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Abstract—This paper introduces an approach to reconstruct
full body motion from a small set of inertial sensors using a
long short-term memory (LSTM) network. Although a small set
of sensors provides incomplete information for this task, missing
degrees of freedom are estimated based on pre-recorded full body
motions. Several hyperparameters were tested and their effects
on the LSTM’s capabilities of synthesizing full body motion
were evaluated and compared with a standard feedforward
neural network (FFNN). Our results show that the LSTM
performs no better than a FFNN on this problem, indicating
that information from the past is unhelpful for estimating missing
degrees of freedom. Also, it was found that the networks have
difficulties making correct estimations when excluding positional
information from our set of sensors as estimator.

Index Terms—Recurrent neural networks, long short-term
memory, deep learning, body movement estimation, motion
capture.
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I. INTRODUCTION

THE process of capturing and reconstructing full-body
movement with high-quality motion capture (mocap)

technologies often requires many sensors or markers to be
strapped to each body segment. As a consequence, these
mocap technologies are often far too expensive for private
usage. Also, they are inconvenient in use as it takes much
time to suit up. These problems could possibly be relieved
if the number of sensors can be reduced to a small number
as long as the ability to reconstruct full-body movement
remains without suffering from major reconstruction errors.
Although the usage of only a small number of sensors provides
insufficient information to capture full-body poses, missing
information could be estimated based on pre-recorded full-
body mocap data. This is based on the belief that natural
human motion is highly coordinated and the existence of de-
pendencies between (the positions of) limbs during movement
[1] [2] [3]. Modeling these dependencies is difficult however
due to the high complexity and dimensionality of human
movement. Previous works that have solved this problem
include that of Chai and Hodgins [1] and Liu et al. [4][5] who
successfully adopted the k-nearest neighbor method. Although
these authors have managed to achieve good results, their
approach also faces several limitations. First, their approach
assumes the knowledge of positional data in order to make
predictions. While capturing positional data is no problem for
e.g. marker-based mocap systems, accurately capturing this
information is much harder for inertial mocap systems due
to the occurrence of positional drifts. Since the goal of this
work it to obtain an inertial mocap system using only a few
sensors, it will be looked into whether positional data can

be omitted for sake of other (lower level) features as a basis
for predicting missing information. Other limitation of the
k-nearest neighbor method include the fact that it requires
an online database containing the expected motions at all
times and the problem of scaling badly when the size of
the database increases. To avoid these limitations, we turn
to the area of deep learning, which has demonstrated its
effectiveness in recent years by beating the state-of-the-art
in numerous pattern recognition tasks [6]. The deep learning
architecture most suitable for our problem is the recurrent
neural network and with that in particular the LSTM variant.
This architecture was chosen for its capability of handling
sequences of inputs, which was believed to be invaluable since
natural human movement is ’smooth’; we known that features
such as orientations, positions, accelerations, velocities, etc are
limited to a maximum rate of change over time, making the
targeted output likely more predictable given knowledge of
the past. Using the LSTM network, several different hyper-
parameter were tested such as how far the LSTM looks back
in time and the kind of features that were used as input. Given
the results of these tests, we took the network with the best
performing settings and compared it with a standard FFNN
using the same hyper-parameters (for as far as possible) to
determine whether the problem benefits from a recurrency.
Next to that, we compared the performances of networks using
positional data as input with networks excluding this data to
determine whether this feature can be omitted. By making
these comparisons, the following research questions will be
answered:

1) Does the problem benefit from a recurrency?
2) Can positional data be omitted from the input, possibly

for sake of other features, without suffering in perfor-
mance?

Our results show that for this problem, the performance of
the LSTM is on-par with that of a FFNN, regardless of the
depth with which the LSTM propagates back through time.
These findings indicate that the problem has little to no benefit
from a recurrency with our settings. Furthermore, we have
found the absence of positional data to have a negative effect
on each network’s performance.

The rest of the paper is structured as follows: section II pro-
vides background information about mocap and its problems,
the recurrent neural network and the LSTM. This is followed
by section III in which we provide an overview of works that
have dealt with the problem of full-body motion estimation us-
ing few sensors and works that have applied RNNs on mocap
problems. After that, we introduce our approach in section IV
which includes a description of the dataset, how features are
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normalized, the architectures and hyper-parameters that were
tested, how we synthesize motion from a network’s output
as well as how performances are measured. Section V then
presents the results, where we compare the performance of a
LSTM with that of a standard FFNN and where we compare
networks using positional data as input with networks omitting
this data. Finally, the paper is wrapped up with a discussion
in section VI, conclusions in section VII and suggestions for
future work in section VIII.

