

	
	
	
	
	
	

	
	

	
	

	
	
	
	
	
	
	

	
	

	
	

	
	

	

	

	

	

	

	

	

	
A Human Robot Interaction Toolkit with

Heterogeneous Multilevel Multimodal Mixing

B. (Bob) van de Vijver

 MSc Report

C e
Prof.dr.ir. S. Stramigioli

Dr.ir. E.C. Dertien
Dr.ir. D. Reidsma

Dr.ir. J.F. Broenink
D.P. Davison, MSc

August 2016
	

035RAM2016
Robotics and Mechatronics

EE-Math-CS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands	

ii A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

B. van de Vijver University of Twente

iii

Summary

In the modern world robots are being used more and more for everyday tasks, but mostly they
are being used for industrial purposes. A relatively new application field is autonomous con-
versation, which requires robots to have social interaction with humans. For social interaction
it is important to have fluent and lifelike robot behavior, without the need of explicit constant
control. This requires us to no longer see the robot as a puppet, that always needs its puppeteer,
but to see it as an actor, which has a director thats asks for certain behavior.

The aim of this Master project was to create software that is capable to mix several (external)
behavior requests (which for example can come from a director) into viable robot movements.
The resulting behavior needs to be fluent and lifelike in order to create good social interaction,
but it also needs to be without dead time. The robot should not depend on the external con-
troller and therefore it is also in need of autonomous behavior, which is also capable of over-
writing the behavior requests. This way, the robot can for instance be startled by something it
sees while he is in conversation with someone.

To achieve this goal, Heterogeneous Multilevel Multimodal Mixing (HMMM) is introduced,
which mixes the (external) behavior requests into the required viable behavior. HMMM also
processes the required autonomous behavior, combining/overwriting it with the external re-
quests when necessary.

The external requests during this project come from AsapRealizer, which is a behavior realizer
from the Human Media Interaction (HMI) research chair. A behavior realizer plans the beha-
vior during the interaction: it decides on what to tell, what movements should be made and
most importantly when they should be made. AsapRealizer acts as the director for the robot
hardware.

A robot and a human robot interaction toolkit from within the Robotics and Mechatronics
(RaM) research chair are being used as starting point. The toolkit already allows a puppeteer
to fully control the robot, but it has no autonomous behavior with the exception of breathing
movements and eye blinks. HMMM is added to the toolkit and both the robot and toolkit are
improved. Motion detection is added to be a source for the autonomous behavior.

The result is a re-usable human robot interaction toolkit which has the capability to accept
behavior requests from other software, resulting in fluent and lifelike behavior. It does not
need constant control and it can autonomously break any requested behavior when necessary.
The resulting robot seems to have an positive effect on others and it can be used for social
interaction with humans.

A few recommendations are made to further enhance the possibilities of the human robot
interaction toolkit. With recommendations ranging from extra features to HMMM improve-
ments, there should be enough content for a subsequent project.

Robotics and Mechatronics B. van de Vijver

iv A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

Samenvatting

In de moderne wereld worden robots steeds meer gebruikt voor alledaagse taken, al worden
ze het meest gebruikt voor industriÃńle toepassingen. Een relatief nieuw toepassingsgebied
is autonome conversaties, waarbij de robots sociale interactie met mensen moeten aangaan.
Voor sociale interactie is het belangrijk om vloeiend en levensecht gedrag te vertonen, zonder
dat de robot constant bestuurd wordt. Hiervoor is het noodzakelijk dat de robot niet langer als
een pop gezien wordt (die altijd zijn poppenspeler nodig heeft om te functioneren) maar als
een acteur waarbij een regisseur vraagt om bepaald gedrag.

Het doel van dit Masterproject is om software te ontwikkelen die verschillende (externe) ver-
zoeken (van bijvoorbeeld een regisseur) voor bepaald gedrag met elkaar mixt om zo correcte
gedrag op te leveren. Het resulterende gedrag moet vloeiend en levensecht zijn om goede so-
ciale interactie en het moet nooit zijn dat de robot stil staat. De robot mag dus niet afhankelijk
zijn van de externe aansturing waardoor autonoom gedrag ook benodigd is, die ook de huidige
verzoeken moet kunnen overschrijven. Op die manier kan de robot bijvoorbeeld schrikken
door iets wat hij ziet terwijl hij met een conversatie bezig is.

Om het doel te bereiken wordt Heterogeneous Multilevel Multimodal Mixing (HMMM) geïn-
troduceerd, wat de (externe) gedragsverzoeken gaat mixen naar het vereiste correcte gedrag.
HMMM behandeld ook het benodigde autonome gedrag door het te combineren met de ex-
terne verzoeken indien nodig. De externe verzoeken komen tijdens dit project van AsapReali-
zer, een gedragsplanner van de Human Media Interaction (HMI) vakgroep. Een gedragsplanner
plant het gedrag gedurende de interactie: het besluit wat er wanneer gedaan moet worden. Fei-
telijk is AsapRealizer de regisseur van de robot.

Een al bestaande robot en mens-robot-interactie toolkit van de Robotics and Mechatronics
(RaM) vakgroep wordt gebruikt als basis. The toolkit maakt het al mogelijk om de robot als
pop te bedienen, maar het mist nog het benodigde autonome gedrag (met uitzondering van
adembewegingen en oogknipperen). HMMM wordt geÃŕntegreerd in de toolkit en zowel de
robot als de toolkit worden verbeterd. Bewegingsdetectie wordt ook toegevoegd om als bron
voor het autonome gedrag te dienen.

Het resultaat is een mens-robot-interactie toolkit die de mogelijkheid heeft om gedragsverzoe-
ken van andere software te verwerken, met als resultaat vloeiend en levensecht gedrag. Het
werkt zonder constante bediening en het kan autonoom het gevraagde gedrag onderbreken als
dat nodig is. De uiteindelijke robot lijkt een positief effect op anderen te hebben en hij kan
uitstekend gebruikt worden voor sociale interactie.

Aan het eind worden er nog een paar aanbevelingen gedaan om de functionaliteit van de toolkit
te verbeteren. Met aanbevelingen die gemaakt worden zou er genoeg materiaal moeten zijn
om een vervolgproject te kunnen vullen, waarbij gekeken kan worden naar verbeteringen in
HMMM tot het toevoegen van nieuwe features.

B. van de Vijver University of Twente

v

Contents

1 Introduction 1

1.1 Context . 1

1.2 Setup . 1

1.3 Main goal . 2

1.4 Approach . 3

1.5 Report outline . 4

2 Analysis 5

2.1 Using robots for social interaction . 6

2.1.1 Control on multiple abstraction levels simultaneously 6

2.1.2 Literature on social interaction . 7

2.1.3 Behavior classification . 7

2.2 Related work . 7

2.2.1 Social robots . 7

2.2.2 Available toolkit . 8

2.3 Subsumption architecture . 9

2.3.1 Sub-behaviors . 9

2.3.2 Strength and weaknesses . 10

2.4 End-effector control . 10

2.5 AsapRealizer . 10

2.5.1 A complete system . 11

2.5.2 Communication . 11

2.5.3 Concluding . 12

2.6 Saliency . 12

2.7 Requirements . 13

2.7.1 Control design and software . 13

2.7.2 Hardware . 14

2.8 Concluding . 14

3 Design 15

3.1 Control design (HMMM) . 15

3.1.1 Emotion mixing . 15

3.1.2 Gaze mixing . 16

3.1.3 Sequence mixing . 17

3.1.4 Animator . 20

3.1.5 External communication . 21

Robotics and Mechatronics B. van de Vijver

vi A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

3.1.6 Parameters . 22

3.2 Software . 22

3.2.1 Existing functionality . 22

3.2.2 Saccade movements . 23

3.2.3 System resource usage . 23

3.2.4 Saliency detection . 24

3.2.5 Save shutdown . 25

3.3 Hardware . 25

3.3.1 Processing unit . 25

3.3.2 Camera location . 26

3.3.3 Display driver . 26

3.3.4 Power supply . 26

3.3.5 Casing . 26

3.3.6 Portability . 27

3.3.7 MIDI controller . 28

3.4 Final system . 28

4 Results 29

4.1 Control design (HMMM) . 29

4.1.1 Gaze mixing . 29

4.1.2 Validation of HMMM . 29

4.2 Software . 31

4.2.1 Performance . 31

4.2.2 Saliency detection . 32

4.3 Hardware . 32

4.3.1 Portability . 33

4.3.2 Cameras . 33

4.3.3 Evaluating the hardware changes . 34

4.4 Final system . 34

5 Conclusion and recommendations 35

5.1 Conclusion . 35

5.1.1 Control design and software . 35

5.1.2 Hardware . 35

5.1.3 Research questions . 36

5.1.4 General notes . 36

5.2 Recommendations . 37

A Demonstration instructions 38

A.1 Manual control . 38

B. van de Vijver University of Twente

CONTENTS vii

A.2 Demonstration mode . 38

A.3 Autonomous mode . 38

B EASEL architecture 39

C External communication 40

C.1 Communication basics . 40

C.2 Saliency . 40

C.3 Emotion . 41

C.4 Sequence . 42

C.5 Feedback . 43

C.5.1 Gaze feedback . 43

C.5.2 Prediction feedback . 44

C.5.3 Planning and progress (general) feedback 44

D Bill of materials 45

Bibliography 46

Robotics and Mechatronics B. van de Vijver

viii A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

B. van de Vijver University of Twente

1

1 Introduction

1.1 Context

In the modern world robots are being used more and more to support humans with legions of
different tasks, such as production but also dangerous maintenance. Next to the already com-
mon tasks, a relatively new application field where robots are being deployed is autonomous
conversations with humans. For example, chatbots are used to answer simple questions from
webshop visitors without the need of human interaction. However, such chatbots can usually
only communicate with text, making it hard to create a positive social interaction.

More interesting are physical robots that can directly interact with their environment and are
able to communicate with anyone that needs attention. An example of such an application
could be a receptionist, that can help visitors with finding the correct office or that can make
appointments whenever the requested person is not available. For such a robot it is important
that the interaction is fluent and lifelike: this improves the overall (conversational) experience.
It should also not be focusing only on the given tasks: when something more important hap-
pens, which is not related to the actual conversation, it will need to acknowledge it.

To create a fluent and lifelike interaction it is important to have a robot that has some form
of autonomous behavior. Most robots are controlled as a puppet; whenever their puppeteer
is not present, they are unable to do anything and appear to be lifeless. If a robot is no longer
seen as a puppet that needs constant control, but as an actor instead (where a director takes the
place of the puppeteer), the robot will always be able to do something. It will try to act to the
commands from the director, but it will interpret them and combine it with its own behavior.

This research focuses on software that can be used to create a fluent and lifelike social robot,
that will function autonomously. Many work has already been done to create social robots,
but there is currently no easy and reusable software that can be applied for the described goal.
Our research chair already has an reusable software toolkit (Oosterkamp, 2015), but it does
not contain the functionality to create the social interaction as described. Even though it is
currently only used to puppeteer a robot, it can be extended to make the robot behave like an
actor, where the director will be positioned outside of the robot.

The robot director is called a behavior realizer, which will analyze the scene and request actions
accordingly. It decides on the social required interaction steps (the conversational partner and
the dialog) and will instruct the actor as such. The actor will try the fulfill the requests, but
when there is something in need of attention, it will take the focus instead.

1.2 Setup

Figure 1.1: The small, iconic small robot from earlier work (Watanabe et al., 2013)

Robotics and Mechatronics B. van de Vijver

2 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

An earlier project exploring the notion of ‘anti-social’ robot behavior (shown at the HRI 2013
(Watanabe et al., 2013)) yielded a minimalistic, abstract and mostly iconic small robot, of which
a picture is printed in Figure 1.1. Although it is basically not much more than a neck with
two eyes, the design proved capable of successfully conveying multiple emotions onto human
subjects. It has been the basis for a subsequent MSc project (Oosterkamp, 2015) using the
design as a basis for a toolkit for human robot interaction. The toolkit provides a direct control
interface for a puppeteer (see Section 2.2.2 for a more in depth description of the toolkit.)

Figure 1.2: The MIDI-panel used to control the robot (Oosterkamp, 2015)

The basic controls of the robot are based on commands sent with a MIDI panel such as pic-
tured in Figure 1.2. There are multiple presets and modes available, among which triggering
prebuilt animatronic sequences, direct joint control, animations of the LED screen that shows
the expressive eyes, and emotion control via 2D arousal and valence space (Figure 1.3). There
is some autonomous behavior present, namely a constant breathing motion and eye blinking,
being executed without command of the puppeteer.

