

	
	
	
	
	
	

	
	

	
	

	
	
	
	
	
	
	

	
	

	
	

	
	

	

	

	

	

	

	

	

	
TERRA support for architecture modeling

K.J. (Karim) Kok

 MSc Report

C e
Dr.ir. J.F. Broenink

Z. Lu, MSc
Prof.dr.ir. A. Rensink

August 2016
	

040RAM2016
Robotics and Mechatronics

EE-Math-CS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands	

ii TERRA support for architecture modelling

K.J. Kok University of Twente

iii

Summary

This report present the design, implementation and test results for the co-modeling and co-
simulation support of physical systems in TERRA.

TERRA is a model-driven development suite for designing embedded control software for
cyber-physical systems. The way of working for designing cyber-physical systems describes
the steps which are necessary for the design of a cyber-physical system. The first step is to de-
sign an architecture model of the cyber-physical system. TERRA has a quit basic architecture
editor which can draw an architecture model. The second step is to give in implementation to
all the different components of the architecture model. At the moment the architecture editor
of TERRA only supports the implementation by using the CSP editor of TERRA. The third step
is to test the controller in combination with a model of the physical system. This step is not
supported by TERRA yet.

The goal of this research is to design and implement the support for co-modeling and co-
simulation of physical systems in TERRA. This makes it possible to use a model of a physical
system in combination with the controller software for simulation purposes. Because there ex-
ists enough modeling software suites for physical systems, it is not necessary to create a new
tool for it. For the modeling and simulation of physical system the modeling software suite 20-
sim is used. So for the co-modeling and co-simulation the modeling suites TERRA and 20-sim
are used.

First the design for the support of co-modeling for physical systems in TERRA is provided. This
support is given by first design a model of the physical system in the architecture editor of
TERRA. This model contains only the interface for the model of the physical system. The detail
design of the model itself is done in 20-sim. From the architecture editor in TERRA an 20-sim
file is generated which contains the same interface for the physical system model as in the
architecture editor. The implementation of this design is not implemented in TERRA yet due
time constraints.

Second the design for the support of co-simulation for physical systems in TERRA is provided.
To support the co-simulation between TERRA and 20-sim, the FMI standard is used. The FMI
standard describes a standard interface for the simulation of models. The tool 20-sim gener-
ates an FMU from a model of a physical system which contains the dynamics of the model
and the standard interface to perform simulations on the model. TERRA generates automat-
ically an interface which is connected to the interface of the FMU. This interface in TERRA is
automatically coupled to the controller software by the architecture editor of TERRA.

The implementation of the support for co-simulation for physical systems is added to TERRA
by creating some plugins. These plugins contains model descriptions which are used to au-
tomatically generate the interface to the FMU. Some test are performed with simple physical
system models to show the correct working of the co-simulation between TERRA and 20-sim.

At the moment the 20-sim tool itself can not be used as co-engine for the simulation of the
physical system model but in the future this will be possible by using the same interface. It
is advised that TERRA also get some support for compiling and linking of .c and library files
because these files are mainly used as source files for the FMU. The interface to the FMU needs
also a logger function to give information about the state of the FMU. This logger function is
also created during the research. This logger function needs to be implemented in the LUNA
framework because at the moment it needs to be added by hand.

Robotics and Mechatronics K.J. Kok

iv TERRA support for architecture modelling

K.J. Kok University of Twente

v

Contents

1 Introduction 1

1.1 Context . 1

1.2 Problem Description . 2

1.3 Goals . 3

1.4 Approach . 3

1.5 Outline . 4

2 Background 5

2.1 Way of Working . 5

2.2 CPC Meta-model . 7

2.3 TERRA . 9

2.4 Eclipse . 10

2.5 Functional Mock-up Interface . 11

3 Analysis 13

3.1 Architecture Modelling in TERRA . 13

3.2 Using a Plant Model in the Architecture Editor . 14

3.3 Requirements . 17

4 Design of the Meta-models for Co-modeling and Co-simulation Support in TERRA 20

4.1 Meta-model for Co-modeling Support in TERRA 20

4.2 Meta-model for the Co-simulation Support in TERRA 25

5 Implementation of the FMU Interface in TERRA 33

5.1 Translating the FMU’s XML File to a CSP Model . 33

5.2 Code Generation of the CSP Model to LUNA . 37

6 Testing the FMI Interface in TERRA 42

6.1 Experiment 1: Check Code Generation for Ports and Parameters 43

6.2 Experiment 2: Using a Simple Plant Model for Co-simulation 48

6.3 Experiment 3: Using a Control System Model for Co-simulation 52

7 Conclusion and Recommendations 57

7.1 Conclusions . 57

7.2 Recommendations . 58

A Using a Generated FMU from 20-sim in TERRA 60

A.1 Step 1: Creating a Model in 20-sim . 60

A.2 Step 2: Generating a FMU in 20-sim . 60

Robotics and Mechatronics K.J. Kok

vi TERRA support for architecture modelling

A.3 Step 3: Translate the XML-file of the FMU to CSPm 61

A.4 Step 4: Adding the FMI CSPm model to an Architecture Model 63

A.5 Step 5: Code Generation of the Architecture Model 63

A.6 Step 6: Running the Architecture Model . 64

Bibliography 65

K.J. Kok University of Twente

1

1 Introduction

1.1 Context

Nowadays, cyber-physical systems (CPS) can be seen everywhere in our daily life, such as in-
dustrial robots, auto-mobiles, medical health systems and in people’s homes. CPS are systems
which combine cyber parts and physical parts. In Figure 1.1 a top level view of a generic cyber-
physical system is shown. The three basic parts of CPS are the controller, input/output (I/O)
and the plant. The controller belongs to the cyber domain and the I/O and plant belong to
the physical domain. As can be seen in the figure the physical domain is divided into a elec-
trical domain and a mechanical domain. Actuators and sensors are used to convert signals
between the electrical domain and the mechanical domain. Digital-analog converters (DACs)
and analog-digital converters (ADCs) are used to convert signals between the cyber domain and
the electrical domain.

Figure 1.1: Top level view of a cyber-physical system

Designing control software for modern CPS become more and more difficult because of the
increasing amount and complexity of their requirements (Kranenburg-de Lange et al., 2012).
Due the increasing interaction with humans and other CPS, the need of safety of CPS arises.
CPS also tend to become more mobile, so they also need to be as energy efficient as possi-
ble. All these requirements increase the development time and development costs for CPS.
Because of the increase complexity of the systems, the possibility to make errors in the design
phase become higher. These errors can have serious consequences for the system itself or its
environment.

Model-Driven Development (MDD) is an engineering technique that uses model construction
and model-based transformations to reach a desired end-result (Bezemer, 2013). In the case
of CPS it means that models are used to create control software. Because models are used, it is
possible to perform all kinds of complex tasks like model transformation and model simulation.

Because CPS belong to more than one domain, different type of models are used. Each model
type has its advantages and disadvantages and is usable for a specific task or domain. Model
simulation can be used to check the behaviour of a model. Model transformation can be used
to transform a model to a formal language. With formal verification tools it is possible to check
the model quality and consistency issues. This leads to less errors in real CPS.

Model transformation can also be used to transform different model types into a form that is
compatible with all model types in order to combine them. The model-to-code transformation
is an example of this kind of model transformations. Model-to-code transformation can be
used to generate code from the different models to form the actual control software. This con-
trol software can directly run on an embedded processor in the cyber-physical system. With

Robotics and Mechatronics K.J. Kok

2 TERRA support for architecture modelling

model-to-code transformation it is not necessary to add code manually. This also leads to less
errors in real CPS.

When using MDD techniques it is important to have a complete toolchain. This toolchain con-
tains different tools for model construction and model transformations. Also the integration
between these different tools in the toolchain is important. The main goals of the toolchain
is to streamline the development process, preventing unnecessary human-based errors and
reducing the development time of the control software.

1.1.1 TERRA

The Twente Embedded Real-time Robotic Application (TERRA)1 is a model-driven design tool
suite for designing (control) software for CPS. The ultimate goal of TERRA is to create (embed-
ded) control software for CPS in a structural manner. TERRA should decrease the development
time of the (embedded) control software design and the software should be ‘first-time right’.

The current version of TERRA consists of a graphical Communicating Sequential Processes
(CSP) editor and a graphical architecture editor. The CSP editor is used to create CSP models.
These CSP models describes patterns of interaction in concurrent systems. From these CSP
models, controller software for CPS can be generated in the form of LUNA-based C++ code.

The architecture editor is used to create architecture models. An architecture model describes
how a system can be divided into different sub-systems an how these sub-systems interacts
with each other. An example of an architecture model of a cyber-physical system is given in
Figure 1.2.

Figure 1.2: Example of an architecture model in the architecture editor of TERRA

More information about CSP, the graphical CSP editor, the architecture editor and LUNA is
given in Section 2.3

1.2 Problem Description

The current version of the architecture editor in TERRA is quite basic. At the moment it is pos-
sible to include CSP models from the graphical CSP editor into the architecture model. These
CSP models are mainly focused on the design of the controller of the cyber-physical system.
Looking at the top level view of a cyber-physical system as shown in Figure 1.1 it means that
the controller part can be implemented in the architecture editor. The architecture editor gives
also some support for the input/output interface. This interface is used for the realization of
the software on embedded hardware. This interface is very basic and only consist of an PWM
port, encoder port and a digital I/O port which is only specified for the Mesa Anything I/O FPGA
board2. There is no support to add a model of the physical system in the architecture editor of
TERRA which is also a part of a cyber-physical system.

Before the control software is implemented on a real physical system, it is important to test
the behavior of the controller software. These tests can be performed on a real physical system

1https://www.ram.ewi.utwente.nl/ECSSoftware/terra.php, accessed on 8 April 2016.
2http://www.mesanet.com/fpgacardinfo.html, accessed on 23 July 2016.

K.J. Kok University of Twente

https://www.ram.ewi.utwente.nl/ECSSoftware/terra.php
http://www.mesanet.com/fpgacardinfo.html

CHAPTER 1. INTRODUCTION 3

but when the controller software does not work like expected, it can give dangerous situations.
Therefore it is important to first test the control software in a simulation with a model of the
physical system. Currently because it is not possible to add a model of the physical system in
the architecture model, there is also no support to simulate the controller software created in
TERRA in combination with a model of the physical system.

1.3 Goals

This assignment focus on the support of using models of physical systems in TERRA and to use
these models in combination with the control software to perform simulations. These simula-
tions are used to verify the behaviour of the controller software which is based on CSP models.
To support the use of physical-system models in TERRA and to use these models in simulations
two goals are defined:

• The first goal is to make it possible to add a model of a physical system in the architecture
editor of TERRA. This means that the architecture model in TERRA does not only contains
a controller block but must also contain a plant block which represents the model of the
physical system. The detail design of the controller block can be created by the CSP editor
of TERRA. Support must be added to TERRA to also give the plant block an detail design.

• The second goal is to make it possible to simulate the controller software which is based
on CSP models in combination with the model of the physical system which is repre-
sented by the plant block in the architecture editor.

1.4 Approach

There exist enough modeling software suites for physical systems so it is not necessary to create
a new tool in TERRA which can be used for the design and simulation of physical system mod-
els. An existing modeling software suite can be used for the design and simulation of physical
systems. A connection between TERRA and one of the existing modeling software suites for
physical systems needs to be created to archive the two goals.

For the first goal, a plant block is placed in the architecture editor of TERRA as shown in Figure
1.2. This plant block contains some ports which describes the interface for the physical system.
This interface is also used for the model of the physical system. The interface of the plant block
in the architecture editor of TERRA needs to be transfered to the editor of an existing modeling
suite for physical systems. From this point it is possible to design an implementation for the
model of the physical system using the interface which is defined in the architecture model.
This approach is also known as co-modeling. The design of the controller is done in TERRA
and the design of the model of the physical system is done in another modeling software suite.

For the second goal, a simulation must be performed between the controller in TERRA and the
model of the physical system in another modeling software suite. The controller in TERRA is
translated to code which can be executed. The inputs and outputs of the controller needs to
be coupled to the model of the physical system. So during code generation of the controller,
these inputs and outputs are coupled to the simulator of the model of the physical system. This
approach is also known as co-simulation. The simulation of the controller and the simulation
of the model of the physical system is done in their own environment.

Model-driven design techniques are used to translate the interface of the model of the physical
system from the architecture editor in TERRA to an existing modeling software suite. These
techniques are also used to generate a connection between the controller software and the
simulator of the model of the physical system.

Robotics and Mechatronics K.J. Kok

4 TERRA support for architecture modelling

1.5 Outline

Some background information which is important for this assignment is provided in Chapter
2. The way of working for CPS and the basics of TERRA are explained in this chapter. The
analysis of the architecture in TERRA is described in Chapter 3. It mainly focus on how to
implement the support for co-modeling and co-simulation of physical systems in TERRA. A list
of requirements for this assignment is also described in the chapter. The meta-models which
are used in TERRA to support the co-modeling and co-simulation of physical systems in TERRA
are provided in Chapter 4. The implementation of the co-simulation interface between the
controller software and the simulator for physical systems which is automatically generated by
TERRA is described in Chapter 5. To verify the implementation of the co-simulation interface,
some test are performed which are discussed in Chapter 6. Finally, the report is concluded with
a conclusion and recommendations.

K.J. Kok University of Twente

5

2 Background

This chapter gives some background information which is used during this assignment. First
the workflow for designing cyber-physical systems is explained. The following section gives
some information about the CPC meta-model. The CPC meta-model is the basic of all other
models which are used in TERRA. The third section gives some more information about the tool
suite TERRA. A more detailed description about the graphical CSP editor is given. Also some in-
formation about the LUNA framework is given which is used in combination with TERRA. The
fourth section gives some information about the tool Eclipse. TERRA is developed in Eclipse
and uses some plugins which are available in Eclipse. The last section gives some information
about the Functional Mock-up interface (FMI). The FMI can be used for model exchange and
for co-simulations.

2.1 Way of Working

In general, designing a cyber-physical system contains the following phases as indicated in
Figure 2.1 (Broenink et al., 2010a). As can be seen in the figure, an idea leads to multiple re-
alizations. At the start of the design phase, an abstract top-level model is used. Via Stepwise
Refinement more detail is added to this model to finally get the real working cyber-physical
system. Each choice which is made during the design phase can result in a different realiza-
tion of the cyber-physical system. All the different realizations together forms the design space.
Trying out several alternatives to get the final realization is called Design Space Exploration.

Figure 2.1: Design Pyramid with different abstraction levels, (Broenink et al., 2010a)

As explained before a cyber-physical system consists of multiple parts and these parts belong
not to one domain. So after determining the requirements and specifications of the whole
system it is possible to parallelize the design of the cyber-physical system. So the steps of the
way of working can be described in more detail as can be seen in Figure 2.2. As can be seen
from the figure, there are five starting points to start the design of a cyber-physical system.

Robotics and Mechatronics K.J. Kok

6 TERRA support for architecture modelling

Each starting point handles a particular domain of the design. For each starting point there are
some steps that can be taken. The figure shows the four general steps:

• Step 1: Top-level Architecture, this step follows after determining the requirements and
specifications of the whole system. In this step an overall architecture model of the sys-
tem will be created. This model indicates how the system can be divided into multiple
sub-systems. It also indicates how the different sub-systems communicate with each
other.

• Step 2: Detail Design, in this step the different sub-systems which are defined in the pre-
vious step will be implemented by using the stepwise refinement manner.

• Step 3: Implementation, in this step the implementations of the different sub-systems
will be connected to each other to get the complete model of the system. The require-
ments and specifications which are determined at the beginning of the design space will
be verified by performing simulations on the model.

