to the extreme

values that permanently destroyed one board, no permanent bit-flip, fulfilling the requirements described

above, was recorded. Therefore the SRAM was deemed secure against a bit flip breach. From figure Ǜ.Ǡ

furthermore, judging from the facet of the right half of the die, we presume that the SRAM blocks reside

ǚǛ

underneath an impenetrable metallic shield.

Figure 4.8: A decapped delayered picture of the die

As shown in figure Ǜ.ǘǗ there is only one area where red, or yellow results are recorded. A red result

signifies that the hits counter (line ǘǘ from snippet Ǜ.Ǚ) is not zero, hence a subverted word was found.

Green designates an expected result, whereas the yellow cases are ধme-outs, incomplete sequences, or

corrupted control bytes. It appeared that there were some glitches, but not on the presumed SRAM area.

Moreover a second array enumeraধon didn’t provide any solid results that would indicate that an SRAM

cell was permanently changed.

Ǜ.ǚ HASH with DMA

Direct Memory Access module, DMA enables the transfer between a peripheral register and the memory,

and vice verca, without the intervenধon of the CPU. It is sensible to menধon that apart from the memory,

all the available hardware registers, including the peripherals’, are mapped to an address. The DMA transfer

is carried out via a ǘǝ-byte FIFO buffer. Two registers, the stream x peripheral address register, DMA_SxPAR

and the stream x memory Ǘ address register, DMA_SxM0AR control the input and output address (for more

details on the registers please refer to [Ǚ]). Our efforts were focused on subverধng in a controlled manner

these addresses. There was no indicaধon that those registers can be forged. Furthermore the output

ǚǜ

Figure 4.9: A decapped picture of the die

remained. Whatsoever, other registers were changed, therefrom the paħern in figure Ǜ.ǘǘ. This paħern

presents all the spots that other registers parধcipaধng in the hash computaধon, or DMA-related have been

changed. Ađer careful observaধon, we concluded that these registers were not directly subverted, rather,

a glitch during the cryptoprocess forced them to lawfully change.

Ǜ.Ǜ Back-side

Ađer a series of unsuccessful front-side aħacks, we finally opened the back-side at the cost of broken USB

data transmission bus (see figure Ǜ.ǘǙ). The process for back-side decapping is described in secধon Ǚ.ǚ

Using the knowledge of the target that has been acquired, and described in the previous secধons, we

launched a primiধve first aħack on the die, in search for a vulnerable AES posiধon. Shooধng from the

backside would heat the die to such extent, that it would constantly crash in the middle of an experiment.

This was rounded with the setup shown in figure Ǜ.ǘǚ.

Finally, we yielded faulty ciphertexts with this procedure. The rate is not useful in that case as we

were shooধng in the blind regarding posiধon, energy and distance of the target from the objecধve. The

laħer necessitates seষng the plane of focus and depends on the thickness of the silicon substrate on the

back-side. In [ǙǙ] and [ǚ] two approaches are described for figuring out the correct distance of the target.

Unfortunately, the ধme was not sufficient to further characterize the target and try to raise the rate and

ǚǝ

Figure 4.10: The ram experiment

the number of faulty ciphertexts. Even more to try the dual laser aħack, thus having to characterize the

first vulnerable spot. This is proposed as a further research, in order to fully breach this target.

Ǜ.ǜ Conclusions

In this chapter we aħacked the various peripherals provided from our device under test according to the

manufacturers’ specificaধons. The reasoning behind this approach is to find vulnerable spots that allow us

to subvert the output of the processes. The crypto core, and the SRAMcells are peripherals thatwe confront

in the real case scenarios breaches. Successfully injecধng a fault in one of these, even more combined with

a simultaneous glitch (as we will show in the next chapter), can lead to a criধcal and meaningful breach of

a state-of-the-art system. The implicaধons of such aħacks were thoroughly presented in secধon ǘ.ǘ. We

have shown that many peripherals can be under aħack, broadening the aħack surface of our targets. We

have also followed a methodological procedure in order to capture injected faults in a variety of scenarios.

Industry trends favormulধ-core andmulধ-peripheral SOCs aswell as cooperaধon thereof in computaধons*.

Thereby the present aħack will become more relevant, as new opportuniধes emerge and knowledge is

garnered. We show that the system under aħack is not be adequately secured against hardware aħacks

and more specifically laser fault injecধons.