Figure 1.3: Arousal and valence to robot emotion mapping

1.3 Main goal

The main goal of this project is to transform the role that the robot fulfills in social interaction
from puppet to actor. To achieve this, autonomous behavior needs to be mixed with requests
from other software (that is acting as the director), allowing fluent and lifelike behavior without
any dead time (time in which the robot does not move at all). Next to to this the software should
be capable of identifying important events such that it can break the requested behavior to fo-
cus on that. The mixing of the control requests and the autonomous behavior needs to be done

B. van de Vijver University of Twente

CHAPTER 1. INTRODUCTION 3

for several control types (multimodal) and on multiple levels (multilevel), resulting in Hetero-
geneous Multilevel Multimodal Mixing (HMMM). Models and algorithms need to be developed
together with mechanisms to determine the desirable level of integration for the different types
of control, which will all be added to the existing toolkit for human robot interaction.

The existing toolkit already adds breathing motions and blinking actions to the controllable
movements and allows these actions to be fluently mixed with the direct joint controls via the
manual MIDI-controller. For example, if the user turns the robot via a slider, this is not over-
writing the breathing motion, but the motions are combined instead. However, the toolkit does
not offer these ‘mixing’ functionality when controlled with high level commands for deliberat-
ive behavior.

In order to have multiple inputs available for mixing, it is needed to have a high level com-
munication interface that can be used by external software (the director) in order to send its
requests to the robot. In Figure 1.4 the required structure is given. The current toolkit only
allows the direct control path; HMMM will add the autonomous behavior and external con-
trol through it by mixing them into direct control. Even though the control needs to be self-
contained, it will need parameters with which the operation can be tuned.

The external software will be a behavior realizer, that takes the director role in the social inter-
action. Even though the goal is to design an interface that can be reused, during this project
the external software will be AsapRealizer. This behavior realizer is a project from the Human
Media Interaction (HMI) research chair from the University of Twente, that collaborates with
this project.

Processing

Direct control

External

software

HMMMExternal access

Autonomous

behavior

Figure 1.4: A schematic overview of the system goal

The second goal is to update the existing robot hardware in order to improve its portability
and design. The current design has a lot of mass positioned in the moving head, requiring a
heavy base. As the main processing board is positioned in the moving head, the MIDI control
panel needs to be connected there, requiring multiple cables to the moving head. The hardware
changes should not negatively impact the look-and-feel of the robot, while the total hardware
costs should be similar.

Finally, the possibilities of end-effector control for social robots will be considered. Currently
robots are controlled using joint-space, but end-effector control might be beneficial.

1.4 Approach

This project focuses on two main aspects: Additional software functionality that implements
HMMM and hardware improvements to enhance the portability and looks. For HMMM models
and algorithms are developed in collaboration with the HMI research chair, of which the results
are implemented and added to the existing human robot interaction toolkit. Concurrently the
robot hardware will be updated in order to improve the portability. The existing software will
also be updated by identifying problematic structures and improving the general performance.

Robotics and Mechatronics B. van de Vijver

4 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

To order to validate the work done during the project an international workshop, the eNTER-
FACE’16, will be attended. During a timespan of 4 weeks AsapRealizer will be linked to two
different robotic platforms: the robot from this project and the Zeno (Robokind Robots, 2016),
which is an humanoid robot. Both robots will receive the same behavior requests from Asap-
realizer (tailored for their platform), where the robot with HMMM should move more fluent
and more lifelike. It should add different autonomous actions such as eye blinking and breath-
ing movements, but it should also be capable of identifying and focusing important events
outside of the conversational scope. When the robot from this project is compared with the
Zeno, the Zeno will have dead time (during which the robot does not move at all) as it lacks any
autonomous behavior.

1.5 Report outline

This report starts with the analysis of several key-objects related to the topic in Chapter 2. First
the research questions will be defined, after which the definition of social interaction will be
clarified with the use of abstraction levels en behavior classification. Next, work related to the
subject will be mentioned, and some more information about the behavioral realizer (Asap-
Realizer) will be given. The subsumption architecture and saliency will be discussed and the
chapter will close with a complete overview of the actual requirements based on the analysis.

In Chapter 3, the new design will be discussed, with as subjects control, software and hardware.
The complete system will be reviewed in the end of the chapter, which is the actual delivered
end-product.

The next chapter (Chapter 4) will focus on the results accomplished with the end-product as
described in the chapter before. The control, software and hardware parts will be compared
with the old versions, and the communication with external software will be evaluated.

In the final chapter, Chapter 5, the final conclusion will be given and some recommendations
for future work will be devised.

B. van de Vijver University of Twente

5

2 Analysis

As introduced in Section 1.1 this project aims to create a robot which can be used for social
interaction, that is fluent and lifelike. In order to achieve this goal HMMM will be created. With
HMMM (external) requests from, for example, a behavioral realizer such s AsapRealizer, will be
mixed with autonomous behavior. The autonomous behavior is also present when there are
no other requests, ensuring that the robot does not have any dead time, but it can also use it to
interrupt the requested behavior.

For this project a couple of research questions are formulated which will be used to construct
the project requirements. The main research part of the project is related to control design,
specifically the heterogeneous multilevel multimodal mixing (HMMM) of all available input
signals. The questions are as follows:

1. What are the direct controls that need to be exposed to a behavior realizer?
To be able to control the hardware from a behavior realizer, a certain set of controls must
be available.

2. What are the operation parameters that need to be configurable?
With the controls it should also be possible to adjust a certain set of parameters in order
to tune the mixing operation.

3. What is the most suitable communication schedule for the communication between the
robot hardware and the behavior realizer?
A suitable communication schedule for the behavior realizer and the robot hardware is a
must-have.

4. Will the behavior/executed actions be more fluent when the mixing is done on the robot
hardware?
When the mixing of the input signals (behavior) is done on the robot hardware, the res-
ulting behavior should be more fluent and more lifelike as there is less need for commu-
nication between the different systems.

It is expected that with the answers of the first three questions the basis for HMMM commu-
nication is known. However, the real main goal of the project is the implementation of HMMM,
which yields the following research question:

5. How can different control inputs be mixed and what are the implications of the mixing on
the different control levels?
Although the mixing of (external) input signals sounds trivial, it must be decided how the
actual mixing behavior will be, which depends on the used controls. When HMMM is
used, there might be implications of the current control levels: is everything as available
as before, or are there any concessions to be made?

Currently the robot is controlled using joint space control, however there might be other con-
trol options that are more suitable. This creates the following extra question:

6. Is end-effector control more convenient than joint-space control in relation to HMMM?
Currently joint-space control is used in the available toolkit. It might be easier to use
end-effector control as for that type of control basically only the point to go to needs to
be communicated, while the joint positions can easily be calculated. This might be more
cumbersome when using joint-space control.

Robotics and Mechatronics B. van de Vijver

6 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

A global overview of the mixing is given in Figure 2.1. The rest of this chapter will analyze related
work and existing applications that are used during the definition of the project requirements
in Section 2.7.

Original robot
control

(autonomous)

Robot
behavior

External
application

control

Figure 2.1: The system should mix the external application control with the autonomous controls

2.1 Using robots for social interaction

A robot that is designed to be used in social conversational context can use its hardware to
realize multiple behavioral levels. These levels, or behaviors, can be classified into four groups:

• Autonomous
Such as idle motions and breathing.

• Semi-autonomous
Such as motions required to keep the gaze focused on a certain target.

• Reactive
Such as reflex responses to visual input.

• Deliberate
Such as speech or head gestures that make up the utterances of the conversation.

Part of the expressions (and especially the deliberate ones) will be triggered by requests from,
for example, a dialog manager. A dialog manager for social dialogs typically orchestrates the
progress of the social conversation between human and robot, and - based on this progress -
requests certain deliberate behaviors to be executed and certain changes to have to be made to
parameters of the autonomous behavior of the robot. Such requests are typically specified us-
ing a high level behavior script language such as the Behavior Markup Language (BML), which
is agnostic of the details of the robot platform and its controls and capabilities for autonom-
ous behaviors. The BML scripts are then communicated to the robot platform by a Behavior
Realizer (e.g., AsapRealizer (van Welbergen et al., 2012)), which interprets them in terms of the
available controls.

2.1.1 Control on multiple abstraction levels simultaneously

The multiple levels that need to controlled simultaneously are a challenge for the toolkit for hu-
man robot interaction and especially for the multiple input mixing extension. While the toolkit
can take care of the autonomous and reactive behavior patterns, executed automatically, ex-
ternal inputs for deliberate behavior by a behavior realizer must be accepted and handled as
well. The external input might also adjust the parameters for the autonomous/reactive beha-
vior on the fly to adopt them more for the current dialog state.

B. van de Vijver University of Twente

CHAPTER 2. ANALYSIS 7

However, there will be a case that the requested deliberative behavior actually conflicts with
the (semi-)autonomous behavior, since the dialog manager does not know the exact current
state of the robot and its (semi-)autonomous behaviors. To solve this problem the toolkit for
human robot interaction should contain intelligence to prioritize, balance and mix the several,
multilevel requests in order to create correct robot control, as the inputs can not be translated
directly.

2.1.2 Literature on social interaction

Social interaction for embodied conversational agents (virtual or robotic) is a topic in which a
lot of research has been done. Therefore a lot of that research can be used during the devel-
opment of the input prioritization, balancing and finally, the mixing. A research project from
within the university (Gennep, 2013) is used as reference guide for gazing behavior. This guide
also references an older paper from within the same group (Heylen, 2006), which discusses the
principles of conversational structure. There is also an architecture named EASEL (Expressive
Agents for Symbiotic Education and Learning) (University of Twente, 2015) available which de-
scribes a symbiotic education and learning architecture: it contains all the needed components
for social interaction, although based in education.

2.1.3 Behavior classification

For this project the final behavior was split into three levels from the defined behaviors in Sec-
tion 2.1, namely (semi-)autonomous, deliberate and reactive. The two autonomous behavioral
levels are combined to a single level, as they will be handled likewise.

(Semi-)autonomous

The autonomous domain must be implemented within the robot itself, such that the external
control can focus on the deliberate behavior. This also means that there will be no direct con-
trols available for the external controller: only the parameters of the (semi-)autonomous do-
main can be adjusted on request, but the adjustments will be processed directly.

Deliberate

The deliberate domain is reserved for the external controller. This can be a dialog system with
AsapRealizer, but the MIDI-controller will also be considered as an external control. However,
this deliberate behavior must be mixed with the other behaviors: that is exactly the goal and
exactly what the HMMM must do.

Reactive

The reactive domain can be considered a special case: even though the given example in Sec-
tion 2.1 describes a reflex action, the actual control can be implemented on the robot hardware
or the external controller, depending on multiple factors such as the available hardware and
processing. However, the exact location of the control does not matter, as it still needs to be
mixed with the autonomous behavior. It does matter for the type of communication: when it is
implemented externally it will be processed as direct control. When implemented on the robot,
it is only possible to change the parameters.

2.2 Related work

2.2.1 Social robots

A book published by MIT (Breazeal, 2002) already presents a vision of the social robots of the
future, which mainly describes that robots will socially intelligent in a human like way. It also
gives details about a specific robot named Kismet (pictured in Figure 2.2a), which incorporates

Robotics and Mechatronics B. van de Vijver

8 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

insights from the scientific study of animals and people. However note that Kismet had already
been build in the late 1990s and can be considered one of the first concepts of a social robot.

Another publication in the field of social robot is about the robot Ono (pictured in Figure 2.2b),
which is low-cost open source social robot (Vandevelde, 2014). The robot hardware is again
simple and should be easy to do-it-yourself, but it’s face is more complicated as it has a total of
8 degrees of freedom (DOF) for only the facial expression. It also does not have the possibility
to move it’s head, which makes it rather static.

(a) Kismet (Breazeal and Scassellati, 1999) (b) Ono (Vandevelde, 2014)

Figure 2.2: Two examples of other social robots

The difference between the two robots is easy noticeable. Where Kismet is clearly build to
demonstrate the functionality of movement of in eyes, eyebrows, ears and mouth in relation to
social interaction, the Ono (build later) is more meant to be directly socially attractable, which
is mostly the result of the resemblance with a stuffed animal, something the Kismet is missing.

However, the movement the Ono can make is limited to its mouth, upper eyelids and eyebrows.
It can create facial expressions but there is no body movement to support the emotion. The
Kismet however can move it’s head and even it’s eye’s while it has also the ability to actuate
the lips, ears and eyebrows. Therefor should the Kismet be able to create more convincing
emotions.