II. BACKGROUND

A. Motion capture

Motion capture has been an active field of research for
decades and has found its use in a wide range of domains,
including entertainment, medical applications, robotics, sports,
virtual reality and more. To this day however, there are a
number of drawbacks with mocap pending a solution. These
drawbacks are not only restricted to the aforementioned such
as high cost and being cumbersome in use, but also include
problems like being restricted to the space it is operated in (as
a consequence of sensitivity of equipment to electro-magnetic
interference or a camera requiring a specific field of view),
the possibility of occlusions, markers/sensors moving during
capturing, degrees of freedom offered by the system among
others. These drawbacks may not only prevent mocap systems
from possibly being suitable for commercial use, they might
also hinder it from being used in other potential applications.
In order to overcome some of the aforementioned limitations,
a vast array of different mocap systems have been developed
over the years, ranging from optical systems to mechanical,
acoustic, magnetic, inertial and more [7]. Unfortunately, many
of these approaches are not suited for private use. One example
of a system that has successfully introduced mocap for private
use is Microsoft’s Kinect [8], which uses a single, low-cost,
depth camera which is capable of tracking full-body motion.
Our proposed method in contrast focuses on capturing full-
body motion using an inertial system such as that found in
Roetenberg et al. [9], but reduced to contain only a small
number of sensors. Unlike visual mocap systems, these sys-
tems are less restricted to the space in which they are used
and they do not suffer from occlusion problems.

B. The recurrent neural network

The recurrent neural network (RNN) is an adaption to the
standard FFNN to allow it to process temporal information
by allowing information from previous inputs to persist in
the network. This is achieved by adding feedback loops to
neurons, granting them the ability to pass the results of
previous events to future inputs and to utilize this in making
decisions. As a result, the rules for calculating the network’s
output are also slightly different from that of a FFNN. First,
instead of taking a single vector x as input, we take a sequence
of vectors x1, x2, .., xT as input. Given this sequence, we can
calculate the activations in the hidden layer at each timestep
t as follows:

ht = σ(Whhht−1 +Whxxt + bh) (1)

In this equation, Whh denotes the weights of the feedback
loops going from the hidden layer to itself, Whx denotes the
weights going from the input layer to the hidden layer, bh is
the bias while σ denotes an elementwise application of the
normalization function (such as the sigmoid). Also note how
the equation is recursive since we add the activations of the last
timestep, ht−1, to the current input xt. Therefore, by applying
this equation recursively the activations at each timestep can
be calculated. Using the calculated activations, the output at
timestep t can then be computed by multiplying the activations
ht in the hidden layer with the weights Wyh going from the
hidden layer to the output layer, according to the rule:

yt =Wyhht (2)

Although the process of calculating the output is performed
recursively, training a RNN is similar to training a FFNN
and is per usual done with a variant on the backpropaga-
tion algorithm [10]. In this variant, called backpropagation
through time (BPTT), gradients are backpropagated through
the feedback loops by unfolding the network through time.
To see how this works in practice, see Figure 1 which shows
a chunk (e.g. a neuron) of a network at a timestep t = T
being unfolded for T timesteps back in time. Like standard
backpropagation, BPTT consists of a repeated application of
the chain rule, with the main difference being that gradients
are not only dependent on the output layer, but also on the
influence of the hidden layer at each timestep. Therefore to
update the weights in the hidden layer, we start by calculating
the error at timestep t = T using some cost function (such as
the mean squared error), and calculate each partial derivative
recursively using the obtained error. Since the weights in the
feedback loops are the same at every timestep, we can sum
the partial derivatives over all timesteps per hidden unit. By
doing so, we obtain their gradients which can subsequently be
used to update the weights. While this training method may
look fine on the surface, training a standard RNN can be very
difficult. One of the reasons for this difficulty is the fact that
errors are multiplied with each other in each timestep due to
the recurrency in Equation 1. As a result, when errors are
small, they quickly diminish. On the other hand, when errors
are large, they can quickly grow very large. Consequently,
weights are updated disproportionately and the network fails
to capture long-term dependencies.

C. The long short-term memory network

Several variants on the RNN have been proposed in order
to overcome its shortcomings. From these variants, the most
popular are the long-short term memory network (LSTM), first
introduced by Hochreiter and Schmidhuber [11] and the more
recent gated recurrent unit (GRU), introduced by Cho et al.
[12]. In this section, the LSTM will be discussed, which will
be used throughout this paper as it has established itself as
the most popular variant on the RNN while it has also been
proven that the GRU does not outperform the LSTM [13]. The
LSTM is much like the standard RNN, with the most notable
difference being that they replace ordinary hidden neurons
with special units called memory cells. See Figure 2 for an
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Fig. 1: Unfolding a chunk A from a RNN at timestep
t = T for T timesteps back in time.

Fig. 2: The composition of a single memory cell. Here
the nodes with the ×-sign denote activation functions,
whereas nodes with the ’S’ shape denote normalization
functions.

example of a memory cell. Each memory cell is a composition
of multiple units. The first and most import unit is the cell state
denoted by Ct in the figure. This is a neuron which stores a
value over time. It has a self-recurrent connection that allows
the cell state to either remember or forget a value from a
given timestep. This self recurrent connection is often called
the Constant Error Carousal (CEC) and has a fixed weight of 1.
The CEC solves the vanishing/exploding gradient problem by
enforcing a constant error flow from one timestep to another.
By doing so, LSTM’s are capable of learning the importance
of events that happened thousands of time steps ago [6]. Since
errors can easily flow through the CEC, additional units are
added to the memory cell to regulate which information is
allowed to flow into or out of the cell state. For this purpose, 3
gates are added, namely an input, output and forget gate, each
one interacting with the cell state in its own way. The first
step in the memory cell is to decide which information from
previous timesteps is allowed to persist in the cell state and
which information should be thrown away. This is regulated
by the forget gate. Next to that, the memory cell needs to
decide on the importance of new information from the current
timestep. This is regulated by the input gate. By combining
the flows from these two gates, we obtain the following update
rule for the cell state ct at timestep t:

