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1
I N T R O D U C T I O N

Privacy within technology is increasingly becoming an issue for con-
sumers. For example, Apple has mounted a large effort to protect the
privacy of their customers after the FBI demanded them to compro-
mise a suspect’s phone to access its data [1]. While this in itself is not
a large issue, the underlying principle of a government demanding a
company to reduce the security of its product definitely is. It would
eventually affect many users, and infringe upon their privacy. This
issue has led to many discussions, making customers aware of their
privacy and how it is secured. As a result of this, services like What-
sApp have enhanced end-to-end security through encryption [2].

Privacy concerns relate mostly to personal information and (pri-
vate) communications. Our communications have shifted more and
more from fixed line telephony towards Internet networks as band-
width has increased and mobile (LTE (Long Term Evolution)) net-
works have become widespread. VoIP (Voice over Internet Protocol)
is now slowly taking over our telephony needs, just as email has
largely taken over our message-sending needs. Over the past years,
more and more VoIP traffic has be seen going through traditional IP
networks [3, 4].

With mobile networks becoming more and more capable, the shift
towards mobile VoIP has started. More and more mobile VoIP so-
lutions are available and used more frequently by consumers [5].
However, there are some caveats that come in the way of this trend,
both technological and economical. At the moment, many mobile
networks provide enough bandwidth to support a VoIP connection,
but these communications can be unreliable, causing problems in the
communication. These problems are, for example, delay and jitter in
the connection, quickly reducing the perceived quality of the conver-
sation greatly, making a VoIP call worse than a standard call. Costs
and data usage limitations of data on mobile networks can reduce
the advantage of VoIP running over the Internet instead of standard
telephony lines. Other issues such as keeping SIP (Session Initiation
Protocol) channels open, discussed further in Section 2.1, also make
mobile VoIP solutions difficult.

With voice communication shifting towards Internet networks, the
risk that our privacy can be compromised increases. IP networks are
easier to abuse than traditional PSTNs (Public Switched Telephone
Network), due to the fact that many more attack vectors already ex-
ist for which the technology is easily attained and used and no spe-
cial hardware is necessary. RTP (Real Time Protocol) and SIP are
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2 introduction

traditionally not secured, and extra protocols have to be used for this.
Many different reasons exist to hack into VoIP networks, such as theft,
corporate espionage and information warfare. These attacks can be
performed by a variety of attackers, from unskilled casual hackers to
highly skilled foreign intelligence agencies [6].

To guard the privacy of VoIP communication, especially when used
in mobile networks, the security of the connection has to be guaran-
teed. In this work we look into multiple ways to secure VoIP connec-
tions and explore alternative of using a secure VPN (Virtual Private
Network) tunnel through which VoIP can be set up. We describe how
this can be practically used and discuss the viability and caveats of
such a solution.

In all, we can see that VoIP is indeed an important technology, and
is becoming more and more prevalent in networks. It is used in cor-
porations and by consumers, and is shifting more and more towards
mobile phones, replacing the old standard telephony system. We can
also see that privacy is becoming a larger concern for consumers, and
companies are making changes based on this. This privacy concern is
not just towards attackers, but also towards companies handling our
data.

1.1 research problem and questions

In many VoIP solutions, it is not clear how secure communications
actually are. Using SIP and RTP is definitely not secure, and their
secure counterparts might still leak some information. The communi-
cations happen over a widely and easily accessible network however;
contrary to PSTNs, IP networks are much easier to infringe upon, so
the communications are exposed. By using a VPN to protect commu-
nications, not only VoIP traffic is protected, but also all other traffic
that makes use of the secure tunnel. This can provide an integral
solution, if it is feasible.

1.1.1 Questions

In this thesis, this problem will be addressed, and the question will
be answered:

How to secure VoIP to protect privacy on mobile phones?

To answer this main question, these sub-questions will be addressed:

1. What are VoIP communication characteristics?

To say anything about VoIP, we first look into what VoIP pro-
tocols actually look like. Different protocols and technologies
will be analyzed and traffic characteristics measured. VoIP in-
frastructure will be set up as a testbed.
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2. What are the differences between mobile VoIP solutions?

Currently, many solutions for VoIP already exist on the mobile
app markets. These applications will be reviewed and tested on
efficiency and security. Based on this, we can gain some idea of
the technologies currently used and how privacy is protected in
these applications.

3. How does a VPN tunnel affect different types of traffic?

To see how we can safely tunnel traffic through a VPN, we have
to look into what the VPN does with the data. A VPN net-
work will be set up as a testbed. While performance analy-
sis shows small differences between OpenVPN and IPSec, tests
can be done to check performance depending on configuration,
packet size, throughput and other variables that might occur in
traffic. This will provide a basis for setting up VoIP through a
VPN.

4. How can VoIP be secured with a tunnel?

To secure VoIP, a tunnel connection can be used. This provides
more features and less adaptation to software than other solu-
tions. How this can be done and how secure such solutions are
will be analyzed and discussed.





2
B A C K G R O U N D

2.1 voice over ip

Traditionally, calls have been made over PSTNs. Nowadays, with In-
ternet being widespread, VoIP is becoming the standard to accom-
plish this. Because the infrastructure is mostly present (Ethernet
networks), many businesses implement an internal VoIP network for
communication.

VoIP generally works with a signaling protocol such as SIP and
a media protocol such as RTP. This separates a control channel and
the media channel. With SIP, one person can send an invitation to
someone else, and receive signals that a phone is ringing. When the
phone is picked up, this is signaled back and a media session is set
up through which the voice data is sent back and forth. SIP also
establishes the settings that should be used for the media channel,
such as encoding options. Signaling traditionally worked with the
H.323 protocol, but a shift towards SIP occurred as it is generally
more flexible and inter-operable.

VoIP networks can provide many extra features besides making
calls and transferring the voice data. This is one of the advantages
over a PSTN, besides the lower costs. Beside voice, other multimedia
can be sent over the RTP channel as well.

However, the standard way to set up VoIP, using SIP and RTP, is
completely unsecured. Improvements upon these protocols exist, and
variations on SIP and RTP have been engineered. Below, we discuss
the SIP and RTP protocols.

2.1.1 Signaling

To indicate that a call is incoming, to receive it and to negotiate set-
tings, a signaling protocol should be used for VoIP. The most common
protocol for this is SIP (Signal Initiation Protocol).[7]

SIP works on either TCP (Transmission Control Protocol) or UDP (User
Datagram Protocol). The RFC specifies that either is possible, and
TCP is only required for large messages. In practice, UDP is used
mostly on networks with many clients, and TCP on networks with
less, as TCP creates more overhead. SIPS, the secure variant of SIP
proposed in the RFC, works by sending the SIP messages encrypted
via TLS (Transport Layer Security). This requires SIP to work over
TCP, which is not always good for performance.
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6 background

The SIP Protocol is based on an HTTP-like model where every re-
quest results in a reply from the server. Header fields are not fixed
and depend on the type of message that is sent. To set up a call for
example, Invite packets are sent to the receiving SIP phone, and Ring-
ing and OK packets are sent back. After such a setup phase, a media
session is set up, which is mostly an RTP channel. [7]

The payload of a SIP packet can vary depending on the usecase. For
example, for exchanging information about a session, the SDP (Ses-
sion Description Protocol) can be used. SDP defines a standard for
conveying information about the media, addresses and other meta-
data that might be necessary for the channel. [8]

The header of an invite packet would look like this:

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds

Max-Forwards: 70

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710@pc33.atlanta.com

CSeq: 314159 INVITE

Contact: <sip:alice@pc33.atlanta.com>

Content-Type: application/sdp

Content-Length: 142

In the use-case of VoIP, in general there is a central server called
the SIP registration server. Clients register on this server with their
identity (a username, fore example). Other clients that register on
this server can then invite these clients for a VoIP session. Sometimes,
registration is done via a larger infrastructure where payments can
also be made for these voice calls. The SIP server can also connect to
old POTS (Plain Old Telephone System) networks via relays.

2.1.2 Media

To handle the call, the data can be sent in numerous ways. The most
standard way to do this is via RTP (Real Time Protocol). RTP is a
protocol that can deliver all sorts of media over a channel that is
supposed to be streamed and is time-sensitive. RTP also specifies
the sub-protocol RTCP, a control protocol for RTP. RTP and RTCP are
used in VoIP as the media channel to transfer the voice data. [9]
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

V=2 P X CC M PT Sequence Number

Timestamp

Synchronization Source (SSRC) Identifier

Contributing Source (CSRC) Identifiers
...

Payload (RTP data)
...

The characteristics of the RTP channel depend on the type of data
that is sent through. In the case of voice data, characteristics also
depend on the type of encoding used. There are many different en-
coding types available. The standard types are defined in an RFC
and include voice encoding options such as G722, G723, GSM, L16

(uncompressed) and MPA. For video, encoding such as JPEG, H263

and MPV exist [10]. IANA (Internet Assigned Numbers Authority)
specifies other supported encoding options as well, but registering
new ones is not possible any more. Media types can be registered as
MIME (Multipurpose Internet Mail Extensions) types for RTP now.

While RTP packets simply carry encoded data with timing and se-
quence information, RTCP packets control higher level information.
They can provide synchronization for multiple RTP streams and mon-
itor traffic information such as the QoS (Quality of Service) of the
media channel.

2.1.3 Attacks on SIP and RTP

While the concept of SIP-based VoIP systems is quite simple (SIP to
signal, RTP to send data), this simplicity allows for many security
vulnerabilities. SIP does not provide any Confidentiality, Integrity
or Availability in its standard form. There are many (basic) attacks
on SIP and RTP because of this. [11, 12]. Besides the protocol be-
ing unsafe, SIP implementations are not always robust and secure,
providing even more vulnerabilities [13].

2.1.3.1 Hijacking

As SIP is usually based on UDP, no connection is set up and mes-
sages are easily blocked and forged by an attacker. The attacker can
then fake a registration request as many times as he likes, for any of
the users that can register. If successful, an attacker takes over this
user’s connection to the VoIP proxy and calls will be routed to him.
Authentication attacks against SIP client also exist and result in the
same type of hijacking [14].
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This can be used to reroute calls to the attacker, but in the case
where an account can have multiple registrations per account, an at-
tacker could also misuse accounts to make calls without incurring
costs.