The hardware used in this project has combined a simplistic design while retaining as much as
possible features. Although it is missing a mouth and ears that can be used to amplify emotions,
the flexible display and multiple degrees of freedom in the neck joint create enough possibilit-
ies to convey emotions successfully.

2.2.2 Available toolkit

The current, available toolkit that has been developed, consist primarily out of a number of
software components for input (midi, camera, Behavioral Markup Language), output (servo
motors, serial communication), playback and control of animation sequences, a 3D visualizer
containing the kinematic model of the robot, etc. These components have been implemen-
ted in Robot Operating System (ROS) and are lean enough to be run on a Raspberry Pi 2. The
screen is controlled by its own (small Arduino) microcontroller which renders built-in anima-
tions based on parameters from the ROS controller. The motors that are used are RS485 bus
controlled Dynamixel servos. The primary goal of this toolkit is to provide a robot developer
with a well-chosen set of building blocks (software and hardware) to equip (existing) robot plat-
forms with capabilities for social interaction.

B. van de Vijver University of Twente

CHAPTER 2. ANALYSIS 9

2.3 Subsumption architecture

The subsumption architecture is a layered control structure (proposed by Brooks (1986)) where
the higher level layers subsume the roles of the lower level when they wish to take control. It
was proposed in opposition to traditional symbolic artificial intelligence: instead of guiding
behavior by symbolic mental representations of the world, it combines sensory information to
action selection in a bottom-up manner. Every layer is unaware of the layers that resides above
it even though those can interfere with its data path. The basic structure can be observed in
Figure 2.3.

Figure 2.3: The subsumption architecture as defined by Brooks (1986)

2.3.1 Sub-behaviors

To make the architecture work, the complete behavior is divided into sub-behaviors which
form the aforementioned layers. Each sub-behavior has his own level of behavioral compet-
ence and higher sub-behaviors subsume the lower sub-behaviors in order to create viable be-
havior. As a simple example an exploring robot can be used; three sub-behaviors can be com-
posed. The lowest behavior could be ‘avoid objects’, the second layer ‘wander around’ and
the last layer ‘explore world’, as printed in Figure 2.4. To wander around effectively, the robot
should avoid objects, and with the subsumption architecture the higher level utilizes the lower
level competences. All layers receive sensory information, execute parallel and generate separ-
ate output which can be directed to actuators or other layers to suppress or inhibit them.

Figure 2.4: An simple example of the subsumption architecture with the different layers filled with sub-
behaviors

Robotics and Mechatronics B. van de Vijver

10 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

2.3.2 Strength and weaknesses

Although the subsumption architecture has several strengths (such as parallelism, incremental
design and generality), it also has a few significant drawbacks. To design the architecture (such
as decomposing the layers and choosing the suppress and inhibit signal) takes a lot of work and
expertise in the subject. Furthermore, when the decomposition is done, the result is inflexible
during runtime; it is usually specifically targeted for a single goal (Granot, 2008).

Although the subsumption architecture is proposed to mix several sub-behaviors in order to
create viable behavior, it is not sufficient to be used for the goal of this project. As it is desired to
mix several different (external) control signals into embodiment actions, there will be the need
of a more complex system which can be configured dynamically. More important, as external
control signals will be supported, it is not trivial to classify them into specific layers inside the
subsumption architecture. Finally, the (external) control signals from a single source might
be impossible to be placed in a separate sub-behavior, as they might be classified as multiple
different layers of behavior.

2.4 End-effector control

As stated earlier, the toolkit currently uses joint-space control for every joint. This means that
every joint position is calculated manually: every actuator angle needs to be known in order to
steer the robot. For example, if the head needs to move to the left, it must be decided which
joint is the most convenient to use and then its angle must be updated. It might be more con-
venient to use end-effector control (as formulated in research question 6).

When end-effector control is being used, the state of the individual joints is no longer that
important: only the orientation of the end-effector in the space is important. By calculating the
transform matrices the joint angles will follow from the requested end-effector orientation: it
might even occur that there are multiple possibilities to reach the requested orientation. In that
case one of the solutions needs to be chosen. Most commonly this will be the option that keeps
the required total angle change (which usually is also the least amount of work) to a minimum.
This simplifies the control at runtime as you only need to specify the orientation, but you will
need to calculate the transform matrices beforehand (which is something that needs to be done
for every different actuator configuration).

Even though end-effector control can be convenient for general robot control, it unfortunately
is not as convenient for social robots as might be expected. Due to the nature of social in-
teraction, not only the position of the end-effector (in this case the display with the eyes) is
relevant. It is important that you can control individual joints to create, for example, a convin-
cing nodding motion by using a specific single joint. When solved with end-effector control it
is unknown which joint is, or even joints are, used.

In conclusion, social robots do not get particular benefits from using end-effector control over
joint-space control. It can even be considered inconvenient to use end-effector control, as it
is no longer possible to create specific joint movements needed for certain social interactions.
This also means that the answer on research question 6 is already known. End-effector control
is not more convenient than joint-space control in relation to HMMM and social interaction.

2.5 AsapRealizer

The original toolkit already has the possibility to connect with AsapRealizer (Oosterkamp,
2015), but it does not support many different commands. There are only three available com-
mands: dance, shake and stop. Nevertheless, the link layer can be reused for the communic-
ation schedule that will be proposed, as it is a standard component. This chapter will discuss
the link layer and the internals of a system using AsapRealizer.

B. van de Vijver University of Twente

CHAPTER 2. ANALYSIS 11

2.5.1 A complete system

When the goal is to build a complete dialog system, only AsapRealizer and an embodiment
(robot or virtual) will not be sufficient. Since AsapRealizer only interprets BML in terms of the
available controls of the embodiment, there is also a need for a producer of those scripts. This
producer is in the need of an intent and behavior planner, which plans the actions and com-
municates with the realizer using the afore mentioned BML scripts. Figure B.1 in Appendix B
contains an global overview example of a complete system which contains all necessary parts
to form a complete dialog system.

The system can be divided into four core groups:

• Perception
The perception group is used to perceive the external world. This can have multiple
forms, like speech or scene recognition. The data is communicated to the next layer.

• Reasoning, memory and interaction management
Based on the information from the perception and the current dialog state (conversa-
tional) actions are planned, which are expressed in BML. The BML scripts are send to the
next layer.

• Behavior generation
The behavior generation (in this case AsapRealizer) interprets the BML scripts from the
interaction management and converts them into the control primitives available at the
embodiment.

• Presentation and motion control
The presentation and motion control uses the motion primitives generated by the beha-
vior generation and processed them into the action action of the embodiment.

Taking the complete system into account, it is clear that the focus of this project is on the com-
munication between the last two groups and the conversion of the primitive controls to actual
actions of the embodiment.

2.5.2 Communication

The EASEL architecture is build around modularity, such that all parts of the system can be
interchanged. Every part can also be run separately and can thus distributed over multiple ma-
chines. To be able to realize such distribution, a central message broker (in this case Apache
Apollo) is required which fulfills the role the coupling server for every separate part. The same
holds for AsapRealizer and the embodiment (in this case ROS): the messages between the two
parts all go though the central server. Due to this communication structure the separate parts
do not need to know the complete system topology but only their own input and output chan-
nel; this simplifies the node configuration. A graphical representation of the communication is
given in Figure 2.5.

The behavior realizer and the embodiment communicate through a message broker using a
body containing a XML-message. The used XML-template is printed in Codeblock 2.1. As
stated earlier, currently only three actions are supported which can be substituted in the
${animationName} variable. Combined with message body are a few headers, indicating
the destination (the ROS channel) and message- and subscription-id (used internally by the
broker).

1 <data>
2 <sequence type="str">${animationName}</sequence>
3 </data>

Codeblock 2.1: A sample XML-message template used for communication

Robotics and Mechatronics B. van de Vijver

12 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

Figure 2.5: A possible communication network when using AsapRealizer: AsapRealizer and the embod-
iment are required for this project, but it can be expanded with any component needed, such as a dialog
manager.

2.5.3 Concluding

To construct a complete dialog system more than only the embodiment and AsapRealizer is
needed. There is also the need for an interaction manager and some sort of perception. The
message templates help to make the communication between the embodiment and AsapReal-
izer as flexible as possible, such that almost anything can be communicated.

2.6 Saliency

The salience of an item is the state of quality by which it stands out relative to its neighbors.
Items can be anything in the current field of sight, such as objects, persons and more. Saliency
typically arises from contrasts between items and their neighborhood: examples can be the
flickering lights in a room or loud sudden noises. In robots saliency is usually focused on the
visual domain, even though others domains are possible, such as the auditory domain. The sa-
liency of a specific item can be influenced by training: this means that for everyone/everything
the saliency map of an environment may differ (Schneider and Shiffrin (1977) & Shiffrin and
Schneider (1977)).

Multiple articles are available about saliency mapping of images and videos. The most challen-
ging part lies within the salience detection of an video with a moving camera. From within the
research chair there is an article available discussing the saliency-base humanoid gaze emu-
lation using a moving camera setup (Reilink, 2008). It uses an existing saliency map algorithm
and adjusts it to work in a moving camera setup. There have been multiple improvements in sa-
liency detection since then, which for example now use manifold learning (Jiang and Crookes,
2012).

An example of a salience map of a still image is given in Figure 2.6. It can be seen that specific
parts of the image are more salient than others: they are more interesting than the other parts
of the image. In Figure 2.7 an algorithm (Reilink, 2008) for creating the salience map and even-
tually the location to attend is given. It is important to note that any mixing of saliency mapping
must be done before the ‘winner-takes-all’ action as that final step decides the point at which
the gaze must be directed. The inhibition of return feedback makes sure that regions which
have been attended to become less salient over time. It also initially enlarges the salience of a
specific area after the first selection to prevent rapid eye-movement as the most salient place
might change quickly over time otherwise.

B. van de Vijver University of Twente

CHAPTER 2. ANALYSIS 13

(a) The still original image (b) The salience map of the still image

Figure 2.6: Saliency detection of a still image (University of Mons - NumediArt Institute - Attention
Group, 2015)

Figure 2.7: Architecture of a saliency model (Reilink, 2008)

2.7 Requirements

Based on the previously formulated research questions and the analysis on the different sub-
jects, it is possible to formulate the project requirements. Note that some of the requirements
are added while they have not been discussed before: however, they are still relevant. The re-
quirements are given in order of importance (per group) and are as follows:

2.7.1 Control design and software

1. External software must be able to control the hardware with exposed high level controls

Robotics and Mechatronics B. van de Vijver

14 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

2. Autonomous behavior needs to be available from within the robot hardware

3. The autonomous behavior needs to be combined with external controls

4. The resulting behavior needs to be fluent and natural (lifelike)

5. The available camera needs to be used for autonomous behavior

6. Operation parameters for the autonomous behavior and mixing need to be adjustable on
runtime when feasible

7. The external control connection should not be tailored to a specific application

8. The software needs to be reusable in other projects

2.7.2 Hardware

9. The portability of the robot needs to be improved

10. Changes made to the hardware may only have a minimal negative impact on the look-
and-feel of the robot

11. The total cost of the robot should remain about the same.

2.8 Concluding

This chapter started with the research questions that are relevant for this project, after which
some work on related fields is discussed. There is currently no easy reusable (software) toolkit
for social interaction between humans and robots that meets the requirements set. However,
the toolkit developed from within the research chair already has a good starting point and it
will be extended with the proposed HMMM. With the basic knowledge of social interaction
and behavior classification, it can also be concluded that the external controls need to be high
level abstractions of the robot. The robot hardware itself should handle the low level controls
and the autonomous behavior. This resulted in the requirements 1, 2, 3 and 6.

Note that the main goal is to create fluent and lifelike behavior, which is important during social
interaction. It is given as an extra requirement here in item 4.

With the end-effector control concluded as infeasible for social robots due to their animation
nature, research question 6 does not lead to any requirements.

With saliency as the most convenient method of controlling the gaze direction due to it’s mixing
capabilities, the onboard camera needs to be used for the autonomous behavior (correspond-
ing to requirement 5). When combined with an external saliency input, it should be able to
create fluent, lifelike behavior.

As the software is still aimed to be an easy reusable toolkit for human-robot interaction, the
software should be easily reusable by every application (hence the requirements 7 and 8). While
the connection with AsapRealizer will be the primary test case, it is convenient that it uses a
message broker which can be easily be reused.

For the hardware it is important that the original look-and-feel will be preserved, while the
overall portability needs to be improved, resulting in the requirements 9 and 10. The final re-
quirement (11) is set to limit the available budget.