*A term we hereby suggest is hardware distribuধon. This term captures the countermeasure aspect of the mulধ-core
computaধon

ǚǞ

Figure 4.11: The AES with DMA scan

When targeধng the cryptoaccelerator area, the outputs were mainly byte changes, word skips, or de-

layed output. However the final control byte would be sent, indicaধng that the cryptoprocessor returned

”success”, or terminated gracefully. Irregardless of the laser or the objecধve the results would not show

any significant differences. We drew the conclusion that the red laser beam is perceived as ”slim” as the

blue beam for this target. The objecধve however, and subsequently the spot size affects the potenধal for

fault injecধon. Longer pulses suppress the output of the crypto-core but they do not break the procedure.

This means that although the CPU will not receive any word of the ciphertext, SUCCESS is returned from

the AES hardware, and the control bytes are printed.

Moreover, we drew the conclusion and confirmed previous research, see [ǘǘ] and [ǙǙ], that backside

aħacks can be significantly more successful, in that is easier to achieve fault injecধons. Whereas front side

is covered with metallic mesh that acts as a security countermeasure making aħacks unfeasible, back-side

is free of countermeasures. We hereby suggest that industry should direly research into potenধal defenses

thereof.

Finally, we observed that controllable and reproducible faults could be injected. When targeধng at

precisely the same coordinates with the same power and ধming, an idenধcal fault could be forced to the

output. We leverage these spots in the next chapter, where we combine two of the previously explained

aħacks, in order to show that it is feasible to breach a system with distributed hardware parধcipaধng in the

security countermeasure. Our results show that such a countermeasure can be compromised.

ǚǟ

Figure 4.12: Entering from the backside

Figure 4.13: A setup with a fan

ǚǠ

5
Combining the Aħack

ǜ.ǘ Preliminary work

Twinscan

Twinscan is the commercial name that stands in for dual laser staধon, tool set and infrastructure. The two

lasers have been fixed to the frame as seen in figure ǜ.ǘ, while their beams are chirourgically driven by a

mirroring system via the same lens. In fact, a dedicated for each laser mirroring system is responsible for

steering the beam over a X-Y plane. The mirror can steer the beams with an ǘum precision over an area of

ǜxǚmm. The laħer makes the tool capable of achieving an aħack against hardware, that resides in distant

”districts” on the die. The beams can also move relaধvely to each other. To the best of our knowledge no

ǛǗ

Figure 5.1: Twinscan prototype used from programming

such equipment was used in research so far. A dedicated controller translates a serial input (the command)

to signals that are in turn communicated to the four mirrors. These mirrors steer the beams over the two X

and two Y axises, one for each laser respecধvely. Since the dual laser injecধon staধon is a brand-new setup,

for the purposes of this thesis we implemented an interface. This interface interconnects the Inspector®

funcধonality and graphical interface with the new commands that can be interpreted from the controller.

The language of codingwas Java and the difficulty in this task lies in redesign themoving-the-beams process,

as it was in principal different from its predecessors. For more insight on the design choices, implemented

funcধonality, and use-case scenarios please refer to chapter Ǚ of [ǘǚ].

Setup

The setup, as described in chapter Ǚ and depicted in figure Ǚ.Ǜ is modified to provide for the two lasers.

In order to split the pulses and send them to the suitable laser, each aims at a different spot and has

its own ধming, a new component was posiধoned between the vc glitcher and the lasers. This integrated

circuit, takes the vc glitcher pulses that come at the configured offsets and outputs to each laser based

on paħern that is set by the user. The following example illustrates how the paħern works. Let’s assume

that we want to send the pulses alternaধvely to each laser (as in this aħack). Let also assume that the

first pulse (odd pulses) must trigger Laser A and the second pulse (even pulses) must trigger the Laser B.

Then binary representaধon of the sequence for the first laser is ǘǗǘǗ ǘǗǘǗ and so on. Similarly, for Laser B

Ǜǘ

the sequence is ǗǘǗǘ ǗǘǗǘ. Hence, in the spliħer’s interface we must type in for laser A, ǜǜǜǜ ǜǜǜǜ ǜǜǜǜ

ǜǜǜǜ, and for laser B, AAAA AAAA AAAA AAAA. The extra bits allow for more complex paħerns than the

aforemenধoned.

Furthermore our setup needs a beam prism. This prism is suitable only for a range of wavelengths. The

subsequent experiments were carried out with two ǟǗǟnm laser, thus the prism was selected for the range

ǞǗǗ-ǘǘǗǗnm. Its purpose is to facilitate the channeling of the two beams, that are coming from different

angles, into the same lens, as well as drive the reflected on the die light to the camera.