2.1.3.2 Proxy in the middle

As phones generally connect to a proxy over UDP without any strong
encryption and no authentication from the proxy to the user, it is
easy to impersonate a proxy and collect data on calls. From this
basic attack, many options for further attacks are possible, such as
monitoring calls, impersonating users, forging messages, etc.

Such a proxy can be inserted in the network in numerous ways.
An attacker could circumvent SIP traffic to the malicious proxy by
manipulating the DNS (Domain Name System), routing the traffic
based on the configured domain name on the SIP phones. Many
MitM (Man in the Middle) attacks work to establish such a proxy,
including ARP (Address Resolution Protocol) spoofing or even recon-
figuring the phones directly.

2.1.3.3 Forging and manipulating messages

Because no strong authentication exist for the SIP messages, many
different attacks can be done by forging these messages. A very ba-
sic attack using this method is to incur a DoS (Denial of Service)
by flooding the network with INVITE messages or forging specific
requests that incur a high resource usage in specific SIP implementa-
tions, which are sensitive to such attacks[15]. Messages can be ma-
nipulated and changed because SIP does not provide any integrity
mechanisms by default. Other ways to disrupt services via message
manipulating include ending calls prematurely, and changing many
SIP configuration options.

2.1.3.4 Billing attacks

In commercial VoIP systems, clients pay for the usage of the network
and generally pay per minute or through a subscription. The billing
information for VoIP is sometimes also sent via SIP messaging. At-
tacks on these messages are called billing attacks, and can cause over-
billing on users. By dropping BYE packets from the client, sessions
can last indefinitely long without the user knowing. The same kind of
situation happens when the client is sent a BUSY packet (which is not
SIP authenticated) when in reality the session was set up legitimately.
An other attack involves reusing authenticated INVITE packets to set
up connections without the client’s knowledge [16].
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2.1.3.5 Final considerations

Standard SIP and RTP are not secure, and many attack vectors exist
against them. Other VoIP systems, using proprietary protocols might
therefore be safer. However, even Skype, which is widely used by
consumers and uses an entirely different and proprietary protocol, is
not entirely secure [17].

2.2 secure channels

In communications it can be necessary to keep certain information
private. To keep this information from potential eavesdroppers, we
can use a secure channel. A secure channel protects the information
in a way that an eavesdropper cannot learn what is communicated. In
addition to this, it protects the data from any manipulation, so that
the information that is communicated is guaranteed to be genuine.

In addition, the secure channel can try to reduce information that
can be leaked via covert channels [18]. These channels use meta-fields
such as headers that are sent with the data to carry (confidential)
information. More on this in section 2.4.2.2.

With security becoming a large factor in technology, many tech-
niques exist nowadays that provide a form of security on connections
such as encryption, authentication, and integrity checks. These tech-
niques can be quite fast and efficient, but typically in return for lesser
security guarantees. Tunneling VoIP through a secure channel miti-
gates many (if not all) of the problems mentioned in section 2.1.3. If
implemented correctly it can protect against almost all forms of DoS
attacks and can provide strong authentication for clients and servers.
A fast and reliable encryption scheme is definitely needed however,
as delays in voice communication can quickly cause the connection
to become unusable.

There are many encryption schemes that exist, which can generally
be categorized into asymmetric and symetric encryption schemes. In
asymmetric encryption schemes a pair of keys called the public and
private keypair is used. The public key can be freely exchanged and
used to encrypt data which is only viewable for the keeper of the
private key. While this makes key exchange very easy (the public
key can be freely sent over insecure channels), this type of system is
almost three orders of magnitude slower than its symmetric counter-
part [19]. In symmetric encryption schemes, a shared secret key is
used to encrypt and decrypt messages. While these schemes need
some way to exchange this key before communications can happen,
they are generally much faster [20].

VPNs are one of these solutions to provide a secure channel for
VoIP [21] and often provide even more functionality such as authen-
tication. Other ways to secure VoIP connections include the specially
designed SRTP (Secure Real-Time Protocol) (with ZRTP) protocol.
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2.2.1 Virtual Private Network

A virtual private network connects multiple points (an enduser or
subnet) of a network together via an extra layer, which can be thought
of as a tunnel, through which the data is sent. This tunnel can pro-
vide extra functionality depending on what technique is used such
as authentication, encryption, etc. VPNs can work on many different
layers of the OSI model, clearly categorizing different VPN solutions.

2.2.1.1 Internet Protocol Security

Based in the network layer, the IPSec (Internet Protocol Security) pro-
tocol can provide IP packets peer authentication, integrity, encryption
and replay protection. It supports two header modes, AH (Authenti-
cation Header) and ESP (Encapsulating Security Payload). Where AH
provides integrity and origin authentication, ESP also provides con-
fidentiality. ESP does this by encrypting the entire inner IP packet.
Because it functions on the IP Layer, it can easily protect all applica-
tion level data without application-specific adjustments.

authentication header The AH can provide integrity for all
IP fields which are not mutated during transit, such as TTL or header
checksums. It has IP Protcol number 51. It does this with the follow-
ing datagram [22]:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Next Header Payload Len Reserved

Security Parameters Index (SPI)

Sequence Number

Integrity Check Value (ICV)

The fields in this header all serve different purposes:

next header The IP protocol number of the packet after this header.
E.g. 4 for IPv4, 41 for IPv6.

payload len Length of the AH payload in 32-bit words.

reserved Not used, must be all zeros.

spi A 32-bit value to identify the SA (Security Association) with this
connection

sequence number An increasing counter value for every packet.
Used against replay attacks.

icv Result of the Integrity check value calculation, for which multi-
ple algorithms exist. Can be padded so the header is aligned
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on 32-bits for IPv4 or 64-bits for IPv6. For authentication and
integrity.

encapsulating security payload ESP also encrypts the en-
tire IP packet that should be sent. By doing this, it also removes the
ability to change the mutable fields that are left in AH. This can cause
some problems in routing (especially with a NAT (Network Address
Translation) device), but there are ways to mitigate this. It has IP Prot-
col number 50 and encapsulates the data in the following datagram
[23]:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Security Parameters Index (SPI)

Sequence Number

Payload data
...

Padding (0-255 bytes)

Pad Length Next Header

Integrity Check Value (ICV)

The fields in this header all serve different purposes:

spi A 32-bit value to identify the SA (Security Association) with this
connection

sequence number An increasing counter value for every packet.
Used against replay attacks.

payload data The contents of the IP packet that are now encapsu-
lated.

padding A padding can be added to align the whole plaintext block
on 32 or 64 bits.

pad length The length of the padding that was added.

next header The IP protocol number of the contents that were en-
capsulated.

icv Result of the Integrity check value calculation, for which multi-
ple algorithms exist. Can be padded to the header is aligned
on 32-bits for IPv4 or 64-bits for IPv6. For authentication and
integrity.

ipsec encryption schemes Different hashing and symmetric
encryption schemes are available for IPsec, as defined in RFC7321 [24].



12 background

They are: AES-CCM, AES-GCM, AES-CBC, AES-CTR, 3DEC-CBC.
For authentication, HMAC-SHA1-96, AES-GMAC and AES-XCBC-
MAC-06 can be used.

AES-GCM is recommended for IPSec payloads as it binds Authenti-
cation and Encryption well, and provides good performance [25]. It is
recommended in RFC6379 [26] in the proposed cryptographic suites.
However, IPSec VPNS can still have security issues. For example, the
VPN can leak information in covert channels [27].

2.2.1.2 OpenVPN

A popular VPN solution working on the application layer is Open-
VPN[28]. It is an open-source VPN solution, and as a result, many
different variations of it exist. The advantage of the open-source na-
ture of this VPN solution is that it supports a large range of encryp-
tion and authentication schemes. The main implementation supports
either OpenSSL or mbed TLS (formerly PolarSSL) since version 2.3.
As OpenVPN runs on the application layer, it does not require access
to the IP-stack and can run in userspace, which is an added ease of
use.

Under PolarSSL [29], OpenVPN supports the following encryption
schemes: AES, Blowfish, 3DES, DES, ARC4, Camellia and XTEA.
These are supported under many different modes of operations: ECB,
CBC, CFB, CTR, GCM, CCM. Based on PolarSSL, the OpenVPN-NL
version of OpenVPN[30] is especially tailored to guarantee a certain
level of security. It is stripped of insecure features and only supports
AES-256-CBC for encryption and SHA256 as a message digest. The
DH (Diffie-Hellman) group is required to be 2048 bits.

In comparison with IPSec VPNs, OpenVPN does not perform bet-
ter, but is easier in its use. However, IPSec has been in use much
longer, and support in hardware is better, which might explain the
small performance advantage it has over OpenVPN[31]. It is not clear
how packet size affects this performance.

2.2.1.3 Point-to-Point Tunneling Protocol

Defined in an 1999 RFC, PPTP (Point-to-Point Tunneling Protocol)
was one of the first widely used VPN protocols. It was implemented
with many Windows installations and is still available today. How-
ever, it is generally less secure than many alternatives such as IPSec
or OpenVPN. [32]

The Microsoft implementation of the PPTP protocol has also been
deemed as insecure by several research papers including one from
1998 [33, 34] when it was first analyzed. It was also concluded in
analysis and research by [35, 36]
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PPTP uses many different control packets. The data is sent via
a modified GRE (Generic Routing Encapsulation)[37] header and a
PPP (Point-to-Point Protocol) data packet.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C R K S s Recur A Flags Ver Protocol Type

Key (HW) Payload Length Key (LW) Call ID

Sequence Number (Optional)

Acknowledgment Number (Optional)

Data
...

Fields in PPTP:

c Checksum flag; GRE Header; set to 0.

r Routing flag; GRE Header; set to 0.

k Key flag; GRE Header; set to 1.

s Flag if sequence number is present. 1 if payload is included.

s Strict source route flag; GRE Header; set to 0.

recur Recursion control flag; GRE Header; set to 0.

a Flag if acknowledgement number is present.

flags GRE Header; set to 0.

ver 1 to indicate enhanced GRE.

protocol type Set to 0x880B.

payload length First half of GRE Key field used for payload length.

call id Second half of GRE Key field used for Peer’s Call ID (ses-
sion identifier).

sequence number Sequence number for the payload

acknowledgment number Sequence number for the highest GRE
packet received by the sending peer for this session.

data The data contains a PPP data packet.
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2.2.2 Secure Real-time Transport Protocol

SRTP (Secure Real-time Transport Protocol) is the secure variant of
RTP (Real-time Transport Protocol). It provides encryption, authenti-
cation, replay protection and integrity to the RTP protocol.[38]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

V=2 P X CC M PT Sequence Number

Timestamp

Synchronization Source (SSRC) Identifier

Contributing Source (CSRC) Identifiers
...