– Step 3a: In this sub-step the software is tested in combination with the dynamic
plant model to check whether the software behaves as intended. Depending on the
results, the model can be fine tuned to get a better behaviour.

– Step 3b: In this sub-step the real-time constraints will be included in the simula-
tions. This is done by executing the software on the target computing platform. In
this step only the dynamic plant model is used in the simulations.

• Step 4: Realization, in this step the real setup of the system will be realized. The real
dynamic plant is connected to the target computing platform. By performing tests it
can be verified if the real systems also satisfied the requirements en specifications of the
system.

Figure 2.2: Steps of the way of working to design control software for cyber-physical systems, (Bezemer,
2013)

Ni describes in her thesis three different co-modeling approaches for cyber-physical systems
(Ni, 2015). As explained in Chapter 1 a cyber-physical system can be divided into a cyber part

K.J. Kok University of Twente

CHAPTER 2. BACKGROUND 7

and a physical part. The physical part belongs most of the time to the continuous time (CT)
domain. The cyber part belongs most of the time to the discrete time (DT) domain. The three
different co-modeling approaches are related to the domain which is most important for the
design of the cyber-physical system. The three different approaches are:

• Dynamic-behaviour oriented: In this approach the dynamic behaviour of the cyber-
physical system is more of interest than the controller-logic behaviour. All the models
are produced in the continuous time domain and later the controller part will be trans-
formed into the discrete time domain to get a co-model.

• Controller-logic oriented: In this approach the controller part of the system is more of
interest than the dynamic behaviour of the system. All the models are produced in the
discrete time domain and later the models of the plant and analog interface are trans-
formed to the continuous time domain to get a co-model.

• Contract oriented: In this approach, a contract has to be defined first as the start of the
co-model development. The models are directly produced in the domain they belongs
to.

These three approaches can be used during the development of a cyber-physical system. The
dynamic-behaviour oriented approach starts at point d of Figure 2.2. The controller-logic ori-
ented approach starts at point b and c of the same figure. This assignment focus on the contract
oriented approach which starts at point b and c for the controller software which is created in
TERRA. And the design of the physical system model starts add point d which is created in an
existing modeling software suite for physical systems.

In step 3 of the way of working the different sub-systems are connected to each other. The
whole systems will be simulated to test and verify the system. Co-simulation is used because
every sub-system belongs to another domain and may have its own simulator. It is also im-
possible to directly connect a discrete-time model to a continuous time model. Broenink et al.
(2010b) give an approach for co-simulation. In this approach a discrete-time simulator and
continuous-time simulator are connected to each other using a co-simulation engine which
synchronize the simulation time in both simulators. Both simulators simulates the models but
on fixed times the inputs and outputs of both models are exchange with each other.

2.2 CPC Meta-model

All meta-models which are available in TERRA are in the end derived from the Component-
Port-Connector (CPC) meta-model (Bruyninckx et al., 2013). Figure 2.3 shows an UML diagram
representing a CPC meta-model. From these UML diagram the following properties holds for
the CPC meta-model:

• A System is a collection of components and connectors.

• A Component provide the container for the functionality and behaviour.

• A Port gives access to the Component internals.

• A Component is configured by Properties.

• A Connection represent the interaction between to components.

Also the following constraints can be derived from the CPC meta-model:

• A System contains zero or more Components.

Robotics and Mechatronics K.J. Kok

8 TERRA support for architecture modelling

• A System contains zero or more Connectors.

• A Component contains zero or more Components.

• A Component can be contained by only one other Component

• A Component contains zero or more Properties.

• A Component contains zero or more Ports.

• A Port belongs to only one Component.

• A Connection is always between two Ports.

Figure 2.3: The UML diagram representing the CPC meta-model (Bruyninckx et al., 2013)

2.2.1 CPC Meta-model in TERRA

The CPC meta-model is implemented in TERRA because it is used to derive other meta-models
from it. The implemented meta-model is more complex than the one shown in Figure 2.3. The
explanation of the whole CPC meta-model implemented in TERRA is left out because it is too
long and too complex. But parts of the meta-model which are important for this assignment
will be explained.

The Port class of the CPC meta-model is called CPCPort in TERRA. This class has the following
important attributes and references:

• name: A name for the port.

• direction: Indicates if the port is an input or an output.

• link: Reference to the link which is connected to the port.

• unitType: Reference to the unit type which is transported through the port.

The Port class contains a reference ‘unitType’ which refer to the class CPCUnitDescription. This
class has the following important attributes:

• name: A name for the unit type.

K.J. Kok University of Twente

CHAPTER 2. BACKGROUND 9

• type: The data type of the unit, for example, real, boolean or integer.

• unit: Indicates the unit of the unit type, for example, m2 or m*s.

The System class of the CPC meta-model is called CPCDiagram in TERRA. The Component
class is called CPCModel in TERRA. There also exists a CPCExternalModel which is inheriting
from CPCModel and only adds the possibility to add a file to the model. This file contains
another model which can implement the CPCExternalModel class.

2.3 TERRA

As explained before TERRA is a model-driven design tool suite. TERRA is based on the way of
working principles as explained in section 2.1. Currently TERRA contains a CSP editor and
a basic architecture editor. These editors are used to design models which represents the
cyber-physical system. When the model of the cyber-physical system is designed en simulated,
TERRA can translate this model to actual execution code. TERRA uses the LUNA framework for
this model-to-code translation.

2.3.1 CSP Editor

Communicating Sequential Processes (CSP) (Hoare, 1985) is a formal language for describing
patterns of interaction in concurrent systems. CSP allows to divide a process in multiple sub-
processes. The structure of these sub-processes can be mainly Sequential and Parallel. The
Sequential structure indicates that one sub-processes must be finished before the next sub-
process can be executed. The Parallel structure indicates that more than one sub-process can
be executed at the same time.

Communication between the sub-processes is implemented using channel communication.
This means that one sub-process can write on a channel by using a Writer and another sub-
process which is connected to the same channel can read from the channel by using a Reader.
The communication is based on rendezvous. This means that the Reader and Writer of one
channel needs to be ready for execution to transfer the data from one sub-process to the other.
This provides the possibility to synchronize sub-processes based on their communication flow.

The CSP editor in TERRA is used to create CSP models. These CSP models contains processes
with channels between them. Each port of a process is connected to a Reader or a Writer to
read from or write to a channel. It is also possible to include a C++ block into the CSP model.
The implementation of the CPP file can be added by hand. Also a 20-sim block is available in
the editor. This 20-sim block makes it possible to design a controller in 20-sim and include this
controller into the CSP model.

TERRA can translate these CSP models into machine-readable CSP (CSPm) (Scattergood and
Armstrong, 2011). A tool like FDR31 reads CSPm and can be used for formal verification of the
CSP models. It checks for example, for dead-lock and live-lock. TERRA can also translate CSP
models into executable code which can be executed on a real cyber-physical system.

2.3.2 Architecture Editor

As explained before the architecture editor is used for designing architecture models. An ex-
ample of an architecture model of a generic cyber-physical system created in the architecture
editor of TERRA is given in Figure 1.2. In this example the sub-systems are represented by
rectangles and are called components. Each sub-systems has an interface for input and out-
put. These inputs and outputs are visible as small squares which are visible in the components
of the architecture model. These small squares are called ports. Different components can

1https://www.cs.ox.ac.uk/projects/fdr/, accessed on 8 April 2016.

Robotics and Mechatronics K.J. Kok

https://www.cs.ox.ac.uk/projects/fdr/

10 TERRA support for architecture modelling

communicate with each other by the channels which are between the different ports. These
channels are the lines between the ports of different components.

TERRA can translate this architecture model into executable code. This model-to-code gen-
eration is based on the model-to-code generation for the CSP editor. This means that every
component in the architecture model is seen as a CSP process which are connected to each
other with channels. All the CSP processes which are generated by the architecture editor run
in parallel structure.

2.3.3 LUNA

The LUNA Universal Network Architecture (LUNA) framework (Bezemer et al., 2011) is a
component-based execution platform for cyber-physical systems. The core components take
care of the platform related issues. The implementation of each core component depends on
the used platform. High-level components take care of the platform-independent tasks, us-
ing the core components. One of these high-level components is the CSP execution engine.
TERRA can transform CSP models into C++ code which make use of this CSP execution engine
in LUNA.

2.4 Eclipse

As mentioned TERRA is a Model-Driven Development tool-suite which means it uses models
to design cyber-physical systems. TERRA is developed in Eclipse2. Eclipse provides a modeling
framework which can be used to create models. The Epsilon plugin is used in Eclipse to support
model-to-model and model-to-text translations.

2.4.1 Eclipse Modeling Framework (EMF)

The EMF project is a modeling framework and code generation facility for building tools and
other applications based on a structured data models (The Eclipse Foundation, 2016). EMF
is a common standard for data models where many technologies and frameworks are based
on. The core of EMF includes a meta-model called Ecore for describing models. The Ecore
meta-model consists of classes which can contain attributes. It is possible to give dependencies
between the different classes. EMF also supports the creation of editors for the models which
are based on the Ecore meta-model.

2.4.2 Epsilon

Epsilon is a family of languages and tools for code generation, model-to-model transformation,
migration and refactoring that work out of the box with EMF and other types of models (The
Eclipse Foundation, 2014). Epsilon is supported by Eclipse. In this section only the languages
which are used for the development of TERRA are mentioned.

• Epsilon Object Language (EOL): EOL is an imperative programming language for creat-
ing, querying and modifying EMF models. EOL forms the core of epsilon. EOL provides
an extended feature set, which include the ability to update models, access to multiple
models, conditional and loop statements, statement sequencing, and provision of stan-
dard output and error streams.

• Epsilon Transformation Language (ETL): ETL is a rule-based model-to-model transfor-
mation language built on top of EOL. This language can translate elements of a source
model into elements in a target model. This language can be used if a model of one type
needs to be translated into a model of another type.

2http://www.eclipse.org/, accessed on 24 July 2016.

K.J. Kok University of Twente

http://www.eclipse.org/

CHAPTER 2. BACKGROUND 11

• Epsilon Validation Language (EVL): EVL is a validation language built on top of EOL.
This language can be used to specify constraints and check the model on these con-
straints.

• Epsilon Generation Language (EGL): EGL is template-based model-to-text language for
generating code, documentation and other textual artefacts from models. EGL use a tem-
plate file which specify what kind of code is generated and it can include values from
models into the code.

2.5 Functional Mock-up Interface

The Functional Mock-up Interface (FMI) is a tool-independent standard to support both model
exchange and co-simulation of dynamic models (FMI-standard, 2016). A model using this stan-
dard is distributed in one zip file called Functional Mock-up Unit (FMU). The FMU contains the
following files:

• An XML file containing the definition of all exposed variables in the FMU and other static
information about the model.

• Source files which contains a small set of easy to use C functions. These C function im-
plements all needed model equation or the access to co-simulation tools.

• Further data can be included in the FMU zip file, especially a model icon, documentation
files, maps and tables needed by the FMU, and/or all object libraries or dynamic-link
libraries that are utilized.

The FMI makes it possible to exchange models between different tools. This means that a
model which is created in tool A can be used in tool B for simulations. With the FMI it is also
possible to connect different simulation tools together. This means that different models can
be simulated in their own simulator and that the inputs an outputs of the different models are
exchange between the different simulators.

FMI for Co-simulation can be used in two ways. The first way is that the simulation tool gener-
ates an FMU which includes the model dynamics and the solver for the model. This situation is
shown in Figure 2.4. This means that for the simulation only the generated files are necessary
and not the simulation tool itself. The second way is that the simulation tool generates an FMU
which only contains a FMI Wrapper which communicates with the simulation tool. This situa-
tion is shown in Figure 2.5. This means that for the simulation of the model the corresponding
simulation tool is used. For both ways the interface for the FMI is the same.

In both figures a Master process is visible which is connected to the FMU through the FMI in-
terface. This process controls the FMUs and needs to be created by the user itself. This process
takes care of the exchange of variables between different FMUs and also controls the simulation
of the FMU.

Robotics and Mechatronics K.J. Kok

12 TERRA support for architecture modelling

Figure 2.4: Co-simulation with generated code (FMI-standard, 2014)

Figure 2.5: Co-simulation with tool coupling (FMI-standard, 2014)

K.J. Kok University of Twente

13

3 Analysis

3.1 Architecture Modelling in TERRA

In Figure 3.1 the same figure is shown as in chapter 1. As explained before the goal of the
architecture editor is to draw a model like the one which is shown in Figure 3.1. There is a
controller block, a I/O block and a plant block. The controller block contains the models which
will finally contains the implementation of the control software. For the implementation of this
block the CSP editor in TERRA can be used. These CSP models are translated to C++ code which
runs in combination with the LUNA framework. In general the CSP models contain controllers
which directly control the actuators of the plant. These are hard real-time tasks. Currently also
some research has been done to connect the ROS framework1 to the LUNA framework (van der
Werff, 2016). ROS contains lot of algorithms which are useful for controlling cyber-physical
systems. Most of these algorithms contains soft real-time tasks. So it can be useful to split the
controller block into two blocks. One block contains the soft real-time tasks and the other block
contains the hard real-time tasks. Figure 3.2 shows the architecture model where the controller
block is divided into the two blocks.

Figure 3.1: Global architecture model overview

Figure 3.2: Global architecture model overview with divided controller

The I/O block contains the hardware interface from and to the controller block. For simulation
purposes this block contains models of the hardware ports because the abstract functionality
of these ports are important for the behaviour of the total cyber-physical system. It is not al-
ways possible to directly connect a signal from the software to an input or output of a physical
system. For example when an motor needs to be driven in a physical system, this motor needs
most of the time a pulse-width modulation (PWM) signal. The control software only calculates
the direction, frequency, and duty cycle of this PWM signal. The PWM signal itself is generated
by hardware. So for simulation purposes it is important to convert the signals between the con-
troller and the physical system. Because the signals from and to the software are discrete time

1http://www.ros.org/, accessed on 25 July 2016.

Robotics and Mechatronics K.J. Kok

http://www.ros.org/

14 TERRA support for architecture modelling

or events and the signals from or to the plant are continuous time signals, the I/O block can be
divided into two parts as is shown in Figure 3.3. The I/O block can be divided into a discrete
time/events I/O block and a continuous time I/O block.

Figure 3.3: Global architecture model overview with divided I/O block

At the moment all models which are created in TERRA are translated to C++ code which runs
in combination with the LUNA framework. This executable code runs most of the time on an
embedded processor. Instead of translating the CSP models to software, it is also possible to
translate CSP models to a hardware discription (Kuipers et al., 2016). The parallel nature of
the FPGA make archiving hard real-time guarantees more easy. The functional language Cλash
can be used to describe the mapping between CSP to hardware. This means that parts of the
controller and I/O of the cyber-physical system model can be translated to Cλash instead of
LUNA compatible code.

As explained in the way of working in Section 2.1 the controller of the cyber-physical system
should first be tested on a plant model before the real plant setup is used. The plant block
of the architecture model contains the model of the physical system which can be used for
simulations without using the real physical system.

3.2 Using a Plant Model in the Architecture Editor

The focus of this assignment is on the use of a model of a physical system in the architecture
editor of TERRA. It is not necessary to make a new implementation tool for physical systems in
TERRA because there exist enough tools which can do that. These tools also contain simulators
for the simulation of the physical systems, so it also not necessary to create a new simulator for
physical systems in TERRA. This assignment is about using a tool-suite for physical systems in
combination with TERRA. 20-sim2 is a tool-suite for physical system which is most used at the
chair of Robotics and Mechatronics and therefore this tool-suite will be used in combination
with TERRA. The use of 20-sim in TERRA can be divided into different steps which are similar
to step 1 to 3 of the way of working for cyber-physical systems. The use of 20-sim in TERRA for
the different steps are explained in the next sub-sections.

