
1

Faculty of Behavioural,
Management & Social Sciences

Optimization in Diamond

Joris van der Meulen
M.Sc. Thesis

September 2016

Supervisors:
dr. ir. M. R. K. Mes

dr. ir. J. M. J. Schutten
ir. N. Nijenmanting

Production & Logistics Management
(Industrial Engineering & Management)

Faculty of Behavioural,
Management & Social Sciences

University of Twente
P.O. Box 217

7500 AE Enschede
The Netherlands

Management Summary

Diamond is a decision making tool that enables users to construct models of

the processes that take place in dairy factories and optimize these processes by

varying the product mix and technology settings in these models. Differential

Evolution (DE), a stochastic optimization method, is implemented in Diamond

to perform these optimizations. DE’s effectiveness and efficiency depend on the

values of several auxiliary optimization parameters. In the current situation, a

user of Diamond has to set values for those parameters before performing an

optimization. The goal of this research is to find an approach for determining

the values of DE’s auxiliary optimization parameters in Diamond so that they do

not have to be set by the user anymore.

We apply the approaches of parameter selection and meta-optimization to

tune the auxiliary optimization parameters of DE in Diamond. Parameter se-

lection comes down to selecting values for the auxiliary optimization parameters

relying on conventions and default values. Meta-optimization involves treating

the search for good auxiliary parameter values as an optimization problem in its

own right. It hence requires the implementation of an optimization method on the

meta-level. The meta-level optimizer aims to find good values for the auxiliary

parameters of DE, which in turn aims to find good values for the optimization

variables of the actual problem in Diamond. We depict this process graphically

in Figure 1. We select the Nelder-Mead (NM) method as meta-level optimizer.

We evaluate three different performance aspects for our solution approach:

reliability, robustness, and efficiency. An assumption regarding meta-level search

spaces based on which we selected the NM method as meta-optimizer does not

seem to hold, impeding on the reliability of our solution approach. We applied our

solution approach 5 times to 3 different problems and it only yielded consistently

good results for one of the problems, and failed to yield good results twice for both

other problems. Our solution approach appears to be quite robust against changes

in the actual problem, but more tests in this direction have to be performed. Our

solution approach seems efficient when we compare it to the strategy of selecting

commonly advised auxiliary optimization parameters from literature. However,

it barely performs better (on the problem for which our solution approach yielded

consistently good results) than two straightforward strategies that use a similar

iii

Problem in Diamond

Differential Evolution

Meta-level optimizer

Figure 1: Meta-optimization in Diamond

amount of computation time and that do not rely on any assumptions regarding

meta-level search spaces for their reliability.

By applying parameter selection and meta-optimization, we have constructed

an approach for determining the values of DE’s auxiliary optimization variables

so that they do not have to be set by the user anymore before performing an

optimization, which was the goal of our research. We however conclude that our

solution approach, even though it is successful in tackling the research problem, is

not very promising for Diamond. In particular, the NM method is not such a good

meta-optimizer. In a more general sense, the practical suitability to Diamond

of the combined parameter selection and meta-optimization approach can be

questioned. The biggest downside of this approach is that auxiliary parameters

resulting from a meta-optimization run cannot easily be generalized to different

values for the auxiliary parameters to which parameter selection has been applied.

We recommend further research aimed at improving the speed and quality of

our solution approach, such as making use of information that has been obtained

in previous meta-optimization runs and parallelizing our solution approach. Our

main recommendations are on the deeper levels of Figure 1 though. We recom-

mend further research in the field of (self-)adpative DE, in which feedback from

the search progress is used to control the values of the auxiliary optimization

parameters. Adaptive DE variants usually introduce new auxiliary parameters

whose values the user must decide upon, but these new auxiliary parameters are

generally a lot more robust than those of standard DE. It might therefore be pos-

sible to determine values for the new auxiliary parameters that can be applied to

Diamond in general instead of being suitable for only one problem and perhaps

other instances of that problem. Finally, information extracted from the actual

problems and similarities between future problems in Diamond can potentially

be used to develop an algorithm tailored specifically for Diamond that is more

efficient and robust than DE or any other general metaheuristic.

Acknowledgements

I would like to express my gratitude to those who have helped me with my grad-

uation assignment. First of all, I would like to thank Martijn and Marco, my

supervisors at the University of Twente, for their guidance and their critique. I

would like to thank everybody at Reden and the team at FrieslandCampina, for

making me feel welcome and taking the time to discuss my ideas about the project.

Special thanks go to Niels, who supervised me at Reden and frequently took the

time to explain me something or help me out somewhere. Finally, I would like to

thank Sarah, my friends, and my family, for both the support and the distraction

they have provided me with over the course of this assignment.

v

Table of Contents

Management Summary iii

Acknowledgements v

Table of Contents vii

List of Abbreviations ix

1 Introduction 1
1.1 Diamond . 1

1.2 Problem Identification . 4

1.3 Research Goal . 6

1.4 Research Questions . 6

2 Current Situation 9
2.1 Problems . 9

2.2 Differential Evolution . 11

2.3 Conclusions on Current Situation 17

3 Literature Review 19
3.1 Tuning Auxiliary Optimization Parameters 19

3.2 Meta-level Optimizers . 22

3.3 Conclusions on Literature Review 28

4 Solution Approach 29
4.1 Tuning in Diamond . 29

4.1.1 Parameter Selection in Diamond 29

4.1.2 Offline Parameter Initialization in Diamond 31

4.2 The New Situation in Diamond . 35

4.3 Conclusions on Solution Approach 37

5 Solution Tests 39
5.1 Test Design . 39

5.2 Test Results . 42

5.3 Conclusions on Solution Tests . 51

vii

6 Conclusions and Recommendations 53
6.1 Conclusions . 53

6.2 Recommendations for Further Research 55

References 59

Appendices

A Network Structures 65

B Flowchart of the NM Method 69

List of Abbreviations

DE Differential Evolution

DOE design of experiments

EA evolutionary algorithm

FC FrieslandCampina

GA genetic algorithm

HJ Hooke-Jeeves

LJ Luus-Jaakola

LUS Local Unimodal Sampling

NFL no free lunch

NLP nonlinear programming problem

NM Nelder-Mead

ix

Chapter 1

Introduction

The research in this thesis revolves around Diamond, a project conducted by

Reden and the FrieslandCampina (FC) department milk valorization. In this

project, a software solution is developed that is also called Diamond. Diamond

is a decision making tool that enables users to construct models of the processes

taking place in dairy factories and optimize these processes by varying the product

mix or technology settings in these models.

This chapter functions as an introductory chapter to Diamond and the re-

search we conduct. In Section 1.1 we briefly explain how Diamond works. We

identify the research problem in Section 1.2 and determine the research goal in

Section 1.3. In Section 1.4 we introduce the research questions and describe the

set-up of the remainder of this report based on those questions.

1.1 Diamond

Diamond is developed as a tool that can give decision-making support for two

types of problems that FC frequently encounters in processes in their factories.

The first type of problem is related to raw material sourcing. Such problems arise

when several raw materials or waste flows from other factories can be used for

a certain process. The decision that has to be made in this type of problem is

which raw materials to use in the process and in what volume.

The second type of problem arises when a process consists of multiple steps

leading to several end products. In such processes there are variable technology

settings that influence the product specifications of the end products and the

amounts of products that are produced. The decision that has to be made in this

type of problem is what values to select for those technology settings.

In order for Diamond to give decision-making support for these problems, the

user has to provide the software with a problem that resembles the process in

which the user wants this support. A problem in Diamond is defined by three

parts: a datastore, a network, and optimization variables. In this section we

1

2 Chapter 1. Introduction

briefly discuss each of these parts.

The network

A user of Diamond has to load or construct a network in Diamond. A network in

Diamond is constructed by dragging elements onto a grid and linking them with

connectors. Those elements represent the inputs, outputs, and all intermediate

steps of the process that is being modelled. In this report the inputs are referred to

as raws, the outputs as sales, and the intermediate steps as unit operations. The

connectors represent the incoming and outgoing product flows of each element.

Raws only have outgoing product flows, sales only have incoming product flows,

and unit operations always have both.

We present a screen capture of the interface of Diamond in Figure 1.1. This

screen capture is blurred for confidentiality reasons. It displays a network that we

have constructed on the grid with elements and connectors. We have assigned a

different colour to each element type. Raws are distinguished by their blue colour,

sales by their pink colour, and unit operations by their green colour. A list can be

distinguished to the left of the grid in which the network is constructed. This list

contains the elements that can be used in the network. It is provided by loading

a separate datastore in Diamond that defines these elements.

Figure 1.1: Screen capture of Diamond’s interface (blurred for confidentiality
reasons)

1.1. Diamond 3

The datastore

A datastore has to be loaded in Diamond to define the elements that can be

used for the construction of a network. When a user wants to load an already

constructed network in Diamond, the matching datastore in which the elements

that have been used for the construction of that network are defined has to be

loaded as well. In such a datastore the different elements are defined in the

following way.

A raw is defined by a parameter vector in which the product specifications of

the raw are stored. With product specifications we mean the amount of each in-

gredient in the product, the amount of each nutrient in the product, and product

properties of interest, such as the viscosity and the water activity of the prod-

uct. A sale is defined by two parameter vectors that denote lower and upper

bounds for its product specifications. A unit operation is defined by its ingoing

and outgoing product flows and the transfer functions between them. Since unit

operations need to model every processing step that might happen in a dairy

factory, there can be a large amount of transfer functions defining one unit oper-

ation and these functions can be complex. Transfer functions in a unit operation

can depend on variables. We refer to those variables as the technology settings

of that unit operation. A user can assign values to the technology settings of a

unit operation if that unit operation is used in the network.

The optimization variables

When a datastore and a network have been loaded or constructed in Diamond,

optimization variables need to be selected. The technology settings of a unit

operation can be optimization variables. The input volume of a raw can also be

an optimization variable.

Performing an optimization

When a network has been constructed and optimization variables have been se-

lected, a user can click the optimize button in the lower left part of the interface.

When this button is clicked, a dialog pops up in which the user can inspect the

technology settings and input volumes that are optimization variables. The user

has to set values for several auxiliary optimization parameters in this dialog and

can then start an optimization run. An optimization run takes minutes to hours,

depending on the size and complexity of the problem at hand. The values se-

lected for the auxiliary optimization parameters also influence the runtime. Upon

termination of an optimization run, Diamond displays the best values for the op-

4 Chapter 1. Introduction

timization variables that have been encountered during the run, the impact that

those values have on the process, and the resulting profit. It is now up to the

user to adjust the product mix or technology settings in practice so that they

match the values of Diamond, or decide not to.

1.2 Problem Identification

A user of Diamond has to provide the software with a datastore and a network

of a process in which optimization variables are selected. In turn, after some

computation time, Diamond provides the user with hopefully near-optimal values

for the optimization variables. In the context of Diamond, optimal values for the

optimization variables mean those values that lead to the highest profit that can

be obtained in the process that has been modelled. We depict this procedure in

Figure 1.2. A part of this figure is enclosed by a green dotted line. This part

represents the software solution Diamond. An iterative procedure takes place

within it.

evaluator
set of values for

optimization variables

optimizer solution value

user

output
highest profit encountered and
corresponding set of values

for the optimization variables

input
datastore,
network,

optimization
variables

Diamond

Figure 1.2: How Diamond operates – a rough depiction

Diamond roughly consists of two parts. In one part, which we call the eval-

uator, a solution value for a specific set of values for the optimization variables

1.2. Problem Identification 5

is evaluated. This solution value is related to the profit in such a way that a

lower solution value generally corresponds to a higher profit. The other part

of Diamond is responsible for determining the sets of values for the optimiza-

tion variables that have to be evaluated by the evaluator. We call this part the

optimizer because it aims to find optimal values for the optimization variables.

To this end some of the evaluated solution values and their corresponding sets

of values for the optimization variables are temporarily stored in the optimizer.

The best solution value that has been encountered is always stored and so is the

corresponding set of values for the optimization variables.

The choice has been made by the developers of Diamond to treat the evalu-

ator as a black box, meaning that we can obtain an output from the evaluator

for a given input but have no knowledge of its internal workings. In the case

of the evaluator, the input is a set of values for the optimization variables and

the output is the corresponding solution value, as can be seen in Figure 1.2. As

soon as a datastore, a network, and optimization variables are defined, a prob-

lem in Diamond can be formulated as a nonlinear programming problem (NLP),

because of which the evaluator’s internal workings are known. Although there

are solution methods for solving specific types of NLPs by making use of certain

characteristics of their solution spaces, the NLPs resulting from the problems in

Diamond have complex, multimodal1, non-continuous, non-linear objective func-

tions. Next to soft constraints that lead to a penalty in the objective function if,

and based on the extent that, they are not satisfied, the NLPs resulting from the

problems in Diamond also have hard constraints. Constrained NLPs with com-

plex, multimodal, non-continuous, non-linear objective functions are generally

treated as black boxes because it is difficult to make useful assumptions regard-

ing their solution spaces. Furthermore, users of Diamond have a lot of freedom in

determining the datastore, network, and optimization variables, because of which

the internal workings of the evaluator vary. These are the reasons for treating

the evaluator as a black box.