ǜ.Ǚ Implemenধng the target

The first step was to implement the countermeasure and the duplicaধon of the encrypধon process. The

specificaধons we set from the outset required the comparison of the successive encrypted outputs, as well

as retaining it in case the ciphertexts were not idenধcal. Hence, in order to bypass the concealment of the

subverted ciphertext, not only we need to inject the fault at the right ধming during the encrypধon process,

but it is also required to skip the comparison that hides the output. The logical flow of the sođware is shown

here.

ǘ c ipher tex tǘ [] Ӭ CRYP_AES_ECB (MODE_ENCRYPT, keyAES , ǘǙǟ , rxBuffer , (u in tǚǙ_ t)

AESǘǙǟLENGTHINBYTES , rxBuf fe r ӫ AESǘǙǟLENGTHINBYTES) ;

Ǚ

ǚ c ipher tex tǙ [] Ӭ CRYP_AES_ECB (MODE_ENCRYPT, keyAES , ǘǙǟ , rxBuffer , (u in tǚǙ_ t)

AESǘǙǟLENGTHINBYTES , rxBuf fe r ӫ AESǘǙǟLENGTHINBYTES) ;

Ǜ

ǜ i f (c i phe r tex tǘ . equa ls (c i phe r tex tǙ)) then p r i n t c iphe r tex tǘ

ǝ e l se p r i n t (rubbish)

From the above snippet we extrapolate that one glitch, will not suffice to break the system. for instance,

injecধng a fault in the encrypধon but not skipping the ’if’ instrucধon will mute the output. Similarly, glich-

ing the CPU, thus skipping the ”if” command will not be more successful, as the correct ciphertex will be

outpuħed

The implementaধon of the countermeasure in C is shown in lisধng ǜ.ǘ.

ǘ case (ǗxCA) :

ǛǙ

Ǚ get_bytes (ǘǝ , rxBuf fe r) ;

ǚ u in tǚǙ_ t * enc_ǘ Ӭ rxBuf fe r ӫ AESǘǙǟLENGTHINBYTES ;

Ǜ u in tǚǙ_ t * enc_Ǚ Ӭ rxBuf fe r ӫ AESǘǙǟLENGTHINBYTES ӫ AESǘǙǟLENGTHINBYTES ;

ǜ // T r i gge r pin hand l ing moved to CRYP_AES_ECB funct ion

ǝ cryptoCompletedOK Ӭ CRYP_AES_ECB_no_trigger (MODE_ENCRYPT, keyAES , ǘǙǟ , rxBuffer

, (u in tǚǙ_ t) AESǘǙǟLENGTHINBYTES , rxBuf fe r ӫ AESǘǙǟLENGTHINBYTES) ;

Ǟ cryptoCompletedOK Ӭ CRYP_AES_ECB (MODE_ENCRYPT, keyAES , ǘǙǟ , rxBuffer , (u in tǚǙ_ t)

AESǘǙǟLENGTHINBYTES , rxBuf fe r ӫ AESǘǙǟLENGTHINBYTES ӫ AESǘǙǟLENGTHINBYTES) ;

ǟ i f (memcmp(enc_ǘ , enc_Ǚ , ǘ ǝ) ӬӬǗ) {

Ǡ send_bytes (ǘǝ , rxBuf fe r ӫ AESǘǙǟLENGTHINBYTES ӫ AESǘǙǟLENGTHINBYTES) ;

ǘǗ } e l se {

ǘǘ send_bytes (ǘǝ , zeros) ;

ǘǙ }

ǘǚ break ;

Lisধng 5.1: A sođware implementaধon of duplicaধon

As inferred from the snippet above we instanধate the crypto-core twice (line ǝ and Ǟ). We store the

outputs in adjacent memory spaces by adding an offset of AESǘǙǟLENGTHBYTES (Ӭ ǘǝ bytes) for every

iteraধon. The offset is referring to the posiধon of rxBuffer that contains our input, namely the plaintext.

The storing in adjacent memory spaces does not have any implicaধon in the realisধc nature of the target,

it is done so only for the purpose of easy retrieval. Furthermore, since we only need to glitch one of these

processes we slightly modified the second iteraধon by seষng a trigger only for the second encrypধon

process. TDuring the first iteraধon no trigger is raised. We also want to skip the if instrucধon in line ǟ, thus

forcing the target to output the ciphertext, even in the case of not matching results. Otherwise, the output

is ascii zeros, or the expected ciphertext. In the following secধon we are seষng the aħack into moধon.