Payload (RTP data)
...

RTP padding RTP pad count

Encrypted





Authenticated

SRTP MKI (OPT)

Authentication Tag

Fields in SRTP:

version The version of the RTP protcol used

padding Bit flag to indicate padding is used

extension Bit flag to indicate extension headers are used

csrc count Number of CSRC identifiers included

marker Bit flag usage depending on profile

payload type The type of data that is sent (audio/video/encod-
ing/etc)

sequence number Random starting number and increased per packet
sent

timestamp Sampling instant of the first octet of data that is sent

ssrc Identifier for the synchronization source. Random per RTP con-
nection.

csrcs Other synchronization contributor identifiers.

payload The data that is sent. Type defined by the Payload Type
header field.

padding Padding to align the payload for encryption

srtp mki Master Key Identifier used by key exchange management
to identify master key from which session keys were derived.
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authentication tag Authenticates the data and header with a
checksum.

zrtp As SRTP does not have native key exchange built in, ZRTP
was created. It is named after the main creator (Zimmermann) and
RTP, the protocol for which it is designed. It provides a Diffie-Hellman
key exchange to agree on a session key and other parameters to set
up the SRTP session for VoIP specifically.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 0 1 Not Used (0) Sequence Number

Magic Cookie ’ZRTP’ (0x5a525450)

Synchronization Source (SSRC) Identifier

ZRTP Message
...

CRC

2.3 mobile voice over ip

In mobile systems, Android has become the largest and most widely
used Operating System [39] for smartphones. It is also very easy to
develop on and is a very flexible OS, which is why it is facilitating
research.

As VoIP is generally a cheaper option than normal phone connectiv-
ity, the demand for a mobile VoIP solution is definitely there. Many
such solutions exist nowadays on the mobile app markets. These
apps generally work very well on reliable WiFi connections, but tend
to have degraded call quality when used on mobile networks. These
have grown over the past years for better coverage and greater band-
width, but as VoIP is very sensitive to delays and jitter, some problems
still exist there. In time, these problems are likely to be resolved.

2.3.1 Android

Android devices range widely in specifications. To have some base-
line comparison, we take the top 6 android phone brands and spec-
ifications of their high-end phones. These specifications can give an
indication of the capability of these phones at the current moment.
To compare we take the chipset, the CPUs on the chipset, RAM, GPU
and battery size[40]. An overview can be seen in table 1.

Based on the chipsets, many of these phones are similar and all use
an octacore chipset (except the Moto G). Two out of six use the Snap-
dragon 810 chipset, which is similar to the Exynos 7 chipset used in
the S6 (although the latter is slightly faster). The LG uses a slightly
older version of this chipset, and the P8 uses a Kirin chipset which
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Table 1: Smartphone specifications

Brands Samsung HTC Huawei Sony LG

Type S6 One M9 P8 Xperia
Z5

G4

Chipset Exynos
7 Octa

Snapdragon
810

Kirin
930/935

Snapdragon
810

Snapdragon
808

CPUs 1.5GHz
A53,
2.1GHz
A57

1.5GHz
A53,
2.0GHz
A57

2.0GHz
A53,
1.5GHz
A53

1.5GHz
A53,
2.0GHz
A57

1.44GHz
A53,
1.82GHz
A57

RAM 3GB 3GB 3GB 3GB 3GB

GPU Mali-
T760MP8

Adreno
430

Mali-
T628

MP4

Adreno
430

Adreno
418

Battery 2550mAh 2840mAh 2680mAh 2900mAh 3000mAh

is similar, but has the more energy efficient A53 chip instead of the
faster A57 chip. The Moto G remains an exception with only a quad
core A53 chip. None of the phones described above, or any commer-
cially available phone has an extra co-processor for secure cryptogra-
phy. In terms of RAM, all phones have a similar configuration, with
3GB installed.

Most modern phones nowadays come with an extra processor for
video, a GPU. The GPUs that are installed are all very similar, but
there are differences between the phones. The Mali-T760P8 is at the
top of the list, with a slight performance increase (and less energy
consumption) than the Adreno 430. After this the Adreno 418 scores
best (although quite lower than the 430), then the Mali-628MP4 and
the Adreno 306. [41]

Battery capacity in smartphones are notorious for their low capac-
ity relative to their power consumption because of the limited space
available. All listed phones have a battery capacity of around 2500 to
3000 mAh.

2.3.2 Smartphone limitations

With embedded hardware in smartphones, they are limited in hard-
ware specifications because of size and operating range limits (such
as temperature) and power consumption. This severely limits the
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possible computational power that is available to do cryptography or
complicated protocol negotiations.

An in-depth research into the power consumption of a smartphone
was done by Carroll and Heiser. They note that:

“The GSM module consumes a great deal of both static
and dynamic power. Merely maintaining a connection
with the network consumes a significant fraction of to-
tal power. During a phone call, GSM consumes in excess
of 800 mW average, which represents the single largest
power drain in any of our benchmarks.” ([42])

While this research is a little dated compared to the great jumps
that were made in smartphone technology, this still seems to hold
true in more recent research from 2013 [43], in which the CPU is also
becoming a larger factor. It is now one of the main selling points for
CPU cores [44] and power consumption is now an important factor
in smartphone design.

In their research, Carroll and Heiser note that the power consump-
tion is very low when the phone in in a suspended state. Normally,
a phone can be in a suspended state for a very large part of the day,
reducing its power consumption greatly. If the phone is prevented
from going into the suspended state however, the battery can last as
short as a few hours. This is a very important limitation for mobile
systems.

2.3.3 Mobile VoIP solutions

Many different applications exist for VoIP on a mobile phone (in-
cluding Android). Not all of them operate securely, though. Some
VoIP applications only provide voice encoding, not encryption, which
could be a choice for better performance, but does not give any secu-
rity guarantees [45].

Nowadays, many voice applications have popped up on mobile
app markets. Popular VoIP apps for Android (April 2016) are:

• Viber

• Google Hangouts

• Skype

• Tango

• imo.im

• WhatsApp

• LINE

• Facebook Mes-
senger

• WeChat

• Vonage

Encryption is becoming increasingly more important for these ser-
vices, especially in light of recent events. WhatsApp has just changed
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its service to include end-to-end encryption on all media, including
calls [2]. WhatsApp does this with an intricate key and encryption
system. Keys are derived from a Root key, using different keys for
users and a public key published to the WhatsApp servers. This is
based on the double ratcheting algorithm to provide forward secrecy
in a messaging system such as WhatsApp. On top of this, connec-
tions to servers are also done over an encrypted channel. Voice calls
are encrypted using SRTP to encrypt the call. Signaling for calls hap-
pens via standard (encrypted) messages over which the SRTP master
secret is sent.

2.4 measurements

To define what makes a good mobile VoIP solution, measurements
will have to be done to compare different solutions. Important factors
for such a solution are the call quality and the impact on the mobile
phone. This should all be optimized while keeping the confidential
nature of the call intact as well.

The call quality largely depends on the codec that can be used,
which is directly tied to the amount of bandwidth that is available for
the VoIP call. It also depends on the reliability of this connection, as
no delays or jitter should occur.

The impact on the phone depends heavily on the power that is con-
sumed. The power consumption is largely made up of: the WiFi/3G
antenna, the CPU, the screen. This power consumption does not only
occur during the call, but can also make a big impact because of keep-
alive requirements of either the SIP or VPN channels.

Measuring the security of a VoIP solution cannot be done in a dis-
crete, objective manner, and different types of solutions (e.g. SRTP
versus a VPN channel) are not directly comparable. The security of
solutions will therefore have to be reviewed in a discussion, according
to standards and literature.

2.4.1 Measuring VoIP performance

To measure how efficient a VoIP solution is, we discuss several metrics
that could be used. No methodology is defined however, as that is
not the goal of this section.

List of performance metrics

overhead Byte overhead per data byte

power Power consumption for call

cpu time Delay imposed by extra (crypto) computations

connection quality Delay and jitter measurements to determine
call quality
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The performance can also be influenced by difficult configuration
issues which might not be solvable in every network. In some VPN
solutions, for example, getting the packets to traverse over a NAT
can be quite a problem, especially when they are encrypted. These
caveats should also be taken into account when researching these
solutions and will be discussed when they occur.

2.4.2 Discussing Security

While the performance of a VoIP or VPN solution can be easily mea-
sured with discrete measurements, it is harder to define how secure
such a solution is. Some attack vectors can be discussed objectively,
such as the level of encryption that is used, or the type of hash used
to sign a message. As not all attack vectors can be known, and some-
times depend on underlying protocols or systems, it is also a very
subjective topic. To mitigate known vulnerabilities, it is best to rely
on existing products and software that have been either tested or re-
searched extensively or even especially designed to be secure. This
is one of the reasons why basing the security of VoIP on a VPN is a
good idea, as it has been designed for robust security and has been
extensively tested.

In literature, such security considerations are always very specific
towards a product. General frameworks exist to test protocols for ba-
sic security features, but these are not relevant to test current VPN
technologies as they already suffice these guarantees. To discuss a
solution and its security level however, many different sources exist
on requirements for VoIP security. In section 2.2.1.2 we have already
seen such a requirement for OpenVPN to meet a certain security guar-
antee. Some of such sources are discussed in this section.

One important indicator for a secure solution is the level of encryp-
tion that should be used. The algorithm should be robust and the
key that is used should be of sufficient length. If this requirement is
met, several secondary performance indicators can be addressed. The
solution should minimize resource consumption (CPU and memory
usage), for example. The solution should also be fast, especially if it
is used to secure time sensitive traffic like VoIP.

Another important factor in how secure a product is, is how subjec-
tive it is to misuse as a covert channel. In such a misuse of a protocol,
information can be leaked out of a network undetected. This is also
discussed further below.

2.4.2.1 Standards

Security in (new) technology is especially hard to judge because at-
tack vectors might exist in unknown ways. Some standards do exist
for general security but are hard to apply to specific technologies. In
the case of VoIP, documents exist that discuss how VoIP should be
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set up to be secure. These standards are mostly set up by governing
organizations and governments. A few notable documents are:

nist The computer security division of the NIST has published a
“Security considerations for Voice over IP Systems”-document
with recommendations on its configuration and discusses secu-
rity for VoIP [46].

hksar The Government of the Hong Kong Special Administrative
Region also has a document published on VoIP security consid-
erations [47].

homeland security As attachement to the Sensitive Systems Hand-
book, VoIP is also discussed including checklists for security
[48].

