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“It is just as foolish to complain that people are selfish and treacherous as it is to complain

that the magnetic field does not increase unless the electric field has a curl. Both are

laws of nature.”

John von Neumann
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Abstract

Sequential Price of Anarchy for Atomic Congestion Games with Limited

Number of Players

by Kiril Kolev

We consider sequentially played atomic congestion games with linear latency functions.

To measure the quality of sub-game perfect equilibria of sequentially played games, we

analyze the Sequential Price of Anarchy (SPoA), which is defined to be the ratio of the

total cost given by the worst sub-game perfect equilibrium to the total cost of the social

optimum. In this project, we want to improve lower and upper bounds on the value

of SPoA using a linear programming approach. We limit the number of players to 4, 5

and 6 players and consider different combinations of their possible actions and resources

they use. Additionaly we consider two player sequentially played non-atomic congestion

games with split flow and give new results for the SPoA in all the possible cases.
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Chapter 1

Introduction

1.1 Background

This thesis covers a topic in a relatively new field of Game Theory called

Algorithmic Game Theory. We will first go through the basics of Game Theory needed

to understand this thesis. More specifically, we cover the topic of Sequential Price of

Anarchy in congestion games. We will explain what congestion games are, followed by

the definitions of concepts like Nash equilibrium, subgame perfect equilibrium, extensive

form games and price of anarchy.

Game Theory was formally developed during the 1950s by well known math-

ematicians such as John von Neumann, Oskar Morgenstern and John F. Nash. One of

the most notable works is the book ”Theory of Games and Economic Behavior” [1] by

von Neumann and Morgenstern published in 1944. On the other hand, the development

of Algorithmic Game Theory started around 1999, when Noam Nisan and Amir Ronen

published the article ”Algorithmic Mechanism Design” [2]. Another big cornerstone of

the rise of Algorithmic Game Theory are the article on ”Worst Case Subgame Equilib-

ria” by Koutsopias and Papadimitriou [3], and the paper ”How bad is selfish routing?”

by Tardos and Roughgarden [4]. A very important resource we used while preparing for

this thesis was the book by Tim Roughgarden titled ”Algorithmic Game Theory” [5].

All the above mentioned authors were awarded with the Gödel prize in 2012 [6].

1
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1.2 What is Game Theory?

Game Theory is the study of mathematical models of cooperation or conflict

of interests between rational decision makers [7]. Usually, these rational decision makers

are called players, and their decisions are called actions. Each player will have a set of

admissible actions.The precise definition will follow later, for now the intuitive meaning

will suffice. A player’s strategy determines the action the player will take at any stage

of the game. Game Theory has applications ranging from economics, politics, computer

science, psychology, biology, poker and even basketball [7, 8, 9, 10, 11]. The earliest

forms of strategic modeling considered throughout history appear in the Bible and the

Talmud [12, 13]. An even earlier form of strategic modeling is considered in the work of

the Chinese warrior-philosopher Sun Tzu [14].

Let us consider the common example of a game called the prisoner’s dilemma,

where two prisoners are being interrogated in separate rooms about a crime they com-

mited together. They have two actions available. The first one is to confess their crime,

while the second is to plead not guilty. If both of them confess their crimes, they are

locked for ten years. If both prisoners plead not guilty, they are locked for one year

for minor charges. If one prisoner confesses, and the other pleads not guilty, then the

confessing prisoner is released, and the prisoner who pleads not guilty is locked for eleven

years.

prisoner B
confess plead not guilty

prisoner A
confess (10,10) (0,11)

plead not guilty (11,0) (1,1)

Table 1.1: Prisoner’s dilemma example

If we look at Table 1.1 we can see the actions and the corresponding outcomes

of each action for both prisoners. The first number in each entry is the cost for prisoner

A, while the second is the cost for prisoner B. If both prisoners behave rationally, they

would both confess, since they will both save one year of prison regardless of what the

other prisoner chooses. If both of them cooperated, they would have ended up with only

one year of prison sentence, but this outcome is not achievable since, if one prisoner

denies, it is optimal for the other prisoner to confess and not be convicted, while if he

denies he will have to spend one year in jail. The outcome where both players confess is

an equilibrium, more specifically, it is a Nash Equilibrium and we will define this concept

in section 1.3.2.
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1.3 Congestion Games

Congestion games are a class of games in game theory first proposed by Rosen-

thal in 1973 [13]. We consider sequentially played atomic congestion games with linear

latency functions. Congestion games are a special case of potential games. The elements

of a congestion game are the players and the resources they compete for, where the utility

of each player depends on the resources she chooses and the number of players choosing

the same resources. In general, congestion games are played simultaneously, meaning

that all players decide which resources to use at the same time, without knowing what

the other players will choose. Sequentially played congestion games means that players

act in the order by their number, i.e., Player 1 chooses first, Player 2 chooses next, and

Player n chooses last. Player i chooses her action Ai to minimize her cost, observing the

actions of players preceeding her, but without knowing the actions of players succeeding

her.

1.3.1 Notation

In this section we describe the input of an instance I ∈ I of atomic congestion

games with linear latency functions. Formally, such a game consists of a finite set of

players N = {1, 2, ..., n} and a finite set of resources R. Each player i ∈ N has her

own collection of possible actions Ai = {A ⊂ R|A is a possible action of player i}. By

choosing one action for each player i, say Ai, from this collection, an action profile

A = (A1, ..., An) is formed. In sequentially played congestion games players act in the

order by their number, i.e., Player 1 chooses first, Player 2 chooses next, and Player n

chooses last. Player i chooses her action Ai to minimize her cost, observing the actions

of players preceeding her, but without knowing the actions of players succeeding her.

A strategy Si then specifies for player i the actions she chooses, one for each potential

profile of actions chosen by her predecessors 1,...,i -1. We denote by S a strategy profile

(Si)i∈N . The outcome A = (Ai)i∈N of a game is then the set of actions chosen by each

player resulting from a given strategy profile S. If S is a strategy profile of a subgame

perfect equilibrium, the resulting outcome A is not necessarily a Nash equilibrium of the

strategic form (simultaneous game) as we will mention later in section 1.3.2.

Each resource r ∈ R has a latency function fr = dr + wrnr, where dr is the

non negative constant activation cost of resource r, wr is the non negative weight of

resource r, and nr is the number of players choosing resource r in the action profile A.

It is easily seen that fr is a nondecreasing function of nr, indicating that the resource
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gets more congested the more players choose it. Given an action profile A, the cost of

player i is costi =
∑

r∈Ai
fr, and the total cost of all players is costtotal =

∑
i∈N costi.

1.3.2 Nash Equilibria, Subgame Perfect Equilibria and Extensive Form

Games

Nash equilibrium is one of the most important concepts in Game Theory. A

Nash Equilibrium is a stable state of a system involving the interaction of different

participants, in which no participant can gain by a unilateral change of strategy if

the strategies of the others remain unchanged [13]. In atomic games, a pure Nash

equilibrium is an action profile A in which no player i can decrease her own cost by

unilaterally deviating from choosing her original action Ai. However, the total cost of a

Nash equilibrium is not always the optimal cost, i.e. the minimal cost. By optimal cost

we mean the concept of social cost of an equilibrium. In our case we define this social

cost as the sum of the costs of all players. The following example illustrates this point.

Figure 1.1: Illustrative example where Nash Equilibrium is not socially optimal.

In the game shown in Figure 1.1, where we have two resources R = {r1, r2},
two players N = {1, 2}, player one can choose only one resource A1 = {{r1}}, player

two can choose between two resources A2 = {{r1}, {r2}}, and the costs incured by each

resource are fr1 = 2nr1 , fr2 = 5nr2 where nr1 and nr2 are the congestion indexes of

resource one and two respectively. We see that the optimal solution is when Player 1

chooses r1, and Player 2 chooses r2, giving a total cost of 2 + 5 = 7, while in the only

Nash equilibrium, when no one can decrease her cost by unilaterally deviating from her

original choice, Player 1 and Player 2 both choose r1, giving a total cost of 4 + 4 = 8.