B. van de Vijver University of Twente

15

3 Design

This chapter will focus on the design of HMMM, the update of the existing toolkit and the im-
provements of the hardware. The old version of the robot had no specific name and was mostly
referenced as the (anti-)social robot of the RaM research chair. During this project the robot
has gotten a new name: the EyePi. This name will be used in the remaining of this report to
identify the new version of the robot hardware.

3.1 Control design (HMMM)

The robot platform used is relatively simple: it has three degrees of freedom with the neck and a
24x16 led-matrix display forming the eyes. However, the toolkit and more specifically HMMM,
needs to be able to abstract that into simple control primitives that can also be applied on other
robots.

Therefore it is chosen to not give direct control access to the implementation specific hardware,
but to work with globally defined requests, simplifying the external interface. For the interface
three specific types are distinguished:

1. Gaze direction
Instead of controlling the joints relevant to the gaze direction directly, only the gaze dir-
ection can be controlled. The request will not contain an simple setpoint: the request
will contain a saliency map which will be used together with the other available map to
determine the actual gaze direction.

2. Emotion
The displayed emotion on the led-matrix display will be controlled with a abstracted
emotion mapping, based on valence and arousal (see Figure 1.3 in Chapter 1).

3. Predefined sequences
Robot usually have predefined sequences that can easily be reused, such as nodding,
shaking and dancing. It is convenient to have predefined sequences available, as they
are created specifically for the platform in use. Sequence request will support timing.

It is the task of the HMMM-part to integrate multiple external requests into smooth behavior,
combining it with autonomous behavior. Motion(speeds) can depend on the internal para-
meters, which can depend the current emotion state. Detailed schematic overviews of the pro-
posed HMMM-mixing are given in figures 3.1 (gaze), 3.3 (sequence) and 3.4 (emotion). All
figures start with the (external) requests on the left, processing them to the output on the right.

3.1.1 Emotion mixing

The emotion mixing part of HMMM (Figure 3.1) can be considered the simplest mixing part. It
processes input from both external requests and requests from the gaze part (see Section 3.1.2).
The requests are directly mixed and new output values are calculated based on the previous
state and the requested values.

Requests that describe large sudden changes in emotion will be processed instantly: for other
requests the emotion state will gradually change into the requested state. Two outputs for the
animator are generated: motion parameters and the current emotion. The motion parameters
are generated in the emotion mixing part as they are directly related to the current emotion:
For example, a cheerful person has sharper and faster motions than a sleepy person has. Due
to time constraints the connection with the motion parameters has not been implemented.

Robotics and Mechatronics B. van de Vijver

16 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

Multi-Modal Mixing Animator Output

External emotion
request

State
params

Valence
& weight

Arousal
& weight

Predefined emotions such
as angry, happy etc.

Predefined parameters
such as frequency and

smooting

From
gaze

Animator

Motion
parameters

Emotion

Current
emotion

Figure 3.1: HMMM emotion mixing

3.1.2 Gaze mixing

For the gaze mixing part of HMMM (Figure 3.3) two mixing types are used: single-modal and
multi-modal. The single-modal mixing purely processes the incoming saliency maps. Although
all maps have the same data structure, they can be defined as autonomous or deliberate maps,
but that data is not used during the single-modal mixing. All maps are combined into a single
map (keeping their original data intact) and fed into the mixer. The mixer chooses the most
salient point from the map (which is the point with the highest value), but it uses the current
state to update the map first.

Before the selection of the most salient point is done, the mixer computes the difference with
the previous map to find related points. Due to small camera movements, but also movements
of the object self, the centers of the salient points moves from frame to frame. In order to not
see every changed center as a new independent salient point, small changes are detected and
the data from the previous point is combined with the updated data on the new point. This
method prevents the ghosting of the different points when there is a moving body in front of
the camera and it also functions as a smoothing function for the final EyePi movement.

To create a more lifelike behavior, the mixer will loose interest in active salient spots by applying
a logarithmic penalty that is configurable during runtime. Whenever a spot looses the interest
because another spot is more interesting, the first spots receives an instant penalty for loosing
interest to prevent fast interest flipping between two spots. After loosing interest and receiving
the last penalty, another logarithmic process will reward the spot to make it more interesting
again. The rate is again reconfigurable and the total amount of interest will never be higher
than the original calculated amount. The last instant reward in the system is given when a spot
receives interest, again to prevent fast switching between interests. Finally, there is a threshold
value that needs to be met to be able to retrieve interest. The described behavior is sketched in
Figure 3.2: the exact behavior is configurable with parameters.

After selecting the most salient point, the state is updated and the point will be send as feed-
back. Although the gaze direction is expected to be directly connected to the selected point, it
will first be mixed again in the multi-modal part. In this part, the autonomous generated map

B. van de Vijver University of Twente

CHAPTER 3. DESIGN 17

Point 1

Point 2

Start
Switch
interest

Switch
interest

Lost
point

Below
threshold

Above
threshold

Threshold

Time

A
m

o
u

n
to

fi
n

te
re

st

Figure 3.2: An sketch of the interest for two interest points during time

(from the internal camera) can induce shock behavior, which is communicated to the emotion
and sequence mixing parts that should create the shock emotion and sequences.

This second state mixing can also block a gaze direction from being forwarded to the animator
in case specific sequences are active. The mixer is therefore connected to the sequence data-
base and it also receives the output from the sequence mixing part (see Section 3.1.3). When
such a blocking sequence is active, the gaze direction output will be frozen until the sequence
is deactivated.

3.1.3 Sequence mixing

The final mixing part of HMMM, sequence mixing (Figure 3.4), handles both external requests
and request from the gaze part. Sequences are pre-defined motions, which have specific mo-
tion definitions and requirements for every available actuator. Every robot platform will need
it’s own definitions for all sequences in order to complete the mixing step. The definitions are
specified on actuator level and they have one of the following classifications:

• Required absolute motion
This absolute motion it required to complete the sequence. If it is not possible to do this,
the sequence request must be rejected. It is impossible to mix this actuation with any
other other that controls the required actuator.

• Not required absolute motion
This motion is still an absolute motion, but on conflicts it can be dropped.

• Relative motion
As this motion is relative, it can be added to almost every other moved by adding it’s value.
When an actuator is near it’s limit, the actuation can be declined.

• Don´t care
The actuator is not used, so the sequence does not care about it.

Every sequence request has its own identifier, which is used in the feedback message in order
to identify the feedback for the external software.

The first possible rejection is done based on these classifications: the current queue will be
checked and the information from the requested sequence is retrieved from the database. If
there are any conflicts in actuator usage that can not be solved, the request will be rejected.
The second possible rejection is based on the timing of the requested sequence: if the timing
can not be met, the request will be rejected. Both rejections will be send back to the requester

Robotics and Mechatronics B. van de Vijver

18 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

M
u

lti-M
o

d
al

M
ixin

g
A

n
im

ato
r O

u
tp

u
t

Sin
gle-M

o
d

al m
ixin

g

M
ap

 0
(auto

no
m

o
u

s)

M
ap

 1
(d

e
lib

e
rate o

r
au

to
no

m
o

us)

M
ap

 n
(d

e
lib

erate o
r

au
to

no
m

o
us)

Top down

+

D
ifferen

t m
aps are

still d
istinguishable

du
ring p

rocessing

State
param

s

Po
in

t tracking &
com

pu
tation

s fo
r

realized
 salien

cy

D
e

cid
e

r

M
ost salien

t
po

int takes all
B

lo
cks the o

utp
ut if a sp

ecific
seq

uence is active, but also
decides on

 the sh
ock actio

n

Feed
back:

M
ost salien

t
po

int

Sho
ck reactio

n
:

A
u

ton
om

o
us m

ap
s

m
ay trigger em

otio
n

and seq
uence changes

w
h

e
re

a
s d

e
lib

e
rate

m

ap
s do

 n
ot

Th
e an

im
ato

r w
ill han

d
le

th
e gaze d

irection
 actu

atio
n

 From
 sequence

Seq
uen

ce
datab

ase

A
n

im
ato

r
G

aze
directio

n

 T
o

 em
otio

n

 T
o

 seq
u

en
ce

Previou
s co

m
b

in
ed

salien
cy m

ap
 &

m

o
st salien

t p
o

in
t

Figu
re

3.3:H
M

M
M

gaze
m

ixin
g

B. van de Vijver University of Twente

CHAPTER 3. DESIGN 19

Ex
ec

u
ti

o
n

 lo
o

p
M

u
lt

i-
M

o
d

al
 M

ix
in

g
A

n
im

at
o

r
O

u
tp

u
t

Ex
te

rn
al

 s
eq

ue
n

ce

re
q

ue
st

A
ct

u
at

or

ch
ec

k

Fe
e

d
ba

ck
:

N
eg

at
iv

e

Ti
m

in
g

ch
ec

k

N
o

t
O

K

O
K

Fe
e

d
ba

ck
:

N
e

g
o

ti
a

ti
o

n

N
o

t
O

K

Se
q

u
en

ce
p

la
n

n
e

r

Fe
e

d
ba

ck
:

Po
si

ti
ve

O
K

Se
q

ue
n

ce
d

at
ab

as
e

C
o

n
ta

in
s

ti
m

in
g

an

d
 a

ct
ua

to
r

in
fo

rm
at

io
n

Se
q

ue
n

ce

ex
ec

ut
o

r

Fe
e

d
b

a
ck

:
Se

q
ue

n
ce

st

ar
t/

en
d

A
n

im
at

o
r

Fe
e

d
ba

ck
:

Se
q

u
en

ce

st
ro

ke

Se
q

u
e

n
ce

qu
eu

e

M
o

ti
o

n
p

ar
am

et
er

s

Se
q

u
en

ce

To
Gaze

Fr
om

ga

ze

Pr
ed

ef
in

ed

se
q

u
en

ce
s

su
ch

 a
s

n
o

d,
 s

h
ak

e
et

c.

Fi
gu

r e
3.

4:
H

M
M

M
se

q
u

en
ce

m
ix

in
g

Robotics and Mechatronics B. van de Vijver

20 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

using a feedback message. More information about the feedback messages can be found in
Section 3.1.5.

If the sequence has passed both the actuator and timing check, the sequence planner will put
it in the queue for execution. An acknowledgment request is send back to the requester and the
processing of this specific request stops for the moment.

The second part of the sequence mixing is no longer direct part of the mixing process itself.
There is a constant running process which will activate sequences when there are allowed to
start. When a sequence is started, feedback is send to the original requester that the sequence
is started. The output to the animator contains both the sequence and possibly adjusted para-
meters in order to make the timing. The sequence is also transported to the gaze mixing part, in
order to operate the blocking behavior there. The animator itself also sends feedback requests
on animation strokes. Once a sequence is stopped, the sequence executor also provides that
action as feedback.

Due to time constraints it is not possible to implement the complete described gaze mixing.
The sequence database and the actuator check have not yet been implemented, but even
without those the mixing is still functional.

3.1.4 Animator

All mixing parts have one output in common: an output to an animator part. The animator
is implementation specific and will differ per robot, but it needs to take the generated output
from HMMM as input. These are the same as the input of the HMMM-part, although mixed
and they should not clash. An extra data channel is added: motion parameters to adjust speeds
of the movements. Note that the animator also has an feedback output, required for progress
feedback (see Section 3.1.5). Figure 3.5 provides an schematic overview of the animator as
implemented for the EyePi.

Animator

 Led-display control based on:
Emotion
Gaze direction

 Motor control based on:
Sequence
Gaze direction
Motion parameters

Gaze
direction

Sequence

Motion
parameters

Emotion

Feedback:
Most salient

point

Figure 3.5: Animator

B. van de Vijver University of Twente

CHAPTER 3. DESIGN 21

3.1.5 External communication

The communication between the robot and the external source (in this case AsapRealizer) will
be done using an intermediate message broker, in this case Apache Apollo. Both AsapRealizer
and ROS already have support for this communication method: for AsapRealizer it evens holds
that the larger system (as in Figure B.1 in Appendix B) communicates using the same message
broker.

The communication with external software is bi-directional, but the two defined message types
only work in one direction. The request message type is only possible towards the HMMM-part,
while the feedback message type is only send outwards.

There are three request types (corresponding to the three HMMM parts):

• Gaze
Contain saliency mappings, including an deliberate parameter to prevent a scaring reac-
tion on deliberate behavior

• Emotion
Contain valence and arousal data representing the emotion

• Sequence
Contain certain predefined movement sequences, including their requested timing

There are three types of feedback messages defined:

• Gaze
Provides a streaming feedback of the point that has the current interest.