2.4.2.2 Covert Channels

Even if the communication is entirely secure, information can still
be leaked, either intentional by a malicious party, or because of the
way a protocols works. These information leakages are called covert
channels [18] and are an important factor in how secure a protocol is,
and if it can be used in a certain setting. For example, if a protocol
allows for high cover channel throughput, it might not be suited to
be used in a corporate setting where information leakage is a critical
security concern.

In some protocols, even if the data is protected, some information
can be gained by analyzing the packets that are sent. This is a type
of attack where information can be gained via a side-channel such as
meta-data or timing. For example by monitoring the network for the
occurrence SIP communications, a malicious party could determine
whether someone is making a call, and possibly even to whom.

Another way covert channels can be (ab)used is by misusing certain
fields or properties of the protocol to hide information. This type of
misuse falls under steganography in protocols. A malicious attacker
can for example use fields or packet delays to sneak out information
from the internal network. This can especially be a problem for pro-
tocols with a high throughput, such as VoIP protocols [49]. This is
not only true for the data transfer phase of the VoIP call, but also in
the signaling phase, even if it is only short. In [50], research was done
into SIP steganography, and showed that 2000 bits can be sent in one
direction during the call initiation phase. In the data transfer phase,
even higher covert channel bitrates can be constructed, such as in [51]
sending over 1.3Mbits in a typical VoIP call and in [49]. Depending
on what kind of encoding is used, results differ.

One way to counter such leaking of information is by the use of
steganalysis [52]. This form of protection can be difficult for a real-
time protocol such as VoIP, because any (irregular) delay can have a
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large impact on the voice quality. However, some techniques exist to
detect steganography in VoIP such as researched in [53] and [54].





3
V O I P C H A R A C T E R I S T I C S

To analyze VoIP, and to compare different solutions later on, the stan-
dard characteristics of VoIP have to be determined. This part of the
research answers the first research question: What are VoIP commu-
nication characteristics?

3.1 methods

3.1.1 Setup

First, a VoIP setup based on SIP and RTP was configured. This was
done using an Asterisk PBX on a virtual Ubuntu server. Two clients
were connected to this PBX using Linphone on Ubuntu. See figure 1

for a diagram of the setup.

Figure 1: Virtual VoIP setup

A router with NAT was configured in the virtual environment.
Within this virtual environment, both clients and the server receive
an IP address. When the clients are started and Linphone is exe-
cuted, they register at the PBX through a SIP REGISTER message. An
example of this is seen below in figure 2. In this case, the client
is 192.168.56.101 connecting to the server at 192.168.56.103 using
TCP for SIP signaling.

This message is then rejected by the PBX, as authentication is re-
quired. A SIP 401 Unauthorized is sent back, including authentica-
tion settings with a nonce. This is used by the client to send an au-
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Figure 2: SIP Register message

thenticated SIP message including the authorization. This is replied
with an OK from the PBX.

3.1.2 Codec Performance

To test the VoIP connection, an audio sample was played over the
VoIP connection. First, a call is set up between the two clients. Aster-
isk can route the call in two ways, firstly as in figure 1 with the call
routed through Asterisk and secondly as in figure 3, with a direct
RTP connection. The SIP messages are always routed through the
Asterisk server.

Figure 3: VoIP with direct RTP

For this test, the call was be routed through the asterisk PBX. This
setup can best be used in a scenario where one (or both) of the callers
has to use a secure connection. This connection can then be specially
configured and secured by the PBX, without requiring anything from
the machine at the other end of the call.

Because of availability in Asterisk and on the VoIP client Linphone,
the following codecs were tested:
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speex A common very flexible codec designed for VoIP, tested in
8kHz, 16kHz and 32khz sampling rates.

µ/a-law Two versions of the G.711 codec, with slight algorithm
changes.

g .722 Standard wideband codec as improvement on the G.711 stan-
dard for better quality.

g .726 Bandwidth saving codec in comparison to G.711 codecs.

gsm A very (old) standard and widely adopted codec.

Some of these codecs support VBR (Variable Bit Rate), which can
reduce the bitrate needed depending on the voice data that is sent.
While this reduces bandwidth requirements, it can be unsafe, as shown
in a paper by Wright et al.[55]. By analyzing the VoIP packet lengths,
information about spoken sentences can be derived.

The procedure to test each codec consisted of numerous steps. First,
the VMs were loaded and configured. This consisted of the Server
VM, on which Asterisk was started. Then, two client VMs were
started with Linphone. Both Linphone applications were then con-
figured for the Asterisk server and registered. On the server VM,
/etc/asterisk/sip.conf was changed to only allow the specifc codec
that would be tested. The following lines would be added: (note that
‘;’ is a comment in this configuration file)

disallow=all

allow= <codec> ; (e.g. g722, speex32, etc.)

Then, tcpdump would be started with the following command:

$ tcpdump -s 0 -i eth0 -w <filename>.pcap

Following this, the call was set up between the two VoIP clients.
A one minute audio sample was then played from one client to the
other. The call was then ended and tcpdump stopped. The resulting
pcap was then retrieved from the client VM to the host machine. This
was repeated for each codec.

3.1.3 TCP Test

Asterisk can be configured to run over TCP. For this test, this config-
uration option was set. A few of the different codecs were enabled
and the voice sample was played over the channel.

For Asterisk, this means the SIP traffic goes over TCP, but the RTP
channel is still transported over UDP. The difference in SIP traffic size
can then be measured.

For this test, the same setup as depicted in figure 1 was used. The
SIP traffic, which is relevant to this test, was routed through the As-
terisk PBX.
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3.1.4 Frame size

An important factor in how VoIP traffic is shaped is how the voice
data is packetized. The RTP packets can be as small as 10ms of voice
data, or as large as 300ms. The range of packetization that is possi-
ble depends on the codec that is used. The range of values that are
possible are shown in table 2.

Table 2: Asterisk packetization options [56]

Name Minimum (ms) Maximum (ms) Default (ms) Increment (ms)

g723 30 300 30 30

gsm 20 300 20 20

ulaw 10 150 20 10

alaw 10 150 20 10

g726 10 300 20 10

ADPCM 10 300 20 10

SLIN 10 70 20 10

lpc10 20 20 20 20

g729 10 230 20 10

speex 10 60 20 10

ilbc 30 30 30 30

g726_aal2 10 300 20 10

The packetization options for G.722 were unknown. This was ex-
perimentally defined and discussed in results section 3.2.3. G.722

only supports a frame size of 10ms or 20ms in Asterisk.
One codec was analyzed for several different packetization values.

To facilitate a broad range of possible values, a codec with a large
maximum frame size was selected out of the codecs that are available
to us. This leaves G.726 with a range between 10ms and 300ms, G.711

codecs with a range between 10ms and 150ms, and GSM with a range
between 20ms and 300ms. The choice was made to perform the test
on the G.711 codec (µ-law or A-law) as it is commonly used as a high-
quality codec in VoIP systems. This does not allow for framing sizes
from 150ms to 300ms, but such values are almost never an option
anyway since they would incur too much delay and possible loss of
large chunks of voice data. The A-law codec was chosen as it has a
broader usage.

3.2 results

The results from both tests described in the methods section are de-
tailed below.
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3.2.1 Codec Performance

Results from testing the different codecs in the virtual environment
are summarized in table 3. The raw results are shown in appendix A.
These results relate to the RTP connection that was made for the call.
Per codec, the average jitter, packet count, RTP stream duration and
PPS (Packets per second) value is shown. The maximum jitter that
occurred is also shown. No RTP packets were lost in the simulation.

Table 3: Average RTP statistics and max jitter per codec

Codec Jitter Max. Jitter Packets Duration PPS

Speex32 17,91 130,18 3317 66,30 50,03

Speex16 17,70 61,62 3264 65,32 49,97

Speex8 15,53 35,10 3456 69,30 49,87

µ-law 17,41 54,85 3368 67,44 49,94

A-law 15,68 27,51 3608 72,13 49,97

G.722 15,85 41,24 3303 66,06 50,00

G.726 16,53 70,34 3369 67,53 49,89

GSM 16,31 26,37 3271 65,53 49,92

Note that the average PPS is almost always exactly around 50. All
listed protocols have a default framing size of 20ms. This means that
every 20ms, a frame is sent in a packet, resulting in 50 packets for
every second of voice data.

Results for the entire connection (SIP & RTP) are detailed in table
4. These results include the average amount of bytes that were trans-
ferred, and the average rate in KiloBytes per second that the connec-
tion had. Figure 4 shows the total amount of transferred bytes per
codec in a bar chart, clearly showing the large differences between
codecs.

Table 4: Average total payload and throughput per codec

Codec KBytes Rate KB/s

Speex32 1657,38 22,33

Speex16 1638,32 23,67

Speex8 1019,04 14,00

µ-law 2834,39 41,00

A-law 3035,33 41,33

G.722 2779,68 39,67

G.726 1129,56 25,00

GSM 1780,71 16,33
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Figure 4: Total bytes transferred per codec

3.2.2 TCP Test

In a standard call, with SIP configured to run over UDP, only 10 SIP
packets are interchanged between a caller and the PBX. An exam-
ple of this traffic, captured in the setup described in section 3.1.1, is
shown in figure 5.

Figure 5: SIP traffic over UDP

A notable feature in this traffic is that the INVITE packet is sent
twice. The first time, it does not contain any authorization data and
the response is a 401 Unauthorized. The response also contains the
authorization information with a nonce, which can be used to send
a valid authorized INVITE packet. In this example, only one Trying

and Ringing packet is returned, but these could be multiple packets.
When the same process is done, but with SIP configured to run

over TCP, 18 packets are exchanged. An example of this traffic, com-
parable to the UDP example, is shown in figure 6.

Interesting to note here, is that not all packets are replied to with
an explicit ACK packet. Specifically, the first INVITE message and the
SIP ACK message do not need a specific TCP ACK message.

We define three phases in the SIP traffic. First, the caller authorizes
himself and sends an INVITE packet. Next, the PBX sets up the call
and the caller sends an ACK message to acknowledge the call. Finally,
the caller ends the call with a BYE message which is confirmed.