Therefore, Nash equilibrium doesn’t always give an optimal cost.
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Our goal is to compare the quality of an optimal outcome (from the social cost

point of view) to the quality of subgame perfect equilibria of an extensive form game

as introduced in [15, 16]. Since players act in order, we build a game tree to describe

the game in extensive form. Such a game tree is characterized by nodes and edges,

where each node is either a decision node of a player, or an end note, and each edge

corresponds to an action. A Subgame can be described by a subtree of a game tree. It

starts at a single decision node of a player. A subgame perfect equilibrium is a refinement

of a Nash equilibrium used in dynamic games. A strategy profile is a subgame perfect

equilibrium if it represents a Nash equilibrium of every subgame of the original game. It

is important to mention that all games considered here have only trivial information sets,

meaning that we consider games with perfect information. This means that whenever

the game reaches a decision node of the game tree, the players are assumed to play a

Nash equilibrium strategy in the corresponding subgame. The example above can be

described in the game tree in Figure 1.2. ”Player 1” and ”Player 2” are decision nodes,

and nodes with costs are end nodes. The numbers are the costs of Player 1 and Player

2, respectively. Texts on the edges show the collections of actions of players. In the

subgame starting from decision node ”Player 2”, the only subgame perfect action is that

Player 2 chooses r1, since cost2({r1}, {r1}) = 4 < 5 = cost2({r1}, {r2}).

Figure 1.2: Extensive form game tree from Figure 1.1.

Let us see a second example now. In this case there are two players N = {1, 2},
and four resources R = {r1, r2, r3, r4} with zero constant costs dr = 0, ∀r ∈ R and

weights w1 = 7, w2 = 4, w3 = 1, w4 = 19. Player 1 can choose either r1 or resources
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{r1, r2, r3}. Player 2 can choose either resources {r1, r2} or resources {r3, r4}. This

example is shown in Figure 1.3.

Figure 1.3: In this example the SPE is bad for both players. Fat lines correspond to
chosen resources. Note that lines do not represent actions, only resources that can be
chosen.

In the social optimum, player 1 chooses r1, and player 2 chooses resources

{r3, r4}, which yields a total cost of 7 + (1 + 19) = 27. However, if player 1 were to

choose r1, then it is subgame perfect for player 2 to choose {r1, r2}, since this would yield

him a cost of 7·2+4 = 18 ≤ 19+1 = 20. This yields player 1 a cost of 7·2 = 14. Therefore

it is subgame perfect for player 1 to choose {r1, r2, r3}, since then it is subgame perfect

for player 2 to choose {r3, r4}, which yields him a cost of 19+2 ·1 = 21 ≤ 2 ·7+2 ·4 = 22.

In this equilibrium, player 1 has cost of 7 + 4 + 2 · 1 = 13. Note that both players have

higher cost in SPE than in OPT . Also, the subgame perfect equilibrium is not a Nash

equilibrium of the corresponding strategic form game, since player 1 plays an action that

is strictly dominated in the strategic form game. This example shows that the SPE can

be bad for both players.
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1.3.3 Price of Anarchy and Sequential Price of Anarchy

Since our goal is to evaluate the quality of subgame perfect equilibria by com-

paring the cost induced by a worst subgame perfect equilibrium to the optimal cost, we

use the concept of sequential price of anarchy which was recently introduced by Paes

Leme, Syrgkanis, and Tardos [17]. Generally, it is also known as the price of decentral-

ization, and measures the quality of any Nash or subgame perfect equilibrium relative

to the quality of a globally optimal allocation, OPT . By OPT we denote the outcome

where the total cost over all players is minimized. This is a utilitarian global objective,

meaning that the global objective is to minimize the sum of the costs of all players. The

sequential price of anarchy of an instance I of a game is defined by [17] as

SPoA(I) = maxSPE∈SPE(I)
costtotal(SPE)

costtotal(OPT )
,

where SPE denotes ”subgame perfect equilibrium”, and OPT denotes the ”globally op-

timal allocation”, i.e. the action profile that gives the minimum cost over all players.

For a class of games I, the sequential price of anarchy is

SPoA = supI∈ISPoA(I).

When the class of games is clear from the context, we write SPoA for simplicity.

In contrast, the price of anarchy is the same concept, but in the case where

the players act simultaneously. It is defined by [3] as

PoA(I) = maxNE∈NE(I)
costtotal(NE)

costtotal(OPT )
,

where NE(I) denotes the set of all Nash equilibria for instance I. The price of

anarchy of a class of instances I is

PoA = supI∈IPoA(I).





Chapter 2

Previous Results and Research

2.1 Related Work

Game theory modeling and the analysis of equilibrium in congestion games

provide insight in the performance of Internet congestion control and road transportation

networks, to give some examples. Game theoretic frameworks provide a sound model for

analyzing the performance of large networks formed out of independent, autonomous or

non-engineered agents. An example of applications of these concepts is the bandwidth

sharing model of the Internet [18] under selfish behaviors of agents, users, computers or

network nodes. The Internet is a great place to see this game theoretical point of view,

where interactions can be viewed as agents trying to maximize their own payoffs. The

main reason to study this topic is to see the implications of selfish behavior and how

certain worst case scenarios can be avoided, in other words, how can we set up the rules

of a game such that we achieve a (close to) socially optimal result.

Congestion games play an important role in recent research quantifying the

inefficiency of game-theoretic equilibria. By researching this topic, we try to understand

how the parameters of a congestion game influence the inefficiency of its equilibria,

and also we try to establish useful sufficient conditions that guarantee near-optimal or

optimal equilibria. Most of the game theoretical frameworks consider selfish behavior of

the users, but there is also research done in the case where players don’t act selfishly,

but altruistically [19].

As mentioned earlier, the sequential price of anarchy was introduced by Paes

Leme et al. [17] as an alternative way to measure the costs of decentralization. Compared

to the classical price of anarchy, in which players act simultaneously, introduced by

Papadimitriou and Koutsopias [3], it avoids the ”curse of simultaneity” inherent to

9
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certain games. Specifically for machine cost sharing games, generic unrelated machine

scheduling games and generic consensus games, the SPoA is smaller than the PoA [17].

In some cases, myopic behavior leads to better equilibria compared to the farsighted

behavior of subgame perfect equilibria [20]. For the class of congestion games, the price

of anarchy is equal to 2 in the case of two players, and 2.5 in the case of three or more

players [21, 22]. In the sequential version of these congestion games, the sequential price

of anarchy is equal to 1.5 when we have two players, and 2 63
488 ≈ 2.13 in the case of three

players [23]. The value for the three player case was reached using a linear program,

by using simple combinatorial arguments to show that the worst case must be attained

by some instance that is moderate in size, and then computing this worst case instance

with a standard LP solver. In the case where there are more than 3 players, an exact

value of the SPoA has not been found yet, but we know that a lower bound for the case

of four players is 2.465521027, which was found by using the same linear programming

approach with a limited number of resources and actions for each player [24]. Our main

contribution corresponds to a higher lower bound for the case of four players along with

some insights for the case of five or more players in the form of Theorem 3.1, Theorem

3.2 and Conjecture 1.

2.2 Theoretical background

In the previous section we mentioned that to compute the worst case instance

of the SPoA certain combinatorial arguments are used. In this section we briefly discuss

these combinatorial arguments in the form of Lemma 2.1 below. This lemma is explained

in more detail and proved in [23]. Before showing the lemma, we have to use the following

notation: Define the series

x1 = 2, and xi = 1 +
∏
j<i

xj , i ≥ 2.

Note that x2 = 3, x3 = 7, x4 = 43. Our analysis is based on the following Lemma 2.1.

Lemma 2.1. For any instance I of an atomic congestion game, there exists an instance

I ′ with |Ai| ≤ xi for any i ∈ N , any two resources are not in the exact same sets of

actions, |R| ≤ 2
∑

i∈N |Ai|, and dr + wr ≤ n · costtotal(OPT ) for any r ∈ R, such that

SPoA(I ′) = SPoA(I).