Treating the evaluator as a black box, and hence ignoring any assumptions

that could possibly be made about the solution spaces of the problems in Dia-

mond, brings along a problem. If no assumptions are made regarding a solution

space, the no free lunch (NFL) theorem for optimization states that each opti-

mization method is as likely to find a good solution value as any other. Wolpert

and Macready (1997) prove this by showing that, for an arbitrary measure of

performance, the probability of obtaining a specific sequence of solution values,

1Having multiple optima, as opposed to having one which makes a function unimodal.

6 Chapter 1. Introduction

averaged over all possible functions, is independent from the applied algorithm.

In other words, one could not expect to find an optimization method that per-

forms any better than any other optimization method (Jansen, 2013).

There are solution methods that, by incorporating auxiliary optimization pa-

rameters, can overcome the implications of the NFL theorem. These solution

methods are called metaheuristics and they can be efficient on a wide range of

problems provided that they are well parametrized (Luke, 2013). One of those

metaheuristics has been implemented in the optimizer in Diamond.

Differential Evolution (DE) is the metaheuristic that has been implemented in

the optimizer in Diamond. We explain how this metaheuristic works in Chapter

2. DE has been selected by the developers of Diamond because it is a competitive

metaheuristic with relatively few auxiliary optimization parameters. It has been

shown that DE is efficient in a wide variety of practical as well as theoretical

problems (Das & Suganthan, 2011; Civicioglu & Besdok, 2013; Lampinen, Storn,

& Price, 2005, pp. 156-182). Like any metaheuristic though, values have to be

selected for several auxiliary optimization parameters in order for DE to perform

well. At the moment it is the case that a user of Diamond has to choose values for

those parameters before performing an optimization. FC however does not want

Diamond to require any optimization-related input from its users other than the

datastore, the network, and the optimization variables. This brings us to our

problem statement: Values for the auxiliary optimization parameters of DE have

to be set by the user before performing an optimization in Diamond.

1.3 Research Goal

We formulate our research goal based on the problem statement that we have

defined in Section 1.2. We formulate the research goal as follows: Find a way to

determine values for DE’s auxiliary optimization parameters so that they do not

have to be set by the user before performing an optimization in Diamond.

1.4 Research Questions

To conduct research in a structured manner, we formulate several research ques-

tions. Based on the problem statement that we have formulated in Section 1.2

and the research goal that we have defined in Section 1.3, we formulate the fol-

lowing main research question: How can we determine values for DE’s auxiliary

optimization parameters in Diamond? We formulate several research questions

1.4. Research Questions 7

that support the main research question:

RQ 1. What is the current situation?

1(a). What problems for Diamond do we have at our disposal?

1(b). How does DE work and what are its auxiliary optimization parame-

ters?

RQ 2. What approaches for determining values for auxiliary optimization pa-

rameters can we find in academic literature?

RQ 3. What is a good approach for determining values for DE’s auxiliary opti-

mization parameters in Diamond?

RQ 4. How does the proposed approach perform?

In Chapter 2 we discuss research question 1. We introduce three problems

from practice and explain the workings of DE in this chapter. In a literature

review in Chapter 3, we discuss research question 2. In Chapter 4 we answer

research question 3 by proposing an approach for determining the values of DE’s

auxiliary optimization parameters in Diamond. We discuss the performance of

this approach in Chapter 5 and answer research question 4 this way. In Chapter

6 we conclude this research and give recommendations for future research.

8 Chapter 1. Introduction

Chapter 2

Current Situation

In this chapter we give an overview of the current situation. We introduce the

three problems from practice that we have at our availability in Section 2.1.

In Section 2.2 we describe how DE, the metaheuristic that is implemented in

Diamond, works and identify the auxiliary parameters that a user of Diamond

currently has to set before performing an optimization. We conclude this chapter

in Section 2.3.

2.1 Problems

Recall from Chapter 1 that Diamond should give decision-making support for two

types of problems that FC often encounters in processes in their factories. In one

type of problem, the decision has to be made which raw materials to use in the

process and in what volume. In the other type of problem, the decision has to be

made what values to set for several variable technology settings. In the remainder

of this report we refer to the first type of problems as mixing problems and to

the second type of problems as technology problems. Recall furthermore that

problems in Diamond are defined with a datastore, a network, and optimization

variables.

We have one mixing and two technology problems from practice at our avail-

ability. They are modelled in Diamond and the optimization variables are se-

lected. We anonymize the networks of these problems so that we can display

their structures. In this report we refer to the problem that is of the mixing

type as the Mix problem. We display the structure of the Mix problem in Fig-

ure 2.1. The optimization variables in this problem are the input volumes of

eight different raws. We call one of the technology problems the Split problem,

because the optimization variables in this problem are twenty-five settings that

determine how several product flows are divided (splitted) over the network. The

other technology problem we call the Tech problem. There are fifteen optimiza-

tion variables in this problem, namely the input volume of a raw and fourteen

9

10 Chapter 2. Current Situation

technology settings. We display the network structures of the Split and the Tech

problem in Appendix A.

Figure 2.1: Network structure of the Mix problem

We summarize some information about the three problems that we have at

our availability in Table 2.1. In this table we introduce n, the problem dimension.

It equals the amount of optimization variables in a problem. The evaluation time

in the third column of the table denotes the approximate time it takes Diamond

to evaluate one point in the solution space of the corresponding problem. This

gives an indication of the complexity of the problems and the time it takes to

perform one optimization run, which consists of thousands such evaluations.

Table 2.1: Some information about the available problems

Problem type Problem name n Evaluation time

Mixing Mix problem 8 8 milliseconds

Technology
Tech problem 15 18 milliseconds

Split problem 25 45 milliseconds

For each of the three problems that we have at our availability, only one

instance is defined. Other instances of the problems arise when an alteration

is made in a problem. Examples of such alterations are price fluctuations and

changes in the product specifications of a certain raw or sale due to governmental

decisions on when a product can be labelled low-fat or calcium-rich. At times,

2.2. Differential Evolution 11

the transfer functions defining the processing step that takes place in a certain

unit operation might require alteration, for example when a piece of machinery

is replaced by a slightly different one or when research points out that there is a

better formula to describe a certain chemical process.

2.2 Differential Evolution

DE is introduced by Storn and Price (1997). It is a stochastic optimization

method belonging to the class of evolutionary algorithms (EAs). EAs are meta-

heuristics that incorporate mechanisms inspired by biological evolution such as

reproduction, mutation, and, recombination. The older and more widely known

genetic algorithms (GAs) (Goldberg, 1989) belong to this same class. According

to some taxonomies, DE is considered a type of GA because both DE and GAs

make use of a population of solutions on which selection, mutation, and crossover

take place to iteratively create new population members. In both GAs and DE

the population size remains constant by discarding old members when new indi-

viduals enter the population. We however are of the opinion that there are too

many characteristics setting DE apart from GAs for it to be considered one. We

present these characteristics in Table 2.2. Studies focusing on the comparison

of several metaheuristics indicate that GAs and other EAs are frequently out-

performed by DE (Vesterstrøm & Thomsen, 2004; Kannan, Slochanal, & Padhy,

2005; Xu & Li, 2007).

Table 2.2: Some differences that set DE apart from GAs

In a GA In DE

Selection takes place at the begin-
ning of an iteration

Selection takes place at the end of an iter-
ation

Two parents create two offspring in
each iteration

Every parent creates one offspring in each
iteration

No other population members are in-
volved in creating the offspring but
the two parents

Three randomly selected other population
members are involved in creating the off-
spring of a parent

The two offspring always replace two
current population members

An offspring only replaces its parent if it
corresponds to a better solution value

DE consists of two stages, an initialization stage and a main loop. In the

initialization stage, a population of solutions is created. A solution in the context

12 Chapter 2. Current Situation

of Diamond is a set of feasible values for the optimization variables. With feasible

we mean that the set of values yields a solution value smaller than a very large

value when it is evaluated by the evaluator. The evaluator returns this very large

value when one or more of the hard constraints of the NLP resulting from the

network, datastore, and optimization variables in Diamond are not satisfied.

The constraints that define the ranges of the optimization variables are hard

constraints so that, for example, a negative amount of product does not become

possible anywhere in the process. All other constraints are incorporated in the

objective function as soft constraints, meaning that they lead to a penalty in

the objective function if, and based on the extend that, they are not satisfied.

Because of this it is possible to evaluate solutions that are actually infeasible in

the current process, which has as a result that sets of feasible values can be found

relatively quickly via random search and that the initialization stage of DE in

Diamond will not take long.

Although the goal in Diamond is to maximize profit, the objective function is

such that we are dealing with a minimization problem, which is also the reason

for assigning infeasible solutions a very large value. In fact, the objective function

is such that negative solution values correspond to profit and positive solution

values correspond to losses. Large positive solution values generally indicate

unsatisfied soft constraints.

The solutions for a problem in Diamond can be represented by n-dimensional

vectors in which each element represents the value selected for one of the opti-

mization variables. We denote the solution value corresponding to a vector #»x in

the solution space by f(#»x). f(#»x) is the output of the evaluator from Figure 1.2

when it receives the vector of values for the optimization variables #»x as input.

The population size is denoted by NP . NP is one of the auxiliary optimiza-

tion parameters of DE that the user has to set a value for in Diamond before

performing an optimization. After the initialization stage, a population of NP

n-dimensional solution vectors have been generated. In Algorithm 1 we display

pseudocode for the initialization stage of DE in Diamond. We denote the very

large value that is assigned to infeasible solutions by ∞ in this algorithm.

The second and final stage of DE in Diamond is the main loop. After the

initialization stage, mutation, crossover, and selection take place iteratively until

a termination criterion is met. We depict this schematically in Figure 2.2.

In the mutation step, a mutated vector is obtained for each of the NP pop-

ulation members. This is done by perturbing a randomly selected population

member with a scaled difference of two other randomly selected population mem-

2.2. Differential Evolution 13

Algorithm 1 Initialization stage of DE in Diamond

INPUT: Auxiliary optimization parameter NP ,
search space of the problem
OUTPUT: Population of NP vectors # »x1, ..,

»xNP

and their corresponding solution values

1: for i← 0, NP do
2: repeat
3: Pick random #»xi within the search space
4: Determine f(#»xi)
5: until f(#»xi) <∞
6: end for

Initialization Mutation Crossover Selection
Termination
crit. met?

Output

no

yes

Figure 2.2: Schematic depiction of DE in Diamond

bers. The current population members can be seen as the parents and we hence

denote them by #»pi, i = 1, .., NP . For each parent, three random other popula-

tion members are selected. If we let r1, r2, and r3 be distinct random integers in

the set {1, 2, .., NP} \ i, we can denote the three population members that are

randomly selected for parent vector #»pi by
»xr1(i),

»xr2(i), and
»xr3(i).

The mutant vector # »mi belonging to parent vector #»pi is constructed via the

equation # »mi = # »xr1(i) + F · (# »xr2(i) −
»xr3(i)). The parent vector is not explicitly

taken into account in the construction of its corresponding mutant vector except

for that it cannot be one of the randomly selected population members. In the

mutation step, another auxiliary optimization parameter of DE is introduced,

the mutation factor F . According to Storn and Price (1997), F has to be in the

range [0, 2]. We visualize the creation of a mutant vector in a two-dimensional

problem space in Figure 2.3. In this figure, the black dots represent the current

population members and the grey dot represents the mutant vector.

After the mutation step there are NP mutant vectors, one for each current

population member. Now the crossover step takes place. In this step NP new

solution vectors are generated. These solution vectors can be seen as the children

of the current population members and we hence denote them by #»ci , i = 1, .., NP .

14 Chapter 2. Current Situation

optimization variable 1

o
p
ti
m
iz
a
ti
on

va
ri
a
b
le

2

»xr2(i)
»xr3(i)

»xr1(i)
»mi =

»xr1(i) + F · (# »xr2(i) −
»xr3(i))

F · (# »xr2(i) −
»xr3(i))

Figure 2.3: The mutation step illustrated for a 2-dimensional problem

For the construction of the child #»ci , its parent
#»pi and the corresponding mutant

vector # »mi are used. Each vector element of the child #»ci is either copied from the

parent vector #»pi or from the corresponding mutant vector # »mi. In the crossover

step another auxiliary optimization parameter of DE is introduced, the crossover

constant CR. CR influences how many of the vector elements of a child on

average originate from its parent and how many on average originate from the

corresponding mutant vector. CR has to be in the range [0, 1]. We visualize the

idea behind the crossover step in Figure 2.4. In this figure it can be seen how a

child #»ci is constructed with the vector elements of its parent #»pi and the vector

elements of the mutant # »mi.

randi,1 ≤ CR

randi,2 ∈ [0, 1]

randi,3 > CR

randi,4 ≤ CR

randi,5 > CR

rni = 2 #»pi
»mi

#»ci

Figure 2.4: The crossover step illustrated for a 5-dimensional problem

In the crossover step, for each population member i, n random numbers are

2.2. Differential Evolution 15

drawn from the interval [0, 1] and one random integer is drawn from the set

{1, 2, .., n}. We denote these numbers by randi,j , j = 1, .., n and rni respectively.

If randi,j is larger than the constant CR, the jth element of the child vector #»ci

is similar to the jth element of the vector of its parent #»pi. If this is not the case,

the jth element of the child vector #»ci is similar to the jth element of the mutant

vector # »mi. The rni
th element of the child vector #»ci is always similar to the jth

element of the mutant vector # »mi. This is to ensure that #»ci differs from #»pi in at

least one element. In Figure 2.4, the relevant values of the random numbers that

are drawn are denoted to the left of the figure.