3.2 results 29

Figure 6: SIP traffic over TCP

In table 5 the different phases are analyzed, comparing SIP over
UDP and TCP. Interesting to note is that, while the packet overhead is
large, the added bytes by TCP are not that large. As the configuration
was not entirely identical between the two tests, a correction was
applied to the UDP data. 62 bytes were reduced from both INVITE

packets and 22 bytes were reduced from the 200 OK packet to correct
for extra enabled codecs.

Table 5: SIP comparison between UDP and TCP

Packets Bytes

Phase UDP TCP Factor UDP TCP Factor

Invite 4 6 1.50 2851 3103 1.088

Setup 4 8 2.00 2199 2631 1.196

End 2 4 2.00 1006 1230 1.223

Total 10 18 1.80 6056 6964 1.150

3.2.3 Framing

3.2.3.1 Framing G.711

G.711 has a range of framing options between 10ms and 150ms. The
framing options increase with 10ms. In standard G.711, each 10ms of
data contains 80 bytes of payload. This means that the payload will
increase linearly as the framing size increases.

Each packet has an overhead, it consists of the following parts:

• Ethernet The ethernet encapsulation creates an overhead of 14

bytes

• IP In the testcase, IPv4 was used. This creates an overhead of
20 bytes. In the case of IPv6, this would be 40 bytes.

• UDP The UDP header has an overhead of 8 bytes.

As the packet overhead stays consistent at 42 bytes, the RTP con-
versation benefits if the amount of packets is reduced. The amount of
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packets depends solely on the size of the framing settings. Depend-
ing on which codec is used, the amount of bytes that is contained in
the packet is either larger or smaller than G.711. The results of the
amount of packets is displayed in figure 7 and for the data in figure
8. The raw results are displayed in appendix B. The data is corrected
to correspond to a 60 second conversation.

Figure 7: Data transferred results for framing test

Figure 8: Packet count results for framing test

While large framing sizes cause overhead to be reduced, they also
increase delay. The maximum one-way delay should be kept as small
as possible to guarantee good voice quality. This makes high framing
sizes not feasible in a real setting. It is clear from the data that large
overhead issues can be seen in lower framing sizes. After around
40ms, the difference of increasing the framing size is quite small,
making this a suitable choice. If an even larger gain is required, 80ms
could also be chosen as the framing size. This might incur some delay
however.

3.2.3.2 G.722 options

As the packetization options for G.722 were unknown, this was ex-
perimentally confirmed to be 20ms by default, and with a minimum
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of 10ms and maximum of 100ms. This was first attempted by over-
and underconfiguring the packetization values for G.722 (with 5ms
and 400ms) and measuring the resulting packets per second output.
However, this resulted in Asterisk to select the default 20ms value,
contrary to the specification. Options from 10 to 100ms were possible,
with 10ms steps. The direct results of over-configuring are presented

in figure 9. The pps values are
6603

66, 00
= 100, 05 and

3168

63, 30
= 50, 05 or

framing sizes of 10 and 20ms respectively.

Figure 9: G722 framing size results

3.2.3.3 Framing with compression

When changing framing options with a codec that uses compression,
compression might become more effective on a larger sample. In a
preliminary analysis, the following results were found for G.722, a
wideband codec that does compression effectively:

Table 6: Framing size with G.722

Frame size Payload Factor Normalized factor

10 92 1 1

20 172 1,87 0,935

60 492 5,35 0,892

80 652 7,09 0,886

100 812 8,83 0,883

The payload seems to increase in a non-linear fashion. However, on
closer inspection, there seems to be a 12 byte fixed size embedded in
the payload, with a further 80 bytes of voice data per 10ms of framing.
It does not seem to compress more efficiently on larger samples.
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3.3 final considerations

Results from the codec tests do not show large differences in perfor-
mance in regard to jitter and number of packets. There are however
(large) differences in the amount of data that is transferred. While
some codecs even use about half as much data as other codecs, such
as GSM compared to A-law, their quality is also generally perceived
as less.

Using SIP over TCP has a larger overhead than over UDP, but it
is not twice as large as the UDP variant of SIP. This is because some
TCP ACK messages are not sent if the SIP message is an ACK. There
are also not many SIP packets relative to the amount of RTP packets
in a call. This makes TCP a very viable option for SIP if it has benefits,
such as NAT port forwarding timeouts.

G.711 was chosen to do packetization tests with, as it is commonly
used and has a good MOS score. The specific A-law version of G.711

was chosen because of its broader usage, as µ-law is used only in
North America.

Packetization has a very large impact on the amount of overhead
produced in RTP packets. While larger framing sizes cause less over-
head, one-way delay should still be kept as small as possible. A fram-
ing size of 40ms seems appropriate for these requirements.
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M O B I L E V O I P S O L U T I O N S

To identify current popular ways of securing VoIP, a few important
mobile VoIP applications for Android were looked at. An analysis of
these applications answers the second research question: What are
the differences between mobile VoIP solutions?

Three large voice communication applications are analyzed in this
chapter. These are: Hangouts, Skype and Whatsapp. They corre-
spond to some of the largest Internet companies, respectively Google,
Microsoft and Facebook. These companies have different stances on
privacy and security, and their implementations in these applications
might be very different.

4.1 methods

The current trend is determined in three different ways. Firstly, the
three different companies will be quickly reviewed to discover their
stance towards privacy and security. Secondly, technical documen-
tation will be reviewed for the specific applications. Finally, packet
captures will be analyzed for the applications and analyzed.

For the second part, reviewing technical documentations, a litera-
ture study is done. Not only literature is regarded, but also white
papers and other documentation available from these companies.

The packet capture will be made using an Android phone. The
phone will be connected via WiFi to a wireless access point. Packets
will be captured at this access point using Wireshark. To accomplish
this, a laptop is used as the access point, with the wired connection
shared on the wireless interface. The network setup is depicted in
figure 10. The packet capture is then filtered for other traffic beside
the VoIP traffic.

Figure 10: Packet capture for apps

An analysis technique similar to the one used in a study by Azfar et
al.[45] will be used. Histogram analyses will be done for these traces
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to determine traffic security characteristics. The same voice sample
as used in section 3.1.1 will be used for these traffic captures.

In a histogram analyses of the data, the distribution of byte values
can be seen. If the data is encrypted, such a distribution is uniform.
If the data is encoded, chunking can be seen (groups of bytes with a
higher occurrence). In plaintext data, such chunking can also be seen,
and will be predictable depending on the data that is sent.

4.2 results

4.2.1 Information gathering

Specifications for the three different apps are looked up and inspected.
From these documents, some conclusions can be drawn on how se-
cure these applications are and thus how privacy is protected.

4.2.1.1 Hangouts

Google Hangouts encrypts all signals and audio/video. All signals
are encrypted over an HTTPS connection with authentication. Mes-
sages are sent with these signals, securing them as well. 128-bit AES
is used with ECDHE-ECDSA key exchange, also guaranteeing per-
fect forward secrecy on the transmission. [57] Signals are however
not encrypted end-to-end and Google has access to the unencrypted
data on their receiving servers. Audio and Video are encrypted using
SRTP with AES ciphers and an HMAC using SHA1 for authentication.
The Hangouts page added towards the end of 2015 that “To improve
audio and video quality, Hangouts calls use a direct peer-to-peer con-
nection when possible, instead of routing through a server.”1 This
implies that this was not true before this time, and not guaranteed to
be end-to-end.

4.2.1.2 Skype

One of the oldest and most known Voice over IP applications, Skype
has been actively used since 2003. Skype once started as a peer-to-
peer voice application, but after it was taken over by Microsoft in
2011, it replaced all peer-operated supernodes by Microsoft servers.

Skype states on its website that all communication is encrypted,
but this only seems to imply the connection to the server, as only
TLS is used for messages. When peers connect directly, AES is used.
However, Skype also states that “in the future it will only be sent via
our cloud to provide the optimal user experience.” [58]

Much criticism has been expressed against Skype as it was revealed
that many if not all of Skype communications were shared with gov-

1 Old version available at the Web Archive http://web.archive.org/web/

20150914224359/https://support.google.com/hangouts/answer/6046115?hl=en

http://web.archive.org/web/20150914224359/https://support.google.com/hangouts/answer/6046115?hl=en
http://web.archive.org/web/20150914224359/https://support.google.com/hangouts/answer/6046115?hl=en
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ernments by Microsoft. This shows that by routing many of the traf-
fic through their own supernode-servers, Microsoft gains access to
much of the unencrypted data. When once Skype was peer-to-peer
encrypted, much of this is now compromised. [59]

4.2.1.3 Whatsapp

Whatsapp has just recently updated their entire security backend
with the integration of the Open Whisper Systems algorithms. Be-
fore this, only a TLS channel was used to secure the communication
channel.

Their new encryption scheme was even published in a white paper,
making their security schemes publicly available for review. This is
rare for large popular apps, and great for public knowledge.

4.2.2 Trace analysis

For each application, three sample measurements were taken. The
measurements entailed a call of approximately 30 seconds, with call-
ing phase and hanging up included. Each application is discussed
below, detailing basic results from the samples, histogram analysis
and other remarks.

4.2.2.1 Hangouts

Hangouts connects directly to a Google server, though which the con-
nection is routed. STUN (Session Traversal Utilities for NAT) is used
for NAT traversal. The basic trace results are shown in table 7. Signal-
ing seems to be done via the QUIC (Quick UDP Internet Connections)
protocol. Voice data is sent in UDP payloads. No direct connection
was set up between clients, although this seems to be quite feasible,
as other applications did manage to do this.

Table 7: Hangouts basic trace results

Hangouts

1 2 3 Average

Packets 4901 3804 4234 4313

Bytes 733555 568342 624325 642074

Duration 51,4 38,7 47,7 45,93

PPS 95,35 98,29 88,76 94,14

kBPS 7,51 5,65 6,87 6,68

The histogram data for Hangouts, as shown in figure 11, does not
show any strange particularities. The data seems to be spread out
evenly with minimal clustering. This supports the information given
on the Hangouts website.
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Figure 11: Hangouts Histogram results

4.2.2.2 Skype

Skype directly connects the two clients to form the voice connection
initially. STUN seems to be used for NAT traversal in this phase. Very
quickly however, a connection via a Skype server is set up. This con-
nection is setup using TURN (Traversal Using Relays around NAT).
After a few seconds, all data is sent over this connection. It is strange
that a TURN relay is set up for the connection, where only STUN was
sufficient for hangouts to traverse the NAT. This occurred for all three
samples.