3.2.1 Step 1 - Top-level Architecture

In this step the top-level architecture model of the cyber-physical system is designed. This
means that the cyber-physical system is divided into different subsystems. The physical system
is one of the sub-systems of a cyber-physical system. This system can also be divided into
different subsystems. For every subsystem in the architecture model an interface is defined
for the communication between the differen subsystems. This interface indicates what kind
of signals are used for the communication between the different subsystems. Every subsystem
can be implemented in its on way but the interface needs to be the same because then it is
possible to directly connect the different subsystems together.

2http://www.20sim.com/

K.J. Kok University of Twente

http://www.20sim.com/

CHAPTER 3. ANALYSIS 15

In this case the implementation of the controller is done in the CSP editor of TERRA while
the implementation of the physical system is done in 20-sim. So it is important to know which
signals are transfered between the controller and the physical system to connect these different
systems together. It is possible to define the interface of both systems on paper and directly
implement these interfaces into their own editors. This approach is very error prone because
the implementation of the interface is done by hand.

A better approach is to define the interfaces between the different sub-systems in an editor and
automatically transfer the interfaces for the different sub-systems into their own editors. At the
moment the architecture editor of TERRA supports the design of an architecture model and to
translate the interfaces for the different components to CSP models. This approach can also be
used to transfer the interface of a component in the architecture editor of TERRA to the 20-sim
editor. Figure 3.4 shows an example of an interface of a physical system model in 20-sim. From
the architecture editor of TERRA this kind of interface needs to be created for 20-sim.

Figure 3.4: Example of a model with an interface in 20-sim

There are two approaches to copy the interface from TERRA to 20-sim. The first approache is
to generated some template files with a model with different interfaces in 20-sim. 20-sim has
an API which makes it possible to open the 20-sim tool and load a 20-sim file. So it should be
possible to use this API in TERRA to select the right template file for the interface of the plant
model which can be automatically opened in 20-sim. The problem with this approach is that
a new template file needs to make in 20-sim when the interface is not available in the current
selection of templates files. The interfaces of physical systems can variate a lot, so it means that
for every kind of physical system a new template file is needed.

The second approach is to create an 20-sim file by TERRA itself. A 20-sim file describes the
interface for a model, so TERRA can generated a 20-sim file which also describes an interface
for a model. This interface is similar to the interface of the model for the physical system in the
architecture editor. For this second approach it is necessary to define a meta-model for this in-
terface which can be used by TERRA to translate the interface to a 20-sim file. This approach is
very flexible but is more complex to implement in TERRA than the first approach. Because flex-
ibility is more important for the end-user than the complex implementation by the developer,
the second approach is performed.

Robotics and Mechatronics K.J. Kok

16 TERRA support for architecture modelling

3.2.2 Step 2 - Detail Design

In this step of the way of working all the different components of the architecture model gets
an implementation. For the physical system model holds that the model with the generated
interface by TERRA can be implemented by 20-sim. The implementation of the plant model
can consists of bond graphs or/and iconic diagrams.

3.2.3 Step 3 - Implementation

In this step all the different implemented models are connected together for simulations. For
the simulation the controller is designed in TERRA while the model of the physical system is
designed by 20-sim. So an approach is needed to connected the model in TERRA with the
model in 20-sim for co-simulation. Three approaches are possible for this connection.

The first approach is to use the API of 20-sim. The API of 20-sim also has some functionalities to
preform some simulations on the model in 20-sim. It is also possible to exchange values from
and to the model in 20-sim through the API. So it should be possible to make a connection to
this API in TERRA to control the simulator of 20-sim and to exchange values like inputs and
outputs between the controller model and the physical system model. A advantage of this ap-
proach is that the simulation of the physical system model runs in 20-sim itself and it can also
generates plots from the simulation of the physical system model. A disadvantage of this ap-
proach is that the API works with python but TERRA only generates C++ code based on LUNA
at the moment. So support for using python needs to be implemented in LUNA.

The second approach is to use the current implementation of model exchange in 20-sim which
is created by the chair of Robotics and Mechatronics. This model exchange is currently used
to transfer controller implementations from 20-sim to the CSP editor of TERRA. This method
generated a XML file which contains information about the 20-sim model and reference value
for getting and setting input and output values of the 20-sim model. Also some source codes
are generated which contains the dynamic implementation of the controller models which are
used to implement the controller in TERRA. A disadvantage of this approach is that the 20-sim
simulator itself is not used for the simulations and so there is also no support to draw graphs
from the simulation of the 20-sim model.

The third approach is to make use of the FMI for Co-simulation. It is possible to create a FMU
of a model in 20-sim. At the moment only FMU’s with the solver included is supported in 20-
sim, see Figure 2.4. Later it should also be possible to use 20-sim as simulation tool for the
FMU. Because the FMI is a standard it should also be possible to connect FMU’s from other
tools to TERRA. The FMU also consists of an XML file with important information about the
model itself and reference values for getting and setting input and output values of the 20-sim
model. When 20-sim can also be used as co-engine for the simulation of the FMU, it is also
possible to draw graphs from the simulation of the 20-sim model. Because this approach has
the most advantages in comparing with the other two approaches, this approach is used for
this assignment.

For the implementation of the third approach it is important that the interface from the con-
troller software to the FMU which contains the implementation of the physical system model
is automatically generated to prevent errors. So also for this approach a meta-model for the
FMU interface can be designed which can be used to automatically generate code for the FMU
interface. The generated XML file from the FMU can be used as base for the implementation of
the FMU interface because this file already contains information about the model, the inputs
and the outputs which are necessary for the FMU interface.

Figure 3.5 gives an impression about the way of working for the co-modeling and co-simulation
support for physical systems in TERRA. The way of working starts with the architecture model
in the architecture editor of TERRA. Step 1 is to copy the interface of the physical system model

K.J. Kok University of Twente

CHAPTER 3. ANALYSIS 17

to 20-sim. Step 2 gives an implementation to the physical system model using the interface
which is generated from TERRA. In step 3 a coupling is created between the controller software
in TERRA and the simulator of the physical system in 20-sim. So the plant block of the archi-
tecture model in TERRA contains now an interface to the FMU of the physical system model.

Figure 3.5: Co-modeling and co-simulation support impression for physical systems in TERRA

3.3 Requirements

This section describes the different requirements which are formulated for this assignment.
The MoSCoW method is used to indicate the priority of each requirement.

A Must have

I All meta-models must be based on the CPC meta-model
All Terra models are in the end derived from the CPC meta-model. By using the CPC
meta-model as base for the architecture models, it becomes possible to easily con-
nect different architecture models to each other but also to connect other model types
which are used in Terra.

II No code must be added by hand
The goal of model-driven development is to use models to create a working system.
These models can be translated to other model types or code for simulations and de-
ployment. The creation and translation of these models must be done without en-
tering code by the user. This will prevent errors and finally in the realization of the
system.

III The architecture editor must support the 20-sim tool
The 20-sim tool is used to use the plant model in combination with the architecture
editor of TERRA. The design and simulation of the plant model is done in 20-sim itself
while there is a connection with TERRA.

Robotics and Mechatronics K.J. Kok

18 TERRA support for architecture modelling

IV The architecture editor must support code generation for the LUNA framework
Currently it is possible to generate code for the LUNA framework in TERRA. So it must
also be possible to generate code for the LUNA framework from architecture model in
TERRA. All the models and interfaces which are used in the architecture model need
to be translate to LUNA code, so it can be used for execution.

V Testing of the models must be supported by the architecture editor
To prevent errors in the design of the architecture model and finally in the realization
of the system, it must be possible to detect errors in an early state. So the architecture
editor needs to check the constraints of the models

B Should have

I The architecture editor should have the possibility to switch between the real plant and
a model of the plant.
As explained in the way of working for designing cyber-physical systems first the soft-
ware implementation is simulated with a model of the plant before it will be tested
on a real plant. So the architecture editor must support the switch between the model
of the plant which is created in 20-sim and the real plant which is connected through
the interface of the computer or the embedded platform.

II The architecture editor should have support for hardware ports simulation
Hardware ports like A/D converters, D/A converters and PWM ports are used in cyber-
physical systems for the connection between the embedded platform and the real
plant. During simulations the embedded software is not directly tested on the ded-
icated platfrom with the real plant connected to it. First the embedded software is
tested on a general computer with a model of the plant. Hardware ports like A/D con-
verters and D/A converters are implemented in the hardware of the dedicated plat-
form. So when simulations are done on a general computer these hardware ports
need to be simulated to connect the model of the plant correctly to the embedded
software.

III The architecture editor should have support for simulations on the general computer
platform and on a dedicated embedded platform in combination with a model of
the plant
As explained in the previous requirement the implementation of the software will
first be tested on a general computer in combination with the model of the plant.
After the tests on the general computer the embedded software will be tested on the
dedicated embedded platform. Also for these tests first the model of the plant is used.
Because the resources on the embedded platform are limited it is not recommend to
also simulate the model of the plant on the platform. So this need to be done on a
general computer.

C Could have

I The architecture editor could have support for code generation to Cλash
At the moment of writing, research is performed to translate CSP models to Cλash.
So it will be possible to also run CSP models on FPGAs. So in the future TERRA could
also support code generation to Cλash.

II The architecture model could have support for the ROS framework
At the moment of writing, research is performed to create a link between the LUNA
framework and the ROS framework. Also the ROS framework can be used to create
software for cyber-physical systems. So the architecture model could also support ROS
models.

D Won’t have

K.J. Kok University of Twente

CHAPTER 3. ANALYSIS 19

I The architecture editor won’t have support for multiple plant models
The goal of this assignment is to first add one plant model in the architecture editor.
Later on it should be possible to add functionalities to add multiple plant models into
the architecture editor

Robotics and Mechatronics K.J. Kok

20 TERRA support for architecture modelling

4 Design of the Meta-models for Co-modeling and
Co-simulation Support in TERRA

Because MDD is used for the design of cyber-physical systems, meta-models are used as base
for the different models which can be created by TERRA. For the translation between the in-
terface for the plant model, which is created in the architecture editor, to the 20-sim model,
model-to-text transformation is needed. To perform this operation in TERRA, a meta-model of
the plant interface in TERRA is needed. The design of this meta-model is discussed in Section
4.1.

When the plant model is designed in 20-sim, this implementation needs to be coupled to
TERRA to perform co-simulations. FMI is used to setup a communication channel between
TERRA and 20-sim. To generate an interface to the FMU of the plant model in TERRA, a meta-
model needs to be defined for the FMU interface. This is explained in Section 4.2

4.1 Meta-model for Co-modeling Support in TERRA

To translate the plant model interface created in the architecture editor of TERRA to an inter-
face in 20-sim, a 20-sim file with this interface needs to be created by TERRA. First a 20-sim file
is analyzed to see which properties are important to generate a 20-sim file. These properties are
used to generate a meta-model for the plant model interface which can be used to generated a
20-sim file. Finally an implementation approach in TERRA is proposed.

4.1.1 Analysis of the 20-sim File

Listing 4.1 shows the source of the 20-sim file which corresponds with the 20-sim model which
is shown in figure 4.1. Line 3 to 15 describes the properties of the main model. This main model
is the workspace which is visible in the 20-sim editor. Line 16 to 55 describes the implementa-
tion of this main model. The implementation of the main model consists of a submodel with
the name ‘plant’ which is also visible in the 20-sim editor. Line 19 to 39 describes the properties
of the submodel. Line 42 to 45 describes the ports which are included in the submodel. The
port description has the following layout:

signal <dataType> <direction> <name>;

where <dataType> represents the datatype of the variable which can be send through the port,
<direction> represents the direction of the port and <name> represents the name of the port.
When <dataType> is replaced by nothing the datatype will be a real. Replacing <dataType>
by integer the datatype will be an integer. The datatype will be a boolean when <dataType>
is replaced by boolean. And finally the datatype of a port will be a string when <dataType> is
replaced by string. To give a direction to a port, <direction> can be replaced by in when the port
is an input and <direction> can be replaced by out when the port is an output.� �

1 <?xml version ="1.0" encoding ="UTF−8"?>
2 <Document>
3 <Model version ="4.6" build =" 4 . 6 . 1 . 6 8 9 8 " >
4 <Sidops>< ! [CDATA[model 128 184
5 descript ion ’ < Information>
6 <Description>
7 <Version>4.6< / Version>
8 <IsMainModel>0< / IsMainModel>

K.J. Kok University of Twente

CHAPTER 4. DESIGN OF THE META-MODELS FOR CO-MODELING AND CO-SIMULATION
SUPPORT IN TERRA 21

Figure 4.1: Example of a interface of a submodel in 20-sim

9 <KeepParameterValues>False< / KeepParameterValues>
10 <LibraryPath>Z : \home\karim\Bureaublad\ PlantInterface .emx< /

LibraryPath>
11 <TimeStamp>2016−7−27 13:08:50< / TimeStamp>
12 < / Description>
13 < / Information> ’ ;
14 type Mainmodel
15 end ;
16 implementation bg
17 submodels
18 Plant 632 280
19 description ’<Information>
20 <Description>
21 <Version>4.0< / Version>
22 <LibraryPath>C: \ Program F i l e s \20−sim 4.0\ System\Submodel .

emx< / LibraryPath>
23 <TimeStamp>2007−10−31 11:32:54< / TimeStamp>
24 <IsMainModel>1< / IsMainModel>
25 <KeepParameterValues>False< / KeepParameterValues>
26 <AllowLibraryUpdate>True< / AllowLibraryUpdate>
27 <Configuration>
28 < s t r u c t >
29 <member>
30 <name>DocumentationMask< /name>
31 <value>
32 < s t r u c t >
33 < / s t r u c t >
34 < / value>
35 < / member>
36 < / s t r u c t >

Robotics and Mechatronics K.J. Kok

22 TERRA support for architecture modelling

37 < / Configuration>
38 < / Description>
39 < / Information> ’ ;
40 type Plant
41 ports
42 s ignal in PortRealInput ;
43 s ignal integer out PortIntegerOutput ;
44 s ignal boolean in PortBooleanInput ;
45 s ignal s t r i n g out PortStringOutput ;
46 parameters
47 r e a l ParameterReal = 1 . 0 ;
48 boolean ParameterBoolean = 1 . 0 ;
49 integer ParameterInteger = 1 . 0 ;
50 s t r i n g ParameterString = 1 . 0 ;
51 end ;
52 end ;
53 connections
54 end ;
55 implementation_end ;
56]] >
57 < / Sidops>
58 < / Model>
59 < / Document>� �

Listing 4.1: Textual representation of a 20-sim file

Line 47 to 50 describes the parameters which are included in the submodel. The parameter
description has the following layout:

<dataType> <name> = <value>;

where <dataType> represents the datatype of the parameter, <name> represents the name of
the parameter and <value> represent the value of the parameter. When <dataType> is replaced
by real the datatype will be a real. Replacing <dataType> by integer the datatype will be an
integer. The datatype will be a boolean when <dataType> is replaced by boolean. And finally
the datatype of a parameter will be a string when <dataType> is replaced by string.

4.1.2 Plant Model Interface Meta-model

Figure 4.2 shows the meta-model for the plant model interface. The class PlantModel repre-
sents the plant model itself. This class has an name attribute which represents the name of the
model. The value of this name attribute can be used during code generation to add the name
of the model in line 18 and 40 of listing 4.1. The PlantModel class contains one or more ports.
These ports contain a name attribute, a direction attribute and a dataType attribute. The values
of these attributes can be used during model-to-text generation to generate lines 42 to 45 of
listing 4.1 to add ports to the submodel in 20-sim.