• Planning
Being send on sequence requests, it contains either an acknowledgment (ack) or an re-
jection (nack).

• Progress
Progress feedback is send when specific states of an sequence is achieved. These states
are start, stroke and end.

The exact message templates are described in Appendix C. For the planning feedback we can
distinguish different subtypes:

1. It is impossible to plan this request (nack)
It is not possible to execute the requested sequence. This might be the case if the the
requested time is to soon or has already past, or is the actuators are not available.

2. Exact negotiation (-)
This feedback type will be used when the requester wants to know when a specific se-
quence can be planned such that it will be executed. The requester will need to send a
new request with the required timing based on the negotiation result.

3. Negotiation (ack)
This feedback will be used if the requester specified that the sequence should have a start
on or after the requested time. This is a weak request, on which the feedback will contain
the computed planning.

4. Try to execute, but motion parameters are updated (ack)
If it is possible to achieve the timing by updating the motion parameters (within con-
figured bounds), the parameters will be updated and will also be send as feedback.

Robotics and Mechatronics B. van de Vijver

22 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

5. Will execute, but it will be late (ack)
If the requested timing can not be met, but it can be met if it is within the configured
flexibility limit (for example 50-100 ms), the sequence will be executed.

6. Will execute on time (ack)
If the requested timing can be met without problems.

Note that the timing requests can be made on the start, stroke and end synchronization points
and that all feedback holds for every possibility. To be able to handle the stroke and end timing
requests, the sequence mixer will calculate the expected duration of every sequence request
from arrival as they are based on the currently active motion parameters.

3.1.6 Parameters

Next to the internal motion parameters there are several other parameters that need to be con-
figurable: the first one is the robot configuration which needs to be known beforehand and
will not be adjustable on runtime. Other parameters are focused on the autonomous behavior:
examples are the speed and amplitude of the breathing and blinking (which are actually the
motion parameters in the EyePi). There are also some HMMM parameters, which are used to
control for example the weight of the (external) inputs. The latter parameters need to be ad-
justable on runtime, as they can influence the final behavior of the robot significantly and can
help with social interaction.

The parameters are implemented with the Dynamic Reconfigure component of the ROS, which
means that they will not adjustable with the uses of the bridge yet. However, as it is a standard
component which also use the ROS-messages, it should be possible to expose the parameters
over the communication bridge in a later stage. Note that as the parameters values are gener-
ated with the help of a configuration file: these changes would probably be made twice. There
is a graphical interface available to adjust the parameters, which is sufficient for now.

3.2 Software

The toolkit software that was available from previous work was sufficient for the old require-
ments, even though it stressed the processing unit unnecessarily. However, the existing func-
tionality should remain intact, and the new functionality will also use the existing animation
engine (in extended form) to avoid code duplication. The HMMM part will be placed in front
of the animation engine, but should control the hardware through it (as also described in Sec-
tion 3.1.4). This results in the following, simplified block scheme (Figure 3.6), in which the
HMMM node is to be build and the platform to be improved as whole.

Robot platformAsapRealizer

Message
Broker

External
Software

HMMM
Node

Animation
Engine

Robot
Hardware

Figure 3.6: Simplified block diagram of the designed software solution

3.2.1 Existing functionality

The existing functionality was not build with a clear structure in mind: all nodes were defined
separately and the data flow between them was not clearly defined. Next to that there are a lot of

B. van de Vijver University of Twente

CHAPTER 3. DESIGN 23

differences in code-style between the different modules. However, as the software is functional,
only the larger structure and naming will be changed.

The old structure is depicted in Figure 3.7, in which the application is not streamlined: it is
not directly clear what the different modules are designed for and deeper code inspection is
required to analyze the actual functioning.

Input
channels

Control panel input

Robotstate parameters Dynamixel/LED-Matrix
Drivers

Animator

Figure 3.7: The software structure as currently utilized in the existing toolkit

To improve the scalability, maintainability and re-usability of the toolkit has been refactored
into logical blocks, which are easy recognizable and re-usable. There were nodes which had
as their only function to forward a specific message type as another message type, resulting in
the data being send twice. These nodes are removed and in the case they had any significant
functionality, that functionality has been transfered to one of other sending or receiving nodes.

The existing functionality of the toolkit will be extended with the HMMM functionality (see
Section 3.1) and the inputs needed for the autonomous behavior will be added. The possibility
for external control will also be implemented.

3.2.2 Saccade movements

The original toolkit already features saccade-functionality, but that only works well when only
the xy-direction of the eyes were being controlled. When any sequences such as dancing or
nodding were activated, the saccades became unnatural eye movements. As the HMMM part
will benefit from the saccade movements as it increases the lifelike behavior, the saccade beha-
vior will be fixed to be more lifelike. The xy-motion will no longer be the same and the saccades
have been made less intense. They also disabled on certain sequence to prevent constant eye-
spinning. By default the eye saccade will have some smoothing, to prevent fast oscillations
around the center.

3.2.3 System resource usage

The improvements in the list below were made to the the toolkit to reduce the system resource
usage. At the same time these improve the stability and allow the addition of extra components
on the same hardware.

• New minimal Raspbian system image
By using the newly available minimal Raspbian system image, less resources are used
by processes that are not needed for the functioning of the EyePi. The old installation

Robotics and Mechatronics B. van de Vijver

24 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

did not use this minimal image and was also bloated with software not needed for EyePi
operation.

• Changed MIDI-controller behavior
The old toolkit used polling to retrieve the data from the MIDI-controller. Although it is
not possible to change this into event driven behavior from the toolkit code, the library
used to retrieve the data does use an event driven model which saves the data points
ordered on time. By lowering the polling frequency (a factor 10) and handling multiple
data points from the library in a single poll, the CPU usage has been significantly lowered
(compared to the earlier full core utilization) while retaining the same experience.

• Reduced logging to minimal
By default, the toolkit would log every action and movement to the standard output,
which is saved on disk. It did not use the ROS-API for logging, resulting in large log files,
causing IO-waits and eventually a complete lockup due to a full disk. By using the ROS-
API for logging, the default is to no longer log everything which results in less disk-usage
and thus lower latencies. It is still possible to enable the logging if required.

• Removal of dead code
There were pieces of code that were active in the old toolkit, but where never used. To-
gether with general code optimizations in other parts again a significant improvement is
made.

With these improvements, the system currently does not fully utilize the available processing
power of the Raspberry Pi computer, even with the new software components that are being
added. By leaving this small margin there is more room for solving unexpected high loads
during normal execution (which can happen). It also provides more possibilities for debugging
when needed and the complete system responds faster when not fully utilized. Compared with
the old hardware, on which any small action would result in a delay in the animator, the current
system performs faster and is more stable.

3.2.4 Saliency detection

For the saliency detection two different methods were explored: one is based on using ad-
vanced algorithms that can predict the saliency of any (still) image, while the other is based on
the detection of movement. The first option is classified as real saliency, the second option can
not be classified as as such, even though it is part of the conditions that make something salient
(see Section 2.6).

For the implementation on the EyePi hardware, the second option is chosen as it is the only
viable option. The real saliency implementation needs to much resources to be able to run on
the available hardware, especially when live footage is being used together with the require-
ment that the detection is semi-realtime.

In Figure 3.8 the output of the detection can be seen. The circles represent the multiple interest
points (which form the saliency map when combined), while the size of the circle represents
the amount of interest the corresponding point has. When a interesting point is no longer
detected, the circle will shrink and will be removed after a predefined amount of time. The left
image depicts the unprocessed output of the motion detection in the form of a saliency map.
The right image shows the output of the calculations of the HMMM part, including the most
salient point that is filled with red.

The internal camera abstract the motion detection data into a saliency map. The weights of the
points will depend on the size of the detected emotion, as every motion detected will be in the
map communicated to the HMMM part. Note that motion detection is not the same as saliency
detection, although motion is considered part of the stimuli to make something salient. The

B. van de Vijver University of Twente

CHAPTER 3. DESIGN 25

choice was made to have only motion detection running and not a complete saliency algorithm
due to the limited amount of processing power available on the platform itself.

Figure 3.8: The output of the saliency detection of the autonomous EyePi

3.2.5 Save shutdown

In order to protect the operating system of the EyePi, a safe shutdown button has been im-
plemented on the MIDI-panel. The older revision could only be turned off by removing the
power completely, without shutting down all processes, risking the integrity of the data on the
SD-card. Even though no problems occurred before, the shutdown button allows for easy and
clean shutdown, which also speeds up the boot time as it is no longer needed to check the dirty
filesystem after an unclean shutdown.

3.3 Hardware

The first hardware version had, despite its effectiveness in conveying emotions and being easy
to build, some minor drawbacks in its design. By tackling the minor drawbacks it will be more
complicated to construct (thus taking more time), but it is not expected that it will be problem-
atic as construction is a one-time task, while the result will be easier in use.

3.3.1 Processing unit

Old situation
The processing unit (a Raspberry Pi 2B) was
located in the moving head, causing more
mass and the need for cables which are con-
nected to the side of the head (see Figure 3.10).
It also placed the complete power distribution
in the head and it was not build to last a lot of
movement.

Updated design
By locating the processing unit (still the same
Raspberry Pi) outside the moving head, it
looses mass and there is no longer the need for
cables connected to the side of the head. The
power distribution can be relocated to a more
secure place, next to the power supply.

Robotics and Mechatronics B. van de Vijver

26 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

3.3.2 Camera location

Old situation
The camera was also located on the moving
head, complicating image processing on the
low-grade hardware. However, as the camera
moves together with the head, the field of view
is only limited by the head movement itself.

Updated design
With the processing unit moved, it is no longer
feasible to have the camera on the head as the
ribbon cable will most probably break with the
movement. As the camera needs to be near
the processing unit when using a Raspberry
Pi and a ribbon cable, the best location is on
the front of the casing, combined with a wide-
angle lens. The lens creates a larger field of
view, while image distortion is minimal com-
pared to a fish-eye lens (which increases the
field of view even more).

3.3.3 Display driver

Old situation
The display driver (an Arduino Micro) is po-
sitioned directly behind the display and con-
nected to the processing unit with an USB-
cable, resulting in a small cable loop at the side
of the head.

Updated design
As the processing unit moved, the USB-cable
needs to be extended to be able to connect
again. However, with more space on the back
of the display, the display driver location will
be optimized, removing the visible cable loop
at the side of the head.

3.3.4 Power supply

Old situation
The power supply exists of a small desktop
power supply, which is permanently connec-
ted to the head with a simple cable. It con-
verts AC into the needed 12V DC for the Dy-
namixel servos, while the voltage needed for
the Raspberry Pi and peripherals is converted
in the head itself.

Updated design
The power requirements should have not
changed, but it will be relocated to be integ-
rated on the same spot as the processing unit.
This means that there will no longer be the
need of a power cable to the head, while the
power conversion can still be done near the
processing unit.

3.3.5 Casing

Old situation
There was no specific casing: everything was
combined between two plastic plates forming
the head of the robot, while the base existed of
a simple weight. The weight proved to be in-
sufficient as base: it was possible to rock the
robot over using the normal MIDI-controls.

Updated design
By relocating the processing unit (and peri-
pherals) into a closed casing at the bottom,
the robot should come over as more finished
and be more consumer ready. With a larger
footprint, although it has less weight, the ro-
bot should have a more stable base. Figure 3.9
contains an image of the case internals.

B. van de Vijver University of Twente

CHAPTER 3. DESIGN 27

Figure 3.9: The internals of the new casing

3.3.6 Portability

Old situation
With the cable loops at the side of the head
and the permanently connected power supply
cable it is inconvenient to move multiple ro-
bots in a single box. Power cables will tangle
as they have loose ends and the hardware is
vulnerable as it is basically in the open (mostly
due to the cable loops, see Figure 3.10). The
weight of the base is to high and it does not
provide enough stability.

Updated design
With most components not directly access-
ible in a single casing, the hardware itself will
be less vulnerable. At the same time there
will be no unnecessary permanently connec-
ted cables to minimize the change of dam-
age. When a cable can have a loose end during
transport, it will be detachable. Without the
base weight its total mass should have lowered
significantly.

Figure 3.10: The original, vulnerable hardware

Robotics and Mechatronics B. van de Vijver

28 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

3.3.7 MIDI controller

Old situation
The MIDI controller had some labels indicat-
ing the function of the buttons, but they were
already falling off. The internal LEDs of the
controller were not used.

Updated design
The new controller now has an full overlay in-
dicating the button functionality and the in-
ternal LEDs are used to indicate the current
status.