After the crossover step all mutant vectors are discarded, leaving us with NP

parents (the current population) and NP children, each child belonging to one

parent. Recall that the population members of DE in Diamond are n-dimensional

vectors that each represent a set of values for the optimization variables in the

problem that is being optimized by Diamond. Because of this, each population

member corresponds to a solution value. The solution values of the children

are evaluated and if the solution value corresponding to a child is better than

the one corresponding to its parent, the child replaces its parent in the current

population. This is the selection step. It marks the end of an iteration.

The idea behind DE is that through mutation, crossover, and selection, the

population will hopefully become more and more concentrated around local op-

tima and eventually concentrate itself around the global one or global ones. De-

pending on the values selected for the auxiliary optimization parameters and the

specific problem at hand though, DE might converge too quickly and thus end

up in a local optimum or not convergence and thus end up in no optimum at

all1 (Locatelli & Vasile, 2014). Other values can lead to very slow convergence

and are hence unable to provide the user with a good solution within a reason-

able time limit or number of function evaluations. Finding proper values for the

auxiliary optimization parameters for the problem at hand is therefore essential.

This process is known as tuning. We deal with tuning in Chapter 3.

In Algorithm 2, we display pseudocode for DE in Diamond. In line 3 of this

algorithm, we refer to a termination criterion. In the current situation this termi-

nation criterion can either be a manual stop, a maximum number of iterations,

or a maximum number of iterations without change in the solution value cor-

responding to the best-encountered solution #»y . This means that users have to

decide when to stop the algorithm or select a value for either the maximum num-

1There are DE variants for which convergence to the global optimum in probability can be
proven but these do not take speed or a maximum number of evaluations into account (Hu,
Xiong, Su, & Zhang, 2013). These variants are hence not very useful in practice.

16 Chapter 2. Current Situation

ber of iterations or the maximum number of iterations without change, which is

not in line with FC’s desire that no decisions concerning auxiliary optimization

settings have to be made by the user.

Algorithm 2 DE in Diamond

INPUT: Auxiliary optimization parameters NP , F , and CR,
search space of the problem
OUTPUT: Best-encountered solution #»y

1: Initialization (see Algorithm 1)
2: #»y ← (#»xi corresponding to lowest f(#»xi) of Algorithm 1)
3: while Termination criterion not met do
4: for i← 0, NP do
5: Perform mutation and crossover to obtain child #»ci of

#»xi
6: Determine f(#»ci)
7: if f(#»ci) < f(#»xi) then ▷ Selection
8: #»xi ← #»ci
9: if f(#»xi) < f(#»yi) then ▷ Update best

10: #»y ← #»xi
11: end if
12: end if
13: end for
14: end while

We restrict the software to the termination criterion of a maximum number

of iterations such that a limited amount of function evaluations is performed in

one optimization run. A termination criterion based on a maximum number of

function evaluations makes sense from a practical perspective. This way, users

can easily be informed of the approximate runtime that is left until termination

and there is a possibility to reproduce results on different PC’s2. We only count

the evaluations of points satisfying all hard constraints towards reaching the

maximum number of function evaluations. The hard constraints define the ranges

of the optimization variables and if one of them is not satisfied, the evaluator

immediately returns a very large value. The time this takes is negligible compared

to the time it takes the evaluator to evaluate a point in the search space of the

problem that does not violate the ranges of the optimization variables. Different

optimization runs on the same problem can therefore only vary little in runtime as

long as the computation environment remains unchanged. The maximum number

of function evaluations (resulting in a feasible solution) can be seen as another

auxiliary parameter of DE in Diamond. In this report we refer to it as E.

2Because of DE’s stochasticity, results cannot exactly be reproduced unless the same random
number stream is used.

2.3. Conclusions on Current Situation 17

2.3 Conclusions on Current Situation

We have three problems at our availability that we briefly discuss in Section

2.1. One of those problems is of the mixing type and the other two are of the

technology type. A new problem instance is created when an alteration is made

to an existing problem. In Section 2.2 we describe how DE works. DE is a

stochastic optimization method that makes use of a population of solutions in

the search space of a problem on which mutation, crossover, and selection take

place such that the population hopefully converges in the direction of the global

optimum. Like all metaheuristics, DE’s effectiveness and efficiency depend on the

values of several auxiliary optimization parameters. The auxiliary optimization

parameters of DE are the population size NP , the mutation factor F , and the

crossover constant CR. The maximum number of function evaluations E can

also be seen as an auxiliary parameter of DE in Diamond.

18 Chapter 2. Current Situation

Chapter 3

Literature Review

In this chapter we describe the literature relevant to the process of tuning auxil-

iary optimization parameters. The focus is on tuning the auxiliary optimization

parameters of DE. We describe different tuning approaches in Section 3.1. One of

the approaches is meta-optimization, which requires the selection of a meta-level

optimizer. In Section 3.2 we review different meta-level optimizers. We conclude

this chapter in Section 3.3.

3.1 Tuning Auxiliary Optimization Parameters

Because FC would like to see that no decisions concerning auxiliary optimization

settings have to be made by the user, the auxiliary optimization parameters need

to be tuned for DE in Diamond. Even though tuning is crucial to metaheuristic

optimization both in academic research and for practical applications, only lim-

ited research has been devoted to it (Birattari, 2009). There are three different

ways in which parameter tuning can be done, namely parameter selection, online

parameter initialization, and offline parameter initialization.

Parameter selection involves selecting values for the auxiliary optimization

parameters relying on conventions and default values. A default set of parameters

however might lead to satisfying results on some problems but can fail to yield

good results on other problems. Parameter selection is therefore generally not a

good tuning strategy. In practice though it is often applied.

Online parameter initialization is also referred to as parameter control. It in-

volves changing the parameter values during the search. The following approaches

can be distinguished in the field of online parameter initialization:

• Deterministic parameter control: Random or deterministic changes in pa-

rameter values are made at predefined moments, meaning that the progress

of the search is not taken into account. A deterministic parameter control

strategy that has been used in combination with DE is steadily decreasing

19

20 Chapter 3. Literature Review

the crossover constant CR as the number of performed iterations increases

(Mezura-Montes & Palomeque-Ortiz, 2009).

• Adaptive parameter control: Feedback from the search progress is used to

control the values of the auxiliary optimization parameters. An adaptive

parameter control strategy that has been used in combination with DE

is selecting a value for the mutation factor based on the relative difference

between the solution values corresponding to the best and worst population

members (Ali & Törn, 2004).

• Self-adaptive parameter control: This can be seen as a subclass of adaptive

parameter control. In self-adaptive parameter control, each member of

the population has an individual auxiliary optimization parameter for a

certain step that evolves during the search. Self-adaptive parameter control

strategies for DE would involve replacing F by an NP -dimensional vector

of Fis or replacing CR by an NP -dimensional vector of CRis such that each

population member corresponds to their own mutation factor or crossover

constant. Fis or CRis that did not lead to the generation of good trial

vectors during a part of the search can then be replaced by other Fis or CRis

that did lead to the generation of good trial vectors or by randomly selected

other values within a certain range (Brest, Greiner, Boskovic, Mernik, &

Zumer, 2006).

There are quite a few DE adaptations that make use of online parameter ini-

tialization (Das & Suganthan, 2011). None of these seem promising for Diamond

though: online parameter initialization approaches usually introduce new auxil-

iary optimization parameters whose values the user must decide upon. Further-

more, experiments have shown that there is no general or consistent advantage

to using online parameter initialization in combination with DE as opposed to

using classical DE with good parameters (Pedersen, 2010).

In offline parameter initialization, the values of the different auxiliary param-

eters are fixed before the start of an optimization run instead of updated during

the execution of the run. The following approaches can be distinguished within

the field of offline parameter initialization:

• Manual tuning: This is also referred to as experimentational tuning. It

involves trying a default set of values for the auxiliary parameters and based

on the results thereof trying a new set of values (Talbi, 2009). This process

is repeated until a satisfying set of values for the auxiliary parameters is

3.1. Tuning Auxiliary Optimization Parameters 21

found. Manual tuning is a widely applied tuning strategy for metaheuristics

but it is not a feasible approach for Diamond since manual tuning requires

a lot of input from the user and is hence a time consuming approach, even if

the user is familiar with the optimization method (Adenso-Diaz & Laguna,

2006).

• Design of experiments: Performing a design of experiments (DOE) can over-

come the problems involved with manual tuning (Box, Hunter, & Hunter,

2005). In tuning parameters with a DOE, each auxiliary parameter is as-

signed a number of values. These values can be selected randomly or via a

specific procedure such as Latin hypercube sampling (McKay, Beckman, &

Conover, 1979). All combinations of the values for the different auxiliary

parameters are then evaluated several times to give an indication of how

well each combination of values performs1. The number of values for each

variable cannot be too small because in that case the best-encountered aux-

iliary optimization setting might not be as close to the optimal settings as

one would like them to be and hence not yield satisfactory results on the

actual problems. A large number of values leads to a very large number

of experiments though, which is a drawback of performing a DOE. DOE

is a popular method to determine auxiliary parameters for an algorithm,

especially when the actual problems are theoretical functions that do not

require much evaluation time. In Diamond though, the computation time

of each experiment can be large, making DOE a less suitable approach.

• Meta-optimization: The search for the best auxiliary optimization settings

of a metaheuristic can be treated as an optimization problem in its own

right. Dealing with this optimization problem defines the concept of meta-

optimization. In this concept, a black-box optimization method is used

as an overlaying meta-optimizer for finding good auxiliary optimization pa-

rameters for another optimization method which in turn is used to optimize

the actual problem (Pedersen, 2010). We portray this concept graphically

in Figure 3.1. With an effective and efficient meta-optimizer, a near-optimal

set of auxiliary optimization parameters for another optimization method

for a specific problem can be obtained. As opposed to performing a DOE,

meta-optimization requires the evaluation of only a small number of values

for the auxiliary parameters, provided that an efficient meta-optimizer has

1If the base-level algorithm is deterministic, each combination of values for the different
auxiliary parameters only has to be evaluated once. Metaheuristics are generally defined as
stochastic algorithms though (Luke, 2013).

22 Chapter 3. Literature Review

been selected. We review different meta-optimizers in Section 3.2.

Actual problem with
optimization variables

Base-level optimizer with auxiliary parameters (meta-
heuristic)

Meta-level optimizer

Figure 3.1: The concept of meta-optimization, based on Pedersen (2010)

3.2 Meta-level Optimizers

We have identified three approaches within the field of offline parameter initial-

ization. These approaches are parameter selection, DOE, and meta-optimization,

which requires the implementation of a meta-optimizer. In this section we review

different meta-optimizers. We distinguish the following three types:

• Metaheuristics: Since it is difficult to make assumptions about the search

spaces resulting from varying the auxiliary optimization parameters of a

base-level algorithm, a metaheuristic is typically used as overlaying meta-

optimizer (Bäck, 1994; Cortez, Rocha, & Neves, 2001; Meissner, Schmuker,

& Schneider, 2006). The auxiliary optimization parameters of DE have been

meta-optimized with a metaheuristic by Neumüller, Wagner, Kronberger,

and Affenzeller (2012), who use a GA as meta-optimizer but restrict their

research to only one specific test function. Using a metaheuristic as meta-

optimizer has a considerable drawback. As we have explained before, all

metaheuristics require the setting of auxiliary optimization parameters for

them to be effective and efficient. This is what makes them so generally

applicable. Following the outlines of Section 3.1, one would find that the

best approach to obtain good auxiliary parameters for the metaheuristic

that is implemented as meta-optimizer would be to implement a meta-

meta-optimization method. But where does this stop? We would hence

like to find a meta-optimization method that does not require the setting

of any auxiliary optimization parameters.

3.2. Meta-level Optimizers 23

• Race algorithms: Racing involves iteratively evaluating several possible

auxiliary parameter settings and discarding a setting as soon as sufficient

statistical evidence is gathered against it. Because of this, racing works

best for base-level algorithms that have low stochasticity. Race algorithms

are originally invented as a way to reduce the amount of experiments that

need to be done when performing a full factorial experiment or other type

of DOE (Maron & Moore, 1994; Birattari, 2002). Because of this, all aux-

iliary parameter combinations that are evaluated need to be fixed in the

initialization phase of a race algorithm. This however has as result that the

optimal settings resulting from racing might not be as close to optimal as

one would like them to be since only a limited amount of auxiliary param-

eter combinations can be selected. Race algorithms can be adapted though

by generating a new possible auxiliary parameter setting as soon as another

setting is discarded (Van Dijk, Mes, Schutten, & Gromicho, 2014). This

approach brings performing a DOE and doing meta-optimization together

by turning racing into a (guideline for constructing a) population-based

meta-optimizer. For deterministic2 or low-stochastic base-level algorithms,

racing is probably the best way to go. The same goes for base-level algo-

rithms depending on categorical parameters because, since racing is based

on performing a DOE, it can easily deal with those as well.

• Classical direct search methods: Recently, some classical direct search meth-

ods have been implemented as meta-optimizers. Classical direct search

methods are relatively intuitive optimization methods, stemming from the

beginning of the digital age, that were invented for optimizing one- or few-

dimensional functions without requiring any knowledge about the gradient

of the function that is being optimized (Lewis, Torczon, & Trosset, 2000).