Let us give some intuition on this lemma before we continue. First, we reduce

the set of actions for each player to |Ai| ≤ xi by eliminating all actions that are not

played either in OPT or in a fixed worst case SPE from I in the order of the players
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1, 2, ..., n. For the first player, we reduce |A1| to only two actions, one in OPT and one

in a worst case SPE. For the second player, we restrict A2 to x2 ≤ 3 actions, the SPE

actions in two information sets, one for each possible action of the first player, along

with the action in OPT. More generally, for the kth player, we reduce Ak to at most

1 +
∏

i<k xi actions, namely the subgame perfect actions of the fixed SPE in each of

the at most
∏

i<k xi information sets, plus the action in OPT. Secondly, we reduce the

number of resources to be considered by the fact that any two resources are not part of

the exact same set of actions. Meaning that, if two resources r and r′ are part of the

same set of actions, we can merge them and create a combined resource r′′ where the

weight is wr′′ = wr + wr′ . Therefore, due to the fact that no two resources are part of

the same set of actions, and since there are in total no more than
∑

i∈N |Ai| actions, by

the pigeonhole principle we may assume w.l.o.g. that there are no more than 2
∑

i∈N |Ai|

resources in a worst-case instance for the SPoA. Finally, we observe that resources r

with dr + wr > n · costtotal(OPT ) can be safely eliminated, as it cannot be subgame

perfect for any player i to choose resource r: choosing OPTi instead, the action that

player i chooses in the optimal allocation, yields a cost of at most n · costtotal(OPTi) ≤
n · costtotal(OPT ) < dr + wr

To conclude, in order to find an instance with worst SPoA for four players, we

only need to consider games with |A1| ≤ 2, |A2| ≤ 3, |A3| ≤ 7, |A4| ≤ 43, |R| ≤
22+3+7+43 = 255, with any two resources not in the exact same sets of actions, and

dr + wr ≤ 4 · costtotal(OPT ) for any r ∈ R.

2.3 Previously Known Values of PoA and SPoA

Previous results concerning SPoA and PoA in general atomic congestion games

are sumarized in Table 2.1. Note that for the case of four players we only have a lower

bound instance.

Number of players SPoA PoA

n=2 1.5 ([23]) 2 ([21, 22])

n=3 2 63
488 ([23]) 2.5 ([21, 22])

n=4 ≥2.465521027 ([24]) 2.5 ([21, 22])

n→∞ Ω(
√
n) ([25]) 2.5 (([21, 22])

Table 2.1: SPoA and PoA values in general atomic congestion games

So far, in the general case, we know that SPoA ≤ PoA when n = 2, 3. When

n = 4, although the lower bound on the SPoA is 2.465521027, which is close to the value

of the PoA of 2.5, we still don’t know if the SPoA will exceed the PoA. Therefore,

given the recent result in [25], an interesting question to ask at this point would be:
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For how many players does the SPoA exceed the PoA? Given that the SPoA increases

monotonically with the number of players n (See Theorem 3.1), we therefore focus on

the case with n = 4 players first.

2.4 ILP and LP Approaches

Using the AIMMS optimization modeling framework, we build a linear program

(LP) for the case of three players, and an integer linear program (ILP) for the case of

four or more players. This is explained next.

Let us first give an introduction to the LP formulation in the case of three

players. In the formulation, we denote by A the set of all actions
⋃

i∈N Ai. The LP

uses 22+3+7 = 4096 resources R, one for every combination of actions. We use binary

parameters δrA to specify whether resource r is chosen in action A. For each resource

r, we have decision variables dr and wr, the constant cost and weight of r, respectively.

We use binary parameters, xA1 , xA1A2 , xA1A2A3 to determine which actions are subgame

perfect for players 1, 2 and 3 respectively. For example, xA1A2 = 0 whenever action

A2 is subgame perfect for player 2, anticipating a subgame perfect action of player

3, and knowing that player 1 has chosen action A1, and xA1A2 = 1 otherwise. We

define the outcome where each player chooses her first action {A11, A21, A31} as the

social optimum with total costs normalized to 1. For each player w.l.o.g., we define the

a+1− th action to be subgame perfect in the a− th branch of the game tree. We denote

by vA =
∑

r∈R(dr + wr)δrA the cost of a player that chooses action A ∈ A1 ∪ A2 ∪ A3

without taking any other players’ actions into consideration (i.e. as if other players

were absent). Next we denote by oAA′ =
∑

r∈RwrδrAδrA′ the additional costs that two

players with actions A,A′ ∈ A1∪A2∪A3 incur due to overlap in resources. We use these

auxiliary variables to determine the total cost of player i for i ∈ {1, 2, 3}, when players 1,

2 and 3 choose actions (A1, A2, A3) ∈ A1×A2×A3. This we denote by costi(A1, A2, A3).

Finally, cost1(A1), A1 ∈ A1 and cost2(A1, A2), (A1, A2) ∈ A1×A2 determine the cost of

actions of players 1 and 2 respectively, when successors play subgame perfect actions. For

instance, cost2(A1, A2) denotes the cost of action A2 for player 2, when player 1 chooses

action A1, and player 3 plays a subgame perfect action, given actions A1 and A2 of

players 1 and 2 respectively. Finally, costSPE determines the sum of costs for all players

in the outcome corresponding to the subgame perfect equilibrium. The constraints that

we need are: the definitions of vA and oAA′ for all actions A,A′, the definition of the

cost in each outcome for a player, the normalization of the costs such that the optimal

solution is the outcome {A11, A21, A31} and has a total cost equial to 1, the constraints

such that no player can improve from any subgame perfect action, the definition of
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cost1(A1) and cost2(A1, A2) and the final definition of costSPE . The objective is to

maximize costSPE , since, due to normalization, this value equals the sequential price of

anarchy. See Appendix A for the formulation.

Now that we know the formulation of the LP, to discuss the formulation of

the ILP we will just discuss the differences. We will use the ILP for the cases where

we have more than three players. Therefore we use the same setup as before but with

variables, parameters and constraints for four players or more. In the ILP, instead of

predetermining which actions are subgame perfect for players three and above, we use

binary variables to let the ILP decide which actions are subgame perfect. In the case

of four players this would mean that we have binary variables xA1A2A3 and xA1A2A3A4 .

They have the same interpretation as in the LP model, except that they are variables

instead of parameters. We introduce constraints to make sure that there exists at least

one subgame perfect action for each player. We also introduce ”bigM” constraints to

bound the costs. Setting M = n, where n is the number of players, suffices as it is

mentioned in [23].

The main difference between both formulations is that in the LP we give as

input binary parameters that determine the subgame perfect actions for each player,

while in the ILP we let the program decide which actions are subgame perfect for players

three and above. This is necessary because we need to limit the actions and resources,

and therefore cannot simply fix one path to be SPE. Therefore, the parameters in the

LP become variables in the ILP. The formulations of the linear programs are given in

the appendix, where we see the set up in a more detailed way.





Chapter 3

Our Results

3.1 LP model

The linear program for calculating the SPoA requires that we consider all the

possible actions for each player as defined in section 2.2 along with all the possible

resources R = 2|A|. For three players this is |A1| = 2, |A2| = 3, |A3| = 7 actions and

|R| = 22+3+7 = 212 = 4096 resources, while for four players it would mean we have to

consider |A1| = 2, |A2| = 3, |A3| = 7, |A4| = 43 actions and |R| = 22+3+7+43 = 255

resources.

3.1.1 Testing Three Player Result

The only case where we can practically use the linear program without running

into problems with memory or too long computational times is the case with three

players. The full model of the three player case includes the actions |A1| = 2, |A2| =

3, |A3| = 7 for players one, two and three respectively, along with the resources |R| =
22+3+7 = 212 = 4096. We have implemented this LP in order to test our model and

make sure it calculates correctly the SPoA. After inputting LP model to our AIMMS

LP and using the solver CPLEX 12.6.3 we obtain the same value of 2 63
488 ≈ 2.13 as found

in [23].

15
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3.2 Limiting the number of resources and actions available

When we test instances with n > 3 players, the input for the LP becomes

exponentially large. Specifically, for the case of four players we would need |A1| =

2, |A2| = 3, |A3| = 7, |A4| = 43, |R| = 22+3+7+43 = 255. This would mean that we

need a matrix with 255 rows just to show which resources are part of which actions. Due

to memory restrictions, we cannot even set up this LP. This is also limited by the number

of rows that we can store in an Excel file which is 220. Even if we were able to represent

this matrix in a comma separated value file, we would need a harddrive with a capacity

in the order of petabytes. If we compare the cases where we have the action profiles

|A1| = 2, |A2| = 3, |A3| = 4, |A4| = 5, when we increase the number of resources from

30 to 214 = 16384 the number of variables increases from 927 to 33633 and the number

of non-zeros increases from 8722 to 1097382. At this stage we are still able to run the

program, but now if we increased the number of resources to 255 this would cause the

variables and the non-zeros to increase exponentially causing the program to crash or

not even start. That means that we cannot easily use the LP in order to compute the

true value of the SPoA for n = 4 players. Instead, however, we can use the mentioned

ILP to compute lower bounds.