The PlantModel class also contains four different types of parameters. The current version of
the architecture editor in TERRA has no support for parameter exchange for the current sup-
ported models. But this feature can make it possible to use parameter values of the plant model
as value or part of an equation in the controller model or the other way around. Keeping the
use of this feature in mind it is useful to also add these parameters in the meta-model of the

K.J. Kok University of Twente

CHAPTER 4. DESIGN OF THE META-MODELS FOR CO-MODELING AND CO-SIMULATION
SUPPORT IN TERRA 23

Figure 4.2: Meta-model of the plant model interface

plant model interface. Parameter values are from different data types like boolean or integer.
So for every data type, a separate set of parameters is implemented in the Plant model.

Each parameter contains a name attribute and a value attribute. The values of these attributes
can be used during model-to-text generation to generate lines 47 to 50 of listing 4.1 to add
parameters to the submodel in 20-sim. Of course the data type of the parameter can be deter-
mined by looking where the parameter is located in the Plant class.

The rest of the 20-sim file which is visible in listing 4.1 is standard for every 20-sim file. So it
is not necessary to include these values in the meta-model because they do not change for a
different model interface.

4.1.3 Using the Meta-model in TERRA

To use the meta-model in the architecture it needs to be based on the CPC meta-model. The
class CPCModel of the CPC meta-model is similar to the class PlantModel. So the class Plant-
Model can inheritance from the class CPCModel. The class CPCPort of the CPC meta-model is
similar to the class PlantPort. So the class PlantPort can inheritance from the class CPCPort.
This is shown in Figure 4.3.

There are two approaches to use the meta-model of the plant interface model in the architec-
ture editor of TERRA. The first approach is to create an editor around the plant model interface
meta-model. When an empty model is added in the architecture editor of TERRA, the CSP edi-
tor is automatically opened when double clicking on the empty model. When also some ports
are added to the empty model, these ports are also automatically added to the CSP model when

Robotics and Mechatronics K.J. Kok

24 TERRA support for architecture modelling

Figure 4.3: Meta-model of the plant model interface with inheritance from the CPC meta-model

double clicking on the model. It should be possible to make a choice between different editors
when double clicking in an empty model in the architecture editor. If a empty model in the
architecture model represents a plant model, the editor for the plant model interface can be
opened when double clicking on the empty model. If already ports are added to the empty
model, these ports can also automatically added to plant model interface. Then it is only nec-
essary to add some parameters if necessary to the model before the 20-sim file is generated
from the editor. Like the CSP editor it should be possible to design a plant model interface
with the editor. This editor adds ports and parameter to the model and then use model-to-text
generation to translate the model to a 20-sim file.

The second approach is to directly generated a 20-sim file from the architecture editor. The
meta-model of an architecture component contains the same attributes as the PlantModel
class of the plant model interface meta-model. The same holds for the architecture port and
the PlantPort class. Only the parameters from the PlantModel class can not be created from
the architecture editor. It is possible to add the parameter classes to the model class of the
architecture meta-model. This should be the beginning to create a parameter sharing feature
between the different components of the architecture model as mentioned in Section 4.1.2.

K.J. Kok University of Twente

CHAPTER 4. DESIGN OF THE META-MODELS FOR CO-MODELING AND CO-SIMULATION
SUPPORT IN TERRA 25

The preference is to implement the second approach into the architecture editor. The second
approach gives less overhead than the first approach because in the first approach the archi-
tecture model file contains mostly the same content as the plant interface model file generated
by the plant interface model editor. Only the parameters of the plant model are added. This is
also a disadvantage of the second approaches because the parameters needed to be added in
the architecture editor. But this can be a start of the development of a new feature of the archi-
tecture editor. It is also possible to remove the parameters from the meta-model when they are
not shared with other models in the architecture model. With the second approach it is also
not necessary to create a new editor in TERRA.

At this moment, due to time constraints, it was not possible to actually add this implementation
in the architecture editor.

4.2 Meta-model for the Co-simulation Support in TERRA

To use a plant model in 20-sim in combination with TERRA for co-simulation, an interface
needs to be created to the FMU generated by 20-sim according to the FMI standard. First FMI
for co-simulation is analyzed to determine the important data which is needed to generated
an interface to the FMU. A meta-model is created which contains all the necessary data for the
interface. Finally an implementation approach in TERRA is proposed.

4.2.1 Analysis of FMI for Co-simulation

Following the FMI for Co-simulation standard, a FMU can be generated from a plant model
which contains an XML file and some source files. The XML file contains information about
the model itself and about how it can be simulated. The source files contains C files which
implement the FMI functions with the plant dynamics or a interface to a simulation tool.

Listing 4.2 shows a master algorithm for a co-simulation between two FMU’s. Figure 4.4 shows
the connection graph of the two FMUs which are used in the master algorithm. Line 5 to 10
shows the creation of the struct fmi2CallbackFunctions. This struct provides callback functions
to be used from the FMU functions to utilize resources from the environment. The important
functions are: logger, allocateMemory and freeMemory. The logger function is called in the
FMU, usually when the execution of a FMI function behaves not as desired. It is also used for
information messages. The allocateMemory function is called in the FMU if memory needs to
be allocated. The freeMemory function is called in the FMI if memory is freed that has been
allocated with allocateMemory. The pointers to the componentEnvironment and stepFinished
are optional and not used. It is possible to include these pointer at a later time when they are
necessary.� �

1 //////////////////////////
2 // I n i t i a l i z a t i o n sub−phase
3

4 // Set callback functions ,
5 fmi2CallbackFunctions cbf ;
6 cbf . logger = loggerFunction ; // logger function
7 cbf . allocateMemory = c a l l o c ;
8 cbf . freeMemory = free ;
9 cbf . stepFinished = NULL; // synchronous execution

10 cbf . componentEnvironment = NULL;
11

12 // I n s t a n t i a t e both slaves
13 fmi2Component s1 = s1_fmi2Instantiate (" Tool1 " , fmi2CoSimulation ,

GUID1, "" , fmi2False , fmi2False , &cbf , fmi2True) ;

Robotics and Mechatronics K.J. Kok

26 TERRA support for architecture modelling

14 fmi2Component s2 = s2_fmi2Instantiate (" Tool2 " , fmi2CoSimulation ,
GUID2, "" , fmi2False , fmi2False , &cbf , fmi2True) ;

15

16 i f ((s1 == NULL) | | (s2 == NULL))
17 return FAILURE ;
18

19 // S t a r t and stop time
20 startTime = 0 ;
21 stopTime = 10;
22

23 //communication step s i z e
24 h = 0 . 0 1 ;
25

26 // set a l l variable s t a r t values (of " ScalarVariable / <type> /
s t a r t ")

27 s1_fmi2SetReal / Integer /Boolean/ Str ing (s1 , . . .) ;
28 s2_fmi2SetReal / Integer /Boolean/ Str ing (s2 , . . .) ;
29

30 // I n i t i a l i z e slaves
31 s1_fmi2SetupExperiment (s1 , fmi2False , 0 . 0 , startTime , fmi2True ,

stopTime) ;
32 s2_fmi2SetupExperiment (s2 , fmi2False , 0 . 0 , startTime , fmi2True ,

stopTime) ;
33 s1_fmi2EnterInitializationMode (s1) ;
34 s2_fmi2EnterInitializationMode (s2) ;
35

36 // set the input values at time = startTime
37 s1_fmi2SetReal / Integer /Boolean/ Str ing (s1 , . . .) ;
38 s2_fmi2SetReal / Integer /Boolean/ Str ing (s2 , . . .) ;
39

40 s1_fmi2ExitInitial izationMode (s1) ;
41 s2_fmi2ExitInitial izationMode (s2) ;
42

43 //////////////////////////
44 // Simulation sub−phase
45

46 tc = startTime ; // Current master time
47

48 while ((tc < stopTime) && (s t a t u s == fmi2OK))
49 {
50 / / r e t r i e v e outputs
51 s1_fmi2GetReal (s1 , . . . , 1 , &y1) ;
52 s2_fmi2GetReal (s2 , . . . , 1 , &y2) ;
53

54 / / s e t inputs
55 s1_fmi2SetReal (s1 , . . . , 1 , &y2) ;
56 s2_fmi2SetReal (s2 , . . . , 1 , &y1) ;
57

58 / / c a l l s lave s1 and check s t a t u s
59 s t a t u s = s1_fmi2DoStep (s1 , tc , h , fmi2True) ;
60 switch (s t a t u s) {

K.J. Kok University of Twente

CHAPTER 4. DESIGN OF THE META-MODELS FOR CO-MODELING AND CO-SIMULATION
SUPPORT IN TERRA 27

61 case fmi2Discard :
62 fmi2GetBooleanStatus (s1 , fmi2Terminated , &boolVal) ;
63 i f (boolVal == fmi2True)
64 p r i n t f (" Slave s1 wants to terminate simulation . ") ;
65 case fmi2Error :
66 case fmi2Fatal :
67 terminateSimulation = true ;
68 break ;
69 }
70 i f (terminateSimulation)
71 break ;
72

73 / / c a l l s lave s2 and check s t a t u s as above
74 s t a t u s = s2_fmi2DoStep (s2 , tc , h , fmi2True) ;
75 . . .
76

77 / / increment master time
78 t c += h ;
79 }
80

81 /
82 / / Shutdown sub−phase
83 i f ((s t a t u s ! = fmi2Error) && (s t a t u s ! = fmi2Fatal))
84 {
85 s1_fmi2Terminate (s1) ;
86 s2_fmi2Terminate (s2) ;
87 }
88

89 i f (s t a t u s ! = fmi2Fatal)
90 {
91 s1_fmi2FreeInstance (s1) ;
92 s2_fmi2FreeInstance (s2) ;
93 }� �

Listing 4.2: A simple master algorithme for FMI

Figure 4.4: Connection graph of the slaves of the master algorithm in Listing 4.2

Line 13 and 14 instantiate the FMU’s for co-simulation. The first argument of the function
fmi2Instantiate is instanceName. This argument is an unique identifier for the FMU instance.
The second argument fmuType is used if the FMU is used for model exchange or co-simulation.
The third argument fmuGUID is a string which is used to check if the used XML file is compat-

Robotics and Mechatronics K.J. Kok

28 TERRA support for architecture modelling

ible with the source code which is provided by the FMU. So the value for this argument can be
taken from the corresponding XML file. The fourth argument fmuResourceLocation can con-
tain a path to the resource folder which is also located in the FMU directory. The fifth argument
functions provides the callback functions which are discussed before. The sixth argument visi-
ble defines that the interaction with the user should be reduced to a minimum. The last argu-
ment loggingOn sets the debug logging.

Line 16 and 17 checks if the FMU’s are correctly instantiated. Line 16 to 24 define the start time
and stop time of the simulation. It also defines the step size for the simulation. The preferred
step size can be found in the XML file of the FMU. Line 27 and 28 sets all the variable start
values. It is not necessary to perform this step because the FMU which is generated by 20-sim
also contains the standard values in the source code itself. But if not the standard values are
used then these values can be set by using the following function:

fmi2Status fmi2SetXX(fmi2Component c, const fmi2ValueReference vr[], size_t nvr, fmi2Real
value[]),

where XX needs to be replaced by Real, Integer, Boolean or String depending on the datatype
of the variable which needs to be set. All variables with the same datatype can be set with one
function call. The first argument c of the function is the reference to the instance of the FMU
for which the variables need to be set. The second argument vr[] is a vector of reference values
to the variables which needs to be set. The reference values of the variables can be found in
the XML file. The third argument nvr is the amount of values which are set with the function.
The last argument value[] is a vector with the actual values of the variables which are set by the
function.

Line 31 and 32 initialize the instances of the FMUs. The first argument of the function
fmi2SetupExperiment is c. This argument contains a reference to the instance of the FMU
which need to be initialized. The second argument toleranceDefind is used to indicate if er-
ror estimation needs to control the communication interval. The third argument tolerance can
be used to for the error estimation. The fourth argument startTime indicates the start time of
the simulation. the fifth argument stopTimeDefind indicates if a stop time is defined. The last
argument stopTime indicates the stop time of the simulation.

Line 33 and 35 set both instances of the FMUs in initialization mode. In this mode it is possible
to read the output values of the FMU and set the input values of the FMU. This is done line
37 and 38 of the code. The functions fmi2SetXX and fmi2GetXX are used to set the inputs
and outputs of the FMU. Both functions works in the same way as explained before for setting
the start values. Only the argument value[] of the function fmi2GetXX contains now an empty
vector which will be set with the values which are get from the output.

Line 40 and 41 close the initialization mode of both instances of the FMUs. The actual co-
simulation is done in line 46 to 79. Line 51 to 56 are responsible for the exchange of val-
ues between the inputs and outputs of both instances of the FMUs. Line 59 to 71 performs
a simulation step and checks the status of the simulation. The first argument c of the function
fmi2DoStep contains a reference to the instance of the FMU which need to perform a simula-
tion step. The second argument currentCommunicationPoint is the current time for which the
simulation is done. The third argument communicationStepSize is the communication step
size for which the simulation needs to be performed. The fourth argument noSetFMUStatePri-
orToCurrentPoint is for now not important.

Line 83 to 87 informs the instances of the FMUs that the simulation is terminated. And line 89
to 93 unloads the instances of the FMUs and frees all the allocated memory.

K.J. Kok University of Twente

CHAPTER 4. DESIGN OF THE META-MODELS FOR CO-MODELING AND CO-SIMULATION
SUPPORT IN TERRA 29

4.2.2 FMU Interface Meta-model

Figure 4.5 shows the meta-model for the FMU interface. The class FMIModel represents the
FMU interface itself. This class has an name attribute which represents the name of the model.
The FMIModel class contains one or more ports which represents the inputs and outputs of
the FMU. These ports contain a name attribute, a direction attribute, a dataType attribute and
a reference attribute. The name attribute is used to identify the ports in the model itself. The
direction attribute is used to indicates if the port is an input or an output. This is important to
know because because to set a input the function fmi2SetXX is used and to get an output the
function fmi2GetXX is used. The dataType attribute is used to determine if the XX indication of
the function fmi2SetXX or the function fmi2GetXX needs to be replace by Real, Integer, Boolean
or String. The last attribute reference holds the reference value to the input or output variable as
explained in Section 4.2.1. The values for these attributes can be taken from the corresponding
XML file of the FMU. Listing 4.3 shows an example of a XML file of a FMU generated by 20-sim.
Line 12 to 16 contains the description of the input and the output of the FMU. This description
contains a name, datatype, reference and a direction.� �

1 <?xml version ="1.0" encoding ="ISO−8859−1"?>
2 <fmiModelDescription fmiVersion ="2.0" modelName="Motor" guid ="{99

b42531−8f87−402d−9e5e−a47279e32fe6 } " generationTool="20−sim"
3 numberOfEventIndicators ="0" copyright =" Controllab Products B . V . "

l i c e n s e ="−">
4 <CoSimulation modelIdentif ier ="Motor" needsExecutionTool =" f a l s e "

canHandleVariableCommunicationStepSize=" true "
canInterpolateInputs =" f a l s e "

5 maxOutputDerivativeOrder ="0" canRunAsynchronuously=" f a l s e "
canBeInstantiatedOnlyOncePerProcess =" true "
canNotUseMemoryManagementFunctions=" true "

6 canGetAndSetFMUstate=" f a l s e " canSerializeFMUstate =" f a l s e "
providesDirectionalDerivative =" f a l s e " / >

7 <DefaultExperiment startTime ="0.0" stopTime ="10.0" s t e p S i z e ="0.01"
/ >