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc) (3)

Here ft and it are the outputs of respectively the forget
and the input gates. All gates output a value between 0 and
1. Note that when for example ft outputs a 0, it means that
all information from previous timesteps is dropped, whereas
if it outputs a 1, all information from previous timesteps
is retained. Similarly, it determines the importance of new
information. This new information is specified by the term
Wxcxt + Whcht−1 + bc, which is similar to Equation 1. In
this term, we simply add the activation of the input at the
current timestep with the activation from the previous timestep.
The normalization function for this term is chosen to be

the hyperbolic tangent (tanh) function, which puts it in the
range [−1, 1]. This has the benefit that values in the cell state
can either be increased (if important) as well as decreased
(if unimportant) when combining them with the information
obtained from the previous timesteps (that is ftct−1). Now that
the activation function of the cell state has been determined,
we specify the functions for the gates. These are specified by
the following equations:

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (4)

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (5)

ot = σ(Wxoxt +Whoht−1 +Wcoct−1 + bo) (6)

Here f , i and o are respectively the forget gate, input gate,
and output gate. Again, these equations are somewhat similar
to Equation 1, with the difference being that the output of the
last cell state is now also included. Here we take the current
input xt, the activation of the previous timestep ht−1 and the
activation of the last cell state ct−1, and combine them after
multiplying them with their respective weights. Next to that,
the σ denotes the sigmoid function in these 3 equations such
that the gates produce outputs in the range [0, 1]. Finally, the
actual output of the memory cell needs to be decided. For
this purpose, the output gate is added. This gate essentially
filters the output of the cell state after it has been normalized
according to the following equation:

ht = ottanh(ct) (7)

III. RELATED WORK

A. Motion estimation from a reduced sensor set

While the problem of estimating full human body motion
on the basis of a small number of sensors is found increas-
ingly more often in the literature, only few related works
are available to this date. This section therefore serves the
purpose of giving an overview of works dealing with the
same or resembling problems. Most works dealing with this
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problem have adopted the k-nearest neighbor search, often
in combination with PCA to reduce the dimension of human
motion. Works following this approach include that of Chai
and Hodgins [1], who uses a setup consisting of a subset of 6-9
retro-reflective markers in combination with two synchronized
video cameras to estimate full-body poses using positional
data. This is performed using a heterogeneous database con-
sisting of 10 different full-body exercises measured with a set
of 41 markers. Exercises in their database include walking,
running, hopping, jumping, boxing and Japanese sword art.
For estimating full-body motion with their reduced marker
set, they perform queries on their database for poses most
fitting for the current motion. More recent work following
the same approach include that of Liu et al. [5], who uses
a set of 6 inertial sensors placed at the ankles, hands, torso
and head to estimate full-body motions using positional and
orientational data. Exercises in their database include boxing,
golf swinging and table tennis. Using this approach, Chai and
Hodgins as well as Liu et al. report positive results, capable
of synthesizing a naturally looking animation comparable in
quality to those obtained from a commercial mocap system.
Similarly, the work of Tautges et al. [14] also uses the k-
nearest neighbor method, but instead uses acceleration data
obtained from a set of 4 accelerometers placed at the wrists and
ankles for predictions. Although these works report positive
results, their approach of using a k-nearest neighbor search
also faces problems such as requiring an online database
containing the expected behaviors at all times as well as
scaling badly when the size of the database increases. By
using an artificial neural network instead, we’re not bound to a
database once the network has been trained. Furthermore, we
expect neural networks to be more robust at estimating poses
that are not necessarily contained in the dataset. This belief
is based on the fact that the k-nearest neighbor method lacks
any form of parameterized function, making it less capable of
generating new outputs as the output is simply obtained by
averaging over the k nearest samples in the dataset. A neural
network on the other hand represents a parametric function,
capable of generating outputs that may not be able to be
obtained by averaging over samples in the dataset.

B. Motion estimation neural networks

To the best of our knowledge, no previous attempts have
been made that use (deep) artificial neural networks to estimate
full human body motion using a small number of sensors.
There are however numerous papers to be found that use
(recurrent) neural networks for forecasting or recognizing
human action. Fragkiadaki et al. [15] uses a LSTM with 3
hidden layers in addition to a restricted boltzmann machine to
forecast motion for up to 600 miliseconds. Forecasting poses is
tested in two different settings; One using a dataset of mocap
data and one using data collected from video. Activities that
the network is trained on include walking, eating and smoking.
Next to forecasting motion, numerous papers can be found
that apply RNNs for classifying motion. Unfortunately, most
of these papers focus on motion captured by video rather than
from a mocap system, making them only very loosely related.

For a paper that uses mocap data instead, we refer to Bitzer
and Kiebel [16] who uses a standard RNN in combination
with PCA to successfully classify three different walking styles
(childish, depressed and shy).