ǜ.ǚ Aħack

The first thing to do, ađer having set up the Dual laser staধon and put our board under the gun, was to

confirm the first spot. Based on our knowledge of the target (described in chapter ǚ), we have arranged

a scan of a small area, with the recommended source power and duraধon. We idenধfied the exact ধm-

ing from the dissassembly of the if. As show in figure ǜ.ǚ the ”if” is Ǜ assembly instrucধons. We aim the

branching instrucধon underlined with red. The ǚ instrucধons previously to the if instrucধons, are the han-

Ǜǚ

dling the triggering, while the trigger pulse rises at the last instrucধon thereof, namely at strh r2, [r3,

#24]. This was figured by connecধng the board to an oscilloscope while stepping each instrucধon (de-

bugging). Finally, we found the exact spot and ধmings, once again for the new setup. The experiment

was slightly modified. In order to implement it as fast as possible, we subsধtuted the line ǟ from ǜ.ǘ with

if(memcmp(enc_1,enc_2,16) != 0) .. .

Since we were shooধng only with one laser the ciphertexts would be idenধcal, hence, counterintuitevely

a successful skip would output the correct ciphertext, in any other case the output is ǘǝ ǗǗs. The result is

shown in figure ǜ.Ǚ.

Figure 5.2: The assembly of our code adjacent to the if instrucধon

We injected NOP’s before and ađer the if in order to make sure that we do not shoot at any other

instrucধon with adverse results. Ađer meধculous finetuning of the parameters we managed to raise the

rate of successful glitches at ǝ%.

Now we needed a second spot where we can create a controlled fault. Looking into the results from

the experiments carried out in chapter Ǜ, we could find some candidates. We agreed on a spot that can

produce the ciphertext

ǛǛ

7C 66 E0 D9 41 22 88 C6 00 00 00 00 BA 54 83 FE

Ađer fine tuning the rate can grow up to ǝǗ%-ǟǗ%. The ধming that led to the highest raধngs is between

ǘǘǛǗ-ǘǘǝǗns ađer the trigger.

Figure 5.3: The assembly of our code adjacent to the if instrucধon

The last thing we needed to figure out was the ধming for the second laser shot. In the final experiment

due to the sođware design we have one trigger in our disposal. Therefrom we need to figure the two

offsets. Since we are using the same trigger injected in the encrypধon process the first offset does not

change. Hence, the offset for the glitch was configured as a random value between ǘǘǛǗns and ǘǘǝǗns. In

order to find the offset for the second shot that skips the comparison, we injected a trigger into our target

immediately before the ”if” we aimed to bypass. Then with the aid of the oscilloscope wemeasure the delay

of the second trigger in comparison to the first. As described earlier the first trigger is raised right before the

encrypধon procedure. The second trigger would be discarded from the final target, hence we subtracted

the ǚ clock cycles consumed by it (see fig ǜ.ǚ), but also added as many as needed to find the assembly line

responsible for jumping. We need to be very precise in ধme. The second trigger as we see rises ǙǚǗǗns

ađer the first trigger, therefore we expect the branch instrucধon to come at an offset of ǙǛǗǗns. Figure ǜ.Ǜ

shows the two triggers, as well as when the encrypধon and if rouধnes are happening.

Having collected all this datawe configured every sođware detail andwe let the experiment run overnight,

over a small area for the CPU region (see ǜ.ǜ). Next day we had the objecধve. A controlled fault was in-

jected in a part of the die, while the muধng was bypassed by shooধng the CPU, thus outpuষng the faulty

Ǜǜ

Figure 5.4: The ধme distance between the 2 triggers

ciphertext (see figure ǜ.ǝ.

ǜ.Ǜ Conclusions

In this secধon we combined the previously described single aħacks into the dual laser aħack. We lever-

aged the potenধal that the dual laser staধon offers, to aim two vulnerable posiধons simultaneously. We

described two ways on how to find the correct ধming for an aħack. Subsequently, we used the previously

acquired knowledge ađer the characterizaধon of the target, to posiধon the laser on top of the correct spots.

Inevitably, due to switching to the new laser staধon, re-installing sođware with the new module and refix-

ing the target, we had to calibrate the coordinates from scratch and perform smaller area scans. A quick

”re-characterizaধon” of the target for the correct spots was thus required. The fact that we have success-

fully injected the same faults in the new setup corroborates that this approach is reproducible. Moreover,

the procedure of characterizaধon described in the previous chapters, and subsequently seষng up the dual

laser aħack combining the components, can be applied in all commercial targets that implement similar

countermeasures. We have shown how we can target these peripherals and test for vulnerabiliধes that

lead to a bit-flip, or a faulty ciphertext. In the next chapter our findings are summed up, and we draw the

conclusions that emerged during this research.