8 <ModelVariables>
9 <ScalarVariable name="Motor1 . r " valueReference ="6" v a r i a b i l i t y ="

tunable " c a u s a l i t y ="parameter ">
10 <Real s t a r t ="0.0394" / >
11 < / ScalarVariable>
12 <ScalarVariable name=" Current " valueReference ="20" v a r i a b i l i t y ="

continuous " c a u s a l i t y =" input ">
13 <Real s t a r t ="0.0" / >
14 < / ScalarVariable>
15 <ScalarVariable name=" V e l o c i t y " valueReference ="21" v a r i a b i l i t y ="

continuous " c a u s a l i t y =" output ">
16 <Real / >
17 < / ScalarVariable>
18 <ScalarVariable name="Jcam1 . s t a t e _ i n i t i a l " valueReference ="7"

v a r i a b i l i t y =" f i x e d " c a u s a l i t y ="parameter ">
19 <Real s t a r t ="0.0" / >
20 < / ScalarVariable>
21 <ScalarVariable name="phi1 . q _ i n i t i a l " valueReference ="8"

v a r i a b i l i t y =" f i x e d " c a u s a l i t y ="parameter ">
22 <Real s t a r t ="0.0" / >

Robotics and Mechatronics K.J. Kok

30 TERRA support for architecture modelling

Figure 4.5: Meta-model of the FMU interface

23 < / ScalarVariable>
24 <ScalarVariable name="QSensor2 . q _ i n i t i a l " valueReference ="9"

v a r i a b i l i t y =" f i x e d " c a u s a l i t y ="parameter ">
25 <Real s t a r t ="0.0" / >
26 < / ScalarVariable>
27 <ScalarVariable name="Jmot1 . s t a t e " valueReference ="22" v a r i a b i l i t y

=" continuous " c a u s a l i t y =" l o c a l ">
28 <Real / >
29 < / ScalarVariable>

K.J. Kok University of Twente

CHAPTER 4. DESIGN OF THE META-MODELS FOR CO-MODELING AND CO-SIMULATION
SUPPORT IN TERRA 31

30 <ScalarVariable name="Jmot1 . p . e_in " valueReference ="23" v a r i a b i l i t y
=" continuous " c a u s a l i t y =" l o c a l ">

31 <Real / >
32 < / ScalarVariable>
33 < / ModelVariables>
34 <ModelStructure>
35 <Outputs>
36 <Unknown index ="53" / >
37 < / Outputs>
38 < / ModelStructure>
39 < / fmiModelDescription>� �

Listing 4.3: An example of the XML file of a FMU from 20-sim

The FMIModel class also contains four references to parameters. These parameters are split
into four classes because every parameter contains a value. The datatype of this value depen-
dence on the datatype of the parameter. So to hold the value of parameter of a specific datatype,
for each datatype a separate class is necessary. Each parameter contains a name attribute, a ref-
erence attribute, a initial attribute and a value attribute. The name attribute is used to identify
the parameters in the model itself. The reference attribute holds the reference value to the pa-
rameter variable as explained in Section 4.2.1. The initial attribute indicates if the parameter
is fixed during simulation or can be changed during simulation. The last attribute value con-
tains the value of the parameter. To include the parameters of the FMU into the FMU interface
model, the XML file can be used. Line 9 to 11 of Listing 4.3 describes an parameter which can be
changed during a simulation. This is indicated by the value tunable of the variability element.
Line 18 to 26 describes the parameters which are fixed during a simulation. This is indicated by
the value fixed of the variability element. The description of the parameters contains a name,
datatype, reference and value which are needed for the FMU interface model. It is possible to
change the value of a parameter by an other value than the value which is indicated by the XML
file.

The XML file of Listing 4.3 contains also a description for local variables. These values repre-
sents the state variables of the model. It is possible to also include these values to the meta-
model for the FMU inteface. But it is not necessary to set or change these values because they
are only used during the simulation of the model and depends on the input, output and pa-
rameter values of the model. So these values are not added to the meta-model.

The FMIModel class contains a reference to a CallbackFunctions class. This class contains a log-
ger attribute, a allocateMemory attribute and a freeMemory attribute. These attributes are used
to indicates which functions can be used for logging, allocating memory and freeing memory
on the platform where the FMU interface is used on. The values of these attributes needs to be
set by the user because the names of these functions depends on the platform where the FMU
interface is executed on.

The FMIModelDescription class contains a modelName attribute, a guid attribute and a gener-
ationTool attribute. The modelName attribute contains the name of model for which a FMU
is generated. The guid contains a string which is used to check if the source files of the FMU
belongs to the XML file of the FMU. The generationTool attribute contains the name of the tool
which is used for the generation of the FMU. The values for these attributes can be taken from
the XML file. Line 2 of Listing 4.3 gives the values for the three attributes.

The FMISimulationProperties class contains the attributes which are used to setup the time
and communication step size for the simulation. Line 7 of Listing 4.3 describes some default
values which can be used for the simulation properties. The FMIFMUProperties class contains
some properties for the FMU which are indicated by the XML file. For this assignment these

Robotics and Mechatronics K.J. Kok

32 TERRA support for architecture modelling

properties are not used because only a simple simulation algorithm will be implemented. But
when in the future some complex simulation algorithms are created for the co-simulation be-
tween TERRA and 20-sim, these properties can be used for code generation or validation of the
FMU interface model.

4.2.3 Using the Meta-model in TERRA

The meta-model of the FMU interface is used to create a model for the FMU interface in TERRA.
This model contains all the information which is necessary to create a C++ file which can han-
dle the communication with the FMU. There are two approaches to use the FMU interface in
TERRA.

The first approach is to create a new component in the architecture editor which implements
the meta-model for the FMU interface. During code generation a C++ file can be generated
which contains the communication to the FMU like the code in Listing 4.2. The epsilon plugin
in eclipse can be used for this transformation. The problem for this approach is that also an
interface needs to be created to the channels which are connected to the FMI interface com-
ponent to exchange the input and output values with the other components in the architecture
model.

The second approach is to use a CSP model to implement the FMU interface. A CSP model can
contain a C++ code block which can be used to implement the FMU interface. Readers can be
used to read values from the channels and make them available in the C++ block. Writers can
be used to tranfer values from the C++ block to the channels. So it is not necessary to generate
code for the interface to the channels because this code is automatically generated by the CSP
editor when readers and writers are used. Also the code generation of the architecture models
is based on the code generation for CSP models. So it is also not necessary to create code for
the execution of the FMU interface. And finally the communication between CSP processes
are based on rendezvous, so this can be used as a simple co-simulation engine. Every time
when the inputs and outputs of the FMU are exchange with the rest of the model, the FMU can
perform a simulation step.

The second approach is implemented in TERRA as described in Chapter 5.

K.J. Kok University of Twente

33

5 Implementation of the FMU Interface in TERRA

As explained in chapter 4 the FMU interface is implemented as a CSP model. The XML file of
the FMU is used as base for the implementation of the FMU interface. Section 5.1 describes
how the XML file is used to generate a CSP model of the FMU interface. After the generation
of the CSP model, this model needs to be translated to LUNA based code. Section 5.2 decribes
how the CSP model of the FMU interface is translated to code.

The implementation of the FMU interface in TERRA is divided into different plugins. An
overview with the important TERRA plugins for the implementation of the FMU interface is
shown in Figure 5.1.

Figure 5.1: Overview with the important TERRA plugins for the implementation of the FMU interface

5.1 Translating the FMU’s XML File to a CSP Model

This section describes how the XML file of the FMU is used to generate a CSP model of the FMU
interface. First the implementation of the FMU interface meta-model in TERRA is discussed in
Section 5.1.1. To read the XML file of a FMU, a plugin is created in TERRA to support it. This
is explained in Section 5.1.2. Finally in Section 5.1.3 is discussed how a CSP model of a FMU
interface is generated.

5.1.1 Implementation of the FMU Interface Meta-model

The plugin nl.utwente.ce.terra.fmi.model of TERRA contains the Ecore model of the meta-
model of 4.2.2. In this Ecore model the class FMIModel inheritance from the class CPPCode-
BlockConfiguration. The class CPPCodeBlockConfiguration is a class from the CPP meta-model
which is also implemented in TERRA. The CPP meta-model implements the C++ block of the
CSP editor in TERRA. The class contains the attributes sourceFiles and HeaderFiles which can
be used in the FMU interface model to select the source files of the FMU which are also needed
for the code generation, compiling and linking. The class inheritance form the class ICPCEx-
ternalToolConfiguration which is part of the CPC meta-model. This class is used to give a con-
figuration to a component of a CPC model. So the meta-model for the FMU interface is in
this way based on the CPC meta-model. And because it is also based on the CPP meta-model,
code generation features of the CPP model can be used for the FMU interface model. In this
way it is possible to easily create a C++ file with an interface to the FMU. Figure 5.2 shows an
UML diagram of the inheritance of the FMIModel class. All the attributes and references of the
FMIModel class itself is not included in this figure.

Robotics and Mechatronics K.J. Kok

34 TERRA support for architecture modelling

Figure 5.2: UML diagram of the inheritance of the FMIModel class

The plugin nl.utwente.ce.terra.fmi.model.edit of TERRA contains providers to display the prop-
erties of the FMU interface model in an UI. The plugin nl.utwente.ce.terra.fmi.editor of TERRA
contains an simple editor for the FMU interface model. This editor makes it possible to show
a C++ code block as FMU interface block. It makes it also possible to see and change the prop-
erties of the FMU interface model by clicking on the FMU interface block. Figure 5.3 shows the
FMU interface model editor.

Figure 5.3: FMU interface model editor in TERRA

5.1.2 Support for Reading the XML File of a FMU

The plugin nl.utwente.ce.terra.fmi.xml.model of TERRA contains an Ecore meta-model which
is generated from the XML schema definition of the XML files of the FMUs. This meta-model
makes it possible to read a XML file of a FMU in TERRA. All the elements which are defined in
the XML file are placed in the model which is generated from the meta-model. This model is
finally used to define a CSP model for the FMU interface model. A simplified UML diagram of

K.J. Kok University of Twente

CHAPTER 5. IMPLEMENTATION OF THE FMU INTERFACE IN TERRA 35

the meta-model is shown in Figure 5.4. This UML diagram contains only classes and attributes
which are used for the definition of the CSP model because otherwise the figure becomes very
complex.

Figure 5.4: A simplified UML diagram of the meta-model for reading the XML files of the FMUs

The class FmiModelDescriptionType is the main class. It contains attributes for the name of the
model, the name of the generation tool and the guid string which is necessary for the validation
of the source files. The class contains a reference to the ModelVariablesType class. This refer-
ence contains all the information about the inputs, outputs, parameters and state variables of
the model. The reference to the class DefaultExperimentType contains the default simulation
properties which can be used for a simulation. The reference to the class CoSimulationType
contains properties which hold for the FMU of the model.

5.1.3 Creating a CSP model of a FMU Interface

The plugin nl.utwente.ce.terra.fmi.transform.xml.to.cspm of TERRA contains an ETL file which
is used to generate a CSP model from the XML file of the FMU. It use the meta-model of the
XML file to read the XML file and to translate this XML file to a CSP model.

The generated CSP model contains a FMU interface block and some readers and writers. Figure
5.5 shows an example of a CSP model of the FMU interface. During the model translation the
ETL file first generates an FMU interface block. This FMU interface block is based on the meta-
model of the FMU interface model and is used to finally create a c++ file which contains the
interface to the FMU. Information like the name, guid, generation tool, FMU properties and
the default simulation properties are copied from the XML file to the FMU interface block.
The FMU interface block also holds some source and header files which are used during the
compilation and linking of the control software. These files are automatically added to the
Makefile which is used to generate an application of the controller code. So the source files
which are necessary for the FMU interface can also be added. This files are automatically added
by the ETL file because for every model in 20-sim where an FMU is generated from use the
same source files. A better option was to select the files by hand because as in that case it is
also possible to use FMU’s which are created by other programs. But in the current TERRA
application the selection of files via a window does not work.

Robotics and Mechatronics K.J. Kok

36 TERRA support for architecture modelling

Figure 5.5: Example of a FMU interface model

The readers and writers in the CSP model of the FMU interface are used to send values to and
receive values from the channels which are connected to the FMU interface model. These val-
ues are saved in variables. Every reader and writer has it own variable for holding a value. These
variables can be shared with the FMU interface block. This make it possible to send values from
the channels to the FMU inputs and values from the FMU outputs to the channels. It is nec-
essary to define a unit type for each variable which is defined in a CSP model. This unit type
contains a unit name, a quantity name and a data type. So it is possible for example to create a
unit type for the current with data type real and a unit type for the velocity with data type real.
In the end only the data type of the different variables are important. The quantity name and
unit name of a unit type is not used during code generation of the FMU interface. So for the
CSP model for the FMU interface only three unit types are defined which can be used as unit
type for all the variables inside the FMU interface model. These unit types are:

• fmi_real with data type real

• fmi_boolean with data type boolean

• fmi_integer with data type integer

These unit type are also used in the FMU interface block to also create variables of the same
unit type which makes it possible to share the variables with the variables of the readers and
writers. For every variable in the XML file of the FMU, which represents an input or an output
the following elements are created or added in the CSP model:

• A variable for the reader or writer with the name v_XXX where XXX is the name of the
variable in the XML file. The unit type of this variable corresponds with the data type
which is mentioned in the XML file.

• A port with the name XXX where XXX is the name of the variable in the XML file. For
an input variable the direction of the port is Outgoing and for an output variable the
direction of the port is Incoming.

• A reader with the name r_XXX or a writer with the name w_XXX where XXX is the name
of the variable in the XML file. The created variable is added to the reader or writer.

• A link between the port and the reader or writer.

K.J. Kok University of Twente

CHAPTER 5. IMPLEMENTATION OF THE FMU INTERFACE IN TERRA 37

• Also an instance of the class FMIPort is added to the FMU interface block with the data
of the input or output variable from the XML file. The data of these instance is used to
finally implements a function in the C++ file which can change the input or ouput value
of the FMU.

The readers and writer are placed group with a parallel structure as can be seen from Figure
5.5. This is done because for co-simulation it is necessary to exchange the values of the inputs
and the outputs of the system at the same time.

Also instances of the classes FMIparameterInteger, FMIParameterReal, FMIParameterBoolean
and FMIParameterString are added to the FMU interface block for every variable in the XML
file which represents an parameter. The data of these instances are used to finally implements
a function in the C++ file which can change the parameters of the FMU.

At the end of the conversion the group with readers and writers are placed in a group with the
FMU interface block with a sequential structure. This sequential structure is used because first
all the output values needs to be send to the channels and all the input values needs to be read
from the channels before these values are send to the FMU or the values are replaced by other
values from the FMU.

After the conversion a CSP model like the one shown in Figure 5.5 is generated. When clicking
on the FMU interface block the properties of this block is shown in the properties window as
shown in Figure 5.3. It is possible to change the names of the callback functions in this win-
dow to use the functions which are supported by the execution platform. Also the simulation
properties can be changed to use a different step size or a different stop time.

5.2 Code Generation of the CSP Model to LUNA

The FMU interface needs a logging function which is used to send error or info messages about
the state of the FMU. Without this logging function, it is not possible to use the FMU interface.
For this assignment Linux is used as operating system for the execution of the FMU interface.
Linux has not a logging function with the same structure as the one which is used for the FMU
interface. Section 5.2.1 describes a logger library which can be used in combination with the
FMU interface.

After a CSP model is generated from the XML file of a FMU, code needs to be generated from the
model to actually use the FMU interface in combination with a controller. Code generation for
the CSP model itself is already implemented in TERRA. Only the code generation for the FMU
interface block needs to be implemented in TERRA. Section 5.2.2 described the code generation
of the FMU interface block.