IV. METHOD

A. Dataset

The dataset used contains the full-body movements of 6
participants (3 men and 3 women) performing 16 different
activities. The performed activities include physical exercises
and other activities of daily living such as walking with a
cup of water in hand, running, squats, etc. Each activity was
executed 3 times in succession, totaling up to a dataset with
6 · 16 · 3 = 288 trials in total. Measurements were done
using Xsens’ MVN Link [9], a mocap system containing a
set of 17 Inertial Measurement Units (IMUs) which maps
their outputs to a human model containing 23 segments. Each
IMU is composed of a 3D accelerometer, a 3D magnetometer
and a 3D gyroscope, offering multimodal sensor information
at a sampling rate of 240Hz. Captured features include the
orientation, position, (angular) velocity and (angular) accel-
eration for each IMU. Despite the fact that these kind of
sensors provide a lot of different information, the only features
of interest are the orientation, angular velocity and angular
acceleration. The positions, velocities and accelerations are
omitted as they are not reliable enough due to drift and the
fact that they are dependent on the length of the person.
Now that features have been determined, we also select a
subset of 5 segments from the 23 segments of the human
model which will form the basis for estimating the remaining
18 segments. For the remainder of this paper, we will call
these subsets for in- and output respectively Sx and Sy . The
segments chosen for Sx correspond with the forearms, the
lower legs and the pelvis. See also Figure 3 depicting the
positions of the segments in these subsets. The segments in
Sx were chosen under the assumption that they hold the most
information about the segments in Sy . Reasoning behind this
choice is that the features of the forearms and lower legs
are dependent on the features of respectively the upper arms
and upper legs, whereas the reverse is true to a far lesser
extend. Furthermore, we suspect that the segments located at
the hands, feet and toes are too independent from the rest of
the body to form reliable predictors. Next to that, similar to
Chai and Hodgins [1], we chose the pelvis as centralization
point for normalizing the features of the other segments as the
pelvis is the most stable segment during movement, holding
the most reliant information about the general orientation of
the body. This way, the features relative to the pelvis can be
calculated such that global translations and rotations of the
body are removed. Finally, now that useful features and a
set of predictors have been determined, a test- and training
dataset need to be determined. As we are interested in the
feasibility of estimating motion regardless of user or the
kind of exercise that is performed, we split the dataset by
person and train the neural networks on all exercises from
the group of training persons. Although it is suspected that
higher performances may be attained by training networks per
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person and/or exercise as it lowers the amount of variance
between samples, that is not the goal. Therefore the networks
are trained on all trials performed by all participants in the
training dataset to obtain a general system. Here the training
set is obtained by treating participants 1-5 as the train subjects
while treating person 6 as the test subject. This way, it can
be tested how such a system would perform on a new person,
similar to how it would be in a real-life setting.

Fig. 3: Locations of the segments as captured by the mocap
system. The segments denoted by blue form the subset Sx and
are used for estimation. The segments denoted by red form the
subset Sy that is to be estimated.

B. Feature normalization

Before the selected features can be fed to a neural network,
some pre-processing and standardization needs to be applied.
Currently, there are several problems with using the raw
features. First, all features are based on a global translation and
rotations of the body, meaning that the values of the features
change depending on the general direction of the measured
person. As a consequence, when for example a person rotates
around his/her Z-axis (such that the general direction that
person is facing changes), then the features’ values will
also change accordingly. This has the undesired effect that a
person’s general direction is included in the features whereas
this is independent of his/her body posture. In order to translate
the features such that they lose this dependency, from the set
of segments, one segment is chosen as a centralization point.
For this purpose, the segment located at the pelvis was chosen
as it is located near the center of the body which is relatively
stable during movement. Using the orientations of the pelvis,
the features of the remaining segments can be translated such
that they are relative to the pelvis, removing global translations
and rotations in the process. Following these translations, each
of the features need to be normalized to make them suitable

for a neural network. How this normalization is performed is
dependent on the kind of feature. Followed is a description
per feature of its normalization process. These normalizations
are thus applied on the features relative to the pelvis:

1) Orientations: The orientations are represented by quater-
nions, which have two representations for any given ori-
entation, namely Q =

[
q1 q2 q3 q4

]
and −Q =[

−q1 −q2 −q3 −q4
]
, such that Q = −Q. As a conse-

quence, each orientation may be represented by one of the two
representations, which is problematic as it hinders the neural
network from learning a mapping from in- to output. In order
to deal with this problem, each quaternion is converted to the
same representation. This is done by checking the term q1 for
negativity and negating the whole quaternion if this holds true.
As the values of unit quaternions are already in the interval of
[−1, 1] (with the exception of q1, which is now in the range
of [0, 1]), no further normalization is required.

2) Angular velocity and angular acceleration: As it is
desired that a change in one feature has the same amount
of influence on the output as an equal change in another
feature, each feature must be translated to the same range of
[−1, 1]. In order to rescale features into this range, their value
range must be known. However, the problem with features
such as the angular velocity and angular acceleration is that
their value range is practically unbounded. For this reason,
we measured the value distribution of the features relative to
the pelvis over the entire dataset and determined their bound-
aries accordingly. See Figure 4 for histograms containing the
frequency distribution of the features relative to the pelvis
for the segment corresponding with the left forearm over the
entire dataset. The frequency distributions of other segments
in Sx revealed to have a similar distributions, but were left out
for organizational reasons. Based on these figures, the value
ranges for the angular velocity and angular acceleration were
determined to be respectively [−10, 10] (m/s) and [−50, 50]
(m/s2). Using these boundaries, each value is rescaled to
[−1, 1] according to the following equation:

f(e, a, b, c, d) =


c, if e ≤ a
d, if e ≥ b
e−a
b−a · (d− c) + c, otherwise

(8)

This equation rescales an element e ∈ R by applying the
mapping [a, b] 7→ [c, d]. Here elements e are expected to fall
in the range of [a, b]. Elements that happen to fall outside this
range are cut off to the nearest value in this range.