Ǜǝ

Figure 5.5: The exact ধme when both lasers shoot

Figure 5.6: The faulty ciphertext is outpuħed by bypassing the countermeasure

ǛǞ

6
Conclusion

ǝ.ǘ Summary

In this chapter we discuss the results of the experiments, the feasibility of the aħack in pracধce,and sug-

gested research. Our results indicated that a simultaneous fault injecধon in two different processes of

two disধnct cores almost at the the same ধme is clearly feasible. Therefore, in security criধcal applica-

ধons, hardware distribuধon in combinaধon with a detecধon countermeasure do not consধtute a sufficient

countermeasure.

By targeধng the crypto-core vicinity we managed to reproduce controlled faults, resulধng in subverted

ciphertexts in very high rates. Irregardless of the laser, or the objecধve the results would not show any

Ǜǟ

significant discrepancy. During the CPU aħack the glitch was not feasible when targeধng with the ǜX

objecধve. We later on observed that it was not because the intended glitch would not happen, but rather

due to the large spot size, adjacent CPU areas would be affected. These spots would lead in a ’break’

process. This can be seen as successful glitches being covered by the inconclusive, erroneous terminaধons

of the CPU.

When we targeted the CPU we observed either mutes, or breaks. The laħer was aħributed to the arbi-

trary changes registers have undergone, overheaধng of the die, or over the top source power. Someধmes

crypto would not return success, thus outpuষng ǚǗǚǗǚǗǚǗǚǗ. This can happen if we hit with very high

power, or if the output, or input rouধne of the crypto core does not conclude successfully.

During the CPU aħacks we observed arbitrary dumps of informaধon. This informaধon could be staধc,

or constant variables, as well as iniধalized arrays, that reside in the data segment of the physical memory.

Our suspicion is that the register that points to the memory that is outpuħed is subverted. No further

invesধgaধon was performed on this topic, as it is out of the scope of research. Nonetheless this can lead

to severe disclosure of sensiধve informaধon, and can be leveraged as a stepping stone, or standalone to

breaches of state-of-the-art systems.

The reproducধon of our results was confirmed by achieving similar results both with the simple laser

staধon and the Twinscan. To switch staধons we had to assemble all the tools and set up the connecধons

from scratch. We moreover, changed devices under test during the experiments and the results were con-

sistent.

Finally, We have shown two ways of finding the correct ধming of an AES cryptoprocedure. We de-

scribed the tools that can make it possible. Also, we followed a methodological approach on nailing down

vulnerable spots, that is furthermore reproducible. We devised and presented code snippets that are ap-

propriate to capture faults in each aħack scenario. Moreover, we implemented a countermeasure that can

thwart known one laser aħacks, and we have proven that it can be compromised with a two laser setup.

We showcased that the overall security of a target cannot rely on hardware distribuধon, but rather on

thwarধng fault injecধons over the die. As we have described to comprehensively secure a die from similar

set-ups is impracধcal, therefore new countermeasures should be designed. We outline a research direcধon

regarding countermeasures in the next secধon. Furthermore, we grasp the industry trend of accumulaধng

cores onto the die, thus manufacturing mulধ-core SOCs. This aħack will be more relevant in the future, as

even a single encrypধon process might be computed by more than one cores. Finally, we have followed an

ǛǠ

approach that can be applied irregardless of target, as long as we have opধcal access to the die; hence this

is transferable.

ǝ.Ǚ Further research

In this secধon we outline direcধons for further research.

The back-side aħack revealed a presumably vulnerable posiধon regarding the AES. This corroborate

the potenধal these aħacks have. It is worth it to open the back-side, even if this looks unfeasible at first

due to the underlying wiring of the board. Further research into the back-side aħack is recommended for

characterizing the device from the back-side, confirming the vulnerable state register of the crypto-core

and finally breaching the target by retrieving the key. Also, the back-side is free of countermeasures, the

industry should urgently contemplate on securing it in order to exধnguish this risk. Naively we suggest

adding a plain metallic layer to thwart back-side aħacks.