Figure 3.11: The MIDI-panel has been updated with an full overlay indicating the available controls

3.4 Final system

The final system will combine the existing and new software functionality and should signific-
antly be improved on the hardware. At the same time the stability, scalability, maintainability,
re-usability and system resource usage of the software will be improved, but the updated hard-
ware will also affect those aspects. An overview of the final software is given in Figure 3.12,
which shows a cleaner and straight to the point program flow. In total, the complete system
should deliver smoother behavior, especially when combined with external software control,
with minimal impact on the global look-and-view of the hardware.

Animator

Control panel input

HMMM input Input
channels

Control panel feedback

Input management

Dynamixel Driver

LED-Matrix Driver

Output
channels

Figure 3.12: The designed software structure, which minimizes communication channels

B. van de Vijver University of Twente

29

4 Results

4.1 Control design (HMMM)

Most parts of the design of HMMM as described in Section 3.1 have been implemented in the
EyePi. The actuator check, the global sequence database and the motion parameters based on
the emotion state are missing from the current implementation, but their absence has limited
impact on the functionality of the whole system.

4.1.1 Gaze mixing

While it is hard to test the gaze mixing quantitatively, it can be verified that the saliency maps
are mixed correctly and that the corresponding EyePi motion confirms with the expectations.
Points are chosen correctly and the EyePi indeed looses its interest in the currently most salient
point gradually, to eventually select another point. There is no fast switching between two
equally salient points detected due to the rewards and penalties.

4.1.2 Validation of HMMM

To validate the final behavior when using HMMM a simple experiment has been been held
which should show the difference between a robot without HMMM and a robot with. Next to
the EyePi robot, an humanoid robot called the Zeno is used. The Zeno can receive the same
behavior requests as the EyePi, but it does not have the capability to autonomously react to
other inputs or mix any request as it lacks HMMM.

For the test the EyePi has been used twice: in the first series (A) it uses its full capabilities with
HMMM, but with the second series (B) the autonomous capabilities have been turned off. The
Zeno has been used in the third test series (C). Stills from the tests are given in Figure 4.1.

There was a complication during the test execution: it appeared to be impossible to retrieve
reliable joint state information from the robots without severely impacting the performance
causing the complete interaction to become out of sync. It should also be noted that even
though it appears the Zeno (series C) is not moving at all, that is not the case. The Zeno un-
fortunately only shows minimal movement with during the same test due to limitations in its
control.

The executed scenario contains the following numbers steps, which correspond to the num-
bers in the figure. The robot is told to greet every person and tell them to take a seat.

1. Nobody in sight. All robots are in their initial position.

2. Person enters the field of view. All robots focus their view on the person and tell the
person to take a seat.

3. Person still in view, but now in front of the robot. The robots finish their text. The EyePi
with HMMM automatically blinks.

4. Something happens on the left (seen from the robots), while the person is still in the field
of view. Only the robot with HMMM has the capability to react, as the others are still
focused on the person.

5. The movement is gone, so the robot with HMMM will again focus on the person that is
still there. The others robot did not move, except to follow the person in view.

Robotics and Mechatronics B. van de Vijver

A1 B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4

A5 B5 B5

Figure 4.1: The EyePi in series A uses HMMM, while the other two series (both an EyePi (B) and a Zeno
(C)) do not use HMMM. In the scenario a person is greeted (which comes from the right in frame 2),
while there is a sudden movement in the left at frame 4 (seen from the robots).

CHAPTER 4. RESULTS 31

Even though the HMMM shows the requested behavior, a user study should be done to con-
clude if this robot is received as a fluent and lifelike robot. Due to time constraints such a
study is not done, but it is still recommended to have one in a later stage as it might indicate
any improvement possibilities. The experience until now (combined with the responses on the
eNTERFACE’16) is however that the robot is received as such.

4.2 Software

The software has been updated in order to improve the scalability, maintainability and re-
usability. The ability of motion detection has been checked by trail and the performance of
the updated toolkit is compared to the performance of the original toolkit.

4.2.1 Performance

The changes made to improve the system performance have been validated by running a mon-
itoring tool during the execution of the complete toolkit. The monitoring tool takes a resource
usage snapshot every second for 60 seconds. Both the original and the updated toolkit are star-
ted after the monitor has started its measurements. After the toolkit has been booted it is put
into demo mode manually using the MIDI control panel. The results are given in Figure 4.2,
Figure 4.3 and Figure 4.4.

The CPU related results show a large improvement in CPU-usage and process switch rates. The
first peaks in the CPU-usage graphs are similar and are caused by the initialization of the toolkit,
but directly after initialization the improved toolkit is less resource consuming and more con-
stant during execution.

An important note is that the motion detection node is also running with the updated toolkit,
which is not the case with the original toolkit. ROS is not build for dynamic node activation and
as the initialization of the camera node takes a relatively large amount of time, it was chosen to
always execute it. The processor graphs show that this has been a correct choice.

Figure 4.2: CPU usage of the original and the improved toolkit

The expected improvements in disk usage can not be concluded from the data in Figure 4.4.
This is caused by the used monitoring tool, which writes the monitoring data to a file on the
disk. Even though the graph is not conclusive, the created log files by the improved toolkit are
significantly smaller as all printf statements from the code are replaced with ROS log calls.
As these statements are only executed when the toolkit is run in debug mode, the disk usage is
less and it is no longer possible to have a full disk after a day.

A final side note needs to be given on the comparison of the performance. Both tests are run on
the newly installed minimal Raspbian system image. Even though the test results are therefore

Robotics and Mechatronics B. van de Vijver

32 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

Figure 4.3: Process switches per second of the original and the improved toolkit

Figure 4.4: Disk writes of the original and the improved toolkit

better comparable, the new system image should have reduced the system load even further as
there are less OS-services running. This means that the improved toolkit might even perform
better than the current graphs suggest. Unfortunately, there is no data available from the old
installation. Secondly it should also be noted that the improved toolkit also constantly com-
putes a saliency map based on the movement data, which are extra calculations compared to
the existing toolkit. The calculations are always done as it is not feasible to start and stop the
nodes during runtime.

4.2.2 Saliency detection

While it is hard to test the motion detection quantitatively, it is verified that motion is detected
correctly and that the correct weights are given based on the size of the movement. Even though
it is not pure saliency detection, it works sufficient for the required autonomous behavior.

4.3 Hardware

The functional hardware has not significantly changed during this project: the robot still con-
tains the same basic hardware. Even though some minor changes have been made, most of
them were done to the location of the individual components (see Section 3.3). The changes in
appearance can reviewed in Figure 4.5.

Below is an overview of the changed hardware:

B. van de Vijver University of Twente

CHAPTER 4. RESULTS 33

(a) The original hardware (Watanabe et al., 2013)

(b) The improved hardware based on the original hardware (Figure 4.5a)

Figure 4.5: Comparison of the two hardware versions

• Camera: The camera is now fixed on a steady base and has a new wide angle lens.
• Casing: There was no casing containing the Raspberry Pi and power supply before.
• Dynamixel servos: Due to the lower weight in the head smaller servos are used.
• New power supply: The power supply that was used before did not fit in the new casing.
• Controller LEDs: Some buttons now give feedback with the build in LED.
• Control labels: Full overlay with labels, as the old labels loosened.

4.3.1 Portability

With all hardware being positioned save within the casing, there is less chance of damaging
any of it. At the same time, the external power supply is integrated, resulting that only a simple
power cable is needed to power the whole system, instead of having the power supply external
an permanently connected to the EyePi head. The total weight of the robot has also been re-
duced significantly. While the base weight of the previous build had a mass of 2.5 KG (which is
excluding everything else, such as the adapter, robotic head and dynamixels), the total weight
of the EyePi is now only 1.26 KG (including everything that was excluded before).

4.3.2 Cameras

The three EyePi’s are now fully functional with the new hardware and they should be completely
identical. However, one of the EyePi’s has a different camera module mounted, namely version
2 of the Raspberry Pi camera. The Raspberry Pi camera version 1 was no longer available, for-
cing use the newer version and creating a small difference between the otherwise identical
three EyePi’s. However, even though the specifications of the two versions are not equal, it is
possible to create the same pictures with the same code without any problems. This results in

Robotics and Mechatronics B. van de Vijver

34 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

the conclusion that there is no significant difference between the two cameras when they are
used with the current toolkit.

4.3.3 Evaluating the hardware changes

Evaluation of the new hardware design is not a trivial task to do: both designs have their positive
and negative points. Easy to conclude improvements are a higher stability due to the larger
footprint of the base and a smaller, more agile head due to the moved processing unit.

During an open day for elementary school students of the research chair lab the response to the
new hardware revision was enthusiastic (people asked if they could take it home with them).
The same result is achieved during the eNTERFACE’16 workshop: researchers from across the
world were interested in even acquiring one for their own research.

Even though the older hardware version is no longer available, qualitatively it can be said that
the new hardware design is being liked in general (fulfilling requirement 10). It also proved to
be more stable: it did move across the table surface when being operated roughly, but it moved
a lot less than the old hardware would have done. Another point of interest are the cables
of the power supply and MIDI-controller, which are no longer connected to the moving head
itself, allowing easy control without worrying about the state of the cables and it improves the
sleekness of the design.

The portability (requirement 9) has fulfilled: not only has the weight been reduced by more
than 50%, it is also less vulnerable during transport. Without any external components and
cables that can be easily removed multiple EyePi’s can be packed in the same box without any
chance of cable tangling.

For the costs requirement (11) the same conclusion can be made: the EyePi is cheaper in con-
struction as the Dynamixel servos used in this version are less expensive due to the fact that
they are smaller. A complete bill of materials can be found in Appendix D.

It can be concluded that the new hardware design has successfully fulfilled the requirements
as formulated in Section 2.7.

4.4 Final system

The final result of this project is HMMM, an algorithm to mix multiple (external) control inputs
into viable robot behavior, that is fluent en lifelike without only executing the request. HMMM
allows the robot to listen to the director (the source of the behavior requests) and executing the
requested behavior, but when there is a more pressing matter it will (temporarily) defer from
its task to focus on it. The functionality has been implemented in a human robot interaction
toolkit from within the chair, during which the performance of the toolkit has been improved
significantly. Finally, the hardware that is being used to demonstrate the toolkit has been im-
proved successfully.

B. van de Vijver University of Twente

35

5 Conclusion and recommendations

5.1 Conclusion

The requirements as formulated in Section 2.7, for both HMMM implementation and hardware
improvements, have all been fulfilled.

5.1.1 Control design and software

1. External software must be able to control the hardware with exposed high level controls
External software can control the hardware using the exposed high level emotion, gaze
and sequence parameters.

2. Autonomous behavior needs to be available from within the robot hardware
Autonomous behavior is available in the form of motion detection, breathing, blinking
and saccade movements. There is also a shock reaction implemented.

3. The autonomous behavior needs to be combined with external controls
Due to the implementation of HMMM, the autonomous behavior can seamlessly be
combined with external requests.

4. The resulting behavior needs to be fluent and natural (lifelike)
With the result of the EyePi running HMMM compared to the results from the Zeno, it
is concluded that the resulting behavior is indeed fluent en lifelike. The EyePi does not
have any dead time and is always doing something.

5. The available camera needs to be used for autonomous behavior
The available camera is used for the motion detection, which is used for autonomous
gaze behavior.

6. Operation parameters for the autonomous behavior and mixing need to be adjustable on
runtime when feasible
All parameters are currently adjustable on runtime, even though not through the mes-
sage bridge.

7. The external control connection should not be tailored to a specific application
By using the portable XML-format which abstracts the ROS-messages every application
should be capable to communicate with the EyePi. Together with the intermediate mes-
sage broker, a connection should always be possible.

8. The software needs to be easy reusable in other projects
Every part in the project can be reused in other code. When ROS is not used in the other
project, it will be necessary to rework the code for the different platform.

5.1.2 Hardware

9. The portability of the robot needs to be improved
Due to the weight loss and the lack of external cables and adapters, the portability has
been greatly improved.

10. Changes made to the hardware may only have a minimal negative impact on the look-
and-feel of the robot
Even though no there was no questionnaire to verify the new design, it can qualitatively
be said that the EyePi is still being liked in general due to the positive reactions on it
during the eNTERFACE’16.

Robotics and Mechatronics B. van de Vijver

36 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

11. The total cost of the robot should remain about the same
Since the motors have been replaced with smaller variants, the motor costs are lower.
Extra material has been used for the construction of the robot and the original weight
has been replaced with a casing, but the changes in costs are probably not significant.
However, the exact costs of the old hardware are not available, but they is expected to be
lower.