Compared to the other apps, Skype used the least amount of bytes
per second. The results can be seen in table 8.

Table 8: Skype basic trace results

Skype

1 2 3 Average

Packets 3546 4939 3525 4003

Bytes 436843 617072 438392 497436

Duration 35,8 48,6 34,5 39,63

PPS 99,05 101,63 102,17 100,95

kBPS 4,31 5,93 4,19 4,81

The histogram data for Skype is a little less consistent than the one
for Hangouts. This is most likely caused by the TURN encapsulation
of the data, causing some small bumps that are not uniform in the
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data. The rest of the data does seem to be spread uniformly, support-
ing the statements about Skype’s encryption.

Figure 12: Skype Histogram results

4.2.2.3 Whatsapp

Whatsapp does not connect two clients to each other, but a connection
to a Facebook server is set up instead. All traffic is routed through
this connection. Much like the connection with Hangouts, STUN is
used for NAT traversal. Contrary to Hangouts, the STUN messages
are used very sparingly, and only when it is needed, which heavily
reduced the amount of packets for this connection. Results are listed
in table 9.

While Whatsapp used a very limited number of packets compared
to the other applications, it did carry the most bytes per second. This
can potentially be more efficient as less overhead is used. It most
likely means that the compression for Whatsapp is worse than the
other apps.

Out of all three applications, the histogram for Whatsapp is most
consistently spread. This supports the fact that Whatsapp is properly
encrypted.

4.3 final considerations

Google Hangouts, Skype and Whatsapp all have different encryption
schemes in use. They all employ different techniques of communi-
cation though, which results in different characteristics in their trace
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Table 9: Whatsapp basic trace results

Whatsapp

1 2 3 Average

Packets 1088 968 925 994

Bytes 210683 194669 181370 195574

Duration 44,1 37,7 40,5 40,77

PPS 24,67 25,68 22,84 24,40

kBPS 8,34 7,40 7,75 7,83

Figure 13: Whatsapp Histogram results

samples. Skype seems to employ the best compression, and uses
TURN for NAT Traversal. Whatsapp and Hangouts turn out to be
very similar, using slightly more bytes per second than Skype.

A trend can be noticed for apps to go towards end-to-end encryp-
tion. This can be seen in apps such as Whatsapp changing their proto-
col to employ OpenWhisper encryption algorithms, but it is also not
the best for every use-case. This trend currently exist mainly because
of the heightened demand for end-to-end encryption. While this was
not an issue or an important feature of applications for consumers
before, now applications are criticized for their encryption choices.
However, on the other side of this discussion exists a darker argu-
ment: When everything is entirely secure (and maybe even anony-
mous), no legal surveillance can be done by governments or compa-
nies monitoring internal traffic. This makes these techniques very
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suitable for malicious usage such as exfiltrating information from a
network, or having illegal communication.





5
V P N T U N N E L S

In this chapter, VPN tunnels are discussed. Two different types of
VPN are tested, OpenVPN, which works on the application layer,
and IPSec VPN, which works on the IP layer. As VoIP traffic can be
very vulnerable to delays and unreliable bandwidth, it is important
to know how the VPNs affect the data that is transferred. The third
research question How does a VPN tunnel affect different types of
traffic? will be discussed in this chapter.

VPNs are generally used to connect different networks or machines
together. A typical example is securely connecting to a corporate
network from home. All traffic sent to the connected network is then
secured through the tunnel.

Figure 14: Network setup for VPN Tunnels

5.1 methods

Both VPNs were setup and configured in the virtual environment. As
they work in very different layers of the OSI stack, they have a very
different technique to encapsulate the data. These ways, and their
configuration in the setup, are discussed.

Both VPNs have a network configuration as depicted in figure 14.
Two client VMs are connected to the main server VM. A network can
exist between the server and the client, as the data is fully encapsu-
lated and encrypted.

5.1.1 OpenVPN

OpenVPN creates a second interface device through which a connec-
tion can be made by an application. This can either be a TAP or TUN
interface, corresponding to OSI level 2 and OSI level 3 networking re-
spectively. All packets sent through this interface are encrypted with
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the configured encryption scheme. As we make use of the OpenVPN-
NL package, this encryption is AES-256-CBC, signed with SHA256.
Additionally, the packet contents can be compressed using LZO (Lem-
pel–Ziv–Oberhumer) compression.[60]

Serverside, OpenVPN is configured with a TUN interface. It uses
the private 10.8.0.0/24 subnet for VPN routing. It is configured to
let clients see each other on the network. A root CA was setup, gen-
erating certificates for the clients and the server. DH-2048 parameters
were also generated for the server. The configuration can be seen in
appendix D.1.1.

Two client VMs were configured with OpenVPN, using generated
client settings and certificates from the server. The clients connect
with the same certificate, but are given separate IP addresses. As
the client-to-client setting is enabled, traffic can flow from one client,
through the VPN server, to the other client. The client configuration
can be seen in appendix D.1.2.

5.1.2 IPSec

IPSec works as part of the Internet Protocol. To secure the connection,
ESP (Encapsulating Security Payload) is used. This is done to use
IPSec as OpenVPN was used: to encrypt the payload. The encryption
is done with AES-256 as was used in OpenVPN. This makes both
protocols comparable in terms of speed and overhead efficiency.

On the server, IPSec is configured with a receiving PPP (Point-to-
Point) tunnel interface using xl2tpd. The Openswan IPSec distribu-
tion is used. The tunnel uses the IP address range 172.16.1.30-100.
As authentication scheme, MS-CHAP v2 was configured. In contrast
to the OpenVPN setup, no certificates were generated for IPSec, but
a PSK (Pre-Shared Key) was configured. For CHAP authentication,
users ‘alice’ and ‘bob’ were created with a simple password. The
configuration can be seen in appendix D.2.1.

Two client VMs were configured to connect with the IPSec server.
IPSec using xl2tpd was set up for the users ‘alice’ and ‘bob’ on these
clients. Their configuration is listed in appendix D.2.2.

5.1.3 Tests

For both VPNs, several tests are performed. Because OpenVPN and
IPSec function very differently, they are not subjected to the same
tests entirely.

5.1.3.1 UDP packet range test

A range of different UDP packets are tested to see the effect of the
VPN solution. This shows the amount of overhead the VPN produces
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on each data packet. UDP packets with sizes of 100, 200, 400, 800 and
1600 bytes are tested.

To measure the VPN difference, packets are captured on the eth-
ernet interface (eth0), where the packets are encapsulated, and on
the VPN interface (tun0 for OpenVPN, ppp0 for IPSec), on which
the original packets are captured. By comparing these results, the
encapsulation characteristics can be determined.

5.1.3.2 Compression

OpenVPN and IPSec can additionally compress packets if enabled
in the configuration. To test this compression, it was enabled in the
server configuration, and the range of UDP packets was sent again.
Both traces are compared against each other again to determine the
scope of the compression. Packets are sent with a random and semi-
random payload to test the compression.

5.1.3.3 IPSec Encapsulation

To traverse a NAT, IPSec can be encapsulated in UDP packets. This
option was forced in the IPSec configuration to test the overhead cre-
ated by the encapsulation. It is enabled with the forceencaps=yes

option. Packets were again captured on both interfaces, and com-
pared to define the scope.

5.2 results

5.2.1 UDP packet range test

The UDP range test was performed for both OpenVPN and IPSec.

5.2.1.1 OpenVPN

The results for OpenVPN can be seen in table 10. Captures on the
ppp0 interface do not contain a link-layer overhead, which the eth0

captures do. This overhead of 14 bytes is corrected in the tables be-
low. A clear difference can be seen in the encapsulated and unencap-
sulated packets. The results show that the OpenVPN encapsulation
adds between 89 and 97 bytes in overhead for unfragmented packets.
An example can be seen in figure 15 without the encapsulation, and
the same packets after the TUN interface encapsulation in figure 16.

Results for all packet sizes are shown in table 10. The overhead
differs a bit for the different sizes. If the packet is fragmented, Open-
VPN creates even more overhead, as can be seen at the 1600 and 3200

byte values.
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Figure 15: OpenVPN Unencapsulated packets for 800 bytes UDP test

Figure 16: OpenVPN Encapsulated packets for 800 bytes UDP test

5.2.1.2 IPSec

The results for IPSec can be seen in table 11. Captures on the ppp0

interface do not contain a link-layer overhead but a Linux cooked cap-
ture header of 16 bytes. The eth0 captures do have a link layer header
of 14 bytes. These overheads are corrected in the tables below. The
IPSec results show an overhead between 88 and 76 for all different
packet sizes. Notable is the consistency even for fragmented packets.
An example of a trace can be seen in figure 17 without the encap-
sulation, and the same packets after the IPSec encryption in figure
18.

Figure 17: IPSEC Unencapsulated packets for 800 bytes UDP test

Figure 18: IPSEC Encapsulated packets for 800 bytes UDP test

Results for all packet sizes are shown in table 11. The fixed over-
head of 111 bytes is true for all packets that have a size less than
the MTU. If the packet is fragmented, openVPN creates even more
overhead, as can be seen at the 1600 and 3200 byte values.
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Table 10: OpenVPN Encapsulation data result

Encapsulated Unencapsulated

Packet Size Bytes Packets Bytes Packets Overhead per sent packet

100 221 1 128 1 93

200 317 1 228 1 89

400 525 1 428 1 97

800 925 1 828 1 97

1600 1854 3 1648 2 103

3200 3599 5 3268 3 110

Table 11: IPSec Encapsulation data result

Encapsulated Unencapsulated

Packet Size Bytes Packets Bytes Packets Overhead per sent packet

100 216 1 128 1 88

200 312 1 228 1 84

400 504 1 428 1 76

800 904 1 828 1 76

1600 1808 3 1648 2 80

3200 3496 5 3268 3 76

5.2.2 Compression

5.2.2.1 OpenVPN

A large difference can be made by enabling the LZO compression in
OpenVPN. An example can be seen in figure 19 with uncompressed
packet with a size of 939 bytes. The compression is enabled in figure
20, where packets only have a size of 203 bytes. This however only
occurs for data that is highly compressible.