Finding countermeasures for this kind of aħack is another domain of exuberant research. Further re-

search is also suggested for improving infecধon countermeasures, such as designs that introduce random

delays, and dummy rouধnes, as described in [Ǚǜ]. Thereby, finding the correct ধming will become imprac-

ধcal. Furthermore, as embedded industry includes ever more cores, the possibility to distribute even more

the processing, can make the aħack described here unfeasible.

In chapter ǚ we have observed memory dumps happening because of an arbitrary but random register

corrupধon. Further research on these dumps on commercial targets is recommended. The risk of this at-

tack is high, as sensiধve informaধon, compromising the underlying system, can be disclosed. The ability to

compromise CPU registers in a controlled manner has a dire impact on the security of any system. Numer-

ous exploits can be devised from this outset. Securing at least the CPU registers must become top priority

for embedded industry.

ǝ.ǚ Limitaধons

In this novel approach of the dual laser aħacks, there is a limitaধon that this thesis was confronted with. We

menধoned in the introducধon about the trade-off between the objecধve that is used and the spot size, and

we hereby explain it. We know so far that the objecধve and the spot size are conversely relaধve, in fact an

increasing magnitude of magnificaধon entails a smaller spot size. In modern embedded systems with a lot

ǜǗ

of metallic layers smaller spot sizes are necessary, as they can penetrate where larger ones cannot. On the

other hand if the targeted spots are too far apart that the ǙǗx objecধve cannot involve both, then only a

ǜx objecধve can saধsfy that spaধal span. Which limits how small our spot size can be, thereby significantly

limiধng the precision of aħacks.

ǝ.Ǜ Feasibility of the aħack in reality

In this secধon an approach is suggested on howwe can apply characterizaধon of an unknown, non-controlled

target used as a state-of-the-art equipment. As our target is a commercial device, this aħack is fairly similar

to what we should expect to confront in real use cases. Finding the vulnerable spots is the main difficulty

as it was in our research. This can be only carried out by thorough observaধon and analysis of the results.

However in reality we do not control the binary that is running on the target. Thereby, imposing another

difficulty, that is finding the correct ধming for both shots. In that case we wouldn’t have the convenience

to use the trigger as we had in this research. A suggested approach to round that problem is to procure

an idenধcal target, in order to set up our own code on the target, and using the methodology described in

this thesis to figure the exact spots on the die where each core is vulnerable. Ađer this is sorted, we can

derive the ধming by side channel analysis of the target. In secধon Ǜ.ǘ we presented a methodology for

idenধfying the ধming an AES process is carried out based on electromagneধc emissions (leakage). Having

figured the vulnerable spots and the ধming of the AES, we can leverage our intuiধon - suspicion on which

countermeasure is implemented, and fine tune our experiments. By running lengthy experiments over large

areas and perturbaধon parameter ranges, we have high chances of finding the second ধming required, that

of the countermeasure. Finally, we can force the faulty ciphertexts and retrieve the key, thus invalidaধng

the security funcধon of the device, and breaching into the system.

ǜǘ

Bibliography

[ǘ] Descripধon of stmǚǙfǙxx standard peripheral library. http://www.st.com/content/ccc/
resource/technical/document/user_manual/59/2d/ab/ad/f8/29/49/d6/DM00023896.pdf/
files/DM00023896.pdf/jcr:content/translations/en.DM00023896.pdf, Dec ǙǗǘǘ.

[Ǚ] RmǗǗǠǗ - reference manual. http://www.st.com/content/ccc/resource/technical/
document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/
DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf, May ǙǗǘǝ.

[ǚ] Michel Agoyan, Jean-Max Dutertre, Amir-Pasha Mirbaha, David Naccache, Anne-Lise Riboħa, and
Assia Tria. How to flip a bit? In On-Line Tesࣅng Symposium (IOLTS), ǙǗǘǗ IEEE ǘǝth Internaࣅonal, ǙǗǘǗ.

[Ǜ] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire Whelan. The sorcerer’s
apprenধce guide to fault aħacks. Proceedings of the IEEE, ǠǛ(Ǚ):ǚǞǗ–ǚǟǙ, ǙǗǗǝ.

[ǜ] Colin Barker. Hackers and defenders conধnue cybersecurity
game of cat and mouse. http://www.zdnet.com/article/
hackers-and-defenders-continue-cyber-security-game-of-cat-and-mouse/, ǙǗǘǝ.