Such methods have fallen out of favour with the mathematical optimization

community by the early 1970s because they lacked coherent mathematical

analysis but are still used in some practical applications (Kolda, Lewis, &

Torczon, 2003). Although not at all competitive with metaheuristics on

most types of problems, classical direct search methods are generally able

to quickly locate satisfactory solutions in low-dimensional search spaces and

do not require the setting of auxiliary optimization parameters, omitting

the need for meta-meta-tuning. This makes them well suitable for meta-

optimization in practice, provided that the base-level algorithm does not

2In this case multiple problem instances have to be defined and the stochastic component is
in which of those instances are tested.

24 Chapter 3. Literature Review

have many auxiliary optimization parameters. Three well-known classi-

cal direct search methods that use only function evaluations to search for

the optimum are the Hooke-Jeeves (HJ) method, the Nelder-Mead (NM)

method, and the Luus-Jaakola (LJ) method (Armaou & Kevrekidis, 2005).

We briefly review each of those.

The HJ method

The HJ method (Hooke & Jeeves, 1961), also known as pattern search, has been

implemented as meta-level optimizer for several base-level algorithms (Cohen &

Meyer, 2011; Gao et al., 2012). The method considers 2n points in the search

space that lie around one randomly selected base point in a pattern such that

each of those 2n points is equally far away from the base point and differs from

the base point in only one of the variables that make up the search space. We

depict a two-dimensional pattern that follows those rules in Figure 3.2a. In

meta-optimization, the variables that make up the search space are the auxiliary

parameters of the base-level optimizer.

base point

new base point

(a) A pattern

old base point

new base point

(b) An exploratory move

base point

new base point

(c) A shrink move

Figure 3.2: A pattern and its movements in a two-dimensional search space

This pattern is iteratively moved across the search space or shrunk towards

its base point so that hopefully the global optimum is more and more closely

approximated as the iterations pass. In each iteration, the points surrounding

the base point are evaluated and the one corresponding to the best solution value

becomes the new base point, provided that this solution value is better than

the one corresponding to the current base point. This is an exploratory move,

which we visualize in Figure 3.2b. If none of the solution values corresponding to

the surrounding points are better than the one corresponding to the base point,

the base point remains unchanged and in the following iteration 2n new points

surrounding the same base point are evaluated. Those new surrounding points

are located half as far away from the base point as those in the previous iteration.

This is a shrink move, which we visualize in Figure 3.2c. An iteration is finished

3.2. Meta-level Optimizers 25

after either an exploratory or a shrink move has been performed. We construct

pseudocode for the HJ method and display it in Algorithm 3.

Algorithm 3 The HJ method for a minimization problem

INPUT: Search space of the problem
OUTPUT: Best-found position in the search space P

1: Pick initial pattern size based on search space
2: Pick random base point P in the search space
3: y ← f(P)
4: while Termination criterion not met do
5: SHRINK ← TRUE
6: for j ← 1, 2n do
7: Determine surrounding point Pj

8: if f(Pj) < y then
9: P ← Pj

10: y ← f(Pj)
11: SHRINK ← FALSE
12: end if
13: end for
14: if SHRINK then
15: Shrink pattern to half its size
16: end if
17: end while

The NM method

The NMmethod (Nelder & Mead, 1965) is one of the most popular classical direct

search methods because of its nice analogy with geometry and its ability to quickly

locate an optimum by making use of the structure of the search space (Wright,

2012). It appears though that the NMmethod has not been implemented as meta-

optimization method. This might be due to it being more difficult to understand

and implement, or to it being more likely to get stuck in local optima compared

to other classical direct search methods. The method considers the vertices of an

n-dimensional simplex that iteratively moves through the search space, hopefully

in the direction of the global optimum. An n-dimensional simplex consists of

n + 1 vertices, each connected with one another. A one-dimensional simplex is

a line segment and a two-dimensional simplex is a triangle. We depict a two-

dimensional simplex and the movements it can perform in the NM method in

Figure 3.3.

The idea behind the NM method is to update the simplex in each iteration

by replacing the worst vertex with a more promising one or to shrink the simplex

towards the best point. Each iteration starts with reflecting the simplex away

26 Chapter 3. Literature Review

worst best

second− worst Pr

Pe

Pci

Pco

(a) Reflection, expansion, and contraction

worst best

second− worst

(b) Shrinking

Figure 3.3: A simplex and its movements in a two-dimensional search space

from the worst vertex so that point Pr is created, see Figure 3.3a. Pr replaces

the worst vertex if it corresponds to a better solution value than the second-

worst vertex. This leads to an updated simplex and ends the iteration unless Pr

corresponds to a better solution value than the best vertex. In that case, the

simplex is expanded and point Pe is created, see Figure 3.3a. Pr is replaced by

Pe if Pe corresponds to an even better solution value. This then marks the end

of the iteration.

If Pr did not replace the worst vertex, implying that it did not correspond to

a better solution value than the second-worst vertex and hence did not lead to an

updated simplex, a contraction is performed. This can either be an outside con-

traction yielding point Pco or an inside contraction yielding point Pci, see Figure

3.3a. An outside contraction is performed if Pr corresponds to a better solution

value than the worst vertex and an inside contraction is performed if this is not

the case. The contracted point replaces the worst vertex if it corresponds to a

better solution value, leading to an updated simplex and ending the iteration. If

the contracted point does not correspond to a better solution value, the simplex

is shrunk towards the best vertex such that n new vertices are created, see Figure

3.3b. We construct pseudocode for the NM method and display it in Algorithm

4. We also create a flowchart for the NM method which is more detailed than

the pseudocode. We refer the interested reader to Appendix B.

The LJ method

The LJ method (Luus & Jaakola, 1973) has been implemented as meta-level

optimizer for several base-level algorithms (Rychlicki-Kicior & Stasiak, 2014;

Rathore, Chauhan, & Singh, 2015). The auxiliary optimization parameters of

3.2. Meta-level Optimizers 27

Algorithm 4 The NM method for a minimization problem

INPUT: Search space of the problem
OUTPUT: Best-found position in the search space Pn

1: Pick n+ 1 random points in the search space: P0, P1, .., Pn

2: Order points such that f(P0) > f(P1) > ·· > f(Pn)
3: while Termination criterion not met do
4: Reflection to obtain point Pr

5: if f(Pr) < f(P1) then
6: P0 ← Pr

7: if f(Pr) < f(Pn) then
8: Expansion to obtain point Pe

9: if f(Pe) < f(Pr) then
10: Pr ← Pe

11: end if
12: end if
13: else
14: if f(Pr) < f(P0) then
15: Outside contraction to obtain point Pc

16: else
17: Inside contraction to obtain point Pc

18: end if
19: if f(Pc) < f(P0) then
20: P0 ← Pc

21: else
22: Shrink towards point Pn

23: end if
24: end if
25: Order points such that f(P0) > f(P1) > ·· > f(Pn)
26: end while

DE have been meta-optimized with Local Unimodal Sampling (LUS) (Pedersen

& Chipperfield, 2008), a minor adaptation of the LJ method, by Pedersen (2010).

The LJ method starts with the selection of a random point in the search space.

We refer to this point as the current point. In each iteration, a random point

is selected from a range and added to the current point. This range is initially

equal to the range of the search space. If the point resulting from the addition

corresponds to a better solution value than the current point, it replaces the cur-

rent point. The search range is then re-centred around the current point and the

iteration is finished. If the point resulting from the addition does not correspond

to a better solution value than the current point, the search range from which

the random points are drawn is decreased in size and the current point remains

28 Chapter 3. Literature Review

unchanged. Because the search range is always re-centred around the current

point, it can extend over the boundaries of the search space. If a point is drawn

inside the search range that does not lie inside the search space, it is discarded

and a new point is drawn without decreasing the search range. We construct

pseudocode for the LJ method and display it in Algorithm 5.

Algorithm 5 The LJ method for a minimization problem

INPUT: Search space of the problem
OUTPUT: Best-found position in the search space P

1: Pick random point P in the search space
2: Set search range equal to search space
3: while Termination criterion not met do
4: Pick random point Pr in search range
5: Pn ← P + Pr

6: if f(Pn) < f(P) then
7: P ← Pn

8: Re-centre search range around P
9: else

10: Decrease search range by a factor 0.95 in each direction
11: end if
12: end while

LUS differs from the LJ method in the sense that the factor 0.95 used to

decrease the search range in line 9 of the algorithm is replaced by (1/2)1/3n. This

adaptation of the original LJ method has as a result that the method is able

to more quickly locate near-optimal solutions in low-dimensional search spaces

and is less likely to converge to non-optimal solutions in high-dimensional search

spaces.

3.3 Conclusions on Literature Review

In Section 3.1 we discuss several approaches for auxiliary parameter tuning. These

approaches are parameter selection, online parameter initialization, and offline

parameter initialization. One form of offline parameter initialization is meta-

optimization, which requires the implementation of a meta-optimizer. We review

several types of meta-optimizers in Section 3.2, namely metaheuristics, race al-

gorithms, and classical direct search methods.

Chapter 4

Solution Approach

In Chapter 3 we have discussed several approaches for tuning auxiliary optimiza-

tion parameters. We select a tuning strategy for DE in Diamond in Section 4.1

and determine our solution approach this way. In Section 4.2 we construct a

flowchart of the new situation in Diamond. We conclude this chapter in Section

4.3.

4.1 Tuning in Diamond

The approaches for tuning auxiliary optimization parameters that we have dis-

cussed in Chapter 3 are parameter selection, online parameter initialization, and

offline parameter initialization. We discuss the applicability of parameter selec-

tion to Diamond in Section 4.1.1 and the applicability of offline parameter initial-

ization to Diamond in Section 4.1.2. Online parameter initialization approaches

usually introduce new auxiliary optimization parameters whose values the user

must decide upon, worsening the problem that decisions concerning auxiliary op-

timization settings have to be made by the user. Online parameter initialization

does therefore not seem promising in the context of Diamond.

4.1.1 Parameter Selection in Diamond

Parameter selection is the simplest tuning approach. It involves selecting values

for the auxiliary optimization parameters relying on conventions and default val-

ues. Parameter selection is generally not a good tuning strategy since a default

set of parameters might lead to satisfying results on some problems but can fail to

yield good results on other problems. However, due to its simplicity, parameter

selection is a preferred approach when it can yield good results.

In Chapter 2 we have identified four auxiliary parameters in Diamond that

require tuning: the population size NP , the mutation factor F , the crossover

constant CR, and the maximum number of function evaluations E. Some con-

ventions and default values regarding DE’s auxiliary optimization parameters

29

30 Chapter 4. Solution Approach

NP , F , and CR can be found in literature. We summarize these in Table 4.1.

We base the required ranges in this table on Storn and Price (1997) and the

common ranges and values on Storn and Price (1997), Lampinen et al. (2005),

Rönkkönen, Kukkonen, and Price (2005), and Talbi (2009).

Table 4.1: The three auxiliary optimization parameters of DE

Parameter Required range Common range Common value

NP {4, 5, ...} {5n, 5n+ 1, .., 10n} ⌈7.5n⌉ †

F [0, 2] [0.4, 1] 0.7 †

CR [0, 1] {[0, 0.2], [0.8, 1]} 0.9

† Due to lack of consensus on a proper default value for this pa-
rameter, we select the midpoint of its common range.

Although good values for NP and F depend on the problem at hand, on the

runtime, and on each other’s value, a value of 0.9 appears to be near-optimal for

CR in a wide variety of problems, independent of the values selected for NP and

F and the runtime, and is therefore generally advised in literature (Rönkkönen

et al., 2005; Montgomery, 2009; Talbi, 2009). CR ∈ [0, 0.2] has been shown

to be effective for quite a lot of problems as well and on those problems more

efficient than CR = 0.9, but research has pointed out that the problems on which

CR ∈ [0, 0.2] is effective and efficient are all separable functions1 (Lampinen et al.,

2005; Rönkkönen et al., 2005). Lots of theoretical test and benchmark functions

are separable but the problems in Diamond are definitely not. We can thus

apply parameter selection to the auxiliary optimization parameter CR by setting

CR = 0.9 as default value, and tune the auxiliary optimization parameters NP

and F using a different approach.

We also apply parameter selection to the fourth auxiliary parameter of DE

in Diamond, the maximum number of function evaluations E. This is because a

larger maximum number of function evaluations generally leads to a better solu-

tion value but also to more computation time. We have to cut it off somewhere.

We decide to terminate the algorithm as soon as 1500 · n function evaluations

resulting in a feasible solution value have been performed, n being the amount of

optimization variables of the problem. Because a number of function evaluations

much larger than 1500n is generally required to obtain good solution values with

DE, we make sure that our solution approach is such that the maximum number

1Separable functions are functions depending on multiple variables that can be represented
as a combination of functions depending on one variable, such as f(x, y) = g(x)h(y).

4.1. Tuning in Diamond 31

of function evaluations can be altered if desired in practice or in further research.