Figure 19: Uncompressed encapsulated packets for 800 bytes UDP packets
in OpenVPN

In a test with completely random packet payloads, this does not
occur. An example of the encapsulated results is shown in figure 21.
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Figure 20: Compressed encapsulated packets for 800 bytes UDP packets in
OpenVPN

This gives no advantage to using LZO compression when the data is
not further compressible.

Figure 21: Compressed encapsulated packets for 800 bytes random payload
in OpenVPN

5.2.2.2 IPSec

Compression was enabled in IPSec by enabling the compress=yes op-
tion in the configuration for the client and the server. The results
are similar to the OpenVPN results. If the data is compressible, a
large difference can be seen. In the example below, we can see a that
packets with a payload of 800 bytes result in a 918 byte packet if no
compression is used, and a 182 byte packet where compression is
used. This is an even larger decrease than was seen with OpenVPN.

Contrary to the compression used in OpenVPN, IPSec compres-
sion does not always result in packets of the same size. For packets
with a payload size of 200 bytes, compressed packets of size 166 and
182 were found. This can be a result of some packets being better
compressible than others; but implies a block size of 16 bytes for the
compression.

If the payload is not compressible but entirely random, the results
are the same as for OpenVPN. An example of packets with random
payload with compression turned on can be seen in figure 24. No gain
is made by compressing headers or anything else; the packets have
the same size as their counterparts where compression is turned off.
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Figure 22: Uncompressed encapsulated packets for 800 bytes UDP packets
in IPSec

Figure 23: Compressed encapsulated packets for 800 bytes UDP packets in
IPSec

5.2.3 IPSEc Encapsulation

On both the server and the client, the forceencaps=yes option was
enabled. This causes IPSec to fake the NAT detection payloads. The
NAT is thus detected and UDP encapsulation is enabled:

003 "L2TP-PSK" #1: NAT-Traversal: Result using draft-ietf-ipsec-

nat-t-ike (MacOS X): both are NATed

The UDP encapsulation adds another UDP header of 8 bytes in
overhead. An example of these packets can be seen in figure 25. With
this option enabled, this makes the overhead of IPSec encapsulation
rise from between 88 and 76 bytes to between 96 and 84 bytes. This
makes it very comparable to OpenVPN with the overhead between
97 and 89 bytes

5.3 final considerations

OpenVPN and IPSec seems to add quite some overhead, but as the
overhead is not proportional to the payload size, this can be limited
by making packets as large as possible. This way, the overhead is
relatively small in relation to the payload. In the chapter about VoIP, a
method was shown to accomplish this through packetization options.
However, when fragmentation occurs, the overhead becomes even
more significant, so this should be avoided. Compression does not
seem to provide much relief to the overhead if the payload is not
compressible, but has large benefits for other payloads.

Both VPN solutions provide a way to compress the data before it
is encrypted. From the results it can be seen that large gains can be
made by enabling compression, but it only works on their payloads.
It is therefore very dependant on how compressible the payload is. If
the payloads are not compressible, this option can better be turned
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Figure 24: Compressed encapsulated packets for 800 bytes random payload
in IPSec

Figure 25: UDP encapsulated ESP packets for 800 bytes in IPSec

off to save on CPU resource consumption, which will cost battery
power. VoIP encoding can cause the payloads to be compressed quite
a bit already, making this an option that might not prove very useful.
It should however be tested under VoIP traffic, as the packetization
of VoIP packets might not be entirely effective in compressing and
encoding the voice data.

IPSec has the option to be encapsulated in UDP packets for NAT
Traversal. This option should be enabled for a mobile phone as it
might encounter NATs very frequently. This also makes IPSec even
more comparable to OpenVPN, as it has similar NAT traversing prop-
erties.

To compare both solutions, we look at more than just the raw num-
bers of overhead. IPSec and OpenVPN have shown to be very com-
parable in this aspect, especially if IPSec has UDP encapsulation en-
abled. OpenVPN has shown to be much more flexible to install and
set up. OpenVPN also has the benefit of working on the application
layer, which does not require access further in the stack, which can
be a problem on some devices such as mobile phones. For our use
case, OpenVPN is chosen because of this.
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T U N N E L E D V O I P

Combining all of the research from previous chapters, now the fo-
cus lies on tunneling VoIP over VPN tunnels. Much of the previous
research provides an indication as to what parameters are optimal.

The research into VoIP characteristics provided important results
in packetization options. The research into VPNs showed that com-
pression can be very important if no large delays are incurred.

In this chapter, the best way to tunnel VoIP over VPN is determined.
The question How can VoIP be secured with a tunnel? is answered.
Additionally, the impact of this solution for a mobile device and solu-
tions to problems are discussed.

6.1 methods

The VoIP setup from section 3.1.1 is used again. This time, the con-
nection to the clients is tunneled over a VPN. The setup is shown
in figure 26, with the transparent green overlay depicting the VPN
tunnel.

Figure 26: VoIP over VPN setup

In chapter 5, IPSec and OpenVPN were compared. As they are very
similar in terms over overhead performance, OpenVPN was chosen
as a suitable VPN solution to test with. In this test, OpenVPN will be
configured from the clients to the server running Asterisk.

The voice sample as used in chapter 3 will be used again. After
the VoIP server is setup, a client will connect and the voice sampled
played through again. The call will once again be packet captured
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and analyzed. The capture will be done on both the eth and tun

interface to see both the encapsulated and unencapsulated packets.
G.722 will again be used as the media codec.

To confirm the hypothesis from the results of chapter 4, where com-
pression was used, the sample will also be played with compression
turned on. The hypothesis is that, since VoIP is already encoded effi-
ciently, compression will not provide significant improvement.

The conclusion from chapter 3 about packetization was that 40ms
of framing size would be a good setting. To test this out, we tested
the VoIP call for framing sizes of 20, 40, 60 and 80ms. Larger values
would incur a large delay on the connection, making the voice quality
degrade too much.

6.2 results

6.2.1 VoIP Baseline

As a baseline, the VoIP call was done over the connection without the
VPN. This was done for framing sizes of 20, 40, 60 and 80ms. Several
characteristics are presented to be compared: total bytes sent, total
packets sent and packet size. The call length is 30 seconds for these
measurements. The baseline results are presented in table 12 and in
a graph in figure 27.

Table 12: VoIP baseline without VPN

Frame size Total bytes Total packets Packet size

20 183171 853 214

40 167845 454 374

60 135383 263 534

80 165843 251 694

It can be seen that while the packet size increases linearly, the total
packet count does not decrease in the same manner. This means that
there is no direct trade-off between increasing the framing size and
the total amount of packets. These results provide a reference for the
measurements over OpenVPN, with and without compression.

6.2.2 VoIP over OpenVPN

OpenVPN was enabled on both clients and their SIP clients recon-
figured to connect to the server over the tun interface. The SIP reg-
istration was successful and calls could be established. A problem
occurred with establishing the RTP media session however. While
both clients seemed to think they were connected, no data could be
transferred over RTP from client to client. After some deliberation
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Figure 27: VoIP baseline without VPN

and packet analyses, the media channel settings of Asterisk were re-
configured to directmedia=no. This fixed the problem and the clients
connected over RTP as well.

The results from this analysis are shown in table 13 and in figure
28.

Table 13: VoIP with VPN tunnel

Frame size Total bytes Total packets Packet size

20 285988 954 299

40 209728 469 459

60 185547 351 619

80 169691 245 779

6.2.3 VoIP over OpenVPN with Compression

Compression using LZO was then configured for the OpenVPN server
and clients. The measurements were performed again, and the results
are shown in table 14. For the compression test, only the packet size
is listed, to see if any gains can be made. For each frame, all RTP
packets in the stream seem to have the same packet size (excluding
control packets).

Absolutely no gain is seen for the packets that are encoded with
G.277. The hypothesis was that a gain could maybe be made be-
cause framing might concatenate 10ms chunks of voice data. This
has proven to be wrong, as no compression gains could be made.
However, other stray packets in the stream such as RTCP packets do
benefit from the compression.
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Figure 28: VoIP with VPN tunnel

Table 14: VoIP with VPN tunnel using compression

Frame size Packet size

20 299

40 459

60 619

80 779

6.3 mobile issues

6.3.1 NAT Traversal

As mobile network connections are generally not reliable and stable,
they can produce a lot of jitter on a VoIP connection. WiFi networks
are therefore generally a good alternative. These are the two network
types on which this research is focused. These networks can employ
many different NAT types. A mobile phone that can reside behind
different NATs should use an application that can traverse them for a
good connection.

IPSec generally does not lend itself to NAT Traversal very well, as
in ESP mode, the port number is encrypted and cannot be read or
changed by the NAT device. While NAT traversal options exist in
IPSec extensions, it is not a perfect solution. The NAT traversal in
IPSsec will encapsulate the packets in UDP packets. The packets are
then routed over port 4500. This creates the extra overhead of the
UDP packet. OpenVPN, working in the application layer, does not
have this problem of NAT traversal. By default, OpenVPN works
over UDP, which can be translated in almost every NAT.

Another issue that arises from NAT Traversal is the timeout most
NAT devices employ. In general, UDP NAT translations have a very
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short timeout, ranging from a few minutes to a few hours. TCP time-
outs are generally much longer, sometimes even 24 hours. To keep
such a translation active, a keep-alive packet must be sent. To do
this on a mobile phone would reduce the battery time greatly, as the
phone would have to wake up for every packet that is sent.

6.3.2 Battery consumption

We have identified two factors that might be important in mobile bat-
tery consumption: reducing wake frequency and resource consump-
tion. We have seen that most mobile VoIP solutions employ heavy
encryption schemes, such as the one seen in WhatsApp. This has not
shown to be a great burden for mobile phones. In the background
research, it was also shown that many phones currently on the mar-
ket have very powerful CPU’s. In almost all models, a set of energy
efficient CPU’s is paired with a more powerful set. The result of this
is that the encryption used by a VPN is almost negligible.

A very important factor however, is the waking frequency. For
any solution, the sleep periods should be maximized. This means
that the phone should keep keep-alive packets to a minimum. In the
proposed solution we have three elements that should be optimized
for keep-alive packets: the VPN, the SIP registration and the NAT
translation.