[ǝ] Jem Berkes. Hardware aħacks on cryptographic devices. Prepared for ECE ǝǙǟ, Winter ǙǗǗǝ.
[Ǟ] Franck Courbon, Philippe Loubet-Moundi, Jacques JA Fournier, and Assia Tria. Adjusধng laser in-

jecধons for fully controlled faults. In Construcࣅve Side-Channel Analysis and Secure Design, pages
ǙǙǠ–ǙǛǙ. Springer, ǙǗǘǛ.

[ǟ] Christophe Giraud. Dfa on aes. In Advanced Encrypࣅon Standard–AES, pages ǙǞ–Ǜǘ. Springer, ǙǗǗǛ.
[Ǡ] Christophe Giraud and Hugues Thiebeauld. A survey on fault aħacks. In Smart Card Research and

Advanced Applicaࣅons VI, pages ǘǜǠ–ǘǞǝ. Springer, ǙǗǗǛ.
[ǘǗ] DonaldHHabing. The use of lasers to simulate radiaধon-induced transients in semiconductor devices

and circuits. Nuclear Science, IEEE Transacࣅons on, ǘǙ(ǜ):Ǡǘ–ǘǗǗ, ǘǠǝǜ.
[ǘǘ] Clemens Helfmeier, Dmitry Nedospasov, Christopher Tarnovsky, Jan Starbug Krissler, Chrisধan Boit,

and Jean-Pierre Seifert. Breaking and entering through the silicon. In Proceedings of the ǙǗǘǚ ACM
SIGSAC conference on Computer & communicaࣅons security, pages Ǟǚǚ–ǞǛǛ. ACM, ǙǗǘǚ.

[ǘǙ] Donald Knuth. The reset hack: a new exploit on xbox ǚǝǗ. http://www.logic-sunrise.com/
news-341321-the-reset-glitch-hack-a-new-exploit-on-xbox-360-en.html.

[ǘǚ] Yannis Koukoulis. We are all lean, from start-ups to larger organizaধons. University of Twente (publi-
caࣅon pending by the meࣅ of wriࣅng), ǙǗǘǝ.

[ǘǛ] Nate Lawson. How the psǚ hypervisor was hacked. https://rdist.root.org/2010/01/27/
how-the-ps3-hypervisor-was-hacked/.

[ǘǜ] Paolo Maistri. Countermeasures against fault aħacks: The good, the bad, and the ugly. In ǙǗǘǘ IEEE
ǘǞth Internaࣅonal On-Line Tesࣅng Symposium, pages ǘǚǛ–ǘǚǞ. IEEE, ǙǗǘǘ.

[ǘǝ] AmirMoradi, MohammadTManzuri Shalmani, andMahmoud Salmasizadeh. A generalizedmethod of
differenধal fault aħack against aes cryptosystem. In InternaࣅonalWorkshop onCryptographicHardware
and Embedded Systems, pages Ǡǘ–ǘǗǗ. Springer, ǙǗǗǝ.

ǜǙ

http://www.st.com/content/ccc/resource/technical/document/user_manual/59/2d/ab/ad/f8/29/49/d6/DM00023896.pdf/files/DM00023896.pdf/jcr:content/translations/en.DM00023896.pdf
http://www.st.com/content/ccc/resource/technical/document/user_manual/59/2d/ab/ad/f8/29/49/d6/DM00023896.pdf/files/DM00023896.pdf/jcr:content/translations/en.DM00023896.pdf
http://www.st.com/content/ccc/resource/technical/document/user_manual/59/2d/ab/ad/f8/29/49/d6/DM00023896.pdf/files/DM00023896.pdf/jcr:content/translations/en.DM00023896.pdf
http://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
http://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
http://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
http://www.zdnet.com/article/hackers-and-defenders-continue-cyber-security-game-of-cat-and-mouse/
http://www.zdnet.com/article/hackers-and-defenders-continue-cyber-security-game-of-cat-and-mouse/
http://www.logic-sunrise.com/news-341321-the-reset-glitch-hack-a-new-exploit-on-xbox-360-en.html
http://www.logic-sunrise.com/news-341321-the-reset-glitch-hack-a-new-exploit-on-xbox-360-en.html
https://rdist.root.org/2010/01/27/how-the-ps3-hypervisor-was-hacked/
https://rdist.root.org/2010/01/27/how-the-ps3-hypervisor-was-hacked/

[ǘǞ] NIST FIPS Pub. ǘǠǞ: Advanced encrypধon standard (aes). Federal Informaࣅon Processing Standards
Publicaࣅon, ǘǠǞ:ǛǛǘ–Ǘǚǘǘ, ǙǗǗǘ.