5.2.1 The Logger Library

The logging function can be implemented in two ways. The first way was to simple create a
source file which implements the logging function. The second way was to create a logger class
which contains the logging function. The advantage of creating a logger class is that multiple
instances of the logger class can be created. But for the current implementation of the FMU
interface, multiple instances of the logger class are not necessary. So the logging function is
simply implemented as function in a source file.

The logger library contains the function fmiLog() which is the logging function which can be
used in combination with the FMU interface. All messages which are generated by the FMU
are displayed on the screen by this function. Also all the messages are saved into a file because
sometimes a lot of output is printed on the screen during the execution of the control software.
So to easily find a message which is generated by the FMU, the logging file can be used.

Robotics and Mechatronics K.J. Kok

38 TERRA support for architecture modelling

The logger library contains also the function enumStatusToString(). This function is used to
translate the variable of the type fmi2Status which is an enum from a integer to a word. This
variable is used in the fmiLog() function. So to make the messages more readable this transla-
tion is needed.

At the moment it is not possible to run the simulation of the physical system model in 20-sim
itself. So at the moment it is not possible to automatically draw graphs in 20-sim from the
inputs and outputs of the model. A possibility is to create the graphs at the FMU interface. But
this means that a function needs to be created which can create graphs from the values which
are send through the FMU interface. This function is not available in the LUNA framework so
it needs to be implemented. Because this takes too much time for this project, the values of the
inputs an outputs of the FMU interface will be saved in a .csv file. This .csv file can be used in
Excel or Matlab to create a graph from these values.

The function to save the values of the inputs and outputs of the FMU interface is also imple-
mented in the logger library. This function is called saveMeasurementPoint(). This function
gets a string as arguments. This string contains the values which can be written to a file. It was
also possible to place the values into vectors but then for every data type a different vector was
necessary. It is also a lot easier to generate a string of values with the EGL language which is
used to generate code from the FMU interface block.

Finally the logger library also contains the function initLogger(). This function gets the names
for the logger file and measurement file as argument. These two files are generated and used
to save the messages and the values of the inputs and the outputs of the FMU interface. It gets
also a string of names as argument. This string can contain the names of the values which are
saved in the measurement file. This names are placed at the top of the .csv file to indicate what
the numbers mean.

5.2.2 Code Generation of the FMU Interface Block

During the code generation of a CSP model, the C++ block in a CSP model is transformed to a
source file and a header file which contains an implementation of a class. The name of the class
is equal to the name of C++ block in the CSP model. The attributes of the class are equal to the
variables which are added to the c++ block in the CSP model. The class contains a constructor,
a destructor and the function execute(). The constructor of the class is called when the program
is started, the destructor is called when the program ends and the execute() function is called
every time during the execution of the program when the C++ block is active following the
structure of the CSP model. The user can manually add an implementation to the class.

For the FMU interface block the same files are generated as for the C++ block because the
FMU interface block is based on the C++ block. The only difference is that the functions of the
FMU interface block are automatically implemented using the properties of the FMU interface
block. The plugin nl.utwente.ce.terra.fmi.transform.xml.to.cspm of TERRA contains some EGL
files which are used to generate implementations for the functions based on the properties of
the FMU interface block.

The first EGL file is classdefinitions.egl. Some extra attributes are added to the class, which is
generated from the FMU interface class, by this file. A variable of the type fmi2Component is
defined here. This variable is used to hold an instance of the FMU component. Because this
instance must be available for all functions in the class it is defined as attribute. A instance of
the fmi2CallbackFunctions is also defined here because the callback functions are used by the
instance of the FMU component, so it also needs to be defined for all functions in the class.
The instance of the fmi2CallbackFunctions use the functions which are defined by the user in
the FMU interface block. The pointer to the function stepFinished and the pointer to compo-

K.J. Kok University of Twente

CHAPTER 5. IMPLEMENTATION OF THE FMU INTERFACE IN TERRA 39

nentEnvironment are not defined because they are optional and in this case not necessary for
the co-simulation. It is possible to add this pointers later when they are necessary.

Also the variables timeStep, currentTime, status and simulationFinished are defined as attribute
of the class because the variables are used in the function execute() and need to hold there
values for the next run of the execute() function.

The second EGL file is constructor.egl. The implementation of the constructor of the class is
provided by this file. First the function initLogger() is defined here with some standard names
for the logging and measurement files. It is possible to also include the names of these files
in the meta-model of the FMU interface model. This makes it possible that the user can use
another name for the files. But to keep the meta-model simple this feature is not added. Also
when it is possible to run the physical system model in 20-sim itself, it is not necessary to use
the measurement file anymore.

The names of all inputs and outputs of the FMU interface are placed in a string which is also
given as argument to the initLogger() function. This makes it possible that the measurement
file contains the names of the ports. This make it easy to distinguished the values of the mea-
surement file.

The fmi2Instantiate() function is defined in the constructor to create a instance of the FMU.
This function needs a name, a guid and callback functions as argument. The name and guid
are taken from the FMU interface block. The callback functions are defined as class attribute
as explained before.

After a FMU instance is created, the attributes of the class are initialized. The values of the
variables timeStep and currentTime are taken from the FMU interface block. The value of cur-
rentTime is equal to the value of startTime of the FMU interface block because this is the time
which is used as start time for the simulation.

Then the function fmi2SetupExperiment() is defined to place the instance of the FMU in sim-
ulation mode. The values for the start time, tolerance, stop time and step size are taken from
the FMU interface block. This function also needs to know if a tolerance and a stop time are
defined. This is automatically determined by checking if the values for the tolerance and stop
time are defined as zero. In this case there is no tolerance and stop time defined.

The function fmi2EnterInitializationMode() is defined to place the instance of the FMU in ini-
tialization mode. When the FMU is in this mode, all the parameters which are defined in the
FMU interface block are set. This is done because the user can change the value of the param-
eter in the FMU interface block. This change needs also be transferred to the FMU. This can be
done when the FMU is in initialization mode.

Also all the values of the outputs of the FMU are transferred to the output channels. The infor-
mation about the output ports can be found in the port mapping reference of the FMU interface
block. This makes it possible that for the first execution of the controller the output values of
the physical system model are available at the inputs of the controller. Otherwise it first use the
standard values of zero as input values.

Then the function fmi2ExitInitializationMode is defined to place the instance of the FMU out
of the initialization mode. All the described functions are placed in the constructor of the class
which is generated from the FMU interface class because these functions needs to be called
only at the beginning of the execution of the application. The constructor is only called one
time at the beginning of the execution of the application. Figure 5.6 shows an overview of the
execution steps of the constructor.

The third EGL file is execute.egl. The implementation of the execute() function of the class is
provided by this file. First a check is implemented in this function which checks if the stop

Robotics and Mechatronics K.J. Kok

40 TERRA support for architecture modelling

Figure 5.6: Overview diagram of the execution steps of the constructor

time of the simulation is reached or that the instance of the FMU does not work like expected.
Because if this is the cause, it is not necessary to execute a simulation step.

Then all the inputs of the FMU interface which are defined in the FMU interface block receive
there new input values from the channels because it is necessary that the simulation step is
done with the actual input values. After the inputs of the FMU interface receive their new val-
ues, the time, input and output values are saved. Then a simulation step is done with the step
size which is defined in the FMU interface block. After the simulation step the currentTime
variable is increased with the time of the step size. All the outputs of the FMU interface which
are defined in the FMU interface block send there new values to the channels. This values can
be used by another component in the next execution round of the total system.

These function are added to the execute() function because they need to be called for every exe-
cution round of the total system. This makes it possible that the co-simulation is automatically
performed by using the synchronization of the channels in the total system. Figure 5.7 shows
an overview of the execution steps of the execute functions.

The fourth EGL file is destructor.egl. The implementation of the destructor of the class is pro-
vided by this file. Only the functions fmi2Terminate and fmi2FreeInstance are called to exit the
instance of the FMU from the simulation mode and to delete the instance to make memory
free. These functions needs to be called one time at the end of the execution of the application.
Therefore they are placed in the destructor. Figure 5.8 shows an overview of the execution steps
of the execute functions.

K.J. Kok University of Twente

CHAPTER 5. IMPLEMENTATION OF THE FMU INTERFACE IN TERRA 41

Figure 5.7: Overview diagram of the execution steps of the execute function

Figure 5.8: Overview diagram of the execution steps of the destructor

Robotics and Mechatronics K.J. Kok

42 TERRA support for architecture modelling

6 Testing the FMI Interface in TERRA

This chapter shows some experiments for testing the FMU interface in TERRA. Each experi-
ment begins with a model of a plant which is designed in the 20-sim editor. From this plant
model a FMU is generated. The files of the FMU are used by TERRA to generate a FMU in-
terface model. Appendix A describes how a model in 20-sim can be translated to an FMU in-
terface model in TERRA. So this translation is not discussed for every experiment. For every
experiment a simple architecture model is used which only contains a controller block and a
plant block like the one which is shown in Figure 6.1. The plant component contains the FMU
interface model and the controller block contains a CSP model like the one shown in Figure
6.2. The controller model contains some readers and writers to read from a channel or write to
a channel. All readers and writers are placed in a parallel structure because for co-simulation
the data of the inputs and outputs of the models are interchanged at the same time. And of
course the readers and writers of the FMU interface model are also placed in a parallel struc-
ture. A C++ block is placed in the controller to make it possible to define a specific input for
the FMU interface. The results of all the experiments are automatically saved in a file by the
saveMeasurementPoint function which is implemented in the FMU interface as explained in
section 5.2.1.

Figure 6.1: Example of an architecture model for the experiments

Figure 6.2: Example of a controller model for the experiments

K.J. Kok University of Twente

CHAPTER 6. TESTING THE FMI INTERFACE IN TERRA 43

6.1 Experiment 1: Check Code Generation for Ports and Parameters

This experiment is used to check if the communication from and to the FMU interface is done
correctly. It checks if the communication to the inputs of the FMU interface and the commu-
nication from the output of the FMU interface works as expected. It also checks if the values
of the parameters of the model can be changed through the FMU interface. This experiment
shows that the code generation of the FMU interface by TERRA works.

6.1.1 Model Description

A test model is used to perform the check. The test model interface consists of twelve ports:

• An input port with the name BooleanInput1 and the datatype boolean

• An output port with the name BooleanOutput1 and the datatype boolean

• An input port with the name BooleanInput2 and the datatype boolean

• An output port with the name BooleanOutput2 and the datatype boolean

• An input port with the name IntegerInput1 and the datatype integer

• An output port with the name IntegerOutput1 and the datatype integer

• An input port with the name IntegerInput2 and the datatype integer

• An output port with the name IntegerOutput2 and the datatype integer

• An input port with the name RealInput1 and the datatype real

• An output port with the name RealOutput1 and the datatype real

• An input port with the name RealInput2 and the datatype real

• An output port with the name RealOutput2 and the datatype real

Figure 6.3 shows the implementation of the test model in the 20-sim editor. The following
parameters are used:

• AndBool1.condition = true

• AndBool2.condition = true

• GainInteger1.K = 1

• GainInteger2.K = 1

• GainReal1.K = 1

• GainReal2.K = 1

The test model shows that the BooleanInput1 and BooleanInput2 signals are connected to an
AND port model. These AND port models have one input port and one output port. The imple-
mentation of these AND port models is shown in Listing 6.1. This implementation contains a
parameter condition. When the value of this parameter is equal to true it means that the input
and output are connected. When the value is equal to false the connection between the input
and output is broken.

Robotics and Mechatronics K.J. Kok

44 TERRA support for architecture modelling

Figure 6.3: Implementation of the test model in the 20-sim editor

� �
parameters

boolean condition = true ;
equations

output = i f input1 > 0.5 and condition then
true

else
f a l s e

end ;� �
Listing 6.1: Implementation of the AND port

The inputs with datatype integer and real are connected to a Gain model. This model multiple
the input value with the value of parameter K. When this values is equal to 1 the input value is
the same as the output value.

For the FMU generation the Euler integration method is used with a start time of 0, a stop
time of 10 seconds with a step size of 1 second. Figure 6.4 shows the implementation of the
FMU interface model which is generated by TERRA using the XML file of the FMU. It can be
seen that the input and output ports with the corresponding readers and writers are generated
as expected. Also the port mapping and parameter mappings are visible when clicking on the
FMU interface block of the CSP model. It is also possible to change the values for the simulation
properties.

6.1.2 Experiments

Experiment A: Test Model with Standard Values for the Parameters

In this experiment the controller send values to the inputs of the FMU interface which variate
over time. This is done by adding the following code in the execute() function of the source file
of the code block of the controller:� �

i f (CounterBool1 < 1)
CounterBool1 ++;

e l s e
{

i f (BooleanOutput1 == f a l s e)
BooleanOutput1 = true ;

e l s e

K.J. Kok University of Twente

CHAPTER 6. TESTING THE FMI INTERFACE IN TERRA 45

Figure 6.4: part of the CSP model of the FMU interface to the test model

BooleanOutput1 = f a l s e ;
CounterBool1 = 0 ;

}

i f (CounterBool2 < 2)
CounterBool2 ++;

e l s e
{

i f (BooleanOutput2 == f a l s e)
BooleanOutput2 = true ;

e l s e
BooleanOutput2 = f a l s e ;

CounterBool2 = 0 ;
}

IntegerOutput1 = IntegerOutput1 + 1 ;
IntegerOutput2 = IntegerOutput2 + 5 ;
RealOutput1 = RealOutput1 + 0 . 0 1 ;
RealOutput2 = RealOutput2 + 0 . 0 5 ;� �

The co-simulation starts at time 0 and runs for 10 seconds with a time step of 1 second. The
results are shown in tables 6.1, 6.2 and 6.3. These tables show that the values which are received
by the inputs are one simulation cycle later available at the corresponding output ports.

Robotics and Mechatronics K.J. Kok

46 TERRA support for architecture modelling

Table 6.1: Results of the ports of datatype boolean with parameter values AndBool1.condition = true and
AndBool2.condition = true

Time (s) BooleanInput1 BooleanOutput1 BooleanInput2 BooleanOutput2
0 0 0 0 0
1 0 0 0 0
2 1 0 0 0
3 1 1 1 0
4 0 1 1 1
5 0 0 1 1
6 1 0 0 1
7 1 1 0 0
8 0 1 0 0
9 0 0 1 0
10 1 0 1 1

Table 6.2: Results of the ports of datatype integer with parameter values GainInteger1.K = 1 and GainIn-
teger2.K = 1

Time (s) IntegerInput1 IntegerOutput1 IntegerInput2 IntegerOutput2
0 0 0 0 0
1 1 0 5 0
2 2 1 10 5
3 3 2 15 10
4 4 3 20 15
5 5 4 25 20
6 6 5 30 25
7 7 6 35 30
8 8 7 40 35
9 9 8 45 40
10 10 9 50 45

Table 6.3: Results of the ports of datatype real with parameter values GainReal1.K = 1.0 and GainReal2.K
= 1.0

Time (s) RealInput1 RealOutput1 RealInput2 RealOutput2
0 0.00 0.00 0.00 0.00
1 0.01 0.00 0.05 0.00
2 0.02 0.01 0.10 0.05
3 0.03 0.02 0.15 0.10
4 0.04 0.03 0.20 0.15
5 0.05 0.04 0.25 0.20
6 0.06 0.05 0.30 0.25
7 0.07 0.06 0.35 0.30
8 0.08 0.07 0.40 0.35
9 0.09 0.08 0.45 0.40
10 0.10 0.09 0.50 0.45

K.J. Kok University of Twente

CHAPTER 6. TESTING THE FMI INTERFACE IN TERRA 47

Table 6.4: Results of the ports of datatype boolean with parameter values AndBool1.condition = false
and AndBool2.condition = false

Time (s) BooleanInput1 BooleanOutput1 BooleanInput2 BooleanOutput2
0 0 0 0 0
1 0 0 0 0
2 1 0 0 0
3 1 0 1 0
4 0 0 1 0
5 0 0 1 0
6 1 0 0 0
7 1 0 0 0
8 0 0 0 0
9 0 0 1 0
10 1 0 1 0

Table 6.5: Results of the ports of datatype integer with parameter values GainInteger1.K = 2 and GainIn-
teger2.K = 5

Time (s) IntegerInput1 IntegerOutput1 IntegerInput2 IntegerOutput2
0 0 0 0 0
1 1 0 5 0
2 2 2 10 25
3 3 4 15 50
4 4 6 20 75
5 5 8 25 100
6 6 10 30 125
7 7 12 35 150
8 8 14 40 175
9 9 16 45 200
10 10 18 50 225

Experiment B: Test Model with not Standard Values for the Parameters

This experiment is similar to the previous experiment. The only difference is the change of the
parameter values. These parameter values are changed in the FMU interface block of the FMU
interface model in TERRA. The new values for the parameters are:

• AndBool1.condition = false

• AndBool2.condition = false

• GainInteger1.K = 2

• GainInteger2.K = 5

• GainReal1.K = 2.5

• GainReal2.K = 4.7

The results of this experiment are shown in tables 6.4, 6.5 and 6.6. The values of BooleanOut-
put1 and BooleanOutput2 are always zero as expected because changing the condition values
of the AND port models to false blocks the input signals. The other signals are multiplied with
the corresponding parameter value of the Gain models as expected.