3.2.1 Testing for Four Player Results

Before we mention experimental results for the SPoA of four players, let us

start by stating Theorem 3.1. The main idea of this theorem is that, if we have an

instance I ′ of a game with n players with a certain SPoA(I’)= α, then we can create a

new instance I ′′ where we add a new player n+ 1 to the game and give this player only

one action that corresponds to a new additional resource that is only available to him,

then the SPoA of this new instance is such that SPoA(I ′′) ≥ SPoA(I ′).

Theorem 3.1. For any instance I ′ of an atomic congestion game with a set of players

|N | = n, a set of actions |Ai| ≤ xi for any i ∈ N where xi = 1 +
∏

j<i xj, any two

resources are not in the exact same sets of actions, |R| ≤ 2
∑

i∈N |Ai|, and dr + wr ≤
n · costtotal(OPT ) for any r ∈ R, there exists an instance I ′′ where its set of resources is

|R′| = |R|+1, its set of players is N ′ = N ∪{n+1}, its set of actions is A′ = A∪An+1

where |An+1| = 1 and δr|R′|A = 1 for A ∈ An+1 and 0 otherwise, such that SPoA(I ′′) ≥
SPoA(I ′).

The conclusion of Theorem 3.1 is that SPoA of an atomic congestion game

with n + 1 players is at least the SPoA of the atomic congestion game with n players.
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Meaning that the SPoA is monotonically increasing with respect to the number of

players. Theorem 3.1 is used later in this section.

Now we dive into the experimental results. For the case where we have four

players we first tried to reproduce the value reached in [24] of 2.465521027, but we ran

into multiple problems which we describe later in section 3.2.1.1. After solving this

problem we decided to plug in the full set of resources needed in the case where we have

the set of actions |A1| = 2, |A2| = 3, |A3| = 4, |A4| = 5. The number of resources

needed for this case is |R| = 22+3+4+5 = 214 = 16384. After the first run on AIMMS we

reached a value of the SPoA=2.550915006 which is higher than the one in [24] and also

interestingly higher than the value of the PoA of 2.5 [21, 22]. In the so computed instance

only 26 resources are used, while the instance presented in [24] requires 30 resources.

We can see the values of the weights of the resources and which resources are part of

which action in table 3.1. In this game there are 26 resources, along with their constant

activation costs dr (all 0s) and their weights wr. The actions available to each player

are A1 = {1.1, 1.2}, A2 = {2.1, 2.2, 2.3}, A3 = {3.1, 3.2, 3.3, 3.4}, A4 = {4.1, 4.2, 4.3,

4.4, 4.5}, each of which corresponds to a subset of resources that a player is able to

choose. We set the action profile (1.1, 2.1, 3.1, 4.1) as optimal, giving a total cost of

1, while the profile (1.2, 2.3, 3.4, 4.3) is subgame perfect for each player, and gives a

total cost of 2.550915006, so the value of SPoA of this particular instance of the game is

2.550915006. Therefore, the value of SPoA for the class of all atomic congestion games

for four or more players is no less than 2.550915006.

If we combine this result where the value of the SPoA for the class of all atomic

congestion games for four players is no less than 2.550915006 with Theorem 3.1 we can

state Theorem 3.2. The combination of the previous result with Theorem 3.1 means

that the SPoA for the class of all atomic congestion games with four or more players

is greater than 2.550915006. We also know from [21, 22] that the PoA for the class

of all atomic congestion games with three or more players is 2.5. Therefore by stating

Theorem 3.2 we answer our initial question of: is the SPoA always less than the PoA?

Theorem 3.2. The SPoA for the class of all affine atomic congestion games is greater

than 2.550915006, hence it exceeds the PoA for the same class of games when the number

of players is n ≥ 4.

We next propose a conjecture to further reduce the size of any worst-case

instance. Specifically this conjecture reduces the number of resources to be considered.

We reached this conjecture by observing the structure of the resources used in the

optimal profile of actions.
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r wr 1.1 1.2 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3 4.4 4.5

1 0.05205691856 1 1

2 0.1099709641 1 1 1

3 0.02611302439 1 1 1 1

4 0.0131944271 1 1 1 1

5 0.008522346756 1 1 1

6 0.03787835792 1 1 1 1

7 0.8975899512 1

8 0.0006288465773 1 1 1 1

9 0.05118402503 1 1 1

10 0.1768568568 1 1 1 1

11 0.04051292995 1 1 1 1 1

12 0.09764943052 1 1 1 1

13 0.001420012759 1 1 1

14 0.005540433473 1 1 1 1 1

15 0.05001600494 1 1 1 1 1

16 0.04352095058 1 1 1 1 1

17 0.00995598074 1 1 1 1 1 1

18 0.02753303715 1 1 1 1 1

19 0.02594389417 1 1 1 1 1

20 0.08093732193 1 1 1 1 1

21 0.02731850285 1 1 1 1 1 1

22 0.05874948069 1 1 1 1 1 1

23 0.007512105864 1 1 1 1 1

24 0.02199260367 1 1 1 1 1 1

25 0.006302086999 1 1 1 1 1 1

26 0.01868945649 1 1 1 1 1 1

Table 3.1: Instance corresponding to SPoA= 2.550915006

Conjecture 1. For any instance I ′ of an atomic congestion game with |Ai| ≤ xi for

any i ∈ N where xi = 1 +
∏

j<i xj , any two resources are not in the exact same sets of

actions, |R| ≤ 2
∑

i∈N |Ai|, and dr + wr ≤ n · costtotal(OPT ) for any r ∈ R,, there exists

an instance I ′′ where the resources ri ∈ Ai such that Ai ∈ OPT appear in the optimal

action of exactly one player and SPoA(I ′) = SPoA(I ′′).

Meaning that
∑

A∈AOPT
δrA = 1,∀r ∈ R where AOPT is the optimal profile

of actions. The main idea of the conjecture is that in the profile of actions in OPT,

the players would not choose an action that contains a resource that has already been

used by another player, meaning that resources in the socially optimal outcome are not

congested at all. Choosing an action that contains a resource that has already been

used by another player would only increase her cost. However a formal proof of the

conjecture is still missing and left for future research.

3.2.1.1 Technical difficulties with ILP solving

Here we briefly discuss some of the technical difficulties that we encountered

while doing the computational experiments.
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If we give as input the data for 4 players and 30 resources from [24] to the LP

solver, we were only able to reproduce the result when we explicitly gave the values of

the weights (first four decimals) of the resources as an extra constraint with the CPLEX

solver. Trying with the Gurobi solver, we were able to reach the same value after a really

long computational time, but the solver was not able to prove that it was optimal. Yet

another problem we had while trying to reproduce the result in [24] was when we added

an extra constraint stating that the value of the SPoA should be upper bounded by the

number of players. After adding this constraint both solvers conclude that the solution

is infeasible even though the bound holds. Therefore, adding the upper bound harms

the performance of the branch and bound algorithm used by CPLEX and Gurobi. It

is interesting to note also that when we keep this upper bound constrain, and add the

constraint for the weight of the resources, where the weight has to be higher than the

first four decimal numbers of the weights in [24] then the problem becomes feasible and

the ILP solver finds the value of 2.465521027. Unfortunately, we still do not know why

this happens, and leave it open to explain that seemingly inconsistent behaviour of the

ILP solvers.