5.1.3 Research questions

In the start of Chapter 2 the initial research questions were formulated, which have been
answered during the course of this research.

1. What are the direct controls that need to be exposed to a behavior realizer?
There are no direct controls needed for a behavior realizer to control robot hardware.
Abstracted controls are sufficient.

2. What are the operation parameters that need to be configurable?
It is convenient to have parameters configurable that directly influence the robot mo-
tion. However, it is not required to have any parameters exposed as the HMMM part can
already handle most of them.

3. What is the most suitable communication schedule for the communication between the
robot hardware and the behavior realizer?
As ROS uses it’s own message format, a bridge that uses an standard format is required.
This implementation uses XML-messages, which abstract the ROS-message format. The
exact implementation does not matter, but it should be a format that is easily generated
in several programs.

4. Will the behavior/executed actions be more fluent when the mixing is done on the robot
hardware?
The behavior is more fluent when the mixing is done on the robot hardware. The robot
has direct access to its internal state and always has access to the autonomous generated
data. This means that the robot will always work, even if there is no external connection,
allowing it to maintain its fluent and lifelike behavior.

5. How can different control inputs be mixed and what are the implications of the mixing on
the different control levels?
With the definition described in Section 3.1 it is possible to mix the different control in-
puts. Due to the mixing, full control of the robot hardware will be lost, but it is no longer
needed to add lifelike behavior yourself (such as breathing and gazing).

6. Is end-effector control more convenient than joint-space control in relation to HMMM?
In this use case it is more convenient to use joint-space control than end-effector control,
due to the fact that you want to have the possibility to control one actuator specifically.

5.1.4 General notes

This project resulted with an functional HMMM, which proved to generate more fluent and
lifelike behavior than another robot which is being controlled by the same commands. Chan-
ging the robot from a simple puppet that can only be controlled completely into an actor that
does what it is being asked, but uses its own interpretation, has been successful. As the mod-
els and algorithms created during the project are not yet fully implemented, it might even be
possible to improve the fluency and lifelikeness.

B. van de Vijver University of Twente

CHAPTER 5. CONCLUSION AND RECOMMENDATIONS 37

5.2 Recommendations

Even though the result of this project complies with the formulated requirements, there is al-
ways room for improvement and extra features. For the EyePi a couple of recommendations
can be made, ranging from HMMM improvements to hardware adjustments, but also extra
features. The recommendations are as follows:

• Full sequence mixing implementation
The sequence implementation of the EyePi has not yet been fully implemented. It cur-
rently lacks an actuator check, which it has been described extensively in Section 3.1.3.
Together with the implementation of the actuator check, a well designed database should
be added that can easily be filled and reused.

• Redesign sequence animation
Even though the current implementation has a sufficient functioning sequence anim-
ator, it is relatively hard to define a new sequence, especially when they need more that
one distinct and repeating movement. Combined with the database from the previous
recommendation, it should be possible to describe and implement new sequence relat-
ively straightforward.

• More autonomous actions
Currently, the EyePi only features an autonomous shock reaction, activated on large sud-
den movements. However, more emotions can be triggered autonomously such as falling
asleep or simple looking around when no motion is detected.

• External parameter interface
For certain parameters it might be convenient to have them exposed on the outer level.
Currently, all parameters are configurable when you have SSH-access to the system by
using rqt_reconfigure, but not all of them should be available for adjustment on
the outside.

• Computing unit upgrade
The EyePi uses an outdated Raspberry Pi 2 Model B as computing unit. There is already
an newer version available, the Raspberry Pi 3 Model B. The newer model should be 50-
60 percent faster than the older one and an extra advantage of the update would be the
access to a buildin WiFi-module. However, with the current metal enclosure the usage of
the module might be challenging.

• Moving camera
Currently, the camera that is used for motion detection is mounted stationary to ease the
motion detection. The disadvantage of this method is that the field of view is limited in
comparison to the motions the head can make, even with the wide angle lens that is used.
However, when the camera is moving the current motion detection will no longer work,
so new algorithms need to be used to determine the motion correctly.

• Autonomous MIDI-controller
The MIDI-controller is currently only used for emotion control when the robot is in
autonomous mode. However, it would be interesting to use the MIDI-controller to create
multiple stimuli for the HMMM which can be combined with external software (if there
is any).

• User study
As the toolkit is used for social interaction, it is recommended to conduct an user study
to verify the fluency and lifelikeness of the result. Due to time constraint this was not
done, but it might deliver interesting improvement points.

Robotics and Mechatronics B. van de Vijver

38 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

A Demonstration instructions

The EyePi can be used for an (interactive) demonstration. There are three modes in which the
EyePi can operate, one of which is interactive:

• Manual control (interactive)
• Demonstration mode
• Autonomous mode

To boot the system, first plug in a power cord and connect a MIDI-panel to one of the USB
ports. If you want to use autonomous mode with external input, you will also need to connect
an ethernet cable. All systems are registered for the university network with static configur-
ation, which means that the can be accessed (user pi, password SocialRobot) with their
hostname (note that this only works in the Carré building):

• EyePi 1: eyepi1.ewi.utwente.nl
• EyePi 2: eyepi2.ewi.utwente.nl
• EyePi 3: eyepi3.ewi.utwente.nl

Flip the power switch on the back into the on state to boot the system. It will automatically
boot all components.

To safely shutdown the system, press the ’SHUTDOWN’ button. It will automatically shut down
all components after positioning the head in a safe position. When the activity led (green) stops
blinking, it is safe to use the power switch on the back.

A.1 Manual control

Use the sliders and control the head!

A.2 Demonstration mode

To put the system in demonstration mode, press the ’DEMO’ button after boot. It can be
stopped by pressing ’STOP’.

A.3 Autonomous mode

To put the system in autonomous mode, press the ’CYCLE’ button after boot (it should be lit for
this mode). You can switch back to manual control/demonstration mode by pressing ’CYCLE’
again. Note that the arousal/valence sliders can still be used.

The external software bridge is automatically booted during startup and tries to connect with
the last configured IP. You can edit the IP by logging on and editing
(~/ramSocialRobot/src/ram_asap/asap_ros_bridge/scripts/relay.py).
After a change, the node can be restarted with the new IP-address by executing
rosrun asap_ros_bridge relay.py.

B. van de Vijver University of Twente

39

B EASEL architecture

The Expressive Agents for Symbiotic Education and Learning (EASEL) architecture (University
of Twente, 2015).FP7 611971

EASEL-D-WP4-UT-150917-D4.2 v2 Final

10

Information sent from perception to interaction management:

Speech words, facial expression, extensible set of gestures, basic hand info, pose, proxemics,
manipulations of the task materials, heart rate, galvanic skin response, balance beam state

EASELScope
sensors

Speech
Recognition

BML Behavior Realizer
(ASAPRealizer)

Zeno R25
Controller

Virtual Zeno

Physio
Reader

Balancing and
prioritizing internal
drives
(AllostaticControl)

Scene
Analyzer PERCEPTION

Virtual FACE.

REASONING,
MEMORY, AND
INTERACTION
MANAGEMENT

Memory and
reasoning
(OPC)

Information sent to agent/robot control:

Motion primitives for the various embodiment

Information State
dialog manager
(Flipper)

Information sent to behavior realizer:

Requests for (conversational) actions based on dialog state, sent as BML scripts

Fitting Exercises
(Exercise Generator)

Simple interpretation
(Multimodal
Understanding)

Temporal Disc Controller
(TDCServer)

FACE robot
controller

Figure 3: Overview of the EASEL architecture, divided into four main groups of modules. In
italics the names of modules.

Learning content
presentation
(EASELScope Hidden
State Visualiser)

Homeostatic
control of single
drives
(AllostaticControl)

BEHAVIOR
GENERATION

PRESENTATION
AND MOTION
CONTROL

Dialog Models

Figure B.1: Overview of the EASEL architecture, divided into four main groups of modules. This struc-
ture can be used to realize a complete dialog system.

Robotics and Mechatronics B. van de Vijver

40 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

C External communication

C.1 Communication basics

This document shortly describes the possibilities the Human Robot Interaction Toolkit offers
with respect to external inputs. Within the system, there are three inputs channels and three
feedback channels defined, which can be used by any external program to send wanted values
to the hardware. The several (external) inputs are mixed by the HMMM component of the
EyePi.

Input

• Saliency (streaming) (ROS-topic: /ram/animation/hmmm/saliency)
• Emotion (id-based) (ROS-topic: /ram/animation/hmmm/emotion)
• Sequence (id-based) (ROS-topic: /ram/animation/hmmm/sequence)

Output

• Gaze (streaming) (ROS-topic: /ram/asap/feedback/gaze)
• General (id-based) (ROS-topic: /ram/asap/feedback/general)
• Prediction (id-based) (ROS-topic: /ram/asap/feedback/prediction)

The input and output channels can be accessed with on of the following two methods:

• A ROS-node which publishes to or reads from the corresponding ROS-topic
• Settings up a connection with the Apollo broker middleware

Both methods should deliver equal results, although a higher latency can be expected when
using the Apollo broker. There are two main reasons for the expected higher latency: there is
an extra conversion step to convert the messages and there is a network layer involved.

When numbered lists are used to list certain types, the list numbers are also used to encode the
type.

C.2 Saliency

It is possible to send saliency maps to the EyePi, which contains information about the detected
salient points. The map is communicated with the message template defined in Codeblock C.1.
Multiple salient points can and should be communicated in the same message. An update rate
of at least 15Hz (which is the same as the internal motion detection) is preferred.

The locationX and locationY attributes must have a value >=-1 and <=1. The weight attribute
must have a value of >=0 and <=10,000. Internally, the location values are mapped to an
640x640 frame, which is located in front of the robot, seen through it’s own camera. The cam-
era on the robot uses a 640x480 stream, which means that not everything in the Y-direction is
mapped.

The inputId parameter is used to distinguish the separate input streams. It should have an
static id for every connection and it is used internally to calculate the interest decay.

The deliberate parameter defines if the saliency map should be treated as an autonom-
ously generated map, or as a deliberate one. When a map is marked as deliberate, it can not
trigger an autonomous shock reaction.

1 string inputId
2 uint8 deliberate
3 float32[] locationsX
4 float32[] locationsY
5 uint16[] weights

B. van de Vijver University of Twente

APPENDIX C. EXTERNAL COMMUNICATION 41

Codeblock C.1: Saliency message definition

The Apollo example (Codeblock C.2) communicates two salient points and their weights (in a
single update) to the toolkit. In the example the salient points are(-0.6, -0.6) and(0.9,
0.9), with a weight of respectively 1000 and 700. They are being send with the id walle1
and are set to be deliberate.

1 <data>
2 <inputId type="str">walle1</inputId>
3 <deliberate type="int">1</deliberate>
4 <locationsX type="tuple">
5 <value type="float">-0.6</value>
6 <value type="float">0.9</value>
7 </locationsX>
8 <locationsY type="tuple">
9 <value type="float">-0.6</value>

10 <value type="float">0.9</value>
11 </locationsY>
12 <weights type="tuple">
13 <value type="int">1000</value>
14 <value type="int">700</value>
15 </weights>
16 </data>

Codeblock C.2: Saliency Apollo message example

Note that when there are no updates, the salient point will be removed after a configurable
timeout. When a point keeps getting reported, the saliency will be updated with the new data.
When a point is used, it will lose saliency after getting an initial bonus. After loosing focus, a
penalty will be given, after which the saliency can recover. More information about the process
can be found in Section 3.1.2.

Every time a new most salient point is calculated, a gaze feedback message will be published
containing the salient point data.

Property Value
Channel /ram/animation/hmmm/saliency
Channel type Streaming
Minimum refresh rate 15Hz
ID String
Deliberate Boolean
X-range float: [-1, 1]
Y-range float: [-1, 1]
Weight-range int: [0, 10.000]

Table C.1: Properties of the saliency input

C.3 Emotion

The robot emotion is defined in valence and arousal, which is illustrated in Figure C.1. By
adjusting the values, the exact emotion can be communicated. Currently, new values will be
mixed with the current value, allowing emotion fading. However, this only works for small
changes. If the change in emotion is large enough (which is configurable), the emotion change
will be done directly.

The message is defined as given in Codeblock C.3, with an Apollo example in Codeblock C.4.
The arousal and valence values can be anything between -1 and 1. The weights can be used to
speed up the mixing process if required. By default, the MIDI-controller uses a weight of 40 for
both properties.