C. LSTM architectures

This section describes the LSTM networks that have been
tested and their hyper-parameters. Several parameters were
varied and their impact on the network’s performance was
measured to determine their optimal settings. Tested parame-
ters include:

1) The number of timesteps that the LSTM will propa-
gate back through. For this parameter, we have tested
the values {1, 5, 10, 15, 20, 25, 30}, which correspond
with backpropagating through {0, 16 ,

2
6 , .., 1} seconds.
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(a) Angular velocity left forearm (b) Angular acceleration left forearm

Fig. 4: Value distributions of the angular velocity and angular acceleration relative to the pelvis over the whole dataset. Each
value is grouped under the integer closest to it, i.e. values in the range [−0.5, 0.5) are grouped as 0, values in the range
[0.5, 1.5) are grouped as 1, etc. The above distributions are based on the segment corresponding with the left forearm. The
other input segments show similar distributions.

Although our mocap data is sampled at 240Hz, we
downsample it to 30Hz by taking only every 8th frame.
Reason for doing this is twofold. First, consecutive
frames will be very similar to each other at 240Hz,
therefore likely adding little benefit to a LSTM when
backpropagating through time. Second, by decreasing
the sampling rate, it becomes easier and computationally
less heavy for a LSTM to look further back in time. Once
the trials have been downsampled, a zero-padding needs
to be applied before each sequence of frames obtained
from a trial. This is performed to allow the LSTM to
backpropagate through t timesteps at all times, which
is needed considering the first frame of each trial does
not have any predecessors. In this process we add t− 1
vectors containing only zeros in front of each sequence
of input vectors

[
v1, v2, .., vn

]
obtained from a trial

to obtain a new sequence
[
vz−t+2, v

z
−t+3, ..v1, v2, .., vn

]
where a vector vzi denotes a zero vector. Samples for
the LSTM are then obtained using a sliding window of
length t starting at vz−t+2 to v1 and shifting one position
at a time. Note how each sample is consequently a se-
quence of t vectors inherently containing all information
from the past.

2) The size of the hidden layer. Two different settings for
the number of hidden units were tested, namely a smaller
network containing 30 hidden units and a bigger network
containing 100 hidden units.

3) The features used as input. Two different inputs were
tested, namely:

a) (relative) Orientations of the segments in Sx

b) (relative) Orientations, angular velocity and angu-
lar acceleration of the segments in Sx

These features were chosen under the assumption that
orientations are essential as input whereas it was un-

certain whether features that explicitly indicate a rate
of change with respect to time such as the angular
velocity and angular acceleration will improve perfor-
mance. These features were therefore tested separately
from each other.

Given the inputs, we train all networks to output the (relative)
orientations of the segments in Sy . Reason for using only the
orientations as output is twofold. First, the orientations (i.e.
quaternions) already fall conveniently in the range of [−1, 1],
making them suitable as targeted output. Second, forward kine-
matics can be applied to translate the segments’ orientations to
positions such that full-body poses can be derived. Using these
in- and outputs, the samples are divided into mini-batches to
speed up training and reduce overfitting. For the mini-batches
a size of 200 is chosen, following the guidelines proposed by
Bengio [17] who suggests to choose this value between 1 and
a few hundreds. Furthermore, each network is trained for a
maximum of 100 epochs, which was found to be sufficient.
In each epoch, the order of the samples in the trainingset
is randomly shuffled. Recall that a single sample consists
of multiple vectors accumulated over t timesteps, therefore
retaining temporal information when shuffling. Shuffling is
done to avoid the networks from adapting too much and
possibly favoring exercises seen in the most recent trials over
exercises seen in previous trials. Also, we try to avoid any
other overfitting by adding a dropout to the connections from
the input layer to the hidden layer. For this parameter, a value
of 0.5 is chosen as it is close to the optimum for a wide
range of networks and tasks [18]. Additionally, in these same
connections we use the rectified linear unit (ReLu), described
by f(x) = max(0, x), as activation function as it is fast and
as it does not suffer from the vanishing gradient problem
[17][19]. Next, going from the hidden layer to the output
layer, a linear activation function is used since the networks
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are trained to perform a regression. For the same reason, we
use the mean squared error cost function. Finally, all networks
are trained using the rmsprop optimization function [20] as
benchmarks have shown that it works very well for training
RNNs [21].

D. Post-processing

With the neural networks trained to estimate relative ori-
entations, some translations need to be applied in order to
derive full-body postures from the network’s output. First,
given that the acquired output may contain estimation errors
it is likely that the estimated orientations (quaternions) are not
of unit length as conform the rules of a quaternion. Therefore,
each quaternion Q =

[
q1 q2 q3 q4

]
is first normalized

such that they have a magnitude of 1, where the magnitude
is defined as m =

√
q21 + q22 + q23 + q24 . Once normalized,

each orientation is translated back according to the pelvis to
obtain an estimation of the original, global, orientation. Now
that the network’s output is translated to usable orientations,
the results are merged with the orientations from the input set
Sx to obtain the orientations of all segments. Finally, given
all orientations, the knowledge of the segment lengths can be
utilized to obtain their positions and to construct a full-body
posture.