The results are shown in Table 3.2. We used two different solvers, and while

using CPLEX we tried with two different feasibility tolerances. In case 1 we set which

action uses which resource as a variable. In case 2 we fixed which action uses which

resource as a parameter. In case 3 we add the upper and lower bound constrains of

SPoA ≤ 4 and SPoA ≥ 2.4. In case 4 we add the constraints for lower bound of the

weights such that the resource value has to be higher than the first 4 decimals from

the weights reported in [24]. We see from Table 3.2 that the only cases where we reach

the desired value of 2.465521027 are 1+3+4 and 2+3+4, that is, when we explicitly

add the weight of the resources. In the Gurobi tests, we see that it also reaches the

desired value, but the program keeps running without being able to prove optimality

of this value. The different objective values observed in the table are caused by early

terminations of the program related to memory problems. It is important to note that

the moment CPLEX runs out of memory, it is not deterministic anymore. In order to

solve the memory problem, we used CPLEX node files by setting the CPLEX option

’Node File’ to ’On disk and compressed’. However it might take CPLEX a very long time

to solve the problem to optimality. Our advice is to try looking for a tighter formulation

of the problem such that you get a better LP relaxation objective at the root node.
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CPLEX
10−9 tolerance

CPLEX
10−6 tolerance

GUROBI

case SPoA Time (sec) SPoA Time (sec) SPoA Time (sec)

1 2.426478491
79344.62

Then crashed
2.4070603323 71913 2.465521027

2300
continues until
crash at 24216

1+3
Intermediate

infeasible
7790 Infeasible 8894

Infeasible
unbounded

11432

1+3+4 2.465521027 0.05 2.465521027 0.26 2.465521027 0.11

2 2.42647849112 88612.12 2.4070603323 66449.89 2.465521027
33164

and running

2+3
Intermediate

infeasible
7725.11 Infeasible 9186

Still
infeasible

218693

2+3+4 2.465521027 0.42 2.465521027 ≤ 1 2.465521027 0.03

Table 3.2: Results and infeasibilities while testing data for 4 player case with weights
as reported in [24]



Chapter 4

Non-Atomic Sequential Price of

Anarchy for Two Players

Until now we have only considered sequential atomic and affine congestion

games with pure strategies. That means that we have (implicitly) assumed that players

are not allowed to randomize on their set of available actions, and neither to split

their (unit) demand. In this chapter we briefly discuss sequential congestion games,

where players are allowed to split their unit demand over their available actions. More

specifically, if a player has two actions available, she can distribute her unit demand

between both actions, where she splits the demand such that p1 is assigned to action

one and (1 − p1) is assigned to action two where p1 ∈ [0, 1]. The main reason to study

this type of games is to compare the results with the counterpart were splitting is not

allowed. We first give an example and then continue with the general case for two players

and discuss our results. In this section we denote the sequential price of anarchy for

congestion games with splittable demand by SPoAN . In this chapter splittable demand

should not be mistaken for mixed strategies, where players assign a probability value to

each action and maximize their expected utility.

4.1 Setup and Example

Let us start first with a simple example of a non-atomic congestion game with

two players. In this case there are two players N = {1, 2}, three resources R =

{r1, r2, r3} with zero constant costs dr = 0,∀r ∈ R and weights w1 = 2, w2 = 1, w3 = 2.

Player 1 can choose either r1 or r2. Player 2 can choose either r2 or r3. This example

is shown in Figure 4.1. In the optimal outcome OPT , both players split their demand

21
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between both available resources for them such that p1 = p2 = 1
2 . Player 1 has a cost

of cost1(OPT ) = 1.5, player 2 has a cost of cost2(OPT ) = 1.5 and the social cost is

cost(OPT ) = 3. While in the SPE player 1 chooses r2 with full load of 1 and player 2

splits her demand between both resources available with p2. Therefore player 1 has a cost

of cost1(SPE) = 1 + p2, player 2 has a cost of cost2(SPE) = (1 + p2)p2 + 2(1 − p2) =

2 + p2
2 − p2 and the social cost is cost(SPE) = 3 + p22. Player 2 aims to minimize

cost2(SPE) so let us find the value of p2. To minimize cost2(SPE) = 2 + p2
2 − p2 we

take the first derivative and set it to zero such that 2p2 − 1 = 0. Therefore p2 = 1
2 .

Then cost1(SPE|p2 = 1
2) = 1 + 0.5 = 1.5, cost2(SPE|p2 = 1

2) = 2 + 0.25 − 0.5 = 1.75

and the social cost is cost(SPE|p2 = 1
2) = 1.5 + 1.75 = 3.25. Therefore the SPoAN =

3.25
3 = 1.0833. In the atomic version of this game, the OPT outcome would mean that

player 1 chooses r2 and player 2 chooses r3 with a social cost of cost(OPT ) = 3, while

in the SPE outcome both players would choose r2 with a social cost of cost(SPE) = 4.

Therefore the SPoA = 4
3 = 1.3333. Meaning that SPoAN < SPoA for this instance of

a congestion game. In this case we have that the non-atomic version is more efficient. It

is important to notice in the SPE that player 1 would not split her demand over both

actions.

Figure 4.1: Non-atomic congestion game example with two players

Now let us define the general setting for two players N = {1, 2}, and three

resources R = {r1, r2, r3} with zero constant costs dr = 0,∀r ∈ R and weights w1 =

a,w2 = 1, w3 = b. Player 1 can choose either r1 with 1 − p1 or r2 with p1 where

0 ≤ p1 ≤ 1. Player 2 can choose either r2 with p2 or r3 with 1 − p2 where 0 ≤ p2 ≤ 1.
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The cost for player 1 given (p1, p2) is cost1(p1, p2) = (1−p1)a+p1(p1 +p2). The cost for

player 2 given (p1, p2) is cost2(p1, p2) = p2(p1 +p2) + (1−p2)b. The social cost would be

cost(p1, p2) = (1− p1)a+ (p1 + p2)
2 + (1− p2)b. We can see the decision tree in Figure

4.2.

Figure 4.2: General non-atomic congestion game with two players and three resources

In order to study this general case, we set different values for the weights of

resources (r1, r3) = (a, b). We see most of the possibilities in Figure 4.31. From Figure

4.3 we see that in some cases the OPT outcome will be the same as the SPE outcome.

Case 0 is the general case where we do not assign values to a or b. The solution for

these cases is marked with X. In this situation we will have a SPoAN = 1. These cases

are 1,2 and 4. We notice that in this situation the players would play atomic actions.

While in the rest of the cases, the OPT outcome is different than the SPE outcome,

where at least one of them splits his actions making it non-atomic and the SPoAN > 1.

In each of these cases we give an example with specific values assigned to a and b so

that we can see the actual valye of the SPoAN .

4.1.1 Interpretation

The two player non-atomic congestion game where each player is given the

option of choosing her own resource or sharing a resource with the other player can be

interpreted as follows: How do we set the weight of each resource in order to make the

players choose their own resource or make them share the common resource? Depending

on the value of the weights of each resource they will be willing to share the middle

resource or they split their demand minimizing their own cost. Even though we exhaust

all the possible cases for the values of the weights, this simple two player model is not

enough to reach a conclusion about the SPoAN . It is however valid as a lower bound for

two players non-atomic congestion games. In order to reach a conclusion on this type of

1We do not include the following cases in the table: 3 < a, b < 4, 2 < a < 3&3 < b < 4 and
2 < b < 3&3 < a < 4.
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Figure 4.3: Table with values for two player non-atomic congestion games
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games, we would need to develop a worst-case scenario instance where we consider the

necessary number of resources and actions. We leave this for further research.





Chapter 5

Discussion and Further Research

In this section we want to discuss the results we have reached. We would also

like to mention some advice for further research.

First of all, it is interesting to discuss the fact that the current lower bound

for the SPoA of four players that we have achieved (2.550915006) is higher than the

result of the PoA for the simultanous congestion games (2.5). In general, we knew that

SPoA ≤ PoA when n = 2, 3. But for n ≥ 4 now we have that SPoA > PoA. This

contradicts the conjecture from the conclusions in [23], where it is conjectured that

for atomic congestion games, the sequential price of anarchy is lower than the price

of anarchy. The question had been answered asymptotically for n → ∞ in [25], even

showing that SPoA ∈ Ω(
√
n), however the precise ”tipping point” for the comparison

between PoA and SPoA was open so far. It would be interesting to know why this

happens after we increase the number of players from three to four. The interpretation

of this result, means that if we have a congestion game with four players, letting the

players choose simultaneously would be better than letting them play sequentially from

the social cost point of view.

It is also of high importance to prove or disprove Conjecture 1. This would

shed a lot of light on the structure of congestion games and would decrease the size of

the worst-case instances in order to find better lower bounds for the SPoA. It would

also be useful to derive more combinatorial results to improve our ILP model in order

to find the exact value of the SPoA for all the cases.

Other approaches that should be considered could be the dual approach [26]

in order to find a lower upper bound of the SPoA. The LP approach is used to find

the exact value of the SPoA for the three player atomic congestion game. The ILP is

used to find lower bounds of the SPoA in the case where we give do not give as input
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the whole instance of a congestion game as described in Lemma 2.1. The ILP could, in

principle, also be used to find the exact value of the SPoA in the case where we give the

full model of the problem, but the huge size of the model leads to large memory usage

and long computation times, therefore, practically, we can only compute lower bounds.

We know from [23] that the theoretical upper bound of SPoA is the number of players

n.