4.1.2 Offline Parameter Initialization in Diamond

Recall from Chapter 3 that the field of offline parameter initialization can be

subdivided in the fields of manual tuning, DOE, and meta-optimization. Manual

tuning is not a promising approach for Diamond because it requires a lot of

input from the user. Performing a DOE and applying meta-optimization make it

possible to search for good auxiliary DE parameters for a certain problem without

requiring any input from the user during the search. No input from the user is

required before the search either (except of course for a datastore, a network, and

optimization variables), provided that the method for determining the auxiliary

parameter values on which the DOE is performed or the optimizer implemented

at the meta-level is parameter-free.

Both performing a DOE with a parameter-free method for determining the

auxiliary parameter values on which the DOE is performed and applying meta-

optimization with a parameter-free meta-level optimizer are promising approaches

for Diamond. They can tackle the problem that we have identified in Chapter 1.

Meta-optimization has the advantage over DOE that less combinations of values

for the auxiliary optimization parameters have to be evaluated, provided that

a good meta-optimizer has been selected, which can result in better solutions

and large computational time savings. We therefore select meta-optimization

in our solution approach as the tuning strategy for DE’s auxiliary optimization

parameters NP and F .

Meta-optimization requires the implementation of a meta-level optimizer,

which we want to be parameter-free. To decide upon the optimization method

that we implement as meta-level optimizer, we introduce the concept of meta-level

search spaces. Just like the problems in Diamond induce search spaces resulting

from varying the optimization variables, the meta-optimization problems in Di-

amond induce search spaces resulting from varying DE’s auxiliary optimization

parameters. We call the search spaces that result from varying NP and F the

meta-level search spaces of Diamond.

We can examine the meta-level search spaces in Diamond with the creation

of 3-D plots. This can help us in selecting an effective and efficient meta-level

optimizer. To examine the meta-level search space of a problem in Diamond, we

perform a DOE with grid search. In a grid search each auxiliary optimization

parameter is assigned a range. These ranges are split up in equally sized intervals

of which the endpoints define the values of the auxiliary parameters that are used

32 Chapter 4. Solution Approach

in performing the DOE. In two dimensions the combinations of values can easily

be visualized as a grid, hence the name. As we have explained in Chapter 3,

performing a DOE is a computationally time expensive task. We hence only

examine the meta-level search space of the Mix problem. Optimization runs on

this problem take considerably less computation time than optimization runs on

the other two problems due to its smaller dimension and smaller evaluation time

per point in the base-level search space (see Table 2.1).

To perform a DOE with grid search, we need to select ranges and interval sizes

for the auxiliary parameters, and decide how many times each combination of

auxiliary parameter values is evaluated. The ranges for the auxiliary parameters

we choose such that the common ranges of Table 4.1 are widely spanned, namely

[n, 15n] for NP and [0.1, 1.5] for F . We select n as interval size for NP and 0.1

for F so that we obtain 15 values for each auxiliary parameter. We perform a

DOE by evaluating each combination of values 25 times to give an indication of

how well each combination of values performs.

To approximate the meta-level search space of the Mix problem, we depict the

average solution value resulting from each combination of auxiliary optimization

parameters in a 3-D plot. We do a log transformation on the solution values

to depict the structure of the entire search space more clearly. This is necessary

because there exist large differences between the average solution values resulting

from different auxiliary parameter settings due to a large amount of penalized

soft constraints that can be far from satisfied in some optimization runs. Because

solution values indicating profit are negative and log transformation are impossi-

ble on negative values, we subtract the lowest solution value of all solution values

prior to the log transformation. The resulting plot is an approximation of the

meta-level search space of the Mix problem. We depict it in Figure 4.1.

We learn from Figure 4.1 that the meta-level search space of the Mix problem

is likely nearly bimodal. With bimodal we mean that there are only two optima in

the search space. Of these optima one is located on either side of the discontinuity

at F = 1. The discontinuation around F = 1 can be explained by inspecting the

mutation step. Recall from Chapter 2 that mutation is performed using the

equation # »mi =
»xr1(i) + F · (# »xr2(i) −

»xr3(i)), i = 1, .., NP . For F = 1, # »xr1(i) + F ·
(# »xr2(i)−

»xr3(i)) =
»xr2(i)+F ·(# »xr1(i)−

»xr3(i)). This has as a result that the offspring

is slightly less diversified after each iteration when DE is performed with F = 1

compared to when DE is performed with, say, F = 0.95 or F = 1.05. Apparently,

after a large amount of iterations, this effect becomes quite a problem, especially

for small population sizes.

4.1. Tuning in Diamond 33

Figure 4.1: Approximation of the meta-level search space of the Mix problem

If we assume that the meta-level search space of the Mix problem is somewhat

representative for all Diamond’s meta-level search spaces resulting from varying

DE’s auxiliary optimization parameters NP and F , the NM method seems to

be the most promising meta-level optimizer for Diamond. This is because the

meta-level search space of the Mix problem appears to be near-unimodal2, with

statistical noise, as long as either F ∈ [0, 1] or F ∈ [1, 2]. We state in Chapter 3

that it appears that the NM method has not been implemented as meta-optimizer

thus far and that this might be due to the fact that it is more likely to get stuck

in local optima compared to other classical direct search methods. This is not a

problem though if our assumption of near-unimodality of the meta-level search

spaces resulting from varying DE’s auxiliary optimization parameters NP and

F is correct. It is in fact advantageous if the assumption is correct, because the

2Unimodal means that there is only one optimum in the search space. With near-unimodal
we mean that there can be multiple optima but that these optima do not differ much in solution
value from one another.

34 Chapter 4. Solution Approach

NM method can make use of the unimodality of a search space to quickly locate

an optimum. Another advantage of the NM method is that it can cope well with

some (statistical) noise in search spaces. If at times a wrong point is accepted as

new vertex in the simplex, it does not mean that the simplex cannot converge in

the direction of the optimum anymore.

That there exists an optimum on either side of F = 1, we resolve by restricting

the domain of the meta-level search space to F ∈ [0, 1]. F > 1 is rarely efficient

and has not been required for any problem that has successfully been optimized

with DE (Rönkkönen et al., 2005; Das & Suganthan, 2011). If the simplex from

the NM method is reflected or expanded to a point outside the domain of the

meta-level search space, we immediately assign it a very large value so that no

computation time is wasted on such points. We further restrict the domain of the

meta-level search space to NP ∈ [4, 15n]. This way the values for NP that the

meta-level optimizer can encounter satisfy the required range and widely span

the common range from Table 4.1.

Just like we evaluated each setting 25 times in performing the DOE, we

use the average solution value over 25 base-level optimization runs as the meta-

level performance measure. Although performing less base-level optimization

runs per setting can speed up meta-optimization runs considerably, we decide

not to do so due to DE’s stochastic nature, which we back up by depicting

the standard deviations of the 25 solution values per point in the approximate

meta-level search of the Mix problem in Figure 4.2. Even though neighbouring

points in the approximate meta-level search space of Figure 4.1 are not that close

to one another, the standard deviations in the points are quite large relative

to the differences in average solution values between neighbouring points. We

therefore expect the meta-optimizer to be prone to misconvergence if we take

the average solution value over a number of base-level optimization runs that is

too small and settle with 25. If the meta-level standard deviation space of the

Mix problem (Figure 4.2) is representative for all Diamond’s meta-level standard

deviation spaces, we might be able to speed up our solution approach by making

use of the fact that more promising points in the meta-level search space generally

correspond to lower standard deviations. We let this remain a topic for further

research.

We round the values obtained for NP in a meta-optimization run to the

nearest integer for performing the base-level optimization runs. We do this in

such a way that it does not influence the locations of the vertices in the meta-level

search space. Furthermore, we do not pick the initial simplex vertices randomly

4.2. The New Situation in Diamond 35

Figure 4.2: Standard deviations of the 25 solution values per point in the ap-
proximate meta-level search of the Mix problem

in the entire meta-level search space, but only in that part of the meta-level search

space in which the points satisfy the common ranges that we have identified in

Table 4.1. This way we hopefully encounter near-optimal settings more quickly.

4.2 The New Situation in Diamond

Our solution approach imposes a new situation in Diamond. We construct a

flowchart of this new situation and depict it in Figure 4.3. We base this flowchart

on Figures 1.2 and 3.1. There are a couple of boxes in this flowchart that do

not have uninterrupted but dashed contour lines. With a dashed contour line we

denote that the surrounding box contains an iterative procedure. The colour of

the dashed contour line specifies the amount of times the procedure in that box

is evaluated when the procedure in the surrounding box is evaluated once.

36 Chapter 4. Solution Approach

input
Fully defined problem:
datastore, network,

optimization variables

Meta-
optimization box
selected by user?

Other instance of
problem already
meta-optimized?

no

Inform user that
(time-consuming)

meta-optimization will
be performed

Set values for DE’s
auxiliary parameters
based on previous

meta-optimization(s)

yes

yes no

Actual problem with
optimization variables

DE

Actual problem with
optimization variables

DE with auxiliary parameters

NM

Store input together
with meta-optimized

values for DE’s
auxiliary parameters

output
Highest profit encountered
and corresponding set of
values for the optimization

variables

Figure 4.3: A flowchart of the new situation in Diamond

4.3. Conclusions on Solution Approach 37

With a green dashed contour line we denote 1500 · n evaluations, in line with

Section 4.1.1. With a blue dashed contour line we denote p ·q evaluations, p being

the number of times we evaluate each point in the meta-level search space and

q the number of points in the meta-level search space that we evaluate. In line

with Section 4.1.2, we let p equal 25. Pedersen (2010) states that a good value for

q to aim for in the meta-optimization of metaheuristics is 20 times the number

of auxiliary optimization parameters of the base-level optimizer that are being

meta-optimized. In our solution approach, this number is 2. We however believe

we can use a significantly smaller value for q than 40 because the meta-optimizer

we select makes specific use of the structure of the meta-level search space. We

decide upon the value q = 25. In Chapter 5 we perform a sensitivity analysis on

q.

From the perspective of the user, Diamond only changes marginally. The

dialog that appears when a user clicks the optimize button is going to be slightly

different. After all, in the new situation, the user does not have to set any

auxiliary optimization parameters anymore. The part in which the auxiliary

parameters currently have to be selected can be replaced by one tick box and a

bit of explanation regarding that box. The box should be ticked if the user desires

to perform a meta-optimization. In the explanation it should be made clear that

ticking this box will drastically (by a factor pq) increase the computation time

and that it should be done only when the PC on which Diamond is running can

be occupied for a while. It can also state that meta-optimization might be a good

idea when standard optimization did not yield satisfactory results. A button in

this dialog that the user can press to obtain a rough approximation of the required

runtime for a meta-optimization is optional and so is a subfield where the user

can adjust the number of base-level function evaluations and thus the runtime.

We indicate in the flowchart that once a problem has been meta-optimized,

new instances of that problems are not meta-optimized by default. This implies

that good auxiliary optimization parameters are generalizable across problem

instances. We test in Chapter 5 whether this is really the case.

4.3 Conclusions on Solution Approach

In Section 4.1 we describe our solution approach for tuning the auxiliary param-

eters of DE in Diamond. Our solution approach involves parameter selection

and meta-optimization. We apply parameter selection to the crossover constant

(CR) and the maximum number of function evaluations (E), and apply meta-

38 Chapter 4. Solution Approach

optimization to the population size (NP) and the mutation factor (F). We select

the NM method as meta-optimizer. We construct a flowchart of the new situa-

tion in Diamond in Section 4.2. From the perspective of the user, Diamond only

changes marginally.

Chapter 5

Solution Tests

In this chapter we discuss the performance of the solution approach that we have

proposed in Chapter 4. To do so, we determine suitable tests in Section 5.1. We

present and discuss the results of those tests in Section 5.2. We conclude this

chapter in Section 5.3.

5.1 Test Design

We evaluate several performance aspects for our solution approach, namely reli-

ability, robustness, and, efficiency. We formulate questions for the evaluation of

these aspects in Table 5.1 and describe how we assess each of them in the context

of Diamond.

Table 5.1: Performance aspects we evaluate for our solution approach

Aspect We evaluate this aspect by asking the question

Reliability Does the solution approach yield approximately similar results when
the input remains unchanged?

Robustness Does the solution approach yield approximately similar results when
the input slightly changes?†

Efficiency Does the solution approach yield good results in comparison to the
current situation or alternative approaches?

† Both the actual problems in Diamond and the meta-level parameter values can
be seen as input. We discuss robustness against changes in both types of input.

Reliability

To evaluate the reliability of our solution approach, we apply our solution ap-

proach 5 times to each of the problems that we have at our availability. With each

of the 3 times 5 resulting auxiliary parameter settings, we perform 20 base-level

optimizations to assess whether the different auxiliary parameters we obtain for

a problem perform similarly.

39

40 Chapter 5. Solution Tests

Robustness against changes in the actual problems

We can evaluate changes in the actual problems by performing base-level opti-

mization runs on one instance of a problem using the auxiliary parameters that

result from multiple meta-level optimization runs on another instance of that

problem. Recall from Chapter 2 that a new problem instance arises when an

alteration is made to an existing problem. We construct several new instances

of the Mix problem and perform 20 base-level optimization runs on those new

instances with each of the 5 auxiliary parameter settings we obtain with test-

ing the reliability of the approach. We assume that if the different settings all

perform similarly on a new problem instance, they perform well and thus induce

robustness. There are more precise approaches to assess the robustness of our

solution approach against changes in the actual problems, but we prefer this one

for our research because it omits the need for performing meta-optimization runs

on the new problem instances.