Robotics and Mechatronics K.J. Kok

48 TERRA support for architecture modelling

Table 6.6: Results of the ports of datatype real with parameter values GainReal1.K = 2.5 and GainReal2.K
= 4.7

Time (s) RealInput1 RealOutput1 RealInput2 RealOutput2
0 0.000 0.000 0.000 0.000
1 0.010 0.000 0.050 0.000
2 0.020 0.025 0.100 0.235
3 0.030 0.050 0.150 0.470
4 0.040 0.075 0.200 0.705
5 0.050 0.100 0.250 0.940
6 0.060 0.125 0.300 1.175
7 0.070 0.150 0.350 1.410
8 0.080 0.175 0.400 1.645
9 0.090 0.200 0.450 1.880
10 0.100 0.225 0.500 2.115

6.1.3 Discussion

This experminent shows that the translation from the XML file of the FMU to the FMU interface
model works correctly. All the data from the XML file are copied to the FMU interface block.
Also the inputs and outputs of the model are genereted correctly.

Also the communication between the FMU and TERRA works correctly. Input values are send
to the correct inputs of the FMU interface. And the FMU interface also sends the values to the
correct outputs. Also it is possible to change the values of the parameters of the test model.
This values changes at the correct places through the FMU interface. So the code generation
for the FMU interface by TERRA works correctly.

The shift of one simulation cycle between the input values and output values is caused by a
delay between the input and output values. It takes a simulation cycle before the inputs of the
FMU interface has influence on the outputs of the FMU interface.

6.2 Experiment 2: Using a Simple Plant Model for Co-simulation

This experiment shows that the FMU interface works in combination with a simple model
which is modeled by a bond graph. In this case a model of a motor is used where a camera
is attached on. In the first sub-experiment the standard values for the parameters of the mo-
tor model are used. Also the input of the motor model is kept constant. In the second sub-
experiment a parameter of the motor model is changed in the editor of TERRA. In the third
sub-experiment the input is variated. All these experiments are also performed in 20-sim to
compare the simulation results.

6.2.1 Model Description

The motor model interface consists of two ports:

• An input port with the name Current and the datatype real

• An output port with the name Velocity and the datatype real

Figure 6.5 shows the bond-graph implementation of the motor model in the 20-sim editor. The
following parameters are used:

• Belt.r = 5.0

• Dcam1.r = 1.35E-5

K.J. Kok University of Twente

CHAPTER 6. TESTING THE FMI INTERFACE IN TERRA 49

• Dmotq.r = 1.77E-6

• Gear1.r = 4.0

• Jcam1.i = 0.0045

• Jcam1.state.initial = 0.0

• Jmot1.i = 2.63E-6

• Motor1.r = 0.0394

• phi1.q.initial = 0.0

• QSensor2.q.initial = 0.0

Figure 6.5: Bond graph implementation of a motor in the 20-sim editor

For the FMU generation the Euler integration method is used with a start time of 0, a stop time
of 10 seconds and a step size of 0,001 second. Figure 6.6 shows the implementation of the FMU
interface model which is generated by TERRA using the XML file of the FMU. It can be seen that
an output and input port with the corresponding writer and reader is generated as expected.
Also the port mapping and parameter mappings are visible when clicking on the FMU interface
block of the CSP model. It is also possible to change the values for the simulation properties.

6.2.2 Experiments

Experiment A: Constant Input and Using the Standard Parameter Values

In this experiment the controller sends continuously a signal of 0.1 to the input of the FMU
interface. This is done by adding the following code in the execute() function of the source file
of the code block of the controller:

Current = 0.1;

where Current is the variable for the output of the controller. The co-simulation starts at 0
seconds and runs for 20 seconds with a time step of 0,001 seconds. The stop time of 20 seconds
instead of 10 seconds is used to show that the simulation still works for stop times which are
longer than the default stop time. The same simulation is also performed in 20-sim with the
same conditions. A constant source with a value of 0.1 is connected to the motor model to
perform the simulation.

The results for both simulations is shown in figure 6.7. The figure shows that both graphs are
very similar to each other. The only difference is that the graph of the TERRA simulation is
shifted 0.002 seconds to the right of the graph of the 20-sim simulation. This can be seen in
figure 6.8.

Robotics and Mechatronics K.J. Kok

50 TERRA support for architecture modelling

Figure 6.6: CSP model of the FMU interface to the motor model

Figure 6.7: Graph with the result of experiment 2

Experiment B: Constant Input and Changing a Parameter Value

This experiment is similar to the previous experiment. Only a parameter of the motor model is
changed. The value of parameter Gear1.r is changed from 4.0 to 10.0. This is done by opening
the FMU interface model in TERRA. In this model a FMU Interface Block is visible. Properties
of this block becomes visible in the properties window by clicking on the block. One of the
properties is a list of parameters with their corresponding values. Here it is possible the change
the value of Gear1.r parameter. For the simulation in 20-sim also the value of the parameter is
changed

K.J. Kok University of Twente

CHAPTER 6. TESTING THE FMI INTERFACE IN TERRA 51

Figure 6.8: Graph with the result of experiment 2 zoomed in around time 0,1

The results for both simulations is shown in figure 6.7. The figure shows that both graphs are
very similar to each other. The only difference is that the graph of the TERRA simulation is
shifted 0.002 seconds to the right of the graph of the 20-sim simulation. This can be seen in
figure 6.8.

Experiment C: Variable Input and Changing a Parameter Value

This experiment is similar to the previous experiment. Only now the input of the FMU interface
is not constant. The input value begins at 0 and increase every cycle with 0,00005. This means
that the input value have a slope of 0,05 per second. So the code in the the execute() function of
the source file of the code block of the controller is replaced by:

Current = Current + 0.00005;

For the simulation in 20-sim the constant source is replaced by a ramp source which also have
a slope of 0,05 per second.

The results for both simulations is shown in figure 6.7. The figure shows that both graphs are
very similar to each other. The only difference is that the graph of the TERRA simulation is
shifted 0.001 seconds to the right of the graph of the 20-sim simulation.

6.2.3 Discussion

This experiment shows that the FMU interface works for co-simulation with a simple plant
model. The results of the co-simulation are similar to the results when the simulation is totally
done in 20-sim. Only the results of the co-simulation of the first two experiments are shifted
0,002 seconds to the right in comparing with the results of the simulation in 20-sim. 0,002
seconds are equal to two simulation cycles of the co-simulation. The first delay of 0,001 seconds
is caused by that the output of the controller starts at zero and not at 0.1 like the simulation in
20-sim. This can be prevented to set the initial value of the output port of the controller to 0,1.
It takes again 0,001 seconds before the input of the FMU interface has influence on the output
of the FMU interface. In the last experiment the graph is shifted by 0,001 seconds because now
the input in the co-simulation and in the simulation in 20-sim begins both at zero.

This experiment shows that it is possible to change a parameter of the plant model in the TERRA
itself. This give still the same results as a simulation done in 20-sim. The FMU interface also
works with a input which is not constant.

Robotics and Mechatronics K.J. Kok

52 TERRA support for architecture modelling

6.3 Experiment 3: Using a Control System Model for Co-simulation

This experiment shows that the FMU interface also works when a co-simulation is done for a
control system model. In these control system model the controller is implemented in TERRA
while the plant is implemented in 20-sim. For this control system a model is used which is given
as example for the 20-sim editor. This model represents a fluid level control system. Because
the example is available in 20-sim, it is possible to simulate to complete system in 20-sim and
compare the result with the result of the co-simulation between TERRA and 20-sim.

6.3.1 Model Description

Figure 6.9 shows the fluid level control system in 20-sim. This system consists of a controller
and a plant. Figure 6.10 shows the implementation of the plant. The plant interface has two
ports:

• An input port with the name control and the datatype real

• An output port with the name height and the datatype real

The plant implementation shows a two coupled tank. Fluid input is in the first tank. The fluid
input is controlled by the input signal of the plant. The fluid can run through a pipe to a second
tank. The second tanks has a fluid output valve. The output signal of the plant gives the value
of the height of the fluid in the second tank. Figure 6.11 shows the bond-graph representation
of the two coupled tank.

Figure 6.9: Representation of the fluid level control system in 20-sim

The goal of the controller is to keep the height of the fluid in the second tank equal to the refer-
ence value. This is done by subtracting the height value from the reference value and multiply
the value with the gain factor Kp. The value is then limited between the 0 and 0,5 before it is
used as control signal for the plant model. In this case the reference value is equal to 1,5 and
the gain factor is equal to 10.

For the FMU generation of the plant model the Euler integration method is used with a start
time of 0 seconds, a stop time of 10 seconds and a step size of 0,01 seconds. Figure 6.12 shows
the implementation of the FMU interface model which is generated by TERRA using the XML
file of the FMU. It can be seen that an output and input port with the corresponding writer and
reader is generated as expected. Also the port mapping and parameter mappings are visible
when clicking on the FMU interface block of the CSP model. It is also possible to change the
values for the simulation properties.

K.J. Kok University of Twente

CHAPTER 6. TESTING THE FMI INTERFACE IN TERRA 53

Figure 6.10: Representation of the plant model of the fluid level control system in 20-sim

Figure 6.11: bond graph representation of the two coupled tank in 20-sim

6.3.2 Experiment

In this experiment the controller of the architecture editor in TERRA gets the same implemen-
tation as the controller used in the fluid level control system in 20-sim. This is done by adding
the following code in the execute() function of the source file of the code block of the controller:� �

double refValue = 1 . 5 ;
double K = 10;
double tempValue = (refValue − height) *K;
i f (tempValue < 0)

control = 0 ;
e l s e i f (tempValue > 0 . 5)

control = 0 . 5 ;
e lse

Robotics and Mechatronics K.J. Kok

54 TERRA support for architecture modelling

Figure 6.12: CSP model of the FMU interface to the plant model

control = tempValue ;� �
where height is the variable for the input of the controller and control is the variable for the
output of the controller. The co-simulation starts at 0 seconds and runs for 20 seconds with
a time step of 0,01 seconds. The same simulation is also performed in 20-sim with the same
conditions.

The results for both simulations is shown in figure 6.13. The figure shows that both graphs are
very similar to each other at the beginning. But in the end the graph of the co-simulation is
delayed in comparing with the graph of the 20-sim simulation. But both graphs shows that the
height of the fluid in the second tank is kept around the 1,5 meters.

6.3.3 Discussion

The result of this experiment shows that the FMU interface also can be used for co-simulation
of controlled systems where the controller is implemented in TERRA and the plant is imple-
mented in 20-sim. The result of the co-simulation shows after some time a delay in the output
values of the plant in comparing with the result of the simulation which is done completely
in 20-sim. This delays are caused because there exists a delay of one step between the input
values of the FMU interface and the output of the FMU interface. And there also exists a delay
of one step because the control signal of the controller is based on the value of the height of the
previous simulation cycle of the physical system model. So in total a delay of two steps caused
the delay in the co-simulation. Figure 6.14 shows the representation of the fluid level control
system in 20-sim with two step delays added. These delays represents the same delays which

K.J. Kok University of Twente

CHAPTER 6. TESTING THE FMI INTERFACE IN TERRA 55

Figure 6.13: Graph with the result of experiment 3

occurs in the co-simulation between TERRA and 20-sim. Figure 6.15 shows the result of the
co-simulation together with the result of the 20-sim simulation of the model with the added
delays. The results are very similar. So the difference in Figure 6.13 are indeed caused by the
added delays. Figure 6.16 shows the results for a simulation time of 100 seconds. Also the re-
sults of these simulation are similar. So also for longer simulation times the difference in the
results are caused by the delays in the co-simulation.

The delay of two steps is too much for the co-simulation. The ideal case is to have zero delay
in the co-simulation. This is not possible because the delay of one time step, which is caused
by using the control value for the physical system which is based on the output value of the
physical system a simulation cycle back, always exists. But the second delay of a step needs
to make as small as possible. So further research must be performed to investigate where the
second delay exactly comes from and how it can be prevented.

Figure 6.14: Representation of the fluid level control system in 20-sim with some added delays

Robotics and Mechatronics K.J. Kok

56 TERRA support for architecture modelling

Figure 6.15: Graph with the result of experiment 3 with added delays in the 20-sim simulation

Figure 6.16: Graph with the result of experiment 3 with added delays in the 20-sim simulation and a run
of 100 seconds

K.J. Kok University of Twente

57

7 Conclusion and Recommendations

7.1 Conclusions

For the first goal a design is developed which can be used to have support for physical system
co-modeling in the architecture editor of TERRA. This design is based on creating a plant model
interface in the architecture editor and translate this interface to 20-sim. This can be done by
generating a 20-sim file from the plant model interface in the architecture editor. This interface
can be used in 20-sim to give implementation to the plant. A meta-model is designed which can
be used to create in plan interface model. This model can be used to generate a 20-sim file. With
this method it is possible to generate an interface for a model in 20-sim with multiple ports of
different data types which are also supported in the architecture editor. Due time constraints
and the limit documentation of the design of TERRA, it was not possible to implement this
method in the architecture editor.

For the second goal a communication interface is implemented in the architecture editor of
TERRA to use 20-sim for a co-simulation. With this communication interface it is possible to
simulate a physical system model in combination with controller software which is based on
CSP models. This communication interface is based on the FMI standard which describes an
interface to an FMU which is based on a model created in 20-sim. The XML file which is part of
the FMU can be used to automatically generate a FMU interface in TERRA by using model-to-
model translation an model-to-text translation. So the implementation of the communication
interface support the model-driven development. This method is reusable for all kind of mod-
els in 20-sim. Only the delay of two time steps which occurs during the co-simulation of a
control system is to much.

7.1.1 Reflection of the Requirements

In this section a reflection is given on the requirements which are defined in section 3.3.

A Must have

I All meta-models must be based on the CPC meta-model
The meta-model for the plant model interface contains the same attributes which
are also used in the CPC meta-model. So the meta-model of the plant model inter-
face is compatible with the CPC meta-model. The base class of the FMU interface
meta-model inheriting from the class ‘CPPCodeBlockConfiguration’. The class ‘CPP-
CodeBlockConfiguration’ is a class from the CPP meta-model which is based on the
CPC meta-model. This means that the FMU interface meta-model is also based on
the CPC meta-model.