We also noticed that when we give as input to the ILP a big number of resources,

most of these resources would not actually be necessary in the worst-case instance.

Meaning that some of these resources are not used at all and should not be considered.

A good way to approach this problem could be by using column generation. Column

generation is a very efficient algorithm for solving linear programs with a large number

of variables. The main idea is that these linear programs are too large to consider all

the variables explicitly. Since most of the variables will be non-basic and assume a

value of zero in the optimal solution, only a subset of these variables is needed to be

considered when solving the problem. Column generation uses this idea to generate only

the varaibles which have the potential to improve the objective function, and proving

optimality by use of duality.

Another important topic to discuss is the problems we had while trying to find

new lower bound instances and reproduce previous results. This could be due to the

solver configuration, the different solvers we used or the actual structure of the linear

program. The fact that we reached different results with the same input on the same

computer without changing anything in the linear program makes us think that there

is a problem which we are not aware of yet. This could be due to the computational

power of the computer or just the way the solver tries to find an optimal solution. We

advice to try to use different configurations of the solver or use a completely different

solver. Another approach could be to make a completely new model for the SPoA.

Finally, with respect to the model for the two player non-atomic congestion

game, further research is needed in order to reach a conclusion on the value of the

SPoAN for two players. As we mentioned earlier, it is needed to develop a worst-case

instance with the necessary number of resources and actions, since our example can

only be used as a lower bound. It would also be interesting to consider mixed strategies,

instead of splittable demand, where players assign probabilities to each action and they

minimize their expected costs.



Chapter 6

Conclusions

In this thesis, we conclude that in the case of atomic congestion games with

linear latency functions we have the following results represented in table 6.1.

Number of players SPoA PoA

n=2 1.5 ([23]) 2 ([21,22])

n=3 2 63
488 ([23]) 2.5 ([21,22])

n ≥ 4 ≥2.5509150067 2.5 ([21,22])

n→∞ Ω(
√
n) ([25]) 2.5 (([21, 22])

Table 6.1: SPoA and PoA values in general atomic congestion games

We thereby answer our initial question of: For how many players does the SPoA

exceed the PoA? The main insight of this thesis is that the SPoA for atomic congestion

games with four or more players is higher than the PoA.
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Appendix A

LP Formulation for 3 players

• Objective

maximize: costSPE .

• Parameters

δrA =

1, if r ∈ A,

0, if r /∈ A.
r ∈ R, A ∈ A1 ∪ A2 ∪ A3.

xA11 = 1, xA12 = 0.

xA11A21 = 1, xA11A22 = 0, xA11A23 = 1,

xA12A21 = 1, xA12A22 = 1, xA12A23 = 0.

xA1A2A3 =



0, if it is subgame perfect for Player 3 to choose A3

and knowing that Player 1 chooses A1

and Player 2 chooses A2,

1, otherwise.

((A1, A2, A3) ∈ A1 ×A2 ×A3).

• Variables

dr, r ∈ R.

wr, r ∈ R.

33
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vA, A ∈ A1 ∪ A2 ∪ A3.

oAA′ , A,A′ ∈ A1 ∪ A2 ∪ A3.

cost1(A1), A1 ∈ A1.

cost2(A1, A2), (A1, A2) ∈ A1 ×A2.

cost3(A1, A2, A3) (A1, A2, A3) ∈ A1 ×A2 ×A3.

costtotal(A1, A2, A3), (A1, A2, A3) ∈ A1 ×A2 ×A3.

costSPE : the total cost in a subgame perfect equilibrium.

• Constraints

costOPT = 1.

vA =
∑
r∈R

(dr + wr)δrA, A ∈ A1 ∪ A2 ∪ A3 ∪ A4.

oAA′ =
∑
r∈R

wrδrAδrA
′, A,A′ ∈ A1 ∪ A2 ∪ A3

cost1(A1, A2, A3) = vA1 + oA1A2 + oA1A3 , (A1, A2, A3) ∈ A1 ×A2 ×A3.

cost2(A1, A2, A3) = vA2 + oA2A1 + oA2A3 , (A1, A2, A3) ∈ A1 ×A2 ×A3.

cost3(A1, A2, A3) = vA3 + oA3A1 + oA3A2 , (A1, A2, A3) ∈ A1 ×A2 ×A3.

costtotal(A1, A2, A3) =

3∑
i=1

costi(A1, A2, A3), (A1, A2, A3) ∈ A1 ×A2 ×A3.

costtotal(A11, A21, A31) = costOPT .

costtotal(A1, A2, A3) ≥ costOPT , (A1, A2, A3) ∈ A1 ×A2 ×A3

cost1(A1) ≤ cost1(A
′), A1, A

′ ∈ A1andA1isSPE

cost2(A1, A2) ≤ cost2(A1, A
′), A1 ∈ A1, A2, A

′ ∈ A2andA1A2areSPE.

cost3(A1, A2, A3) ≤ cost3(A1, A2, A
′), A1 ∈ A1, A2 ∈ A2, A3, A

′ ∈ A3andA1A2A3areSPE.

cost1(A1) = cost1(A1, A2, A3), A1 ∈ A1, A2 ∈ A2, A3 ∈ A3whereA2andA3are SPE

cost2(A1, A2) = cost3(A1, A2, A3), A1 ∈ A1, A2 ∈ A2whereA3is SPE

costSPE = cost1(A12, A23, A37) + cost2(A12, A23, A37) + cost3(A12, A23, A37)
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ILP Formulation for 4 players

Here we present the MIP model we use in Section 2 for games with 4 players.

We denote the collections of possible actions by A1 = {A11, A12}, A2 = {A21, A22, A23},
A3 = {A31, A32, A33, A34}, A4 = {A41, A42, A43, A44, A45}. Each action is a subset

of the set R of resources. We denote an action profile by A = (A1, A2, A3, A4) ∈
A1 × A2 × A3 × A4, and a resource by r ∈ R. Due to the argument of Lemma 1, we

only need to consider at most 22+3+4+5 = 214 = 16384 resources.

Let A ∈ A1 ∪A2 ∪A3 ∪A4. We use binary parameters δrA to specify whether

a resource r is part of an action A. For each resource r, we use variables dr and wr to

denote the constant activation cost and weight, respectively. vA =
∑

r∈R(dr + wr)δrA

is the cost of a player that chooses action A without taking other players’ choices into

consideration. oAA′ =
∑

r∈RwrδrAδrA′ is the additional cost that two players incur

due to overlap in resources. Given an action profile A = (A1, A2, A3, A4), we have

cost1 = vA1 + oA1A2 + oA1A3 + oA1A4 , ..., cost4 = vA4 + oA4A1 + oA4A2 + oA4A3 , and

costtotal =
∑4

i=1 costi.

We use binary parameters, xA1 , xA1A2 , and binary variables, xA1A2A3 , xA1A2A3A4 ,

to determine which actions are subgame perfect.1For example, xA12A23 = 0 iff. it is

subgame perfect for Player 2 to choose A23, anticipating subgame perfect actions of

Player 3 and Player 4, and knowing that Player 1 has chosen action A12. cost1(A1),

cost2(A1, A2), cost3(A1, A2, A3) determine the cost of Player 1, Player 2, and Player 3,

respectively, when successors play subgame perfect. For example, cost2(A12, A23) is the

cost of Player 2, when Player 1 chooses A12, Player 2 chooses A23, and Player 3 and 4

plays subgame perfect, knowing the actions of Player 1 and 2.

1We use variables for xA1A2A3 , because we cannot set manually which action of Player 3 is subgame
perfect, since |A3| = 4 < 7 = x3 in Lemma 2.1. It is shown clearly in [23]. Same reasoning also applies
for xA1A2A3A4 .
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At last, due to the symmetry of different actions, we simply set (A11, A21, A31, A41)

to be the action profile which yields the optimal total cost, which we set to be 1. The

variable costSPE is the total cost in a subgame perfect equilibrium. It is the solver’s

work to find the largest value of costSPE over all possible games, as well as the certain

game which gives the largest costSPE . This largest value is exactly what we look for.

• Objective

maximize: costSPE .

• Parameters 2

costOPT = 1.

δrA =

1, if r ∈ A,

0, if r /∈ A.
r ∈ R, A ∈ A1 ∪ A2 ∪ A3 ∪ A4.

xA11 = 1, xA12 = 0.

xA11A21 = 1, xA11A22 = 0, xA11A23 = 1,

xA12A21 = 1, xA12A22 = 1, xA12A23 = 0.