We construct 7 new instances of the Mix problem. We do this by creating 3

separate adaptations that can be made to the original Mix problem and denoting

a new instance with every possible combination of adaptations. We assign a letter

to each adaptation so that we can refer to the new instances using letter codes.

We depict the changes and their corresponding letters in Table 5.2. An example

of a letter code is BA, with which we denote the problem instance in which the

buy limit of a raw is significantly decreased and an optimization variable is added.

We do not test for robustness against changes in the two technology problems

that we have at our availability.

Table 5.2: The adaptations we make to the Mix problem

Brief description of the adaptation Letter

Decreasing the price of the sale product by 10% P

Significantly decreasing the buy limit of a raw† B

Adding the input volume of another raw as optimization variable A

† With a significant decrease in buy limit we denote that the supply of
the raw in question can be no more than approx. 25% of its advised
value in successful optimization runs on the default problem instance.

Robustness against changes in the meta-level parameters

Although we ensured that our solution approach does not require any meta-level

input from the user, we did set two parameters that can be seen as input of

the meta-level optimizer. For clarity, we summarize all parameters and variables

5.1. Test Design 41

related to our solution approach that we have introduced in this research in Table

5.3. The two meta-level parameters are p and q. In our research, we perform

a sensitivity analysis on q. A sensitivity analysis on p can be performed as well

but we do not do so in our research since it would require a lot more meta-

optimization runs, which is very computationally time expensive. The same goes

for the auxiliary optimization parameters to which we applied the strategy of

parameter selection, CR and E.

The most appropriate way to perform a sensitivity analysis on q would be

to set several values for q, perform multiple meta-optimization runs with each of

those values, and perform base-level optimization runs with the resulting auxiliary

optimization parameters to give an indication of how well each different value

performs. We however perform the sensitivity analysis on q by keeping track

of the average target value corresponding to the best vertex of the simplex in

each meta-optimization run we perform to evaluate our approach’s reliability.

We use the average target value (of all meta-optimization runs we perform on

one problem) after q vertices have been evaluated as indication for how well that

value of q performs.

Table 5.3: Parameters and variables related to our solution approach

Level (Fig.3.1) Name Tuning approach Robustness test

Meta-level p † N/A None

” q ‡ N/A Sensitivity analysis

Base-level NP Meta-optimization None

” F ” None

” CR Parameter selection None

” E § ” None

Actual problem - N/A Adding a variable, adapting a
parameter, and combinations

† p denotes the amount of base-level optimization runs that are performed in
the evaluation of one point in the meta-level search space (Chapter 4).

‡ q denotes the amount of points in the meta-level search space that are eval-
uated in one meta-level optimization run (Chapter 4).

§ E denotes the maximum number of function evaluations resulting in a feasible
solution per base-level optimization run (Chapter 2).

Efficiency

To assess the efficiency of our solution approach, we can compare it to the current

42 Chapter 5. Solution Tests

situation, as far as we can speak of one at least. The best approach a user

unfamiliar with the field of optimization could adopt in the current situation is

to select the values for DE’s auxiliary parameters that are most commonly advised

in literature before performing an optimization. In Chapter 4 we have identified

those values to be NP = ⌈7.5n⌉, F = 0.7, and CR = 0.9. We can compare our

solution approach with the strategy of selecting those values for DE’s auxiliary

parameters. To this end, we perform 20 base-level optimization runs with the

auxiliary parameter values from Table 4.1 for each of the problems that we have

at our availability. We compare the 15 times 20 base-level optimization runs we

obtain in evaluating the reliability of our approach with the optimization runs

representing the current situation to assess whether our solution approach yields

better results.

The comparison between our solution approach and the current situation we

propose does not take meta-optimization runtime into account. To validate our

choice for the NM method as meta-optimizer, we compare it to two straightfor-

ward strategies that require a similar amount of computation time. We apply

both strategies 5 times to the Mix problem and perform 20 base-level optimiza-

tion runs with the resulting auxiliary optimization parameters to compare our

solution approach with these strategies. The two straightforward strategies are:

• DOE: Arguably the best strategy a user unfamiliar with the field of op-

timization could adopt in the current situation that is comparable to our

solution approach in terms of computation time is to perform a DOE with

grid search (as we have done in Chapter 4 to approximate a meta-level

search space), in which each auxiliary parameter combination is evaluated

25 times. We restrict the grid to the common ranges of the auxiliary opti-

mization parameters and equally divide the ranges such that 25 auxiliary

parameter combinations are evaluated.

• Randomization: The randomization strategy involves randomly selecting

25 distinct auxiliary parameter combinations within the common ranges

and evaluating each combination 25 times.

5.2 Test Results

In this section we present and discuss the results of the tests that we describe in

Section 5.1. We evaluate the reliability, robustness against changes in the Mix

problem, robustness against changes in the meta-level parameter q, and efficiency

5.2. Test Results 43

of our solution approach.

Reliability

We apply our solution approach 5 times to each of the problems that we have at

our availability and depict the resulting values for NP and F in Tables 5.4 – 5.6.

It can be seen in these tables that, with a small exception, the meta-optimizations

that yield larger values for NP , yield smaller values for F and vice versa. This

is an indication that the meta-level search spaces of the Tech and Split problems

contain some sort of valley like the one in Figure 4.1. We perform 20 base-level

optimization runs using each parameter combination from Tables 5.4 – 5.6 and

depict the results hereof in Figure 5.1.

Table 5.4: Results of the meta-optimization runs on the Mix problem

Name of meta-optimization run M1 M2 M3 M4 M5

Value found for NP 49 35 43 38 45

Value found for F 0.566 0.692 0.618 0.649 0.595

Table 5.5: Results of the meta-optimization runs on the Tech problem

Name of meta-optimization run T1 T2 T3 T4 T5

Value found for NP 117 58 70 67 113

Value found for F 0.283 0.469 0.415 0.408 0.334

Table 5.6: Results of the meta-optimization runs on the Split problem

Name of meta-optimization run S1 S2 S3 S4 S5

Value found for NP 39 40 55 156 40

Value found for F 0.483 0.469 0.391 0.310 0.478

Some meta-optimized auxiliary values for the Tech and Split problems show

a distinct worse performance than others. These are the values for NP and F

that stand out from the rest in Tables 5.5 and 5.6. Apparently the meta-level

search spaces of the different problems in Diamond do not look that much alike

as we assumed in Chapter 4. In particular, the assumption of unimodality in the

meta-level search spaces does not appear to be correct.

That the meta-level search spaces corresponding to the Tech and Split prob-

44 Chapter 5. Solution Tests

(a) Mix problem

(b) Tech problem (c) Split problem

Figure 5.1: Results of base-level optimization runs using meta-optimized values

lems are not unimodal can be due to statistical noise, which is there because of

DE’s stochasticity and the limited number of base-level optimization runs (p) we

perform to evaluate a point in the meta-level search space. In this case, increasing

p would increase unimodality of the meta-level search spaces. It would increase

meta-optimization runtime too though, which grows linearly with p. It is also

possible that the meta-level search spaces corresponding to the Tech and Split

problems are different from the one corresponding to the Mix problem in such a

way that they contain local optima no matter how large we set p. This induces

that our choice of meta-optimizer has not been such a good one, because the NM

5.2. Test Results 45

method requires near-unimodality in a search space to perform well.

Furthermore, there is no proof of convergence for the NM method1. In fact,

there are counterexamples demonstrating that, even in smooth two-dimensional

search spaces, the NM method can misconverge (McKinnon, 1998; Han, 2013).

A common way to deal with this in practice is to perform a (manual or auto-

mated) restart when the simplex becomes ill-conditioned or stagnates (Baudin,

2010; Wright, 2012).

Robustness against changes in the Mix problem

To evaluate the robustness of our solution approach against changes in the Mix

problem, we perform 20 base-level optimization runs on the new instances using

each of the 5 different auxiliary parameter combinations from Table 5.4 and see

how they compare to one another. We depict the results hereof in Figures 5.2

and 5.3.

The different auxiliary parameter settings show quite similar performance in

the new problem instances. An exception to this is M1, which appears to perform

somewhat worse than the other settings in instances where the sales price has

been decreased. In Table 5.4 it can be seen that M1 corresponds to the largest

value for NP and the smallest value for F . Perhaps the valley in the meta-

level search space of the Mix problem becomes smaller or steeper as a result of

decreasing the sales price. This could explain why M1 shows a lesser performance

than the other auxiliary parameter settings.

(a) Default problem instance (b) Problem instance P

Figure 5.2: Applying the auxiliary parameters obtained in meta-optimization
runs M1–M5 to the different instances of the Mix problem, part 1.

1Except for one-dimensional, unimodal objective functions (Lagarias, Reeds, Wright, &
Wright, 1998).

46 Chapter 5. Solution Tests

(a) Problem instance B (b) Problem instance A

(c) Problem instance PB (d) Problem instance PA

(e) Problem instance BA (f) Problem instance PBA

Figure 5.3: Applying the auxiliary parameters obtained in meta-optimization
runs M1–M5 to the different instances of the Mix problem, part 2.

In the new problem instances, the variance amongst runs performed with the

same settings and the variance between different settings is larger than in the

default problem. This is especially true for instances in which an optimization

5.2. Test Results 47

variable is added. A possible explanation for this is that adding an optimization

variable results in adding an extra dimension to the base-level search space. This

means that there are a lot more possible solutions, which makes the problem

harder to optimize. Since the different settings have resulted in quite similar

performance nonetheless, we conclude that our solution approach is quite robust.

For the Mix problem at least, and specified to the types of adaptations we have

made. More tests have to be performed to acquire knowledge about how robust

our solution approach is against changes in the actual problems and thus to what

extend meta-optimized auxiliary parameter values are generalizable across prob-

lem instances.

Sensitivity analysis on meta-level parameter q

To decide upon a good value for the meta-level parameter q, the number of points

in the meta-level search space to evaluate in one meta-optimization run, we per-

form a sensitivity analysis on this parameter. We depict the results hereof in

Figures 5.4 – 5.6. It appears that a value between 25 and 30 is a good choice for

q. Increasing the value further is unlikely to result in an improved target value

but does increase meta-optimization runtime, which grows linearly with q.

Figure 5.4: Sensitivity analysis on q using runs M1, M2, M3, M4, and M5

Efficiency

To evaluate the efficiency of our solution approach, we compare it with the current

48 Chapter 5. Solution Tests

Figure 5.5: Sensitivity analysis on q using runs T1, T2, T3, T4, and T5

Figure 5.6: Sensitivity analysis on q using runs S1, S2, S3, S4, and S5

situation. In Section 5.1 we have identified this as the approach of selecting

the in literature most commonly advised values for DE’s auxiliary optimization

parameters. We perform 20 optimization runs with the auxiliary parameter values

from Table 4.1 on each of the problems that we have at our availability. We depict

5.2. Test Results 49

the results hereof, together with the results of the base-level optimization runs

using the meta-optimized values we have obtained in testing the reliability of our

approach, in Figure 5.7.

(a) Mix problem (b) Tech problem (c) Split problem

Figure 5.7: The results of our solution approach versus the current situation

Because our solution approach has yielded values for NP and F that lead to

better performance than the current situation in all three problems, we consider it

efficient. However, the comparison on which this conclusion relies ignores meta-

optimization runtime. Selecting the default values from Table 4.1 requires no

computation time at all, whereas it costs our solution approach p · q · E times

the evaluation time of one point in the base-level search space of the problem

at hand to obtain good auxiliary optimization parameters. For our research this

already comes down to computation times of roughly 17, 70, and, 293 hours for

respectively the Mix, Tech, and Split problems. In practice, E likely has to be

much larger than 1500n, leading to even longer computation times. A comparison

to the current situation is therefore not a fair approach for drawing conclusions

about the efficiency of our solution approach.

As we have explained in Section 5.1, we also compare our solution approach to

50 Chapter 5. Solution Tests

two straightforward strategies that require a similar amount of computation time.

These two strategies are DOE and randomization. We apply both strategies 5

times to the Mix problem and depict the resulting values for NP and F of

these runs in Table 5.7. In this table, R1 – R5 denote the five times we apply

randomization. The reason that there is only one DOE entry in the table, is that

the resulting best auxiliary optimization parameter combination was the same in

each of the 5 times we performed a DOE. We perform 20 base-level optimization

runs using each auxiliary parameter combination from Table 5.7 and depict the

results hereof in Figure 5.8. In Table 5.8 we summarize the results of the base-level

optimization runs on the Mix problem using the auxiliary optimization parameter

values obtained with the 4 different strategies.