For OpenVPN, a keepalive can be configured in the settings, as can
be seen in appendix D.1.1. The keepalive setting has two parameters,
the first requiring clients to send a keepalive packet every x seconds.
The second parameter specifies the amount of time after which Open-
VPN will detect a client as down. This can be configured to quite a
large value, such as 5 or 10 minutes for the keepalive, and 30 min-
utes for the down detection. This improves the length of the sleep
cycle greatly. The disadvantage of this is that the OpenVPN server
might still believe the client is up, when the phone has actually been
disconnected. With a mobile phone, this can happen a lot, and this
situation should therefore be handled correctly. Under the usecase of
VoIP for VPN, this is no problem. If the PBX does not receive a reply
to the INVITE packets, it will conclude that the host is down and the
call will be declined properly.

Asterisk keepalive can also be configured in its settings. This is a
server-side option to send keepalive packets to clients, which is not
standard. This option can be very useful if a number of different VoIP
clients are used, as they will not have to be configured individually
for keep-alive functionality. Asterisk does not require SIP registra-
tions to be updated very frequently.

NAT timeouts can be a big problem for mobile phones, as they
can be very short, causing the phone to wake up very frequently.
This is generally a problem with protocols running on top of UDP,
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as timeouts for UDP can be very short. A simple solution might be
to use TCP as the transport protocol for OpenVPN when it is not in
use. While switching transport protocol on the fly is not an option
currently, mobile phones might benefit from it greatly. TCP should
not be used for OpenVPN when more data is sent, as it will result in
a large overhead and throttling.

6.4 final considerations

We have seen that VoIP over OpenVPN is a very feasible solution
to secure the channel. While the VPN tunneling does result in some
overhead, the effect of this can be greatly reduced by leaving the fram-
ing size as large as the connection allows. Only a range of framing
sizes should be used however. Low framing size values result in a
very large number of packets that have to be sent, which can cause
other delay problems such as congestion. Large framing sizes should
also be avoided, as they incur a delay of their own, which can be
noticeable. The accepted values proposed in this research are 20 to
80ms. A round trip time measurement could be made at the begin-
ning of a conversation, and during a call, adapting the framing size
to fit the connection. An accepted maximum delay value should be
set (e.g. 100ms). The connection will incur a certain delay, which can
be subtracted from this accepted maximum (e.g. 40ms). A certain
amount of extra delay might still be acceptable on this connection
(e.g. 60ms). Within the range of this extra delay, framing sizes could
be set to larger values.
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D I S C U S S I O N

7.1 limitations

This research was done mostly in a lab environment, running VoIP
and VPN servers in VMs in a simulated network. While much of the
theories discussed also apply to real-world scenario’s, they have not
been tested in such an environment. An exception to this is the re-
search toward current mobile VoIP solutions, which was performed
in an entirely realistic environment. The results would have bene-
fited from a real-world implementation and testing it against different
types of networks (mobile, WiFi) and different NAT configurations.

7.2 conclusion

Four different subjects were addressed in the previous chapters, cor-
responding to the four main research questions. They have shed light
on four different subjects: VoIP characteristics, current mobile VoIP
solutions, VPN tunnel characteristics and VoIP over VPN. Beside this,
the background of these subjects was also discussed in a literature
study.

In chapter 3, the first research question was addressed. An Asterisk
PBX server was set up with two clients. Different codecs were tested
and analysed, and packetization was discovered as an important fac-
tor for VoIP performance. In the chapter following this, chapter 4, we
analysed how current leading mobile VoIP applications secured their
calls. It was shown that while their connection encryption is excel-
lent, end-to-end encryption is rarely actually established. In chapter
5 two different VPNs were compared: OpenVPN and IPSec. The re-
sults showed that their can be very similar in performance, especially
regarding overhead. IPSec showed to be less flexible and quite diffi-
cult to set up for mobile phones however, and OpenVPN was chosen
to be an effective VPN solution. Finally, in chapter 6, the research
came together to set up a primary goal of this research: VoIP over
VPN. From chapter 3, VoIP codecs and packetization options were
used. From chapter 5, OpenVPN settings were configured to be op-
timal for the VoIP usecase. Compression was also tested for VoIP
packetization, but proved to result in no improvements.
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7.3 open challenges and future work

One of the interesting additions to OpenVPN would be the option
to switch transport protocol when necessary. TCP could be used in
sleep states, and UDP when the network is being actively used. This
could be implemented and researched, as it might provide great im-
provements for mobile phones.

Another point of research would be to bring the proposed solutions
into real-world scenario’s, as discussed in the limitations section. It
would provide even more insight into the problems that can arise
from different NAT devices and networks.
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The results for the RTP tests are listed below. For many different
types of codes, results are listed.

Figure 29: Speex 32kHz results
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Figure 30: Speex 16kHz results

Figure 31: Speex 8kHz results



rtp results 59

Figure 32: µ-law results

Figure 33: A-law results
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Figure 34: G.722 results

Figure 35: G.726 results
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Figure 36: GSM results



B
PA C K E T I Z AT I O N R E S U LT S

Different framing sizes are tested for the G.277 codec.

Table 15: Packetization results

Normalized Raw

ms Packets KiloBytes Packets Bytes Time

10 12003,92 1571 12862 1723508 64,29

20 6001,15 1254 6285 1344990 62,84

30 4001,85 1149 4335 1274490 65,00

40 3002,47 1097 3221 1204654 64,37

50 2400,51 1064 2803 1272562 70,06

60 2000,87 1043 2081 1111254 62,40

70 1715,26 1028 1960 1203440 68,56

80 1501,47 1018 1633 1133302 65,26

90 1334,45 1009 1457 1127718 65,51

100 1201,28 1002 1275 1088850 63,68

110 1092,74 997 1140 1064760 62,60

120 1000,30 991 1112 1127568 66,70

130 923,58 987 1041 1138854 67,63

140 857,90 984 943 1107082 65,95

150 857,59 983 941 1104734 65,84

62



C
A S T E R I S K C O N F I G U R AT I O N

The asterisk configuration is done in the sip.conf file. The settings
used in the tests is listed below.

# /etc/asterisk/sip.conf

[general]

allowoverlap=no

udpbindaddr=0.0.0.0

transport=udp

srvlookup=yes

disallow=all

allow=g722:80

useragent=Asterisk-Test

nat = yes

directmedia=no

[host-phone]

type=friend

context=phones

host=dynamic

secret=1234

[1235]

type=friend

context=phones

host=dynamic

secret=1234

[1236]

type=friend

context=phones

host=dynamic

secret=1234
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d.1 openvpn

The configurations for the OpenVPN server and client are listed be-
low.

d.1.1 Server

# /etc/openvpn-nl/server.conf

# Port to run OpenVPN on

port 1194

# Protocol - UDP/TCP

proto udp

# TUN or TAP device

dev tun

# Certificate and encryption files

ca /etc/openvpn-nl/ca.crt

cert /etc/openvpn-nl/server.crt

key /etc/openvpn-nl/server.key

dh /etc/openvpn-nl/dh.pem

# Topology style

topology subnet

# Private subnet configuration

server 10.8.0.0 255.255.255.0

ifconfig-pool-persist ipp.txt

# Enable client-to-client communications

client-to-client

# Allow the same certificate to connect twice

duplicate-cn

keepalive 10 120

# Cipher selection

cipher AES-256-CBC

persist-key

persist-tun

status openvpn-status.log

log-append openvpn.log

verb 3

d.1.2 Client

# client.ovpn

client

;dev tap

dev tun
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;proto tcp

proto udp

remote 192.168.56.101 1194

resolv-retry infinite

nobind

# Try to preserve some state across restarts.

persist-key

persist-tun

ca ca.crt

cert client.crt

key client.key

;ns-cert-type server

remote-cert-tls server

cipher AES-256-CBC

auth SHA256

# Enable compression on the VPN link.

;comp-lzo

verb 3

d.2 ipsec

The configurations for the IPSec server and client are listed below.

d.2.1 Server

IPSec Configuration

# /etc/ipsec.conf - Openswan IPsec configuration file

config setup

plutoopts="--perpeerlog"

nat_traversal=yes

virtual_private=%v4:10.0.0.0/8,%v4:192.168.0.0/16,%v

4:172.16.0.0/12,%v4:25.0.0.0/8,%v6:fd00::/8,%v6:fe

80::/10

oe=off

protostack=auto

plutostderrlog=/var/log/pluto.log

keep_alive=600
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conn L2TP-PSK-noNAT

authby=secret

# pre-shared secret.

# Enabled for different tests

#forceencaps=yes

#compress=yes

pfs=no

auto=add

keyingtries=3

ikelifetime=8h

keylife=1h

ike=aes256-sha1

phase2alg=aes256-sha1

type=transport

#because we use l2tp as tunnel protocol

left=192.168.56.101

leftprotoport=17/1701

right=%any

rightprotoport=17/%any

dpddelay=10

dpdtimeout=20

dpdaction=clear

XL2TPD Configuration

# /etc/xl2tpd/xl2tpd.conf

[global]

ipsec saref = yes

saref refinfo = 30

[lns default]

ip range = 172.16.1.30-172.16.1.100

local ip = 172.16.1.1

;refuse pap = yes

require authentication = yes

;ppp debug = yes

pppoptfile = /etc/ppp/options.xl2tpd

length bit = yes

# /etc/ppp/options.xl2tpd

require-mschap-v2

refuse-mschap

ms-dns 8.8.8.8

ms-dns 8.8.4.4
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asyncmap 0

auth

crtscts

idle 1800

mtu 1200

mru 1200

lock

hide-password

local

#debug

name l2tpd

proxyarp

lcp-echo-interval 30

lcp-echo-failure 4

d.2.2 Client

IPSec Configuration

# /etc/ipsec.conf

config setup

nat_traversal=yes

protostack=netkey

conn L2TP-PSK

authby=secret

auto=add

forceencaps=yes

keyingtries=1

dpddelay=30

dpdtimeout=120

dpdaction=clear

rekey=yes

ikelifetime=8h

keylife=1h

type=transport

right=192.168.56.102

rightprotoport=17/1701

left=192.168.56.101

leftprotoport=17/1701

XL2TPD Configuration

# /etc/xl2tpd/xl2tpd.conf

[lac vmipsecvpn]

lns = 192.168.56.101

ppp debug = yes

pppoptfile = /etc/ppp/options.l2tpd.client

length bit = yes

# /etc/ppp/options.l2tpd.client

ipcp-accept-local

ipcp-accept-remote

refuse-eap
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require-mschap-v2

noccp

noauth

idle 1800

mtu 1410

mru 1410

defaultroute

usepeerdns

debug

lock

connect-delay 5000

name alice

password AlicePass
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