• Variables

xA1A2A3 =



0, if it is subgame perfect for Player 3 to choose A3, given that Player 4

chooses subgame perfect action, and knowing that Player 1 chooses A1

and Player 2 chooses A2,

1, otherwise.

((A1, A2, A3) ∈ A1 ×A2 ×A3).

xA1A2A3A4 =


0, if it is subgame perfect for Player 4 to choose A4, knowing that Player 1

chooses A1, Player 2 chooses A2, and Player 3 chooses A3,

1, otherwise.

((A1, A2, A3, A4) ∈ A1 ×A2 ×A3 ×A4).

dr, r ∈ R.

wr, r ∈ R.
2The initial value we set for δrA is shown in Table B.1.
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vA, A ∈ A1 ∪ A2 ∪ A3 ∪ A4.

oAA′ , A,A′ ∈ A1 ∪ A2 ∪ A3 ∪ A4.

cost1(A1), A1 ∈ A1.

cost2(A1, A2), (A1, A2) ∈ A1 ×A2.

cost3(A1, A2, A3), (A1, A2, A3) ∈ A1 ×A2 ×A3.

cost1(A1, A2, A3, A4), (A1, A2, A3, A4) ∈ A1 ×A2 ×A3 ×A4.

cost2(A1, A2, A3, A4), (A1, A2, A3, A4) ∈ A1 ×A2 ×A3 ×A4.

cost3(A1, A2, A3, A4), (A1, A2, A3, A4) ∈ A1 ×A2 ×A3 ×A4.

cost4(A1, A2, A3, A4), (A1, A2, A3, A4) ∈ A1 ×A2 ×A3 ×A4.

costtotal(A1, A2, A3, A4), (A1, A2, A3, A4) ∈ A1 ×A2 ×A3 ×A4.

costSPE : the total cost in a subgame perfect equilibrium.

• Constraints

vA =
∑
r∈R

(dr + wr)δrA, A ∈ A1 ∪ A2 ∪ A3 ∪ A4.

oAA′ =
∑
r∈R

wrδrAδrA
′, A,A′ ∈ A1 ∪ A2 ∪ A3 ∪ A4.

cost1(A1, A2, A3, A4) = vA1+oA1A2+oA1A3+oA1A4 , (A1, A2, A3, A4) ∈ A1×A2×A3×A4.

cost2(A1, A2, A3, A4) = vA2+oA2A1+oA2A3+oA2A4 , (A1, A2, A3, A4) ∈ A1×A2×A3×A4.

cost3(A1, A2, A3, A4) = vA3+oA3A1+oA3A2+oA3A4 , (A1, A2, A3, A4) ∈ A1×A2×A3×A4.

cost4(A1, A2, A3, A4) = vA4+oA4A1+oA4A2+oA4A3 , (A1, A2, A3, A4) ∈ A1×A2×A3×A4.

costtotal(A1, A2, A3, A4) =
4∑

i=1

costi(A1, A2, A3, A4), (A1, A2, A3, A4) ∈ A1×A2×A3×A4.

costtotal(A11, A21, A31, A41) = costOPT .

costtotal(A1, A2, A3, A4) ≥ costOPT , (A1, A2, A3, A4) ∈ A1 ×A2 ×A3 ×A4.∑
A3∈A3

xA1A2A3 ≤ |A3| − 1, (A1, A2) ∈ A1 ×A2.

∑
A4∈A4

xA1A2A3A4 ≤ |A4| − 1, (A1, A2, A3) ∈ A1 ×A2 ×A3.

cost1(A1) ≤ cost1(A
′) + 4 · costOPT · xA1 , A1, A

′ ∈ A1.
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cost2(A1, A2) ≤ cost2(A1, A
′) + 4 · costOPT · xA1A2 , A1 ∈ A1, A2, A

′ ∈ A2.

cost3(A1, A2, A3) ≤ cost3(A1, A2, A
′)+4·costOPT·xA1A2A3 , A1 ∈ A1, A2 ∈ A2, A3, A

′ ∈ A3.

cost4(A1, A2, A3, A4) ≤ cost4(A1, A2, A3, A
′) + 4 · costOPT · xA1A2A3A4 ,

(A1 ∈ A1, A2 ∈ A2, A3 ∈ A3, A4, A
′ ∈ A4).

|cost1(A1)− cost1(A1, A2, A3, A4)| ≤ 4 · costOPT · (xA1A2A3 + xA1A2A3A4),

((A1, A2, A3, A4) ∈ A1 ×A2 ×A3 ×A4, xA1A2 = 0).

|cost2(A1, A2)− cost2(A1, A2, A3, A4)| ≤ 4 · costOPT · (xA1A2A3 + xA1A2A3A4),

((A1, A2, A3, A4) ∈ A1 ×A2 ×A3 ×A4).

|cost3(A1, A2, A3)− cost3(A1, A2, A3, A4)| ≤ 4 · costOPT · xA1A2A3A4 ,

((A1, A2, A3, A4) ∈ A1 ×A2 ×A3 ×A4).

A11 A12 A21 A22 A23 A31 A32 A33 A34 A41 A42 A43 A44 A45

r1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

r2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

r3 0 1 0 0 0 0 0 0 0 0 0 0 0 0

r4 1 1 0 0 0 0 0 0 0 0 0 0 0 0

r5 0 0 1 0 0 0 0 0 0 0 0 0 0 0

r6 1 0 1 0 0 0 0 0 0 0 0 0 0 0

r7 0 1 1 0 0 0 0 0 0 0 0 0 0 0

r8 1 1 1 0 0 0 0 0 0 0 0 0 0 0

r9 0 0 0 1 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

r16384 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table B.1: The initial value we set for δrA
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Costs Data of the Game Yielding

the SPoA for Games with 4

players

Here we present the costs data of the game yielding the SPoA of 2.550915006,

highlighting the subgame perfect actions. We use ”1.1” for A11, ..., ”4.5” for A45 in

Table C.1:

cost1 cost2 cost3 cost4 cost total

1.1

2.1

3.1

4.1 0.141019413 0.18956092 0.296959743 0.372459925 1

4.2 0.276498392 0.327937815 0.341593093 0.723046433 1.669075732

4.3 0.149160365 0.18956092 0.296959743 0.913871856 1.549552883

4.4 0.141019413 0.338394375 0.514498659 0.779559762 1.773472209

4.5 0.235009274 0.217093957 0.36500571 0.575000738 1.392109678

3.2

4.1 0.141019413 0.230288384 0.486520662 0.562020845 1.419849304

4.2 0.276498392 0.368665279 0.449699084 0.831152424 1.926015179

4.3 0.149160365 0.230288384 0.296959743 0.913871856 1.590280348

4.4 0.141019413 0.37912184 0.296959743 0.562020845 1.37912184

4.5 0.235009274 0.257821421 0.539997594 0.749992622 1.78282091

3.3

4.1 0.227497168 0.18956092 0.645707384 0.608835862 1.671601334

4.2 0.362976147 0.327937815 0.49026877 0.759350404 1.940533135

4.3 0.23563812 0.18956092 0.409331448 0.913871856 1.748402344

4.4 0.227497168 0.338394375 0.456146465 0.608835862 1.63087387

Continued on next page
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cost1 cost2 cost3 cost4 cost total