Table 5.7: Resulting auxiliary parameter values of DOE and randomization

Name of strategy DOE R1 R2 R3 R4 R5

Value found for NP 40 60 46 53 43 40

Value found for F 0.7 0.543 0.561 0.536 0.657 0.581

Figure 5.8: Results of base-level optimization runs using the auxiliary parame-
ter values from Tables 5.4 and 5.7

We note that our solution approach does not appear as efficient anymore

when we compare it with strategies that are allowed a similar amount of com-

5.3. Conclusions on Solution Tests 51

Table 5.8: Base-level optimization results on the Mix problem using the auxil-
iary optimization parameter values obtained with different strategies

Strategy #runs Mean Std.Dev. Min Q1 Median Q3 Max

Solution approach 100 -2.614 0.0070 -2.621 -2.618 -2.616 -2.613 -2.579

DOE 20 -2.611 0.0045 -2.619 -2.614 -2.612 -2.607 -2.603

Randomization 100 -2.605 0.0149 -2.621 -2.614 -2.608 -2.602 -2.527

Current situation 20 -2.545 0.0316 -2.581 -2.569 -2.546 -2.534 -2.433

putation time. From Table 5.8, we note that the base-level optimization runs

using the auxiliary optimization parameter values obtained with our solution ap-

proach yield an average solution value that is approximately 0.115%2 better than

the base-level optimization runs using the auxiliary optimization parameter val-

ues obtained with DOE and approximately 0.315%3 better than the base-level

optimization runs using the auxiliary optimization parameter values obtained

with randomization. Although our solution approach does perform better on the

Mix problem than the DOE and randomization strategies (significantly better

according to Welch’s t-tests at the 0.05 level), the differences in performance

are small. How this generalizes to the Tech, Split, and future problems is diffi-

cult to predict. Because the range of the auxiliary parameter NP needs to be

larger to find satisfactory solutions on the Tech and Split problems, we expect

the performance of the DOE and randomization strategies to be somewhat less

on these problems than on the Mix problem. On the other hand, DOE and

randomization strategies are not dependent on unimodality for their reliability

and cannot misconverge like the NM method. They are also easily combinable

with approaches that can significantly decrease computation time and increase

preciseness, like racing, sharpening, and preemptive fitness evaluations (Smit &

Eiben, 2009; Pedersen, 2010).

5.3 Conclusions on Solution Tests

In Section 5.1 we describe several aspects we use to evaluate the performance of

our solution approach. These aspects are effectiveness, robustness, and efficiency.

In Section 5.2 we depict and discuss the results of the solution tests we have

295% confidence interval is [0.021%, 0.210%], resulting from a 95% confidence interval re-
garding the difference in means from Table 5.8 of [5.38× 10−4, 54.9× 10−4].

395% confidence interval is [0.191%,0.440%], resulting from a 95% confidence interval re-
garding the difference in means from Table 5.8 of [4.97× 10−3, 11.5× 10−3].

52 Chapter 5. Solution Tests

performed.

The assumption that we made in Chapter 4 regarding the similarity between

meta-level search spaces, and in particular the assumption of unimodality, does

not appear to be correct. Because of this, our solution approach is not very

reliable. Our solution approach does appear to be quite robust against changes

in the actual problem, but more tests in this direction have to be performed. A

sensitivity analysis on q, the number of points in the meta-level search space to

evaluate in one meta-optimization run, reveals that a value between 25 and 30 is

probably a good choice for this parameter.

Our solution approach is efficient compared to the current situation in the

sense that the meta-optimized auxiliary parameters yield considerably better re-

sults than the most commonly advised auxiliary parameters from literature .

In this comparison though, the computation time it takes to obtain the meta-

optimized auxiliary parameters has not been taken into account. Compared with

two straightforward strategies that require a similar computation time, our solu-

tion approach does not appear as efficient anymore. Although it shows a better

performance on the Mix problem, the differences are small. Furthermore, as op-

posed to our solution approach, these strategies are not dependent on unimodality

in a meta-level search space for their reliability and cannot misconverge like the

NM method.

Chapter 6

Conclusions and Recommendations

In this chapter we conclude our research and give recommendations for further

research. In Section 6.1 we present the conclusions. In this section we discuss to

what extent the research goal has been achieved and the practical implications

of our research for Diamond. We give recommendations for further research in

Section 6.2.

6.1 Conclusions

DE is a stochastic optimization method that makes use of a population of solu-

tions in the search space of a problem on which mutation, crossover, and selection

take place such that the population hopefully converges in the direction of the

global optimum. DE’s effectiveness and efficiency depend on several auxiliary

optimization parameters. In this research we have developed an approach for

determining values for those parameters.

Our solution approach for determining values for the auxiliary optimiza-

tion parameters of DE in Diamond comprises parameter selection and meta-

optimization. Parameter selection involves choosing fixed values for auxiliary

parameters relying on conventions and default values. Meta-optimization comes

down to treating the search for good auxiliary optimization parameters of a meta-

heuristic as an optimization problem in its own right. It hence requires the im-

plementation of an overlaying optimization method. For DE in Diamond we have

selected the NM method as overlaying optimization method. The reasons for this

were that it is efficient in unimodal search spaces and robust to some (statistical)

noise.

By applying parameter selection and meta-optimization, we have constructed

an approach for determining values for DE’s auxiliary optimization parameters

so that they do not have to be set by the user anymore before performing an

optimization, which was the goal of our research. But even though it is successful

in tackling the research problem, our solution approach is not very promising for

53

54 Chapter 6. Conclusions and Recommendations

Diamond. In particular, the NM method is not such a good meta-optimizer for

DE in Diamond. In a more general sense, the practical suitability to Diamond of

the combined parameter selection and meta-optimization approach that we have

applied can be questioned.

By selecting the NM method as meta-optimizer, the reliability of our solution

approach has become dependent on near-unimodality of the meta-level search

spaces. We positively tested this for one of the problems that we have at our

availability (the Mix problem), but it does not seem to hold for other problems

in Diamond. Our solution approach showed a slightly better performance on

the Mix problem than two straightforward strategies that use a similar amount

of computation time, DOE and randomization. Our solution approach yields

solution values that are 0.021–0.210% better compared to DOE and 0.191–0.440%

better compared to randomization. The differences in performance between the

two straightforward strategies and our solution approach are hence small and,

as opposed to those straightforward strategies, the NM mehtod can misconverge

and is difficult to combine with approaches that decrease computation time, such

as racing, sharpening, and preemptive fitness evaluations.

A downside of the combined parameter selection and meta-optimization ap-

proach in general is that the auxiliary parameter values obtained in a meta-

optimization run cannot easily be generalized to different values for the auxiliary

parameters to which parameter selection has been applied. This means that the

values for NP and F obtained in a successful meta-optimization run are good

provided that CR = 0.9 and E = 1500n but can be bad if a different value for

CR or E is selected, even though the problem remains unchanged. Regarding

CR, this is not much of a problem. As we have explained in Chapter 4, literature

points out that CR = 0.9 is a good choice for most inseparable problems and, if

a sensitivity analysis would indicate otherwise, CR can easily be meta-optimized

together with NP and F 1. Regarding E on the other hand, the lack of gener-

alizability of meta-optimized values for NP and F can be quite problematic. If

the optimization runtime for future problem instances is known and similar for

all future instances, a meta-optimization run can be performed with the value for

E set to match this runtime. In Diamond however, it is difficult to predict the

available runtime for a future problem instance. The amount of computation time

can be spend on the optimization of a new instance depends on the importance

of the adaptation that was made and the haste with which a possible alteration

1Replacing the NM method by DOE, randomization, or another meta-optimizer is necessary
in this case because adding an auxiliary optimization parameter likely results in more complex
and multimodal meta-level search spaces.

6.2. Recommendations for Further Research 55

in product mix or technology settings needs to be proposed.

Furthermore, to offset the disadvantage of meta-optimizations being com-

putationally expensive, meta-optimized auxiliary parameter values have to be

generalizable across problem instances. We have performed a limited amount of

tests, on only one of the problems that we have at our availability, regarding such

generalizability. Although the results hereof were promising, more tests need to

be performed to acquire knowledge about the extend to which meta-optimized

auxiliary parameter values are generalizable across problem instances in Dia-

mond. Only if these tests yield positive results, and the optimization runtime for

future instances of a problem is known and similar, can the combined parameter

selection and meta-optimization approach be considered valid and useful.

6.2 Recommendations for Further Research

Although our solution approach comprises the outermost level of Figure 3.1, our

main recommendations for further research are on the deeper levels of this figure.

This is because we have concluded that the combined parameter selection and

meta-optimization approach in general, and our solution approach in particular,

is not very promising for Diamond.

The actual problems

Currently, the actual problems in Diamond are treated as black boxes, which has

been the reason for using a metaheuristic as optimization strategy. We have al-

ready indicated in Chapter 1 that the actual problems are not really black boxes.

Research regarding the actual problems and similarities between future problems

can potentially be used to develop an optimization strategy tailored for Diamond,

which can be a lot more efficient and robust than any general metaheuristic. If

the metaheuristic is kept in place, performance gains are also possible from re-

searching the actual problems in Diamond. Analyzing the optimization variables

in a network could for example yield that some only have minor influence and do

not need to be taken into account in any optimizations.

The base-level

Although we have dismissed online parameter initialization in Chapter 4 because

it usually introduces new auxiliary optimization parameters whose values the user

must decide upon, we recommend further research in this direction. The new

auxiliary parameters in (self-)adaptive DE frequently comprise ranges in which

56 Chapter 6. Conclusions and Recommendations

auxiliary optimization parameters need to lie, distributions according to which

auxiliary optimization parameters need to be selected, and probabilities with

which an auxiliary optimization parameter needs to be updated. Such auxiliary

parameters are generally a lot more robust than those of standard DE. It might

therefore be possible to determine values for these auxiliary parameters that can

be applied to Diamond in general instead of being suitable for only one problem

and perhaps other instances of that problem.

Since DE with a standard set of parameters is generally efficient in the ex-

ploration of search spaces but less suitable for exploitation, it can be good to

combine DE with a direct search or an approximate gradient method. Another

option dealing with the exploration-exploitation trade-off is a form of adaptive DE

in which the population size is decreased as the search progresses or re-diversified

when the search stagnates (Brest & Zamuda, 2012; Yang, Li, Cai, & Guan, 2015).

The meta-level

We sum up and discuss several recommendations for further research, aimed at

improving the quality of our solution approach:

• In Chapter 4 we gave the recommendation of speeding up our solution

approach by making use of the fact that more promising points in the meta-

level search space generally correspond to lower standard deviations. This

recommendation, however, was based on the assumption that the meta-

level standard deviation space of the Mix problem we depict in Figure 4.1

is representative for all Diamond’s meta-level standard deviation spaces.

We can see from Figures 5.1b and 5.7b that this assumption turned out

to be incorrect. In the Tech problem, promising points in the meta-level

search space can correspond to a much higher variance between base-level

optimization runs than less promising points. It is still possible though to

alter our solution approach such that the information we have regarding

the standard deviations of the points in the meta-level search space that

we encounter is incorporated. We can make use of confidence bounds to

obtain a more precise comparison between points in the meta-level search

space and hopefully dismiss non-promising points more quickly, or we can

adapt the meta-level performance measure so that not only the average

solution value over p optimization runs but also the standard deviation of

these solution values is taken into account (Neumüller et al., 2012).

• Adapting or replacing the meta-optimizer. In Chapter 5 we have suggested

that restarts could overcome the problem of misconvergence with the NM

6.2. Recommendations for Further Research 57

method, which we have encountered in several of our meta-optimization

runs. This has as advantage that it only adds computation time to miscon-

verging meta-optimization runs but as disadvantage that it is impossible to

predict when and how much extra runtime is required. Replacing the meta-

optimizer by DOE, randomization, or an alternative meta-optimizer might

be more promising. Alternative meta-optimizers can be classical direct

search methods such as LUS and pattern search, or metaheuristcs such as

DE itself. As we have explained in Chapter 3, implementing a metaheuris-

tic as meta-optimizer induces the need for meta-meta-tuning. Because all

meta-level search spaces are of the same dimension though (2, in our solu-

tion approach), meta-meta-tuning is a lot less complex than meta-tuning

and can result in well-generalizable meta-level auxiliary optimization pa-

rameters (Pedersen, 2010).

• Making use of information that has been obtained in previous meta-optimization

runs. For the NM method and other classical direct search methods, start-

ing points can be based on previously meta-optimized auxiliary parameter

values instead of selected randomly. For DOE, randomization, and meta-

heuristics, the search ranges and the initial population can be adjusted

based on the results of other meta-optimizations.

The following recommendations for further research can be applied to our

solution approach but might also be useful when the combined strategy of pa-

rameter selection and meta-optimization is discarded:

• Investigating the use of other termination criteria for DE. In our research,

we have terminated base-level optimization runs after a set amount of func-

tion evaluations, but there are lots of other possible base-level termination

criteria combinable with DE. These can for example be related to the

improvement of solution values and to the movements of the population

members in the search space (Zielinski & Laur, 2008).

• Ignoring unpromising auxiliary parameter combinations. Auxiliary param-

eter combinations for which either NP ̸∈ [4, 15n] or F ̸∈ [0, 1] are not

evaluated in our solution approach. Perhaps these ranges can be smaller.

Another possibility is to not evaluate certain combinations of values for

NP and F . The research of Zaharie (2002), who derives an equation that

DE’s auxiliary optimization parameters should satisfy in order for the pop-

ulation diversity to increase after the crossover and mutation steps, can be

used here.

58 Chapter 6. Conclusions and Recommendations

• Parallelizing the algorithms such that (meta-)optimizations can be per-

formed in a shorter amount of time by simultaneously operating on multiple

computational resources. For practical purposes, a significant increase of

E, the number of function evaluations resulting in a feasible solution per

base-level optimization run, is likely required to find satisfactory solution

values. This makes our solution approach even more computationally ex-

pensive, which can be offset to some extend by parallelization, provided

that sufficient computational resources are available.