II No code must be added by hand
Meta-models are defined to create 20-sim files and FMU interfaces in the architec-
ture editor of TERRA. These meta-models are translated to code by using the epsilon
framework of eclipse. So it is not necessary that code is added by the user to get a
working 20-sim file or FMU interface.

III The architecture editor must support the 20-sim tool
The 20-sim tool is used to use the plant model in combination with the architecture
editor of TERRA. The design and simulation of the plant model is done in 20-sim
itself while there is a connection with TERRA. So there is support for 20-sim in the
architecture editor.

IV The architecture editor must support code generation for the LUNA framework
The FMU interface is based on a CSP model. It was already possible to transform CSP

Robotics and Mechatronics K.J. Kok

58 TERRA support for architecture modelling

models to code based on the LUNA framework. Only an new FMU interface block is
added to the CSP block where also code is generated from. This code works also in
combination with the LUNA framework.

V Verification of the models must be supported by the architecture editor
Because the FMU interface is based on CSP models, the verification methods of the
CSP models can also ne used for the validation of the FMU interface. So it is not
possible to create two ports with the same name or to connect two ports which not
support the same data type.

B Should have

I The architecture editor should have the possibility to switch between the real plant and
a model of the plant.
In this assignment, all the effort was put in the support to use a physical system model
in the architecture editor of TERRA.

II The architecture editor should have support for hardware ports simulation
In this assignment, all the effort was put in the support to use a physical system model
in the architecture editor of TERRA. It is possible to model some hardware ports in 20-
sim an use the FMU interface to use this models in the architecture editor.

III The architecture editor should have support for simulations on the general computer
platform and on a dedicated embedded platform in combination with a model of
the plant
At the moment it is only possible to run the FMU interface in combination with the
controller software on a general computer platform. It is possible to run the controller
software on a dedicated embedded platform and use the model of the plant on a gen-
eral computer. But to make this possible a communication channel must be created
between the controller software on the dedicated embedded platform and the FMU
interface on a general computer. An IP/TCP connection can be used for example.

C Could have

I The architecture editor could have support for code generation to Cλash
In this assignment, all the effort was put in the support to use a physical system model
in the architecture editor of TERRA. No time was put into the support for code gener-
ation to Cλash in the architecture editor. Also the research to make Cλash code from
CSP models was performed in parallel during this assignment.

II The architecture model could have support for the ROS framework
In this assignment, all the effort was put in the support to use a physical system model
in the architecture editor of TERRA. No time was put into the support of the ROS
framework in the architecture editor. Also the research to combine ROS with LUNA
was performed in parallel during this assignment.

D Won’t have

I The architecture editor won’t have support for multiple plant models
No effort was put into the support of multiple plant models in the architecture editor.
However with the current implementation of the FMU interface, it should be possible
to include multiple plant models in on architecture model.

7.2 Recommendations

Throughout the project several points have been identified that need further improvements.

K.J. Kok University of Twente

CHAPTER 7. CONCLUSION AND RECOMMENDATIONS 59

7.2.1 FMU interface functionalities

During the co-simulation of a control system using the FMU interface a delay of two steps
occurs. The ideal case is to have zero delay in the co-simulation. This is not possible because
the delay of one time step, which is caused by using the control value for the physical system
which is based on the output value of the physical system a simulation cycle back, always exists.
But the second delay of a step needs to make as small as possible. So further research must
be performed to investigate where the second delay exactly comes from and how it can be
prevented.

The 20-sim tool generates a FMU from the model of the physical system with the solver in-
cluded in the source code. The FMI standard also describes the possibility to use the FMU with
a simulation tool. At the moment this option is not supported by 20-sim, but it will probably
be supported at the end of the year. This means that 20-sim can be used to simulate the plant
model and the FMU is used for the communication between TERRA and 20-sim. The inter-
face of the FMU is for both situations the same, so it should not be necessary to change the
implementation of the code generation for the FMI interface. Only the source files which are
generated for the FMU by 20-sim have to be changed.

7.2.2 Co-modeling support in TERRA

The translation between the plant model interface in the architecture editor of TERRA to the
20-sim editor needs to be implemented. In chapter 4 a meta-model with the necessary infor-
mation for this translation is proposed. This translation can directly be implemented in the
architecture editor because the meta-model of the plant interface is similar to the meta-model
for a component model in the architecture editor. Only the parameters are not included in the
component model of the architecture model. So a choice can be made to also implement the
support for parameters in the component model or to leave out the parameters in the plant
interface.

7.2.3 TERRA functionality

When generating an FMU from a plant model in 20-sim, an amount of C files is generated
containing the source code of the dynamics of the plant model. It is also possible that the FMU
contains some libraries which implements all the FMI functions. The current version of the
meta model for a C++ block contains only support for .h and .cpp files. The Makefile which is
automatically generated by TERRA to perform the code compiling and linking is only useful for
.cpp files. To support .c files and libraries files it is necessary to include entries for these files
in the meta-model for the C++ block. Also the code generation for the Makefile needs to be
changed so it can also use .c files and libraries files.

7.2.4 LUNA functionality

For the FMU interface a logger function is necessary which is created during this assignment.
At the moment the header and source file for this logger function needs to be included by hand
to the rest of the code. It is possible to include this function in the LUNA framework so it is not
necessary anymore to include the files by hand.

Robotics and Mechatronics K.J. Kok

60 TERRA support for architecture modelling

A Using a Generated FMU from 20-sim in TERRA

This appendix describes how a FMU from a simple model can be generated in 20-sim. And how
to use the FMU in TERRA.

A.1 Step 1: Creating a Model in 20-sim

First a simple model of a motor is created in 20-sim. Figure A.1 shows a created Motor submodel
in the 20-sim editor with an input port with the name Current for the current and an output
port with the name Velocity for the velocity. Figure A.2 shows the implementation of the Motor
model. The motor is modeled with bond graphs. The model takes as input a current and gives
as output a velocity.

Figure A.1: Motor submodel with interface shown in 20-sim.

A.2 Step 2: Generating a FMU in 20-sim

All the input ports of the model needs to be connected to a signal source. Otherwise it is not
possible to start the simulator. Figure A.3 shows the Motor model with a source signal con-
nected to the input. Then go to Tools -> Simulator to start the simulator. The 20-sim Simulator
window appears. Go to Properties -> Run to configure the simulator. Take care that not every
integration method is supported by the FMI in 20-sim. For this example the Euler integration
method is selected. Close the configuration window to go back to the 20-sim Simulator itself.

K.J. Kok University of Twente

APPENDIX A. USING A GENERATED FMU FROM 20-SIM IN TERRA 61

Figure A.2: Bond graph model of a motor in 20-sim.

Go to Tools -> Real Time Toolbox -> C-Code Generation to open the C-Code Generation window.
Figure A.4 shows the window where it is possible to generate a FMU from a model. Select in the
Target list the option: FMU 2.0 export for 20-sim submodel. Select at Submodel the submodel of
the motor. It is also possible to change the output directory. Click on OK to generate the FMU.
Take care that at the moment 20-sim only supports the generation of FMU’s under Windows.

In the output directory a new directory is generated with the FMU of the motor model. The
FMU contains an XML file which gives information about the motor model and some infor-
mation for the simulation. The FMU also contains c files and header files which contains the
functions and implementations to simulate the motor model.

Figure A.3: Adding a source to the Motor submodel.

A.3 Step 3: Translate the XML-file of the FMU to CSPm

Create in TERRA a new TERRA project. A new directory for the project is created in the eclipse
workspace. Copy the XML file from the generated FMU to the model directory which is located
in the TERRA project directory. Change the name of the XML file to the same name as how

Robotics and Mechatronics K.J. Kok

62 TERRA support for architecture modelling

Figure A.4: Generate a FMU of the Motor submodel.

the model is called in 20-sim to prevent getting warnings from the TERRA application. In the
TERRA application right click on the model directory of the TERRA project and select Refresh.
Now the XML file appears in the overview. Right click on the XML file and go to TERRA ->
Transform FMI to CSPm. A CSPm file is generated which contains a CSP model with the FMU
interface block as shown in figure A.5

Figure A.5: CSP model of the FMU interface for the motor model.

Clicking on the FMU interface block in the CSP model shows the properties of the FMI compo-
nent. The callback functions can be changed if the current functions are not supported on the
platform where the model will be executed on. Also the simulation properties can be changed

K.J. Kok University of Twente

APPENDIX A. USING A GENERATED FMU FROM 20-SIM IN TERRA 63

but take care that the it can generate errors during simulation because it is not always possible
to change the settings. The step size for the simulation can be fixed for some models. For the
stop time the value which is getted from the FMI file is used as standard value. When this value
is changed to zero no stop time is defined for the co-simulation.

A.4 Step 4: Adding the FMI CSPm model to an Architecture Model

A new architecture model can be added in the TERRA project created in the previous step. To
include the FMU interface model in the architecture editor, add a External Model to the archi-
tecture editor. Select as external model file the CSPm file which contains the CSP model of the
FMU interface. Now it is also possible to add for example a controller block to the architecture
editor.

A.5 Step 5: Code Generation of the Architecture Model

After implementing the complete architecture model, it is possible to generate code from the
complete model. For the architecture model code can be generated by clicking on Diagram
-> Code generration -> CPP LUNA in the architecture editor. Also for every CSP model which
is included in the architecture model code generation can be performed in the same way as
for the architecture editor. This also for the FMU interface model. After code generation for
the FMU interface model a directory is visible in the TERRA project which contains the code
for the FMU interface. The source files which are located in the in FMU needs to be added to
the source directory and header directory which are created during the code generation. The
following files needs to be added to the source directory:

• EulerAngles.c

• fmi2Functions.c

• motionprofiles.c

• xxfuncs.c

• xxinteg.c

• xxincerse.c

• xxmatrix.c

• xxmodel.c

• xxsubmodel.c

• xxTable2D.c

It is also necessary to replace the .c extension of each file to the .cpp extension because the
current MakeFile does not support .c files. The following files needs to be added to the include
directory:

• EulerAngels.h

• fmi2Functions.h

• fmi2FunctionTypes.h

• fmi2TypesPlatform.h

• fmiGUID.h

Robotics and Mechatronics K.J. Kok

64 TERRA support for architecture modelling

• motionprofiles.h

• xxfuncs.h

• xxinteg.h

• xxmatrix.h

• xxmodel.h

• xxsubmodel.h

• xxTable2D.h

• xxtypes.h

Also add the files logger.cpp and logger.h to the rest of the files because otherwise it is not possi-
ble to log information and error messages which are generated by the FMU interface. Without
these files the FMU interface does not work.

A.6 Step 6: Running the Architecture Model

Now it is possible to run the software and using the FMU interface for co-simulation. The
compilation and execution of the application is done in the same way as for all application
created by TERRA.

K.J. Kok University of Twente

65

Bibliography
Bezemer, M. M. (2013), Cyber-physical systems software development: way of working and tool

suite, Ph.D. thesis, University of Twente, Enschede.

Bezemer, M. M., R. J. Wilterdink and J. F. Broenink (2011), Luna: Hard real-time, multi-threaded,
csp-capable execution framework.

Broenink, J. F., Y. Ni and M. A. Groothuis (2010a), On Model-driven Design of Robot Software
using Co-simulation, in SIMPAR, Workshop on Simulation Technologies in the Robot
Development Process, Ed. E. Menegatti, pp. 659 – 668, ISBN 978-3-00-032863.
http:
//www.2010.simpar.org/ws/sites/SimTechRDP/04-SimTechRDP.pdf

Broenink, J. F., Y. Ni and M. A. Groothuis (2010b), On model-driven design of robot software
using co-simulation.

Bruyninckx, H., M. Klotzbücher, N. Hochgeschwender, G. Kraetzschmar, L. Gherardi and
D. Brugali (2013), The BRICS component model: a model-based development paradigm for
complex robotics software systems, in Proceedings of the 28th Annual ACM Symposium on
Applied Computing, ACM, pp. 1758–1764.

FMI-standard (2014), Functional Mock-up Interface for Model Exchange and Co-Simulation,
Technical report, Modelica Association,
https://svn.modelica.org/fmi/branches/public/specifications/v2.
0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf.

FMI-standard (2016), FMI.
https://www.fmi-standard.org/

Hoare, C. A. R. (1985), Communicating Sequential Processes, Prentice Hall International.
http://www.usingcsp.com/cspbook.pdf

Kuipers, F. P., T. Wester, J. Kuper and J. Broenink (2016), Mapping CSP Models for Embedded
Control Software to Hardware Using CλaSH.

Kranenburg-de Lange, D. et al. (2012), Dutch Robotics Strategic Agenda-Analysis, Roadmap
and Outlook.

Ni, Y. (2015), System Design Support of Cyber-Physical Systems, a co-simulation and
co-modelling approach, Ph.D. thesis, University of Twente, Enschede, Netherlands,
doi:10.3990/1.9789036538588.

Scattergood, B. and P. Armstrong (2011), CSPm: A Reference Manual.
http://www.cs.ox.ac.uk/ucs/cspm.pdf

The Eclipse Foundation (2014), Epsilon.
http://www.eclipse.org/epsilon/

The Eclipse Foundation (2016), Eclipse Modeling Framework (EMF).
http://www.eclipse.org/modeling/emf/

van der Werff, W. M. (2016), Connecting ROS to the LUNA embedded real-time framework, Msc
report 018ram2016, University of Twente.

Robotics and Mechatronics K.J. Kok

http://www.2010.simpar.org/ws/sites/SimTechRDP/04-SimTechRDP.pdf
http://www.2010.simpar.org/ws/sites/SimTechRDP/04-SimTechRDP.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
https://www.fmi-standard.org/
http://www.usingcsp.com/cspbook.pdf
http://www.cs.ox.ac.uk/ucs/cspm.pdf
http://www.eclipse.org/epsilon/
http://www.eclipse.org/modeling/emf/

	Summary
	Contents
	1 Introduction
	1.1 Context
	1.2 Problem Description
	1.3 Goals
	1.4 Approach
	1.5 Outline

	2 Background
	2.1 Way of Working
	2.2 CPC Meta-model
	2.3 TERRA
	2.4 Eclipse
	2.5 Functional Mock-up Interface

	3 Analysis
	3.1 Architecture Modelling in TERRA
	3.2 Using a Plant Model in the Architecture Editor
	3.3 Requirements

	4 Design of the Meta-models for Co-modeling and Co-simulation Support in TERRA
	4.1 Meta-model for Co-modeling Support in TERRA
	4.2 Meta-model for the Co-simulation Support in TERRA

	5 Implementation of the FMU Interface in TERRA
	5.1 Translating the FMU's XML File to a CSP Model
	5.2 Code Generation of the CSP Model to LUNA

	6 Testing the FMI Interface in TERRA
	6.1 Experiment 1: Check Code Generation for Ports and Parameters
	6.2 Experiment 2: Using a Simple Plant Model for Co-simulation
	6.3 Experiment 3: Using a Control System Model for Co-simulation

	7 Conclusion and Recommendations
	7.1 Conclusions
	7.2 Recommendations

	A Using a Generated FMU from 20-sim in TERRA
	A.1 Step 1: Creating a Model in 20-sim
	A.2 Step 2: Generating a FMU in 20-sim
	A.3 Step 3: Translate the XML-file of the FMU to CSPm
	A.4 Step 4: Adding the FMI CSPm model to an Architecture Model
	A.5 Step 5: Code Generation of the Architecture Model
	A.6 Step 6: Running the Architecture Model

	Bibliography