4.5 0.321487029 0.217093957 0.555588221 0.653211544 1.747380752

3.4

4.1 0.282038825 0.18956092 0.847698808 0.634948886 1.954247439

4.2 0.417517804 0.327937815 0.825446265 0.918649501 2.489551385

4.3 0.290179778 0.18956092 0.593350799 0.922012809 1.995104305

4.4 0.282038825 0.338394375 0.672706923 0.649517922 1.942658046

4.5 0.376028686 0.217093957 0.915744775 0.837489699 2.346357117

2.2

3.1

4.1 0.184438204 0.584568514 0.495809203 0.42247593 1.687291851

4.2 0.319917183 0.572430867 0.540442554 0.622547896 2.055338499

4.3 0.192579156 0.534552509 0.495809203 0.913871856 2.136812724

4.4 0.184438204 0.733401969 0.71334812 0.829575767 2.46076406

4.5 0.278428065 0.612101551 0.56385517 0.625016743 2.079401529

3.2

4.1 0.184438204 0.435735058 0.495809203 0.61203685 1.728019315

4.2 0.319917183 0.423597411 0.458987625 0.730653887 1.933156106

4.3 0.192579156 0.385719053 0.306248283 0.913871856 1.798418349

4.4 0.184438204 0.584568514 0.306248283 0.61203685 1.687291851

4.5 0.278428065 0.463268095 0.549286134 0.800008627 2.090990922

3.3

4.1 0.270915959 0.391259487 0.651247818 0.658851867 1.972275131

4.2 0.406394938 0.37912184 0.495809203 0.658851867 1.940177848

4.3 0.279056912 0.341243482 0.414871881 0.913871856 1.949044131

4.4 0.270915959 0.540092942 0.461686898 0.658851867 1.931547666

4.5 0.364905821 0.418792524 0.561128655 0.703227549 2.048054549

3.4

4.1 0.325457616 0.501146453 0.963126208 0.684964891 2.474695168

4.2 0.460936596 0.489008806 0.940873665 0.818150964 2.708970031

4.3 0.333598569 0.451130448 0.708778199 0.922012809 2.415520024

4.4 0.325457616 0.649979909 0.788134323 0.699533927 2.463105776

4.5 0.419447478 0.52867949 1.031172175 0.887505704 2.866804847

2.3

3.1

4.1 0.141019413 0.824960442 0.593919485 0.487980404 2.047879743

4.2 0.276498392 0.812822795 0.638552836 0.688052369 2.415926391

4.3 0.149160365 0.709439963 0.593919485 0.913871856 2.366391669

4.4 0.141019413 0.973793897 0.811458402 0.89508024 2.821351952

4.5 0.235009274 0.852493479 0.661965452 0.690521216 2.439989421

3.2

4.1 0.141019413 0.622650055 0.540442554 0.677541323 1.981653344

4.2 0.276498392 0.610512408 0.503620976 0.79615836 2.186790136

Continued on next page
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cost1 cost2 cost3 cost4 cost total

4.3 0.149160365 0.507129576 0.350881634 0.913871856 1.921043431

4.4 0.141019413 0.77148351 0.350881634 0.677541323 1.94092588

4.5 0.235009274 0.650183092 0.593919485 0.8655131 2.344624951

3.3

4.1 0.227497168 0.584771697 0.702478382 0.72435634 2.239103587

4.2 0.362976147 0.57263405 0.547039767 0.72435634 2.207006304

4.3 0.23563812 0.469251219 0.466102445 0.913871856 2.08486364

4.4 0.227497168 0.733605153 0.512917462 0.72435634 2.198376123

4.5 0.321487029 0.612304734 0.612359219 0.768732023 2.314883005

3.4

4.1 0.282038825 0.684203238 1.003901346 0.750469365 2.720612774

4.2 0.417517804 0.672065591 0.981648804 0.883655438 2.954887636

4.3 0.290179778 0.568682759 0.749553337 0.922012809 2.530428683

4.4 0.282038825 0.833036693 0.828909462 0.765038401 2.709023381

4.5 0.376028686 0.711736275 1.071947313 0.953010177 3.112722452

1.2

2.1

3.1

4.1 0.705926822 0.37912184 0.296959743 0.535862417 1.917870821

4.2 0.708219729 0.517498734 0.341593093 0.753262851 2.320574407

4.3 0.542524331 0.37912184 0.296959743 0.905730904 2.124336817

4.4 0.691357787 0.527955295 0.514498659 0.928393218 2.662204959

4.5 0.597375871 0.406654877 0.36500571 0.535862417 1.904898874

3.2

4.1 0.773972789 0.419849304 0.554566629 0.725423336 2.473812059

4.2 0.776265696 0.558226199 0.517745052 0.861368842 2.713605788

4.3 0.610570298 0.419849304 0.36500571 0.905730904 2.301156215

4.4 0.759403754 0.568682759 0.36500571 0.710854301 2.403946523

4.5 0.665421838 0.447382341 0.608043561 0.710854301 2.43170204

3.3

4.1 0.842010811 0.37912184 0.695313617 0.772238353 2.688684621

4.2 0.844303717 0.517498734 0.539875003 0.789566822 2.691244276

4.3 0.678608319 0.37912184 0.458937681 0.905730904 2.422398743

4.4 0.827441775 0.527955295 0.505752698 0.757669318 2.618819085

4.5 0.733459859 0.406654877 0.605194454 0.614073223 2.359382414

3.4

4.1 0.75935835 0.37912184 0.760110922 0.798351378 2.696942489

4.2 0.761651256 0.517498734 0.73785838 0.94886592 2.96587429

4.3 0.595955858 0.37912184 0.505762914 0.913871856 2.394712467

4.4 0.744789314 0.527955295 0.585119038 0.798351378 2.656215025

4.5 0.650807398 0.406654877 0.828156889 0.798351378 2.683970542

Continued on next page
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cost1 cost2 cost3 cost4 cost total

2.2

3.1

4.1 0.516365902 0.541149722 0.495809203 0.585878422 2.139203249

4.2 0.518658809 0.529012075 0.540442554 0.652764314 2.240877752

4.3 0.352963411 0.491133717 0.495809203 0.905730904 2.245637235

4.4 0.501796867 0.689983178 0.71334812 0.978409223 2.883537387

4.5 0.407814951 0.568682759 0.56385517 0.585878422 2.126231302

3.2

4.1 0.58441187 0.392316267 0.56385517 0.775439341 2.316022648

4.2 0.586704776 0.38017862 0.527033592 0.760870306 2.254787293

4.3 0.421009378 0.342300262 0.37429425 0.905730904 2.043334794

4.4 0.569842834 0.541149722 0.37429425 0.760870306 2.246157112

4.5 0.475860918 0.419849304 0.617332101 0.760870306 2.273912629

3.3

4.1 0.652449891 0.347840695 0.700854051 0.822254358 2.523398995

4.2 0.654742797 0.335703048 0.545415436 0.689068286 2.224929567

4.3 0.4890474 0.29782469 0.464478114 0.905730904 2.157081108

4.4 0.637880855 0.496674151 0.511293131 0.807685322 2.453533459

4.5 0.54389894 0.375373732 0.610734888 0.664089228 2.194096788

3.4

4.1 0.56979743 0.457727662 0.875538322 0.848367383 2.751430796

4.2 0.572090336 0.445590015 0.85328578 0.848367383 2.719333513

4.3 0.406394938 0.407711657 0.621190314 0.913871856 2.349168765

4.4 0.555228394 0.606561117 0.700546438 0.848367383 2.710703332

4.5 0.461246478 0.485260699 0.943584289 0.848367383 2.738458849

2.3

3.1

4.1 0.516365902 0.824960442 0.593919485 0.651382895 2.586628724

4.2 0.518658809 0.812822795 0.638552836 0.718268788 2.688303227

4.3 0.352963411 0.709439963 0.593919485 0.905730904 2.562053763

4.4 0.501796867 0.973793897 0.811458402 1.043913696 3.330962862

4.5 0.407814951 0.852493479 0.661965452 0.651382895 2.573656777

3.2

4.1 0.58441187 0.622650055 0.608488521 0.840943815 2.65649426

4.2 0.586704776 0.610512408 0.571666943 0.826374779 2.595258905

4.3 0.421009378 0.507129576 0.418927601 0.905730904 2.252797459

4.4 0.569842834 0.77148351 0.418927601 0.826374779 2.586628724

4.5 0.475860918 0.650183092 0.661965452 0.826374779 2.614384241

3.3

4.1 0.652449891 0.584771697 0.752084615 0.887758832 2.877065035

4.2 0.654742797 0.57263405 0.596646 0.754572759 2.578595606

4.3 0.4890474 0.469251219 0.515708678 0.905730904 2.3797382

Continued on next page
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cost1 cost2 cost3 cost4 cost total

4.4 0.637880855 0.733605153 0.562523695 0.873189796 2.807199499

4.5 0.54389894 0.612304734 0.661965452 0.729593702 2.547762827

3.4

4.1 0.56979743 0.684203238 0.916313461 0.913871856 3.084185984

4.2 0.572090336 0.672065591 0.894060919 0.913871856 3.052088702

4.3 0.406394938 0.568682759 0.661965452 0.913871856 2.550915006

4.4 0.555228394 0.833036693 0.741321577 0.913871856 3.04345852

4.5 0.461246478 0.711736275 0.984359428 0.913871856 3.071214037

Table C.1: Costs data of the game yielding the SPoA of 2.550915006
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