E. Distance measure

In order to determine a network’s performance, a distance
measure is needed since a network’s estimation error does not
necessarily reflect its ability to synthesize accurate motion.
Reason for this twofold. First, a low average estimation error
does not automatically indicate that the estimated orientations
are in fact close to the real orientations. Consider for example
an estimated orientation (quaternion) defined by its 4 terms q1
to q4. Even when 3 of the 4 terms are estimated correctly one
of the terms may be completely off from the real value, yet
resulting in a relatively low average error. This may ultimately
have a much bigger impact on the estimated body pose than in
the case when all 4 terms are equally off with the same average
error. Second, when translating orientations to positions, the
orientations of some segments have a much bigger impact on
the resulting body pose than others. For example, an estimation
error in the upper leg affects the positions of the segments in
the whole leg, whereas an estimation error in the foot has a
much lesser impact. For these reasons, instead of using the
network’s estimation errors as performance measurement, we
measure the average Euclidean distance between the positions
synthesized by the network’s output and the original posi-
tions over the whole test set. In mathematical terms this is
formulated as follows. Assume our test set consists of n trials
T1, T2, .., Tn and assume that a given trial Ti (with 1 ≤ i ≤ n)
contains mi frames f1, f2, .., fmi

. Now each of these frames
contains the positions of 23 segments, s1, s2, .., s23. Let’s
denote the estimated position of segment sk (with 1 ≤ k ≤ 23)
at frame j (with 1 ≤ j ≤ mi) of trial i as

[
x′ijk, y

′
ijk, z

′
ijk

]
and the real position at this same frame as

[
xijk, yijk, zijk

]
.

Then we calculate the average Euclidean distance over the test
set as follows:

1

23 · (
∑n

i=1mi)
·

n∑
i=1

mi∑
j=1

23∑
k=1√

(x′ijk − xijk)2 + (y′ijk − yijk)2 + (z′ijk − zijk)2

Here in the term
∑n

i=1

∑mi

j=1

∑23
k=1 we first iterate over

all n trials, followed by iterating over all mi frames
contained in the current trial i and finally we iterate
over all 23 segments that are contained in each frame.
Next, we calculate for each segment the Euclidean dis-
tance between its estimated and real positions in the
term

√
(x′ijk − xijk)2 + (y′ijk − yijk)2 + (z′ijk − zijk)2. Fi-

nally, once the Euclidean distances of all segments contained
in the dataset have been summed up, we calculate the average
by multiplying the result with 1

23·(
∑n

i=1 mi)
.

F. Measuring performance

Given just the distance measure as noted above, it is hard
to tell how much a network ends up learning and whether
its performance is acceptable. Therefore, we use two other
approaches as reference points for our LSTM networks. First,
to determine what a network’s minimal performance would
be in the case it ends up learning nothing, we calculate
the averages over all features used as output in the training
set. Given these averages, we combine them with the known
input features, determine the segments’ positions accordingly
and calculate the average Euclidean distance from the real
segments’ positions. Second, to determine the benefit of having
a recurrency in the neural network, we compare the LSTM’s
average Euclidean distances with that of a standard FFNN us-
ing the same hyper-parameters (with exception of the number
of timesteps used).

V. RESULTS

A. Hyperparameters vs performance

See Figures 5 and 6 for two plots containing respectively the
performances of LSTM networks using different input features
and LSTM networks using different number of hidden units for
each tested number of timesteps. Here the errors are obtained
by comparing the estimated positions with the real positions
over the whole testset, as explained in section IV-E. Looking
at the figures, it can be seen that the averages as well as
the standard deviations of networks using higher number of
timesteps (i.e. 25 or 30) is slightly worse than those of the
networks using fewer number of timesteps. These differences
are marginal at best however, and generally speaking there
does not seem to be much of a relation between the network’s
performance and the depth with which it propagates back
through time. Next to that, in Figure 5 it can be seen that
networks using only the orientations tend to outperform those
that also use the angular velocity and angular acceleration.
Similarly, in Figure 6 it can be seen that networks using 100
hidden units outperform similar networks using 30 hidden
units.
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Fig. 5: Number of timesteps used vs performance for two
kind of networks using different inputs. The blue line
represents LSTM networks using only the orientations as
input. The red line represents LSTM networks using the
orientations as well as the angular velocity and angular
acceleration as input.
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Fig. 6: Number of timesteps used vs performance for two
kind of networks using different number of hidden units.
The blue line represents LSTM networks using 30 hidden
units. The red line represents LSTM networks using 100
hidden units. All networks in this graph use only the
orientations as input.