1 string id
2 float32 arousal
3 uint16 arousalWeight
4 float32 valence
5 uint16 valenceWeight

Codeblock C.3: Emotion message definition

Robotics and Mechatronics B. van de Vijver

42 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

1 <data>
2 <id type="str">#uniqid</id>
3 <arousal type="float">0</arousal>
4 <arousalWeight type="int">10</arousalWeight>
5 <valence type="float">0</valence>
6 <valenceWeight type="int">10</valenceWeight>
7 </data>

Codeblock C.4: Emotion Apollo message example

Figure C.1: Arousal and valence to robot emotion mapping

The incoming emotion message will trigger a feedback message of the acknowledged type.

Property Value
Channel /ram/animation/hmmm/emotion
Channel type ID-based
ID String
Arousal-range float: [-1, 1]
Valence-range float: [-1, 1]
Arousal-weight-range float: [0, 100]
Valence-weight-range float: [0, 100]

Table C.2: Properties of the emotion input

C.4 Sequence

The last communication method can be used to request predefined sequences. The definition
is given in Codeblock C.5. The following sequences are supported:

1. Dance
2. Nod
3. Shake
4. Point at the left
5. Point here
6. Point at the right

For the timing request the following types are supported:

1. Start at.

B. van de Vijver University of Twente

APPENDIX C. EXTERNAL COMMUNICATION 43

2. Stroke at.
3. End at.
4. Predict timing.

Note that the ‘Predict timing’ type will only return the predicted timing as a special feedback
message, but it will not process the sequence any further. The format of the message if given in
??

The value given in the request attribute is parsed as seconds and is added to the current time
to form the requested time. With requestCount it is possible to specify how many times a
sequence needs to be repeated.

1 string id
2 uint8 sequence
3 float64 request
4 uint8 requestType
5 uint8 requestCount

Codeblock C.5: Sequence message definition

An Apollo example is given in Codeblock C.6, which requests that the EyePi executes one nod
in 400ms.

1 <data>
2 <id type="str">sequence_dance_1</id>
3 <sequence type="int">2</sequence>
4 <request type="float">400</request>
5 <requestType type="int">1</requestType>
6 <requestCount type="int">1</requestCount>
7 </data>

Codeblock C.6: Sequence Apollo message example

Sequences requests can trigger two types of planning feedback, containing either acknow-
ledged or rejected. After a sequence has been acknowledged and planned, there will be pro-
gress feedback during the execution of the sequence, on the start, stroke and end synchroniza-
tion points of the sequence.

Property Value
Channel /ram/animation/hmmm/sequence
Channel type ID-based
ID String
Sequence Sequence ID
Request float: [0.1, ∞]
Request type float: Request type ID
Request count float: [1, ∞]

Table C.3: Properties of the sequence input

C.5 Feedback

There are three types of feedback messages being used: gaze, prediction] and general feedback.
The general feedback is a group of two feedback types which use the same communication
channel and template: planning and progress.

C.5.1 Gaze feedback

Gaze feedback is send on every iteration of the HMMM node, which runs on 50Hz. The gaze
feedback message contains the current most salient x,y-coordinate.

1 float32 x
2 float32 y

Codeblock C.7: Gaze feedback message definition

Robotics and Mechatronics B. van de Vijver

44 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

C.5.2 Prediction feedback

Prediction feedback is only send when it has been requested explicitly. The feedback message
contains the id of the request and the stroke and end timing of a single sequence.

1 string id
2 float32 stroke
3 float32 duration

Codeblock C.8: Gaze feedback message definition

C.5.3 Planning and progress (general) feedback

The planning and progress feedback feedback messages share the same message definition to
be able to share the same communication channel:

1 string id
2 uint8 type
3 uint8 message
4 uint8 reason

Codeblock C.9: Planning and progress feedback message definition

They both contain the identifier that corresponds with the request that triggered the feedback
message. The feedback type can either be 1 (feedback) or 2 (progress).

Planning type

For the feedback type, one of the following messages can expected:

0. Nack
1. Ack

The planning feedback can have one of the following reasons:

0. Empty. No reason given.
1. Fluency. The requested behavior conflicts with other behavior.
2. Too soon. The requested timing can not be met.
3. Invalid. The requested behavior is invalid.

Progress type

The progress type does not use the reason attribute, as the messages are always triggered by
the execution of a specific sequence on its start, stroke or end synchronization points. The
synchronization points are encoded as follows:

0. Start
1. Stroke
2. End

B. van de Vijver University of Twente

45

D Bill of materials

The bill of materials below contains all mechanical parts required (excluding common cabling,
crews, nuts and custom PCBs) to build one EyePi. Note that stickers and overlays are also ex-
cluded, but they can be made within the research chair. Prices are estimates and rounded up,
dollar prices are converted one-to-one to euro prices.

Table D.1: Mechanical parts list for one EyePi

Part Description Amount ECPPi ETCii

Servo motors Dynamixel MX-28 3 200AC 600AC
Midi controller Korg Nanokontrol 2 1 45AC 45AC
Raspberry Pi Newest version available 1 35AC 35AC
Display Adafruit 16x24 RED LED Matrix Panel 1 25AC 25AC
Camera Raspberry Pi Camera Module 1 25AC 25AC
USB-RS485 FTDI USB-RS485 converter 1 25AC 25AC
Power supply 12V 5A (7773146 at RS) 1 20AC 20AC
Display driver Arduino Micro 1 20AC 20AC
Enclosure (B)1304 Full Aluminum 1 20AC 20AC
DC-DC converter XP Power SR10S05 1 10AC 10AC
Lens 0,67x wide angle lens (magnetic) 1 10AC 10AC
SD Card At least 8GB 1 5AC 5AC
Power plug 230V power plug (1516058 at Farnell) 1 4AC 4AC
Micro-USB Cable Flat (VLMP60410B1.00 at Nedis) 1 2AC 2AC
Leds Red & green 3mm led 2 1AC 1AC
IO plate IO plate on the front (lasercut) 1 0AC 0AC
Power plate Power plate on the back (lasercut) 1 0AC 0AC
Camera housing IO plate on the front (3d-printed) 1 0AC 0AC
Total costs 847AC

i Estimated cost per piece ii Estimated total cost

The largest part of the total costs originates from the servo motors. The Dynamixel servo mo-
tors can be controlled over RS485, by simply sending the wanted position to the servo itself,
without the need of an dedicated controller as it is embedded in the servo. It is possible to cre-
ate the robot without these advanced servo te reduce the costs, but it will require creating extra
controller code.

Furthermore, some parts are estimated on no cost at all and some of the standard parts (nuts,
bolts, wires and more) were excluded. In Table D.2 the total costs of one EyePi is estimated.

Table D.2: Total costs for one social robot

Part Amount
Parts ± 850AC
Miscellaneous ± 50AC
Total costs 900AC

Robotics and Mechatronics B. van de Vijver

46 A Human Robot Interaction Toolkit with Heterogeneous Multilevel Multimodal Mixing

Bibliography
Breazeal, C. (2002), Designing Sociable Robots, MIT Press, Cambridge, MA, USA, ISBN

0262025108.

Breazeal, C. and B. Scassellati (1999), How to build robots that make friends and influence
people, in Intelligent Robots and Systems, 1999. IROS ’99. Proceedings. 1999 IEEE/RSJ Inter-
national Conference on, volume 2, pp. 858–863 vol.2, doi:10.1109/IROS.1999.812787.

Brooks, R. (1986), A robust layered control system for a mobile robot, vol. 2, no.1, pp. 14–23.

Gennep, B. v. (2013), Believability is in the Eye of the Beholder, Master’s thesis, University of
Twente.

Granot, R. (2008), Introduction to Robotics: Chapter 11. Subsumption architecture, Course
slides.
http://math.haifa.ac.il/robotics/Presentations/pdf/Ch11_
Subsumption.PDF

Heylen, D. (2006), Head gestures, gaze and the principles of conversational structure, vol. 3,
no.3, pp. 1–27.

Jiang, R. and D. Crookes (2012), Visual Saliency Estimation through Manifold Learning.
https:
//www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5068/5364

Oosterkamp, J. (2015), Creating a toolkit for human robot interaction, Msc report 015ram2015,
University of Twente.

Reilink, R. (2008), Realtime Stereo Vision Processing for a Humanoid, Msc report 019ce2008,
University of Twente.
http://essay.utwente.nl/58108/

Robokind Robots (2016), Zeno - R25.
http://www.robokindrobots.com/zeno-r25/

Schneider, W. and R. M. Shiffrin (1977), Controlled and automatic human information
processing, I. Detection, search, and attention. Psychological Review, pp. 1–66.

Shiffrin, R. M. and W. Schneider (1977), Controlled and automatic human information
processing: II. Perceptual learning, automatic attending and a general theory, Psychological
Review, pp. 127–190.

University of Mons - NumediArt Institute - Attention Group (2015), Computational Attention -
Saliency Modeling and Applications, Web.
http://tcts.fpms.ac.be/attention/

University of Twente (2015), Software prototype, FACE robot interfaces and 2D/3D
representation using Temporal Disc Controllers for low- and high level behaviour controls,
expressive Agents for Symbiotic Education and Learning (EASEL).

Vandevelde, Cesar, e. a. (2014), Ono, a DIY open source platform for social robotics,
Proceedings of the 8th International Conference on Tangible, Embedded and Embodied
Interaction.

Watanabe, T., A. Mader and E. Dertien (2013), Exploring Anti-Social Behavior as a Method to
Understand Aspect of Social Behavior, 8th ACM/IEEE International Conference on
Human-Robot Interaction (HRI).

van Welbergen, H., D. Reidsma and S. Kopp (2012), An Incremental MultiModal Realizer for
Behavior Co-Articulation and Coordination, 12th International Conference, IVA 2012, Santa
Cruz.

B. van de Vijver University of Twente

http://math.haifa.ac.il/robotics/Presentations/pdf/Ch11_Subsumption.PDF
http://math.haifa.ac.il/robotics/Presentations/pdf/Ch11_Subsumption.PDF
https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5068/5364
https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5068/5364
http://essay.utwente.nl/58108/
http://www.robokindrobots.com/zeno-r25/
http://tcts.fpms.ac.be/attention/

	Summary
	Samenvatting
	Contents
	1 Introduction
	1.1 Context
	1.2 Setup
	1.3 Main goal
	1.4 Approach
	1.5 Report outline

	2 Analysis
	2.1 Using robots for social interaction
	2.1.1 Control on multiple abstraction levels simultaneously
	2.1.2 Literature on social interaction
	2.1.3 Behavior classification

	2.2 Related work
	2.2.1 Social robots
	2.2.2 Available toolkit

	2.3 Subsumption architecture
	2.3.1 Sub-behaviors
	2.3.2 Strength and weaknesses

	2.4 End-effector control
	2.5 AsapRealizer
	2.5.1 A complete system
	2.5.2 Communication
	2.5.3 Concluding

	2.6 Saliency
	2.7 Requirements
	2.7.1 Control design and software
	2.7.2 Hardware

	2.8 Concluding

	3 Design
	3.1 Control design (HMMM)
	3.1.1 Emotion mixing
	3.1.2 Gaze mixing
	3.1.3 Sequence mixing
	3.1.4 Animator
	3.1.5 External communication
	3.1.6 Parameters

	3.2 Software
	3.2.1 Existing functionality
	3.2.2 Saccade movements
	3.2.3 System resource usage
	3.2.4 Saliency detection
	3.2.5 Save shutdown

	3.3 Hardware
	3.3.1 Processing unit
	3.3.2 Camera location
	3.3.3 Display driver
	3.3.4 Power supply
	3.3.5 Casing
	3.3.6 Portability
	3.3.7 MIDI controller

	3.4 Final system

	4 Results
	4.1 Control design (HMMM)
	4.1.1 Gaze mixing
	4.1.2 Validation of HMMM

	4.2 Software
	4.2.1 Performance
	4.2.2 Saliency detection

	4.3 Hardware
	4.3.1 Portability
	4.3.2 Cameras
	4.3.3 Evaluating the hardware changes

	4.4 Final system

	5 Conclusion and recommendations
	5.1 Conclusion
	5.1.1 Control design and software
	5.1.2 Hardware
	5.1.3 Research questions
	5.1.4 General notes

	5.2 Recommendations

	A Demonstration instructions
	A.1 Manual control
	A.2 Demonstration mode
	A.3 Autonomous mode

	B EASEL architecture
	C External communication
	C.1 Communication basics
	C.2 Saliency
	C.3 Emotion
	C.4 Sequence
	C.5 Feedback
	C.5.1 Gaze feedback
	C.5.2 Prediction feedback
	C.5.3 Planning and progress (general) feedback

	D Bill of materials
	Bibliography