[ǘǟ] Cyril Roscian, J-M Dutertre, and Assia Tria. Frontside laser fault injecধon on cryptosystems-
applicaধon to the aes’last round. In Hardware-Oriented Security and Trust (HOST), ǙǗǘǚ IEEE Inter-
naࣅonal Symposium on, pages ǘǘǠ–ǘǙǛ. IEEE, ǙǗǘǚ.

[ǘǠ] Dhiman Saha and Debdeep Mukhopadhyay. A diagonal fault aħack on the advanced encrypধon
standard.

[ǙǗ] John R Samson Jr, Wilfrido Moreno, and Fernando Falquez. Validaধng fault tolerant designs using
laser fault injecধon (lfi). In Defect and Fault Tolerance in VLSI Systems, ǘǠǠǞ. Proceedings., ǘǠǠǞ IEEE
Internaࣅonal Symposium on, pages ǘǞǜ–ǘǟǚ. IEEE, ǘǠǠǞ.

[Ǚǘ] Alexandre Sarafianos, Cyril Roscian, J-M Dutertre, Mathieu Lisart, and Assia Tria. Electrical modeling
of the photoelectric effect induced by a pulsed laser applied to an sram cell.Microelectronics Reliability,
ǜǚ(Ǡ):ǘǚǗǗ–ǘǚǗǜ, ǙǗǘǚ.

[ǙǙ] Bodo Selmke, Johann Heyszl, and Georg Sigl. Aħack on a dfa protected aes by simultaneous laser
fault injecধons. FTDC.ǙǗǘǝ.ǘǝ, ǙǗǘǝ.

[Ǚǚ] Sergei Skorobatov. Fault aħacks on secure chips: from glitch to flash. In Design and Security of
Cryptographic Algorithms and Devices (ECRYPT II). Albena, Bulgaria, ǙǗǘǘ.

[ǙǛ] Elena Trichina and Roman Korkikyan. Mulধ fault laser aħacks on protected crt-rsa. In Fault Diagnosis
and Tolerance in Cryptography (FDTC), ǙǗǘǗ Workshop on, pages Ǟǜ–ǟǝ. IEEE, ǙǗǘǗ.

[Ǚǜ] Harshal Tupsamudre, Shikha Bisht, and Debdeep Mukhopadhyay. Destroying fault invariant with
randomizaধon. In Internaࣅonal Workshop on Cryptographic Hardware and Embedded Systems, pages
Ǡǚ–ǘǘǘ. Springer, ǙǗǘǛ.

[Ǚǝ] Jasper van Woundenberg. Embedded systems under fire fault injecধon on secure boot. https:
//www.riscure.com/documents/rsa_presentation_2013_jasper_van_woudenberg_
riscure.pdf?1403039987.

ǜǚ

https://www.riscure.com/documents/rsa_presentation_2013_jasper_van_woudenberg_riscure.pdf?1403039987
https://www.riscure.com/documents/rsa_presentation_2013_jasper_van_woudenberg_riscure.pdf?1403039987
https://www.riscure.com/documents/rsa_presentation_2013_jasper_van_woudenberg_riscure.pdf?1403039987

This thesis was typeset using LATEX, originally
developed by Leslie Lamport and based on
Donald Knuth’s TEX. The body text is set

in ǘǘ point Egenolff-Berner Garamond, a re-
vival of Claude Garamont’s humanist typeface.
The above illustraধon, “Science Experiment ǗǙ”,
was created by Ben Schliħer and released un-
der cc by-nc-nd ǚ.Ǘ. A template that can be
used to format a PhD thesis with this look
and feel has been released under the permis-
sive mit (xǘǘ) license, and can be found online at
github.com/suchow/Dissertate or from its author,
Jordan Suchow, at suchow@post.harvard.edu.

ǜǛ

http://creativecommons.org/licenses/by-nc-nd/3.0/
https://github.com/suchow/Dissertate
mailto:suchow@post.harvard.edu

	Introduction
	Motivation
	Background
	Countermeasures
	Use-cases
	Fault models
	Contribution

	Setup
	Experiments' components
	Device under test
	Decapping the Pinata
	Laser Energy

	Attacking the CPU
	Identifying the vulnerable spot
	Instruction skip
	Conclusions

	Attacking the peripherals
	AES
	SRAM
	HASH with DMA
	Back-side
	Conclusions

	Combining the Attack
	Preliminary work
	Implementing the target
	Attack
	Conclusions

	Conclusion
	Summary
	Further research
	Limitations
	Feasibility of the attack in reality

	References