B. LSTM vs FFNN vs average

From the networks of which the performances were seen
in Figures 5 and 6, the best performing network (albeit
marginally) was found to be the LSTM with 100 hidden
units, using the orientations as input and using a timestep of
15. We compared this network with a FFNN containing the
same number of hidden units and calculated their Euclidean
estimation errors per exercise in the testset. The results can be
found in Figure 7 together with the estimation errors obtained
by using the averages of the output features in the training set
as estimation. As can be seen in the table, the FFNN performs
slightly better than the LSTM, despite being a much simpler
network and having far fewer weights (recall from section
II-C that a single memory cell in a LSTM is a composition
of multiple units/weights). Next to that, it can be seen that
both networks consistently perform better than the estimations
that are based on taking the averages over the features in
the training set. Although this indicates that the networks do
end up learning some relations between in- and outputs, the
differences are not substantial either for many exercises.

C. Visualizing exercises

Since the results in Figure 7 do not tell much about the
synthesized motions in itself, we plotted and visually examined
the exercises to determine the cause of the estimation errors.
In this section, we present several plots from the series of
exercises which depict the causes for the estimation errors
the best. First, see Figure/video 8b for a plot of exercise 1,
executed by the test person and synthesized by the FFNN using
only the orientations as input (this network is the same as the
FFNN of which the results were seen in Figure 7). When

comparing this video with the original seen in 8a, it can be
seen that the motion as synthesized by the FFNN contains
little to no movement in the upper arms. In order to see
whether this problem persists throughout other exercises and
to determine the degree of this problem, we examined exercise
14, in which the participant was asked to rotate his/her arms
around the shoulder and to touch his/her legs among others.
See Figure/video 9b for a plot of the motion as synthesized by
the FFNN using only the orientations as input. Looking at the
video, it can be seen that the same problem persists, despite
the fact that the orientations of the forearms cover a wide
range of possible values in this exercise. Next to that, upon
examination it also becomes apparent that the FFNN using
only the orientations as input has severe problems estimating
the spine. This is most visible when the test person touches
his/her toes. While this motion causes the spine to bend in
the original video as seen in 9a, the spine remains straight in
the motion synthesized by the FFNN using the orientations as
input. This same problem is also visible to a lesser degree
in exercise 6, which can be seen in Figure/video 10b. As
seen in Figure 7, this exercise was the one with the worst
performance. Not only does the synthesized motion suffer
from the same problems seen before (stagnant upper arms and
spine), it also faces the problem of incorrectly estimated legs.
When comparing the original motion as seen in 10a with the
synthesized motion seen in 10b, it can be seen that the legs
remain relatively stable in the former video whereas they move
during the exercise in the latter video.
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Fig. 7: Performances per exercise. Here ’average’ (yellow) denotes the performances obtained by using static values as
’estimations’, calculated by taking the averages over the output segments in the training set.
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(a) The original (b) FFNN, orientations (c) FFNN, orientations+positions

Fig. 8: Exercise 1: walking and running.

(a) The original (b) FFNN, orientations (c) FFNN, orientations+positions

Fig. 9: Exercise 14: Combing hair, scratching back, touching toes with straight legs, rotate arms around shoulder.

(a) The original (b) FFNN, orientations (c) FFNN, orientations+positions

Fig. 10: Exercise 6: sit-ups and cross-sit-ups.

D. Inclusion vs exclusion of positional data

Considering the problems that the FFNN faces when using
only orientations as input, we tested whether these same
problems remain when including positional data. See the
Figures/videos in 8c, 9c and 10c for the motions as synthesized
by a FFNN that includes positional data in addition to the
orientations as input. Other hyperparameters of this network
are kept the same as the FFNN that only used orientations as
input. Looking at the videos, it can be seen that the inclusion
of positional data greatly improves the network’s capability
of estimating the orientations of the spine and the upper
arms. This is especially well visible in video 9c where the
synthesized motion approximates the original much closer than
the motion seen in 9b. Consequently, the FFNN that includes

positional data as input has a much lower reconstruction
error. While the FFNN using only orientations as input scored
an average estimation error of µ = 0.098 with a standard
deviation of σ = 0.048 over the whole training dataset (as seen
in Figure 7), the FFNN that includes positional data scored an
average of µ = 0.079 with a standard deviation of σ = 0.034.
Although this change improves the performances, it must be
noted however that the problem of legs moving remains in
exercise 6 as seen in video 10c.

VI. DISCUSSION

In the last section it was seen that the inclusion of the
angular velocity and angular acceleration as input does not
improve a network’s performance. Furthermore, it was seen
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that a network’s performance is greatly improved by the
inclusion of positional data in the input. When excluding
positional data, it was found that both the LSTM and the
FFNN were unable to correctly estimate the orientations of
the upper arms and the spine among others. These differences
in performance are the result of there being no clear one-
to-one mapping from in- to output when only regarding the
orientations as input. This is an undesired consequence caused
by the fact that different body poses can generate the same
orientations in the set of input segments. This can easily be
seen when considering a single arm for example. It is possible
to move the upper arm without changing the orientation of the
forearm. As a result, the network simply learns the average
over all outputs seen for a given input, causing it to output a
(near) constant value. On the other hand, when positional data
is included in the input, the number of possible outputs for a
given input is far smaller.