References

Adenso-Diaz, B., & Laguna, M. (2006). Fine-tuning of algorithms using frac-

tional experimental designs and local search. Operations Research, 54 (1), 99-

114. doi: 10.1287/opre.1050.0243

Ali, M. M., & Törn, A. (2004). Population set-based global optimization algo-

rithms: Some modifications and numerical studies. Computational Operations

Research, 31 (10), 1703-1725. doi: 10.1016/S0305-0548(03)00116-3

Armaou, A., & Kevrekidis, I. (2005). Equation-free optimal switching policies

for bistable reacting systems. International Journal of Robust and Nonlinear

Control , 15 (15), 713-726. doi: 10.1002/rnc.1019

Bäck, T. (1994). Parallel optimization of evolutionary algorithms. In Proceedings

of the international conference on evolutionary computation (p. 418-427).

Baudin, M. (2010). Nelder-Mead user’s manual. Orsay, France: Scilab Enter-

prises.

Birattari, M. (2002). A racing algorithm for configuring metaheuristics. In

Proceedings of the genetic and evolutionary computation conference (p. 11-18).

San Francisco, CA: Morgan Kaufmann.

Birattari, M. (2009). Tuning metaheuristics: A machine learning perspective.

Berlin, Heidelberg: Springer-Verlag.

Box, G. E. P., Hunter, J. S., & Hunter, W. G. (2005). Statistics for experi-

menters: design, innovation, and discovery. Hoboken, NJ: Wiley-Interscience.

Brest, J., Greiner, S., Boskovic, B., Mernik, M., & Zumer, V. (2006). Self-

adapting control parameters in differential evolution: A comparative study on

numerical benchmark problems. Transactions on Evolutionary Computation,

10 (6), 646-657. doi: 10.1109/TEVC.2006.872133

Brest, J., & Zamuda, A. (2012). Population reduction differential evolution with

multiple mutation strategies in real world industry challenges. Lecture Notes in

Computer Science, 7269 , 154-161. doi: 10.1007/978-3-642-29353-5 18

59

60 REFERENCES

Civicioglu, P., & Besdok, E. (2013). A conceptual comparison of the cuckoo-

search, particle swarm optimization, differential evolution and artificial bee

colony algorithms. Artificial Intelligence Review , 39 (4), 315-346. doi: 10.1007/

s10462-011-9276-0

Cohen, G., & Meyer, R. (2011). Optimal asymmetrical SVM using pattern

search: A health care application. Studies in Health Technology and Informatics,

169 , 554-558. doi: 10.3233/978-1-60750-806-9-554

Cortez, P., Rocha, M., & Neves, J. (2001). A meta-genetic algorithm for time

series forecasting. In Proceedings of the workshop on articial intelligence tech-

niques for financial time series analysis, 10th portuguese conference on articial

intelligence (p. 21-31).

Das, S., & Suganthan, P. N. (2011). Differential evolution: A survey of the

state-of-the-art. Transactions on Evolutionary Computation, 15 (1), 4-31. doi:

10.1109/TEVC.2010.2059031

Gao, S., Yang, H., Sun, Z., Jiang, Y., Zhai, G., & Li, M. (2012). High accu-

racy temperature control research on charge stable colloidal crystals. In Recent

advances in computer science and information engineering (Vol. 2, p. 71-77).

Berlin, Heidelberg: Springer-Verlag. doi: 10.1007/978-3-642-25789-6 11

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and ma-

chine learning (1st ed.). Boston, MA: Addison-Wesley Longman Publishing

Corporation.

Han, L. (2013). Nelder-Mead simplex slgorithm: Effect of dimensionality and

new implementation [Powerpoint slides]. Retrieved from https://www.youtube

.com/watch?v=r6HZMJGzlDc

Hooke, R., & Jeeves, T. A. (1961). Direct search solution of numerical and

statistical problems. Journal of the ACM (JACM), 8 (2), 212-229. doi: 10.1145/

321062.321069

Hu, Z., Xiong, S., Su, Q., & Zhang, X. (2013). Sufficient conditions for global

convergence of differential evolution algorithm. Journal of Applied Mathematics,

2013 . doi: 10.1155/2013/193196

Jansen, T. (2013). Analyzing evolutionary algorithms: The computer science

perspective. Berlin, Heidelberg: Springer-Verlag.

https://www.youtube.com/watch?v=r6HZMJGzlDc
https://www.youtube.com/watch?v=r6HZMJGzlDc

REFERENCES 61

Kannan, S., Slochanal, S. M. R., & Padhy, N. P. (2005). Application and

comparison of metaheuristic techniques to generation expansion planning prob-

lem. IEEE Transactions on Power Systems, 20 (1), 466-475. doi: 10.1109/

TPWRS.2004.840451

Kolda, T. G., Lewis, R. M., & Torczon, V. (2003). Optimization by direct search:

New perspectives on some classical and modern methods. SIAM Review , 45 (3),

385-482.

Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998). Conver-

gence properties of the Nelder-Mead simplex method in low dimensions. SIAM

Journal on Optimization, 9 (1), 112-147.

Lampinen, J. A., Storn, R. M., & Price, K. (2005). Differential evolution: A

practical approach to global optimization. Berlin, Heidelberg: Springer-Verlag.

Lewis, R. M., Torczon, V., & Trosset, M. W. (2000). Direct search methods:

Then and now. Journal of Computational and Applied Mathematics, 124 (12),

191-207. doi: 10.1016/S0377-0427(00)00423-4

Locatelli, M., & Vasile, M. (2014). (Non) convergence results for the differential

evolution method. Optimization Letters, 9 (3), 413-425. doi: 10.1007/s11590

-014-0816-9

Luke, S. (2013). Essentials of metaheuristics: A set of undergraduate lecture

notes. Department of Computer Science, George Mason University.

Luus, R., & Jaakola, T. (1973). Optimization by direct search and systematic

reduction of the size of search region. AIChE Journal , 19 (4), 760-766.

Maron, O., & Moore, A. (1994). Hoeffding races: Accelerating model selec-

tion search for classification and function approximation. In Advances in neural

information processing systems, 6 (p. 59-66). San Francisco, CA: Morgan Kauf-

mann.

McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of

three methods for selecting values of input variables in the analysis of output

from a computer code. Technometrics, 21 (2), 239-245.

McKinnon, K. I. M. (1998). Convergence of the Nelder-Mead simplex method

to a nonstationary point. SIAM Journal on Optimization, 9 (1), 148-158.

62 REFERENCES

Meissner, M., Schmuker, M., & Schneider, G. (2006). Optimized particle swarm

optimization and its application to artificial neural network training. BMC

Bioinformatics, 7 . doi: 10.1186/1471-2105-7-125

Mezura-Montes, E., & Palomeque-Ortiz, A. G. (2009). Self-adaptive and

deterministic parameter control in differential evolution for constrained opti-

mization. Studies in Computational Intelligence, 198 , 95-120. doi: 10.1007/

978-3-642-00619-7 5

Montgomery, J. (2009). Differential evolution: Difference vectors and movement

in solution space. IEEE Congress on Evolutionary Computation, 2833-2840. doi:

10.1109/CEC.2009.4983298

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization.

Computer Journal , 7 , 308-313.

Neumüller, C., Wagner, S., Kronberger, G., & Affenzeller, M. (2012). Parameter

meta-optimization of metaheuristic optimization algorithms. Lecture Notes in

Computer Science, 6927 (1), 367-374. doi: 10.1007/978-3-642-27549-4 47

Pedersen, M. E. H. (2010). Tuning & simplifying heuristical optimization.

Ph.D. thesis, University of Southampton, School of Engineering Science, Com-

putational Engineering and Design Group.

Pedersen, M. E. H., & Chipperfield, A. J. (2008). Local unimodal sampling

(Tech. Rep. No. HL0801). University of Southampton, School of Engineering

Science, Computational Engineering and Design Group.

Rathore, N. S., Chauhan, D. P. S., & Singh, V. P. (2015). Luus-Jaakola op-

timization procedure for PID controller tuning in reverse osmosis system. In-

ternational Journal of Electrical, Electronics and Data Communication, 3 (6),

77-80.

Rönkkönen, J., Kukkonen, S., & Price, K. (2005). Real-parameter optimization

with differential evolution. In Proceedings of the IEEE congress on evolutionary

computation (p. 506-513). doi: 10.1109/CEC.2005.1554725

Rychlicki-Kicior, K., & Stasiak, B. (2014). Metaheuristic optimization of mul-

tiple fundamental frequency estimation. Advances in Intelligent Systems and

Computing , 242 , 307-314. doi: 10.1007/978-3-319-02309-0 33

REFERENCES 63

Smit, S. K., & Eiben, A. E. (2009). Comparing parameter tuning methods for

evolutionary algorithms. In Proceedings of the IEEE congress on evolutionary

computation (p. 399-406). doi: 10.1109/CEC.2009.4982974

Storn, R., & Price, K. (1997). Differential evolution; a simple and efficient

heuristic for global optimization over continuous spaces. Journal of Global Op-

timization, 11 (4), 341-359. doi: 10.1023/A:1008202821328

Talbi, E. G. (2009). Metaheuristics: From design to implementation. Wiley

Publishing.

Van Dijk, T., Mes, M., Schutten, M., & Gromicho, J. (2014). A unified race

algorithm for offline parameter tuning. Retrieved from http://beta.ieis.tue

.nl/node/2164

Vesterstrøm, J., & Thomsen, R. (2004). A comparative study of differential

evolution, particle swarm optimization, and evolutionary algorithms on numer-

ical benchmark problems. In Proceedings of the 2004 congress on evolutionary

computation (p. 1980-1987).

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for

optimization. Transactions on Evolutionary Computation, 1 (1), 67-82. doi:

10.1109/4235.585893

Wright, M. (2012). Nelder, Mead, and the other simplex method. Documenta

Mathematica – Extra Volume ISMP , 271-276.

Xu, X., & Li, Y. (2007). Comparison between particle swarm optimization,

differential evolution and multi-parents crossover. In Proceedings of the 2007

international conference on computational intelligence and security (p. 124-127).

doi: 10.1109/CIS.2007.113

Yang, M., Li, C., Cai, Z., & Guan, J. (2015). Differential evolution with

auto-enhanced population diversity. IEEE Transactions on Cybernetics, 45 (2),

302-315. doi: 10.1109/TCYB.2014.2339495

Zaharie, D. (2002). Critical values for the control parameters of differential

evolution algorithms. In Proceedings of the 8th international mendel conference

on soft computing (p. 62-67).

Zielinski, K., & Laur, R. (2008). Stopping criteria for differential evolution

in constrained single-objective optimization. Studies in Computational Intelli-

gence, 143 , 111-138. doi: 10.1007/978-3-540-68830-3 4

http://beta.ieis.tue.nl/node/2164
http://beta.ieis.tue.nl/node/2164

64 REFERENCES

Appendix A

Network Structures

Figure A.1: Network structure of the Split problem – part N of Figure A.2

65

66 Appendix A. Network Structures

Figure A.2: Network structure of the Split problem

67

Figure A.3: Network structure of the Tech problem – Part M of Figure A.4

68 Appendix A. Network Structures

Figure A.4: Network structure of the Tech problem

Appendix B

Flowchart of the NM Method

Update max, min and
nmax.

iter. = # iter. + 1

Reflection
P is centroid of all

Pi, i ̸= max.
P ∗ = P + (P − Pmax).

y∗ = f(P ∗).

Determine ymax, ymin

and ynmax, the highest,
lowest and second-

highest solution values.
Determine corresponding
Pmax, Pmin and Pnmax.

Get n + 1 random initial
vertices, P0, P1, .., Pn

in the search space.
Determine corresponding
solution values yi = f(Pi).

Set # iter = 1

input
search space

y∗ < ymin? y∗ > ynmax? y∗ > ymax?

Replace Pmax by P ∗.

Expansion

P ∗∗ = P + 2(P ∗ − P).
y∗∗ = f(P ∗∗).

Contraction
P ∗∗ =

P + .5(Pmax − P).
y∗∗ = f(P ∗∗).

y∗∗ < ymin? y∗∗ > ymax?

Shrinking
∀i ̸=max : Pi =

Pi + .5(Pmin − Pi).
∀i ̸=max : yi = f(Pi).

Replace Pmax by P ∗∗. Replace Pmax by P ∗. Replace Pmax by P ∗∗.

iter. >
pre-determined
max. # iter.?

output
ymin

no

yes

yes

no

no

yes

no

yes

yes

no

no yes

Figure B.1: NM flowchart for a minimization problem of dimension n

69

	Management Summary
	Acknowledgements
	Table of Contents
	List of Abbreviations
	Introduction
	Diamond
	Problem Identification
	Research Goal
	Research Questions

	Current Situation
	Problems
	Differential Evolution
	Conclusions on Current Situation

	Literature Review
	Tuning Auxiliary Optimization Parameters
	Meta-level Optimizers
	Conclusions on Literature Review

	Solution Approach
	Tuning in Diamond
	Parameter Selection in Diamond
	Offline Parameter Initialization in Diamond

	The New Situation in Diamond
	Conclusions on Solution Approach

	Solution Tests
	Test Design
	Test Results
	Conclusions on Solution Tests

	Conclusions and Recommendations
	Conclusions
	Recommendations for Further Research

	References
	Network Structures
	Flowchart of the NM Method