Aside from that, it was seen that the performances of the
LSTMs were roughly the same regardless of the number of
timesteps used. Furthermore, results in Figure 7 have shown
that the LSTM’s performance was slightly worse than that of
a FFNN. These results indicate that that the problem does
not benefit from a recurrency with respect to time. This may
partly be caused by the previously noted problem of having
no one-to-one mapping from in- to output when using only
the orientations as input. To elaborate this further, recall from
Equation 3 that the activation of a memory cell in the LSTM
is a combination of the input at the current timestep and the
previous timesteps. Considering that no apparent relation may
exist between in- and output when using only the orientations,
the LSTM may learn that previous timesteps have no relation
with the output. Consequently, the forget gate in the LSTM
may learn to drop (almost) all information from previous
timesteps, in which case the recurrency fails to provide any
benefits. Although this may partly explain why the LSTM fails
to outperform the FFNN, first preliminary tests using an LSTM
that includes positions in addition to orientations as input have
shown that this network also performs worse than a FFNN
using the same features. Therefore, the lesser performance of
the LSTM may also simply be caused by the difficulty of the
problem. As we are dealing with a problem where a regression
is performed on an output with a dimension of 72, finding a
relation between inputs with respect to time and linking them
to the consequences on the output may be an incredibly hard
task.

Next to this problem, another issue that was seen in
Figure/video 10 was the problem that the legs move in the
synthesized motion whereas they remain relatively stable in the
original. Likely, this is the result of the normalization approach
that was taken. With the current normalization approach, all
segments are normalized according to the orientation of the
pelvis. As an undesired consequence, when the pelvis moves,
all features change accordingly. Consequently, a change in
the orientation of the pelvis may cause other segments to
move in the motion as synthesized by the network. This is
likely what happened in Figure/video 10b and 10c, since the
pelvis moves during sit-ups. Another undesired effect of the
normalization approach is that the networks are unable to

differentiate between for example a person standing straight
up or lying on the floor. Although this approach reduces the
amount of possible in- and outputs, it also causes the network
to lose information that may have been important for a correct
estimation.

Summing up the problems discussed above, when omitting
positional data, it was found that the networks were unable
to estimate body poses correctly, regardless whether a LSTM
or a FFNN was used. Comparing these performances with
the performances reported in works such as that of Chai and
Hodgins [1] and Liu et al. [5], who report results that are
comparable to commercial mocap systems, we have found
our approach to be of a lesser quality. This difference in
performance can mainly be attributed to the lack of positional
data however, since we have been able to estimate motion
reasonably well with the inclusion of positional data. However,
since accurately capturing this information using an inertial
mocap system is problematic, it is discouraging to utilize this
information. Lastly, it must also be noted that the works of
Chai and Hodgins [1] and Liu et al. [5] use a motion database
containing fewer exercises than ours, which makes the task of
estimation motion inherently easier.

VII. CONCLUSION

We have presented an approach that uses a LSTM network
for motion estimation using a small number of sensors and
compared its performance with a standard FFNN. Our findings
indicate that the problem does not benefit from a recurrency.
Furthermore, it was found that features containing information
with respect to time, such as the angular velocity and angular
acceleration, to be unhelpful as input. Also, it was found that
the exclusion of positional data in the input greatly decreases
performance.

VIII. FUTURE WORK

Although it was found that the LSTM was unable to
outperform a FFNN and that the lack of positional data
hinders a network’s capability in finding a mapping from
in- to output, several adjustments may be made that could
help improve a network’s performance. First, while concrete
positions may not be obtained reliably from an inertial mocap
system, it is expected that having general knowledge of how
sensors are (roughly) located in space relative to each other
is sufficient. Capturing such spatial information may be easier
than capturing concrete positions, easing the problem.

Another change which could increase a network’s perfor-
mance is by (partly) including the orientation of the pelvis.
Currently, all information about the pelvis and about a person’s
general orientation in space is lost. As a result, when the pelvis
moves during a motion, the orientations of other segments may
unintentionally change with it, as was seen in Figure/video
10. Giving the network the ability to distinguish between such
body poses by including features from the pelvis may increase
its performance.

Other improvements that can be made include adding a 6th
sensor to the system. Currently, the segments located at the
forearms and lower legs are used as input to the network,
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while using the pelvis for normalization. The problem with this
approach is that these segments provide very little information
about the spine for example. To alleviate this problem, an
extra sensor may be added. We propose to position this extra
sensor at e.g. the T8 or the neck such that the orientation of
the spine is included in the input. Our first preliminary result
using a FFNN that includes the T8 while using positions and
orientations as input, achieved an average Euclidean estimation
error of µ = 0.067 and a standard deviation of σ = 0.029
over the training dataset. This is a reasonable improvement
compared to the µ = 0.079 and σ = 0.034 when using only
the original 5 segments.

Finally, the performance could possibly also be increased by
distributing the task of estimating orientations over a cluster of
multiple neural networks. Currently, a fully connected network
that maps all input segments to all output segments is used. As
a consequence, the network tries to find relations between e.g.
the lower legs and the upper arms, whereas they are expected
to have little relation with each other. To solve this, we propose
to use a cluster of 5 networks; one for each arm, one for each
leg and one for the torso, each one using only input segments
that are expected to have a strong relation with the output.
Once trained, these networks could be combined to form a
single, sparsely connected neural network.

All in all, a wide range of different approaches remain
that have yet to be investigated more closely. It is our belief
that much better results can be obtained using the right
combination of approaches. This belief is based under the
assumption that proper spatial data can be obtained from a
system with few sensors, as spatial data is believed to be
invaluable.
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